1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/MemorySSA.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/Type.h"
120 #include "llvm/IR/Use.h"
121 #include "llvm/IR/User.h"
122 #include "llvm/IR/Value.h"
123 #include "llvm/IR/ValueHandle.h"
124 #include "llvm/IR/Verifier.h"
125 #include "llvm/InitializePasses.h"
126 #include "llvm/Pass.h"
127 #include "llvm/Support/Casting.h"
128 #include "llvm/Support/CommandLine.h"
129 #include "llvm/Support/Compiler.h"
130 #include "llvm/Support/Debug.h"
131 #include "llvm/Support/ErrorHandling.h"
132 #include "llvm/Support/InstructionCost.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 #ifndef NDEBUG
161 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
162 #endif
163 
164 /// @{
165 /// Metadata attribute names
166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
167 const char LLVMLoopVectorizeFollowupVectorized[] =
168     "llvm.loop.vectorize.followup_vectorized";
169 const char LLVMLoopVectorizeFollowupEpilogue[] =
170     "llvm.loop.vectorize.followup_epilogue";
171 /// @}
172 
173 STATISTIC(LoopsVectorized, "Number of loops vectorized");
174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
176 
177 static cl::opt<bool> EnableEpilogueVectorization(
178     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
179     cl::desc("Enable vectorization of epilogue loops."));
180 
181 static cl::opt<unsigned> EpilogueVectorizationForceVF(
182     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
183     cl::desc("When epilogue vectorization is enabled, and a value greater than "
184              "1 is specified, forces the given VF for all applicable epilogue "
185              "loops."));
186 
187 static cl::opt<unsigned> EpilogueVectorizationMinVF(
188     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
189     cl::desc("Only loops with vectorization factor equal to or larger than "
190              "the specified value are considered for epilogue vectorization."));
191 
192 /// Loops with a known constant trip count below this number are vectorized only
193 /// if no scalar iteration overheads are incurred.
194 static cl::opt<unsigned> TinyTripCountVectorThreshold(
195     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
196     cl::desc("Loops with a constant trip count that is smaller than this "
197              "value are vectorized only if no scalar iteration overheads "
198              "are incurred."));
199 
200 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
201 // that predication is preferred, and this lists all options. I.e., the
202 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
203 // and predicate the instructions accordingly. If tail-folding fails, there are
204 // different fallback strategies depending on these values:
205 namespace PreferPredicateTy {
206   enum Option {
207     ScalarEpilogue = 0,
208     PredicateElseScalarEpilogue,
209     PredicateOrDontVectorize
210   };
211 } // namespace PreferPredicateTy
212 
213 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
214     "prefer-predicate-over-epilogue",
215     cl::init(PreferPredicateTy::ScalarEpilogue),
216     cl::Hidden,
217     cl::desc("Tail-folding and predication preferences over creating a scalar "
218              "epilogue loop."),
219     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
220                          "scalar-epilogue",
221                          "Don't tail-predicate loops, create scalar epilogue"),
222               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
223                          "predicate-else-scalar-epilogue",
224                          "prefer tail-folding, create scalar epilogue if tail "
225                          "folding fails."),
226               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
227                          "predicate-dont-vectorize",
228                          "prefers tail-folding, don't attempt vectorization if "
229                          "tail-folding fails.")));
230 
231 static cl::opt<bool> MaximizeBandwidth(
232     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
233     cl::desc("Maximize bandwidth when selecting vectorization factor which "
234              "will be determined by the smallest type in loop."));
235 
236 static cl::opt<bool> EnableInterleavedMemAccesses(
237     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
238     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
239 
240 /// An interleave-group may need masking if it resides in a block that needs
241 /// predication, or in order to mask away gaps.
242 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
243     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
245 
246 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
247     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
248     cl::desc("We don't interleave loops with a estimated constant trip count "
249              "below this number"));
250 
251 static cl::opt<unsigned> ForceTargetNumScalarRegs(
252     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
253     cl::desc("A flag that overrides the target's number of scalar registers."));
254 
255 static cl::opt<unsigned> ForceTargetNumVectorRegs(
256     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
257     cl::desc("A flag that overrides the target's number of vector registers."));
258 
259 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
260     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
261     cl::desc("A flag that overrides the target's max interleave factor for "
262              "scalar loops."));
263 
264 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
265     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
266     cl::desc("A flag that overrides the target's max interleave factor for "
267              "vectorized loops."));
268 
269 static cl::opt<unsigned> ForceTargetInstructionCost(
270     "force-target-instruction-cost", cl::init(0), cl::Hidden,
271     cl::desc("A flag that overrides the target's expected cost for "
272              "an instruction to a single constant value. Mostly "
273              "useful for getting consistent testing."));
274 
275 static cl::opt<bool> ForceTargetSupportsScalableVectors(
276     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
277     cl::desc(
278         "Pretend that scalable vectors are supported, even if the target does "
279         "not support them. This flag should only be used for testing."));
280 
281 static cl::opt<unsigned> SmallLoopCost(
282     "small-loop-cost", cl::init(20), cl::Hidden,
283     cl::desc(
284         "The cost of a loop that is considered 'small' by the interleaver."));
285 
286 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
287     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
288     cl::desc("Enable the use of the block frequency analysis to access PGO "
289              "heuristics minimizing code growth in cold regions and being more "
290              "aggressive in hot regions."));
291 
292 // Runtime interleave loops for load/store throughput.
293 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
294     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
295     cl::desc(
296         "Enable runtime interleaving until load/store ports are saturated"));
297 
298 /// Interleave small loops with scalar reductions.
299 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
300     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
301     cl::desc("Enable interleaving for loops with small iteration counts that "
302              "contain scalar reductions to expose ILP."));
303 
304 /// The number of stores in a loop that are allowed to need predication.
305 static cl::opt<unsigned> NumberOfStoresToPredicate(
306     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
307     cl::desc("Max number of stores to be predicated behind an if."));
308 
309 static cl::opt<bool> EnableIndVarRegisterHeur(
310     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
311     cl::desc("Count the induction variable only once when interleaving"));
312 
313 static cl::opt<bool> EnableCondStoresVectorization(
314     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
315     cl::desc("Enable if predication of stores during vectorization."));
316 
317 static cl::opt<unsigned> MaxNestedScalarReductionIC(
318     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
319     cl::desc("The maximum interleave count to use when interleaving a scalar "
320              "reduction in a nested loop."));
321 
322 static cl::opt<bool>
323     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
324                            cl::Hidden,
325                            cl::desc("Prefer in-loop vector reductions, "
326                                     "overriding the targets preference."));
327 
328 static cl::opt<bool> PreferPredicatedReductionSelect(
329     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
330     cl::desc(
331         "Prefer predicating a reduction operation over an after loop select."));
332 
333 cl::opt<bool> EnableVPlanNativePath(
334     "enable-vplan-native-path", cl::init(false), cl::Hidden,
335     cl::desc("Enable VPlan-native vectorization path with "
336              "support for outer loop vectorization."));
337 
338 // FIXME: Remove this switch once we have divergence analysis. Currently we
339 // assume divergent non-backedge branches when this switch is true.
340 cl::opt<bool> EnableVPlanPredication(
341     "enable-vplan-predication", cl::init(false), cl::Hidden,
342     cl::desc("Enable VPlan-native vectorization path predicator with "
343              "support for outer loop vectorization."));
344 
345 // This flag enables the stress testing of the VPlan H-CFG construction in the
346 // VPlan-native vectorization path. It must be used in conjuction with
347 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
348 // verification of the H-CFGs built.
349 static cl::opt<bool> VPlanBuildStressTest(
350     "vplan-build-stress-test", cl::init(false), cl::Hidden,
351     cl::desc(
352         "Build VPlan for every supported loop nest in the function and bail "
353         "out right after the build (stress test the VPlan H-CFG construction "
354         "in the VPlan-native vectorization path)."));
355 
356 cl::opt<bool> llvm::EnableLoopInterleaving(
357     "interleave-loops", cl::init(true), cl::Hidden,
358     cl::desc("Enable loop interleaving in Loop vectorization passes"));
359 cl::opt<bool> llvm::EnableLoopVectorization(
360     "vectorize-loops", cl::init(true), cl::Hidden,
361     cl::desc("Run the Loop vectorization passes"));
362 
363 cl::opt<bool> PrintVPlansInDotFormat(
364     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
365     cl::desc("Use dot format instead of plain text when dumping VPlans"));
366 
367 /// A helper function that returns the type of loaded or stored value.
368 static Type *getMemInstValueType(Value *I) {
369   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
370          "Expected Load or Store instruction");
371   if (auto *LI = dyn_cast<LoadInst>(I))
372     return LI->getType();
373   return cast<StoreInst>(I)->getValueOperand()->getType();
374 }
375 
376 /// A helper function that returns true if the given type is irregular. The
377 /// type is irregular if its allocated size doesn't equal the store size of an
378 /// element of the corresponding vector type.
379 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
380   // Determine if an array of N elements of type Ty is "bitcast compatible"
381   // with a <N x Ty> vector.
382   // This is only true if there is no padding between the array elements.
383   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
384 }
385 
386 /// A helper function that returns the reciprocal of the block probability of
387 /// predicated blocks. If we return X, we are assuming the predicated block
388 /// will execute once for every X iterations of the loop header.
389 ///
390 /// TODO: We should use actual block probability here, if available. Currently,
391 ///       we always assume predicated blocks have a 50% chance of executing.
392 static unsigned getReciprocalPredBlockProb() { return 2; }
393 
394 /// A helper function that returns an integer or floating-point constant with
395 /// value C.
396 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
397   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
398                            : ConstantFP::get(Ty, C);
399 }
400 
401 /// Returns "best known" trip count for the specified loop \p L as defined by
402 /// the following procedure:
403 ///   1) Returns exact trip count if it is known.
404 ///   2) Returns expected trip count according to profile data if any.
405 ///   3) Returns upper bound estimate if it is known.
406 ///   4) Returns None if all of the above failed.
407 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
408   // Check if exact trip count is known.
409   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
410     return ExpectedTC;
411 
412   // Check if there is an expected trip count available from profile data.
413   if (LoopVectorizeWithBlockFrequency)
414     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
415       return EstimatedTC;
416 
417   // Check if upper bound estimate is known.
418   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
419     return ExpectedTC;
420 
421   return None;
422 }
423 
424 // Forward declare GeneratedRTChecks.
425 class GeneratedRTChecks;
426 
427 namespace llvm {
428 
429 /// InnerLoopVectorizer vectorizes loops which contain only one basic
430 /// block to a specified vectorization factor (VF).
431 /// This class performs the widening of scalars into vectors, or multiple
432 /// scalars. This class also implements the following features:
433 /// * It inserts an epilogue loop for handling loops that don't have iteration
434 ///   counts that are known to be a multiple of the vectorization factor.
435 /// * It handles the code generation for reduction variables.
436 /// * Scalarization (implementation using scalars) of un-vectorizable
437 ///   instructions.
438 /// InnerLoopVectorizer does not perform any vectorization-legality
439 /// checks, and relies on the caller to check for the different legality
440 /// aspects. The InnerLoopVectorizer relies on the
441 /// LoopVectorizationLegality class to provide information about the induction
442 /// and reduction variables that were found to a given vectorization factor.
443 class InnerLoopVectorizer {
444 public:
445   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
446                       LoopInfo *LI, DominatorTree *DT,
447                       const TargetLibraryInfo *TLI,
448                       const TargetTransformInfo *TTI, AssumptionCache *AC,
449                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
450                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
451                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
452                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
453       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
454         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
455         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
456         PSI(PSI), RTChecks(RTChecks) {
457     // Query this against the original loop and save it here because the profile
458     // of the original loop header may change as the transformation happens.
459     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
460         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
461   }
462 
463   virtual ~InnerLoopVectorizer() = default;
464 
465   /// Create a new empty loop that will contain vectorized instructions later
466   /// on, while the old loop will be used as the scalar remainder. Control flow
467   /// is generated around the vectorized (and scalar epilogue) loops consisting
468   /// of various checks and bypasses. Return the pre-header block of the new
469   /// loop.
470   /// In the case of epilogue vectorization, this function is overriden to
471   /// handle the more complex control flow around the loops.
472   virtual BasicBlock *createVectorizedLoopSkeleton();
473 
474   /// Widen a single instruction within the innermost loop.
475   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
476                         VPTransformState &State);
477 
478   /// Widen a single call instruction within the innermost loop.
479   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
480                             VPTransformState &State);
481 
482   /// Widen a single select instruction within the innermost loop.
483   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
484                               bool InvariantCond, VPTransformState &State);
485 
486   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
487   void fixVectorizedLoop(VPTransformState &State);
488 
489   // Return true if any runtime check is added.
490   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
491 
492   /// A type for vectorized values in the new loop. Each value from the
493   /// original loop, when vectorized, is represented by UF vector values in the
494   /// new unrolled loop, where UF is the unroll factor.
495   using VectorParts = SmallVector<Value *, 2>;
496 
497   /// Vectorize a single GetElementPtrInst based on information gathered and
498   /// decisions taken during planning.
499   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
500                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
501                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
502 
503   /// Vectorize a single PHINode in a block. This method handles the induction
504   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
505   /// arbitrary length vectors.
506   void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc,
507                            VPValue *StartV, VPValue *Def,
508                            VPTransformState &State);
509 
510   /// A helper function to scalarize a single Instruction in the innermost loop.
511   /// Generates a sequence of scalar instances for each lane between \p MinLane
512   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
513   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
514   /// Instr's operands.
515   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
516                             const VPIteration &Instance, bool IfPredicateInstr,
517                             VPTransformState &State);
518 
519   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
520   /// is provided, the integer induction variable will first be truncated to
521   /// the corresponding type.
522   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
523                              VPValue *Def, VPValue *CastDef,
524                              VPTransformState &State);
525 
526   /// Construct the vector value of a scalarized value \p V one lane at a time.
527   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
528                                  VPTransformState &State);
529 
530   /// Try to vectorize interleaved access group \p Group with the base address
531   /// given in \p Addr, optionally masking the vector operations if \p
532   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
533   /// values in the vectorized loop.
534   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
535                                 ArrayRef<VPValue *> VPDefs,
536                                 VPTransformState &State, VPValue *Addr,
537                                 ArrayRef<VPValue *> StoredValues,
538                                 VPValue *BlockInMask = nullptr);
539 
540   /// Vectorize Load and Store instructions with the base address given in \p
541   /// Addr, optionally masking the vector operations if \p BlockInMask is
542   /// non-null. Use \p State to translate given VPValues to IR values in the
543   /// vectorized loop.
544   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
545                                   VPValue *Def, VPValue *Addr,
546                                   VPValue *StoredValue, VPValue *BlockInMask);
547 
548   /// Set the debug location in the builder using the debug location in
549   /// the instruction.
550   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
551 
552   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
553   void fixNonInductionPHIs(VPTransformState &State);
554 
555   /// Create a broadcast instruction. This method generates a broadcast
556   /// instruction (shuffle) for loop invariant values and for the induction
557   /// value. If this is the induction variable then we extend it to N, N+1, ...
558   /// this is needed because each iteration in the loop corresponds to a SIMD
559   /// element.
560   virtual Value *getBroadcastInstrs(Value *V);
561 
562 protected:
563   friend class LoopVectorizationPlanner;
564 
565   /// A small list of PHINodes.
566   using PhiVector = SmallVector<PHINode *, 4>;
567 
568   /// A type for scalarized values in the new loop. Each value from the
569   /// original loop, when scalarized, is represented by UF x VF scalar values
570   /// in the new unrolled loop, where UF is the unroll factor and VF is the
571   /// vectorization factor.
572   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
573 
574   /// Set up the values of the IVs correctly when exiting the vector loop.
575   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
576                     Value *CountRoundDown, Value *EndValue,
577                     BasicBlock *MiddleBlock);
578 
579   /// Create a new induction variable inside L.
580   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
581                                    Value *Step, Instruction *DL);
582 
583   /// Handle all cross-iteration phis in the header.
584   void fixCrossIterationPHIs(VPTransformState &State);
585 
586   /// Fix a first-order recurrence. This is the second phase of vectorizing
587   /// this phi node.
588   void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State);
589 
590   /// Fix a reduction cross-iteration phi. This is the second phase of
591   /// vectorizing this phi node.
592   void fixReduction(PHINode *Phi, VPTransformState &State);
593 
594   /// Clear NSW/NUW flags from reduction instructions if necessary.
595   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
596                                VPTransformState &State);
597 
598   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
599   /// means we need to add the appropriate incoming value from the middle
600   /// block as exiting edges from the scalar epilogue loop (if present) are
601   /// already in place, and we exit the vector loop exclusively to the middle
602   /// block.
603   void fixLCSSAPHIs(VPTransformState &State);
604 
605   /// Iteratively sink the scalarized operands of a predicated instruction into
606   /// the block that was created for it.
607   void sinkScalarOperands(Instruction *PredInst);
608 
609   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
610   /// represented as.
611   void truncateToMinimalBitwidths(VPTransformState &State);
612 
613   /// This function adds
614   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
615   /// to each vector element of Val. The sequence starts at StartIndex.
616   /// \p Opcode is relevant for FP induction variable.
617   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
618                                Instruction::BinaryOps Opcode =
619                                Instruction::BinaryOpsEnd);
620 
621   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
622   /// variable on which to base the steps, \p Step is the size of the step, and
623   /// \p EntryVal is the value from the original loop that maps to the steps.
624   /// Note that \p EntryVal doesn't have to be an induction variable - it
625   /// can also be a truncate instruction.
626   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
627                         const InductionDescriptor &ID, VPValue *Def,
628                         VPValue *CastDef, VPTransformState &State);
629 
630   /// Create a vector induction phi node based on an existing scalar one. \p
631   /// EntryVal is the value from the original loop that maps to the vector phi
632   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
633   /// truncate instruction, instead of widening the original IV, we widen a
634   /// version of the IV truncated to \p EntryVal's type.
635   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
636                                        Value *Step, Value *Start,
637                                        Instruction *EntryVal, VPValue *Def,
638                                        VPValue *CastDef,
639                                        VPTransformState &State);
640 
641   /// Returns true if an instruction \p I should be scalarized instead of
642   /// vectorized for the chosen vectorization factor.
643   bool shouldScalarizeInstruction(Instruction *I) const;
644 
645   /// Returns true if we should generate a scalar version of \p IV.
646   bool needsScalarInduction(Instruction *IV) const;
647 
648   /// If there is a cast involved in the induction variable \p ID, which should
649   /// be ignored in the vectorized loop body, this function records the
650   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
651   /// cast. We had already proved that the casted Phi is equal to the uncasted
652   /// Phi in the vectorized loop (under a runtime guard), and therefore
653   /// there is no need to vectorize the cast - the same value can be used in the
654   /// vector loop for both the Phi and the cast.
655   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
656   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
657   ///
658   /// \p EntryVal is the value from the original loop that maps to the vector
659   /// phi node and is used to distinguish what is the IV currently being
660   /// processed - original one (if \p EntryVal is a phi corresponding to the
661   /// original IV) or the "newly-created" one based on the proof mentioned above
662   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
663   /// latter case \p EntryVal is a TruncInst and we must not record anything for
664   /// that IV, but it's error-prone to expect callers of this routine to care
665   /// about that, hence this explicit parameter.
666   void recordVectorLoopValueForInductionCast(
667       const InductionDescriptor &ID, const Instruction *EntryVal,
668       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
669       unsigned Part, unsigned Lane = UINT_MAX);
670 
671   /// Generate a shuffle sequence that will reverse the vector Vec.
672   virtual Value *reverseVector(Value *Vec);
673 
674   /// Returns (and creates if needed) the original loop trip count.
675   Value *getOrCreateTripCount(Loop *NewLoop);
676 
677   /// Returns (and creates if needed) the trip count of the widened loop.
678   Value *getOrCreateVectorTripCount(Loop *NewLoop);
679 
680   /// Returns a bitcasted value to the requested vector type.
681   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
682   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
683                                 const DataLayout &DL);
684 
685   /// Emit a bypass check to see if the vector trip count is zero, including if
686   /// it overflows.
687   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
688 
689   /// Emit a bypass check to see if all of the SCEV assumptions we've
690   /// had to make are correct. Returns the block containing the checks or
691   /// nullptr if no checks have been added.
692   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit bypass checks to check any memory assumptions we may have made.
695   /// Returns the block containing the checks or nullptr if no checks have been
696   /// added.
697   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Compute the transformed value of Index at offset StartValue using step
700   /// StepValue.
701   /// For integer induction, returns StartValue + Index * StepValue.
702   /// For pointer induction, returns StartValue[Index * StepValue].
703   /// FIXME: The newly created binary instructions should contain nsw/nuw
704   /// flags, which can be found from the original scalar operations.
705   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
706                               const DataLayout &DL,
707                               const InductionDescriptor &ID) const;
708 
709   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
710   /// vector loop preheader, middle block and scalar preheader. Also
711   /// allocate a loop object for the new vector loop and return it.
712   Loop *createVectorLoopSkeleton(StringRef Prefix);
713 
714   /// Create new phi nodes for the induction variables to resume iteration count
715   /// in the scalar epilogue, from where the vectorized loop left off (given by
716   /// \p VectorTripCount).
717   /// In cases where the loop skeleton is more complicated (eg. epilogue
718   /// vectorization) and the resume values can come from an additional bypass
719   /// block, the \p AdditionalBypass pair provides information about the bypass
720   /// block and the end value on the edge from bypass to this loop.
721   void createInductionResumeValues(
722       Loop *L, Value *VectorTripCount,
723       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
724 
725   /// Complete the loop skeleton by adding debug MDs, creating appropriate
726   /// conditional branches in the middle block, preparing the builder and
727   /// running the verifier. Take in the vector loop \p L as argument, and return
728   /// the preheader of the completed vector loop.
729   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
730 
731   /// Add additional metadata to \p To that was not present on \p Orig.
732   ///
733   /// Currently this is used to add the noalias annotations based on the
734   /// inserted memchecks.  Use this for instructions that are *cloned* into the
735   /// vector loop.
736   void addNewMetadata(Instruction *To, const Instruction *Orig);
737 
738   /// Add metadata from one instruction to another.
739   ///
740   /// This includes both the original MDs from \p From and additional ones (\see
741   /// addNewMetadata).  Use this for *newly created* instructions in the vector
742   /// loop.
743   void addMetadata(Instruction *To, Instruction *From);
744 
745   /// Similar to the previous function but it adds the metadata to a
746   /// vector of instructions.
747   void addMetadata(ArrayRef<Value *> To, Instruction *From);
748 
749   /// Allow subclasses to override and print debug traces before/after vplan
750   /// execution, when trace information is requested.
751   virtual void printDebugTracesAtStart(){};
752   virtual void printDebugTracesAtEnd(){};
753 
754   /// The original loop.
755   Loop *OrigLoop;
756 
757   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
758   /// dynamic knowledge to simplify SCEV expressions and converts them to a
759   /// more usable form.
760   PredicatedScalarEvolution &PSE;
761 
762   /// Loop Info.
763   LoopInfo *LI;
764 
765   /// Dominator Tree.
766   DominatorTree *DT;
767 
768   /// Alias Analysis.
769   AAResults *AA;
770 
771   /// Target Library Info.
772   const TargetLibraryInfo *TLI;
773 
774   /// Target Transform Info.
775   const TargetTransformInfo *TTI;
776 
777   /// Assumption Cache.
778   AssumptionCache *AC;
779 
780   /// Interface to emit optimization remarks.
781   OptimizationRemarkEmitter *ORE;
782 
783   /// LoopVersioning.  It's only set up (non-null) if memchecks were
784   /// used.
785   ///
786   /// This is currently only used to add no-alias metadata based on the
787   /// memchecks.  The actually versioning is performed manually.
788   std::unique_ptr<LoopVersioning> LVer;
789 
790   /// The vectorization SIMD factor to use. Each vector will have this many
791   /// vector elements.
792   ElementCount VF;
793 
794   /// The vectorization unroll factor to use. Each scalar is vectorized to this
795   /// many different vector instructions.
796   unsigned UF;
797 
798   /// The builder that we use
799   IRBuilder<> Builder;
800 
801   // --- Vectorization state ---
802 
803   /// The vector-loop preheader.
804   BasicBlock *LoopVectorPreHeader;
805 
806   /// The scalar-loop preheader.
807   BasicBlock *LoopScalarPreHeader;
808 
809   /// Middle Block between the vector and the scalar.
810   BasicBlock *LoopMiddleBlock;
811 
812   /// The (unique) ExitBlock of the scalar loop.  Note that
813   /// there can be multiple exiting edges reaching this block.
814   BasicBlock *LoopExitBlock;
815 
816   /// The vector loop body.
817   BasicBlock *LoopVectorBody;
818 
819   /// The scalar loop body.
820   BasicBlock *LoopScalarBody;
821 
822   /// A list of all bypass blocks. The first block is the entry of the loop.
823   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
824 
825   /// The new Induction variable which was added to the new block.
826   PHINode *Induction = nullptr;
827 
828   /// The induction variable of the old basic block.
829   PHINode *OldInduction = nullptr;
830 
831   /// Store instructions that were predicated.
832   SmallVector<Instruction *, 4> PredicatedInstructions;
833 
834   /// Trip count of the original loop.
835   Value *TripCount = nullptr;
836 
837   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
838   Value *VectorTripCount = nullptr;
839 
840   /// The legality analysis.
841   LoopVectorizationLegality *Legal;
842 
843   /// The profitablity analysis.
844   LoopVectorizationCostModel *Cost;
845 
846   // Record whether runtime checks are added.
847   bool AddedSafetyChecks = false;
848 
849   // Holds the end values for each induction variable. We save the end values
850   // so we can later fix-up the external users of the induction variables.
851   DenseMap<PHINode *, Value *> IVEndValues;
852 
853   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
854   // fixed up at the end of vector code generation.
855   SmallVector<PHINode *, 8> OrigPHIsToFix;
856 
857   /// BFI and PSI are used to check for profile guided size optimizations.
858   BlockFrequencyInfo *BFI;
859   ProfileSummaryInfo *PSI;
860 
861   // Whether this loop should be optimized for size based on profile guided size
862   // optimizatios.
863   bool OptForSizeBasedOnProfile;
864 
865   /// Structure to hold information about generated runtime checks, responsible
866   /// for cleaning the checks, if vectorization turns out unprofitable.
867   GeneratedRTChecks &RTChecks;
868 };
869 
870 class InnerLoopUnroller : public InnerLoopVectorizer {
871 public:
872   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
873                     LoopInfo *LI, DominatorTree *DT,
874                     const TargetLibraryInfo *TLI,
875                     const TargetTransformInfo *TTI, AssumptionCache *AC,
876                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
877                     LoopVectorizationLegality *LVL,
878                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
879                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
880       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
881                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
882                             BFI, PSI, Check) {}
883 
884 private:
885   Value *getBroadcastInstrs(Value *V) override;
886   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
887                        Instruction::BinaryOps Opcode =
888                        Instruction::BinaryOpsEnd) override;
889   Value *reverseVector(Value *Vec) override;
890 };
891 
892 /// Encapsulate information regarding vectorization of a loop and its epilogue.
893 /// This information is meant to be updated and used across two stages of
894 /// epilogue vectorization.
895 struct EpilogueLoopVectorizationInfo {
896   ElementCount MainLoopVF = ElementCount::getFixed(0);
897   unsigned MainLoopUF = 0;
898   ElementCount EpilogueVF = ElementCount::getFixed(0);
899   unsigned EpilogueUF = 0;
900   BasicBlock *MainLoopIterationCountCheck = nullptr;
901   BasicBlock *EpilogueIterationCountCheck = nullptr;
902   BasicBlock *SCEVSafetyCheck = nullptr;
903   BasicBlock *MemSafetyCheck = nullptr;
904   Value *TripCount = nullptr;
905   Value *VectorTripCount = nullptr;
906 
907   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
908                                 unsigned EUF)
909       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
910         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
911     assert(EUF == 1 &&
912            "A high UF for the epilogue loop is likely not beneficial.");
913   }
914 };
915 
916 /// An extension of the inner loop vectorizer that creates a skeleton for a
917 /// vectorized loop that has its epilogue (residual) also vectorized.
918 /// The idea is to run the vplan on a given loop twice, firstly to setup the
919 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
920 /// from the first step and vectorize the epilogue.  This is achieved by
921 /// deriving two concrete strategy classes from this base class and invoking
922 /// them in succession from the loop vectorizer planner.
923 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
924 public:
925   InnerLoopAndEpilogueVectorizer(
926       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
927       DominatorTree *DT, const TargetLibraryInfo *TLI,
928       const TargetTransformInfo *TTI, AssumptionCache *AC,
929       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
930       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
931       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
932       GeneratedRTChecks &Checks)
933       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
934                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
935                             Checks),
936         EPI(EPI) {}
937 
938   // Override this function to handle the more complex control flow around the
939   // three loops.
940   BasicBlock *createVectorizedLoopSkeleton() final override {
941     return createEpilogueVectorizedLoopSkeleton();
942   }
943 
944   /// The interface for creating a vectorized skeleton using one of two
945   /// different strategies, each corresponding to one execution of the vplan
946   /// as described above.
947   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
948 
949   /// Holds and updates state information required to vectorize the main loop
950   /// and its epilogue in two separate passes. This setup helps us avoid
951   /// regenerating and recomputing runtime safety checks. It also helps us to
952   /// shorten the iteration-count-check path length for the cases where the
953   /// iteration count of the loop is so small that the main vector loop is
954   /// completely skipped.
955   EpilogueLoopVectorizationInfo &EPI;
956 };
957 
958 /// A specialized derived class of inner loop vectorizer that performs
959 /// vectorization of *main* loops in the process of vectorizing loops and their
960 /// epilogues.
961 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
962 public:
963   EpilogueVectorizerMainLoop(
964       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
965       DominatorTree *DT, const TargetLibraryInfo *TLI,
966       const TargetTransformInfo *TTI, AssumptionCache *AC,
967       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
968       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
969       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
970       GeneratedRTChecks &Check)
971       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
972                                        EPI, LVL, CM, BFI, PSI, Check) {}
973   /// Implements the interface for creating a vectorized skeleton using the
974   /// *main loop* strategy (ie the first pass of vplan execution).
975   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
976 
977 protected:
978   /// Emits an iteration count bypass check once for the main loop (when \p
979   /// ForEpilogue is false) and once for the epilogue loop (when \p
980   /// ForEpilogue is true).
981   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
982                                              bool ForEpilogue);
983   void printDebugTracesAtStart() override;
984   void printDebugTracesAtEnd() override;
985 };
986 
987 // A specialized derived class of inner loop vectorizer that performs
988 // vectorization of *epilogue* loops in the process of vectorizing loops and
989 // their epilogues.
990 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
991 public:
992   EpilogueVectorizerEpilogueLoop(
993       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
994       DominatorTree *DT, const TargetLibraryInfo *TLI,
995       const TargetTransformInfo *TTI, AssumptionCache *AC,
996       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
997       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
998       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
999       GeneratedRTChecks &Checks)
1000       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1001                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1002   /// Implements the interface for creating a vectorized skeleton using the
1003   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1004   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1005 
1006 protected:
1007   /// Emits an iteration count bypass check after the main vector loop has
1008   /// finished to see if there are any iterations left to execute by either
1009   /// the vector epilogue or the scalar epilogue.
1010   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1011                                                       BasicBlock *Bypass,
1012                                                       BasicBlock *Insert);
1013   void printDebugTracesAtStart() override;
1014   void printDebugTracesAtEnd() override;
1015 };
1016 } // end namespace llvm
1017 
1018 /// Look for a meaningful debug location on the instruction or it's
1019 /// operands.
1020 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1021   if (!I)
1022     return I;
1023 
1024   DebugLoc Empty;
1025   if (I->getDebugLoc() != Empty)
1026     return I;
1027 
1028   for (Use &Op : I->operands()) {
1029     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1030       if (OpInst->getDebugLoc() != Empty)
1031         return OpInst;
1032   }
1033 
1034   return I;
1035 }
1036 
1037 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
1038   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
1039     const DILocation *DIL = Inst->getDebugLoc();
1040     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1041         !isa<DbgInfoIntrinsic>(Inst)) {
1042       assert(!VF.isScalable() && "scalable vectors not yet supported.");
1043       auto NewDIL =
1044           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1045       if (NewDIL)
1046         B.SetCurrentDebugLocation(NewDIL.getValue());
1047       else
1048         LLVM_DEBUG(dbgs()
1049                    << "Failed to create new discriminator: "
1050                    << DIL->getFilename() << " Line: " << DIL->getLine());
1051     }
1052     else
1053       B.SetCurrentDebugLocation(DIL);
1054   } else
1055     B.SetCurrentDebugLocation(DebugLoc());
1056 }
1057 
1058 /// Write a record \p DebugMsg about vectorization failure to the debug
1059 /// output stream. If \p I is passed, it is an instruction that prevents
1060 /// vectorization.
1061 #ifndef NDEBUG
1062 static void debugVectorizationFailure(const StringRef DebugMsg,
1063     Instruction *I) {
1064   dbgs() << "LV: Not vectorizing: " << DebugMsg;
1065   if (I != nullptr)
1066     dbgs() << " " << *I;
1067   else
1068     dbgs() << '.';
1069   dbgs() << '\n';
1070 }
1071 #endif
1072 
1073 /// Create an analysis remark that explains why vectorization failed
1074 ///
1075 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1076 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1077 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1078 /// the location of the remark.  \return the remark object that can be
1079 /// streamed to.
1080 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1081     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1082   Value *CodeRegion = TheLoop->getHeader();
1083   DebugLoc DL = TheLoop->getStartLoc();
1084 
1085   if (I) {
1086     CodeRegion = I->getParent();
1087     // If there is no debug location attached to the instruction, revert back to
1088     // using the loop's.
1089     if (I->getDebugLoc())
1090       DL = I->getDebugLoc();
1091   }
1092 
1093   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
1094   R << "loop not vectorized: ";
1095   return R;
1096 }
1097 
1098 /// Return a value for Step multiplied by VF.
1099 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1100   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1101   Constant *StepVal = ConstantInt::get(
1102       Step->getType(),
1103       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1104   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1105 }
1106 
1107 namespace llvm {
1108 
1109 /// Return the runtime value for VF.
1110 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1111   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1112   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1113 }
1114 
1115 void reportVectorizationFailure(const StringRef DebugMsg,
1116     const StringRef OREMsg, const StringRef ORETag,
1117     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
1118   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
1119   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1120   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
1121                 ORETag, TheLoop, I) << OREMsg);
1122 }
1123 
1124 } // end namespace llvm
1125 
1126 #ifndef NDEBUG
1127 /// \return string containing a file name and a line # for the given loop.
1128 static std::string getDebugLocString(const Loop *L) {
1129   std::string Result;
1130   if (L) {
1131     raw_string_ostream OS(Result);
1132     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1133       LoopDbgLoc.print(OS);
1134     else
1135       // Just print the module name.
1136       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1137     OS.flush();
1138   }
1139   return Result;
1140 }
1141 #endif
1142 
1143 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1144                                          const Instruction *Orig) {
1145   // If the loop was versioned with memchecks, add the corresponding no-alias
1146   // metadata.
1147   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1148     LVer->annotateInstWithNoAlias(To, Orig);
1149 }
1150 
1151 void InnerLoopVectorizer::addMetadata(Instruction *To,
1152                                       Instruction *From) {
1153   propagateMetadata(To, From);
1154   addNewMetadata(To, From);
1155 }
1156 
1157 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1158                                       Instruction *From) {
1159   for (Value *V : To) {
1160     if (Instruction *I = dyn_cast<Instruction>(V))
1161       addMetadata(I, From);
1162   }
1163 }
1164 
1165 namespace llvm {
1166 
1167 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1168 // lowered.
1169 enum ScalarEpilogueLowering {
1170 
1171   // The default: allowing scalar epilogues.
1172   CM_ScalarEpilogueAllowed,
1173 
1174   // Vectorization with OptForSize: don't allow epilogues.
1175   CM_ScalarEpilogueNotAllowedOptSize,
1176 
1177   // A special case of vectorisation with OptForSize: loops with a very small
1178   // trip count are considered for vectorization under OptForSize, thereby
1179   // making sure the cost of their loop body is dominant, free of runtime
1180   // guards and scalar iteration overheads.
1181   CM_ScalarEpilogueNotAllowedLowTripLoop,
1182 
1183   // Loop hint predicate indicating an epilogue is undesired.
1184   CM_ScalarEpilogueNotNeededUsePredicate,
1185 
1186   // Directive indicating we must either tail fold or not vectorize
1187   CM_ScalarEpilogueNotAllowedUsePredicate
1188 };
1189 
1190 /// LoopVectorizationCostModel - estimates the expected speedups due to
1191 /// vectorization.
1192 /// In many cases vectorization is not profitable. This can happen because of
1193 /// a number of reasons. In this class we mainly attempt to predict the
1194 /// expected speedup/slowdowns due to the supported instruction set. We use the
1195 /// TargetTransformInfo to query the different backends for the cost of
1196 /// different operations.
1197 class LoopVectorizationCostModel {
1198 public:
1199   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1200                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1201                              LoopVectorizationLegality *Legal,
1202                              const TargetTransformInfo &TTI,
1203                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1204                              AssumptionCache *AC,
1205                              OptimizationRemarkEmitter *ORE, const Function *F,
1206                              const LoopVectorizeHints *Hints,
1207                              InterleavedAccessInfo &IAI)
1208       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1209         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1210         Hints(Hints), InterleaveInfo(IAI) {}
1211 
1212   /// \return An upper bound for the vectorization factor, or None if
1213   /// vectorization and interleaving should be avoided up front.
1214   Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC);
1215 
1216   /// \return True if runtime checks are required for vectorization, and false
1217   /// otherwise.
1218   bool runtimeChecksRequired();
1219 
1220   /// \return The most profitable vectorization factor and the cost of that VF.
1221   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1222   /// then this vectorization factor will be selected if vectorization is
1223   /// possible.
1224   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1225   VectorizationFactor
1226   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1227                                     const LoopVectorizationPlanner &LVP);
1228 
1229   /// Setup cost-based decisions for user vectorization factor.
1230   void selectUserVectorizationFactor(ElementCount UserVF) {
1231     collectUniformsAndScalars(UserVF);
1232     collectInstsToScalarize(UserVF);
1233   }
1234 
1235   /// \return The size (in bits) of the smallest and widest types in the code
1236   /// that needs to be vectorized. We ignore values that remain scalar such as
1237   /// 64 bit loop indices.
1238   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1239 
1240   /// \return The desired interleave count.
1241   /// If interleave count has been specified by metadata it will be returned.
1242   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1243   /// are the selected vectorization factor and the cost of the selected VF.
1244   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1245 
1246   /// Memory access instruction may be vectorized in more than one way.
1247   /// Form of instruction after vectorization depends on cost.
1248   /// This function takes cost-based decisions for Load/Store instructions
1249   /// and collects them in a map. This decisions map is used for building
1250   /// the lists of loop-uniform and loop-scalar instructions.
1251   /// The calculated cost is saved with widening decision in order to
1252   /// avoid redundant calculations.
1253   void setCostBasedWideningDecision(ElementCount VF);
1254 
1255   /// A struct that represents some properties of the register usage
1256   /// of a loop.
1257   struct RegisterUsage {
1258     /// Holds the number of loop invariant values that are used in the loop.
1259     /// The key is ClassID of target-provided register class.
1260     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1261     /// Holds the maximum number of concurrent live intervals in the loop.
1262     /// The key is ClassID of target-provided register class.
1263     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1264   };
1265 
1266   /// \return Returns information about the register usages of the loop for the
1267   /// given vectorization factors.
1268   SmallVector<RegisterUsage, 8>
1269   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1270 
1271   /// Collect values we want to ignore in the cost model.
1272   void collectValuesToIgnore();
1273 
1274   /// Split reductions into those that happen in the loop, and those that happen
1275   /// outside. In loop reductions are collected into InLoopReductionChains.
1276   void collectInLoopReductions();
1277 
1278   /// \returns The smallest bitwidth each instruction can be represented with.
1279   /// The vector equivalents of these instructions should be truncated to this
1280   /// type.
1281   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1282     return MinBWs;
1283   }
1284 
1285   /// \returns True if it is more profitable to scalarize instruction \p I for
1286   /// vectorization factor \p VF.
1287   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1288     assert(VF.isVector() &&
1289            "Profitable to scalarize relevant only for VF > 1.");
1290 
1291     // Cost model is not run in the VPlan-native path - return conservative
1292     // result until this changes.
1293     if (EnableVPlanNativePath)
1294       return false;
1295 
1296     auto Scalars = InstsToScalarize.find(VF);
1297     assert(Scalars != InstsToScalarize.end() &&
1298            "VF not yet analyzed for scalarization profitability");
1299     return Scalars->second.find(I) != Scalars->second.end();
1300   }
1301 
1302   /// Returns true if \p I is known to be uniform after vectorization.
1303   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1304     if (VF.isScalar())
1305       return true;
1306 
1307     // Cost model is not run in the VPlan-native path - return conservative
1308     // result until this changes.
1309     if (EnableVPlanNativePath)
1310       return false;
1311 
1312     auto UniformsPerVF = Uniforms.find(VF);
1313     assert(UniformsPerVF != Uniforms.end() &&
1314            "VF not yet analyzed for uniformity");
1315     return UniformsPerVF->second.count(I);
1316   }
1317 
1318   /// Returns true if \p I is known to be scalar after vectorization.
1319   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1320     if (VF.isScalar())
1321       return true;
1322 
1323     // Cost model is not run in the VPlan-native path - return conservative
1324     // result until this changes.
