1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 202 // that predication is preferred, and this lists all options. I.e., the 203 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 204 // and predicate the instructions accordingly. If tail-folding fails, there are 205 // different fallback strategies depending on these values: 206 namespace PreferPredicateTy { 207 enum Option { 208 ScalarEpilogue = 0, 209 PredicateElseScalarEpilogue, 210 PredicateOrDontVectorize 211 }; 212 } // namespace PreferPredicateTy 213 214 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 215 "prefer-predicate-over-epilogue", 216 cl::init(PreferPredicateTy::ScalarEpilogue), 217 cl::Hidden, 218 cl::desc("Tail-folding and predication preferences over creating a scalar " 219 "epilogue loop."), 220 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 221 "scalar-epilogue", 222 "Don't tail-predicate loops, create scalar epilogue"), 223 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 224 "predicate-else-scalar-epilogue", 225 "prefer tail-folding, create scalar epilogue if tail " 226 "folding fails."), 227 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 228 "predicate-dont-vectorize", 229 "prefers tail-folding, don't attempt vectorization if " 230 "tail-folding fails."))); 231 232 static cl::opt<bool> MaximizeBandwidth( 233 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 234 cl::desc("Maximize bandwidth when selecting vectorization factor which " 235 "will be determined by the smallest type in loop.")); 236 237 static cl::opt<bool> EnableInterleavedMemAccesses( 238 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 239 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 240 241 /// An interleave-group may need masking if it resides in a block that needs 242 /// predication, or in order to mask away gaps. 243 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 244 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 246 247 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 248 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 249 cl::desc("We don't interleave loops with a estimated constant trip count " 250 "below this number")); 251 252 static cl::opt<unsigned> ForceTargetNumScalarRegs( 253 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 254 cl::desc("A flag that overrides the target's number of scalar registers.")); 255 256 static cl::opt<unsigned> ForceTargetNumVectorRegs( 257 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of vector registers.")); 259 260 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 261 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's max interleave factor for " 263 "scalar loops.")); 264 265 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 266 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "vectorized loops.")); 269 270 static cl::opt<unsigned> ForceTargetInstructionCost( 271 "force-target-instruction-cost", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's expected cost for " 273 "an instruction to a single constant value. Mostly " 274 "useful for getting consistent testing.")); 275 276 static cl::opt<bool> ForceTargetSupportsScalableVectors( 277 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 278 cl::desc( 279 "Pretend that scalable vectors are supported, even if the target does " 280 "not support them. This flag should only be used for testing.")); 281 282 static cl::opt<unsigned> SmallLoopCost( 283 "small-loop-cost", cl::init(20), cl::Hidden, 284 cl::desc( 285 "The cost of a loop that is considered 'small' by the interleaver.")); 286 287 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 288 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 289 cl::desc("Enable the use of the block frequency analysis to access PGO " 290 "heuristics minimizing code growth in cold regions and being more " 291 "aggressive in hot regions.")); 292 293 // Runtime interleave loops for load/store throughput. 294 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 295 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 296 cl::desc( 297 "Enable runtime interleaving until load/store ports are saturated")); 298 299 /// Interleave small loops with scalar reductions. 300 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 301 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 302 cl::desc("Enable interleaving for loops with small iteration counts that " 303 "contain scalar reductions to expose ILP.")); 304 305 /// The number of stores in a loop that are allowed to need predication. 306 static cl::opt<unsigned> NumberOfStoresToPredicate( 307 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 308 cl::desc("Max number of stores to be predicated behind an if.")); 309 310 static cl::opt<bool> EnableIndVarRegisterHeur( 311 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 312 cl::desc("Count the induction variable only once when interleaving")); 313 314 static cl::opt<bool> EnableCondStoresVectorization( 315 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 316 cl::desc("Enable if predication of stores during vectorization.")); 317 318 static cl::opt<unsigned> MaxNestedScalarReductionIC( 319 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 320 cl::desc("The maximum interleave count to use when interleaving a scalar " 321 "reduction in a nested loop.")); 322 323 static cl::opt<bool> 324 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 325 cl::Hidden, 326 cl::desc("Prefer in-loop vector reductions, " 327 "overriding the targets preference.")); 328 329 static cl::opt<bool> PreferPredicatedReductionSelect( 330 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 331 cl::desc( 332 "Prefer predicating a reduction operation over an after loop select.")); 333 334 cl::opt<bool> EnableVPlanNativePath( 335 "enable-vplan-native-path", cl::init(false), cl::Hidden, 336 cl::desc("Enable VPlan-native vectorization path with " 337 "support for outer loop vectorization.")); 338 339 // FIXME: Remove this switch once we have divergence analysis. Currently we 340 // assume divergent non-backedge branches when this switch is true. 341 cl::opt<bool> EnableVPlanPredication( 342 "enable-vplan-predication", cl::init(false), cl::Hidden, 343 cl::desc("Enable VPlan-native vectorization path predicator with " 344 "support for outer loop vectorization.")); 345 346 // This flag enables the stress testing of the VPlan H-CFG construction in the 347 // VPlan-native vectorization path. It must be used in conjuction with 348 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 349 // verification of the H-CFGs built. 350 static cl::opt<bool> VPlanBuildStressTest( 351 "vplan-build-stress-test", cl::init(false), cl::Hidden, 352 cl::desc( 353 "Build VPlan for every supported loop nest in the function and bail " 354 "out right after the build (stress test the VPlan H-CFG construction " 355 "in the VPlan-native vectorization path).")); 356 357 cl::opt<bool> llvm::EnableLoopInterleaving( 358 "interleave-loops", cl::init(true), cl::Hidden, 359 cl::desc("Enable loop interleaving in Loop vectorization passes")); 360 cl::opt<bool> llvm::EnableLoopVectorization( 361 "vectorize-loops", cl::init(true), cl::Hidden, 362 cl::desc("Run the Loop vectorization passes")); 363 364 /// A helper function that returns the type of loaded or stored value. 365 static Type *getMemInstValueType(Value *I) { 366 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 367 "Expected Load or Store instruction"); 368 if (auto *LI = dyn_cast<LoadInst>(I)) 369 return LI->getType(); 370 return cast<StoreInst>(I)->getValueOperand()->getType(); 371 } 372 373 /// A helper function that returns true if the given type is irregular. The 374 /// type is irregular if its allocated size doesn't equal the store size of an 375 /// element of the corresponding vector type at the given vectorization factor. 376 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 377 // Determine if an array of VF elements of type Ty is "bitcast compatible" 378 // with a <VF x Ty> vector. 379 if (VF.isVector()) { 380 auto *VectorTy = VectorType::get(Ty, VF); 381 return TypeSize::get(VF.getKnownMinValue() * 382 DL.getTypeAllocSize(Ty).getFixedValue(), 383 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 384 } 385 386 // If the vectorization factor is one, we just check if an array of type Ty 387 // requires padding between elements. 388 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 389 } 390 391 /// A helper function that returns the reciprocal of the block probability of 392 /// predicated blocks. If we return X, we are assuming the predicated block 393 /// will execute once for every X iterations of the loop header. 394 /// 395 /// TODO: We should use actual block probability here, if available. Currently, 396 /// we always assume predicated blocks have a 50% chance of executing. 397 static unsigned getReciprocalPredBlockProb() { return 2; } 398 399 /// A helper function that adds a 'fast' flag to floating-point operations. 400 static Value *addFastMathFlag(Value *V) { 401 if (isa<FPMathOperator>(V)) 402 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 403 return V; 404 } 405 406 /// A helper function that returns an integer or floating-point constant with 407 /// value C. 408 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 409 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 410 : ConstantFP::get(Ty, C); 411 } 412 413 /// Returns "best known" trip count for the specified loop \p L as defined by 414 /// the following procedure: 415 /// 1) Returns exact trip count if it is known. 416 /// 2) Returns expected trip count according to profile data if any. 417 /// 3) Returns upper bound estimate if it is known. 418 /// 4) Returns None if all of the above failed. 419 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 420 // Check if exact trip count is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 422 return ExpectedTC; 423 424 // Check if there is an expected trip count available from profile data. 425 if (LoopVectorizeWithBlockFrequency) 426 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 427 return EstimatedTC; 428 429 // Check if upper bound estimate is known. 430 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 431 return ExpectedTC; 432 433 return None; 434 } 435 436 namespace llvm { 437 438 /// InnerLoopVectorizer vectorizes loops which contain only one basic 439 /// block to a specified vectorization factor (VF). 440 /// This class performs the widening of scalars into vectors, or multiple 441 /// scalars. This class also implements the following features: 442 /// * It inserts an epilogue loop for handling loops that don't have iteration 443 /// counts that are known to be a multiple of the vectorization factor. 444 /// * It handles the code generation for reduction variables. 445 /// * Scalarization (implementation using scalars) of un-vectorizable 446 /// instructions. 447 /// InnerLoopVectorizer does not perform any vectorization-legality 448 /// checks, and relies on the caller to check for the different legality 449 /// aspects. The InnerLoopVectorizer relies on the 450 /// LoopVectorizationLegality class to provide information about the induction 451 /// and reduction variables that were found to a given vectorization factor. 452 class InnerLoopVectorizer { 453 public: 454 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 455 LoopInfo *LI, DominatorTree *DT, 456 const TargetLibraryInfo *TLI, 457 const TargetTransformInfo *TTI, AssumptionCache *AC, 458 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 459 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 460 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 461 ProfileSummaryInfo *PSI) 462 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 463 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 464 Builder(PSE.getSE()->getContext()), 465 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 466 BFI(BFI), PSI(PSI) { 467 // Query this against the original loop and save it here because the profile 468 // of the original loop header may change as the transformation happens. 