1325     if (EnableVPlanNativePath)
1326       return false;
1327 
1328     auto ScalarsPerVF = Scalars.find(VF);
1329     assert(ScalarsPerVF != Scalars.end() &&
1330            "Scalar values are not calculated for VF");
1331     return ScalarsPerVF->second.count(I);
1332   }
1333 
1334   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1335   /// for vectorization factor \p VF.
1336   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1337     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1338            !isProfitableToScalarize(I, VF) &&
1339            !isScalarAfterVectorization(I, VF);
1340   }
1341 
1342   /// Decision that was taken during cost calculation for memory instruction.
1343   enum InstWidening {
1344     CM_Unknown,
1345     CM_Widen,         // For consecutive accesses with stride +1.
1346     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1347     CM_Interleave,
1348     CM_GatherScatter,
1349     CM_Scalarize
1350   };
1351 
1352   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1353   /// instruction \p I and vector width \p VF.
1354   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1355                            InstructionCost Cost) {
1356     assert(VF.isVector() && "Expected VF >=2");
1357     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1358   }
1359 
1360   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1361   /// interleaving group \p Grp and vector width \p VF.
1362   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1363                            ElementCount VF, InstWidening W,
1364                            InstructionCost Cost) {
1365     assert(VF.isVector() && "Expected VF >=2");
1366     /// Broadcast this decicion to all instructions inside the group.
1367     /// But the cost will be assigned to one instruction only.
1368     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1369       if (auto *I = Grp->getMember(i)) {
1370         if (Grp->getInsertPos() == I)
1371           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1372         else
1373           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1374       }
1375     }
1376   }
1377 
1378   /// Return the cost model decision for the given instruction \p I and vector
1379   /// width \p VF. Return CM_Unknown if this instruction did not pass
1380   /// through the cost modeling.
1381   InstWidening getWideningDecision(Instruction *I, ElementCount VF) {
1382     assert(VF.isVector() && "Expected VF to be a vector VF");
1383     // Cost model is not run in the VPlan-native path - return conservative
1384     // result until this changes.
1385     if (EnableVPlanNativePath)
1386       return CM_GatherScatter;
1387 
1388     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1389     auto Itr = WideningDecisions.find(InstOnVF);
1390     if (Itr == WideningDecisions.end())
1391       return CM_Unknown;
1392     return Itr->second.first;
1393   }
1394 
1395   /// Return the vectorization cost for the given instruction \p I and vector
1396   /// width \p VF.
1397   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1398     assert(VF.isVector() && "Expected VF >=2");
1399     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1400     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1401            "The cost is not calculated");
1402     return WideningDecisions[InstOnVF].second;
1403   }
1404 
1405   /// Return True if instruction \p I is an optimizable truncate whose operand
1406   /// is an induction variable. Such a truncate will be removed by adding a new
1407   /// induction variable with the destination type.
1408   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1409     // If the instruction is not a truncate, return false.
1410     auto *Trunc = dyn_cast<TruncInst>(I);
1411     if (!Trunc)
1412       return false;
1413 
1414     // Get the source and destination types of the truncate.
1415     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1416     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1417 
1418     // If the truncate is free for the given types, return false. Replacing a
1419     // free truncate with an induction variable would add an induction variable
1420     // update instruction to each iteration of the loop. We exclude from this
1421     // check the primary induction variable since it will need an update
1422     // instruction regardless.
1423     Value *Op = Trunc->getOperand(0);
1424     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1425       return false;
1426 
1427     // If the truncated value is not an induction variable, return false.
1428     return Legal->isInductionPhi(Op);
1429   }
1430 
1431   /// Collects the instructions to scalarize for each predicated instruction in
1432   /// the loop.
1433   void collectInstsToScalarize(ElementCount VF);
1434 
1435   /// Collect Uniform and Scalar values for the given \p VF.
1436   /// The sets depend on CM decision for Load/Store instructions
1437   /// that may be vectorized as interleave, gather-scatter or scalarized.
1438   void collectUniformsAndScalars(ElementCount VF) {
1439     // Do the analysis once.
1440     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1441       return;
1442     setCostBasedWideningDecision(VF);
1443     collectLoopUniforms(VF);
1444     collectLoopScalars(VF);
1445   }
1446 
1447   /// Returns true if the target machine supports masked store operation
1448   /// for the given \p DataType and kind of access to \p Ptr.
1449   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) {
1450     return Legal->isConsecutivePtr(Ptr) &&
1451            TTI.isLegalMaskedStore(DataType, Alignment);
1452   }
1453 
1454   /// Returns true if the target machine supports masked load operation
1455   /// for the given \p DataType and kind of access to \p Ptr.
1456   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) {
1457     return Legal->isConsecutivePtr(Ptr) &&
1458            TTI.isLegalMaskedLoad(DataType, Alignment);
1459   }
1460 
1461   /// Returns true if the target machine supports masked scatter operation
1462   /// for the given \p DataType.
1463   bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
1464     return TTI.isLegalMaskedScatter(DataType, Alignment);
1465   }
1466 
1467   /// Returns true if the target machine supports masked gather operation
1468   /// for the given \p DataType.
1469   bool isLegalMaskedGather(Type *DataType, Align Alignment) {
1470     return TTI.isLegalMaskedGather(DataType, Alignment);
1471   }
1472 
1473   /// Returns true if the target machine can represent \p V as a masked gather
1474   /// or scatter operation.
1475   bool isLegalGatherOrScatter(Value *V) {
1476     bool LI = isa<LoadInst>(V);
1477     bool SI = isa<StoreInst>(V);
1478     if (!LI && !SI)
1479       return false;
1480     auto *Ty = getMemInstValueType(V);
1481     Align Align = getLoadStoreAlignment(V);
1482     return (LI && isLegalMaskedGather(Ty, Align)) ||
1483            (SI && isLegalMaskedScatter(Ty, Align));
1484   }
1485 
1486   /// Returns true if the target machine supports all of the reduction
1487   /// variables found for the given VF.
1488   bool canVectorizeReductions(ElementCount VF) {
1489     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1490       RecurrenceDescriptor RdxDesc = Reduction.second;
1491       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1492     }));
1493   }
1494 
1495   /// Returns true if \p I is an instruction that will be scalarized with
1496   /// predication. Such instructions include conditional stores and
1497   /// instructions that may divide by zero.
1498   /// If a non-zero VF has been calculated, we check if I will be scalarized
1499   /// predication for that VF.
1500   bool isScalarWithPredication(Instruction *I,
1501                                ElementCount VF = ElementCount::getFixed(1));
1502 
1503   // Returns true if \p I is an instruction that will be predicated either
1504   // through scalar predication or masked load/store or masked gather/scatter.
1505   // Superset of instructions that return true for isScalarWithPredication.
1506   bool isPredicatedInst(Instruction *I) {
1507     if (!blockNeedsPredication(I->getParent()))
1508       return false;
1509     // Loads and stores that need some form of masked operation are predicated
1510     // instructions.
1511     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1512       return Legal->isMaskRequired(I);
1513     return isScalarWithPredication(I);
1514   }
1515 
1516   /// Returns true if \p I is a memory instruction with consecutive memory
1517   /// access that can be widened.
1518   bool
1519   memoryInstructionCanBeWidened(Instruction *I,
1520                                 ElementCount VF = ElementCount::getFixed(1));
1521 
1522   /// Returns true if \p I is a memory instruction in an interleaved-group
1523   /// of memory accesses that can be vectorized with wide vector loads/stores
1524   /// and shuffles.
1525   bool
1526   interleavedAccessCanBeWidened(Instruction *I,
1527                                 ElementCount VF = ElementCount::getFixed(1));
1528 
1529   /// Check if \p Instr belongs to any interleaved access group.
1530   bool isAccessInterleaved(Instruction *Instr) {
1531     return InterleaveInfo.isInterleaved(Instr);
1532   }
1533 
1534   /// Get the interleaved access group that \p Instr belongs to.
1535   const InterleaveGroup<Instruction> *
1536   getInterleavedAccessGroup(Instruction *Instr) {
1537     return InterleaveInfo.getInterleaveGroup(Instr);
1538   }
1539 
1540   /// Returns true if we're required to use a scalar epilogue for at least
1541   /// the final iteration of the original loop.
1542   bool requiresScalarEpilogue() const {
1543     if (!isScalarEpilogueAllowed())
1544       return false;
1545     // If we might exit from anywhere but the latch, must run the exiting
1546     // iteration in scalar form.
1547     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1548       return true;
1549     return InterleaveInfo.requiresScalarEpilogue();
1550   }
1551 
1552   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1553   /// loop hint annotation.
1554   bool isScalarEpilogueAllowed() const {
1555     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1556   }
1557 
1558   /// Returns true if all loop blocks should be masked to fold tail loop.
1559   bool foldTailByMasking() const { return FoldTailByMasking; }
1560 
1561   bool blockNeedsPredication(BasicBlock *BB) {
1562     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1563   }
1564 
1565   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1566   /// nodes to the chain of instructions representing the reductions. Uses a
1567   /// MapVector to ensure deterministic iteration order.
1568   using ReductionChainMap =
1569       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1570 
1571   /// Return the chain of instructions representing an inloop reduction.
1572   const ReductionChainMap &getInLoopReductionChains() const {
1573     return InLoopReductionChains;
1574   }
1575 
1576   /// Returns true if the Phi is part of an inloop reduction.
1577   bool isInLoopReduction(PHINode *Phi) const {
1578     return InLoopReductionChains.count(Phi);
1579   }
1580 
1581   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1582   /// with factor VF.  Return the cost of the instruction, including
1583   /// scalarization overhead if it's needed.
1584   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF);
1585 
1586   /// Estimate cost of a call instruction CI if it were vectorized with factor
1587   /// VF. Return the cost of the instruction, including scalarization overhead
1588   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1589   /// scalarized -
1590   /// i.e. either vector version isn't available, or is too expensive.
1591   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1592                                     bool &NeedToScalarize);
1593 
1594   /// Invalidates decisions already taken by the cost model.
1595   void invalidateCostModelingDecisions() {
1596     WideningDecisions.clear();
1597     Uniforms.clear();
1598     Scalars.clear();
1599   }
1600 
1601 private:
1602   unsigned NumPredStores = 0;
1603 
1604   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1605   /// than zero. One is returned if vectorization should best be avoided due
1606   /// to cost.
1607   ElementCount computeFeasibleMaxVF(unsigned ConstTripCount,
1608                                     ElementCount UserVF);
1609 
1610   /// The vectorization cost is a combination of the cost itself and a boolean
1611   /// indicating whether any of the contributing operations will actually
1612   /// operate on
1613   /// vector values after type legalization in the backend. If this latter value
1614   /// is
1615   /// false, then all operations will be scalarized (i.e. no vectorization has
1616   /// actually taken place).
1617   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1618 
1619   /// Returns the expected execution cost. The unit of the cost does
1620   /// not matter because we use the 'cost' units to compare different
1621   /// vector widths. The cost that is returned is *not* normalized by
1622   /// the factor width.
1623   VectorizationCostTy expectedCost(ElementCount VF);
1624 
1625   /// Returns the execution time cost of an instruction for a given vector
1626   /// width. Vector width of one means scalar.
1627   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1628 
1629   /// The cost-computation logic from getInstructionCost which provides
1630   /// the vector type as an output parameter.
1631   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1632                                      Type *&VectorTy);
1633 
1634   /// Return the cost of instructions in an inloop reduction pattern, if I is
1635   /// part of that pattern.
1636   InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF,
1637                                           Type *VectorTy,
1638                                           TTI::TargetCostKind CostKind);
1639 
1640   /// Calculate vectorization cost of memory instruction \p I.
1641   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1642 
1643   /// The cost computation for scalarized memory instruction.
1644   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1645 
1646   /// The cost computation for interleaving group of memory instructions.
1647   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1648 
1649   /// The cost computation for Gather/Scatter instruction.
1650   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1651 
1652   /// The cost computation for widening instruction \p I with consecutive
1653   /// memory access.
1654   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1655 
1656   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1657   /// Load: scalar load + broadcast.
1658   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1659   /// element)
1660   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1661 
1662   /// Estimate the overhead of scalarizing an instruction. This is a
1663   /// convenience wrapper for the type-based getScalarizationOverhead API.
1664   InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF);
1665 
1666   /// Returns whether the instruction is a load or store and will be a emitted
1667   /// as a vector operation.
1668   bool isConsecutiveLoadOrStore(Instruction *I);
1669 
1670   /// Returns true if an artificially high cost for emulated masked memrefs
1671   /// should be used.
1672   bool useEmulatedMaskMemRefHack(Instruction *I);
1673 
1674   /// Map of scalar integer values to the smallest bitwidth they can be legally
1675   /// represented as. The vector equivalents of these values should be truncated
1676   /// to this type.
1677   MapVector<Instruction *, uint64_t> MinBWs;
1678 
1679   /// A type representing the costs for instructions if they were to be
1680   /// scalarized rather than vectorized. The entries are Instruction-Cost
1681   /// pairs.
1682   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1683 
1684   /// A set containing all BasicBlocks that are known to present after
1685   /// vectorization as a predicated block.
1686   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1687 
1688   /// Records whether it is allowed to have the original scalar loop execute at
1689   /// least once. This may be needed as a fallback loop in case runtime
1690   /// aliasing/dependence checks fail, or to handle the tail/remainder
1691   /// iterations when the trip count is unknown or doesn't divide by the VF,
1692   /// or as a peel-loop to handle gaps in interleave-groups.
1693   /// Under optsize and when the trip count is very small we don't allow any
1694   /// iterations to execute in the scalar loop.
1695   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1696 
1697   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1698   bool FoldTailByMasking = false;
1699 
1700   /// A map holding scalar costs for different vectorization factors. The
1701   /// presence of a cost for an instruction in the mapping indicates that the
1702   /// instruction will be scalarized when vectorizing with the associated
1703   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1704   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1705 
1706   /// Holds the instructions known to be uniform after vectorization.
1707   /// The data is collected per VF.
1708   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1709 
1710   /// Holds the instructions known to be scalar after vectorization.
1711   /// The data is collected per VF.
1712   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1713 
1714   /// Holds the instructions (address computations) that are forced to be
1715   /// scalarized.
1716   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1717 
1718   /// PHINodes of the reductions that should be expanded in-loop along with
1719   /// their associated chains of reduction operations, in program order from top
1720   /// (PHI) to bottom
1721   ReductionChainMap InLoopReductionChains;
1722 
1723   /// A Map of inloop reduction operations and their immediate chain operand.
1724   /// FIXME: This can be removed once reductions can be costed correctly in
1725   /// vplan. This was added to allow quick lookup to the inloop operations,
1726   /// without having to loop through InLoopReductionChains.
1727   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1728 
1729   /// Returns the expected difference in cost from scalarizing the expression
1730   /// feeding a predicated instruction \p PredInst. The instructions to
1731   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1732   /// non-negative return value implies the expression will be scalarized.
1733   /// Currently, only single-use chains are considered for scalarization.
1734   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1735                               ElementCount VF);
1736 
1737   /// Collect the instructions that are uniform after vectorization. An
1738   /// instruction is uniform if we represent it with a single scalar value in
1739   /// the vectorized loop corresponding to each vector iteration. Examples of
1740   /// uniform instructions include pointer operands of consecutive or
1741   /// interleaved memory accesses. Note that although uniformity implies an
1742   /// instruction will be scalar, the reverse is not true. In general, a
1743   /// scalarized instruction will be represented by VF scalar values in the
1744   /// vectorized loop, each corresponding to an iteration of the original
1745   /// scalar loop.
1746   void collectLoopUniforms(ElementCount VF);
1747 
1748   /// Collect the instructions that are scalar after vectorization. An
1749   /// instruction is scalar if it is known to be uniform or will be scalarized
1750   /// during vectorization. Non-uniform scalarized instructions will be
1751   /// represented by VF values in the vectorized loop, each corresponding to an
1752   /// iteration of the original scalar loop.
1753   void collectLoopScalars(ElementCount VF);
1754 
1755   /// Keeps cost model vectorization decision and cost for instructions.
1756   /// Right now it is used for memory instructions only.
1757   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1758                                 std::pair<InstWidening, InstructionCost>>;
1759 
1760   DecisionList WideningDecisions;
1761 
1762   /// Returns true if \p V is expected to be vectorized and it needs to be
1763   /// extracted.
1764   bool needsExtract(Value *V, ElementCount VF) const {
1765     Instruction *I = dyn_cast<Instruction>(V);
1766     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1767         TheLoop->isLoopInvariant(I))
1768       return false;
1769 
1770     // Assume we can vectorize V (and hence we need extraction) if the
1771     // scalars are not computed yet. This can happen, because it is called
1772     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1773     // the scalars are collected. That should be a safe assumption in most
1774     // cases, because we check if the operands have vectorizable types
1775     // beforehand in LoopVectorizationLegality.
1776     return Scalars.find(VF) == Scalars.end() ||
1777            !isScalarAfterVectorization(I, VF);
1778   };
1779 
1780   /// Returns a range containing only operands needing to be extracted.
1781   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1782                                                    ElementCount VF) {
1783     return SmallVector<Value *, 4>(make_filter_range(
1784         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1785   }
1786 
1787   /// Determines if we have the infrastructure to vectorize loop \p L and its
1788   /// epilogue, assuming the main loop is vectorized by \p VF.
1789   bool isCandidateForEpilogueVectorization(const Loop &L,
1790                                            const ElementCount VF) const;
1791 
1792   /// Returns true if epilogue vectorization is considered profitable, and
1793   /// false otherwise.
1794   /// \p VF is the vectorization factor chosen for the original loop.
1795   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1796 
1797 public:
1798   /// The loop that we evaluate.
1799   Loop *TheLoop;
1800 
1801   /// Predicated scalar evolution analysis.
1802   PredicatedScalarEvolution &PSE;
1803 
1804   /// Loop Info analysis.
1805   LoopInfo *LI;
1806 
1807   /// Vectorization legality.
1808   LoopVectorizationLegality *Legal;
1809 
1810   /// Vector target information.
1811   const TargetTransformInfo &TTI;
1812 
1813   /// Target Library Info.
1814   const TargetLibraryInfo *TLI;
1815 
1816   /// Demanded bits analysis.
1817   DemandedBits *DB;
1818 
1819   /// Assumption cache.
1820   AssumptionCache *AC;
1821 
1822   /// Interface to emit optimization remarks.
1823   OptimizationRemarkEmitter *ORE;
1824 
1825   const Function *TheFunction;
1826 
1827   /// Loop Vectorize Hint.
1828   const LoopVectorizeHints *Hints;
1829 
1830   /// The interleave access information contains groups of interleaved accesses
1831   /// with the same stride and close to each other.
1832   InterleavedAccessInfo &InterleaveInfo;
1833 
1834   /// Values to ignore in the cost model.
1835   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1836 
1837   /// Values to ignore in the cost model when VF > 1.
1838   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1839 
1840   /// Profitable vector factors.
1841   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1842 };
1843 } // end namespace llvm
1844 
1845 /// Helper struct to manage generating runtime checks for vectorization.
1846 ///
1847 /// The runtime checks are created up-front in temporary blocks to allow better
1848 /// estimating the cost and un-linked from the existing IR. After deciding to
1849 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1850 /// temporary blocks are completely removed.
1851 class GeneratedRTChecks {
1852   /// Basic block which contains the generated SCEV checks, if any.
1853   BasicBlock *SCEVCheckBlock = nullptr;
1854 
1855   /// The value representing the result of the generated SCEV checks. If it is
1856   /// nullptr, either no SCEV checks have been generated or they have been used.
1857   Value *SCEVCheckCond = nullptr;
1858 
1859   /// Basic block which contains the generated memory runtime checks, if any.
1860   BasicBlock *MemCheckBlock = nullptr;
1861 
1862   /// The value representing the result of the generated memory runtime checks.
1863   /// If it is nullptr, either no memory runtime checks have been generated or
1864   /// they have been used.
1865   Instruction *MemRuntimeCheckCond = nullptr;
1866 
1867   DominatorTree *DT;
1868   LoopInfo *LI;
1869 
1870   SCEVExpander SCEVExp;
1871   SCEVExpander MemCheckExp;
1872 
1873 public:
1874   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1875                     const DataLayout &DL)
1876       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1877         MemCheckExp(SE, DL, "scev.check") {}
1878 
1879   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1880   /// accurately estimate the cost of the runtime checks. The blocks are
1881   /// un-linked from the IR and is added back during vector code generation. If
1882   /// there is no vector code generation, the check blocks are removed
1883   /// completely.
1884   void Create(Loop *L, const LoopAccessInfo &LAI,
1885               const SCEVUnionPredicate &UnionPred) {
1886 
1887     BasicBlock *LoopHeader = L->getHeader();
1888     BasicBlock *Preheader = L->getLoopPreheader();
1889 
1890     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1891     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1892     // may be used by SCEVExpander. The blocks will be un-linked from their
1893     // predecessors and removed from LI & DT at the end of the function.
1894     if (!UnionPred.isAlwaysTrue()) {
1895       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1896                                   nullptr, "vector.scevcheck");
1897 
1898       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1899           &UnionPred, SCEVCheckBlock->getTerminator());
1900     }
1901 
1902     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1903     if (RtPtrChecking.Need) {
1904       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1905       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1906                                  "vector.memcheck");
1907 
1908       std::tie(std::ignore, MemRuntimeCheckCond) =
1909           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1910                            RtPtrChecking.getChecks(), MemCheckExp);
1911       assert(MemRuntimeCheckCond &&
1912              "no RT checks generated although RtPtrChecking "
1913              "claimed checks are required");
1914     }
1915 
1916     if (!MemCheckBlock && !SCEVCheckBlock)
1917       return;
1918 
1919     // Unhook the temporary block with the checks, update various places
1920     // accordingly.
1921     if (SCEVCheckBlock)
1922       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1923     if (MemCheckBlock)
1924       MemCheckBlock->replaceAllUsesWith(Preheader);
1925 
1926     if (SCEVCheckBlock) {
1927       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1928       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1929       Preheader->getTerminator()->eraseFromParent();
1930     }
1931     if (MemCheckBlock) {
1932       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1933       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1934       Preheader->getTerminator()->eraseFromParent();
1935     }
1936 
1937     DT->changeImmediateDominator(LoopHeader, Preheader);
1938     if (MemCheckBlock) {
1939       DT->eraseNode(MemCheckBlock);
1940       LI->removeBlock(MemCheckBlock);
1941     }
1942     if (SCEVCheckBlock) {
1943       DT->eraseNode(SCEVCheckBlock);
1944       LI->removeBlock(SCEVCheckBlock);
1945     }
1946   }
1947 
1948   /// Remove the created SCEV & memory runtime check blocks & instructions, if
1949   /// unused.
1950   ~GeneratedRTChecks() {
1951     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
1952     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
1953     if (!SCEVCheckCond)
1954       SCEVCleaner.markResultUsed();
1955 
1956     if (!MemRuntimeCheckCond)
1957       MemCheckCleaner.markResultUsed();
1958 
1959     if (MemRuntimeCheckCond) {
1960       auto &SE = *MemCheckExp.getSE();
1961       // Memory runtime check generation creates compares that use expanded
1962       // values. Remove them before running the SCEVExpanderCleaners.
1963       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
1964         if (MemCheckExp.isInsertedInstruction(&I))
1965           continue;
1966         SE.forgetValue(&I);
1967         SE.eraseValueFromMap(&I);
1968         I.eraseFromParent();
1969       }
1970     }
1971     MemCheckCleaner.cleanup();
1972     SCEVCleaner.cleanup();
1973 
1974     if (SCEVCheckCond)
1975       SCEVCheckBlock->eraseFromParent();
1976     if (MemRuntimeCheckCond)
1977       MemCheckBlock->eraseFromParent();
1978   }
1979 
1980   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
1981   /// adjusts the branches to branch to the vector preheader or \p Bypass,
1982   /// depending on the generated condition.
1983   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
1984                              BasicBlock *LoopVectorPreHeader,
1985                              BasicBlock *LoopExitBlock) {
1986     if (!SCEVCheckCond)
1987       return nullptr;
1988     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
1989       if (C->isZero())
1990         return nullptr;
1991 
1992     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
1993 
1994     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
1995     // Create new preheader for vector loop.
1996     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
1997       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
1998 
1999     SCEVCheckBlock->getTerminator()->eraseFromParent();
2000     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2001     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2002                                                 SCEVCheckBlock);
2003 
2004     DT->addNewBlock(SCEVCheckBlock, Pred);
2005     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2006 
2007     ReplaceInstWithInst(
2008         SCEVCheckBlock->getTerminator(),
2009         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2010     // Mark the check as used, to prevent it from being removed during cleanup.
2011     SCEVCheckCond = nullptr;
2012     return SCEVCheckBlock;
2013   }
2014 
2015   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2016   /// the branches to branch to the vector preheader or \p Bypass, depending on
2017   /// the generated condition.
2018   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2019                                    BasicBlock *LoopVectorPreHeader) {
2020     // Check if we generated code that checks in runtime if arrays overlap.
2021     if (!MemRuntimeCheckCond)
2022       return nullptr;
2023 
2024     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2025     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2026                                                 MemCheckBlock);
2027 
2028     DT->addNewBlock(MemCheckBlock, Pred);
2029     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2030     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2031 
2032     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2033       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2034 
2035     ReplaceInstWithInst(
2036         MemCheckBlock->getTerminator(),
2037         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2038     MemCheckBlock->getTerminator()->setDebugLoc(
2039         Pred->getTerminator()->getDebugLoc());
2040 
2041     // Mark the check as used, to prevent it from being removed during cleanup.
2042     MemRuntimeCheckCond = nullptr;
2043     return MemCheckBlock;
2044   }
2045 };
2046 
2047 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2048 // vectorization. The loop needs to be annotated with #pragma omp simd
2049 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2050 // vector length information is not provided, vectorization is not considered
2051 // explicit. Interleave hints are not allowed either. These limitations will be
2052 // relaxed in the future.
2053 // Please, note that we are currently forced to abuse the pragma 'clang
2054 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2055 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2056 // provides *explicit vectorization hints* (LV can bypass legal checks and
2057 // assume that vectorization is legal). However, both hints are implemented
2058 // using the same metadata (llvm.loop.vectorize, processed by
2059 // LoopVectorizeHints). This will be fixed in the future when the native IR
2060 // representation for pragma 'omp simd' is introduced.
2061 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2062                                    OptimizationRemarkEmitter *ORE) {
2063   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2064   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2065 
2066   // Only outer loops with an explicit vectorization hint are supported.
2067   // Unannotated outer loops are ignored.
2068   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2069     return false;
2070 
2071   Function *Fn = OuterLp->getHeader()->getParent();
2072   if (!Hints.allowVectorization(Fn, OuterLp,
2073                                 true /*VectorizeOnlyWhenForced*/)) {
2074     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2075     return false;
2076   }
2077 
2078   if (Hints.getInterleave() > 1) {
2079     // TODO: Interleave support is future work.
2080     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2081                          "outer loops.\n");
2082     Hints.emitRemarkWithHints();
2083     return false;
2084   }
2085 
2086   return true;
2087 }
2088 
2089 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2090                                   OptimizationRemarkEmitter *ORE,
2091                                   SmallVectorImpl<Loop *> &V) {
2092   // Collect inner loops and outer loops without irreducible control flow. For
2093   // now, only collect outer loops that have explicit vectorization hints. If we
2094   // are stress testing the VPlan H-CFG construction, we collect the outermost
2095   // loop of every loop nest.
2096   if (L.isInnermost() || VPlanBuildStressTest ||
2097       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2098     LoopBlocksRPO RPOT(&L);
2099     RPOT.perform(LI);
2100     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2101       V.push_back(&L);
2102       // TODO: Collect inner loops inside marked outer loops in case
2103       // vectorization fails for the outer loop. Do not invoke
2104       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2105       // already known to be reducible. We can use an inherited attribute for
2106       // that.
2107       return;
2108     }
2109   }
2110   for (Loop *InnerL : L)
2111     collectSupportedLoops(*InnerL, LI, ORE, V);
2112 }
2113 
2114 namespace {
2115 
2116 /// The LoopVectorize Pass.
2117 struct LoopVectorize : public FunctionPass {
2118   /// Pass identification, replacement for typeid
2119   static char ID;
2120 
2121   LoopVectorizePass Impl;
2122 
2123   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2124                          bool VectorizeOnlyWhenForced = false)
2125       : FunctionPass(ID),
2126         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2127     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2128   }
2129 
2130   bool runOnFunction(Function &F) override {
2131     if (skipFunction(F))
2132       return false;
2133 
2134     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2135     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2136     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2137     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2138     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2139     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2140     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2141     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2142     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2143     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2144     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2145     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2146     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2147 
2148     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2149         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2150 
2151     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2152                         GetLAA, *ORE, PSI).MadeAnyChange;
2153   }
2154 
2155   void getAnalysisUsage(AnalysisUsage &AU) const override {
2156     AU.addRequired<AssumptionCacheTracker>();
2157     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2158     AU.addRequired<DominatorTreeWrapperPass>();
2159     AU.addRequired<LoopInfoWrapperPass>();
2160     AU.addRequired<ScalarEvolutionWrapperPass>();
2161     AU.addRequired<TargetTransformInfoWrapperPass>();
2162     AU.addRequired<AAResultsWrapperPass>();
2163     AU.addRequired<LoopAccessLegacyAnalysis>();
2164     AU.addRequired<DemandedBitsWrapperPass>();
2165     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2166     AU.addRequired<InjectTLIMappingsLegacy>();
2167 
2168     // We currently do not preserve loopinfo/dominator analyses with outer loop
2169     // vectorization. Until this is addressed, mark these analyses as preserved
2170     // only for non-VPlan-native path.
2171     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2172     if (!EnableVPlanNativePath) {
2173       AU.addPreserved<LoopInfoWrapperPass>();
2174       AU.addPreserved<DominatorTreeWrapperPass>();
2175     }
2176 
2177     AU.addPreserved<BasicAAWrapperPass>();
2178     AU.addPreserved<GlobalsAAWrapperPass>();
2179     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2180   }
2181 };
2182 
2183 } // end anonymous namespace
2184 
2185 //===----------------------------------------------------------------------===//
2186 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2187 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2188 //===----------------------------------------------------------------------===//
2189 
2190 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2191   // We need to place the broadcast of invariant variables outside the loop,
2192   // but only if it's proven safe to do so. Else, broadcast will be inside
2193   // vector loop body.
2194   Instruction *Instr = dyn_cast<Instruction>(V);
2195   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2196                      (!Instr ||
2197                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2198   // Place the code for broadcasting invariant variables in the new preheader.
2199   IRBuilder<>::InsertPointGuard Guard(Builder);
2200   if (SafeToHoist)
2201     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2202 
2203   // Broadcast the scalar into all locations in the vector.
2204   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2205 
2206   return Shuf;
2207 }
2208 
2209 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2210     const InductionDescriptor &II, Value *Step, Value *Start,
2211     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2212     VPTransformState &State) {
2213   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2214          "Expected either an induction phi-node or a truncate of it!");
2215 
2216   // Construct the initial value of the vector IV in the vector loop preheader
2217   auto CurrIP = Builder.saveIP();
2218   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2219   if (isa<TruncInst>(EntryVal)) {
2220     assert(Start->getType()->isIntegerTy() &&
2221            "Truncation requires an integer type");
2222     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2223     Step = Builder.CreateTrunc(Step, TruncType);
2224     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2225   }
2226   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2227   Value *SteppedStart =
2228       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2229 
2230   // We create vector phi nodes for both integer and floating-point induction
2231   // variables. Here, we determine the kind of arithmetic we will perform.
2232   Instruction::BinaryOps AddOp;
2233   Instruction::BinaryOps MulOp;
2234   if (Step->getType()->isIntegerTy()) {
2235     AddOp = Instruction::Add;
2236     MulOp = Instruction::Mul;
2237   } else {
2238     AddOp = II.getInductionOpcode();
2239     MulOp = Instruction::FMul;
2240   }
2241 
2242   // Multiply the vectorization factor by the step using integer or
2243   // floating-point arithmetic as appropriate.
2244   Value *ConstVF =
2245       getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue());
2246   Value *Mul = Builder.CreateBinOp(MulOp, Step, ConstVF);
2247 
2248   // Create a vector splat to use in the induction update.
2249   //
2250   // FIXME: If the step is non-constant, we create the vector splat with
2251   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2252   //        handle a constant vector splat.
2253   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2254   Value *SplatVF = isa<Constant>(Mul)
2255                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2256                        : Builder.CreateVectorSplat(VF, Mul);
2257   Builder.restoreIP(CurrIP);
2258 
2259   // We may need to add the step a number of times, depending on the unroll
2260   // factor. The last of those goes into the PHI.
2261   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2262                                     &*LoopVectorBody->getFirstInsertionPt());
2263   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2264   Instruction *LastInduction = VecInd;
2265   for (unsigned Part = 0; Part < UF; ++Part) {
2266     State.set(Def, LastInduction, Part);
2267 
2268     if (isa<TruncInst>(EntryVal))
2269       addMetadata(LastInduction, EntryVal);
2270     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2271                                           State, Part);
2272 
2273     LastInduction = cast<Instruction>(
2274         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2275     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2276   }
2277 
2278   // Move the last step to the end of the latch block. This ensures consistent
2279   // placement of all induction updates.
2280   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2281   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2282   auto *ICmp = cast<Instruction>(Br->getCondition());
2283   LastInduction->moveBefore(ICmp);
2284   LastInduction->setName("vec.ind.next");
2285 
2286   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2287   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2288 }
2289 
2290 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2291   return Cost->isScalarAfterVectorization(I, VF) ||
2292          Cost->isProfitableToScalarize(I, VF);
2293 }
2294 
2295 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2296   if (shouldScalarizeInstruction(IV))
2297     return true;
2298   auto isScalarInst = [&](User *U) -> bool {
2299     auto *I = cast<Instruction>(U);
2300     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2301   };
2302   return llvm::any_of(IV->users(), isScalarInst);
2303 }
2304 
2305 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2306     const InductionDescriptor &ID, const Instruction *EntryVal,
2307     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2308     unsigned Part, unsigned Lane) {
2309   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2310          "Expected either an induction phi-node or a truncate of it!");
2311 
2312   // This induction variable is not the phi from the original loop but the
2313   // newly-created IV based on the proof that casted Phi is equal to the
2314   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2315   // re-uses the same InductionDescriptor that original IV uses but we don't
2316   // have to do any recording in this case - that is done when original IV is
2317   // processed.
2318   if (isa<TruncInst>(EntryVal))
2319     return;
2320 
2321   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2322   if (Casts.empty())
2323     return;
2324   // Only the first Cast instruction in the Casts vector is of interest.
2325   // The rest of the Casts (if exist) have no uses outside the
2326   // induction update chain itself.
2327   if (Lane < UINT_MAX)
2328     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2329   else
2330     State.set(CastDef, VectorLoopVal, Part);
2331 }
2332 
2333 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2334                                                 TruncInst *Trunc, VPValue *Def,
2335                                                 VPValue *CastDef,
2336                                                 VPTransformState &State) {
2337   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2338          "Primary induction variable must have an integer type");
2339 
2340   auto II = Legal->getInductionVars().find(IV);
2341   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2342 
2343   auto ID = II->second;
2344   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2345 
2346   // The value from the original loop to which we are mapping the new induction
2347   // variable.
2348   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2349 
2350   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2351 
2352   // Generate code for the induction step. Note that induction steps are
2353   // required to be loop-invariant
2354   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2355     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2356            "Induction step should be loop invariant");
2357     if (PSE.getSE()->isSCEVable(IV->getType())) {
2358       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2359       return Exp.expandCodeFor(Step, Step->getType(),
2360                                LoopVectorPreHeader->getTerminator());
2361     }
2362     return cast<SCEVUnknown>(Step)->getValue();
2363   };
2364 
2365   // The scalar value to broadcast. This is derived from the canonical
2366   // induction variable. If a truncation type is given, truncate the canonical
2367   // induction variable and step. Otherwise, derive these values from the
2368   // induction descriptor.
2369   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2370     Value *ScalarIV = Induction;
2371     if (IV != OldInduction) {
2372       ScalarIV = IV->getType()->isIntegerTy()
2373                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2374                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2375                                           IV->getType());
2376       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2377       ScalarIV->setName("offset.idx");
2378     }
2379     if (Trunc) {
2380       auto *TruncType = cast<IntegerType>(Trunc->getType());
2381       assert(Step->getType()->isIntegerTy() &&
2382              "Truncation requires an integer step");
2383       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2384       Step = Builder.CreateTrunc(Step, TruncType);
2385     }
2386     return ScalarIV;
2387   };
2388 
2389   // Create the vector values from the scalar IV, in the absence of creating a
2390   // vector IV.
2391   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2392     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2393     for (unsigned Part = 0; Part < UF; ++Part) {
2394       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2395       Value *EntryPart =
2396           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2397                         ID.getInductionOpcode());
2398       State.set(Def, EntryPart, Part);
2399       if (Trunc)
2400         addMetadata(EntryPart, Trunc);
2401       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2402                                             State, Part);
2403     }
2404   };
2405 
2406   // Fast-math-flags propagate from the original induction instruction.
2407   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2408   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2409     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2410 
2411   // Now do the actual transformations, and start with creating the step value.
2412   Value *Step = CreateStepValue(ID.getStep());
2413   if (VF.isZero() || VF.isScalar()) {
2414     Value *ScalarIV = CreateScalarIV(Step);
2415     CreateSplatIV(ScalarIV, Step);
2416     return;
2417   }
2418 
2419   // Determine if we want a scalar version of the induction variable. This is
2420   // true if the induction variable itself is not widened, or if it has at
2421   // least one user in the loop that is not widened.
2422   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2423   if (!NeedsScalarIV) {
2424     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2425                                     State);
2426     return;
2427   }
2428 
2429   // Try to create a new independent vector induction variable. If we can't
2430   // create the phi node, we will splat the scalar induction variable in each
2431   // loop iteration.
2432   if (!shouldScalarizeInstruction(EntryVal)) {
2433     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2434                                     State);
2435     Value *ScalarIV = CreateScalarIV(Step);
2436     // Create scalar steps that can be used by instructions we will later
2437     // scalarize. Note that the addition of the scalar steps will not increase
2438     // the number of instructions in the loop in the common case prior to
2439     // InstCombine. We will be trading one vector extract for each scalar step.
2440     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2441     return;
2442   }
2443 
2444   // All IV users are scalar instructions, so only emit a scalar IV, not a
2445   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2446   // predicate used by the masked loads/stores.
2447   Value *ScalarIV = CreateScalarIV(Step);
2448   if (!Cost->isScalarEpilogueAllowed())
2449     CreateSplatIV(ScalarIV, Step);
2450   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2451 }
2452 
2453 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2454                                           Instruction::BinaryOps BinOp) {
2455   // Create and check the types.
2456   assert(isa<FixedVectorType>(Val->getType()) &&
2457          "Creation of scalable step vector not yet supported");
2458   auto *ValVTy = cast<VectorType>(Val->getType());
2459   ElementCount VLen = ValVTy->getElementCount();
2460 
2461   Type *STy = Val->getType()->getScalarType();
2462   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2463          "Induction Step must be an integer or FP");
2464   assert(Step->getType() == STy && "Step has wrong type");
2465 
2466   SmallVector<Constant *, 8> Indices;
2467 
2468   // Create a vector of consecutive numbers from zero to VF.
2469   VectorType *InitVecValVTy = ValVTy;
2470   Type *InitVecValSTy = STy;
2471   if (STy->isFloatingPointTy()) {
2472     InitVecValSTy =
2473         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2474     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2475   }
2476   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2477 
2478   // Add on StartIdx
2479   Value *StartIdxSplat = Builder.CreateVectorSplat(
2480       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2481   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2482 
2483   if (STy->isIntegerTy()) {
2484     Step = Builder.CreateVectorSplat(VLen, Step);
2485     assert(Step->getType() == Val->getType() && "Invalid step vec");
2486     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2487     // which can be found from the original scalar operations.
2488     Step = Builder.CreateMul(InitVec, Step);
2489     return Builder.CreateAdd(Val, Step, "induction");
2490   }
2491 
2492   // Floating point induction.
2493   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2494          "Binary Opcode should be specified for FP induction");
2495   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2496   Step = Builder.CreateVectorSplat(VLen, Step);
2497   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2498   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2499 }
2500 
2501 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2502                                            Instruction *EntryVal,
2503                                            const InductionDescriptor &ID,
2504                                            VPValue *Def, VPValue *CastDef,
2505                                            VPTransformState &State) {
2506   // We shouldn't have to build scalar steps if we aren't vectorizing.
2507   assert(VF.isVector() && "VF should be greater than one");
2508   // Get the value type and ensure it and the step have the same integer type.
2509   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2510   assert(ScalarIVTy == Step->getType() &&
2511          "Val and Step should have the same type");
2512 
2513   // We build scalar steps for both integer and floating-point induction
2514   // variables. Here, we determine the kind of arithmetic we will perform.
2515   Instruction::BinaryOps AddOp;
2516   Instruction::BinaryOps MulOp;
2517   if (ScalarIVTy->isIntegerTy()) {
2518     AddOp = Instruction::Add;
2519     MulOp = Instruction::Mul;
2520   } else {
2521     AddOp = ID.getInductionOpcode();
2522     MulOp = Instruction::FMul;
2523   }
2524 
2525   // Determine the number of scalars we need to generate for each unroll
2526   // iteration. If EntryVal is uniform, we only need to generate the first
2527   // lane. Otherwise, we generate all VF values.
2528   unsigned Lanes =
2529       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF)
2530           ? 1
2531           : VF.getKnownMinValue();
2532   assert((!VF.isScalable() || Lanes == 1) &&
2533          "Should never scalarize a scalable vector");
2534   // Compute the scalar steps and save the results in State.