469 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 470 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 471 } 472 473 virtual ~InnerLoopVectorizer() = default; 474 475 /// Create a new empty loop that will contain vectorized instructions later 476 /// on, while the old loop will be used as the scalar remainder. Control flow 477 /// is generated around the vectorized (and scalar epilogue) loops consisting 478 /// of various checks and bypasses. Return the pre-header block of the new 479 /// loop. 480 /// In the case of epilogue vectorization, this function is overriden to 481 /// handle the more complex control flow around the loops. 482 virtual BasicBlock *createVectorizedLoopSkeleton(); 483 484 /// Widen a single instruction within the innermost loop. 485 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 486 VPTransformState &State); 487 488 /// Widen a single call instruction within the innermost loop. 489 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 490 VPTransformState &State); 491 492 /// Widen a single select instruction within the innermost loop. 493 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 494 bool InvariantCond, VPTransformState &State); 495 496 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 497 void fixVectorizedLoop(); 498 499 // Return true if any runtime check is added. 500 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 501 502 /// A type for vectorized values in the new loop. Each value from the 503 /// original loop, when vectorized, is represented by UF vector values in the 504 /// new unrolled loop, where UF is the unroll factor. 505 using VectorParts = SmallVector<Value *, 2>; 506 507 /// Vectorize a single GetElementPtrInst based on information gathered and 508 /// decisions taken during planning. 509 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 510 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 511 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 512 513 /// Vectorize a single PHINode in a block. This method handles the induction 514 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 515 /// arbitrary length vectors. 516 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 517 Value *StartV, unsigned UF, ElementCount VF); 518 519 /// A helper function to scalarize a single Instruction in the innermost loop. 520 /// Generates a sequence of scalar instances for each lane between \p MinLane 521 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 522 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 523 /// Instr's operands. 524 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 525 const VPIteration &Instance, bool IfPredicateInstr, 526 VPTransformState &State); 527 528 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 529 /// is provided, the integer induction variable will first be truncated to 530 /// the corresponding type. 531 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 532 VPValue *Def, VPValue *CastDef, 533 VPTransformState &State); 534 535 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 536 /// vector or scalar value on-demand if one is not yet available. When 537 /// vectorizing a loop, we visit the definition of an instruction before its 538 /// uses. When visiting the definition, we either vectorize or scalarize the 539 /// instruction, creating an entry for it in the corresponding map. (In some 540 /// cases, such as induction variables, we will create both vector and scalar 541 /// entries.) Then, as we encounter uses of the definition, we derive values 542 /// for each scalar or vector use unless such a value is already available. 543 /// For example, if we scalarize a definition and one of its uses is vector, 544 /// we build the required vector on-demand with an insertelement sequence 545 /// when visiting the use. Otherwise, if the use is scalar, we can use the 546 /// existing scalar definition. 547 /// 548 /// Return a value in the new loop corresponding to \p V from the original 549 /// loop at unroll index \p Part. If the value has already been vectorized, 550 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 551 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 552 /// a new vector value on-demand by inserting the scalar values into a vector 553 /// with an insertelement sequence. If the value has been neither vectorized 554 /// nor scalarized, it must be loop invariant, so we simply broadcast the 555 /// value into a vector. 556 Value *getOrCreateVectorValue(Value *V, unsigned Part); 557 558 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 559 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 560 } 561 562 void setScalarValue(Value *Scalar, const VPIteration &Instance, Value *V) { 563 VectorLoopValueMap.setScalarValue(Scalar, Instance, V); 564 } 565 566 /// Return a value in the new loop corresponding to \p V from the original 567 /// loop at unroll and vector indices \p Instance. If the value has been 568 /// vectorized but not scalarized, the necessary extractelement instruction 569 /// will be generated. 570 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 571 572 /// Construct the vector value of a scalarized value \p V one lane at a time. 573 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 574 575 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 576 VPTransformState &State); 577 578 /// Try to vectorize interleaved access group \p Group with the base address 579 /// given in \p Addr, optionally masking the vector operations if \p 580 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 581 /// values in the vectorized loop. 582 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 583 ArrayRef<VPValue *> VPDefs, 584 VPTransformState &State, VPValue *Addr, 585 ArrayRef<VPValue *> StoredValues, 586 VPValue *BlockInMask = nullptr); 587 588 /// Vectorize Load and Store instructions with the base address given in \p 589 /// Addr, optionally masking the vector operations if \p BlockInMask is 590 /// non-null. Use \p State to translate given VPValues to IR values in the 591 /// vectorized loop. 592 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 593 VPValue *Def, VPValue *Addr, 594 VPValue *StoredValue, VPValue *BlockInMask); 595 596 /// Set the debug location in the builder using the debug location in 597 /// the instruction. 598 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 599 600 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 601 void fixNonInductionPHIs(void); 602 603 /// Create a broadcast instruction. This method generates a broadcast 604 /// instruction (shuffle) for loop invariant values and for the induction 605 /// value. If this is the induction variable then we extend it to N, N+1, ... 606 /// this is needed because each iteration in the loop corresponds to a SIMD 607 /// element. 608 virtual Value *getBroadcastInstrs(Value *V); 609 610 protected: 611 friend class LoopVectorizationPlanner; 612 613 /// A small list of PHINodes. 614 using PhiVector = SmallVector<PHINode *, 4>; 615 616 /// A type for scalarized values in the new loop. Each value from the 617 /// original loop, when scalarized, is represented by UF x VF scalar values 618 /// in the new unrolled loop, where UF is the unroll factor and VF is the 619 /// vectorization factor. 620 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 621 622 /// Set up the values of the IVs correctly when exiting the vector loop. 623 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 624 Value *CountRoundDown, Value *EndValue, 625 BasicBlock *MiddleBlock); 626 627 /// Create a new induction variable inside L. 628 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 629 Value *Step, Instruction *DL); 630 631 /// Handle all cross-iteration phis in the header. 632 void fixCrossIterationPHIs(); 633 634 /// Fix a first-order recurrence. This is the second phase of vectorizing 635 /// this phi node. 636 void fixFirstOrderRecurrence(PHINode *Phi); 637 638 /// Fix a reduction cross-iteration phi. This is the second phase of 639 /// vectorizing this phi node. 640 void fixReduction(PHINode *Phi); 641 642 /// Clear NSW/NUW flags from reduction instructions if necessary. 643 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 644 645 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 646 /// means we need to add the appropriate incoming value from the middle 647 /// block as exiting edges from the scalar epilogue loop (if present) are 648 /// already in place, and we exit the vector loop exclusively to the middle 649 /// block. 650 void fixLCSSAPHIs(); 651 652 /// Iteratively sink the scalarized operands of a predicated instruction into 653 /// the block that was created for it. 654 void sinkScalarOperands(Instruction *PredInst); 655 656 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 657 /// represented as. 658 void truncateToMinimalBitwidths(); 659 660 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 661 /// to each vector element of Val. The sequence starts at StartIndex. 662 /// \p Opcode is relevant for FP induction variable. 663 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 664 Instruction::BinaryOps Opcode = 665 Instruction::BinaryOpsEnd); 666 667 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 668 /// variable on which to base the steps, \p Step is the size of the step, and 669 /// \p EntryVal is the value from the original loop that maps to the steps. 670 /// Note that \p EntryVal doesn't have to be an induction variable - it 671 /// can also be a truncate instruction. 672 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 673 const InductionDescriptor &ID, VPValue *Def, 674 VPValue *CastDef, VPTransformState &State); 675 676 /// Create a vector induction phi node based on an existing scalar one. \p 677 /// EntryVal is the value from the original loop that maps to the vector phi 678 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 679 /// truncate instruction, instead of widening the original IV, we widen a 680 /// version of the IV truncated to \p EntryVal's type. 681 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 682 Value *Step, Value *Start, 683 Instruction *EntryVal, VPValue *Def, 684 VPValue *CastDef, 685 VPTransformState &State); 686 687 /// Returns true if an instruction \p I should be scalarized instead of 688 /// vectorized for the chosen vectorization factor. 689 bool shouldScalarizeInstruction(Instruction *I) const; 690 691 /// Returns true if we should generate a scalar version of \p IV. 692 bool needsScalarInduction(Instruction *IV) const; 693 694 /// If there is a cast involved in the induction variable \p ID, which should 695 /// be ignored in the vectorized loop body, this function records the 696 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 697 /// cast. We had already proved that the casted Phi is equal to the uncasted 698 /// Phi in the vectorized loop (under a runtime guard), and therefore 699 /// there is no need to vectorize the cast - the same value can be used in the 700 /// vector loop for both the Phi and the cast. 701 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 702 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 703 /// 704 /// \p EntryVal is the value from the original loop that maps to the vector 705 /// phi node and is used to distinguish what is the IV currently being 706 /// processed - original one (if \p EntryVal is a phi corresponding to the 707 /// original IV) or the "newly-created" one based on the proof mentioned above 708 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 709 /// latter case \p EntryVal is a TruncInst and we must not record anything for 710 /// that IV, but it's error-prone to expect callers of this routine to care 711 /// about that, hence this explicit parameter. 712 void recordVectorLoopValueForInductionCast( 713 const InductionDescriptor &ID, const Instruction *EntryVal, 714 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 715 unsigned Part, unsigned Lane = UINT_MAX); 716 717 /// Generate a shuffle sequence that will reverse the vector Vec. 718 virtual Value *reverseVector(Value *Vec); 719 720 /// Returns (and creates if needed) the original loop trip count. 