2535   for (unsigned Part = 0; Part < UF; ++Part) {
2536     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2537       auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2538                                          ScalarIVTy->getScalarSizeInBits());
2539       Value *StartIdx =
2540           createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2541       if (ScalarIVTy->isFloatingPointTy())
2542         StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy);
2543       StartIdx = Builder.CreateBinOp(
2544           AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2545       // The step returned by `createStepForVF` is a runtime-evaluated value
2546       // when VF is scalable. Otherwise, it should be folded into a Constant.
2547       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2548              "Expected StartIdx to be folded to a constant when VF is not "
2549              "scalable");
2550       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2551       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2552       State.set(Def, Add, VPIteration(Part, Lane));
2553       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2554                                             Part, Lane);
2555     }
2556   }
2557 }
2558 
2559 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2560                                                     const VPIteration &Instance,
2561                                                     VPTransformState &State) {
2562   Value *ScalarInst = State.get(Def, Instance);
2563   Value *VectorValue = State.get(Def, Instance.Part);
2564   VectorValue = Builder.CreateInsertElement(
2565       VectorValue, ScalarInst,
2566       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2567   State.set(Def, VectorValue, Instance.Part);
2568 }
2569 
2570 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2571   assert(Vec->getType()->isVectorTy() && "Invalid type");
2572   return Builder.CreateVectorReverse(Vec, "reverse");
2573 }
2574 
2575 // Return whether we allow using masked interleave-groups (for dealing with
2576 // strided loads/stores that reside in predicated blocks, or for dealing
2577 // with gaps).
2578 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2579   // If an override option has been passed in for interleaved accesses, use it.
2580   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2581     return EnableMaskedInterleavedMemAccesses;
2582 
2583   return TTI.enableMaskedInterleavedAccessVectorization();
2584 }
2585 
2586 // Try to vectorize the interleave group that \p Instr belongs to.
2587 //
2588 // E.g. Translate following interleaved load group (factor = 3):
2589 //   for (i = 0; i < N; i+=3) {
2590 //     R = Pic[i];             // Member of index 0
2591 //     G = Pic[i+1];           // Member of index 1
2592 //     B = Pic[i+2];           // Member of index 2
2593 //     ... // do something to R, G, B
2594 //   }
2595 // To:
2596 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2597 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2598 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2599 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2600 //
2601 // Or translate following interleaved store group (factor = 3):
2602 //   for (i = 0; i < N; i+=3) {
2603 //     ... do something to R, G, B
2604 //     Pic[i]   = R;           // Member of index 0
2605 //     Pic[i+1] = G;           // Member of index 1
2606 //     Pic[i+2] = B;           // Member of index 2
2607 //   }
2608 // To:
2609 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2610 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2611 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2612 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2613 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2614 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2615     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2616     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2617     VPValue *BlockInMask) {
2618   Instruction *Instr = Group->getInsertPos();
2619   const DataLayout &DL = Instr->getModule()->getDataLayout();
2620 
2621   // Prepare for the vector type of the interleaved load/store.
2622   Type *ScalarTy = getMemInstValueType(Instr);
2623   unsigned InterleaveFactor = Group->getFactor();
2624   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2625   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2626 
2627   // Prepare for the new pointers.
2628   SmallVector<Value *, 2> AddrParts;
2629   unsigned Index = Group->getIndex(Instr);
2630 
2631   // TODO: extend the masked interleaved-group support to reversed access.
2632   assert((!BlockInMask || !Group->isReverse()) &&
2633          "Reversed masked interleave-group not supported.");
2634 
2635   // If the group is reverse, adjust the index to refer to the last vector lane
2636   // instead of the first. We adjust the index from the first vector lane,
2637   // rather than directly getting the pointer for lane VF - 1, because the
2638   // pointer operand of the interleaved access is supposed to be uniform. For
2639   // uniform instructions, we're only required to generate a value for the
2640   // first vector lane in each unroll iteration.
2641   assert(!VF.isScalable() &&
2642          "scalable vector reverse operation is not implemented");
2643   if (Group->isReverse())
2644     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2645 
2646   for (unsigned Part = 0; Part < UF; Part++) {
2647     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2648     setDebugLocFromInst(Builder, AddrPart);
2649 
2650     // Notice current instruction could be any index. Need to adjust the address
2651     // to the member of index 0.
2652     //
2653     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2654     //       b = A[i];       // Member of index 0
2655     // Current pointer is pointed to A[i+1], adjust it to A[i].
2656     //
2657     // E.g.  A[i+1] = a;     // Member of index 1
2658     //       A[i]   = b;     // Member of index 0
2659     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2660     // Current pointer is pointed to A[i+2], adjust it to A[i].
2661 
2662     bool InBounds = false;
2663     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2664       InBounds = gep->isInBounds();
2665     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2666     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2667 
2668     // Cast to the vector pointer type.
2669     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2670     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2671     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2672   }
2673 
2674   setDebugLocFromInst(Builder, Instr);
2675   Value *PoisonVec = PoisonValue::get(VecTy);
2676 
2677   Value *MaskForGaps = nullptr;
2678   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2679     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2680     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2681     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2682   }
2683 
2684   // Vectorize the interleaved load group.
2685   if (isa<LoadInst>(Instr)) {
2686     // For each unroll part, create a wide load for the group.
2687     SmallVector<Value *, 2> NewLoads;
2688     for (unsigned Part = 0; Part < UF; Part++) {
2689       Instruction *NewLoad;
2690       if (BlockInMask || MaskForGaps) {
2691         assert(useMaskedInterleavedAccesses(*TTI) &&
2692                "masked interleaved groups are not allowed.");
2693         Value *GroupMask = MaskForGaps;
2694         if (BlockInMask) {
2695           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2696           assert(!VF.isScalable() && "scalable vectors not yet supported.");
2697           Value *ShuffledMask = Builder.CreateShuffleVector(
2698               BlockInMaskPart,
2699               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2700               "interleaved.mask");
2701           GroupMask = MaskForGaps
2702                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2703                                                 MaskForGaps)
2704                           : ShuffledMask;
2705         }
2706         NewLoad =
2707             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2708                                      GroupMask, PoisonVec, "wide.masked.vec");
2709       }
2710       else
2711         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2712                                             Group->getAlign(), "wide.vec");
2713       Group->addMetadata(NewLoad);
2714       NewLoads.push_back(NewLoad);
2715     }
2716 
2717     // For each member in the group, shuffle out the appropriate data from the
2718     // wide loads.
2719     unsigned J = 0;
2720     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2721       Instruction *Member = Group->getMember(I);
2722 
2723       // Skip the gaps in the group.
2724       if (!Member)
2725         continue;
2726 
2727       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2728       auto StrideMask =
2729           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2730       for (unsigned Part = 0; Part < UF; Part++) {
2731         Value *StridedVec = Builder.CreateShuffleVector(
2732             NewLoads[Part], StrideMask, "strided.vec");
2733 
2734         // If this member has different type, cast the result type.
2735         if (Member->getType() != ScalarTy) {
2736           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2737           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2738           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2739         }
2740 
2741         if (Group->isReverse())
2742           StridedVec = reverseVector(StridedVec);
2743 
2744         State.set(VPDefs[J], StridedVec, Part);
2745       }
2746       ++J;
2747     }
2748     return;
2749   }
2750 
2751   // The sub vector type for current instruction.
2752   assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2753   auto *SubVT = VectorType::get(ScalarTy, VF);
2754 
2755   // Vectorize the interleaved store group.
2756   for (unsigned Part = 0; Part < UF; Part++) {
2757     // Collect the stored vector from each member.
2758     SmallVector<Value *, 4> StoredVecs;
2759     for (unsigned i = 0; i < InterleaveFactor; i++) {
2760       // Interleaved store group doesn't allow a gap, so each index has a member
2761       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2762 
2763       Value *StoredVec = State.get(StoredValues[i], Part);
2764 
2765       if (Group->isReverse())
2766         StoredVec = reverseVector(StoredVec);
2767 
2768       // If this member has different type, cast it to a unified type.
2769 
2770       if (StoredVec->getType() != SubVT)
2771         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2772 
2773       StoredVecs.push_back(StoredVec);
2774     }
2775 
2776     // Concatenate all vectors into a wide vector.
2777     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2778 
2779     // Interleave the elements in the wide vector.
2780     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2781     Value *IVec = Builder.CreateShuffleVector(
2782         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2783         "interleaved.vec");
2784 
2785     Instruction *NewStoreInstr;
2786     if (BlockInMask) {
2787       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2788       Value *ShuffledMask = Builder.CreateShuffleVector(
2789           BlockInMaskPart,
2790           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2791           "interleaved.mask");
2792       NewStoreInstr = Builder.CreateMaskedStore(
2793           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2794     }
2795     else
2796       NewStoreInstr =
2797           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2798 
2799     Group->addMetadata(NewStoreInstr);
2800   }
2801 }
2802 
2803 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2804     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2805     VPValue *StoredValue, VPValue *BlockInMask) {
2806   // Attempt to issue a wide load.
2807   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2808   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2809 
2810   assert((LI || SI) && "Invalid Load/Store instruction");
2811   assert((!SI || StoredValue) && "No stored value provided for widened store");
2812   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2813 
2814   LoopVectorizationCostModel::InstWidening Decision =
2815       Cost->getWideningDecision(Instr, VF);
2816   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2817           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2818           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2819          "CM decision is not to widen the memory instruction");
2820 
2821   Type *ScalarDataTy = getMemInstValueType(Instr);
2822 
2823   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2824   const Align Alignment = getLoadStoreAlignment(Instr);
2825 
2826   // Determine if the pointer operand of the access is either consecutive or
2827   // reverse consecutive.
2828   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2829   bool ConsecutiveStride =
2830       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2831   bool CreateGatherScatter =
2832       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2833 
2834   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2835   // gather/scatter. Otherwise Decision should have been to Scalarize.
2836   assert((ConsecutiveStride || CreateGatherScatter) &&
2837          "The instruction should be scalarized");
2838   (void)ConsecutiveStride;
2839 
2840   VectorParts BlockInMaskParts(UF);
2841   bool isMaskRequired = BlockInMask;
2842   if (isMaskRequired)
2843     for (unsigned Part = 0; Part < UF; ++Part)
2844       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2845 
2846   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2847     // Calculate the pointer for the specific unroll-part.
2848     GetElementPtrInst *PartPtr = nullptr;
2849 
2850     bool InBounds = false;
2851     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2852       InBounds = gep->isInBounds();
2853     if (Reverse) {
2854       // If the address is consecutive but reversed, then the
2855       // wide store needs to start at the last vector element.
2856       // RunTimeVF =  VScale * VF.getKnownMinValue()
2857       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2858       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2859       // NumElt = -Part * RunTimeVF
2860       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2861       // LastLane = 1 - RunTimeVF
2862       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2863       PartPtr =
2864           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2865       PartPtr->setIsInBounds(InBounds);
2866       PartPtr = cast<GetElementPtrInst>(
2867           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2868       PartPtr->setIsInBounds(InBounds);
2869       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2870         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2871     } else {
2872       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2873       PartPtr = cast<GetElementPtrInst>(
2874           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2875       PartPtr->setIsInBounds(InBounds);
2876     }
2877 
2878     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2879     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2880   };
2881 
2882   // Handle Stores:
2883   if (SI) {
2884     setDebugLocFromInst(Builder, SI);
2885 
2886     for (unsigned Part = 0; Part < UF; ++Part) {
2887       Instruction *NewSI = nullptr;
2888       Value *StoredVal = State.get(StoredValue, Part);
2889       if (CreateGatherScatter) {
2890         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2891         Value *VectorGep = State.get(Addr, Part);
2892         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2893                                             MaskPart);
2894       } else {
2895         if (Reverse) {
2896           // If we store to reverse consecutive memory locations, then we need
2897           // to reverse the order of elements in the stored value.
2898           StoredVal = reverseVector(StoredVal);
2899           // We don't want to update the value in the map as it might be used in
2900           // another expression. So don't call resetVectorValue(StoredVal).
2901         }
2902         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2903         if (isMaskRequired)
2904           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2905                                             BlockInMaskParts[Part]);
2906         else
2907           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2908       }
2909       addMetadata(NewSI, SI);
2910     }
2911     return;
2912   }
2913 
2914   // Handle loads.
2915   assert(LI && "Must have a load instruction");
2916   setDebugLocFromInst(Builder, LI);
2917   for (unsigned Part = 0; Part < UF; ++Part) {
2918     Value *NewLI;
2919     if (CreateGatherScatter) {
2920       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2921       Value *VectorGep = State.get(Addr, Part);
2922       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2923                                          nullptr, "wide.masked.gather");
2924       addMetadata(NewLI, LI);
2925     } else {
2926       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2927       if (isMaskRequired)
2928         NewLI = Builder.CreateMaskedLoad(
2929             VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy),
2930             "wide.masked.load");
2931       else
2932         NewLI =
2933             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2934 
2935       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2936       addMetadata(NewLI, LI);
2937       if (Reverse)
2938         NewLI = reverseVector(NewLI);
2939     }
2940 
2941     State.set(Def, NewLI, Part);
2942   }
2943 }
2944 
2945 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
2946                                                VPUser &User,
2947                                                const VPIteration &Instance,
2948                                                bool IfPredicateInstr,
2949                                                VPTransformState &State) {
2950   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2951 
2952   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2953   // the first lane and part.
2954   if (isa<NoAliasScopeDeclInst>(Instr))
2955     if (!Instance.isFirstIteration())
2956       return;
2957 
2958   setDebugLocFromInst(Builder, Instr);
2959 
2960   // Does this instruction return a value ?
2961   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2962 
2963   Instruction *Cloned = Instr->clone();
2964   if (!IsVoidRetTy)
2965     Cloned->setName(Instr->getName() + ".cloned");
2966 
2967   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2968                                Builder.GetInsertPoint());
2969   // Replace the operands of the cloned instructions with their scalar
2970   // equivalents in the new loop.
2971   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
2972     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
2973     auto InputInstance = Instance;
2974     if (!Operand || !OrigLoop->contains(Operand) ||
2975         (Cost->isUniformAfterVectorization(Operand, State.VF)))
2976       InputInstance.Lane = VPLane::getFirstLane();
2977     auto *NewOp = State.get(User.getOperand(op), InputInstance);
2978     Cloned->setOperand(op, NewOp);
2979   }
2980   addNewMetadata(Cloned, Instr);
2981 
2982   // Place the cloned scalar in the new loop.
2983   Builder.Insert(Cloned);
2984 
2985   State.set(Def, Cloned, Instance);
2986 
2987   // If we just cloned a new assumption, add it the assumption cache.
2988   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2989     if (II->getIntrinsicID() == Intrinsic::assume)
2990       AC->registerAssumption(II);
2991 
2992   // End if-block.
2993   if (IfPredicateInstr)
2994     PredicatedInstructions.push_back(Cloned);
2995 }
2996 
2997 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2998                                                       Value *End, Value *Step,
2999                                                       Instruction *DL) {
3000   BasicBlock *Header = L->getHeader();
3001   BasicBlock *Latch = L->getLoopLatch();
3002   // As we're just creating this loop, it's possible no latch exists
3003   // yet. If so, use the header as this will be a single block loop.
3004   if (!Latch)
3005     Latch = Header;
3006 
3007   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3008   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3009   setDebugLocFromInst(Builder, OldInst);
3010   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3011 
3012   Builder.SetInsertPoint(Latch->getTerminator());
3013   setDebugLocFromInst(Builder, OldInst);
3014 
3015   // Create i+1 and fill the PHINode.
3016   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3017   Induction->addIncoming(Start, L->getLoopPreheader());
3018   Induction->addIncoming(Next, Latch);
3019   // Create the compare.
3020   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3021   Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3022 
3023   // Now we have two terminators. Remove the old one from the block.
3024   Latch->getTerminator()->eraseFromParent();
3025 
3026   return Induction;
3027 }
3028 
3029 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3030   if (TripCount)
3031     return TripCount;
3032 
3033   assert(L && "Create Trip Count for null loop.");
3034   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3035   // Find the loop boundaries.
3036   ScalarEvolution *SE = PSE.getSE();
3037   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3038   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3039          "Invalid loop count");
3040 
3041   Type *IdxTy = Legal->getWidestInductionType();
3042   assert(IdxTy && "No type for induction");
3043 
3044   // The exit count might have the type of i64 while the phi is i32. This can
3045   // happen if we have an induction variable that is sign extended before the
3046   // compare. The only way that we get a backedge taken count is that the
3047   // induction variable was signed and as such will not overflow. In such a case
3048   // truncation is legal.
3049   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3050       IdxTy->getPrimitiveSizeInBits())
3051     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3052   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3053 
3054   // Get the total trip count from the count by adding 1.
3055   const SCEV *ExitCount = SE->getAddExpr(
3056       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3057 
3058   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3059 
3060   // Expand the trip count and place the new instructions in the preheader.
3061   // Notice that the pre-header does not change, only the loop body.
3062   SCEVExpander Exp(*SE, DL, "induction");
3063 
3064   // Count holds the overall loop count (N).
3065   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3066                                 L->getLoopPreheader()->getTerminator());
3067 
3068   if (TripCount->getType()->isPointerTy())
3069     TripCount =
3070         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3071                                     L->getLoopPreheader()->getTerminator());
3072 
3073   return TripCount;
3074 }
3075 
3076 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3077   if (VectorTripCount)
3078     return VectorTripCount;
3079 
3080   Value *TC = getOrCreateTripCount(L);
3081   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3082 
3083   Type *Ty = TC->getType();
3084   // This is where we can make the step a runtime constant.
3085   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3086 
3087   // If the tail is to be folded by masking, round the number of iterations N
3088   // up to a multiple of Step instead of rounding down. This is done by first
3089   // adding Step-1 and then rounding down. Note that it's ok if this addition
3090   // overflows: the vector induction variable will eventually wrap to zero given
3091   // that it starts at zero and its Step is a power of two; the loop will then
3092   // exit, with the last early-exit vector comparison also producing all-true.
3093   if (Cost->foldTailByMasking()) {
3094     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3095            "VF*UF must be a power of 2 when folding tail by masking");
3096     assert(!VF.isScalable() &&
3097            "Tail folding not yet supported for scalable vectors");
3098     TC = Builder.CreateAdd(
3099         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3100   }
3101 
3102   // Now we need to generate the expression for the part of the loop that the
3103   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3104   // iterations are not required for correctness, or N - Step, otherwise. Step
3105   // is equal to the vectorization factor (number of SIMD elements) times the
3106   // unroll factor (number of SIMD instructions).
3107   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3108 
3109   // There are two cases where we need to ensure (at least) the last iteration
3110   // runs in the scalar remainder loop. Thus, if the step evenly divides
3111   // the trip count, we set the remainder to be equal to the step. If the step
3112   // does not evenly divide the trip count, no adjustment is necessary since
3113   // there will already be scalar iterations. Note that the minimum iterations
3114   // check ensures that N >= Step. The cases are:
3115   // 1) If there is a non-reversed interleaved group that may speculatively
3116   //    access memory out-of-bounds.
3117   // 2) If any instruction may follow a conditionally taken exit. That is, if
3118   //    the loop contains multiple exiting blocks, or a single exiting block
3119   //    which is not the latch.
3120   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
3121     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3122     R = Builder.CreateSelect(IsZero, Step, R);
3123   }
3124 
3125   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3126 
3127   return VectorTripCount;
3128 }
3129 
3130 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3131                                                    const DataLayout &DL) {
3132   // Verify that V is a vector type with same number of elements as DstVTy.
3133   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3134   unsigned VF = DstFVTy->getNumElements();
3135   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3136   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3137   Type *SrcElemTy = SrcVecTy->getElementType();
3138   Type *DstElemTy = DstFVTy->getElementType();
3139   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3140          "Vector elements must have same size");
3141 
3142   // Do a direct cast if element types are castable.
3143   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3144     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3145   }
3146   // V cannot be directly casted to desired vector type.
3147   // May happen when V is a floating point vector but DstVTy is a vector of
3148   // pointers or vice-versa. Handle this using a two-step bitcast using an
3149   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3150   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3151          "Only one type should be a pointer type");
3152   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3153          "Only one type should be a floating point type");
3154   Type *IntTy =
3155       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3156   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3157   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3158   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3159 }
3160 
3161 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3162                                                          BasicBlock *Bypass) {
3163   Value *Count = getOrCreateTripCount(L);
3164   // Reuse existing vector loop preheader for TC checks.
3165   // Note that new preheader block is generated for vector loop.
3166   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3167   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3168 
3169   // Generate code to check if the loop's trip count is less than VF * UF, or
3170   // equal to it in case a scalar epilogue is required; this implies that the
3171   // vector trip count is zero. This check also covers the case where adding one
3172   // to the backedge-taken count overflowed leading to an incorrect trip count
3173   // of zero. In this case we will also jump to the scalar loop.
3174   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3175                                           : ICmpInst::ICMP_ULT;
3176 
3177   // If tail is to be folded, vector loop takes care of all iterations.
3178   Value *CheckMinIters = Builder.getFalse();
3179   if (!Cost->foldTailByMasking()) {
3180     Value *Step =
3181         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3182     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3183   }
3184   // Create new preheader for vector loop.
3185   LoopVectorPreHeader =
3186       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3187                  "vector.ph");
3188 
3189   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3190                                DT->getNode(Bypass)->getIDom()) &&
3191          "TC check is expected to dominate Bypass");
3192 
3193   // Update dominator for Bypass & LoopExit.
3194   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3195   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3196 
3197   ReplaceInstWithInst(
3198       TCCheckBlock->getTerminator(),
3199       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3200   LoopBypassBlocks.push_back(TCCheckBlock);
3201 }
3202 
3203 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3204 
3205   BasicBlock *const SCEVCheckBlock =
3206       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3207   if (!SCEVCheckBlock)
3208     return nullptr;
3209 
3210   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3211            (OptForSizeBasedOnProfile &&
3212             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3213          "Cannot SCEV check stride or overflow when optimizing for size");
3214 
3215 
3216   // Update dominator only if this is first RT check.
3217   if (LoopBypassBlocks.empty()) {
3218     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3219     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3220   }
3221 
3222   LoopBypassBlocks.push_back(SCEVCheckBlock);
3223   AddedSafetyChecks = true;
3224   return SCEVCheckBlock;
3225 }
3226 
3227 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3228                                                       BasicBlock *Bypass) {
3229   // VPlan-native path does not do any analysis for runtime checks currently.
3230   if (EnableVPlanNativePath)
3231     return nullptr;
3232 
3233   BasicBlock *const MemCheckBlock =
3234       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3235 
3236   // Check if we generated code that checks in runtime if arrays overlap. We put
3237   // the checks into a separate block to make the more common case of few
3238   // elements faster.
3239   if (!MemCheckBlock)
3240     return nullptr;
3241 
3242   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3243     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3244            "Cannot emit memory checks when optimizing for size, unless forced "
3245            "to vectorize.");
3246     ORE->emit([&]() {
3247       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3248                                         L->getStartLoc(), L->getHeader())
3249              << "Code-size may be reduced by not forcing "
3250                 "vectorization, or by source-code modifications "
3251                 "eliminating the need for runtime checks "
3252                 "(e.g., adding 'restrict').";
3253     });
3254   }
3255 
3256   LoopBypassBlocks.push_back(MemCheckBlock);
3257 
3258   AddedSafetyChecks = true;
3259 
3260   // We currently don't use LoopVersioning for the actual loop cloning but we
3261   // still use it to add the noalias metadata.
3262   LVer = std::make_unique<LoopVersioning>(
3263       *Legal->getLAI(),
3264       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3265       DT, PSE.getSE());
3266   LVer->prepareNoAliasMetadata();
3267   return MemCheckBlock;
3268 }
3269 
3270 Value *InnerLoopVectorizer::emitTransformedIndex(
3271     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3272     const InductionDescriptor &ID) const {
3273 
3274   SCEVExpander Exp(*SE, DL, "induction");
3275   auto Step = ID.getStep();
3276   auto StartValue = ID.getStartValue();
3277   assert(Index->getType() == Step->getType() &&
3278          "Index type does not match StepValue type");
3279 
3280   // Note: the IR at this point is broken. We cannot use SE to create any new
3281   // SCEV and then expand it, hoping that SCEV's simplification will give us
3282   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3283   // lead to various SCEV crashes. So all we can do is to use builder and rely
3284   // on InstCombine for future simplifications. Here we handle some trivial
3285   // cases only.
3286   auto CreateAdd = [&B](Value *X, Value *Y) {
3287     assert(X->getType() == Y->getType() && "Types don't match!");
3288     if (auto *CX = dyn_cast<ConstantInt>(X))
3289       if (CX->isZero())
3290         return Y;
3291     if (auto *CY = dyn_cast<ConstantInt>(Y))
3292       if (CY->isZero())
3293         return X;
3294     return B.CreateAdd(X, Y);
3295   };
3296 
3297   auto CreateMul = [&B](Value *X, Value *Y) {
3298     assert(X->getType() == Y->getType() && "Types don't match!");
3299     if (auto *CX = dyn_cast<ConstantInt>(X))
3300       if (CX->isOne())
3301         return Y;
3302     if (auto *CY = dyn_cast<ConstantInt>(Y))
3303       if (CY->isOne())
3304         return X;
3305     return B.CreateMul(X, Y);
3306   };
3307 
3308   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3309   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3310   // the DomTree is not kept up-to-date for additional blocks generated in the
3311   // vector loop. By using the header as insertion point, we guarantee that the
3312   // expanded instructions dominate all their uses.
3313   auto GetInsertPoint = [this, &B]() {
3314     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3315     if (InsertBB != LoopVectorBody &&
3316         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3317       return LoopVectorBody->getTerminator();
3318     return &*B.GetInsertPoint();
3319   };
3320 
3321   switch (ID.getKind()) {
3322   case InductionDescriptor::IK_IntInduction: {
3323     assert(Index->getType() == StartValue->getType() &&
3324            "Index type does not match StartValue type");
3325     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3326       return B.CreateSub(StartValue, Index);
3327     auto *Offset = CreateMul(
3328         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3329     return CreateAdd(StartValue, Offset);
3330   }
3331   case InductionDescriptor::IK_PtrInduction: {
3332     assert(isa<SCEVConstant>(Step) &&
3333            "Expected constant step for pointer induction");
3334     return B.CreateGEP(
3335         StartValue->getType()->getPointerElementType(), StartValue,
3336         CreateMul(Index,
3337                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
3338   }
3339   case InductionDescriptor::IK_FpInduction: {
3340     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3341     auto InductionBinOp = ID.getInductionBinOp();
3342     assert(InductionBinOp &&
3343            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3344             InductionBinOp->getOpcode() == Instruction::FSub) &&
3345            "Original bin op should be defined for FP induction");
3346 
3347     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3348     Value *MulExp = B.CreateFMul(StepValue, Index);
3349     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3350                          "induction");
3351   }
3352   case InductionDescriptor::IK_NoInduction:
3353     return nullptr;
3354   }
3355   llvm_unreachable("invalid enum");
3356 }
3357 
3358 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3359   LoopScalarBody = OrigLoop->getHeader();
3360   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3361   LoopExitBlock = OrigLoop->getUniqueExitBlock();
3362   assert(LoopExitBlock && "Must have an exit block");
3363   assert(LoopVectorPreHeader && "Invalid loop structure");
3364 
3365   LoopMiddleBlock =
3366       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3367                  LI, nullptr, Twine(Prefix) + "middle.block");
3368   LoopScalarPreHeader =
3369       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3370                  nullptr, Twine(Prefix) + "scalar.ph");
3371 
3372   // Set up branch from middle block to the exit and scalar preheader blocks.
3373   // completeLoopSkeleton will update the condition to use an iteration check,
3374   // if required to decide whether to execute the remainder.
3375   BranchInst *BrInst =
3376       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue());
3377   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3378   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3379   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3380 
3381   // We intentionally don't let SplitBlock to update LoopInfo since
3382   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3383   // LoopVectorBody is explicitly added to the correct place few lines later.
3384   LoopVectorBody =
3385       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3386                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3387 
3388   // Update dominator for loop exit.
3389   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3390 
3391   // Create and register the new vector loop.
3392   Loop *Lp = LI->AllocateLoop();
3393   Loop *ParentLoop = OrigLoop->getParentLoop();
3394 
3395   // Insert the new loop into the loop nest and register the new basic blocks
3396   // before calling any utilities such as SCEV that require valid LoopInfo.
3397   if (ParentLoop) {
3398     ParentLoop->addChildLoop(Lp);
3399   } else {
3400     LI->addTopLevelLoop(Lp);
3401   }
3402   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3403   return Lp;
3404 }
3405 
3406 void InnerLoopVectorizer::createInductionResumeValues(
3407     Loop *L, Value *VectorTripCount,
3408     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3409   assert(VectorTripCount && L && "Expected valid arguments");
3410   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3411           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3412          "Inconsistent information about additional bypass.");
3413   // We are going to resume the execution of the scalar loop.
3414   // Go over all of the induction variables that we found and fix the
3415   // PHIs that are left in the scalar version of the loop.
3416   // The starting values of PHI nodes depend on the counter of the last
3417   // iteration in the vectorized loop.
3418   // If we come from a bypass edge then we need to start from the original
3419   // start value.
3420   for (auto &InductionEntry : Legal->getInductionVars()) {
3421     PHINode *OrigPhi = InductionEntry.first;
3422     InductionDescriptor II = InductionEntry.second;
3423 
3424     // Create phi nodes to merge from the  backedge-taken check block.
3425     PHINode *BCResumeVal =
3426         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3427                         LoopScalarPreHeader->getTerminator());
3428     // Copy original phi DL over to the new one.
3429     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3430     Value *&EndValue = IVEndValues[OrigPhi];
3431     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3432     if (OrigPhi == OldInduction) {
3433       // We know what the end value is.
3434       EndValue = VectorTripCount;
3435     } else {
3436       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3437 
3438       // Fast-math-flags propagate from the original induction instruction.
3439       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3440         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3441 
3442       Type *StepType = II.getStep()->getType();
3443       Instruction::CastOps CastOp =
3444           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3445       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3446       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3447       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3448       EndValue->setName("ind.end");
3449 
3450       // Compute the end value for the additional bypass (if applicable).
3451       if (AdditionalBypass.first) {
3452         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3453         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3454                                          StepType, true);
3455         CRD =
3456             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3457         EndValueFromAdditionalBypass =
3458             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3459         EndValueFromAdditionalBypass->setName("ind.end");
3460       }
3461     }
3462     // The new PHI merges the original incoming value, in case of a bypass,
3463     // or the value at the end of the vectorized loop.
3464     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3465 
3466     // Fix the scalar body counter (PHI node).
3467     // The old induction's phi node in the scalar body needs the truncated
3468     // value.
3469     for (BasicBlock *BB : LoopBypassBlocks)
3470       BCResumeVal->addIncoming(II.getStartValue(), BB);
3471 
3472     if (AdditionalBypass.first)
3473       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3474                                             EndValueFromAdditionalBypass);
3475 
3476     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3477   }
3478 }
3479 
3480 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3481                                                       MDNode *OrigLoopID) {
3482   assert(L && "Expected valid loop.");
3483 
3484   // The trip counts should be cached by now.
3485   Value *Count = getOrCreateTripCount(L);
3486   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3487 
3488   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3489 
3490   // Add a check in the middle block to see if we have completed
3491   // all of the iterations in the first vector loop.
3492   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3493   // If tail is to be folded, we know we don't need to run the remainder.
3494   if (!Cost->foldTailByMasking()) {
3495     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3496                                         Count, VectorTripCount, "cmp.n",
3497                                         LoopMiddleBlock->getTerminator());
3498 
3499     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3500     // of the corresponding compare because they may have ended up with
3501     // different line numbers and we want to avoid awkward line stepping while
3502     // debugging. Eg. if the compare has got a line number inside the loop.
3503     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3504     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3505   }
3506 
3507   // Get ready to start creating new instructions into the vectorized body.
3508   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3509          "Inconsistent vector loop preheader");
3510   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3511 
3512   Optional<MDNode *> VectorizedLoopID =
3513       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3514                                       LLVMLoopVectorizeFollowupVectorized});
3515   if (VectorizedLoopID.hasValue()) {
3516     L->setLoopID(VectorizedLoopID.getValue());
3517 
3518     // Do not setAlreadyVectorized if loop attributes have been defined
3519     // explicitly.
3520     return LoopVectorPreHeader;
3521   }
3522 
3523   // Keep all loop hints from the original loop on the vector loop (we'll
3524   // replace the vectorizer-specific hints below).
3525   if (MDNode *LID = OrigLoop->getLoopID())
3526     L->setLoopID(LID);
3527 
3528   LoopVectorizeHints Hints(L, true, *ORE);
3529   Hints.setAlreadyVectorized();
3530 
3531 #ifdef EXPENSIVE_CHECKS
3532   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3533   LI->verify(*DT);
3534 #endif
3535 
3536   return LoopVectorPreHeader;
3537 }
3538 
3539 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3540   /*
3541    In this function we generate a new loop. The new loop will contain
3542    the vectorized instructions while the old loop will continue to run the
3543    scalar remainder.
3544 
3545        [ ] <-- loop iteration number check.
3546     /   |
3547    /    v
3548   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3549   |  /  |
3550   | /   v
3551   ||   [ ]     <-- vector pre header.
3552   |/    |
3553   |     v
3554   |    [  ] \
3555   |    [  ]_|   <-- vector loop.
3556   |     |
3557   |     v
3558   |   -[ ]   <--- middle-block.
3559   |  /  |
3560   | /   v
3561   -|- >[ ]     <--- new preheader.
3562    |    |
3563    |    v
3564    |   [ ] \
3565    |   [ ]_|   <-- old scalar loop to handle remainder.
3566     \   |
3567      \  v
3568       >[ ]     <-- exit block.
3569    ...
3570    */
3571 
3572   // Get the metadata of the original loop before it gets modified.
3573   MDNode *OrigLoopID = OrigLoop->getLoopID();
3574 
3575   // Create an empty vector loop, and prepare basic blocks for the runtime
3576   // checks.
3577   Loop *Lp = createVectorLoopSkeleton("");
3578 
3579   // Now, compare the new count to zero. If it is zero skip the vector loop and
3580   // jump to the scalar loop. This check also covers the case where the
3581   // backedge-taken count is uint##_max: adding one to it will overflow leading
3582   // to an incorrect trip count of zero. In this (rare) case we will also jump
3583   // to the scalar loop.
3584   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3585 
3586   // Generate the code to check any assumptions that we've made for SCEV
3587   // expressions.
3588   emitSCEVChecks(Lp, LoopScalarPreHeader);
3589 
3590   // Generate the code that checks in runtime if arrays overlap. We put the
3591   // checks into a separate block to make the more common case of few elements
3592   // faster.
3593   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3594 
3595   // Some loops have a single integer induction variable, while other loops
3596   // don't. One example is c++ iterators that often have multiple pointer
3597   // induction variables. In the code below we also support a case where we
3598   // don't have a single induction variable.
3599   //
3600   // We try to obtain an induction variable from the original loop as hard
3601   // as possible. However if we don't find one that:
3602   //   - is an integer
3603   //   - counts from zero, stepping by one
3604   //   - is the size of the widest induction variable type
3605   // then we create a new one.
3606   OldInduction = Legal->getPrimaryInduction();
3607   Type *IdxTy = Legal->getWidestInductionType();
3608   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3609   // The loop step is equal to the vectorization factor (num of SIMD elements)
3610   // times the unroll factor (num of SIMD instructions).
3611   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3612   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3613   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3614   Induction =
3615       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3616                               getDebugLocFromInstOrOperands(OldInduction));
3617 
3618   // Emit phis for the new starting index of the scalar loop.
3619   createInductionResumeValues(Lp, CountRoundDown);
3620 
3621   return completeLoopSkeleton(Lp, OrigLoopID);
3622 }
3623 
3624 // Fix up external users of the induction variable. At this point, we are
3625 // in LCSSA form, with all external PHIs that use the IV having one input value,
3626 // coming from the remainder loop. We need those PHIs to also have a correct
3627 // value for the IV when arriving directly from the middle block.
3628 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3629                                        const InductionDescriptor &II,
3630                                        Value *CountRoundDown, Value *EndValue,
3631                                        BasicBlock *MiddleBlock) {
3632   // There are two kinds of external IV usages - those that use the value
3633   // computed in the last iteration (the PHI) and those that use the penultimate
3634   // value (the value that feeds into the phi from the loop latch).
3635   // We allow both, but they, obviously, have different values.
3636 
3637   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3638 
3639   DenseMap<Value *, Value *> MissingVals;
3640 
3641   // An external user of the last iteration's value should see the value that
3642   // the remainder loop uses to initialize its own IV.
3643   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3644   for (User *U : PostInc->users()) {
3645     Instruction *UI = cast<Instruction>(U);
3646     if (!OrigLoop->contains(UI)) {
3647       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3648       MissingVals[UI] = EndValue;
3649     }
3650   }
3651 
3652   // An external user of the penultimate value need to see EndValue - Step.
3653   // The simplest way to get this is to recompute it from the constituent SCEVs,
3654   // that is Start + (Step * (CRD - 1)).
3655   for (User *U : OrigPhi->users()) {
3656     auto *UI = cast<Instruction>(U);
3657     if (!OrigLoop->contains(UI)) {
3658       const DataLayout &DL =
3659           OrigLoop->getHeader()->getModule()->getDataLayout();
3660       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3661 
3662       IRBuilder<> B(MiddleBlock->getTerminator());
3663 
3664       // Fast-math-flags propagate from the original induction instruction.
3665       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3666         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3667 
3668       Value *CountMinusOne = B.CreateSub(
3669           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3670       Value *CMO =
3671           !II.getStep()->getType()->isIntegerTy()
3672               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3673                              II.getStep()->getType())
3674               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3675       CMO->setName("cast.cmo");
3676       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3677       Escape->setName("ind.escape");
3678       MissingVals[UI] = Escape;
3679     }
3680   }
3681 
3682   for (auto &I : MissingVals) {
3683     PHINode *PHI = cast<PHINode>(I.first);
3684     // One corner case we have to handle is two IVs "chasing" each-other,
3685     // that is %IV2 = phi [...], [ %IV1, %latch ]
3686     // In this case, if IV1 has an external use, we need to avoid adding both
3687     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3688     // don't already have an incoming value for the middle block.
3689     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3690       PHI->addIncoming(I.second, MiddleBlock);
3691   }
3692 }
3693 
3694 namespace {
3695 
3696 struct CSEDenseMapInfo {
3697   static bool canHandle(const Instruction *I) {
3698     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3699            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3700   }
3701 
3702   static inline Instruction *getEmptyKey() {
3703     return DenseMapInfo<Instruction *>::getEmptyKey();
3704   }
3705 
3706   static inline Instruction *getTombstoneKey() {
3707     return DenseMapInfo<Instruction *>::getTombstoneKey();
3708   }
3709 
3710   static unsigned getHashValue(const Instruction *I) {
3711     assert(canHandle(I) && "Unknown instruction!");
3712     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3713                                                            I->value_op_end()));
3714   }
3715 
3716   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3717     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3718         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3719       return LHS == RHS;
3720     return LHS->isIdenticalTo(RHS);
3721   }
3722 };
3723 
3724 } // end anonymous namespace
3725 
3726 ///Perform cse of induction variable instructions.
3727 static void cse(BasicBlock *BB) {
3728   // Perform simple cse.
3729   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3730   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3731     Instruction *In = &*I++;
3732 
3733     if (!CSEDenseMapInfo::canHandle(In))
3734       continue;
3735 
3736     // Check if we can replace this instruction with any of the
3737     // visited instructions.
3738     if (Instruction *V = CSEMap.lookup(In)) {
3739       In->replaceAllUsesWith(V);
3740       In->eraseFromParent();
3741       continue;
3742     }
3743 
3744     CSEMap[In] = In;
3745   }
3746 }
3747 
3748 InstructionCost
3749 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3750                                               bool &NeedToScalarize) {
3751   Function *F = CI->getCalledFunction();
3752   Type *ScalarRetTy = CI->getType();
3753   SmallVector<Type *, 4> Tys, ScalarTys;
3754   for (auto &ArgOp : CI->arg_operands())
3755     ScalarTys.push_back(ArgOp->getType());
3756 
3757   // Estimate cost of scalarized vector call. The source operands are assumed
3758   // to be vectors, so we need to extract individual elements from there,
3759   // execute VF scalar calls, and then gather the result into the vector return
3760   // value.
3761   InstructionCost ScalarCallCost =
3762       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3763   if (VF.isScalar())
3764     return ScalarCallCost;
3765 
3766   // Compute corresponding vector type for return value and arguments.
3767   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3768   for (Type *ScalarTy : ScalarTys)
3769     Tys.push_back(ToVectorTy(ScalarTy, VF));
3770 
3771   // Compute costs of unpacking argument values for the scalar calls and
3772   // packing the return values to a vector.
3773   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3774 
3775   InstructionCost Cost =
3776       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3777 
3778   // If we can't emit a vector call for this function, then the currently found
3779   // cost is the cost we need to return.
3780   NeedToScalarize = true;
3781   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3782   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3783 
3784   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3785     return Cost;
3786 
3787   // If the corresponding vector cost is cheaper, return its cost.