721 Value *getOrCreateTripCount(Loop *NewLoop); 722 723 /// Returns (and creates if needed) the trip count of the widened loop. 724 Value *getOrCreateVectorTripCount(Loop *NewLoop); 725 726 /// Returns a bitcasted value to the requested vector type. 727 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 728 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 729 const DataLayout &DL); 730 731 /// Emit a bypass check to see if the vector trip count is zero, including if 732 /// it overflows. 733 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 734 735 /// Emit a bypass check to see if all of the SCEV assumptions we've 736 /// had to make are correct. 737 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 738 739 /// Emit bypass checks to check any memory assumptions we may have made. 740 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 741 742 /// Compute the transformed value of Index at offset StartValue using step 743 /// StepValue. 744 /// For integer induction, returns StartValue + Index * StepValue. 745 /// For pointer induction, returns StartValue[Index * StepValue]. 746 /// FIXME: The newly created binary instructions should contain nsw/nuw 747 /// flags, which can be found from the original scalar operations. 748 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 749 const DataLayout &DL, 750 const InductionDescriptor &ID) const; 751 752 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 753 /// vector loop preheader, middle block and scalar preheader. Also 754 /// allocate a loop object for the new vector loop and return it. 755 Loop *createVectorLoopSkeleton(StringRef Prefix); 756 757 /// Create new phi nodes for the induction variables to resume iteration count 758 /// in the scalar epilogue, from where the vectorized loop left off (given by 759 /// \p VectorTripCount). 760 /// In cases where the loop skeleton is more complicated (eg. epilogue 761 /// vectorization) and the resume values can come from an additional bypass 762 /// block, the \p AdditionalBypass pair provides information about the bypass 763 /// block and the end value on the edge from bypass to this loop. 764 void createInductionResumeValues( 765 Loop *L, Value *VectorTripCount, 766 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 767 768 /// Complete the loop skeleton by adding debug MDs, creating appropriate 769 /// conditional branches in the middle block, preparing the builder and 770 /// running the verifier. Take in the vector loop \p L as argument, and return 771 /// the preheader of the completed vector loop. 772 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 773 774 /// Add additional metadata to \p To that was not present on \p Orig. 775 /// 776 /// Currently this is used to add the noalias annotations based on the 777 /// inserted memchecks. Use this for instructions that are *cloned* into the 778 /// vector loop. 779 void addNewMetadata(Instruction *To, const Instruction *Orig); 780 781 /// Add metadata from one instruction to another. 782 /// 783 /// This includes both the original MDs from \p From and additional ones (\see 784 /// addNewMetadata). Use this for *newly created* instructions in the vector 785 /// loop. 786 void addMetadata(Instruction *To, Instruction *From); 787 788 /// Similar to the previous function but it adds the metadata to a 789 /// vector of instructions. 790 void addMetadata(ArrayRef<Value *> To, Instruction *From); 791 792 /// Allow subclasses to override and print debug traces before/after vplan 793 /// execution, when trace information is requested. 794 virtual void printDebugTracesAtStart(){}; 795 virtual void printDebugTracesAtEnd(){}; 796 797 /// The original loop. 798 Loop *OrigLoop; 799 800 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 801 /// dynamic knowledge to simplify SCEV expressions and converts them to a 802 /// more usable form. 803 PredicatedScalarEvolution &PSE; 804 805 /// Loop Info. 806 LoopInfo *LI; 807 808 /// Dominator Tree. 809 DominatorTree *DT; 810 811 /// Alias Analysis. 812 AAResults *AA; 813 814 /// Target Library Info. 815 const TargetLibraryInfo *TLI; 816 817 /// Target Transform Info. 818 const TargetTransformInfo *TTI; 819 820 /// Assumption Cache. 821 AssumptionCache *AC; 822 823 /// Interface to emit optimization remarks. 824 OptimizationRemarkEmitter *ORE; 825 826 /// LoopVersioning. It's only set up (non-null) if memchecks were 827 /// used. 828 /// 829 /// This is currently only used to add no-alias metadata based on the 830 /// memchecks. The actually versioning is performed manually. 831 std::unique_ptr<LoopVersioning> LVer; 832 833 /// The vectorization SIMD factor to use. Each vector will have this many 834 /// vector elements. 835 ElementCount VF; 836 837 /// The vectorization unroll factor to use. Each scalar is vectorized to this 838 /// many different vector instructions. 839 unsigned UF; 840 841 /// The builder that we use 842 IRBuilder<> Builder; 843 844 // --- Vectorization state --- 845 846 /// The vector-loop preheader. 847 BasicBlock *LoopVectorPreHeader; 848 849 /// The scalar-loop preheader. 850 BasicBlock *LoopScalarPreHeader; 851 852 /// Middle Block between the vector and the scalar. 853 BasicBlock *LoopMiddleBlock; 854 855 /// The (unique) ExitBlock of the scalar loop. Note that 856 /// there can be multiple exiting edges reaching this block. 857 BasicBlock *LoopExitBlock; 858 859 /// The vector loop body. 860 BasicBlock *LoopVectorBody; 861 862 /// The scalar loop body. 863 BasicBlock *LoopScalarBody; 864 865 /// A list of all bypass blocks. The first block is the entry of the loop. 866 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 867 868 /// The new Induction variable which was added to the new block. 869 PHINode *Induction = nullptr; 870 871 /// The induction variable of the old basic block. 872 PHINode *OldInduction = nullptr; 873 874 /// Maps values from the original loop to their corresponding values in the 875 /// vectorized loop. A key value can map to either vector values, scalar 876 /// values or both kinds of values, depending on whether the key was 877 /// vectorized and scalarized. 878 VectorizerValueMap VectorLoopValueMap; 879 880 /// Store instructions that were predicated. 881 SmallVector<Instruction *, 4> PredicatedInstructions; 882 883 /// Trip count of the original loop. 884 Value *TripCount = nullptr; 885 886 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 887 Value *VectorTripCount = nullptr; 888 889 /// The legality analysis. 890 LoopVectorizationLegality *Legal; 891 892 /// The profitablity analysis. 893 LoopVectorizationCostModel *Cost; 894 895 // Record whether runtime checks are added. 896 bool AddedSafetyChecks = false; 897 898 // Holds the end values for each induction variable. We save the end values 899 // so we can later fix-up the external users of the induction variables. 900 DenseMap<PHINode *, Value *> IVEndValues; 901 902 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 903 // fixed up at the end of vector code generation. 904 SmallVector<PHINode *, 8> OrigPHIsToFix; 905 906 /// BFI and PSI are used to check for profile guided size optimizations. 907 BlockFrequencyInfo *BFI; 908 ProfileSummaryInfo *PSI; 909 910 // Whether this loop should be optimized for size based on profile guided size 911 // optimizatios. 912 bool OptForSizeBasedOnProfile; 913 }; 914 915 class InnerLoopUnroller : public InnerLoopVectorizer { 916 public: 917 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 918 LoopInfo *LI, DominatorTree *DT, 919 const TargetLibraryInfo *TLI, 920 const TargetTransformInfo *TTI, AssumptionCache *AC, 921 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 922 LoopVectorizationLegality *LVL, 923 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 924 ProfileSummaryInfo *PSI) 925 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 926 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 927 BFI, PSI) {} 928 929 private: 930 Value *getBroadcastInstrs(Value *V) override; 931 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 932 Instruction::BinaryOps Opcode = 933 Instruction::BinaryOpsEnd) override; 934 Value *reverseVector(Value *Vec) override; 935 }; 936 937 /// Encapsulate information regarding vectorization of a loop and its epilogue. 938 /// This information is meant to be updated and used across two stages of 939 /// epilogue vectorization. 940 struct EpilogueLoopVectorizationInfo { 941 ElementCount MainLoopVF = ElementCount::getFixed(0); 942 unsigned MainLoopUF = 0; 943 ElementCount EpilogueVF = ElementCount::getFixed(0); 944 unsigned EpilogueUF = 0; 945 BasicBlock *MainLoopIterationCountCheck = nullptr; 946 BasicBlock *EpilogueIterationCountCheck = nullptr; 947 BasicBlock *SCEVSafetyCheck = nullptr; 948 BasicBlock *MemSafetyCheck = nullptr; 949 Value *TripCount = nullptr; 950 Value *VectorTripCount = nullptr; 951 952 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 953 unsigned EUF) 954 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 955 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 956 assert(EUF == 1 && 957 "A high UF for the epilogue loop is likely not beneficial."); 958 } 959 }; 960 961 /// An extension of the inner loop vectorizer that creates a skeleton for a 962 /// vectorized loop that has its epilogue (residual) also vectorized. 963 /// The idea is to run the vplan on a given loop twice, firstly to setup the 964 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 965 /// from the first step and vectorize the epilogue. This is achieved by 966 /// deriving two concrete strategy classes from this base class and invoking 967 /// them in succession from the loop vectorizer planner. 968 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 969 public: 970 InnerLoopAndEpilogueVectorizer( 971 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 972 DominatorTree *DT, const TargetLibraryInfo *TLI, 973 const TargetTransformInfo *TTI, AssumptionCache *AC, 974 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 975 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 976 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 977 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 978 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI), 979 EPI(EPI) {} 980 981 // Override this function to handle the more complex control flow around the 982 // three loops. 983 BasicBlock *createVectorizedLoopSkeleton() final override { 984 return createEpilogueVectorizedLoopSkeleton(); 985 } 986 987 /// The interface for creating a vectorized skeleton using one of two 988 /// different strategies, each corresponding to one execution of the vplan 989 /// as described above. 990 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 991 992 /// Holds and updates state information required to vectorize the main loop 993 /// and its epilogue in two separate passes. This setup helps us avoid 994 /// regenerating and recomputing runtime safety checks. It also helps us to 995 /// shorten the iteration-count-check path length for the cases where the 996 /// iteration count of the loop is so small that the main vector loop is 997 /// completely skipped. 998 EpilogueLoopVectorizationInfo &EPI; 999 }; 1000 1001 /// A specialized derived class of inner loop vectorizer that performs 1002 /// vectorization of *main* loops in the process of vectorizing loops and their 1003 /// epilogues. 1004 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 1005 public: 1006 EpilogueVectorizerMainLoop( 1007 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1008 DominatorTree *DT, const TargetLibraryInfo *TLI, 1009 const TargetTransformInfo *TTI, AssumptionCache *AC, 1010 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1011 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1012 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 1013 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1014 EPI, LVL, CM, BFI, PSI) {} 1015 /// Implements the interface for creating a vectorized skeleton using the 1016 /// *main loop* strategy (ie the first pass of vplan execution). 1017 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1018 1019 protected: 1020 /// Emits an iteration count bypass check once for the main loop (when \p 1021 /// ForEpilogue is false) and once for the epilogue loop (when \p 1022 /// ForEpilogue is true). 