3788   InstructionCost VectorCallCost =
3789       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3790   if (VectorCallCost < Cost) {
3791     NeedToScalarize = false;
3792     Cost = VectorCallCost;
3793   }
3794   return Cost;
3795 }
3796 
3797 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3798   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3799     return Elt;
3800   return VectorType::get(Elt, VF);
3801 }
3802 
3803 InstructionCost
3804 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3805                                                    ElementCount VF) {
3806   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3807   assert(ID && "Expected intrinsic call!");
3808   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3809   FastMathFlags FMF;
3810   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3811     FMF = FPMO->getFastMathFlags();
3812 
3813   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3814   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3815   SmallVector<Type *> ParamTys;
3816   std::transform(FTy->param_begin(), FTy->param_end(),
3817                  std::back_inserter(ParamTys),
3818                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3819 
3820   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3821                                     dyn_cast<IntrinsicInst>(CI));
3822   return TTI.getIntrinsicInstrCost(CostAttrs,
3823                                    TargetTransformInfo::TCK_RecipThroughput);
3824 }
3825 
3826 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3827   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3828   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3829   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3830 }
3831 
3832 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3833   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3834   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3835   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3836 }
3837 
3838 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3839   // For every instruction `I` in MinBWs, truncate the operands, create a
3840   // truncated version of `I` and reextend its result. InstCombine runs
3841   // later and will remove any ext/trunc pairs.
3842   SmallPtrSet<Value *, 4> Erased;
3843   for (const auto &KV : Cost->getMinimalBitwidths()) {
3844     // If the value wasn't vectorized, we must maintain the original scalar
3845     // type. The absence of the value from State indicates that it
3846     // wasn't vectorized.
3847     VPValue *Def = State.Plan->getVPValue(KV.first);
3848     if (!State.hasAnyVectorValue(Def))
3849       continue;
3850     for (unsigned Part = 0; Part < UF; ++Part) {
3851       Value *I = State.get(Def, Part);
3852       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3853         continue;
3854       Type *OriginalTy = I->getType();
3855       Type *ScalarTruncatedTy =
3856           IntegerType::get(OriginalTy->getContext(), KV.second);
3857       auto *TruncatedTy = FixedVectorType::get(
3858           ScalarTruncatedTy,
3859           cast<FixedVectorType>(OriginalTy)->getNumElements());
3860       if (TruncatedTy == OriginalTy)
3861         continue;
3862 
3863       IRBuilder<> B(cast<Instruction>(I));
3864       auto ShrinkOperand = [&](Value *V) -> Value * {
3865         if (auto *ZI = dyn_cast<ZExtInst>(V))
3866           if (ZI->getSrcTy() == TruncatedTy)
3867             return ZI->getOperand(0);
3868         return B.CreateZExtOrTrunc(V, TruncatedTy);
3869       };
3870 
3871       // The actual instruction modification depends on the instruction type,
3872       // unfortunately.
3873       Value *NewI = nullptr;
3874       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3875         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3876                              ShrinkOperand(BO->getOperand(1)));
3877 
3878         // Any wrapping introduced by shrinking this operation shouldn't be
3879         // considered undefined behavior. So, we can't unconditionally copy
3880         // arithmetic wrapping flags to NewI.
3881         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3882       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3883         NewI =
3884             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3885                          ShrinkOperand(CI->getOperand(1)));
3886       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3887         NewI = B.CreateSelect(SI->getCondition(),
3888                               ShrinkOperand(SI->getTrueValue()),
3889                               ShrinkOperand(SI->getFalseValue()));
3890       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3891         switch (CI->getOpcode()) {
3892         default:
3893           llvm_unreachable("Unhandled cast!");
3894         case Instruction::Trunc:
3895           NewI = ShrinkOperand(CI->getOperand(0));
3896           break;
3897         case Instruction::SExt:
3898           NewI = B.CreateSExtOrTrunc(
3899               CI->getOperand(0),
3900               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3901           break;
3902         case Instruction::ZExt:
3903           NewI = B.CreateZExtOrTrunc(
3904               CI->getOperand(0),
3905               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3906           break;
3907         }
3908       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3909         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3910                              ->getNumElements();
3911         auto *O0 = B.CreateZExtOrTrunc(
3912             SI->getOperand(0),
3913             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3914         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3915                              ->getNumElements();
3916         auto *O1 = B.CreateZExtOrTrunc(
3917             SI->getOperand(1),
3918             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3919 
3920         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3921       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3922         // Don't do anything with the operands, just extend the result.
3923         continue;
3924       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3925         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
3926                             ->getNumElements();
3927         auto *O0 = B.CreateZExtOrTrunc(
3928             IE->getOperand(0),
3929             FixedVectorType::get(ScalarTruncatedTy, Elements));
3930         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3931         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3932       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3933         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
3934                             ->getNumElements();
3935         auto *O0 = B.CreateZExtOrTrunc(
3936             EE->getOperand(0),
3937             FixedVectorType::get(ScalarTruncatedTy, Elements));
3938         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3939       } else {
3940         // If we don't know what to do, be conservative and don't do anything.
3941         continue;
3942       }
3943 
3944       // Lastly, extend the result.
3945       NewI->takeName(cast<Instruction>(I));
3946       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3947       I->replaceAllUsesWith(Res);
3948       cast<Instruction>(I)->eraseFromParent();
3949       Erased.insert(I);
3950       State.reset(Def, Res, Part);
3951     }
3952   }
3953 
3954   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3955   for (const auto &KV : Cost->getMinimalBitwidths()) {
3956     // If the value wasn't vectorized, we must maintain the original scalar
3957     // type. The absence of the value from State indicates that it
3958     // wasn't vectorized.
3959     VPValue *Def = State.Plan->getVPValue(KV.first);
3960     if (!State.hasAnyVectorValue(Def))
3961       continue;
3962     for (unsigned Part = 0; Part < UF; ++Part) {
3963       Value *I = State.get(Def, Part);
3964       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3965       if (Inst && Inst->use_empty()) {
3966         Value *NewI = Inst->getOperand(0);
3967         Inst->eraseFromParent();
3968         State.reset(Def, NewI, Part);
3969       }
3970     }
3971   }
3972 }
3973 
3974 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3975   // Insert truncates and extends for any truncated instructions as hints to
3976   // InstCombine.
3977   if (VF.isVector())
3978     truncateToMinimalBitwidths(State);
3979 
3980   // Fix widened non-induction PHIs by setting up the PHI operands.
3981   if (OrigPHIsToFix.size()) {
3982     assert(EnableVPlanNativePath &&
3983            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3984     fixNonInductionPHIs(State);
3985   }
3986 
3987   // At this point every instruction in the original loop is widened to a
3988   // vector form. Now we need to fix the recurrences in the loop. These PHI
3989   // nodes are currently empty because we did not want to introduce cycles.
3990   // This is the second stage of vectorizing recurrences.
3991   fixCrossIterationPHIs(State);
3992 
3993   // Forget the original basic block.
3994   PSE.getSE()->forgetLoop(OrigLoop);
3995 
3996   // Fix-up external users of the induction variables.
3997   for (auto &Entry : Legal->getInductionVars())
3998     fixupIVUsers(Entry.first, Entry.second,
3999                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4000                  IVEndValues[Entry.first], LoopMiddleBlock);
4001 
4002   fixLCSSAPHIs(State);
4003   for (Instruction *PI : PredicatedInstructions)
4004     sinkScalarOperands(&*PI);
4005 
4006   // Remove redundant induction instructions.
4007   cse(LoopVectorBody);
4008 
4009   // Set/update profile weights for the vector and remainder loops as original
4010   // loop iterations are now distributed among them. Note that original loop
4011   // represented by LoopScalarBody becomes remainder loop after vectorization.
4012   //
4013   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4014   // end up getting slightly roughened result but that should be OK since
4015   // profile is not inherently precise anyway. Note also possible bypass of
4016   // vector code caused by legality checks is ignored, assigning all the weight
4017   // to the vector loop, optimistically.
4018   //
4019   // For scalable vectorization we can't know at compile time how many iterations
4020   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4021   // vscale of '1'.
4022   setProfileInfoAfterUnrolling(
4023       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4024       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4025 }
4026 
4027 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4028   // In order to support recurrences we need to be able to vectorize Phi nodes.
4029   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4030   // stage #2: We now need to fix the recurrences by adding incoming edges to
4031   // the currently empty PHI nodes. At this point every instruction in the
4032   // original loop is widened to a vector form so we can use them to construct
4033   // the incoming edges.
4034   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
4035     // Handle first-order recurrences and reductions that need to be fixed.
4036     if (Legal->isFirstOrderRecurrence(&Phi))
4037       fixFirstOrderRecurrence(&Phi, State);
4038     else if (Legal->isReductionVariable(&Phi))
4039       fixReduction(&Phi, State);
4040   }
4041 }
4042 
4043 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi,
4044                                                   VPTransformState &State) {
4045   // This is the second phase of vectorizing first-order recurrences. An
4046   // overview of the transformation is described below. Suppose we have the
4047   // following loop.
4048   //
4049   //   for (int i = 0; i < n; ++i)
4050   //     b[i] = a[i] - a[i - 1];
4051   //
4052   // There is a first-order recurrence on "a". For this loop, the shorthand
4053   // scalar IR looks like:
4054   //
4055   //   scalar.ph:
4056   //     s_init = a[-1]
4057   //     br scalar.body
4058   //
4059   //   scalar.body:
4060   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4061   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4062   //     s2 = a[i]
4063   //     b[i] = s2 - s1
4064   //     br cond, scalar.body, ...
4065   //
4066   // In this example, s1 is a recurrence because it's value depends on the
4067   // previous iteration. In the first phase of vectorization, we created a
4068   // temporary value for s1. We now complete the vectorization and produce the
4069   // shorthand vector IR shown below (for VF = 4, UF = 1).
4070   //
4071   //   vector.ph:
4072   //     v_init = vector(..., ..., ..., a[-1])
4073   //     br vector.body
4074   //
4075   //   vector.body
4076   //     i = phi [0, vector.ph], [i+4, vector.body]
4077   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4078   //     v2 = a[i, i+1, i+2, i+3];
4079   //     v3 = vector(v1(3), v2(0, 1, 2))
4080   //     b[i, i+1, i+2, i+3] = v2 - v3
4081   //     br cond, vector.body, middle.block
4082   //
4083   //   middle.block:
4084   //     x = v2(3)
4085   //     br scalar.ph
4086   //
4087   //   scalar.ph:
4088   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4089   //     br scalar.body
4090   //
4091   // After execution completes the vector loop, we extract the next value of
4092   // the recurrence (x) to use as the initial value in the scalar loop.
4093 
4094   // Get the original loop preheader and single loop latch.
4095   auto *Preheader = OrigLoop->getLoopPreheader();
4096   auto *Latch = OrigLoop->getLoopLatch();
4097 
4098   // Get the initial and previous values of the scalar recurrence.
4099   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4100   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4101 
4102   // Create a vector from the initial value.
4103   auto *VectorInit = ScalarInit;
4104   if (VF.isVector()) {
4105     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4106     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4107     VectorInit = Builder.CreateInsertElement(
4108         PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4109         Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init");
4110   }
4111 
4112   VPValue *PhiDef = State.Plan->getVPValue(Phi);
4113   VPValue *PreviousDef = State.Plan->getVPValue(Previous);
4114   // We constructed a temporary phi node in the first phase of vectorization.
4115   // This phi node will eventually be deleted.
4116   Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0)));
4117 
4118   // Create a phi node for the new recurrence. The current value will either be
4119   // the initial value inserted into a vector or loop-varying vector value.
4120   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4121   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4122 
4123   // Get the vectorized previous value of the last part UF - 1. It appears last
4124   // among all unrolled iterations, due to the order of their construction.
4125   Value *PreviousLastPart = State.get(PreviousDef, UF - 1);
4126 
4127   // Find and set the insertion point after the previous value if it is an
4128   // instruction.
4129   BasicBlock::iterator InsertPt;
4130   // Note that the previous value may have been constant-folded so it is not
4131   // guaranteed to be an instruction in the vector loop.
4132   // FIXME: Loop invariant values do not form recurrences. We should deal with
4133   //        them earlier.
4134   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
4135     InsertPt = LoopVectorBody->getFirstInsertionPt();
4136   else {
4137     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
4138     if (isa<PHINode>(PreviousLastPart))
4139       // If the previous value is a phi node, we should insert after all the phi
4140       // nodes in the block containing the PHI to avoid breaking basic block
4141       // verification. Note that the basic block may be different to
4142       // LoopVectorBody, in case we predicate the loop.
4143       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
4144     else
4145       InsertPt = ++PreviousInst->getIterator();
4146   }
4147   Builder.SetInsertPoint(&*InsertPt);
4148 
4149   // We will construct a vector for the recurrence by combining the values for
4150   // the current and previous iterations. This is the required shuffle mask.
4151   assert(!VF.isScalable());
4152   SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue());
4153   ShuffleMask[0] = VF.getKnownMinValue() - 1;
4154   for (unsigned I = 1; I < VF.getKnownMinValue(); ++I)
4155     ShuffleMask[I] = I + VF.getKnownMinValue() - 1;
4156 
4157   // The vector from which to take the initial value for the current iteration
4158   // (actual or unrolled). Initially, this is the vector phi node.
4159   Value *Incoming = VecPhi;
4160 
4161   // Shuffle the current and previous vector and update the vector parts.
4162   for (unsigned Part = 0; Part < UF; ++Part) {
4163     Value *PreviousPart = State.get(PreviousDef, Part);
4164     Value *PhiPart = State.get(PhiDef, Part);
4165     auto *Shuffle =
4166         VF.isVector()
4167             ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask)
4168             : Incoming;
4169     PhiPart->replaceAllUsesWith(Shuffle);
4170     cast<Instruction>(PhiPart)->eraseFromParent();
4171     State.reset(PhiDef, Shuffle, Part);
4172     Incoming = PreviousPart;
4173   }
4174 
4175   // Fix the latch value of the new recurrence in the vector loop.
4176   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4177 
4178   // Extract the last vector element in the middle block. This will be the
4179   // initial value for the recurrence when jumping to the scalar loop.
4180   auto *ExtractForScalar = Incoming;
4181   if (VF.isVector()) {
4182     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4183     ExtractForScalar = Builder.CreateExtractElement(
4184         ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1),
4185         "vector.recur.extract");
4186   }
4187   // Extract the second last element in the middle block if the
4188   // Phi is used outside the loop. We need to extract the phi itself
4189   // and not the last element (the phi update in the current iteration). This
4190   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4191   // when the scalar loop is not run at all.
4192   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4193   if (VF.isVector())
4194     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4195         Incoming, Builder.getInt32(VF.getKnownMinValue() - 2),
4196         "vector.recur.extract.for.phi");
4197   // When loop is unrolled without vectorizing, initialize
4198   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4199   // `Incoming`. This is analogous to the vectorized case above: extracting the
4200   // second last element when VF > 1.
4201   else if (UF > 1)
4202     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4203 
4204   // Fix the initial value of the original recurrence in the scalar loop.
4205   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4206   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4207   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4208     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4209     Start->addIncoming(Incoming, BB);
4210   }
4211 
4212   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4213   Phi->setName("scalar.recur");
4214 
4215   // Finally, fix users of the recurrence outside the loop. The users will need
4216   // either the last value of the scalar recurrence or the last value of the
4217   // vector recurrence we extracted in the middle block. Since the loop is in
4218   // LCSSA form, we just need to find all the phi nodes for the original scalar
4219   // recurrence in the exit block, and then add an edge for the middle block.
4220   // Note that LCSSA does not imply single entry when the original scalar loop
4221   // had multiple exiting edges (as we always run the last iteration in the
4222   // scalar epilogue); in that case, the exiting path through middle will be
4223   // dynamically dead and the value picked for the phi doesn't matter.
4224   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4225     if (any_of(LCSSAPhi.incoming_values(),
4226                [Phi](Value *V) { return V == Phi; }))
4227       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4228 }
4229 
4230 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) {
4231   // Get it's reduction variable descriptor.
4232   assert(Legal->isReductionVariable(Phi) &&
4233          "Unable to find the reduction variable");
4234   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
4235 
4236   RecurKind RK = RdxDesc.getRecurrenceKind();
4237   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4238   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4239   setDebugLocFromInst(Builder, ReductionStartValue);
4240   bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi);
4241 
4242   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4243   // This is the vector-clone of the value that leaves the loop.
4244   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4245 
4246   // Wrap flags are in general invalid after vectorization, clear them.
4247   clearReductionWrapFlags(RdxDesc, State);
4248 
4249   // Fix the vector-loop phi.
4250 
4251   // Reductions do not have to start at zero. They can start with
4252   // any loop invariant values.
4253   BasicBlock *Latch = OrigLoop->getLoopLatch();
4254   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
4255 
4256   for (unsigned Part = 0; Part < UF; ++Part) {
4257     Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part);
4258     Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part);
4259     cast<PHINode>(VecRdxPhi)
4260       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4261   }
4262 
4263   // Before each round, move the insertion point right between
4264   // the PHIs and the values we are going to write.
4265   // This allows us to write both PHINodes and the extractelement
4266   // instructions.
4267   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4268 
4269   setDebugLocFromInst(Builder, LoopExitInst);
4270 
4271   // If tail is folded by masking, the vector value to leave the loop should be
4272   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4273   // instead of the former. For an inloop reduction the reduction will already
4274   // be predicated, and does not need to be handled here.
4275   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4276     for (unsigned Part = 0; Part < UF; ++Part) {
4277       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4278       Value *Sel = nullptr;
4279       for (User *U : VecLoopExitInst->users()) {
4280         if (isa<SelectInst>(U)) {
4281           assert(!Sel && "Reduction exit feeding two selects");
4282           Sel = U;
4283         } else
4284           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4285       }
4286       assert(Sel && "Reduction exit feeds no select");
4287       State.reset(LoopExitInstDef, Sel, Part);
4288 
4289       // If the target can create a predicated operator for the reduction at no
4290       // extra cost in the loop (for example a predicated vadd), it can be
4291       // cheaper for the select to remain in the loop than be sunk out of it,
4292       // and so use the select value for the phi instead of the old
4293       // LoopExitValue.
4294       if (PreferPredicatedReductionSelect ||
4295           TTI->preferPredicatedReductionSelect(
4296               RdxDesc.getOpcode(), Phi->getType(),
4297               TargetTransformInfo::ReductionFlags())) {
4298         auto *VecRdxPhi =
4299             cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part));
4300         VecRdxPhi->setIncomingValueForBlock(
4301             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4302       }
4303     }
4304   }
4305 
4306   // If the vector reduction can be performed in a smaller type, we truncate
4307   // then extend the loop exit value to enable InstCombine to evaluate the
4308   // entire expression in the smaller type.
4309   if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) {
4310     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4311     assert(!VF.isScalable() && "scalable vectors not yet supported.");
4312     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4313     Builder.SetInsertPoint(
4314         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4315     VectorParts RdxParts(UF);
4316     for (unsigned Part = 0; Part < UF; ++Part) {
4317       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4318       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4319       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4320                                         : Builder.CreateZExt(Trunc, VecTy);
4321       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4322            UI != RdxParts[Part]->user_end();)
4323         if (*UI != Trunc) {
4324           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4325           RdxParts[Part] = Extnd;
4326         } else {
4327           ++UI;
4328         }
4329     }
4330     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4331     for (unsigned Part = 0; Part < UF; ++Part) {
4332       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4333       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4334     }
4335   }
4336 
4337   // Reduce all of the unrolled parts into a single vector.
4338   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4339   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4340 
4341   // The middle block terminator has already been assigned a DebugLoc here (the
4342   // OrigLoop's single latch terminator). We want the whole middle block to
4343   // appear to execute on this line because: (a) it is all compiler generated,
4344   // (b) these instructions are always executed after evaluating the latch
4345   // conditional branch, and (c) other passes may add new predecessors which
4346   // terminate on this line. This is the easiest way to ensure we don't
4347   // accidentally cause an extra step back into the loop while debugging.
4348   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4349   {
4350     // Floating-point operations should have some FMF to enable the reduction.
4351     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4352     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4353     for (unsigned Part = 1; Part < UF; ++Part) {
4354       Value *RdxPart = State.get(LoopExitInstDef, Part);
4355       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4356         ReducedPartRdx = Builder.CreateBinOp(
4357             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4358       } else {
4359         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4360       }
4361     }
4362   }
4363 
4364   // Create the reduction after the loop. Note that inloop reductions create the
4365   // target reduction in the loop using a Reduction recipe.
4366   if (VF.isVector() && !IsInLoopReductionPhi) {
4367     ReducedPartRdx =
4368         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4369     // If the reduction can be performed in a smaller type, we need to extend
4370     // the reduction to the wider type before we branch to the original loop.
4371     if (Phi->getType() != RdxDesc.getRecurrenceType())
4372       ReducedPartRdx =
4373         RdxDesc.isSigned()
4374         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
4375         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
4376   }
4377 
4378   // Create a phi node that merges control-flow from the backedge-taken check
4379   // block and the middle block.
4380   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
4381                                         LoopScalarPreHeader->getTerminator());
4382   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4383     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4384   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4385 
4386   // Now, we need to fix the users of the reduction variable
4387   // inside and outside of the scalar remainder loop.
4388 
4389   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4390   // in the exit blocks.  See comment on analogous loop in
4391   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4392   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4393     if (any_of(LCSSAPhi.incoming_values(),
4394                [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4395       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4396 
4397   // Fix the scalar loop reduction variable with the incoming reduction sum
4398   // from the vector body and from the backedge value.
4399   int IncomingEdgeBlockIdx =
4400     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4401   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4402   // Pick the other block.
4403   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4404   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4405   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4406 }
4407 
4408 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
4409                                                   VPTransformState &State) {
4410   RecurKind RK = RdxDesc.getRecurrenceKind();
4411   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4412     return;
4413 
4414   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4415   assert(LoopExitInstr && "null loop exit instruction");
4416   SmallVector<Instruction *, 8> Worklist;
4417   SmallPtrSet<Instruction *, 8> Visited;
4418   Worklist.push_back(LoopExitInstr);
4419   Visited.insert(LoopExitInstr);
4420 
4421   while (!Worklist.empty()) {
4422     Instruction *Cur = Worklist.pop_back_val();
4423     if (isa<OverflowingBinaryOperator>(Cur))
4424       for (unsigned Part = 0; Part < UF; ++Part) {
4425         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4426         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4427       }
4428 
4429     for (User *U : Cur->users()) {
4430       Instruction *UI = cast<Instruction>(U);
4431       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4432           Visited.insert(UI).second)
4433         Worklist.push_back(UI);
4434     }
4435   }
4436 }
4437 
4438 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4439   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4440     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4441       // Some phis were already hand updated by the reduction and recurrence
4442       // code above, leave them alone.
4443       continue;
4444 
4445     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4446     // Non-instruction incoming values will have only one value.
4447 
4448     VPLane Lane = VPLane::getFirstLane();
4449     if (isa<Instruction>(IncomingValue) &&
4450         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4451                                            VF))
4452       Lane = VPLane::getLastLaneForVF(VF);
4453 
4454     // Can be a loop invariant incoming value or the last scalar value to be
4455     // extracted from the vectorized loop.
4456     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4457     Value *lastIncomingValue =
4458         OrigLoop->isLoopInvariant(IncomingValue)
4459             ? IncomingValue
4460             : State.get(State.Plan->getVPValue(IncomingValue),
4461                         VPIteration(UF - 1, Lane));
4462     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4463   }
4464 }
4465 
4466 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4467   // The basic block and loop containing the predicated instruction.
4468   auto *PredBB = PredInst->getParent();
4469   auto *VectorLoop = LI->getLoopFor(PredBB);
4470 
4471   // Initialize a worklist with the operands of the predicated instruction.
4472   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4473 
4474   // Holds instructions that we need to analyze again. An instruction may be
4475   // reanalyzed if we don't yet know if we can sink it or not.
4476   SmallVector<Instruction *, 8> InstsToReanalyze;
4477 
4478   // Returns true if a given use occurs in the predicated block. Phi nodes use
4479   // their operands in their corresponding predecessor blocks.
4480   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4481     auto *I = cast<Instruction>(U.getUser());
4482     BasicBlock *BB = I->getParent();
4483     if (auto *Phi = dyn_cast<PHINode>(I))
4484       BB = Phi->getIncomingBlock(
4485           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4486     return BB == PredBB;
4487   };
4488 
4489   // Iteratively sink the scalarized operands of the predicated instruction
4490   // into the block we created for it. When an instruction is sunk, it's
4491   // operands are then added to the worklist. The algorithm ends after one pass
4492   // through the worklist doesn't sink a single instruction.
4493   bool Changed;
4494   do {
4495     // Add the instructions that need to be reanalyzed to the worklist, and
4496     // reset the changed indicator.
4497     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4498     InstsToReanalyze.clear();
4499     Changed = false;
4500 
4501     while (!Worklist.empty()) {
4502       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4503 
4504       // We can't sink an instruction if it is a phi node, is already in the
4505       // predicated block, is not in the loop, or may have side effects.
4506       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4507           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4508         continue;
4509 
4510       // It's legal to sink the instruction if all its uses occur in the
4511       // predicated block. Otherwise, there's nothing to do yet, and we may
4512       // need to reanalyze the instruction.
4513       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4514         InstsToReanalyze.push_back(I);
4515         continue;
4516       }
4517 
4518       // Move the instruction to the beginning of the predicated block, and add
4519       // it's operands to the worklist.
4520       I->moveBefore(&*PredBB->getFirstInsertionPt());
4521       Worklist.insert(I->op_begin(), I->op_end());
4522 
4523       // The sinking may have enabled other instructions to be sunk, so we will
4524       // need to iterate.
4525       Changed = true;
4526     }
4527   } while (Changed);
4528 }
4529 
4530 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4531   for (PHINode *OrigPhi : OrigPHIsToFix) {
4532     VPWidenPHIRecipe *VPPhi =
4533         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4534     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4535     // Make sure the builder has a valid insert point.
4536     Builder.SetInsertPoint(NewPhi);
4537     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4538       VPValue *Inc = VPPhi->getIncomingValue(i);
4539       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4540       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4541     }
4542   }
4543 }
4544 
4545 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4546                                    VPUser &Operands, unsigned UF,
4547                                    ElementCount VF, bool IsPtrLoopInvariant,
4548                                    SmallBitVector &IsIndexLoopInvariant,
4549                                    VPTransformState &State) {
4550   // Construct a vector GEP by widening the operands of the scalar GEP as
4551   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4552   // results in a vector of pointers when at least one operand of the GEP
4553   // is vector-typed. Thus, to keep the representation compact, we only use
4554   // vector-typed operands for loop-varying values.
4555 
4556   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4557     // If we are vectorizing, but the GEP has only loop-invariant operands,
4558     // the GEP we build (by only using vector-typed operands for
4559     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4560     // produce a vector of pointers, we need to either arbitrarily pick an
4561     // operand to broadcast, or broadcast a clone of the original GEP.
4562     // Here, we broadcast a clone of the original.
4563     //
4564     // TODO: If at some point we decide to scalarize instructions having
4565     //       loop-invariant operands, this special case will no longer be
4566     //       required. We would add the scalarization decision to
4567     //       collectLoopScalars() and teach getVectorValue() to broadcast
4568     //       the lane-zero scalar value.
4569     auto *Clone = Builder.Insert(GEP->clone());
4570     for (unsigned Part = 0; Part < UF; ++Part) {
4571       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4572       State.set(VPDef, EntryPart, Part);
4573       addMetadata(EntryPart, GEP);
4574     }
4575   } else {
4576     // If the GEP has at least one loop-varying operand, we are sure to
4577     // produce a vector of pointers. But if we are only unrolling, we want
4578     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4579     // produce with the code below will be scalar (if VF == 1) or vector
4580     // (otherwise). Note that for the unroll-only case, we still maintain
4581     // values in the vector mapping with initVector, as we do for other
4582     // instructions.
4583     for (unsigned Part = 0; Part < UF; ++Part) {
4584       // The pointer operand of the new GEP. If it's loop-invariant, we
4585       // won't broadcast it.
4586       auto *Ptr = IsPtrLoopInvariant
4587                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4588                       : State.get(Operands.getOperand(0), Part);
4589 
4590       // Collect all the indices for the new GEP. If any index is
4591       // loop-invariant, we won't broadcast it.
4592       SmallVector<Value *, 4> Indices;
4593       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4594         VPValue *Operand = Operands.getOperand(I);
4595         if (IsIndexLoopInvariant[I - 1])
4596           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4597         else
4598           Indices.push_back(State.get(Operand, Part));
4599       }
4600 
4601       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4602       // but it should be a vector, otherwise.
4603       auto *NewGEP =
4604           GEP->isInBounds()
4605               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4606                                           Indices)
4607               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4608       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4609              "NewGEP is not a pointer vector");
4610       State.set(VPDef, NewGEP, Part);
4611       addMetadata(NewGEP, GEP);
4612     }
4613   }
4614 }
4615 
4616 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4617                                               RecurrenceDescriptor *RdxDesc,
4618                                               VPValue *StartVPV, VPValue *Def,
4619                                               VPTransformState &State) {
4620   PHINode *P = cast<PHINode>(PN);
4621   if (EnableVPlanNativePath) {
4622     // Currently we enter here in the VPlan-native path for non-induction
4623     // PHIs where all control flow is uniform. We simply widen these PHIs.
4624     // Create a vector phi with no operands - the vector phi operands will be
4625     // set at the end of vector code generation.
4626     Type *VecTy = (State.VF.isScalar())
4627                       ? PN->getType()
4628                       : VectorType::get(PN->getType(), State.VF);
4629     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4630     State.set(Def, VecPhi, 0);
4631     OrigPHIsToFix.push_back(P);
4632 
4633     return;
4634   }
4635 
4636   assert(PN->getParent() == OrigLoop->getHeader() &&
4637          "Non-header phis should have been handled elsewhere");
4638 
4639   Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr;
4640   // In order to support recurrences we need to be able to vectorize Phi nodes.
4641   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4642   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4643   // this value when we vectorize all of the instructions that use the PHI.
4644   if (RdxDesc || Legal->isFirstOrderRecurrence(P)) {
4645     Value *Iden = nullptr;
4646     bool ScalarPHI =
4647         (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4648     Type *VecTy =
4649         ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
4650 
4651     if (RdxDesc) {
4652       assert(Legal->isReductionVariable(P) && StartV &&
4653              "RdxDesc should only be set for reduction variables; in that case "
4654              "a StartV is also required");
4655       RecurKind RK = RdxDesc->getRecurrenceKind();
4656       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) {
4657         // MinMax reduction have the start value as their identify.
4658         if (ScalarPHI) {
4659           Iden = StartV;
4660         } else {
4661           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4662           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4663           StartV = Iden =
4664               Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
4665         }
4666       } else {
4667         Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity(
4668             RK, VecTy->getScalarType());
4669         Iden = IdenC;
4670 
4671         if (!ScalarPHI) {
4672           Iden = ConstantVector::getSplat(State.VF, IdenC);
4673           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4674           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4675           Constant *Zero = Builder.getInt32(0);
4676           StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
4677         }
4678       }
4679     }
4680 
4681     for (unsigned Part = 0; Part < State.UF; ++Part) {
4682       // This is phase one of vectorizing PHIs.
4683       Value *EntryPart = PHINode::Create(
4684           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4685       State.set(Def, EntryPart, Part);
4686       if (StartV) {
4687         // Make sure to add the reduction start value only to the
4688         // first unroll part.
4689         Value *StartVal = (Part == 0) ? StartV : Iden;
4690         cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader);
4691       }
4692     }
4693     return;
4694   }
4695 
4696   assert(!Legal->isReductionVariable(P) &&
4697          "reductions should be handled above");
4698 
4699   setDebugLocFromInst(Builder, P);
4700 
4701   // This PHINode must be an induction variable.
4702   // Make sure that we know about it.
4703   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4704 
4705   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4706   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4707 
4708   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4709   // which can be found from the original scalar operations.
4710   switch (II.getKind()) {
4711   case InductionDescriptor::IK_NoInduction:
4712     llvm_unreachable("Unknown induction");
4713   case InductionDescriptor::IK_IntInduction:
4714   case InductionDescriptor::IK_FpInduction:
4715     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4716   case InductionDescriptor::IK_PtrInduction: {
4717     // Handle the pointer induction variable case.
4718     assert(P->getType()->isPointerTy() && "Unexpected type.");
4719 
4720     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4721       // This is the normalized GEP that starts counting at zero.
4722       Value *PtrInd =
4723           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4724       // Determine the number of scalars we need to generate for each unroll
4725       // iteration. If the instruction is uniform, we only need to generate the
4726       // first lane. Otherwise, we generate all VF values.
4727       unsigned Lanes = Cost->isUniformAfterVectorization(P, State.VF)
4728                            ? 1
4729                            : State.VF.getKnownMinValue();
4730       for (unsigned Part = 0; Part < UF; ++Part) {
4731         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4732           Constant *Idx = ConstantInt::get(
4733               PtrInd->getType(), Lane + Part * State.VF.getKnownMinValue());
4734           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4735           Value *SclrGep =
4736               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4737           SclrGep->setName("next.gep");
4738           State.set(Def, SclrGep, VPIteration(Part, Lane));
4739         }
4740       }
4741       return;
4742     }
4743     assert(isa<SCEVConstant>(II.getStep()) &&
4744            "Induction step not a SCEV constant!");
4745     Type *PhiType = II.getStep()->getType();
4746 
4747     // Build a pointer phi
4748     Value *ScalarStartValue = II.getStartValue();
4749     Type *ScStValueType = ScalarStartValue->getType();
4750     PHINode *NewPointerPhi =
4751         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4752     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4753 
4754     // A pointer induction, performed by using a gep
4755     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4756     Instruction *InductionLoc = LoopLatch->getTerminator();
4757     const SCEV *ScalarStep = II.getStep();
4758     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4759     Value *ScalarStepValue =
4760         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4761     Value *InductionGEP = GetElementPtrInst::Create(
4762         ScStValueType->getPointerElementType(), NewPointerPhi,
4763         Builder.CreateMul(
4764             ScalarStepValue,
4765             ConstantInt::get(PhiType, State.VF.getKnownMinValue() * State.UF)),
4766         "ptr.ind", InductionLoc);
4767     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4768 
4769     // Create UF many actual address geps that use the pointer
4770     // phi as base and a vectorized version of the step value
4771     // (<step*0, ..., step*N>) as offset.
4772     for (unsigned Part = 0; Part < State.UF; ++Part) {
4773       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4774       Value *StartOffset =
4775           ConstantInt::get(VecPhiType, Part * State.VF.getKnownMinValue());
4776       // Create a vector of consecutive numbers from zero to VF.
4777       StartOffset =
4778           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4779 
4780       Value *GEP = Builder.CreateGEP(
4781           ScStValueType->getPointerElementType(), NewPointerPhi,
4782           Builder.CreateMul(StartOffset,
4783                             Builder.CreateVectorSplat(
4784                                 State.VF.getKnownMinValue(), ScalarStepValue),
4785                             "vector.gep"));
4786       State.set(Def, GEP, Part);
4787     }
4788   }
4789   }
4790 }
4791 
4792 /// A helper function for checking whether an integer division-related
4793 /// instruction may divide by zero (in which case it must be predicated if
4794 /// executed conditionally in the scalar code).
4795 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4796 /// Non-zero divisors that are non compile-time constants will not be
4797 /// converted into multiplication, so we will still end up scalarizing
4798 /// the division, but can do so w/o predication.
4799 static bool mayDivideByZero(Instruction &I) {
4800   assert((I.getOpcode() == Instruction::UDiv ||
4801           I.getOpcode() == Instruction::SDiv ||
4802           I.getOpcode() == Instruction::URem ||
4803           I.getOpcode() == Instruction::SRem) &&
4804          "Unexpected instruction");
4805   Value *Divisor = I.getOperand(1);
4806   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4807   return !CInt || CInt->isZero();
4808 }
4809 
4810 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4811                                            VPUser &User,
4812                                            VPTransformState &State) {
4813   switch (I.getOpcode()) {
4814   case Instruction::Call:
4815   case Instruction::Br:
4816   case Instruction::PHI:
4817   case Instruction::GetElementPtr:
4818   case Instruction::Select:
4819     llvm_unreachable("This instruction is handled by a different recipe.");
4820   case Instruction::UDiv:
4821   case Instruction::SDiv:
4822   case Instruction::SRem:
4823   case Instruction::URem:
4824   case Instruction::Add:
4825   case Instruction::FAdd:
4826   case Instruction::Sub:
4827   case Instruction::FSub:
4828   case Instruction::FNeg:
4829   case Instruction::Mul:
4830   case Instruction::FMul:
4831   case Instruction::FDiv:
4832   case Instruction::FRem:
4833   case Instruction::Shl:
4834   case Instruction::LShr:
4835   case Instruction::AShr:
4836   case Instruction::And:
4837   case Instruction::Or:
4838   case Instruction::Xor: {
4839     // Just widen unops and binops.
4840     setDebugLocFromInst(Builder, &I);
4841 
4842     for (unsigned Part = 0; Part < UF; ++Part) {
4843       SmallVector<Value *, 2> Ops;
4844       for (VPValue *VPOp : User.operands())
4845         Ops.push_back(State.get(VPOp, Part));
4846 
4847       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4848 
4849       if (auto *VecOp = dyn_cast<Instruction>(V))
4850         VecOp->copyIRFlags(&I);
4851 
4852       // Use this vector value for all users of the original instruction.
4853       State.set(Def, V, Part);
4854       addMetadata(V, &I);
4855     }
4856 
4857     break;
4858   }
4859   case Instruction::ICmp:
4860   case Instruction::FCmp: {
4861     // Widen compares. Generate vector compares.
4862     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4863     auto *Cmp = cast<CmpInst>(&I);
4864     setDebugLocFromInst(Builder, Cmp);
4865     for (unsigned Part = 0; Part < UF; ++Part) {
4866       Value *A = State.get(User.getOperand(0), Part);
4867       Value *B = State.get(User.getOperand(1), Part);
4868       Value *C = nullptr;
4869       if (FCmp) {
4870         // Propagate fast math flags.
4871         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4872         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4873         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4874       } else {
4875         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4876       }
4877       State.set(Def, C, Part);
4878       addMetadata(C, &I);
4879     }
4880 
4881     break;
4882   }
4883 
4884   case Instruction::ZExt:
4885   case Instruction::SExt:
4886   case Instruction::FPToUI:
4887   case Instruction::FPToSI:
4888   case Instruction::FPExt:
4889   case Instruction::PtrToInt:
4890   case Instruction::IntToPtr:
4891   case Instruction::SIToFP:
4892   case Instruction::UIToFP:
4893   case Instruction::Trunc:
4894   case Instruction::FPTrunc:
4895   case Instruction::BitCast: {
4896     auto *CI = cast<CastInst>(&I);
4897     setDebugLocFromInst(Builder, CI);
4898 
4899     /// Vectorize casts.
4900     Type *DestTy =
4901         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4902 
4903     for (unsigned Part = 0; Part < UF; ++Part) {
4904       Value *A = State.get(User.getOperand(0), Part);
4905       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4906       State.set(Def, Cast, Part);
4907       addMetadata(Cast, &I);
4908     }
4909     break;
4910   }
4911   default:
4912     // This instruction is not vectorized by simple widening.
4913     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4914     llvm_unreachable("Unhandled instruction!");
4915   } // end of switch.
4916 }
4917 
4918 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4919                                                VPUser &ArgOperands,
4920                                                VPTransformState &State) {
4921   assert(!isa<DbgInfoIntrinsic>(I) &&
4922          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4923   setDebugLocFromInst(Builder, &I);
4924 
4925   Module *M = I.getParent()->getParent()->getParent();
4926   auto *CI = cast<CallInst>(&I);
4927 
4928   SmallVector<Type *, 4> Tys;
4929   for (Value *ArgOperand : CI->arg_operands())
4930     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4931 
4932   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4933 
4934   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4935   // version of the instruction.
4936   // Is it beneficial to perform intrinsic call compared to lib call?
4937   bool NeedToScalarize = false;
4938   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4939   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4940   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4941   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4942          "Instruction should be scalarized elsewhere.");
4943   assert(IntrinsicCost.isValid() && CallCost.isValid() &&
4944          "Cannot have invalid costs while widening");
4945 
4946   for (unsigned Part = 0; Part < UF; ++Part) {
4947     SmallVector<Value *, 4> Args;
4948     for (auto &I : enumerate(ArgOperands.operands())) {
4949       // Some intrinsics have a scalar argument - don't replace it with a
4950       // vector.
4951       Value *Arg;
4952       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4953         Arg = State.get(I.value(), Part);
4954       else
4955         Arg = State.get(I.value(), VPIteration(0, 0));
4956       Args.push_back(Arg);
4957     }
4958 
4959     Function *VectorF;
4960     if (UseVectorIntrinsic) {
4961       // Use vector version of the intrinsic.
4962       Type *TysForDecl[] = {CI->getType()};
4963       if (VF.isVector())
4964         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4965       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4966       assert(VectorF && "Can't retrieve vector intrinsic.");
4967     } else {
4968       // Use vector version of the function call.
4969       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4970 #ifndef NDEBUG
4971       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4972              "Can't create vector function.");
4973 #endif
4974         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4975     }
4976       SmallVector<OperandBundleDef, 1> OpBundles;
4977       CI->getOperandBundlesAsDefs(OpBundles);
4978       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4979 
4980       if (isa<FPMathOperator>(V))
4981         V->copyFastMathFlags(CI);
4982 
4983       State.set(Def, V, Part);
4984       addMetadata(V, &I);
4985   }
4986 }
4987 
4988 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
4989                                                  VPUser &Operands,
4990                                                  bool InvariantCond,
4991                                                  VPTransformState &State) {
4992   setDebugLocFromInst(Builder, &I);
4993 
4994   // The condition can be loop invariant  but still defined inside the
4995   // loop. This means that we can't just use the original 'cond' value.
4996   // We have to take the 'vectorized' value and pick the first lane.
4997   // Instcombine will make this a no-op.
4998   auto *InvarCond = InvariantCond
4999                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5000                         : nullptr;
5001 
5002   for (unsigned Part = 0; Part < UF; ++Part) {
5003     Value *Cond =
5004         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5005     Value *Op0 = State.get(Operands.getOperand(1), Part);
5006     Value *Op1 = State.get(Operands.getOperand(2), Part);
5007     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5008     State.set(VPDef, Sel, Part);
5009     addMetadata(Sel, &I);
5010   }
5011 }
5012 
5013 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5014   // We should not collect Scalars more than once per VF. Right now, this
5015   // function is called from collectUniformsAndScalars(), which already does
5016   // this check. Collecting Scalars for VF=1 does not make any sense.
5017   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5018          "This function should not be visited twice for the same VF");
5019 
5020   SmallSetVector<Instruction *, 8> Worklist;
5021 
5022   // These sets are used to seed the analysis with pointers used by memory
5023   // accesses that will remain scalar.
5024   SmallSetVector<Instruction *, 8> ScalarPtrs;
5025   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5026   auto *Latch = TheLoop->getLoopLatch();
5027 
5028   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5029   // The pointer operands of loads and stores will be scalar as long as the
5030   // memory access is not a gather or scatter operation. The value operand of a
5031   // store will remain scalar if the store is scalarized.
5032   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5033     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5034     assert(WideningDecision != CM_Unknown &&
5035            "Widening decision should be ready at this moment");
5036     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5037       if (Ptr == Store->getValueOperand())
5038         return WideningDecision == CM_Scalarize;
5039     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5040            "Ptr is neither a value or pointer operand");
5041     return WideningDecision != CM_GatherScatter;
5042   };
5043 
5044   // A helper that returns true if the given value is a bitcast or
5045   // getelementptr instruction contained in the loop.
5046   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5047     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5048             isa<GetElementPtrInst>(V)) &&
5049            !TheLoop->isLoopInvariant(V);
5050   };
5051 
5052   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5053     if (!isa<PHINode>(Ptr) ||
5054         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5055       return false;
5056     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5057     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5058       return false;
5059     return isScalarUse(MemAccess, Ptr);
5060   };
5061 
5062   // A helper that evaluates a memory access's use of a pointer. If the
5063   // pointer is actually the pointer induction of a loop, it is being
5064   // inserted into Worklist. If the use will be a scalar use, and the
5065   // pointer is only used by memory accesses, we place the pointer in
5066   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5067   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5068     if (isScalarPtrInduction(MemAccess, Ptr)) {
5069       Worklist.insert(cast<Instruction>(Ptr));
5070       Instruction *Update = cast<Instruction>(
5071           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5072       Worklist.insert(Update);
5073       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5074                         << "\n");
5075       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5076                         << "\n");
5077       return;
5078     }
5079     // We only care about bitcast and getelementptr instructions contained in
5080     // the loop.
5081     if (!isLoopVaryingBitCastOrGEP(Ptr))
5082       return;
5083 
5084     // If the pointer has already been identified as scalar (e.g., if it was
5085     // also identified as uniform), there's nothing to do.
5086     auto *I = cast<Instruction>(Ptr);
5087     if (Worklist.count(I))
5088       return;
5089 
5090     // If the use of the pointer will be a scalar use, and all users of the
5091     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5092     // place the pointer in PossibleNonScalarPtrs.
5093     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5094           return isa<LoadInst>(U) || isa<StoreInst>(U);
5095         }))
5096       ScalarPtrs.insert(I);
5097     else
5098       PossibleNonScalarPtrs.insert(I);
5099   };
5100 
5101   // We seed the scalars analysis with three classes of instructions: (1)
5102   // instructions marked uniform-after-vectorization and (2) bitcast,
5103   // getelementptr and (pointer) phi instructions used by memory accesses
5104   // requiring a scalar use.
5105   //
5106   // (1) Add to the worklist all instructions that have been identified as
5107   // uniform-after-vectorization.
5108   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5109 
5110   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5111   // memory accesses requiring a scalar use. The pointer operands of loads and
5112   // stores will be scalar as long as the memory accesses is not a gather or
5113   // scatter operation. The value operand of a store will remain scalar if the
5114   // store is scalarized.
5115   for (auto *BB : TheLoop->blocks())
5116     for (auto &I : *BB) {
5117       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5118         evaluatePtrUse(Load, Load->getPointerOperand());
5119       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5120         evaluatePtrUse(Store, Store->getPointerOperand());
5121         evaluatePtrUse(Store, Store->getValueOperand());
5122       }
5123     }
5124   for (auto *I : ScalarPtrs)
5125     if (!PossibleNonScalarPtrs.count(I)) {
5126       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5127       Worklist.insert(I);
5128     }
5129 
5130   // Insert the forced scalars.
5131   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5132   // induction variable when the PHI user is scalarized.
5133   auto ForcedScalar = ForcedScalars.find(VF);
5134   if (ForcedScalar != ForcedScalars.end())
5135     for (auto *I : ForcedScalar->second)
5136       Worklist.insert(I);
5137 
5138   // Expand the worklist by looking through any bitcasts and getelementptr
5139   // instructions we've already identified as scalar. This is similar to the
5140   // expansion step in collectLoopUniforms(); however, here we're only
5141   // expanding to include additional bitcasts and getelementptr instructions.
5142   unsigned Idx = 0;
5143   while (Idx != Worklist.size()) {
5144     Instruction *Dst = Worklist[Idx++];
5145     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5146       continue;
5147     auto *Src = cast<Instruction>(Dst->getOperand(0));
5148     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5149           auto *J = cast<Instruction>(U);
5150           return !TheLoop->contains(J) || Worklist.count(J) ||
5151                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5152                   isScalarUse(J, Src));
5153         })) {
5154       Worklist.insert(Src);
5155       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5156     }
5157   }
5158 
5159   // An induction variable will remain scalar if all users of the induction
5160   // variable and induction variable update remain scalar.
5161   for (auto &Induction : Legal->getInductionVars()) {
5162     auto *Ind = Induction.first;
5163     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5164 
5165     // If tail-folding is applied, the primary induction variable will be used
5166     // to feed a vector compare.
5167     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5168       continue;
5169 
5170     // Determine if all users of the induction variable are scalar after
5171     // vectorization.
5172     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5173       auto *I = cast<Instruction>(U);
5174       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5175     });
5176     if (!ScalarInd)
5177       continue;
5178 
5179     // Determine if all users of the induction variable update instruction are
5180     // scalar after vectorization.
5181     auto ScalarIndUpdate =
5182         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5183           auto *I = cast<Instruction>(U);
5184           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5185         });
5186     if (!ScalarIndUpdate)
5187       continue;
5188 
5189     // The induction variable and its update instruction will remain scalar.
5190     Worklist.insert(Ind);
5191     Worklist.insert(IndUpdate);
5192     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5193     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5194                       << "\n");
5195   }
5196 
5197   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5198 }
5199 
5200 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I,
5201                                                          ElementCount VF) {
5202   if (!blockNeedsPredication(I->getParent()))
5203     return false;
5204   switch(I->getOpcode()) {
5205   default:
5206     break;
5207   case Instruction::Load:
5208   case Instruction::Store: {
5209     if (!Legal->isMaskRequired(I))
5210       return false;
5211     auto *Ptr = getLoadStorePointerOperand(I);
5212     auto *Ty = getMemInstValueType(I);
5213     // We have already decided how to vectorize this instruction, get that
5214     // result.
5215     if (VF.isVector()) {
5216       InstWidening WideningDecision = getWideningDecision(I, VF);
5217       assert(WideningDecision != CM_Unknown &&
5218              "Widening decision should be ready at this moment");
5219       return WideningDecision == CM_Scalarize;
5220     }
5221     const Align Alignment = getLoadStoreAlignment(I);
5222     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5223                                 isLegalMaskedGather(Ty, Alignment))
5224                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5225                                 isLegalMaskedScatter(Ty, Alignment));
5226   }
5227   case Instruction::UDiv:
5228   case Instruction::SDiv:
5229   case Instruction::SRem:
5230   case Instruction::URem:
5231     return mayDivideByZero(*I);
5232   }
5233   return false;
5234 }
5235 
5236 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5237     Instruction *I, ElementCount VF) {
5238   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5239   assert(getWideningDecision(I, VF) == CM_Unknown &&
5240          "Decision should not be set yet.");
5241   auto *Group = getInterleavedAccessGroup(I);
5242   assert(Group && "Must have a group.");
5243 
5244   // If the instruction's allocated size doesn't equal it's type size, it
5245   // requires padding and will be scalarized.
5246   auto &DL = I->getModule()->getDataLayout();
5247   auto *ScalarTy = getMemInstValueType(I);
5248   if (hasIrregularType(ScalarTy, DL))
5249     return false;
5250 
5251   // Check if masking is required.
5252   // A Group may need masking for one of two reasons: it resides in a block that
5253   // needs predication, or it was decided to use masking to deal with gaps.
5254   bool PredicatedAccessRequiresMasking =
5255       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5256   bool AccessWithGapsRequiresMasking =
5257       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5258   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5259     return true;
5260 
5261   // If masked interleaving is required, we expect that the user/target had
5262   // enabled it, because otherwise it either wouldn't have been created or
5263   // it should have been invalidated by the CostModel.
5264   assert(useMaskedInterleavedAccesses(TTI) &&
5265          "Masked interleave-groups for predicated accesses are not enabled.");
5266 
5267   auto *Ty = getMemInstValueType(I);
5268   const Align Alignment = getLoadStoreAlignment(I);
5269   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5270                           : TTI.isLegalMaskedStore(Ty, Alignment);
5271 }
5272 
5273 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5274     Instruction *I, ElementCount VF) {
5275   // Get and ensure we have a valid memory instruction.
5276   LoadInst *LI = dyn_cast<LoadInst>(I);
5277   StoreInst *SI = dyn_cast<StoreInst>(I);
5278   assert((LI || SI) && "Invalid memory instruction");
5279 
5280   auto *Ptr = getLoadStorePointerOperand(I);
5281 
5282   // In order to be widened, the pointer should be consecutive, first of all.
5283   if (!Legal->isConsecutivePtr(Ptr))
5284     return false;
5285 
5286   // If the instruction is a store located in a predicated block, it will be
5287   // scalarized.
5288   if (isScalarWithPredication(I))
5289     return false;
5290 
5291   // If the instruction's allocated size doesn't equal it's type size, it
5292   // requires padding and will be scalarized.
5293   auto &DL = I->getModule()->getDataLayout();
5294   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5295   if (hasIrregularType(ScalarTy, DL))
5296     return false;
5297 
5298   return true;
5299 }
5300 
5301 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5302   // We should not collect Uniforms more than once per VF. Right now,
5303   // this function is called from collectUniformsAndScalars(), which
5304   // already does this check. Collecting Uniforms for VF=1 does not make any
5305   // sense.
5306 
5307   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5308          "This function should not be visited twice for the same VF");
5309 
5310   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5311   // not analyze again.  Uniforms.count(VF) will return 1.
5312   Uniforms[VF].clear();
5313 
5314   // We now know that the loop is vectorizable!
5315   // Collect instructions inside the loop that will remain uniform after
5316   // vectorization.
5317 
5318   // Global values, params and instructions outside of current loop are out of
5319   // scope.
5320   auto isOutOfScope = [&](Value *V) -> bool {
5321     Instruction *I = dyn_cast<Instruction>(V);
5322     return (!I || !TheLoop->contains(I));
5323   };
5324 
5325   SetVector<Instruction *> Worklist;
5326   BasicBlock *Latch = TheLoop->getLoopLatch();
5327 
5328   // Instructions that are scalar with predication must not be considered
5329   // uniform after vectorization, because that would create an erroneous
5330   // replicating region where only a single instance out of VF should be formed.
5331   // TODO: optimize such seldom cases if found important, see PR40816.
5332   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5333     if (isOutOfScope(I)) {
5334       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5335                         << *I << "\n");
5336       return;
5337     }
5338     if (isScalarWithPredication(I, VF)) {
5339       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5340                         << *I << "\n");
5341       return;
5342     }
5343     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5344     Worklist.insert(I);
5345   };
5346 
5347   // Start with the conditional branch. If the branch condition is an
5348   // instruction contained in the loop that is only used by the branch, it is
5349   // uniform.
5350   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5351   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5352     addToWorklistIfAllowed(Cmp);
5353 
5354   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5355     InstWidening WideningDecision = getWideningDecision(I, VF);
5356     assert(WideningDecision != CM_Unknown &&
5357            "Widening decision should be ready at this moment");
5358 
5359     // A uniform memory op is itself uniform.  We exclude uniform stores
5360     // here as they demand the last lane, not the first one.
5361     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5362       assert(WideningDecision == CM_Scalarize);
5363       return true;
5364     }
5365 
5366     return (WideningDecision == CM_Widen ||
5367             WideningDecision == CM_Widen_Reverse ||
5368             WideningDecision == CM_Interleave);
5369   };
5370 
5371 
5372   // Returns true if Ptr is the pointer operand of a memory access instruction
5373   // I, and I is known to not require scalarization.
5374   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5375     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5376   };
5377 
5378   // Holds a list of values which are known to have at least one uniform use.
5379   // Note that there may be other uses which aren't uniform.  A "uniform use"
5380   // here is something which only demands lane 0 of the unrolled iterations;
5381   // it does not imply that all lanes produce the same value (e.g. this is not
5382   // the usual meaning of uniform)
5383   SmallPtrSet<Value *, 8> HasUniformUse;
5384 
5385   // Scan the loop for instructions which are either a) known to have only
5386   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5387   for (auto *BB : TheLoop->blocks())
5388     for (auto &I : *BB) {
5389       // If there's no pointer operand, there's nothing to do.
5390       auto *Ptr = getLoadStorePointerOperand(&I);
5391       if (!Ptr)
5392         continue;
5393 
5394       // A uniform memory op is itself uniform.  We exclude uniform stores
5395       // here as they demand the last lane, not the first one.
5396       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5397         addToWorklistIfAllowed(&I);
5398 
5399       if (isUniformDecision(&I, VF)) {
5400         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5401         HasUniformUse.insert(Ptr);
5402       }
5403     }
5404 
5405   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5406   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5407   // disallows uses outside the loop as well.
5408   for (auto *V : HasUniformUse) {
5409     if (isOutOfScope(V))
5410       continue;
5411     auto *I = cast<Instruction>(V);
5412     auto UsersAreMemAccesses =
5413       llvm::all_of(I->users(), [&](User *U) -> bool {
5414         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5415       });
5416     if (UsersAreMemAccesses)
5417       addToWorklistIfAllowed(I);
5418   }
5419 
5420   // Expand Worklist in topological order: whenever a new instruction
5421   // is added , its users should be already inside Worklist.  It ensures
5422   // a uniform instruction will only be used by uniform instructions.
5423   unsigned idx = 0;
5424   while (idx != Worklist.size()) {
5425     Instruction *I = Worklist[idx++];
5426 
5427     for (auto OV : I->operand_values()) {
5428       // isOutOfScope operands cannot be uniform instructions.
5429       if (isOutOfScope(OV))
5430         continue;
5431       // First order recurrence Phi's should typically be considered
5432       // non-uniform.
5433       auto *OP = dyn_cast<PHINode>(OV);
5434       if (OP && Legal->isFirstOrderRecurrence(OP))
5435         continue;
5436       // If all the users of the operand are uniform, then add the
5437       // operand into the uniform worklist.
5438       auto *OI = cast<Instruction>(OV);
5439       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5440             auto *J = cast<Instruction>(U);
5441             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5442           }))
5443         addToWorklistIfAllowed(OI);
5444     }
5445   }
5446 
5447   // For an instruction to be added into Worklist above, all its users inside
5448   // the loop should also be in Worklist. However, this condition cannot be
5449   // true for phi nodes that form a cyclic dependence. We must process phi
5450   // nodes separately. An induction variable will remain uniform if all users
5451   // of the induction variable and induction variable update remain uniform.
5452   // The code below handles both pointer and non-pointer induction variables.
5453   for (auto &Induction : Legal->getInductionVars()) {
5454     auto *Ind = Induction.first;
5455     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5456 
5457     // Determine if all users of the induction variable are uniform after
5458     // vectorization.
5459     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5460       auto *I = cast<Instruction>(U);
5461       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5462              isVectorizedMemAccessUse(I, Ind);
5463     });
5464     if (!UniformInd)
5465       continue;
5466 
5467     // Determine if all users of the induction variable update instruction are
5468     // uniform after vectorization.
5469     auto UniformIndUpdate =
5470         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5471           auto *I = cast<Instruction>(U);
5472           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5473                  isVectorizedMemAccessUse(I, IndUpdate);
5474         });
5475     if (!UniformIndUpdate)
5476       continue;
5477 
5478     // The induction variable and its update instruction will remain uniform.
5479     addToWorklistIfAllowed(Ind);
5480     addToWorklistIfAllowed(IndUpdate);
5481   }
5482 
5483   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5484 }
5485 
5486 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5487   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5488 
5489   if (Legal->getRuntimePointerChecking()->Need) {
5490     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5491         "runtime pointer checks needed. Enable vectorization of this "
5492         "loop with '#pragma clang loop vectorize(enable)' when "
5493         "compiling with -Os/-Oz",
5494         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5495     return true;
5496   }
5497 
5498   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5499     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5500         "runtime SCEV checks needed. Enable vectorization of this "
5501         "loop with '#pragma clang loop vectorize(enable)' when "
5502         "compiling with -Os/-Oz",
5503         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5504     return true;
5505   }
5506 
5507   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5508   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5509     reportVectorizationFailure("Runtime stride check for small trip count",
5510         "runtime stride == 1 checks needed. Enable vectorization of "
5511         "this loop without such check by compiling with -Os/-Oz",
5512         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5513     return true;
5514   }
5515 
5516   return false;
5517 }
5518 
5519 Optional<ElementCount>
5520 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5521   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5522     // TODO: It may by useful to do since it's still likely to be dynamically
5523     // uniform if the target can skip.
5524     reportVectorizationFailure(
5525         "Not inserting runtime ptr check for divergent target",
5526         "runtime pointer checks needed. Not enabled for divergent target",
5527         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5528     return None;
5529   }
5530 
5531   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5532   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5533   if (TC == 1) {
5534     reportVectorizationFailure("Single iteration (non) loop",
5535         "loop trip count is one, irrelevant for vectorization",
5536         "SingleIterationLoop", ORE, TheLoop);
5537     return None;
5538   }
5539 
5540   switch (ScalarEpilogueStatus) {
5541   case CM_ScalarEpilogueAllowed:
5542     return computeFeasibleMaxVF(TC, UserVF);
5543   case CM_ScalarEpilogueNotAllowedUsePredicate:
5544     LLVM_FALLTHROUGH;
5545   case CM_ScalarEpilogueNotNeededUsePredicate:
5546     LLVM_DEBUG(
5547         dbgs() << "LV: vector predicate hint/switch found.\n"
5548                << "LV: Not allowing scalar epilogue, creating predicated "
5549                << "vector loop.\n");
5550     break;
5551   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5552     // fallthrough as a special case of OptForSize
5553   case CM_ScalarEpilogueNotAllowedOptSize:
5554     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5555       LLVM_DEBUG(
5556           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5557     else
5558       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5559                         << "count.\n");
5560 
5561     // Bail if runtime checks are required, which are not good when optimising
5562     // for size.
5563     if (runtimeChecksRequired())
5564       return None;
5565 
5566     break;
5567   }
5568 
5569   // The only loops we can vectorize without a scalar epilogue, are loops with
5570   // a bottom-test and a single exiting block. We'd have to handle the fact
5571   // that not every instruction executes on the last iteration.  This will
5572   // require a lane mask which varies through the vector loop body.  (TODO)
5573   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5574     // If there was a tail-folding hint/switch, but we can't fold the tail by
5575     // masking, fallback to a vectorization with a scalar epilogue.
5576     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5577       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5578                            "scalar epilogue instead.\n");
5579       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5580       return computeFeasibleMaxVF(TC, UserVF);
5581     }
5582     return None;
5583   }
5584 
5585   // Now try the tail folding
5586 
5587   // Invalidate interleave groups that require an epilogue if we can't mask
5588   // the interleave-group.
5589   if (!useMaskedInterleavedAccesses(TTI)) {
5590     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5591            "No decisions should have been taken at this point");
5592     // Note: There is no need to invalidate any cost modeling decisions here, as
5593     // non where taken so far.
5594     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5595   }
5596 
5597   ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF);
5598   assert(!MaxVF.isScalable() &&
5599          "Scalable vectors do not yet support tail folding");
5600   assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) &&
5601          "MaxVF must be a power of 2");
5602   unsigned MaxVFtimesIC =
5603       UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue();
5604   // Avoid tail folding if the trip count is known to be a multiple of any VF we
5605   // chose.
5606   ScalarEvolution *SE = PSE.getSE();
5607   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5608   const SCEV *ExitCount = SE->getAddExpr(
5609       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5610   const SCEV *Rem = SE->getURemExpr(
5611       SE->applyLoopGuards(ExitCount, TheLoop),
5612       SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5613   if (Rem->isZero()) {
5614     // Accept MaxVF if we do not have a tail.
5615     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5616     return MaxVF;
5617   }
5618 
5619   // If we don't know the precise trip count, or if the trip count that we
5620   // found modulo the vectorization factor is not zero, try to fold the tail
5621   // by masking.
5622   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5623   if (Legal->prepareToFoldTailByMasking()) {
5624     FoldTailByMasking = true;
5625     return MaxVF;
5626   }
5627 
5628   // If there was a tail-folding hint/switch, but we can't fold the tail by
5629   // masking, fallback to a vectorization with a scalar epilogue.
5630   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5631     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5632                          "scalar epilogue instead.\n");
5633     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5634     return MaxVF;
5635   }
5636 
5637   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5638     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5639     return None;
5640   }
5641 
5642   if (TC == 0) {
5643     reportVectorizationFailure(
5644         "Unable to calculate the loop count due to complex control flow",
5645         "unable to calculate the loop count due to complex control flow",
5646         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5647     return None;
5648   }
5649 
5650   reportVectorizationFailure(
5651       "Cannot optimize for size and vectorize at the same time.",
5652       "cannot optimize for size and vectorize at the same time. "
5653       "Enable vectorization of this loop with '#pragma clang loop "
5654       "vectorize(enable)' when compiling with -Os/-Oz",
5655       "NoTailLoopWithOptForSize", ORE, TheLoop);
5656   return None;
5657 }
5658 
5659 ElementCount
5660 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5661                                                  ElementCount UserVF) {
5662   bool IgnoreScalableUserVF = UserVF.isScalable() &&
5663                               !TTI.supportsScalableVectors() &&
5664                               !ForceTargetSupportsScalableVectors;
5665   if (IgnoreScalableUserVF) {
5666     LLVM_DEBUG(
5667         dbgs() << "LV: Ignoring VF=" << UserVF
5668                << " because target does not support scalable vectors.\n");
5669     ORE->emit([&]() {
5670       return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF",
5671                                         TheLoop->getStartLoc(),
5672                                         TheLoop->getHeader())
5673              << "Ignoring VF=" << ore::NV("UserVF", UserVF)
5674              << " because target does not support scalable vectors.";
5675     });
5676   }
5677 
5678   // Beyond this point two scenarios are handled. If UserVF isn't specified
5679   // then a suitable VF is chosen. If UserVF is specified and there are
5680   // dependencies, check if it's legal. However, if a UserVF is specified and
5681   // there are no dependencies, then there's nothing to do.
5682   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5683     if (!canVectorizeReductions(UserVF)) {
5684       reportVectorizationFailure(
5685           "LV: Scalable vectorization not supported for the reduction "
5686           "operations found in this loop. Using fixed-width "
5687           "vectorization instead.",
5688           "Scalable vectorization not supported for the reduction operations "
5689           "found in this loop. Using fixed-width vectorization instead.",
5690           "ScalableVFUnfeasible", ORE, TheLoop);
5691       return computeFeasibleMaxVF(
5692           ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5693     }
5694 
5695     if (Legal->isSafeForAnyVectorWidth())
5696       return UserVF;
5697   }
5698 
5699   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5700   unsigned SmallestType, WidestType;
5701   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5702   unsigned WidestRegister =
5703       TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
5704           .getFixedSize();
5705 
5706   // Get the maximum safe dependence distance in bits computed by LAA.
5707   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5708   // the memory accesses that is most restrictive (involved in the smallest
5709   // dependence distance).
5710   unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits();
5711 
5712   // If the user vectorization factor is legally unsafe, clamp it to a safe
5713   // value. Otherwise, return as is.
5714   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5715     unsigned MaxSafeElements =
5716         PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType);
5717     ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements);
5718 
5719     if (UserVF.isScalable()) {
5720       Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5721 
5722       // Scale VF by vscale before checking if it's safe.
5723       MaxSafeVF = ElementCount::getScalable(
5724           MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5725 
5726       if (MaxSafeVF.isZero()) {
5727         // The dependence distance is too small to use scalable vectors,
5728         // fallback on fixed.
5729         LLVM_DEBUG(
5730             dbgs()
5731             << "LV: Max legal vector width too small, scalable vectorization "
5732                "unfeasible. Using fixed-width vectorization instead.\n");
5733         ORE->emit([&]() {
5734           return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible",
5735                                             TheLoop->getStartLoc(),
5736                                             TheLoop->getHeader())
5737                  << "Max legal vector width too small, scalable vectorization "
5738                  << "unfeasible. Using fixed-width vectorization instead.";
5739         });
5740         return computeFeasibleMaxVF(
5741             ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5742       }
5743     }
5744 
5745     LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n");
5746 
5747     if (ElementCount::isKnownLE(UserVF, MaxSafeVF))
5748       return UserVF;
5749 
5750     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5751                       << " is unsafe, clamping to max safe VF=" << MaxSafeVF
5752                       << ".\n");
5753     ORE->emit([&]() {
5754       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5755                                         TheLoop->getStartLoc(),
5756                                         TheLoop->getHeader())
5757              << "User-specified vectorization factor "
5758              << ore::NV("UserVectorizationFactor", UserVF)
5759              << " is unsafe, clamping to maximum safe vectorization factor "
5760              << ore::NV("VectorizationFactor", MaxSafeVF);
5761     });
5762     return MaxSafeVF;
5763   }
5764 
5765   WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits);
5766 
5767   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5768   // Note that both WidestRegister and WidestType may not be a powers of 2.
5769   auto MaxVectorSize =
5770       ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType));
5771 
5772   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5773                     << " / " << WidestType << " bits.\n");
5774   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5775                     << WidestRegister << " bits.\n");
5776 
5777   assert(MaxVectorSize.getFixedValue() <= WidestRegister &&
5778          "Did not expect to pack so many elements"
5779          " into one vector!");
5780   if (MaxVectorSize.getFixedValue() == 0) {
5781     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5782     return ElementCount::getFixed(1);
5783   } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() &&
5784              isPowerOf2_32(ConstTripCount)) {
5785     // We need to clamp the VF to be the ConstTripCount. There is no point in
5786     // choosing a higher viable VF as done in the loop below.
5787     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5788                       << ConstTripCount << "\n");
5789     return ElementCount::getFixed(ConstTripCount);
5790   }
5791 
5792   ElementCount MaxVF = MaxVectorSize;
5793   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5794       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5795     // Collect all viable vectorization factors larger than the default MaxVF
5796     // (i.e. MaxVectorSize).
5797     SmallVector<ElementCount, 8> VFs;
5798     auto MaxVectorSizeMaxBW =
5799         ElementCount::getFixed(WidestRegister / SmallestType);
5800     for (ElementCount VS = MaxVectorSize * 2;
5801          ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2)
5802       VFs.push_back(VS);
5803 
5804     // For each VF calculate its register usage.
5805     auto RUs = calculateRegisterUsage(VFs);
5806 
5807     // Select the largest VF which doesn't require more registers than existing
5808     // ones.
5809     for (int i = RUs.size() - 1; i >= 0; --i) {
5810       bool Selected = true;
5811       for (auto &pair : RUs[i].MaxLocalUsers) {
5812         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5813         if (pair.second > TargetNumRegisters)
5814           Selected = false;
5815       }
5816       if (Selected) {
5817         MaxVF = VFs[i];
5818         break;
5819       }
5820     }
5821     if (ElementCount MinVF =
5822             TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) {
5823       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5824         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5825                           << ") with target's minimum: " << MinVF << '\n');
5826         MaxVF = MinVF;
5827       }
5828     }
5829   }
5830   return MaxVF;
5831 }
5832 
5833 VectorizationFactor
5834 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
5835   // FIXME: This can be fixed for scalable vectors later, because at this stage
5836   // the LoopVectorizer will only consider vectorizing a loop with scalable
5837   // vectors when the loop has a hint to enable vectorization for a given VF.
5838   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
5839 
5840   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5841   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5842   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5843 
5844   auto Width = ElementCount::getFixed(1);
5845   const float ScalarCost = *ExpectedCost.getValue();
5846   float Cost = ScalarCost;
5847 
5848   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5849   if (ForceVectorization && MaxVF.isVector()) {
5850     // Ignore scalar width, because the user explicitly wants vectorization.
5851     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5852     // evaluation.
5853     Cost = std::numeric_limits<float>::max();
5854   }
5855 
5856   for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF);
5857        i *= 2) {
5858     // Notice that the vector loop needs to be executed less times, so
5859     // we need to divide the cost of the vector loops by the width of
5860     // the vector elements.
5861     VectorizationCostTy C = expectedCost(i);
5862     assert(C.first.isValid() && "Unexpected invalid cost for vector loop");
5863     float VectorCost = *C.first.getValue() / (float)i.getFixedValue();
5864     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5865                       << " costs: " << (int)VectorCost << ".\n");
5866     if (!C.second && !ForceVectorization) {
5867       LLVM_DEBUG(
5868           dbgs() << "LV: Not considering vector loop of width " << i
5869                  << " because it will not generate any vector instructions.\n");
5870       continue;
5871     }
5872 
5873     // If profitable add it to ProfitableVF list.
5874     if (VectorCost < ScalarCost) {
5875       ProfitableVFs.push_back(VectorizationFactor(
5876           {i, (unsigned)VectorCost}));
5877     }
5878 
5879     if (VectorCost < Cost) {
5880       Cost = VectorCost;
5881       Width = i;
5882     }
5883   }
5884 
5885   if (!EnableCondStoresVectorization && NumPredStores) {
5886     reportVectorizationFailure("There are conditional stores.",
5887         "store that is conditionally executed prevents vectorization",
5888         "ConditionalStore", ORE, TheLoop);
5889     Width = ElementCount::getFixed(1);
5890     Cost = ScalarCost;
5891   }
5892 
5893   LLVM_DEBUG(if (ForceVectorization && !Width.isScalar() && Cost >= ScalarCost) dbgs()
5894              << "LV: Vectorization seems to be not beneficial, "
5895              << "but was forced by a user.\n");
5896   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5897   VectorizationFactor Factor = {Width,
5898                                 (unsigned)(Width.getKnownMinValue() * Cost)};
5899   return Factor;
5900 }
5901 
5902 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5903     const Loop &L, ElementCount VF) const {
5904   // Cross iteration phis such as reductions need special handling and are
5905   // currently unsupported.
5906   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
5907         return Legal->isFirstOrderRecurrence(&Phi) ||
5908                Legal->isReductionVariable(&Phi);
5909       }))
5910     return false;
5911 
5912   // Phis with uses outside of the loop require special handling and are
5913   // currently unsupported.
5914   for (auto &Entry : Legal->getInductionVars()) {
5915     // Look for uses of the value of the induction at the last iteration.
5916     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5917     for (User *U : PostInc->users())
5918       if (!L.contains(cast<Instruction>(U)))
5919         return false;
5920     // Look for uses of penultimate value of the induction.
5921     for (User *U : Entry.first->users())
5922       if (!L.contains(cast<Instruction>(U)))
5923         return false;
5924   }
5925 
5926   // Induction variables that are widened require special handling that is
5927   // currently not supported.
5928   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5929         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5930                  this->isProfitableToScalarize(Entry.first, VF));
5931       }))
5932     return false;
5933 
5934   return true;
5935 }
5936 
5937 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5938     const ElementCount VF) const {
5939   // FIXME: We need a much better cost-model to take different parameters such
5940   // as register pressure, code size increase and cost of extra branches into
5941   // account. For now we apply a very crude heuristic and only consider loops
5942   // with vectorization factors larger than a certain value.
5943   // We also consider epilogue vectorization unprofitable for targets that don't
5944   // consider interleaving beneficial (eg. MVE).
5945   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5946     return false;
5947   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
5948     return true;
5949   return false;
5950 }
5951 
5952 VectorizationFactor
5953 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5954     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5955   VectorizationFactor Result = VectorizationFactor::Disabled();
5956   if (!EnableEpilogueVectorization) {
5957     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5958     return Result;
5959   }
5960 
5961   if (!isScalarEpilogueAllowed()) {
5962     LLVM_DEBUG(
5963         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5964                   "allowed.\n";);
5965     return Result;
5966   }
5967 
5968   // FIXME: This can be fixed for scalable vectors later, because at this stage
5969   // the LoopVectorizer will only consider vectorizing a loop with scalable
5970   // vectors when the loop has a hint to enable vectorization for a given VF.
5971   if (MainLoopVF.isScalable()) {
5972     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
5973                          "yet supported.\n");
5974     return Result;
5975   }
5976 
5977   // Not really a cost consideration, but check for unsupported cases here to
5978   // simplify the logic.
5979   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5980     LLVM_DEBUG(
5981         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5982                   "not a supported candidate.\n";);
5983     return Result;
5984   }
5985 
5986   if (EpilogueVectorizationForceVF > 1) {
5987     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5988     if (LVP.hasPlanWithVFs(
5989             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
5990       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
5991     else {
5992       LLVM_DEBUG(
5993           dbgs()
5994               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5995       return Result;
5996     }
5997   }
5998 
5999   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6000       TheLoop->getHeader()->getParent()->hasMinSize()) {
6001     LLVM_DEBUG(
6002         dbgs()
6003             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6004     return Result;
6005   }
6006 
6007   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6008     return Result;
6009 
6010   for (auto &NextVF : ProfitableVFs)
6011     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6012         (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) &&
6013         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6014       Result = NextVF;
6015 
6016   if (Result != VectorizationFactor::Disabled())
6017     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6018                       << Result.Width.getFixedValue() << "\n";);
6019   return Result;
6020 }
6021 
6022 std::pair<unsigned, unsigned>
6023 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6024   unsigned MinWidth = -1U;
6025   unsigned MaxWidth = 8;
6026   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6027 
6028   // For each block.
6029   for (BasicBlock *BB : TheLoop->blocks()) {
6030     // For each instruction in the loop.
6031     for (Instruction &I : BB->instructionsWithoutDebug()) {
6032       Type *T = I.getType();
6033 
6034       // Skip ignored values.
6035       if (ValuesToIgnore.count(&I))
6036         continue;
6037 
6038       // Only examine Loads, Stores and PHINodes.
6039       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6040         continue;
6041 
6042       // Examine PHI nodes that are reduction variables. Update the type to
6043       // account for the recurrence type.
6044       if (auto *PN = dyn_cast<PHINode>(&I)) {
6045         if (!Legal->isReductionVariable(PN))
6046           continue;
6047         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
6048         if (PreferInLoopReductions ||
6049             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6050                                       RdxDesc.getRecurrenceType(),
6051                                       TargetTransformInfo::ReductionFlags()))
6052           continue;
6053         T = RdxDesc.getRecurrenceType();
6054       }
6055 
6056       // Examine the stored values.
6057       if (auto *ST = dyn_cast<StoreInst>(&I))
6058         T = ST->getValueOperand()->getType();
6059 
6060       // Ignore loaded pointer types and stored pointer types that are not
6061       // vectorizable.
6062       //
6063       // FIXME: The check here attempts to predict whether a load or store will
6064       //        be vectorized. We only know this for certain after a VF has
6065       //        been selected. Here, we assume that if an access can be
6066       //        vectorized, it will be. We should also look at extending this
6067       //        optimization to non-pointer types.
6068       //
6069       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6070           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6071         continue;
6072 
6073       MinWidth = std::min(MinWidth,
6074                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6075       MaxWidth = std::max(MaxWidth,
6076                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6077     }
6078   }
6079 
6080   return {MinWidth, MaxWidth};
6081 }
6082 
6083 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6084                                                            unsigned LoopCost) {
6085   // -- The interleave heuristics --
6086   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6087   // There are many micro-architectural considerations that we can't predict
6088   // at this level. For example, frontend pressure (on decode or fetch) due to
6089   // code size, or the number and capabilities of the execution ports.
6090   //
6091   // We use the following heuristics to select the interleave count:
6092   // 1. If the code has reductions, then we interleave to break the cross
6093   // iteration dependency.
6094   // 2. If the loop is really small, then we interleave to reduce the loop
6095   // overhead.
6096   // 3. We don't interleave if we think that we will spill registers to memory
6097   // due to the increased register pressure.
6098 
6099   if (!isScalarEpilogueAllowed())
6100     return 1;
6101 
6102   // We used the distance for the interleave count.
6103   if (Legal->getMaxSafeDepDistBytes() != -1U)
6104     return 1;
6105 
6106   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6107   const bool HasReductions = !Legal->getReductionVars().empty();
6108   // Do not interleave loops with a relatively small known or estimated trip
6109   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6110   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6111   // because with the above conditions interleaving can expose ILP and break
6112   // cross iteration dependences for reductions.
6113   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6114       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6115     return 1;
6116 
6117   RegisterUsage R = calculateRegisterUsage({VF})[0];
6118   // We divide by these constants so assume that we have at least one
6119   // instruction that uses at least one register.
6120   for (auto& pair : R.MaxLocalUsers) {
6121     pair.second = std::max(pair.second, 1U);
6122   }
6123 
6124   // We calculate the interleave count using the following formula.
6125   // Subtract the number of loop invariants from the number of available
6126   // registers. These registers are used by all of the interleaved instances.
6127   // Next, divide the remaining registers by the number of registers that is
6128   // required by the loop, in order to estimate how many parallel instances
6129   // fit without causing spills. All of this is rounded down if necessary to be
6130   // a power of two. We want power of two interleave count to simplify any
6131   // addressing operations or alignment considerations.
6132   // We also want power of two interleave counts to ensure that the induction
6133   // variable of the vector loop wraps to zero, when tail is folded by masking;
6134   // this currently happens when OptForSize, in which case IC is set to 1 above.
6135   unsigned IC = UINT_MAX;
6136 
6137   for (auto& pair : R.MaxLocalUsers) {
6138     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6139     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6140                       << " registers of "
6141                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6142     if (VF.isScalar()) {
6143       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6144         TargetNumRegisters = ForceTargetNumScalarRegs;
6145     } else {
6146       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6147         TargetNumRegisters = ForceTargetNumVectorRegs;
6148     }
6149     unsigned MaxLocalUsers = pair.second;
6150     unsigned LoopInvariantRegs = 0;
6151     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6152       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6153 
6154     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6155     // Don't count the induction variable as interleaved.
6156     if (EnableIndVarRegisterHeur) {
6157       TmpIC =
6158           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6159                         std::max(1U, (MaxLocalUsers - 1)));
6160     }
6161 
6162     IC = std::min(IC, TmpIC);
6163   }
6164 
6165   // Clamp the interleave ranges to reasonable counts.
6166   unsigned MaxInterleaveCount =
6167       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6168 
6169   // Check if the user has overridden the max.
6170   if (VF.isScalar()) {
6171     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6172       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6173   } else {
6174     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6175       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6176   }
6177 
6178   // If trip count is known or estimated compile time constant, limit the
6179   // interleave count to be less than the trip count divided by VF, provided it
6180   // is at least 1.
6181   //
6182   // For scalable vectors we can't know if interleaving is beneficial. It may
6183   // not be beneficial for small loops if none of the lanes in the second vector
6184   // iterations is enabled. However, for larger loops, there is likely to be a
6185   // similar benefit as for fixed-width vectors. For now, we choose to leave
6186   // the InterleaveCount as if vscale is '1', although if some information about
6187   // the vector is known (e.g. min vector size), we can make a better decision.
6188   if (BestKnownTC) {
6189     MaxInterleaveCount =
6190         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6191     // Make sure MaxInterleaveCount is greater than 0.
6192     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6193   }
6194 
6195   assert(MaxInterleaveCount > 0 &&
6196          "Maximum interleave count must be greater than 0");
6197 
6198   // Clamp the calculated IC to be between the 1 and the max interleave count
6199   // that the target and trip count allows.
6200   if (IC > MaxInterleaveCount)
6201     IC = MaxInterleaveCount;
6202   else
6203     // Make sure IC is greater than 0.
6204     IC = std::max(1u, IC);
6205 
6206   assert(IC > 0 && "Interleave count must be greater than 0.");
6207 
6208   // If we did not calculate the cost for VF (because the user selected the VF)
6209   // then we calculate the cost of VF here.
6210   if (LoopCost == 0) {
6211     assert(expectedCost(VF).first.isValid() && "Expected a valid cost");
6212     LoopCost = *expectedCost(VF).first.getValue();
6213   }
6214 
6215   assert(LoopCost && "Non-zero loop cost expected");
6216 
6217   // Interleave if we vectorized this loop and there is a reduction that could
6218   // benefit from interleaving.
6219   if (VF.isVector() && HasReductions) {
6220     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6221     return IC;
6222   }
6223 
6224   // Note that if we've already vectorized the loop we will have done the
6225   // runtime check and so interleaving won't require further checks.
6226   bool InterleavingRequiresRuntimePointerCheck =
6227       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6228 
6229   // We want to interleave small loops in order to reduce the loop overhead and
6230   // potentially expose ILP opportunities.