1023 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 1024 bool ForEpilogue); 1025 void printDebugTracesAtStart() override; 1026 void printDebugTracesAtEnd() override; 1027 }; 1028 1029 // A specialized derived class of inner loop vectorizer that performs 1030 // vectorization of *epilogue* loops in the process of vectorizing loops and 1031 // their epilogues. 1032 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 1033 public: 1034 EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 1035 LoopInfo *LI, DominatorTree *DT, 1036 const TargetLibraryInfo *TLI, 1037 const TargetTransformInfo *TTI, AssumptionCache *AC, 1038 OptimizationRemarkEmitter *ORE, 1039 EpilogueLoopVectorizationInfo &EPI, 1040 LoopVectorizationLegality *LVL, 1041 llvm::LoopVectorizationCostModel *CM, 1042 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 1043 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1044 EPI, LVL, CM, BFI, PSI) {} 1045 /// Implements the interface for creating a vectorized skeleton using the 1046 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1047 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1048 1049 protected: 1050 /// Emits an iteration count bypass check after the main vector loop has 1051 /// finished to see if there are any iterations left to execute by either 1052 /// the vector epilogue or the scalar epilogue. 1053 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1054 BasicBlock *Bypass, 1055 BasicBlock *Insert); 1056 void printDebugTracesAtStart() override; 1057 void printDebugTracesAtEnd() override; 1058 }; 1059 } // end namespace llvm 1060 1061 /// Look for a meaningful debug location on the instruction or it's 1062 /// operands. 1063 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1064 if (!I) 1065 return I; 1066 1067 DebugLoc Empty; 1068 if (I->getDebugLoc() != Empty) 1069 return I; 1070 1071 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 1072 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 1073 if (OpInst->getDebugLoc() != Empty) 1074 return OpInst; 1075 } 1076 1077 return I; 1078 } 1079 1080 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1081 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1082 const DILocation *DIL = Inst->getDebugLoc(); 1083 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1084 !isa<DbgInfoIntrinsic>(Inst)) { 1085 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1086 auto NewDIL = 1087 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1088 if (NewDIL) 1089 B.SetCurrentDebugLocation(NewDIL.getValue()); 1090 else 1091 LLVM_DEBUG(dbgs() 1092 << "Failed to create new discriminator: " 1093 << DIL->getFilename() << " Line: " << DIL->getLine()); 1094 } 1095 else 1096 B.SetCurrentDebugLocation(DIL); 1097 } else 1098 B.SetCurrentDebugLocation(DebugLoc()); 1099 } 1100 1101 /// Write a record \p DebugMsg about vectorization failure to the debug 1102 /// output stream. If \p I is passed, it is an instruction that prevents 1103 /// vectorization. 1104 #ifndef NDEBUG 1105 static void debugVectorizationFailure(const StringRef DebugMsg, 1106 Instruction *I) { 1107 dbgs() << "LV: Not vectorizing: " << DebugMsg; 1108 if (I != nullptr) 1109 dbgs() << " " << *I; 1110 else 1111 dbgs() << '.'; 1112 dbgs() << '\n'; 1113 } 1114 #endif 1115 1116 /// Create an analysis remark that explains why vectorization failed 1117 /// 1118 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1119 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1120 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1121 /// the location of the remark. \return the remark object that can be 1122 /// streamed to. 1123 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1124 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1125 Value *CodeRegion = TheLoop->getHeader(); 1126 DebugLoc DL = TheLoop->getStartLoc(); 1127 1128 if (I) { 1129 CodeRegion = I->getParent(); 1130 // If there is no debug location attached to the instruction, revert back to 1131 // using the loop's. 1132 if (I->getDebugLoc()) 1133 DL = I->getDebugLoc(); 1134 } 1135 1136 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 1137 R << "loop not vectorized: "; 1138 return R; 1139 } 1140 1141 /// Return a value for Step multiplied by VF. 1142 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1143 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1144 Constant *StepVal = ConstantInt::get( 1145 Step->getType(), 1146 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1147 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1148 } 1149 1150 namespace llvm { 1151 1152 void reportVectorizationFailure(const StringRef DebugMsg, 1153 const StringRef OREMsg, const StringRef ORETag, 1154 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 1155 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 1156 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1157 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 1158 ORETag, TheLoop, I) << OREMsg); 1159 } 1160 1161 } // end namespace llvm 1162 1163 #ifndef NDEBUG 1164 /// \return string containing a file name and a line # for the given loop. 1165 static std::string getDebugLocString(const Loop *L) { 1166 std::string Result; 1167 if (L) { 1168 raw_string_ostream OS(Result); 1169 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1170 LoopDbgLoc.print(OS); 1171 else 1172 // Just print the module name. 1173 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1174 OS.flush(); 1175 } 1176 return Result; 1177 } 1178 #endif 1179 1180 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1181 const Instruction *Orig) { 1182 // If the loop was versioned with memchecks, add the corresponding no-alias 1183 // metadata. 1184 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1185 LVer->annotateInstWithNoAlias(To, Orig); 1186 } 1187 1188 void InnerLoopVectorizer::addMetadata(Instruction *To, 1189 Instruction *From) { 1190 propagateMetadata(To, From); 1191 addNewMetadata(To, From); 1192 } 1193 1194 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1195 Instruction *From) { 1196 for (Value *V : To) { 1197 if (Instruction *I = dyn_cast<Instruction>(V)) 1198 addMetadata(I, From); 1199 } 1200 } 1201 1202 namespace llvm { 1203 1204 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1205 // lowered. 