6231   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6232                     << "LV: IC is " << IC << '\n'
6233                     << "LV: VF is " << VF << '\n');
6234   const bool AggressivelyInterleaveReductions =
6235       TTI.enableAggressiveInterleaving(HasReductions);
6236   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6237     // We assume that the cost overhead is 1 and we use the cost model
6238     // to estimate the cost of the loop and interleave until the cost of the
6239     // loop overhead is about 5% of the cost of the loop.
6240     unsigned SmallIC =
6241         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6242 
6243     // Interleave until store/load ports (estimated by max interleave count) are
6244     // saturated.
6245     unsigned NumStores = Legal->getNumStores();
6246     unsigned NumLoads = Legal->getNumLoads();
6247     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6248     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6249 
6250     // If we have a scalar reduction (vector reductions are already dealt with
6251     // by this point), we can increase the critical path length if the loop
6252     // we're interleaving is inside another loop. Limit, by default to 2, so the
6253     // critical path only gets increased by one reduction operation.
6254     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6255       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6256       SmallIC = std::min(SmallIC, F);
6257       StoresIC = std::min(StoresIC, F);
6258       LoadsIC = std::min(LoadsIC, F);
6259     }
6260 
6261     if (EnableLoadStoreRuntimeInterleave &&
6262         std::max(StoresIC, LoadsIC) > SmallIC) {
6263       LLVM_DEBUG(
6264           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6265       return std::max(StoresIC, LoadsIC);
6266     }
6267 
6268     // If there are scalar reductions and TTI has enabled aggressive
6269     // interleaving for reductions, we will interleave to expose ILP.
6270     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6271         AggressivelyInterleaveReductions) {
6272       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6273       // Interleave no less than SmallIC but not as aggressive as the normal IC
6274       // to satisfy the rare situation when resources are too limited.
6275       return std::max(IC / 2, SmallIC);
6276     } else {
6277       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6278       return SmallIC;
6279     }
6280   }
6281 
6282   // Interleave if this is a large loop (small loops are already dealt with by
6283   // this point) that could benefit from interleaving.
6284   if (AggressivelyInterleaveReductions) {
6285     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6286     return IC;
6287   }
6288 
6289   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6290   return 1;
6291 }
6292 
6293 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6294 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6295   // This function calculates the register usage by measuring the highest number
6296   // of values that are alive at a single location. Obviously, this is a very
6297   // rough estimation. We scan the loop in a topological order in order and
6298   // assign a number to each instruction. We use RPO to ensure that defs are
6299   // met before their users. We assume that each instruction that has in-loop
6300   // users starts an interval. We record every time that an in-loop value is
6301   // used, so we have a list of the first and last occurrences of each
6302   // instruction. Next, we transpose this data structure into a multi map that
6303   // holds the list of intervals that *end* at a specific location. This multi
6304   // map allows us to perform a linear search. We scan the instructions linearly
6305   // and record each time that a new interval starts, by placing it in a set.
6306   // If we find this value in the multi-map then we remove it from the set.
6307   // The max register usage is the maximum size of the set.
6308   // We also search for instructions that are defined outside the loop, but are
6309   // used inside the loop. We need this number separately from the max-interval
6310   // usage number because when we unroll, loop-invariant values do not take
6311   // more register.
6312   LoopBlocksDFS DFS(TheLoop);
6313   DFS.perform(LI);
6314 
6315   RegisterUsage RU;
6316 
6317   // Each 'key' in the map opens a new interval. The values
6318   // of the map are the index of the 'last seen' usage of the
6319   // instruction that is the key.
6320   using IntervalMap = DenseMap<Instruction *, unsigned>;
6321 
6322   // Maps instruction to its index.
6323   SmallVector<Instruction *, 64> IdxToInstr;
6324   // Marks the end of each interval.
6325   IntervalMap EndPoint;
6326   // Saves the list of instruction indices that are used in the loop.
6327   SmallPtrSet<Instruction *, 8> Ends;
6328   // Saves the list of values that are used in the loop but are
6329   // defined outside the loop, such as arguments and constants.
6330   SmallPtrSet<Value *, 8> LoopInvariants;
6331 
6332   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6333     for (Instruction &I : BB->instructionsWithoutDebug()) {
6334       IdxToInstr.push_back(&I);
6335 
6336       // Save the end location of each USE.
6337       for (Value *U : I.operands()) {
6338         auto *Instr = dyn_cast<Instruction>(U);
6339 
6340         // Ignore non-instruction values such as arguments, constants, etc.
6341         if (!Instr)
6342           continue;
6343 
6344         // If this instruction is outside the loop then record it and continue.
6345         if (!TheLoop->contains(Instr)) {
6346           LoopInvariants.insert(Instr);
6347           continue;
6348         }
6349 
6350         // Overwrite previous end points.
6351         EndPoint[Instr] = IdxToInstr.size();
6352         Ends.insert(Instr);
6353       }
6354     }
6355   }
6356 
6357   // Saves the list of intervals that end with the index in 'key'.
6358   using InstrList = SmallVector<Instruction *, 2>;
6359   DenseMap<unsigned, InstrList> TransposeEnds;
6360 
6361   // Transpose the EndPoints to a list of values that end at each index.
6362   for (auto &Interval : EndPoint)
6363     TransposeEnds[Interval.second].push_back(Interval.first);
6364 
6365   SmallPtrSet<Instruction *, 8> OpenIntervals;
6366   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6367   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6368 
6369   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6370 
6371   // A lambda that gets the register usage for the given type and VF.
6372   const auto &TTICapture = TTI;
6373   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
6374     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6375       return 0U;
6376     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
6377   };
6378 
6379   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6380     Instruction *I = IdxToInstr[i];
6381 
6382     // Remove all of the instructions that end at this location.
6383     InstrList &List = TransposeEnds[i];
6384     for (Instruction *ToRemove : List)
6385       OpenIntervals.erase(ToRemove);
6386 
6387     // Ignore instructions that are never used within the loop.
6388     if (!Ends.count(I))
6389       continue;
6390 
6391     // Skip ignored values.
6392     if (ValuesToIgnore.count(I))
6393       continue;
6394 
6395     // For each VF find the maximum usage of registers.
6396     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6397       // Count the number of live intervals.
6398       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6399 
6400       if (VFs[j].isScalar()) {
6401         for (auto Inst : OpenIntervals) {
6402           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6403           if (RegUsage.find(ClassID) == RegUsage.end())
6404             RegUsage[ClassID] = 1;
6405           else
6406             RegUsage[ClassID] += 1;
6407         }
6408       } else {
6409         collectUniformsAndScalars(VFs[j]);
6410         for (auto Inst : OpenIntervals) {
6411           // Skip ignored values for VF > 1.
6412           if (VecValuesToIgnore.count(Inst))
6413             continue;
6414           if (isScalarAfterVectorization(Inst, VFs[j])) {
6415             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6416             if (RegUsage.find(ClassID) == RegUsage.end())
6417               RegUsage[ClassID] = 1;
6418             else
6419               RegUsage[ClassID] += 1;
6420           } else {
6421             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6422             if (RegUsage.find(ClassID) == RegUsage.end())
6423               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6424             else
6425               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6426           }
6427         }
6428       }
6429 
6430       for (auto& pair : RegUsage) {
6431         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6432           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6433         else
6434           MaxUsages[j][pair.first] = pair.second;
6435       }
6436     }
6437 
6438     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6439                       << OpenIntervals.size() << '\n');
6440 
6441     // Add the current instruction to the list of open intervals.
6442     OpenIntervals.insert(I);
6443   }
6444 
6445   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6446     SmallMapVector<unsigned, unsigned, 4> Invariant;
6447 
6448     for (auto Inst : LoopInvariants) {
6449       unsigned Usage =
6450           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6451       unsigned ClassID =
6452           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6453       if (Invariant.find(ClassID) == Invariant.end())
6454         Invariant[ClassID] = Usage;
6455       else
6456         Invariant[ClassID] += Usage;
6457     }
6458 
6459     LLVM_DEBUG({
6460       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6461       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6462              << " item\n";
6463       for (const auto &pair : MaxUsages[i]) {
6464         dbgs() << "LV(REG): RegisterClass: "
6465                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6466                << " registers\n";
6467       }
6468       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6469              << " item\n";
6470       for (const auto &pair : Invariant) {
6471         dbgs() << "LV(REG): RegisterClass: "
6472                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6473                << " registers\n";
6474       }
6475     });
6476 
6477     RU.LoopInvariantRegs = Invariant;
6478     RU.MaxLocalUsers = MaxUsages[i];
6479     RUs[i] = RU;
6480   }
6481 
6482   return RUs;
6483 }
6484 
6485 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6486   // TODO: Cost model for emulated masked load/store is completely
6487   // broken. This hack guides the cost model to use an artificially
6488   // high enough value to practically disable vectorization with such
6489   // operations, except where previously deployed legality hack allowed
6490   // using very low cost values. This is to avoid regressions coming simply
6491   // from moving "masked load/store" check from legality to cost model.
6492   // Masked Load/Gather emulation was previously never allowed.
6493   // Limited number of Masked Store/Scatter emulation was allowed.
6494   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
6495   return isa<LoadInst>(I) ||
6496          (isa<StoreInst>(I) &&
6497           NumPredStores > NumberOfStoresToPredicate);
6498 }
6499 
6500 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6501   // If we aren't vectorizing the loop, or if we've already collected the
6502   // instructions to scalarize, there's nothing to do. Collection may already
6503   // have occurred if we have a user-selected VF and are now computing the
6504   // expected cost for interleaving.
6505   if (VF.isScalar() || VF.isZero() ||
6506       InstsToScalarize.find(VF) != InstsToScalarize.end())
6507     return;
6508 
6509   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6510   // not profitable to scalarize any instructions, the presence of VF in the
6511   // map will indicate that we've analyzed it already.
6512   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6513 
6514   // Find all the instructions that are scalar with predication in the loop and
6515   // determine if it would be better to not if-convert the blocks they are in.
6516   // If so, we also record the instructions to scalarize.
6517   for (BasicBlock *BB : TheLoop->blocks()) {
6518     if (!blockNeedsPredication(BB))
6519       continue;
6520     for (Instruction &I : *BB)
6521       if (isScalarWithPredication(&I)) {
6522         ScalarCostsTy ScalarCosts;
6523         // Do not apply discount logic if hacked cost is needed
6524         // for emulated masked memrefs.
6525         if (!useEmulatedMaskMemRefHack(&I) &&
6526             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6527           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6528         // Remember that BB will remain after vectorization.
6529         PredicatedBBsAfterVectorization.insert(BB);
6530       }
6531   }
6532 }
6533 
6534 int LoopVectorizationCostModel::computePredInstDiscount(
6535     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6536   assert(!isUniformAfterVectorization(PredInst, VF) &&
6537          "Instruction marked uniform-after-vectorization will be predicated");
6538 
6539   // Initialize the discount to zero, meaning that the scalar version and the
6540   // vector version cost the same.
6541   InstructionCost Discount = 0;
6542 
6543   // Holds instructions to analyze. The instructions we visit are mapped in
6544   // ScalarCosts. Those instructions are the ones that would be scalarized if
6545   // we find that the scalar version costs less.
6546   SmallVector<Instruction *, 8> Worklist;
6547 
6548   // Returns true if the given instruction can be scalarized.
6549   auto canBeScalarized = [&](Instruction *I) -> bool {
6550     // We only attempt to scalarize instructions forming a single-use chain
6551     // from the original predicated block that would otherwise be vectorized.
6552     // Although not strictly necessary, we give up on instructions we know will
6553     // already be scalar to avoid traversing chains that are unlikely to be
6554     // beneficial.
6555     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6556         isScalarAfterVectorization(I, VF))
6557       return false;
6558 
6559     // If the instruction is scalar with predication, it will be analyzed
6560     // separately. We ignore it within the context of PredInst.
6561     if (isScalarWithPredication(I))
6562       return false;
6563 
6564     // If any of the instruction's operands are uniform after vectorization,
6565     // the instruction cannot be scalarized. This prevents, for example, a
6566     // masked load from being scalarized.
6567     //
6568     // We assume we will only emit a value for lane zero of an instruction
6569     // marked uniform after vectorization, rather than VF identical values.
6570     // Thus, if we scalarize an instruction that uses a uniform, we would
6571     // create uses of values corresponding to the lanes we aren't emitting code
6572     // for. This behavior can be changed by allowing getScalarValue to clone
6573     // the lane zero values for uniforms rather than asserting.
6574     for (Use &U : I->operands())
6575       if (auto *J = dyn_cast<Instruction>(U.get()))
6576         if (isUniformAfterVectorization(J, VF))
6577           return false;
6578 
6579     // Otherwise, we can scalarize the instruction.
6580     return true;
6581   };
6582 
6583   // Compute the expected cost discount from scalarizing the entire expression
6584   // feeding the predicated instruction. We currently only consider expressions
6585   // that are single-use instruction chains.
6586   Worklist.push_back(PredInst);
6587   while (!Worklist.empty()) {
6588     Instruction *I = Worklist.pop_back_val();
6589 
6590     // If we've already analyzed the instruction, there's nothing to do.
6591     if (ScalarCosts.find(I) != ScalarCosts.end())
6592       continue;
6593 
6594     // Compute the cost of the vector instruction. Note that this cost already
6595     // includes the scalarization overhead of the predicated instruction.
6596     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6597 
6598     // Compute the cost of the scalarized instruction. This cost is the cost of
6599     // the instruction as if it wasn't if-converted and instead remained in the
6600     // predicated block. We will scale this cost by block probability after
6601     // computing the scalarization overhead.
6602     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6603     InstructionCost ScalarCost =
6604         VF.getKnownMinValue() *
6605         getInstructionCost(I, ElementCount::getFixed(1)).first;
6606 
6607     // Compute the scalarization overhead of needed insertelement instructions
6608     // and phi nodes.
6609     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6610       ScalarCost += TTI.getScalarizationOverhead(
6611           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6612           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6613       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6614       ScalarCost +=
6615           VF.getKnownMinValue() *
6616           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6617     }
6618 
6619     // Compute the scalarization overhead of needed extractelement
6620     // instructions. For each of the instruction's operands, if the operand can
6621     // be scalarized, add it to the worklist; otherwise, account for the
6622     // overhead.
6623     for (Use &U : I->operands())
6624       if (auto *J = dyn_cast<Instruction>(U.get())) {
6625         assert(VectorType::isValidElementType(J->getType()) &&
6626                "Instruction has non-scalar type");
6627         if (canBeScalarized(J))
6628           Worklist.push_back(J);
6629         else if (needsExtract(J, VF)) {
6630           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6631           ScalarCost += TTI.getScalarizationOverhead(
6632               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6633               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6634         }
6635       }
6636 
6637     // Scale the total scalar cost by block probability.
6638     ScalarCost /= getReciprocalPredBlockProb();
6639 
6640     // Compute the discount. A non-negative discount means the vector version
6641     // of the instruction costs more, and scalarizing would be beneficial.
6642     Discount += VectorCost - ScalarCost;
6643     ScalarCosts[I] = ScalarCost;
6644   }
6645 
6646   return *Discount.getValue();
6647 }
6648 
6649 LoopVectorizationCostModel::VectorizationCostTy
6650 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6651   VectorizationCostTy Cost;
6652 
6653   // For each block.
6654   for (BasicBlock *BB : TheLoop->blocks()) {
6655     VectorizationCostTy BlockCost;
6656 
6657     // For each instruction in the old loop.
6658     for (Instruction &I : BB->instructionsWithoutDebug()) {
6659       // Skip ignored values.
6660       if (ValuesToIgnore.count(&I) ||
6661           (VF.isVector() && VecValuesToIgnore.count(&I)))
6662         continue;
6663 
6664       VectorizationCostTy C = getInstructionCost(&I, VF);
6665 
6666       // Check if we should override the cost.
6667       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6668         C.first = InstructionCost(ForceTargetInstructionCost);
6669 
6670       BlockCost.first += C.first;
6671       BlockCost.second |= C.second;
6672       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6673                         << " for VF " << VF << " For instruction: " << I
6674                         << '\n');
6675     }
6676 
6677     // If we are vectorizing a predicated block, it will have been
6678     // if-converted. This means that the block's instructions (aside from
6679     // stores and instructions that may divide by zero) will now be
6680     // unconditionally executed. For the scalar case, we may not always execute
6681     // the predicated block, if it is an if-else block. Thus, scale the block's
6682     // cost by the probability of executing it. blockNeedsPredication from
6683     // Legal is used so as to not include all blocks in tail folded loops.
6684     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6685       BlockCost.first /= getReciprocalPredBlockProb();
6686 
6687     Cost.first += BlockCost.first;
6688     Cost.second |= BlockCost.second;
6689   }
6690 
6691   return Cost;
6692 }
6693 
6694 /// Gets Address Access SCEV after verifying that the access pattern
6695 /// is loop invariant except the induction variable dependence.
6696 ///
6697 /// This SCEV can be sent to the Target in order to estimate the address
6698 /// calculation cost.
6699 static const SCEV *getAddressAccessSCEV(
6700               Value *Ptr,
6701               LoopVectorizationLegality *Legal,
6702               PredicatedScalarEvolution &PSE,
6703               const Loop *TheLoop) {
6704 
6705   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6706   if (!Gep)
6707     return nullptr;
6708 
6709   // We are looking for a gep with all loop invariant indices except for one
6710   // which should be an induction variable.
6711   auto SE = PSE.getSE();
6712   unsigned NumOperands = Gep->getNumOperands();
6713   for (unsigned i = 1; i < NumOperands; ++i) {
6714     Value *Opd = Gep->getOperand(i);
6715     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6716         !Legal->isInductionVariable(Opd))
6717       return nullptr;
6718   }
6719 
6720   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6721   return PSE.getSCEV(Ptr);
6722 }
6723 
6724 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6725   return Legal->hasStride(I->getOperand(0)) ||
6726          Legal->hasStride(I->getOperand(1));
6727 }
6728 
6729 InstructionCost
6730 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6731                                                         ElementCount VF) {
6732   assert(VF.isVector() &&
6733          "Scalarization cost of instruction implies vectorization.");
6734   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6735   Type *ValTy = getMemInstValueType(I);
6736   auto SE = PSE.getSE();
6737 
6738   unsigned AS = getLoadStoreAddressSpace(I);
6739   Value *Ptr = getLoadStorePointerOperand(I);
6740   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6741 
6742   // Figure out whether the access is strided and get the stride value
6743   // if it's known in compile time
6744   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6745 
6746   // Get the cost of the scalar memory instruction and address computation.
6747   InstructionCost Cost =
6748       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6749 
6750   // Don't pass *I here, since it is scalar but will actually be part of a
6751   // vectorized loop where the user of it is a vectorized instruction.
6752   const Align Alignment = getLoadStoreAlignment(I);
6753   Cost += VF.getKnownMinValue() *
6754           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6755                               AS, TTI::TCK_RecipThroughput);
6756 
6757   // Get the overhead of the extractelement and insertelement instructions
6758   // we might create due to scalarization.
6759   Cost += getScalarizationOverhead(I, VF);
6760 
6761   // If we have a predicated load/store, it will need extra i1 extracts and
6762   // conditional branches, but may not be executed for each vector lane. Scale
6763   // the cost by the probability of executing the predicated block.
6764   if (isPredicatedInst(I)) {
6765     Cost /= getReciprocalPredBlockProb();
6766 
6767     // Add the cost of an i1 extract and a branch
6768     auto *Vec_i1Ty =
6769         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6770     Cost += TTI.getScalarizationOverhead(
6771         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6772         /*Insert=*/false, /*Extract=*/true);
6773     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6774 
6775     if (useEmulatedMaskMemRefHack(I))
6776       // Artificially setting to a high enough value to practically disable
6777       // vectorization with such operations.
6778       Cost = 3000000;
6779   }
6780 
6781   return Cost;
6782 }
6783 
6784 InstructionCost
6785 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6786                                                     ElementCount VF) {
6787   Type *ValTy = getMemInstValueType(I);
6788   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6789   Value *Ptr = getLoadStorePointerOperand(I);
6790   unsigned AS = getLoadStoreAddressSpace(I);
6791   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6792   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6793 
6794   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6795          "Stride should be 1 or -1 for consecutive memory access");
6796   const Align Alignment = getLoadStoreAlignment(I);
6797   InstructionCost Cost = 0;
6798   if (Legal->isMaskRequired(I))
6799     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6800                                       CostKind);
6801   else
6802     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6803                                 CostKind, I);
6804 
6805   bool Reverse = ConsecutiveStride < 0;
6806   if (Reverse)
6807     Cost +=
6808         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6809   return Cost;
6810 }
6811 
6812 InstructionCost
6813 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6814                                                 ElementCount VF) {
6815   assert(Legal->isUniformMemOp(*I));
6816 
6817   Type *ValTy = getMemInstValueType(I);
6818   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6819   const Align Alignment = getLoadStoreAlignment(I);
6820   unsigned AS = getLoadStoreAddressSpace(I);
6821   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6822   if (isa<LoadInst>(I)) {
6823     return TTI.getAddressComputationCost(ValTy) +
6824            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6825                                CostKind) +
6826            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6827   }
6828   StoreInst *SI = cast<StoreInst>(I);
6829 
6830   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6831   return TTI.getAddressComputationCost(ValTy) +
6832          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6833                              CostKind) +
6834          (isLoopInvariantStoreValue
6835               ? 0
6836               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6837                                        VF.getKnownMinValue() - 1));
6838 }
6839 
6840 InstructionCost
6841 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6842                                                  ElementCount VF) {
6843   Type *ValTy = getMemInstValueType(I);
6844   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6845   const Align Alignment = getLoadStoreAlignment(I);
6846   const Value *Ptr = getLoadStorePointerOperand(I);
6847 
6848   return TTI.getAddressComputationCost(VectorTy) +
6849          TTI.getGatherScatterOpCost(
6850              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6851              TargetTransformInfo::TCK_RecipThroughput, I);
6852 }
6853 
6854 InstructionCost
6855 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6856                                                    ElementCount VF) {
6857   // TODO: Once we have support for interleaving with scalable vectors
6858   // we can calculate the cost properly here.
6859   if (VF.isScalable())
6860     return InstructionCost::getInvalid();
6861 
6862   Type *ValTy = getMemInstValueType(I);
6863   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6864   unsigned AS = getLoadStoreAddressSpace(I);
6865 
6866   auto Group = getInterleavedAccessGroup(I);
6867   assert(Group && "Fail to get an interleaved access group.");
6868 
6869   unsigned InterleaveFactor = Group->getFactor();
6870   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6871 
6872   // Holds the indices of existing members in an interleaved load group.
6873   // An interleaved store group doesn't need this as it doesn't allow gaps.
6874   SmallVector<unsigned, 4> Indices;
6875   if (isa<LoadInst>(I)) {
6876     for (unsigned i = 0; i < InterleaveFactor; i++)
6877       if (Group->getMember(i))
6878         Indices.push_back(i);
6879   }
6880 
6881   // Calculate the cost of the whole interleaved group.
6882   bool UseMaskForGaps =
6883       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
6884   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6885       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6886       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6887 
6888   if (Group->isReverse()) {
6889     // TODO: Add support for reversed masked interleaved access.
6890     assert(!Legal->isMaskRequired(I) &&
6891            "Reverse masked interleaved access not supported.");
6892     Cost +=
6893         Group->getNumMembers() *
6894         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6895   }
6896   return Cost;
6897 }
6898 
6899 InstructionCost LoopVectorizationCostModel::getReductionPatternCost(
6900     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6901   // Early exit for no inloop reductions
6902   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6903     return InstructionCost::getInvalid();
6904   auto *VectorTy = cast<VectorType>(Ty);
6905 
6906   // We are looking for a pattern of, and finding the minimal acceptable cost:
6907   //  reduce(mul(ext(A), ext(B))) or
6908   //  reduce(mul(A, B)) or
6909   //  reduce(ext(A)) or
6910   //  reduce(A).
6911   // The basic idea is that we walk down the tree to do that, finding the root
6912   // reduction instruction in InLoopReductionImmediateChains. From there we find
6913   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6914   // of the components. If the reduction cost is lower then we return it for the
6915   // reduction instruction and 0 for the other instructions in the pattern. If
6916   // it is not we return an invalid cost specifying the orignal cost method
6917   // should be used.
6918   Instruction *RetI = I;
6919   if ((RetI->getOpcode() == Instruction::SExt ||
6920        RetI->getOpcode() == Instruction::ZExt)) {
6921     if (!RetI->hasOneUser())
6922       return InstructionCost::getInvalid();
6923     RetI = RetI->user_back();
6924   }
6925   if (RetI->getOpcode() == Instruction::Mul &&
6926       RetI->user_back()->getOpcode() == Instruction::Add) {
6927     if (!RetI->hasOneUser())
6928       return InstructionCost::getInvalid();
6929     RetI = RetI->user_back();
6930   }
6931 
6932   // Test if the found instruction is a reduction, and if not return an invalid
6933   // cost specifying the parent to use the original cost modelling.
6934   if (!InLoopReductionImmediateChains.count(RetI))
6935     return InstructionCost::getInvalid();
6936 
6937   // Find the reduction this chain is a part of and calculate the basic cost of
6938   // the reduction on its own.
6939   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6940   Instruction *ReductionPhi = LastChain;
6941   while (!isa<PHINode>(ReductionPhi))
6942     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6943 
6944   RecurrenceDescriptor RdxDesc =
6945       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
6946   unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(),
6947                                                      VectorTy, false, CostKind);
6948 
6949   // Get the operand that was not the reduction chain and match it to one of the
6950   // patterns, returning the better cost if it is found.
6951   Instruction *RedOp = RetI->getOperand(1) == LastChain
6952                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6953                            : dyn_cast<Instruction>(RetI->getOperand(1));
6954 
6955   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6956 
6957   if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) &&
6958       !TheLoop->isLoopInvariant(RedOp)) {
6959     bool IsUnsigned = isa<ZExtInst>(RedOp);
6960     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6961     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6962         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6963         CostKind);
6964 
6965     unsigned ExtCost =
6966         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6967                              TTI::CastContextHint::None, CostKind, RedOp);
6968     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6969       return I == RetI ? *RedCost.getValue() : 0;
6970   } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) {
6971     Instruction *Mul = RedOp;
6972     Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0));
6973     Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1));
6974     if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) &&
6975         Op0->getOpcode() == Op1->getOpcode() &&
6976         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6977         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6978       bool IsUnsigned = isa<ZExtInst>(Op0);
6979       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6980       // reduce(mul(ext, ext))
6981       unsigned ExtCost =
6982           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
6983                                TTI::CastContextHint::None, CostKind, Op0);
6984       InstructionCost MulCost =
6985           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
6986 
6987       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6988           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6989           CostKind);
6990 
6991       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
6992         return I == RetI ? *RedCost.getValue() : 0;
6993     } else {
6994       InstructionCost MulCost =
6995           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
6996 
6997       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6998           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6999           CostKind);
7000 
7001       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7002         return I == RetI ? *RedCost.getValue() : 0;
7003     }
7004   }
7005 
7006   return I == RetI ? BaseCost : InstructionCost::getInvalid();
7007 }
7008 
7009 InstructionCost
7010 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7011                                                      ElementCount VF) {
7012   // Calculate scalar cost only. Vectorization cost should be ready at this
7013   // moment.
7014   if (VF.isScalar()) {
7015     Type *ValTy = getMemInstValueType(I);
7016     const Align Alignment = getLoadStoreAlignment(I);
7017     unsigned AS = getLoadStoreAddressSpace(I);
7018 
7019     return TTI.getAddressComputationCost(ValTy) +
7020            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7021                                TTI::TCK_RecipThroughput, I);
7022   }
7023   return getWideningCost(I, VF);
7024 }
7025 
7026 LoopVectorizationCostModel::VectorizationCostTy
7027 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7028                                                ElementCount VF) {
7029   // If we know that this instruction will remain uniform, check the cost of
7030   // the scalar version.
7031   if (isUniformAfterVectorization(I, VF))
7032     VF = ElementCount::getFixed(1);
7033 
7034   if (VF.isVector() && isProfitableToScalarize(I, VF))
7035     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7036 
7037   // Forced scalars do not have any scalarization overhead.
7038   auto ForcedScalar = ForcedScalars.find(VF);
7039   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7040     auto InstSet = ForcedScalar->second;
7041     if (InstSet.count(I))
7042       return VectorizationCostTy(
7043           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7044            VF.getKnownMinValue()),
7045           false);
7046   }
7047 
7048   Type *VectorTy;
7049   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7050 
7051   bool TypeNotScalarized =
7052       VF.isVector() && VectorTy->isVectorTy() &&
7053       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7054   return VectorizationCostTy(C, TypeNotScalarized);
7055 }
7056 
7057 InstructionCost
7058 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7059                                                      ElementCount VF) {
7060 
7061   if (VF.isScalable())
7062     return InstructionCost::getInvalid();
7063 
7064   if (VF.isScalar())
7065     return 0;
7066 
7067   InstructionCost Cost = 0;
7068   Type *RetTy = ToVectorTy(I->getType(), VF);
7069   if (!RetTy->isVoidTy() &&
7070       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7071     Cost += TTI.getScalarizationOverhead(
7072         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7073         true, false);
7074 
7075   // Some targets keep addresses scalar.
7076   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7077     return Cost;
7078 
7079   // Some targets support efficient element stores.
7080   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7081     return Cost;
7082 
7083   // Collect operands to consider.
7084   CallInst *CI = dyn_cast<CallInst>(I);
7085   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7086 
7087   // Skip operands that do not require extraction/scalarization and do not incur
7088   // any overhead.
7089   SmallVector<Type *> Tys;
7090   for (auto *V : filterExtractingOperands(Ops, VF))
7091     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7092   return Cost + TTI.getOperandsScalarizationOverhead(
7093                     filterExtractingOperands(Ops, VF), Tys);
7094 }
7095 
7096 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7097   if (VF.isScalar())
7098     return;
7099   NumPredStores = 0;
7100   for (BasicBlock *BB : TheLoop->blocks()) {
7101     // For each instruction in the old loop.
7102     for (Instruction &I : *BB) {
7103       Value *Ptr =  getLoadStorePointerOperand(&I);
7104       if (!Ptr)
7105         continue;
7106 
7107       // TODO: We should generate better code and update the cost model for
7108       // predicated uniform stores. Today they are treated as any other
7109       // predicated store (see added test cases in
7110       // invariant-store-vectorization.ll).
7111       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7112         NumPredStores++;
7113 
7114       if (Legal->isUniformMemOp(I)) {
7115         // TODO: Avoid replicating loads and stores instead of
7116         // relying on instcombine to remove them.
7117         // Load: Scalar load + broadcast
7118         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7119         InstructionCost Cost = getUniformMemOpCost(&I, VF);
7120         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7121         continue;
7122       }
7123 
7124       // We assume that widening is the best solution when possible.
7125       if (memoryInstructionCanBeWidened(&I, VF)) {
7126         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7127         int ConsecutiveStride =
7128                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7129         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7130                "Expected consecutive stride.");
7131         InstWidening Decision =
7132             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7133         setWideningDecision(&I, VF, Decision, Cost);
7134         continue;
7135       }
7136 
7137       // Choose between Interleaving, Gather/Scatter or Scalarization.
7138       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7139       unsigned NumAccesses = 1;
7140       if (isAccessInterleaved(&I)) {
7141         auto Group = getInterleavedAccessGroup(&I);
7142         assert(Group && "Fail to get an interleaved access group.");
7143 
7144         // Make one decision for the whole group.
7145         if (getWideningDecision(&I, VF) != CM_Unknown)
7146           continue;
7147 
7148         NumAccesses = Group->getNumMembers();
7149         if (interleavedAccessCanBeWidened(&I, VF))
7150           InterleaveCost = getInterleaveGroupCost(&I, VF);
7151       }
7152 
7153       InstructionCost GatherScatterCost =
7154           isLegalGatherOrScatter(&I)
7155               ? getGatherScatterCost(&I, VF) * NumAccesses
7156               : InstructionCost::getInvalid();
7157 
7158       InstructionCost ScalarizationCost =
7159           !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses
7160                            : InstructionCost::getInvalid();
7161 
7162       // Choose better solution for the current VF,
7163       // write down this decision and use it during vectorization.
7164       InstructionCost Cost;
7165       InstWidening Decision;
7166       if (InterleaveCost <= GatherScatterCost &&
7167           InterleaveCost < ScalarizationCost) {
7168         Decision = CM_Interleave;
7169         Cost = InterleaveCost;
7170       } else if (GatherScatterCost < ScalarizationCost) {
7171         Decision = CM_GatherScatter;
7172         Cost = GatherScatterCost;
7173       } else {
7174         assert(!VF.isScalable() &&
7175                "We cannot yet scalarise for scalable vectors");
7176         Decision = CM_Scalarize;
7177         Cost = ScalarizationCost;
7178       }
7179       // If the instructions belongs to an interleave group, the whole group
7180       // receives the same decision. The whole group receives the cost, but
7181       // the cost will actually be assigned to one instruction.
7182       if (auto Group = getInterleavedAccessGroup(&I))
7183         setWideningDecision(Group, VF, Decision, Cost);
7184       else
7185         setWideningDecision(&I, VF, Decision, Cost);
7186     }
7187   }
7188 
7189   // Make sure that any load of address and any other address computation
7190   // remains scalar unless there is gather/scatter support. This avoids
7191   // inevitable extracts into address registers, and also has the benefit of
7192   // activating LSR more, since that pass can't optimize vectorized
7193   // addresses.
7194   if (TTI.prefersVectorizedAddressing())
7195     return;
7196 
7197   // Start with all scalar pointer uses.
7198   SmallPtrSet<Instruction *, 8> AddrDefs;
7199   for (BasicBlock *BB : TheLoop->blocks())
7200     for (Instruction &I : *BB) {
7201       Instruction *PtrDef =
7202         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7203       if (PtrDef && TheLoop->contains(PtrDef) &&
7204           getWideningDecision(&I, VF) != CM_GatherScatter)
7205         AddrDefs.insert(PtrDef);
7206     }
7207 
7208   // Add all instructions used to generate the addresses.
7209   SmallVector<Instruction *, 4> Worklist;
7210   append_range(Worklist, AddrDefs);
7211   while (!Worklist.empty()) {
7212     Instruction *I = Worklist.pop_back_val();
7213     for (auto &Op : I->operands())
7214       if (auto *InstOp = dyn_cast<Instruction>(Op))
7215         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7216             AddrDefs.insert(InstOp).second)
7217           Worklist.push_back(InstOp);
7218   }
7219 
7220   for (auto *I : AddrDefs) {
7221     if (isa<LoadInst>(I)) {
7222       // Setting the desired widening decision should ideally be handled in
7223       // by cost functions, but since this involves the task of finding out
7224       // if the loaded register is involved in an address computation, it is
7225       // instead changed here when we know this is the case.
7226       InstWidening Decision = getWideningDecision(I, VF);
7227       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7228         // Scalarize a widened load of address.
7229         setWideningDecision(
7230             I, VF, CM_Scalarize,
7231             (VF.getKnownMinValue() *
7232              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7233       else if (auto Group = getInterleavedAccessGroup(I)) {
7234         // Scalarize an interleave group of address loads.
7235         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7236           if (Instruction *Member = Group->getMember(I))
7237             setWideningDecision(
7238                 Member, VF, CM_Scalarize,
7239                 (VF.getKnownMinValue() *
7240                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7241         }
7242       }
7243     } else
7244       // Make sure I gets scalarized and a cost estimate without
7245       // scalarization overhead.
7246       ForcedScalars[VF].insert(I);
7247   }
7248 }
7249 
7250 InstructionCost
7251 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7252                                                Type *&VectorTy) {
7253   Type *RetTy = I->getType();
7254   if (canTruncateToMinimalBitwidth(I, VF))
7255     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7256   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
7257   auto SE = PSE.getSE();
7258   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7259 
7260   // TODO: We need to estimate the cost of intrinsic calls.
7261   switch (I->getOpcode()) {
7262   case Instruction::GetElementPtr:
7263     // We mark this instruction as zero-cost because the cost of GEPs in
7264     // vectorized code depends on whether the corresponding memory instruction
7265     // is scalarized or not. Therefore, we handle GEPs with the memory
7266     // instruction cost.
7267     return 0;
7268   case Instruction::Br: {
7269     // In cases of scalarized and predicated instructions, there will be VF
7270     // predicated blocks in the vectorized loop. Each branch around these
7271     // blocks requires also an extract of its vector compare i1 element.
7272     bool ScalarPredicatedBB = false;
7273     BranchInst *BI = cast<BranchInst>(I);
7274     if (VF.isVector() && BI->isConditional() &&
7275         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7276          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7277       ScalarPredicatedBB = true;
7278 
7279     if (ScalarPredicatedBB) {
7280       // Return cost for branches around scalarized and predicated blocks.
7281       assert(!VF.isScalable() && "scalable vectors not yet supported.");
7282       auto *Vec_i1Ty =
7283           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7284       return (TTI.getScalarizationOverhead(
7285                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7286                   false, true) +
7287               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
7288                VF.getKnownMinValue()));
7289     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7290       // The back-edge branch will remain, as will all scalar branches.
7291       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7292     else
7293       // This branch will be eliminated by if-conversion.
7294       return 0;
7295     // Note: We currently assume zero cost for an unconditional branch inside
7296     // a predicated block since it will become a fall-through, although we
7297     // may decide in the future to call TTI for all branches.
7298   }
7299   case Instruction::PHI: {
7300     auto *Phi = cast<PHINode>(I);
7301 
7302     // First-order recurrences are replaced by vector shuffles inside the loop.
7303     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7304     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7305       return TTI.getShuffleCost(
7306           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7307           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7308 
7309     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7310     // converted into select instructions. We require N - 1 selects per phi
7311     // node, where N is the number of incoming values.
7312     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7313       return (Phi->getNumIncomingValues() - 1) *
7314              TTI.getCmpSelInstrCost(
7315                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7316                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7317                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7318 
7319     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7320   }
7321   case Instruction::UDiv:
7322   case Instruction::SDiv:
7323   case Instruction::URem:
7324   case Instruction::SRem:
7325     // If we have a predicated instruction, it may not be executed for each
7326     // vector lane. Get the scalarization cost and scale this amount by the
7327     // probability of executing the predicated block. If the instruction is not
7328     // predicated, we fall through to the next case.
7329     if (VF.isVector() && isScalarWithPredication(I)) {
7330       InstructionCost Cost = 0;
7331 
7332       // These instructions have a non-void type, so account for the phi nodes
7333       // that we will create. This cost is likely to be zero. The phi node
7334       // cost, if any, should be scaled by the block probability because it
7335       // models a copy at the end of each predicated block.
7336       Cost += VF.getKnownMinValue() *
7337               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7338 
7339       // The cost of the non-predicated instruction.
7340       Cost += VF.getKnownMinValue() *
7341               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7342 
7343       // The cost of insertelement and extractelement instructions needed for
7344       // scalarization.
7345       Cost += getScalarizationOverhead(I, VF);
7346 
7347       // Scale the cost by the probability of executing the predicated blocks.
7348       // This assumes the predicated block for each vector lane is equally
7349       // likely.
7350       return Cost / getReciprocalPredBlockProb();
7351     }
7352     LLVM_FALLTHROUGH;
7353   case Instruction::Add:
7354   case Instruction::FAdd:
7355   case Instruction::Sub:
7356   case Instruction::FSub:
7357   case Instruction::Mul:
7358   case Instruction::FMul:
7359   case Instruction::FDiv:
7360   case Instruction::FRem:
7361   case Instruction::Shl:
7362   case Instruction::LShr:
7363   case Instruction::AShr:
7364   case Instruction::And:
7365   case Instruction::Or:
7366   case Instruction::Xor: {
7367     // Since we will replace the stride by 1 the multiplication should go away.
7368     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7369       return 0;
7370 
7371     // Detect reduction patterns
7372     InstructionCost RedCost;
7373     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7374             .isValid())
7375       return RedCost;
7376 
7377     // Certain instructions can be cheaper to vectorize if they have a constant
7378     // second vector operand. One example of this are shifts on x86.
7379     Value *Op2 = I->getOperand(1);
7380     TargetTransformInfo::OperandValueProperties Op2VP;
7381     TargetTransformInfo::OperandValueKind Op2VK =
7382         TTI.getOperandInfo(Op2, Op2VP);
7383     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7384       Op2VK = TargetTransformInfo::OK_UniformValue;
7385 
7386     SmallVector<const Value *, 4> Operands(I->operand_values());
7387     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
7388     return N * TTI.getArithmeticInstrCost(
7389                    I->getOpcode(), VectorTy, CostKind,
7390                    TargetTransformInfo::OK_AnyValue,
7391                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7392   }
7393   case Instruction::FNeg: {
7394     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
7395     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
7396     return N * TTI.getArithmeticInstrCost(
7397                    I->getOpcode(), VectorTy, CostKind,
7398                    TargetTransformInfo::OK_AnyValue,
7399                    TargetTransformInfo::OK_AnyValue,
7400                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
7401                    I->getOperand(0), I);
7402   }
7403   case Instruction::Select: {
7404     SelectInst *SI = cast<SelectInst>(I);
7405     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7406     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7407     Type *CondTy = SI->getCondition()->getType();
7408     if (!ScalarCond)
7409       CondTy = VectorType::get(CondTy, VF);
7410     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7411                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7412   }
7413   case Instruction::ICmp:
7414   case Instruction::FCmp: {
7415     Type *ValTy = I->getOperand(0)->getType();
7416     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7417     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7418       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7419     VectorTy = ToVectorTy(ValTy, VF);
7420     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7421                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7422   }
7423   case Instruction::Store:
7424   case Instruction::Load: {
7425     ElementCount Width = VF;
7426     if (Width.isVector()) {
7427       InstWidening Decision = getWideningDecision(I, Width);
7428       assert(Decision != CM_Unknown &&
7429              "CM decision should be taken at this point");
7430       if (Decision == CM_Scalarize)
7431         Width = ElementCount::getFixed(1);
7432     }
7433     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7434     return getMemoryInstructionCost(I, VF);
7435   }
7436   case Instruction::ZExt:
7437   case Instruction::SExt:
7438   case Instruction::FPToUI:
7439   case Instruction::FPToSI:
7440   case Instruction::FPExt:
7441   case Instruction::PtrToInt:
7442   case Instruction::IntToPtr:
7443   case Instruction::SIToFP:
7444   case Instruction::UIToFP:
7445   case Instruction::Trunc:
7446   case Instruction::FPTrunc:
7447   case Instruction::BitCast: {
7448     // Computes the CastContextHint from a Load/Store instruction.
7449     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7450       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7451              "Expected a load or a store!");
7452 
7453       if (VF.isScalar() || !TheLoop->contains(I))
7454         return TTI::CastContextHint::Normal;
7455 
7456       switch (getWideningDecision(I, VF)) {
7457       case LoopVectorizationCostModel::CM_GatherScatter:
7458         return TTI::CastContextHint::GatherScatter;
7459       case LoopVectorizationCostModel::CM_Interleave:
7460         return TTI::CastContextHint::Interleave;
7461       case LoopVectorizationCostModel::CM_Scalarize:
7462       case LoopVectorizationCostModel::CM_Widen:
7463         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7464                                         : TTI::CastContextHint::Normal;
7465       case LoopVectorizationCostModel::CM_Widen_Reverse:
7466         return TTI::CastContextHint::Reversed;
7467       case LoopVectorizationCostModel::CM_Unknown:
7468         llvm_unreachable("Instr did not go through cost modelling?");
7469       }
7470 
7471       llvm_unreachable("Unhandled case!");
7472     };
7473 
7474     unsigned Opcode = I->getOpcode();
7475     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7476     // For Trunc, the context is the only user, which must be a StoreInst.
7477     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7478       if (I->hasOneUse())
7479         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7480           CCH = ComputeCCH(Store);
7481     }
7482     // For Z/Sext, the context is the operand, which must be a LoadInst.
7483     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7484              Opcode == Instruction::FPExt) {
7485       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7486         CCH = ComputeCCH(Load);
7487     }
7488 
7489     // We optimize the truncation of induction variables having constant
7490     // integer steps. The cost of these truncations is the same as the scalar
7491     // operation.
7492     if (isOptimizableIVTruncate(I, VF)) {
7493       auto *Trunc = cast<TruncInst>(I);
7494       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7495                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7496     }
7497 
7498     // Detect reduction patterns
7499     InstructionCost RedCost;
7500     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7501             .isValid())
7502       return RedCost;
7503 
7504     Type *SrcScalarTy = I->getOperand(0)->getType();
7505     Type *SrcVecTy =
7506         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7507     if (canTruncateToMinimalBitwidth(I, VF)) {
7508       // This cast is going to be shrunk. This may remove the cast or it might
7509       // turn it into slightly different cast. For example, if MinBW == 16,
7510       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7511       //
7512       // Calculate the modified src and dest types.
7513       Type *MinVecTy = VectorTy;
7514       if (Opcode == Instruction::Trunc) {
7515         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7516         VectorTy =
7517             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7518       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7519         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7520         VectorTy =
7521             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7522       }
7523     }
7524 
7525     unsigned N;
7526     if (isScalarAfterVectorization(I, VF)) {
7527       assert(!VF.isScalable() && "VF is assumed to be non scalable");
7528       N = VF.getKnownMinValue();
7529     } else
7530       N = 1;
7531     return N *
7532            TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7533   }
7534   case Instruction::Call: {
7535     bool NeedToScalarize;
7536     CallInst *CI = cast<CallInst>(I);
7537     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7538     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7539       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7540       return std::min(CallCost, IntrinsicCost);
7541     }
7542     return CallCost;
7543   }
7544   case Instruction::ExtractValue:
7545     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7546   default:
7547     // The cost of executing VF copies of the scalar instruction. This opcode
7548     // is unknown. Assume that it is the same as 'mul'.
7549     return VF.getKnownMinValue() * TTI.getArithmeticInstrCost(
7550                                        Instruction::Mul, VectorTy, CostKind) +
7551            getScalarizationOverhead(I, VF);
7552   } // end of switch.
7553 }
7554 
7555 char LoopVectorize::ID = 0;
7556 
7557 static const char lv_name[] = "Loop Vectorization";
7558 
7559 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7560 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7561 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7562 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7563 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7564 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7565 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7566 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7567 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7568 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7569 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7570 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7571 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7572 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7573 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7574 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7575 
7576 namespace llvm {
7577 
7578 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7579 
7580 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7581                               bool VectorizeOnlyWhenForced) {
7582   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7583 }
7584 
7585 } // end namespace llvm
7586 
7587 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7588   // Check if the pointer operand of a load or store instruction is
7589   // consecutive.
7590   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7591     return Legal->isConsecutivePtr(Ptr);
7592   return false;
7593 }
7594 
7595 void LoopVectorizationCostModel::collectValuesToIgnore() {
7596   // Ignore ephemeral values.
7597   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7598 
7599   // Ignore type-promoting instructions we identified during reduction
7600   // detection.
7601   for (auto &Reduction : Legal->getReductionVars()) {
7602     RecurrenceDescriptor &RedDes = Reduction.second;
7603     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7604     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7605   }
7606   // Ignore type-casting instructions we identified during induction
7607   // detection.
7608   for (auto &Induction : Legal->getInductionVars()) {
7609     InductionDescriptor &IndDes = Induction.second;
7610     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7611     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7612   }
7613 }
7614 
7615 void LoopVectorizationCostModel::collectInLoopReductions() {
7616   for (auto &Reduction : Legal->getReductionVars()) {
7617     PHINode *Phi = Reduction.first;
7618     RecurrenceDescriptor &RdxDesc = Reduction.second;
7619 
7620     // We don't collect reductions that are type promoted (yet).
7621     if (RdxDesc.getRecurrenceType() != Phi->getType())
7622       continue;
7623 
7624     // If the target would prefer this reduction to happen "in-loop", then we
7625     // want to record it as such.
7626     unsigned Opcode = RdxDesc.getOpcode();
7627     if (!PreferInLoopReductions &&
7628         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7629                                    TargetTransformInfo::ReductionFlags()))
7630       continue;
7631 
7632     // Check that we can correctly put the reductions into the loop, by
7633     // finding the chain of operations that leads from the phi to the loop
7634     // exit value.
7635     SmallVector<Instruction *, 4> ReductionOperations =
7636         RdxDesc.getReductionOpChain(Phi, TheLoop);
7637     bool InLoop = !ReductionOperations.empty();
7638     if (InLoop) {
7639       InLoopReductionChains[Phi] = ReductionOperations;
7640       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7641       Instruction *LastChain = Phi;
7642       for (auto *I : ReductionOperations) {
7643         InLoopReductionImmediateChains[I] = LastChain;
7644         LastChain = I;
7645       }
7646     }
7647     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7648                       << " reduction for phi: " << *Phi << "\n");
7649   }
7650 }
7651 
7652 // TODO: we could return a pair of values that specify the max VF and
7653 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7654 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7655 // doesn't have a cost model that can choose which plan to execute if
7656 // more than one is generated.
7657 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7658                                  LoopVectorizationCostModel &CM) {
7659   unsigned WidestType;
7660   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7661   return WidestVectorRegBits / WidestType;
7662 }
7663 
7664 VectorizationFactor
7665 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7666   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7667   ElementCount VF = UserVF;
7668   // Outer loop handling: They may require CFG and instruction level
7669   // transformations before even evaluating whether vectorization is profitable.
7670   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7671   // the vectorization pipeline.
7672   if (!OrigLoop->isInnermost()) {
7673     // If the user doesn't provide a vectorization factor, determine a
7674     // reasonable one.
7675     if (UserVF.isZero()) {
7676       VF = ElementCount::getFixed(determineVPlanVF(
7677           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7678               .getFixedSize(),
7679           CM));
7680       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7681 
7682       // Make sure we have a VF > 1 for stress testing.
7683       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7684         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7685                           << "overriding computed VF.\n");
7686         VF = ElementCount::getFixed(4);
7687       }
7688     }
7689     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7690     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7691            "VF needs to be a power of two");
7692     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7693                       << "VF " << VF << " to build VPlans.\n");
7694     buildVPlans(VF, VF);
7695 
7696     // For VPlan build stress testing, we bail out after VPlan construction.
7697     if (VPlanBuildStressTest)
7698       return VectorizationFactor::Disabled();
7699 
7700     return {VF, 0 /*Cost*/};
7701   }
7702 
7703   LLVM_DEBUG(
7704       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7705                 "VPlan-native path.\n");
7706   return VectorizationFactor::Disabled();
7707 }
7708 
7709 Optional<VectorizationFactor>
7710 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7711   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7712   Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
7713   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
7714     return None;
7715 
7716   // Invalidate interleave groups if all blocks of loop will be predicated.
7717   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7718       !useMaskedInterleavedAccesses(*TTI)) {
7719     LLVM_DEBUG(
7720         dbgs()
7721         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7722            "which requires masked-interleaved support.\n");
7723     if (CM.InterleaveInfo.invalidateGroups())
7724       // Invalidating interleave groups also requires invalidating all decisions
7725       // based on them, which includes widening decisions and uniform and scalar
7726       // values.
7727       CM.invalidateCostModelingDecisions();
7728   }
7729 
7730   ElementCount MaxVF = MaybeMaxVF.getValue();
7731   assert(MaxVF.isNonZero() && "MaxVF is zero.");
7732 
7733   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF);
7734   if (!UserVF.isZero() &&
7735       (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) {
7736     // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable
7737     // VFs here, this should be reverted to only use legal UserVFs once the
7738     // loop below supports scalable VFs.
7739     ElementCount VF = UserVFIsLegal ? UserVF : MaxVF;
7740     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max")
7741                       << " VF " << VF << ".\n");
7742     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7743            "VF needs to be a power of two");
7744     // Collect the instructions (and their associated costs) that will be more
7745     // profitable to scalarize.
7746     CM.selectUserVectorizationFactor(VF);
7747     CM.collectInLoopReductions();
7748     buildVPlansWithVPRecipes(VF, VF);
7749     LLVM_DEBUG(printPlans(dbgs()));
7750     return {{VF, 0}};
7751   }
7752 
7753   assert(!MaxVF.isScalable() &&
7754          "Scalable vectors not yet supported beyond this point");
7755 
7756   for (ElementCount VF = ElementCount::getFixed(1);
7757        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7758     // Collect Uniform and Scalar instructions after vectorization with VF.
7759     CM.collectUniformsAndScalars(VF);
7760 
7761     // Collect the instructions (and their associated costs) that will be more
7762     // profitable to scalarize.
7763     if (VF.isVector())
7764       CM.collectInstsToScalarize(VF);
7765   }
7766 
7767   CM.collectInLoopReductions();
7768 
7769   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
7770   LLVM_DEBUG(printPlans(dbgs()));
7771   if (MaxVF.isScalar())
7772     return VectorizationFactor::Disabled();
7773 
7774   // Select the optimal vectorization factor.
7775   return CM.selectVectorizationFactor(MaxVF);
7776 }
7777 
7778 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
7779   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
7780                     << '\n');
7781   BestVF = VF;
7782   BestUF = UF;
7783 
7784   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7785     return !Plan->hasVF(VF);
7786   });
7787   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7788 }
7789 
7790 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7791                                            DominatorTree *DT) {
7792   // Perform the actual loop transformation.
7793 
7794   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7795   assert(BestVF.hasValue() && "Vectorization Factor is missing");
7796   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7797 
7798   VPTransformState State{
7799       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
7800   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7801   State.TripCount = ILV.getOrCreateTripCount(nullptr);
7802   State.CanonicalIV = ILV.Induction;
7803 
7804   ILV.printDebugTracesAtStart();
7805 
7806   //===------------------------------------------------===//
7807   //
7808   // Notice: any optimization or new instruction that go
7809   // into the code below should also be implemented in
7810   // the cost-model.
7811   //
7812   //===------------------------------------------------===//
7813 
7814   // 2. Copy and widen instructions from the old loop into the new loop.
7815   VPlans.front()->execute(&State);
7816 
7817   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7818   //    predication, updating analyses.
7819   ILV.fixVectorizedLoop(State);
7820 
7821   ILV.printDebugTracesAtEnd();
7822 }
7823 
7824 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7825 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7826   for (const auto &Plan : VPlans)
7827     if (PrintVPlansInDotFormat)
7828       Plan->printDOT(O);
7829     else
7830       Plan->print(O);
7831 }
7832 #endif
7833 
7834 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7835     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7836 
7837   // We create new control-flow for the vectorized loop, so the original exit
7838   // conditions will be dead after vectorization if it's only used by the
7839   // terminator
7840   SmallVector<BasicBlock*> ExitingBlocks;
7841   OrigLoop->getExitingBlocks(ExitingBlocks);
7842   for (auto *BB : ExitingBlocks) {
7843     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7844     if (!Cmp || !Cmp->hasOneUse())
7845       continue;
7846 
7847     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7848     if (!DeadInstructions.insert(Cmp).second)
7849       continue;
7850 
7851     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7852     // TODO: can recurse through operands in general
7853     for (Value *Op : Cmp->operands()) {
7854       if (isa<TruncInst>(Op) && Op->hasOneUse())
7855           DeadInstructions.insert(cast<Instruction>(Op));
7856     }
7857   }
7858 
7859   // We create new "steps" for induction variable updates to which the original
7860   // induction variables map. An original update instruction will be dead if
7861   // all its users except the induction variable are dead.
7862   auto *Latch = OrigLoop->getLoopLatch();
7863   for (auto &Induction : Legal->getInductionVars()) {
7864     PHINode *Ind = Induction.first;
7865     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7866 
7867     // If the tail is to be folded by masking, the primary induction variable,
7868     // if exists, isn't dead: it will be used for masking. Don't kill it.
7869     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7870       continue;
7871 
7872     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7873           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7874         }))
7875       DeadInstructions.insert(IndUpdate);
7876 
7877     // We record as "Dead" also the type-casting instructions we had identified
7878     // during induction analysis. We don't need any handling for them in the
7879     // vectorized loop because we have proven that, under a proper runtime
7880     // test guarding the vectorized loop, the value of the phi, and the casted
7881     // value of the phi, are the same. The last instruction in this casting chain
7882     // will get its scalar/vector/widened def from the scalar/vector/widened def
7883     // of the respective phi node. Any other casts in the induction def-use chain
7884     // have no other uses outside the phi update chain, and will be ignored.
7885     InductionDescriptor &IndDes = Induction.second;
7886     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7887     DeadInstructions.insert(Casts.begin(), Casts.end());
7888   }
7889 }
7890 
7891 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7892 
7893 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7894 
7895 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7896                                         Instruction::BinaryOps BinOp) {
7897   // When unrolling and the VF is 1, we only need to add a simple scalar.
7898   Type *Ty = Val->getType();
7899   assert(!Ty->isVectorTy() && "Val must be a scalar");
7900 
7901   if (Ty->isFloatingPointTy()) {
7902     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7903 
7904     // Floating-point operations inherit FMF via the builder's flags.
7905     Value *MulOp = Builder.CreateFMul(C, Step);
7906     return Builder.CreateBinOp(BinOp, Val, MulOp);
7907   }
7908   Constant *C = ConstantInt::get(Ty, StartIdx);
7909   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7910 }
7911 
7912 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7913   SmallVector<Metadata *, 4> MDs;
7914   // Reserve first location for self reference to the LoopID metadata node.
7915   MDs.push_back(nullptr);
7916   bool IsUnrollMetadata = false;
7917   MDNode *LoopID = L->getLoopID();
7918   if (LoopID) {
7919     // First find existing loop unrolling disable metadata.
7920     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7921       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7922       if (MD) {
7923         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7924         IsUnrollMetadata =
7925             S && S->getString().startswith("llvm.loop.unroll.disable");
7926       }
7927       MDs.push_back(LoopID->getOperand(i));
7928     }
7929   }
7930 
7931   if (!IsUnrollMetadata) {
7932     // Add runtime unroll disable metadata.
7933     LLVMContext &Context = L->getHeader()->getContext();
7934     SmallVector<Metadata *, 1> DisableOperands;
7935     DisableOperands.push_back(
7936         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7937     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7938     MDs.push_back(DisableNode);
7939     MDNode *NewLoopID = MDNode::get(Context, MDs);
7940     // Set operand 0 to refer to the loop id itself.
7941     NewLoopID->replaceOperandWith(0, NewLoopID);
7942     L->setLoopID(NewLoopID);
7943   }
7944 }
7945 
7946 //===--------------------------------------------------------------------===//
7947 // EpilogueVectorizerMainLoop
7948 //===--------------------------------------------------------------------===//
7949 
7950 /// This function is partially responsible for generating the control flow
7951 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7952 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7953   MDNode *OrigLoopID = OrigLoop->getLoopID();
7954   Loop *Lp = createVectorLoopSkeleton("");
7955 
7956   // Generate the code to check the minimum iteration count of the vector
7957   // epilogue (see below).
7958   EPI.EpilogueIterationCountCheck =
7959       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
7960   EPI.EpilogueIterationCountCheck->setName("iter.check");
7961 
7962   // Generate the code to check any assumptions that we've made for SCEV
7963   // expressions.
7964   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
7965 
7966   // Generate the code that checks at runtime if arrays overlap. We put the
7967   // checks into a separate block to make the more common case of few elements
7968   // faster.
7969   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
7970 
7971   // Generate the iteration count check for the main loop, *after* the check
7972   // for the epilogue loop, so that the path-length is shorter for the case
7973   // that goes directly through the vector epilogue. The longer-path length for
7974   // the main loop is compensated for, by the gain from vectorizing the larger
7975   // trip count. Note: the branch will get updated later on when we vectorize
7976   // the epilogue.
7977   EPI.MainLoopIterationCountCheck =
7978       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
7979 
7980   // Generate the induction variable.
7981   OldInduction = Legal->getPrimaryInduction();
7982   Type *IdxTy = Legal->getWidestInductionType();
7983   Value *StartIdx = ConstantInt::get(IdxTy, 0);
7984   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
7985   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
7986   EPI.VectorTripCount = CountRoundDown;
7987   Induction =
7988       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
7989                               getDebugLocFromInstOrOperands(OldInduction));
7990 
7991   // Skip induction resume value creation here because they will be created in
7992   // the second pass. If we created them here, they wouldn't be used anyway,
7993   // because the vplan in the second pass still contains the inductions from the
7994   // original loop.
7995 
7996   return completeLoopSkeleton(Lp, OrigLoopID);
7997 }
7998 
7999 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8000   LLVM_DEBUG({
8001     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8002            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8003            << ", Main Loop UF:" << EPI.MainLoopUF
8004            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8005            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8006   });
8007 }
8008 
8009 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8010   DEBUG_WITH_TYPE(VerboseDebug, {
8011     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8012   });
8013 }
8014 
8015 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8016     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8017   assert(L && "Expected valid Loop.");
8018   assert(Bypass && "Expected valid bypass basic block.");
8019   unsigned VFactor =
8020       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8021   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8022   Value *Count = getOrCreateTripCount(L);
8023   // Reuse existing vector loop preheader for TC checks.
8024   // Note that new preheader block is generated for vector loop.
8025   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8026   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8027 
8028   // Generate code to check if the loop's trip count is less than VF * UF of the
8029   // main vector loop.
8030   auto P =
8031       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8032 
8033   Value *CheckMinIters = Builder.CreateICmp(
8034       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8035       "min.iters.check");
8036 
8037   if (!ForEpilogue)
8038     TCCheckBlock->setName("vector.main.loop.iter.check");
8039 
8040   // Create new preheader for vector loop.
8041   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8042                                    DT, LI, nullptr, "vector.ph");
8043 
8044   if (ForEpilogue) {
8045     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8046                                  DT->getNode(Bypass)->getIDom()) &&
8047            "TC check is expected to dominate Bypass");
8048 
8049     // Update dominator for Bypass & LoopExit.
8050     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8051     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8052 
8053     LoopBypassBlocks.push_back(TCCheckBlock);
8054 
8055     // Save the trip count so we don't have to regenerate it in the
8056     // vec.epilog.iter.check. This is safe to do because the trip count
8057     // generated here dominates the vector epilog iter check.
8058     EPI.TripCount = Count;
8059   }
8060 
8061   ReplaceInstWithInst(
8062       TCCheckBlock->getTerminator(),
8063       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8064 
8065   return TCCheckBlock;
8066 }
8067 
8068 //===--------------------------------------------------------------------===//
8069 // EpilogueVectorizerEpilogueLoop
8070 //===--------------------------------------------------------------------===//
8071 
8072 /// This function is partially responsible for generating the control flow
8073 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8074 BasicBlock *
8075 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8076   MDNode *OrigLoopID = OrigLoop->getLoopID();
8077   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8078 
8079   // Now, compare the remaining count and if there aren't enough iterations to
8080   // execute the vectorized epilogue skip to the scalar part.
8081   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8082   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8083   LoopVectorPreHeader =
8084       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8085                  LI, nullptr, "vec.epilog.ph");
8086   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8087                                           VecEpilogueIterationCountCheck);
8088 
8089   // Adjust the control flow taking the state info from the main loop
8090   // vectorization into account.
8091   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8092          "expected this to be saved from the previous pass.");
8093   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8094       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8095 
8096   DT->changeImmediateDominator(LoopVectorPreHeader,
8097                                EPI.MainLoopIterationCountCheck);
8098 
8099   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8100       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8101 
8102   if (EPI.SCEVSafetyCheck)
8103     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8104         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8105   if (EPI.MemSafetyCheck)
8106     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8107         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8108 
8109   DT->changeImmediateDominator(
8110       VecEpilogueIterationCountCheck,
8111       VecEpilogueIterationCountCheck->getSinglePredecessor());
8112 
8113   DT->changeImmediateDominator(LoopScalarPreHeader,
8114                                EPI.EpilogueIterationCountCheck);
8115   DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck);
8116 
8117   // Keep track of bypass blocks, as they feed start values to the induction
8118   // phis in the scalar loop preheader.
8119   if (EPI.SCEVSafetyCheck)
8120     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8121   if (EPI.MemSafetyCheck)
8122     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8123   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8124 
8125   // Generate a resume induction for the vector epilogue and put it in the
8126   // vector epilogue preheader
8127   Type *IdxTy = Legal->getWidestInductionType();
8128   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8129                                          LoopVectorPreHeader->getFirstNonPHI());
8130   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8131   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8132                            EPI.MainLoopIterationCountCheck);
8133 
8134   // Generate the induction variable.
8135   OldInduction = Legal->getPrimaryInduction();
8136   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8137   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8138   Value *StartIdx = EPResumeVal;
8139   Induction =
8140       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8141                               getDebugLocFromInstOrOperands(OldInduction));
8142 
8143   // Generate induction resume values. These variables save the new starting
8144   // indexes for the scalar loop. They are used to test if there are any tail
8145   // iterations left once the vector loop has completed.
8146   // Note that when the vectorized epilogue is skipped due to iteration count
8147   // check, then the resume value for the induction variable comes from
8148   // the trip count of the main vector loop, hence passing the AdditionalBypass
8149   // argument.
8150   createInductionResumeValues(Lp, CountRoundDown,
8151                               {VecEpilogueIterationCountCheck,
8152                                EPI.VectorTripCount} /* AdditionalBypass */);
8153 
8154   AddRuntimeUnrollDisableMetaData(Lp);
8155   return completeLoopSkeleton(Lp, OrigLoopID);
8156 }
8157 
8158 BasicBlock *
8159 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8160     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8161 
8162   assert(EPI.TripCount &&
8163          "Expected trip count to have been safed in the first pass.");
8164   assert(
8165       (!isa<Instruction>(EPI.TripCount) ||
8166        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8167       "saved trip count does not dominate insertion point.");
8168   Value *TC = EPI.TripCount;
8169   IRBuilder<> Builder(Insert->getTerminator());
8170   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8171 
8172   // Generate code to check if the loop's trip count is less than VF * UF of the
8173   // vector epilogue loop.
8174   auto P =
8175       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8176 
8177   Value *CheckMinIters = Builder.CreateICmp(
8178       P, Count,
8179       ConstantInt::get(Count->getType(),
8180                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8181       "min.epilog.iters.check");
8182 
8183   ReplaceInstWithInst(
8184       Insert->getTerminator(),
8185       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8186 
8187   LoopBypassBlocks.push_back(Insert);
8188   return Insert;
8189 }
8190 
8191 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8192   LLVM_DEBUG({
8193     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8194            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8195            << ", Main Loop UF:" << EPI.MainLoopUF
8196            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8197            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8198   });
8199 }
8200 
8201 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8202   DEBUG_WITH_TYPE(VerboseDebug, {
8203     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8204   });
8205 }
8206 
8207 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8208     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8209   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8210   bool PredicateAtRangeStart = Predicate(Range.Start);
8211 
8212   for (ElementCount TmpVF = Range.Start * 2;
8213        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8214     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8215       Range.End = TmpVF;
8216       break;
8217     }
8218 
8219   return PredicateAtRangeStart;
8220 }
8221 
8222 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8223 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8224 /// of VF's starting at a given VF and extending it as much as possible. Each
8225 /// vectorization decision can potentially shorten this sub-range during
8226 /// buildVPlan().
8227 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8228                                            ElementCount MaxVF) {
8229   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8230   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8231     VFRange SubRange = {VF, MaxVFPlusOne};
8232     VPlans.push_back(buildVPlan(SubRange));
8233     VF = SubRange.End;
8234   }
8235 }
8236 
8237 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8238                                          VPlanPtr &Plan) {
8239   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8240 
8241   // Look for cached value.
8242   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8243   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8244   if (ECEntryIt != EdgeMaskCache.end())
8245     return ECEntryIt->second;
8246 
8247   VPValue *SrcMask = createBlockInMask(Src, Plan);
8248 
8249   // The terminator has to be a branch inst!
8250   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8251   assert(BI && "Unexpected terminator found");
8252 
8253   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8254     return EdgeMaskCache[Edge] = SrcMask;
8255 
8256   // If source is an exiting block, we know the exit edge is dynamically dead
8257   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8258   // adding uses of an otherwise potentially dead instruction.
8259   if (OrigLoop->isLoopExiting(Src))
8260     return EdgeMaskCache[Edge] = SrcMask;
8261 
8262   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8263   assert(EdgeMask && "No Edge Mask found for condition");
8264 
8265   if (BI->getSuccessor(0) != Dst)
8266     EdgeMask = Builder.createNot(EdgeMask);
8267 
8268   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8269     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8270     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8271     // The select version does not introduce new UB if SrcMask is false and
8272     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8273     VPValue *False = Plan->getOrAddVPValue(
8274         ConstantInt::getFalse(BI->getCondition()->getType()));
8275     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8276   }
8277 
8278   return EdgeMaskCache[Edge] = EdgeMask;
8279 }
8280 
8281 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8282   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8283 
8284   // Look for cached value.
8285   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8286   if (BCEntryIt != BlockMaskCache.end())
8287     return BCEntryIt->second;
8288 
8289   // All-one mask is modelled as no-mask following the convention for masked
8290   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8291   VPValue *BlockMask = nullptr;
8292 
8293   if (OrigLoop->getHeader() == BB) {
8294     if (!CM.blockNeedsPredication(BB))
8295       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8296 
8297     // Create the block in mask as the first non-phi instruction in the block.
8298     VPBuilder::InsertPointGuard Guard(Builder);
8299     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8300     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8301 
8302     // Introduce the early-exit compare IV <= BTC to form header block mask.
8303     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8304     // Start by constructing the desired canonical IV.
8305     VPValue *IV = nullptr;
8306     if (Legal->getPrimaryInduction())
8307       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8308     else {
8309       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8310       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8311       IV = IVRecipe->getVPValue();
8312     }
8313     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8314     bool TailFolded = !CM.isScalarEpilogueAllowed();
8315 
8316     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8317       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8318       // as a second argument, we only pass the IV here and extract the
8319       // tripcount from the transform state where codegen of the VP instructions
8320       // happen.
8321       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8322     } else {
8323       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8324     }
8325     return BlockMaskCache[BB] = BlockMask;
8326   }
8327 
8328   // This is the block mask. We OR all incoming edges.
8329   for (auto *Predecessor : predecessors(BB)) {
8330     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8331     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8332       return BlockMaskCache[BB] = EdgeMask;
8333 
8334     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8335       BlockMask = EdgeMask;
8336       continue;
8337     }
8338 
8339     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8340   }
8341 
8342   return BlockMaskCache[BB] = BlockMask;
8343 }
8344 
8345 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
8346                                                 VPlanPtr &Plan) {
8347   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8348          "Must be called with either a load or store");
8349 
8350   auto willWiden = [&](ElementCount VF) -> bool {
8351     if (VF.isScalar())
8352       return false;
8353     LoopVectorizationCostModel::InstWidening Decision =
8354         CM.getWideningDecision(I, VF);
8355     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8356            "CM decision should be taken at this point.");
8357     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8358       return true;
8359     if (CM.isScalarAfterVectorization(I, VF) ||
8360         CM.isProfitableToScalarize(I, VF))
8361       return false;
8362     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8363   };
8364 
8365   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8366     return nullptr;
8367 
8368   VPValue *Mask = nullptr;
8369   if (Legal->isMaskRequired(I))
8370     Mask = createBlockInMask(I->getParent(), Plan);
8371 
8372   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
8373   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8374     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
8375 
8376   StoreInst *Store = cast<StoreInst>(I);
8377   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
8378   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
8379 }
8380 
8381 VPWidenIntOrFpInductionRecipe *
8382 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, VPlan &Plan) const {
8383   // Check if this is an integer or fp induction. If so, build the recipe that
8384   // produces its scalar and vector values.
8385   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8386   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8387       II.getKind() == InductionDescriptor::IK_FpInduction) {
8388     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8389     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8390     return new VPWidenIntOrFpInductionRecipe(
8391         Phi, Start, Casts.empty() ? nullptr : Casts.front());
8392   }
8393 
8394   return nullptr;
8395 }
8396 
8397 VPWidenIntOrFpInductionRecipe *
8398 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, VFRange &Range,
8399                                                 VPlan &Plan) const {
8400   // Optimize the special case where the source is a constant integer
8401   // induction variable. Notice that we can only optimize the 'trunc' case
8402   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8403   // (c) other casts depend on pointer size.
8404 
8405   // Determine whether \p K is a truncation based on an induction variable that
8406   // can be optimized.
8407   auto isOptimizableIVTruncate =
8408       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8409     return [=](ElementCount VF) -> bool {
8410       return CM.isOptimizableIVTruncate(K, VF);
8411     };
8412   };
8413 
8414   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8415           isOptimizableIVTruncate(I), Range)) {
8416 
8417     InductionDescriptor II =
8418         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8419     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8420     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8421                                              Start, nullptr, I);
8422   }
8423   return nullptr;
8424 }
8425 
8426 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
8427   // If all incoming values are equal, the incoming VPValue can be used directly
8428   // instead of creating a new VPBlendRecipe.
8429   Value *FirstIncoming = Phi->getIncomingValue(0);
8430   if (all_of(Phi->incoming_values(), [FirstIncoming](const Value *Inc) {
8431         return FirstIncoming == Inc;
8432       })) {
8433     return Plan->getOrAddVPValue(Phi->getIncomingValue(0));
8434   }
8435 
8436   // We know that all PHIs in non-header blocks are converted into selects, so
8437   // we don't have to worry about the insertion order and we can just use the
8438   // builder. At this point we generate the predication tree. There may be
8439   // duplications since this is a simple recursive scan, but future
8440   // optimizations will clean it up.
8441   SmallVector<VPValue *, 2> Operands;
8442   unsigned NumIncoming = Phi->getNumIncomingValues();
8443 
8444   for (unsigned In = 0; In < NumIncoming; In++) {
8445     VPValue *EdgeMask =
8446       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8447     assert((EdgeMask || NumIncoming == 1) &&
8448            "Multiple predecessors with one having a full mask");
8449     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
8450     if (EdgeMask)
8451       Operands.push_back(EdgeMask);
8452   }
8453   return toVPRecipeResult(new VPBlendRecipe(Phi, Operands));
8454 }
8455 
8456 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
8457                                                    VPlan &Plan) const {
8458 
8459   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8460       [this, CI](ElementCount VF) {
8461         return CM.isScalarWithPredication(CI, VF);
8462       },
8463       Range);
8464 
8465   if (IsPredicated)
8466     return nullptr;
8467 
8468   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8469   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8470              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8471              ID == Intrinsic::pseudoprobe ||
8472              ID == Intrinsic::experimental_noalias_scope_decl))
8473     return nullptr;
8474 
8475   auto willWiden = [&](ElementCount VF) -> bool {
8476     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8477     // The following case may be scalarized depending on the VF.
8478     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8479     // version of the instruction.
8480     // Is it beneficial to perform intrinsic call compared to lib call?
8481     bool NeedToScalarize = false;
8482     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8483     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8484     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8485     assert(IntrinsicCost.isValid() && CallCost.isValid() &&
8486            "Cannot have invalid costs while widening");
8487     return UseVectorIntrinsic || !NeedToScalarize;
8488   };
8489 
8490   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8491     return nullptr;
8492 
8493   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
8494 }
8495 
8496 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8497   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8498          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8499   // Instruction should be widened, unless it is scalar after vectorization,
8500   // scalarization is profitable or it is predicated.
8501   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8502     return CM.isScalarAfterVectorization(I, VF) ||
8503            CM.isProfitableToScalarize(I, VF) ||
8504            CM.isScalarWithPredication(I, VF);
8505   };
8506   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8507                                                              Range);
8508 }
8509 
8510 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
8511   auto IsVectorizableOpcode = [](unsigned Opcode) {
8512     switch (Opcode) {
8513     case Instruction::Add:
8514     case Instruction::And:
8515     case Instruction::AShr:
8516     case Instruction::BitCast:
8517     case Instruction::FAdd:
8518     case Instruction::FCmp:
8519     case Instruction::FDiv:
8520     case Instruction::FMul:
8521     case Instruction::FNeg:
8522     case Instruction::FPExt:
8523     case Instruction::FPToSI:
8524     case Instruction::FPToUI:
8525     case Instruction::FPTrunc:
8526     case Instruction::FRem:
8527     case Instruction::FSub:
8528     case Instruction::ICmp:
8529     case Instruction::IntToPtr:
8530     case Instruction::LShr:
8531     case Instruction::Mul:
8532     case Instruction::Or:
8533     case Instruction::PtrToInt:
8534     case Instruction::SDiv:
8535     case Instruction::Select:
8536     case Instruction::SExt:
8537     case Instruction::Shl:
8538     case Instruction::SIToFP:
8539     case Instruction::SRem:
8540     case Instruction::Sub:
8541     case Instruction::Trunc:
8542     case Instruction::UDiv:
8543     case Instruction::UIToFP:
8544     case Instruction::URem:
8545     case Instruction::Xor:
8546     case Instruction::ZExt:
8547       return true;
8548     }
8549     return false;
8550   };
8551 
8552   if (!IsVectorizableOpcode(I->getOpcode()))
8553     return nullptr;
8554 
8555   // Success: widen this instruction.
8556   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
8557 }
8558 
8559 VPBasicBlock *VPRecipeBuilder::handleReplication(
8560     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8561     VPlanPtr &Plan) {
8562   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8563       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8564       Range);
8565 
8566   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8567       [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); },
8568       Range);
8569 
8570   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8571                                        IsUniform, IsPredicated);
8572   setRecipe(I, Recipe);
8573   Plan->addVPValue(I, Recipe);
8574 
8575   // Find if I uses a predicated instruction. If so, it will use its scalar
8576   // value. Avoid hoisting the insert-element which packs the scalar value into
8577   // a vector value, as that happens iff all users use the vector value.
8578   for (VPValue *Op : Recipe->operands()) {
8579     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8580     if (!PredR)
8581       continue;
8582     auto *RepR =
8583         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8584     assert(RepR->isPredicated() &&
8585            "expected Replicate recipe to be predicated");
8586     RepR->setAlsoPack(false);
8587   }
8588 
8589   // Finalize the recipe for Instr, first if it is not predicated.
8590   if (!IsPredicated) {
8591     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8592     VPBB->appendRecipe(Recipe);
8593     return VPBB;
8594   }
8595   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8596   assert(VPBB->getSuccessors().empty() &&
8597          "VPBB has successors when handling predicated replication.");
8598   // Record predicated instructions for above packing optimizations.
8599   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8600   VPBlockUtils::insertBlockAfter(Region, VPBB);
8601   auto *RegSucc = new VPBasicBlock();
8602   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8603   return RegSucc;
8604 }
8605 
8606 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8607                                                       VPRecipeBase *PredRecipe,
8608                                                       VPlanPtr &Plan) {
8609   // Instructions marked for predication are replicated and placed under an
8610   // if-then construct to prevent side-effects.
8611 
8612   // Generate recipes to compute the block mask for this region.
8613   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8614 
8615   // Build the triangular if-then region.
8616   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8617   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8618   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8619   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8620   auto *PHIRecipe = Instr->getType()->isVoidTy()
8621                         ? nullptr
8622                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8623   if (PHIRecipe) {
8624     Plan->removeVPValueFor(Instr);
8625     Plan->addVPValue(Instr, PHIRecipe);
8626   }
8627   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8628   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8629   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8630 
8631   // Note: first set Entry as region entry and then connect successors starting
8632   // from it in order, to propagate the "parent" of each VPBasicBlock.
8633   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8634   VPBlockUtils::connectBlocks(Pred, Exit);
8635 
8636   return Region;
8637 }
8638 
8639 VPRecipeOrVPValueTy VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8640                                                             VFRange &Range,
8641                                                             VPlanPtr &Plan) {
8642   // First, check for specific widening recipes that deal with calls, memory
8643   // operations, inductions and Phi nodes.
8644   if (auto *CI = dyn_cast<CallInst>(Instr))
8645     return toVPRecipeResult(tryToWidenCall(CI, Range, *Plan));
8646 
8647   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8648     return toVPRecipeResult(tryToWidenMemory(Instr, Range, Plan));
8649 
8650   VPRecipeBase *Recipe;
8651   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8652     if (Phi->getParent() != OrigLoop->getHeader())
8653       return tryToBlend(Phi, Plan);
8654     if ((Recipe = tryToOptimizeInductionPHI(Phi, *Plan)))
8655       return toVPRecipeResult(Recipe);
8656 
8657     if (Legal->isReductionVariable(Phi)) {
8658       RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8659       VPValue *StartV =
8660           Plan->getOrAddVPValue(RdxDesc.getRecurrenceStartValue());
8661       return toVPRecipeResult(new VPWidenPHIRecipe(Phi, RdxDesc, *StartV));
8662     }
8663 
8664     return toVPRecipeResult(new VPWidenPHIRecipe(Phi));
8665   }
8666 
8667   if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8668                                     cast<TruncInst>(Instr), Range, *Plan)))
8669     return toVPRecipeResult(Recipe);
8670 
8671   if (!shouldWiden(Instr, Range))
8672     return nullptr;
8673 
8674   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8675     return toVPRecipeResult(new VPWidenGEPRecipe(
8676         GEP, Plan->mapToVPValues(GEP->operands()), OrigLoop));
8677 
8678   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8679     bool InvariantCond =
8680         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8681     return toVPRecipeResult(new VPWidenSelectRecipe(
8682         *SI, Plan->mapToVPValues(SI->operands()), InvariantCond));
8683   }
8684 
8685   return toVPRecipeResult(tryToWiden(Instr, *Plan));
8686 }
8687 
8688 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8689                                                         ElementCount MaxVF) {
8690   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8691 
8692   // Collect instructions from the original loop that will become trivially dead
8693   // in the vectorized loop. We don't need to vectorize these instructions. For
8694   // example, original induction update instructions can become dead because we
8695   // separately emit induction "steps" when generating code for the new loop.
8696   // Similarly, we create a new latch condition when setting up the structure
8697   // of the new loop, so the old one can become dead.
8698   SmallPtrSet<Instruction *, 4> DeadInstructions;
8699   collectTriviallyDeadInstructions(DeadInstructions);
8700 
8701   // Add assume instructions we need to drop to DeadInstructions, to prevent
8702   // them from being added to the VPlan.
8703   // TODO: We only need to drop assumes in blocks that get flattend. If the
8704   // control flow is preserved, we should keep them.
8705   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8706   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8707 
8708   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8709   // Dead instructions do not need sinking. Remove them from SinkAfter.
8710   for (Instruction *I : DeadInstructions)
8711     SinkAfter.erase(I);
8712 
8713   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8714   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8715     VFRange SubRange = {VF, MaxVFPlusOne};
8716     VPlans.push_back(
8717         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8718     VF = SubRange.End;
8719   }
8720 }
8721 
8722 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8723     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8724     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
8725 
8726   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8727 
8728   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8729 
8730   // ---------------------------------------------------------------------------
8731   // Pre-construction: record ingredients whose recipes we'll need to further
8732   // process after constructing the initial VPlan.
8733   // ---------------------------------------------------------------------------
8734 
8735   // Mark instructions we'll need to sink later and their targets as
8736   // ingredients whose recipe we'll need to record.
8737   for (auto &Entry : SinkAfter) {
8738     RecipeBuilder.recordRecipeOf(Entry.first);
8739     RecipeBuilder.recordRecipeOf(Entry.second);
8740   }
8741   for (auto &Reduction : CM.getInLoopReductionChains()) {
8742     PHINode *Phi = Reduction.first;
8743     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
8744     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8745 
8746     RecipeBuilder.recordRecipeOf(Phi);
8747     for (auto &R : ReductionOperations) {
8748       RecipeBuilder.recordRecipeOf(R);
8749       // For min/max reducitons, where we have a pair of icmp/select, we also
8750       // need to record the ICmp recipe, so it can be removed later.
8751       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8752         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8753     }
8754   }
8755 
8756   // For each interleave group which is relevant for this (possibly trimmed)
8757   // Range, add it to the set of groups to be later applied to the VPlan and add
8758   // placeholders for its members' Recipes which we'll be replacing with a
8759   // single VPInterleaveRecipe.
8760   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8761     auto applyIG = [IG, this](ElementCount VF) -> bool {
8762       return (VF.isVector() && // Query is illegal for VF == 1
8763               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8764                   LoopVectorizationCostModel::CM_Interleave);
8765     };
8766     if (!getDecisionAndClampRange(applyIG, Range))
8767       continue;
8768     InterleaveGroups.insert(IG);
8769     for (unsigned i = 0; i < IG->getFactor(); i++)
8770       if (Instruction *Member = IG->getMember(i))
8771         RecipeBuilder.recordRecipeOf(Member);
8772   };
8773 
8774   // ---------------------------------------------------------------------------
8775   // Build initial VPlan: Scan the body of the loop in a topological order to
8776   // visit each basic block after having visited its predecessor basic blocks.
8777   // ---------------------------------------------------------------------------
8778 
8779   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
8780   auto Plan = std::make_unique<VPlan>();
8781   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
8782   Plan->setEntry(VPBB);
8783 
8784   // Scan the body of the loop in a topological order to visit each basic block
8785   // after having visited its predecessor basic blocks.
8786   LoopBlocksDFS DFS(OrigLoop);
8787   DFS.perform(LI);
8788 
8789   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8790     // Relevant instructions from basic block BB will be grouped into VPRecipe
8791     // ingredients and fill a new VPBasicBlock.
8792     unsigned VPBBsForBB = 0;
8793     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
8794     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
8795     VPBB = FirstVPBBForBB;
8796     Builder.setInsertPoint(VPBB);
8797 
8798     // Introduce each ingredient into VPlan.
8799     // TODO: Model and preserve debug instrinsics in VPlan.
8800     for (Instruction &I : BB->instructionsWithoutDebug()) {
8801       Instruction *Instr = &I;
8802 
8803       // First filter out irrelevant instructions, to ensure no recipes are
8804       // built for them.
8805       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8806         continue;
8807 
8808       if (auto RecipeOrValue =
8809               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
8810         // If Instr can be simplified to an existing VPValue, use it.
8811         if (RecipeOrValue.is<VPValue *>()) {
8812           Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>());
8813           continue;
8814         }
8815         // Otherwise, add the new recipe.
8816         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8817         for (auto *Def : Recipe->definedValues()) {
8818           auto *UV = Def->getUnderlyingValue();
8819           Plan->addVPValue(UV, Def);
8820         }
8821 
8822         RecipeBuilder.setRecipe(Instr, Recipe);
8823         VPBB->appendRecipe(Recipe);
8824         continue;
8825       }
8826 
8827       // Otherwise, if all widening options failed, Instruction is to be
8828       // replicated. This may create a successor for VPBB.
8829       VPBasicBlock *NextVPBB =
8830           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8831       if (NextVPBB != VPBB) {
8832         VPBB = NextVPBB;
8833         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8834                                     : "");
8835       }
8836     }
8837   }
8838 
8839   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
8840   // may also be empty, such as the last one VPBB, reflecting original
8841   // basic-blocks with no recipes.
8842   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
8843   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
8844   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
8845   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
8846   delete PreEntry;
8847 
8848   // ---------------------------------------------------------------------------
8849   // Transform initial VPlan: Apply previously taken decisions, in order, to
8850   // bring the VPlan to its final state.
8851   // ---------------------------------------------------------------------------
8852 
8853   // Apply Sink-After legal constraints.
8854   for (auto &Entry : SinkAfter) {
8855     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8856     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8857     // If the target is in a replication region, make sure to move Sink to the
8858     // block after it, not into the replication region itself.
8859     if (auto *Region =
8860             dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) {
8861       if (Region->isReplicator()) {
8862         assert(Region->getNumSuccessors() == 1 && "Expected SESE region!");
8863         VPBasicBlock *NextBlock =
8864             cast<VPBasicBlock>(Region->getSuccessors().front());
8865         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8866         continue;
8867       }
8868     }
8869     Sink->moveAfter(Target);
8870   }
8871 
8872   // Interleave memory: for each Interleave Group we marked earlier as relevant
8873   // for this VPlan, replace the Recipes widening its memory instructions with a
8874   // single VPInterleaveRecipe at its insertion point.
8875   for (auto IG : InterleaveGroups) {
8876     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8877         RecipeBuilder.getRecipe(IG->getInsertPos()));
8878     SmallVector<VPValue *, 4> StoredValues;
8879     for (unsigned i = 0; i < IG->getFactor(); ++i)
8880       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
8881         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
8882 
8883     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8884                                         Recipe->getMask());
8885     VPIG->insertBefore(Recipe);
8886     unsigned J = 0;
8887     for (unsigned i = 0; i < IG->getFactor(); ++i)
8888       if (Instruction *Member = IG->getMember(i)) {
8889         if (!Member->getType()->isVoidTy()) {
8890           VPValue *OriginalV = Plan->getVPValue(Member);
8891           Plan->removeVPValueFor(Member);
8892           Plan->addVPValue(Member, VPIG->getVPValue(J));
8893           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8894           J++;
8895         }
8896         RecipeBuilder.getRecipe(Member)->eraseFromParent();
8897       }
8898   }
8899 
8900   // Adjust the recipes for any inloop reductions.
8901   if (Range.Start.isVector())
8902     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
8903 
8904   // Finally, if tail is folded by masking, introduce selects between the phi
8905   // and the live-out instruction of each reduction, at the end of the latch.
8906   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
8907     Builder.setInsertPoint(VPBB);
8908     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
8909     for (auto &Reduction : Legal->getReductionVars()) {
8910       if (CM.isInLoopReduction(Reduction.first))
8911         continue;
8912       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
8913       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
8914       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
8915     }
8916   }
8917 
8918   std::string PlanName;
8919   raw_string_ostream RSO(PlanName);
8920   ElementCount VF = Range.Start;
8921   Plan->addVF(VF);
8922   RSO << "Initial VPlan for VF={" << VF;
8923   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
8924     Plan->addVF(VF);
8925     RSO << "," << VF;
8926   }
8927   RSO << "},UF>=1";
8928   RSO.flush();
8929   Plan->setName(PlanName);
8930 
8931   return Plan;
8932 }
8933 
8934 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
8935   // Outer loop handling: They may require CFG and instruction level
8936   // transformations before even evaluating whether vectorization is profitable.
8937   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8938   // the vectorization pipeline.
8939   assert(!OrigLoop->isInnermost());
8940   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8941 
8942   // Create new empty VPlan
8943   auto Plan = std::make_unique<VPlan>();
8944 
8945   // Build hierarchical CFG
8946   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
8947   HCFGBuilder.buildHierarchicalCFG();
8948 
8949   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
8950        VF *= 2)
8951     Plan->addVF(VF);
8952 
8953   if (EnableVPlanPredication) {
8954     VPlanPredicator VPP(*Plan);
8955     VPP.predicate();
8956 
8957     // Avoid running transformation to recipes until masked code generation in
8958     // VPlan-native path is in place.
8959     return Plan;
8960   }
8961 
8962   SmallPtrSet<Instruction *, 1> DeadInstructions;
8963   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
8964                                              Legal->getInductionVars(),
8965                                              DeadInstructions, *PSE.getSE());
8966   return Plan;
8967 }
8968 
8969 // Adjust the recipes for any inloop reductions. The chain of instructions
8970 // leading from the loop exit instr to the phi need to be converted to
8971 // reductions, with one operand being vector and the other being the scalar
8972 // reduction chain.
8973 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
8974     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
8975   for (auto &Reduction : CM.getInLoopReductionChains()) {
8976     PHINode *Phi = Reduction.first;
8977     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8978     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8979 
8980     // ReductionOperations are orders top-down from the phi's use to the
8981     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
8982     // which of the two operands will remain scalar and which will be reduced.
8983     // For minmax the chain will be the select instructions.
8984     Instruction *Chain = Phi;
8985     for (Instruction *R : ReductionOperations) {
8986       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
8987       RecurKind Kind = RdxDesc.getRecurrenceKind();
8988 
8989       VPValue *ChainOp = Plan->getVPValue(Chain);
8990       unsigned FirstOpId;
8991       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
8992         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
8993                "Expected to replace a VPWidenSelectSC");
8994         FirstOpId = 1;
8995       } else {
8996         assert(isa<VPWidenRecipe>(WidenRecipe) &&
8997                "Expected to replace a VPWidenSC");
8998         FirstOpId = 0;
8999       }
9000       unsigned VecOpId =
9001           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9002       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9003 
9004       auto *CondOp = CM.foldTailByMasking()
9005                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9006                          : nullptr;
9007       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9008           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9009       WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe);
9010       Plan->removeVPValueFor(R);
9011       Plan->addVPValue(R, RedRecipe);
9012       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9013       WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe);
9014       WidenRecipe->eraseFromParent();
9015 
9016       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9017         VPRecipeBase *CompareRecipe =
9018             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9019         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9020                "Expected to replace a VPWidenSC");
9021         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9022                "Expected no remaining users");
9023         CompareRecipe->eraseFromParent();
9024       }
9025       Chain = R;
9026     }
9027   }
9028 }
9029 
9030 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9031 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9032                                VPSlotTracker &SlotTracker) const {
9033   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9034   IG->getInsertPos()->printAsOperand(O, false);
9035   O << ", ";
9036   getAddr()->printAsOperand(O, SlotTracker);
9037   VPValue *Mask = getMask();
9038   if (Mask) {
9039     O << ", ";
9040     Mask->printAsOperand(O, SlotTracker);
9041   }
9042   for (unsigned i = 0; i < IG->getFactor(); ++i)
9043     if (Instruction *I = IG->getMember(i))
9044       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9045 }
9046 #endif
9047 
9048 void VPWidenCallRecipe::execute(VPTransformState &State) {
9049   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9050                                   *this, State);
9051 }
9052 
9053 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9054   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9055                                     this, *this, InvariantCond, State);
9056 }
9057 
9058 void VPWidenRecipe::execute(VPTransformState &State) {
9059   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9060 }
9061 
9062 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9063   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9064                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9065                       IsIndexLoopInvariant, State);
9066 }
9067 
9068 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9069   assert(!State.Instance && "Int or FP induction being replicated.");
9070   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9071                                    getTruncInst(), getVPValue(0),
9072                                    getCastValue(), State);
9073 }
9074 
9075 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9076   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc,
9077                                  getStartValue(), this, State);
9078 }
9079 
9080 void VPBlendRecipe::execute(VPTransformState &State) {
9081   State.ILV->setDebugLocFromInst(State.Builder, Phi);
9082   // We know that all PHIs in non-header blocks are converted into
9083   // selects, so we don't have to worry about the insertion order and we
9084   // can just use the builder.
9085   // At this point we generate the predication tree. There may be
9086   // duplications since this is a simple recursive scan, but future
9087   // optimizations will clean it up.
9088 
9089   unsigned NumIncoming = getNumIncomingValues();
9090 
9091   // Generate a sequence of selects of the form:
9092   // SELECT(Mask3, In3,
9093   //        SELECT(Mask2, In2,
9094   //               SELECT(Mask1, In1,
9095   //                      In0)))
9096   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9097   // are essentially undef are taken from In0.
9098   InnerLoopVectorizer::VectorParts Entry(State.UF);
9099   for (unsigned In = 0; In < NumIncoming; ++In) {
9100     for (unsigned Part = 0; Part < State.UF; ++Part) {
9101       // We might have single edge PHIs (blocks) - use an identity
9102       // 'select' for the first PHI operand.
9103       Value *In0 = State.get(getIncomingValue(In), Part);
9104       if (In == 0)
9105         Entry[Part] = In0; // Initialize with the first incoming value.
9106       else {
9107         // Select between the current value and the previous incoming edge
9108         // based on the incoming mask.
9109         Value *Cond = State.get(getMask(In), Part);
9110         Entry[Part] =
9111             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9112       }
9113     }
9114   }
9115   for (unsigned Part = 0; Part < State.UF; ++Part)
9116     State.set(this, Entry[Part], Part);
9117 }
9118 
9119 void VPInterleaveRecipe::execute(VPTransformState &State) {
9120   assert(!State.Instance && "Interleave group being replicated.");
9121   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9122                                       getStoredValues(), getMask());
9123 }
9124 
9125 void VPReductionRecipe::execute(VPTransformState &State) {
9126   assert(!State.Instance && "Reduction being replicated.");
9127   for (unsigned Part = 0; Part < State.UF; ++Part) {
9128     RecurKind Kind = RdxDesc->getRecurrenceKind();
9129     Value *NewVecOp = State.get(getVecOp(), Part);
9130     if (VPValue *Cond = getCondOp()) {
9131       Value *NewCond = State.get(Cond, Part);
9132       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9133       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9134           Kind, VecTy->getElementType());
9135       Constant *IdenVec =
9136           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9137       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9138       NewVecOp = Select;
9139     }
9140     Value *NewRed =
9141         createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9142     Value *PrevInChain = State.get(getChainOp(), Part);
9143     Value *NextInChain;
9144     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9145       NextInChain =
9146           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9147                          NewRed, PrevInChain);
9148     } else {
9149       NextInChain = State.Builder.CreateBinOp(
9150           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9151           PrevInChain);
9152     }
9153     State.set(this, NextInChain, Part);
9154   }
9155 }
9156 
9157 void VPReplicateRecipe::execute(VPTransformState &State) {
9158   if (State.Instance) { // Generate a single instance.
9159     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9160     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9161                                     *State.Instance, IsPredicated, State);
9162     // Insert scalar instance packing it into a vector.
9163     if (AlsoPack && State.VF.isVector()) {
9164       // If we're constructing lane 0, initialize to start from poison.
9165       if (State.Instance->Lane.isFirstLane()) {
9166         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9167         Value *Poison = PoisonValue::get(
9168             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9169         State.set(this, Poison, State.Instance->Part);
9170       }
9171       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9172     }
9173     return;
9174   }
9175 
9176   // Generate scalar instances for all VF lanes of all UF parts, unless the
9177   // instruction is uniform inwhich case generate only the first lane for each
9178   // of the UF parts.
9179   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9180   assert((!State.VF.isScalable() || IsUniform) &&
9181          "Can't scalarize a scalable vector");
9182   for (unsigned Part = 0; Part < State.UF; ++Part)
9183     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9184       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9185                                       VPIteration(Part, Lane), IsPredicated,
9186                                       State);
9187 }
9188 
9189 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9190   assert(State.Instance && "Branch on Mask works only on single instance.");
9191 
9192   unsigned Part = State.Instance->Part;
9193   unsigned Lane = State.Instance->Lane.getKnownLane();
9194 
9195   Value *ConditionBit = nullptr;
9196   VPValue *BlockInMask = getMask();
9197   if (BlockInMask) {
9198     ConditionBit = State.get(BlockInMask, Part);
9199     if (ConditionBit->getType()->isVectorTy())
9200       ConditionBit = State.Builder.CreateExtractElement(
9201           ConditionBit, State.Builder.getInt32(Lane));
9202   } else // Block in mask is all-one.
9203     ConditionBit = State.Builder.getTrue();
9204 
9205   // Replace the temporary unreachable terminator with a new conditional branch,
9206   // whose two destinations will be set later when they are created.
9207   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9208   assert(isa<UnreachableInst>(CurrentTerminator) &&
9209          "Expected to replace unreachable terminator with conditional branch.");
9210   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9211   CondBr->setSuccessor(0, nullptr);
9212   ReplaceInstWithInst(CurrentTerminator, CondBr);
9213 }
9214 
9215 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9216   assert(State.Instance && "Predicated instruction PHI works per instance.");
9217   Instruction *ScalarPredInst =
9218       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9219   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9220   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9221   assert(PredicatingBB && "Predicated block has no single predecessor.");
9222   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9223          "operand must be VPReplicateRecipe");
9224 
9225   // By current pack/unpack logic we need to generate only a single phi node: if
9226   // a vector value for the predicated instruction exists at this point it means
9227   // the instruction has vector users only, and a phi for the vector value is
9228   // needed. In this case the recipe of the predicated instruction is marked to
9229   // also do that packing, thereby "hoisting" the insert-element sequence.
9230   // Otherwise, a phi node for the scalar value is needed.
9231   unsigned Part = State.Instance->Part;
9232   if (State.hasVectorValue(getOperand(0), Part)) {
9233     Value *VectorValue = State.get(getOperand(0), Part);
9234     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9235     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9236     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9237     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9238     if (State.hasVectorValue(this, Part))
9239       State.reset(this, VPhi, Part);
9240     else
9241       State.set(this, VPhi, Part);
9242     // NOTE: Currently we need to update the value of the operand, so the next
9243     // predicated iteration inserts its generated value in the correct vector.
9244     State.reset(getOperand(0), VPhi, Part);
9245   } else {
9246     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9247     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9248     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9249                      PredicatingBB);
9250     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9251     if (State.hasScalarValue(this, *State.Instance))
9252       State.reset(this, Phi, *State.Instance);
9253     else
9254       State.set(this, Phi, *State.Instance);
9255     // NOTE: Currently we need to update the value of the operand, so the next
9256     // predicated iteration inserts its generated value in the correct vector.
9257     State.reset(getOperand(0), Phi, *State.Instance);
9258   }
9259 }
9260 
9261 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9262   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9263   State.ILV->vectorizeMemoryInstruction(&Ingredient, State,
9264                                         StoredValue ? nullptr : getVPValue(),
9265                                         getAddr(), StoredValue, getMask());
9266 }
9267 
9268 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9269 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9270 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9271 // for predication.
9272 static ScalarEpilogueLowering getScalarEpilogueLowering(
9273     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9274     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9275     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9276     LoopVectorizationLegality &LVL) {
9277   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9278   // don't look at hints or options, and don't request a scalar epilogue.
9279   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9280   // LoopAccessInfo (due to code dependency and not being able to reliably get
9281   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9282   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9283   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9284   // back to the old way and vectorize with versioning when forced. See D81345.)
9285   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9286                                                       PGSOQueryType::IRPass) &&
9287                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9288     return CM_ScalarEpilogueNotAllowedOptSize;
9289 
9290   // 2) If set, obey the directives
9291   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9292     switch (PreferPredicateOverEpilogue) {
9293     case PreferPredicateTy::ScalarEpilogue:
9294       return CM_ScalarEpilogueAllowed;
9295     case PreferPredicateTy::PredicateElseScalarEpilogue:
9296       return CM_ScalarEpilogueNotNeededUsePredicate;
9297     case PreferPredicateTy::PredicateOrDontVectorize:
9298       return CM_ScalarEpilogueNotAllowedUsePredicate;
9299     };
9300   }
9301 
9302   // 3) If set, obey the hints
9303   switch (Hints.getPredicate()) {
9304   case LoopVectorizeHints::FK_Enabled:
9305     return CM_ScalarEpilogueNotNeededUsePredicate;
9306   case LoopVectorizeHints::FK_Disabled:
9307     return CM_ScalarEpilogueAllowed;
9308   };
9309 
9310   // 4) if the TTI hook indicates this is profitable, request predication.
9311   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9312                                        LVL.getLAI()))
9313     return CM_ScalarEpilogueNotNeededUsePredicate;
9314 
9315   return CM_ScalarEpilogueAllowed;
9316 }
9317 
9318 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9319   // If Values have been set for this Def return the one relevant for \p Part.
9320   if (hasVectorValue(Def, Part))
9321     return Data.PerPartOutput[Def][Part];
9322 
9323   if (!hasScalarValue(Def, {Part, 0})) {
9324     Value *IRV = Def->getLiveInIRValue();
9325     Value *B = ILV->getBroadcastInstrs(IRV);
9326     set(Def, B, Part);
9327     return B;
9328   }
9329 
9330   Value *ScalarValue = get(Def, {Part, 0});
9331   // If we aren't vectorizing, we can just copy the scalar map values over
9332   // to the vector map.
9333   if (VF.isScalar()) {
9334     set(Def, ScalarValue, Part);
9335     return ScalarValue;
9336   }
9337 
9338   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9339   bool IsUniform = RepR && RepR->isUniform();
9340 
9341   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9342   // Check if there is a scalar value for the selected lane.
9343   if (!hasScalarValue(Def, {Part, LastLane})) {
9344     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9345     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9346            "unexpected recipe found to be invariant");
9347     IsUniform = true;
9348     LastLane = 0;
9349   }
9350 
9351   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9352 
9353   // Set the insert point after the last scalarized instruction. This
9354   // ensures the insertelement sequence will directly follow the scalar
9355   // definitions.
9356   auto OldIP = Builder.saveIP();
9357   auto NewIP = std::next(BasicBlock::iterator(LastInst));
9358   Builder.SetInsertPoint(&*NewIP);
9359 
9360   // However, if we are vectorizing, we need to construct the vector values.
9361   // If the value is known to be uniform after vectorization, we can just
9362   // broadcast the scalar value corresponding to lane zero for each unroll
9363   // iteration. Otherwise, we construct the vector values using
9364   // insertelement instructions. Since the resulting vectors are stored in
9365   // State, we will only generate the insertelements once.
9366   Value *VectorValue = nullptr;
9367   if (IsUniform) {
9368     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9369     set(Def, VectorValue, Part);
9370   } else {
9371     // Initialize packing with insertelements to start from undef.
9372     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9373     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9374     set(Def, Undef, Part);
9375     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9376       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9377     VectorValue = get(Def, Part);
9378   }
9379   Builder.restoreIP(OldIP);
9380   return VectorValue;
9381 }
9382 
9383 // Process the loop in the VPlan-native vectorization path. This path builds
9384 // VPlan upfront in the vectorization pipeline, which allows to apply
9385 // VPlan-to-VPlan transformations from the very beginning without modifying the
9386 // input LLVM IR.
9387 static bool processLoopInVPlanNativePath(
9388     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9389     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9390     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9391     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9392     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
9393 
9394   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9395     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9396     return false;
9397   }
9398   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9399   Function *F = L->getHeader()->getParent();
9400   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9401 
9402   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9403       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9404 
9405   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9406                                 &Hints, IAI);
9407   // Use the planner for outer loop vectorization.
9408   // TODO: CM is not used at this point inside the planner. Turn CM into an
9409   // optional argument if we don't need it in the future.
9410   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
9411 
9412   // Get user vectorization factor.
9413   ElementCount UserVF = Hints.getWidth();
9414 
9415   // Plan how to best vectorize, return the best VF and its cost.
9416   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9417 
9418   // If we are stress testing VPlan builds, do not attempt to generate vector
9419   // code. Masked vector code generation support will follow soon.
9420   // Also, do not attempt to vectorize if no vector code will be produced.
9421   if (VPlanBuildStressTest || EnableVPlanPredication ||
9422       VectorizationFactor::Disabled() == VF)
9423     return false;
9424 
9425   LVP.setBestPlan(VF.Width, 1);
9426 
9427   {
9428     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9429                              F->getParent()->getDataLayout());
9430     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9431                            &CM, BFI, PSI, Checks);
9432     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9433                       << L->getHeader()->getParent()->getName() << "\"\n");
9434     LVP.executePlan(LB, DT);
9435   }
9436 
9437   // Mark the loop as already vectorized to avoid vectorizing again.
9438   Hints.setAlreadyVectorized();
9439   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9440   return true;
9441 }
9442 
9443 // Emit a remark if there are stores to floats that required a floating point
9444 // extension. If the vectorized loop was generated with floating point there
9445 // will be a performance penalty from the conversion overhead and the change in
9446 // the vector width.
9447 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9448   SmallVector<Instruction *, 4> Worklist;
9449   for (BasicBlock *BB : L->getBlocks()) {
9450     for (Instruction &Inst : *BB) {
9451       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9452         if (S->getValueOperand()->getType()->isFloatTy())
9453           Worklist.push_back(S);
9454       }
9455     }
9456   }
9457 
9458   // Traverse the floating point stores upwards searching, for floating point
9459   // conversions.
9460   SmallPtrSet<const Instruction *, 4> Visited;
9461   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9462   while (!Worklist.empty()) {
9463     auto *I = Worklist.pop_back_val();
9464     if (!L->contains(I))
9465       continue;
9466     if (!Visited.insert(I).second)
9467       continue;
9468 
9469     // Emit a remark if the floating point store required a floating
9470     // point conversion.
9471     // TODO: More work could be done to identify the root cause such as a
9472     // constant or a function return type and point the user to it.
9473     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9474       ORE->emit([&]() {
9475         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9476                                           I->getDebugLoc(), L->getHeader())
9477                << "floating point conversion changes vector width. "
9478                << "Mixed floating point precision requires an up/down "
9479                << "cast that will negatively impact performance.";
9480       });
9481 
9482     for (Use &Op : I->operands())
9483       if (auto *OpI = dyn_cast<Instruction>(Op))
9484         Worklist.push_back(OpI);
9485   }
9486 }
9487 
9488 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9489     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9490                                !EnableLoopInterleaving),
9491       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9492                               !EnableLoopVectorization) {}
9493 
9494 bool LoopVectorizePass::processLoop(Loop *L) {
9495   assert((EnableVPlanNativePath || L->isInnermost()) &&
9496          "VPlan-native path is not enabled. Only process inner loops.");
9497 
9498 #ifndef NDEBUG
9499   const std::string DebugLocStr = getDebugLocString(L);
9500 #endif /* NDEBUG */
9501 
9502   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9503                     << L->getHeader()->getParent()->getName() << "\" from "
9504                     << DebugLocStr << "\n");
9505 
9506   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9507 
9508   LLVM_DEBUG(
9509       dbgs() << "LV: Loop hints:"
9510              << " force="
9511              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9512                      ? "disabled"
9513                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9514                             ? "enabled"
9515                             : "?"))
9516              << " width=" << Hints.getWidth()
9517              << " unroll=" << Hints.getInterleave() << "\n");
9518 
9519   // Function containing loop
9520   Function *F = L->getHeader()->getParent();
9521 
9522   // Looking at the diagnostic output is the only way to determine if a loop
9523   // was vectorized (other than looking at the IR or machine code), so it
9524   // is important to generate an optimization remark for each loop. Most of
9525   // these messages are generated as OptimizationRemarkAnalysis. Remarks
9526   // generated as OptimizationRemark and OptimizationRemarkMissed are
9527   // less verbose reporting vectorized loops and unvectorized loops that may
9528   // benefit from vectorization, respectively.
9529 
9530   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9531     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9532     return false;
9533   }
9534 
9535   PredicatedScalarEvolution PSE(*SE, *L);
9536 
9537   // Check if it is legal to vectorize the loop.
9538   LoopVectorizationRequirements Requirements(*ORE);
9539   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
9540                                 &Requirements, &Hints, DB, AC, BFI, PSI);
9541   if (!LVL.canVectorize(EnableVPlanNativePath)) {
9542     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9543     Hints.emitRemarkWithHints();
9544     return false;
9545   }
9546 
9547   // Check the function attributes and profiles to find out if this function
9548   // should be optimized for size.
9549   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9550       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
9551 
9552   // Entrance to the VPlan-native vectorization path. Outer loops are processed
9553   // here. They may require CFG and instruction level transformations before
9554   // even evaluating whether vectorization is profitable. Since we cannot modify
9555   // the incoming IR, we need to build VPlan upfront in the vectorization
9556   // pipeline.
9557   if (!L->isInnermost())
9558     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9559                                         ORE, BFI, PSI, Hints);
9560 
9561   assert(L->isInnermost() && "Inner loop expected.");
9562 
9563   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9564   // count by optimizing for size, to minimize overheads.
9565   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
9566   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
9567     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9568                       << "This loop is worth vectorizing only if no scalar "
9569                       << "iteration overheads are incurred.");
9570     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
9571       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9572     else {
9573       LLVM_DEBUG(dbgs() << "\n");
9574       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
9575     }
9576   }
9577 
9578   // Check the function attributes to see if implicit floats are allowed.
9579   // FIXME: This check doesn't seem possibly correct -- what if the loop is
9580   // an integer loop and the vector instructions selected are purely integer
9581   // vector instructions?
9582   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9583     reportVectorizationFailure(
9584         "Can't vectorize when the NoImplicitFloat attribute is used",
9585         "loop not vectorized due to NoImplicitFloat attribute",
9586         "NoImplicitFloat", ORE, L);
9587     Hints.emitRemarkWithHints();
9588     return false;
9589   }
9590 
9591   // Check if the target supports potentially unsafe FP vectorization.
9592   // FIXME: Add a check for the type of safety issue (denormal, signaling)
9593   // for the target we're vectorizing for, to make sure none of the
9594   // additional fp-math flags can help.
9595   if (Hints.isPotentiallyUnsafe() &&
9596       TTI->isFPVectorizationPotentiallyUnsafe()) {
9597     reportVectorizationFailure(
9598         "Potentially unsafe FP op prevents vectorization",
9599         "loop not vectorized due to unsafe FP support.",
9600         "UnsafeFP", ORE, L);
9601     Hints.emitRemarkWithHints();
9602     return false;
9603   }
9604 
9605   if (!Requirements.canVectorizeFPMath(Hints)) {
9606     ORE->emit([&]() {
9607       auto *ExactFPMathInst = Requirements.getExactFPInst();
9608       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9609                                                  ExactFPMathInst->getDebugLoc(),
9610                                                  ExactFPMathInst->getParent())
9611              << "loop not vectorized: cannot prove it is safe to reorder "
9612                 "floating-point operations";
9613     });
9614     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9615                          "reorder floating-point operations\n");
9616     Hints.emitRemarkWithHints();
9617     return false;
9618   }
9619 
9620   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9621   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9622 
9623   // If an override option has been passed in for interleaved accesses, use it.
9624   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9625     UseInterleaved = EnableInterleavedMemAccesses;
9626 
9627   // Analyze interleaved memory accesses.
9628   if (UseInterleaved) {
9629     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
9630   }
9631 
9632   // Use the cost model.
9633   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9634                                 F, &Hints, IAI);
9635   CM.collectValuesToIgnore();
9636 
9637   // Use the planner for vectorization.
9638   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
9639 
9640   // Get user vectorization factor and interleave count.
9641   ElementCount UserVF = Hints.getWidth();
9642   unsigned UserIC = Hints.getInterleave();
9643 
9644   // Plan how to best vectorize, return the best VF and its cost.
9645   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
9646 
9647   VectorizationFactor VF = VectorizationFactor::Disabled();
9648   unsigned IC = 1;
9649 
9650   if (MaybeVF) {
9651     VF = *MaybeVF;
9652     // Select the interleave count.
9653     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
9654   }
9655 
9656   // Identify the diagnostic messages that should be produced.
9657   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9658   bool VectorizeLoop = true, InterleaveLoop = true;
9659   if (Requirements.doesNotMeet(F, L, Hints)) {
9660     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
9661                          "requirements.\n");
9662     Hints.emitRemarkWithHints();
9663     return false;
9664   }
9665 
9666   if (VF.Width.isScalar()) {
9667     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
9668     VecDiagMsg = std::make_pair(
9669         "VectorizationNotBeneficial",
9670         "the cost-model indicates that vectorization is not beneficial");
9671     VectorizeLoop = false;
9672   }
9673 
9674   if (!MaybeVF && UserIC > 1) {
9675     // Tell the user interleaving was avoided up-front, despite being explicitly
9676     // requested.
9677     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
9678                          "interleaving should be avoided up front\n");
9679     IntDiagMsg = std::make_pair(
9680         "InterleavingAvoided",
9681         "Ignoring UserIC, because interleaving was avoided up front");
9682     InterleaveLoop = false;
9683   } else if (IC == 1 && UserIC <= 1) {
9684     // Tell the user interleaving is not beneficial.
9685     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
9686     IntDiagMsg = std::make_pair(
9687         "InterleavingNotBeneficial",
9688         "the cost-model indicates that interleaving is not beneficial");
9689     InterleaveLoop = false;
9690     if (UserIC == 1) {
9691       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
9692       IntDiagMsg.second +=
9693           " and is explicitly disabled or interleave count is set to 1";
9694     }
9695   } else if (IC > 1 && UserIC == 1) {
9696     // Tell the user interleaving is beneficial, but it explicitly disabled.
9697     LLVM_DEBUG(
9698         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
9699     IntDiagMsg = std::make_pair(
9700         "InterleavingBeneficialButDisabled",
9701         "the cost-model indicates that interleaving is beneficial "
9702         "but is explicitly disabled or interleave count is set to 1");
9703     InterleaveLoop = false;
9704   }
9705 
9706   // Override IC if user provided an interleave count.
9707   IC = UserIC > 0 ? UserIC : IC;
9708 
9709   // Emit diagnostic messages, if any.
9710   const char *VAPassName = Hints.vectorizeAnalysisPassName();
9711   if (!VectorizeLoop && !InterleaveLoop) {
9712     // Do not vectorize or interleaving the loop.
9713     ORE->emit([&]() {
9714       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
9715                                       L->getStartLoc(), L->getHeader())
9716              << VecDiagMsg.second;
9717     });
9718     ORE->emit([&]() {
9719       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
9720                                       L->getStartLoc(), L->getHeader())
9721              << IntDiagMsg.second;
9722     });
9723     return false;
9724   } else if (!VectorizeLoop && InterleaveLoop) {
9725     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9726     ORE->emit([&]() {
9727       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
9728                                         L->getStartLoc(), L->getHeader())
9729              << VecDiagMsg.second;
9730     });
9731   } else if (VectorizeLoop && !InterleaveLoop) {
9732     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9733                       << ") in " << DebugLocStr << '\n');
9734     ORE->emit([&]() {
9735       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
9736                                         L->getStartLoc(), L->getHeader())
9737              << IntDiagMsg.second;
9738     });
9739   } else if (VectorizeLoop && InterleaveLoop) {
9740     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9741                       << ") in " << DebugLocStr << '\n');
9742     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9743   }
9744 
9745   bool DisableRuntimeUnroll = false;
9746   MDNode *OrigLoopID = L->getLoopID();
9747   {
9748     // Optimistically generate runtime checks. Drop them if they turn out to not
9749     // be profitable. Limit the scope of Checks, so the cleanup happens
9750     // immediately after vector codegeneration is done.
9751     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9752                              F->getParent()->getDataLayout());
9753     if (!VF.Width.isScalar() || IC > 1)
9754       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
9755     LVP.setBestPlan(VF.Width, IC);
9756 
9757     using namespace ore;
9758     if (!VectorizeLoop) {
9759       assert(IC > 1 && "interleave count should not be 1 or 0");
9760       // If we decided that it is not legal to vectorize the loop, then
9761       // interleave it.
9762       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
9763                                  &CM, BFI, PSI, Checks);
9764       LVP.executePlan(Unroller, DT);
9765 
9766       ORE->emit([&]() {
9767         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
9768                                   L->getHeader())
9769                << "interleaved loop (interleaved count: "
9770                << NV("InterleaveCount", IC) << ")";
9771       });
9772     } else {
9773       // If we decided that it is *legal* to vectorize the loop, then do it.
9774 
9775       // Consider vectorizing the epilogue too if it's profitable.
9776       VectorizationFactor EpilogueVF =
9777           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
9778       if (EpilogueVF.Width.isVector()) {
9779 
9780         // The first pass vectorizes the main loop and creates a scalar epilogue
9781         // to be vectorized by executing the plan (potentially with a different
9782         // factor) again shortly afterwards.
9783         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
9784                                           EpilogueVF.Width.getKnownMinValue(),
9785                                           1);
9786         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
9787                                            EPI, &LVL, &CM, BFI, PSI, Checks);
9788 
9789         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
9790         LVP.executePlan(MainILV, DT);
9791         ++LoopsVectorized;
9792 
9793         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
9794         formLCSSARecursively(*L, *DT, LI, SE);
9795 
9796         // Second pass vectorizes the epilogue and adjusts the control flow
9797         // edges from the first pass.
9798         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
9799         EPI.MainLoopVF = EPI.EpilogueVF;
9800         EPI.MainLoopUF = EPI.EpilogueUF;
9801         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
9802                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
9803                                                  Checks);
9804         LVP.executePlan(EpilogILV, DT);
9805         ++LoopsEpilogueVectorized;
9806 
9807         if (!MainILV.areSafetyChecksAdded())
9808           DisableRuntimeUnroll = true;
9809       } else {
9810         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
9811                                &LVL, &CM, BFI, PSI, Checks);
9812         LVP.executePlan(LB, DT);
9813         ++LoopsVectorized;
9814 
9815         // Add metadata to disable runtime unrolling a scalar loop when there
9816         // are no runtime checks about strides and memory. A scalar loop that is
9817         // rarely used is not worth unrolling.
9818         if (!LB.areSafetyChecksAdded())
9819           DisableRuntimeUnroll = true;
9820       }
9821       // Report the vectorization decision.
9822       ORE->emit([&]() {
9823         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
9824                                   L->getHeader())
9825                << "vectorized loop (vectorization width: "
9826                << NV("VectorizationFactor", VF.Width)
9827                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
9828       });
9829     }
9830 
9831     if (ORE->allowExtraAnalysis(LV_NAME))
9832       checkMixedPrecision(L, ORE);
9833   }
9834 
9835   Optional<MDNode *> RemainderLoopID =
9836       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
9837                                       LLVMLoopVectorizeFollowupEpilogue});
9838   if (RemainderLoopID.hasValue()) {
9839     L->setLoopID(RemainderLoopID.getValue());
9840   } else {
9841     if (DisableRuntimeUnroll)
9842       AddRuntimeUnrollDisableMetaData(L);
9843 
9844     // Mark the loop as already vectorized to avoid vectorizing again.
9845     Hints.setAlreadyVectorized();
9846   }
9847 
9848   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9849   return true;
9850 }
9851 
9852 LoopVectorizeResult LoopVectorizePass::runImpl(
9853     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
9854     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
9855     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
9856     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
9857     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
9858   SE = &SE_;
9859   LI = &LI_;
9860   TTI = &TTI_;
9861   DT = &DT_;
9862   BFI = &BFI_;
9863   TLI = TLI_;
9864   AA = &AA_;
9865   AC = &AC_;
9866   GetLAA = &GetLAA_;
9867   DB = &DB_;
9868   ORE = &ORE_;
9869   PSI = PSI_;
9870 
9871   // Don't attempt if
9872   // 1. the target claims to have no vector registers, and
9873   // 2. interleaving won't help ILP.
9874   //
9875   // The second condition is necessary because, even if the target has no
9876   // vector registers, loop vectorization may still enable scalar
9877   // interleaving.
9878   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
9879       TTI->getMaxInterleaveFactor(1) < 2)
9880     return LoopVectorizeResult(false, false);
9881 
9882   bool Changed = false, CFGChanged = false;
9883 
9884   // The vectorizer requires loops to be in simplified form.
9885   // Since simplification may add new inner loops, it has to run before the
9886   // legality and profitability checks. This means running the loop vectorizer
9887   // will simplify all loops, regardless of whether anything end up being
9888   // vectorized.
9889   for (auto &L : *LI)
9890     Changed |= CFGChanged |=
9891         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
9892 
9893   // Build up a worklist of inner-loops to vectorize. This is necessary as
9894   // the act of vectorizing or partially unrolling a loop creates new loops
9895   // and can invalidate iterators across the loops.
9896   SmallVector<Loop *, 8> Worklist;
9897 
9898   for (Loop *L : *LI)
9899     collectSupportedLoops(*L, LI, ORE, Worklist);
9900 
9901   LoopsAnalyzed += Worklist.size();
9902 
9903   // Now walk the identified inner loops.
9904   while (!Worklist.empty()) {
9905     Loop *L = Worklist.pop_back_val();
9906 
9907     // For the inner loops we actually process, form LCSSA to simplify the
9908     // transform.
9909     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
9910 
9911     Changed |= CFGChanged |= processLoop(L);
9912   }
9913 
9914   // Process each loop nest in the function.
9915   return LoopVectorizeResult(Changed, CFGChanged);
9916 }
9917 
9918 PreservedAnalyses LoopVectorizePass::run(Function &F,
9919                                          FunctionAnalysisManager &AM) {
9920     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
9921     auto &LI = AM.getResult<LoopAnalysis>(F);
9922     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
9923     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
9924     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
9925     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
9926     auto &AA = AM.getResult<AAManager>(F);
9927     auto &AC = AM.getResult<AssumptionAnalysis>(F);
9928     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
9929     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
9930     MemorySSA *MSSA = EnableMSSALoopDependency
9931                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
9932                           : nullptr;
9933 
9934     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
9935     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
9936         [&](Loop &L) -> const LoopAccessInfo & {
9937       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
9938                                         TLI, TTI, nullptr, MSSA};
9939       return LAM.getResult<LoopAccessAnalysis>(L, AR);
9940     };
9941     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
9942     ProfileSummaryInfo *PSI =
9943         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
9944     LoopVectorizeResult Result =
9945         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
9946     if (!Result.MadeAnyChange)
9947       return PreservedAnalyses::all();
9948     PreservedAnalyses PA;
9949 
9950     // We currently do not preserve loopinfo/dominator analyses with outer loop
9951     // vectorization. Until this is addressed, mark these analyses as preserved
9952     // only for non-VPlan-native path.
9953     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
9954     if (!EnableVPlanNativePath) {
9955       PA.preserve<LoopAnalysis>();
9956       PA.preserve<DominatorTreeAnalysis>();
9957     }
9958     PA.preserve<BasicAA>();
9959     PA.preserve<GlobalsAA>();
9960     if (!Result.MadeCFGChange)
9961       PA.preserveSet<CFGAnalyses>();
9962     return PA;
9963 }
9964