1206 enum ScalarEpilogueLowering { 1207 1208 // The default: allowing scalar epilogues. 1209 CM_ScalarEpilogueAllowed, 1210 1211 // Vectorization with OptForSize: don't allow epilogues. 1212 CM_ScalarEpilogueNotAllowedOptSize, 1213 1214 // A special case of vectorisation with OptForSize: loops with a very small 1215 // trip count are considered for vectorization under OptForSize, thereby 1216 // making sure the cost of their loop body is dominant, free of runtime 1217 // guards and scalar iteration overheads. 1218 CM_ScalarEpilogueNotAllowedLowTripLoop, 1219 1220 // Loop hint predicate indicating an epilogue is undesired. 1221 CM_ScalarEpilogueNotNeededUsePredicate, 1222 1223 // Directive indicating we must either tail fold or not vectorize 1224 CM_ScalarEpilogueNotAllowedUsePredicate 1225 }; 1226 1227 /// LoopVectorizationCostModel - estimates the expected speedups due to 1228 /// vectorization. 1229 /// In many cases vectorization is not profitable. This can happen because of 1230 /// a number of reasons. In this class we mainly attempt to predict the 1231 /// expected speedup/slowdowns due to the supported instruction set. We use the 1232 /// TargetTransformInfo to query the different backends for the cost of 1233 /// different operations. 1234 class LoopVectorizationCostModel { 1235 public: 1236 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1237 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1238 LoopVectorizationLegality *Legal, 1239 const TargetTransformInfo &TTI, 1240 const TargetLibraryInfo *TLI, DemandedBits *DB, 1241 AssumptionCache *AC, 1242 OptimizationRemarkEmitter *ORE, const Function *F, 1243 const LoopVectorizeHints *Hints, 1244 InterleavedAccessInfo &IAI) 1245 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1246 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1247 Hints(Hints), InterleaveInfo(IAI) {} 1248 1249 /// \return An upper bound for the vectorization factor, or None if 1250 /// vectorization and interleaving should be avoided up front. 1251 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1252 1253 /// \return True if runtime checks are required for vectorization, and false 1254 /// otherwise. 1255 bool runtimeChecksRequired(); 1256 1257 /// \return The most profitable vectorization factor and the cost of that VF. 1258 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1259 /// then this vectorization factor will be selected if vectorization is 1260 /// possible. 1261 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1262 VectorizationFactor 1263 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1264 const LoopVectorizationPlanner &LVP); 1265 1266 /// Setup cost-based decisions for user vectorization factor. 1267 void selectUserVectorizationFactor(ElementCount UserVF) { 1268 collectUniformsAndScalars(UserVF); 1269 collectInstsToScalarize(UserVF); 1270 } 1271 1272 /// \return The size (in bits) of the smallest and widest types in the code 1273 /// that needs to be vectorized. We ignore values that remain scalar such as 1274 /// 64 bit loop indices. 1275 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1276 1277 /// \return The desired interleave count. 1278 /// If interleave count has been specified by metadata it will be returned. 1279 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1280 /// are the selected vectorization factor and the cost of the selected VF. 1281 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1282 1283 /// Memory access instruction may be vectorized in more than one way. 1284 /// Form of instruction after vectorization depends on cost. 1285 /// This function takes cost-based decisions for Load/Store instructions 1286 /// and collects them in a map. This decisions map is used for building 1287 /// the lists of loop-uniform and loop-scalar instructions. 1288 /// The calculated cost is saved with widening decision in order to 1289 /// avoid redundant calculations. 1290 void setCostBasedWideningDecision(ElementCount VF); 1291 1292 /// A struct that represents some properties of the register usage 1293 /// of a loop. 1294 struct RegisterUsage { 1295 /// Holds the number of loop invariant values that are used in the loop. 1296 /// The key is ClassID of target-provided register class. 1297 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1298 /// Holds the maximum number of concurrent live intervals in the loop. 1299 /// The key is ClassID of target-provided register class. 1300 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1301 }; 1302 1303 /// \return Returns information about the register usages of the loop for the 1304 /// given vectorization factors. 1305 SmallVector<RegisterUsage, 8> 1306 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1307 1308 /// Collect values we want to ignore in the cost model. 1309 void collectValuesToIgnore(); 1310 1311 /// Split reductions into those that happen in the loop, and those that happen 1312 /// outside. In loop reductions are collected into InLoopReductionChains. 1313 void collectInLoopReductions(); 1314 1315 /// \returns The smallest bitwidth each instruction can be represented with. 1316 /// The vector equivalents of these instructions should be truncated to this 1317 /// type. 1318 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1319 return MinBWs; 1320 } 1321 1322 /// \returns True if it is more profitable to scalarize instruction \p I for 1323 /// vectorization factor \p VF. 1324 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1325 assert(VF.isVector() && 1326 "Profitable to scalarize relevant only for VF > 1."); 1327 1328 // Cost model is not run in the VPlan-native path - return conservative 1329 // result until this changes. 1330 if (EnableVPlanNativePath) 1331 return false; 1332 1333 auto Scalars = InstsToScalarize.find(VF); 1334 assert(Scalars != InstsToScalarize.end() && 1335 "VF not yet analyzed for scalarization profitability"); 1336 return Scalars->second.find(I) != Scalars->second.end(); 1337 } 1338 1339 /// Returns true if \p I is known to be uniform after vectorization. 1340 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1341 if (VF.isScalar()) 1342 return true; 1343 1344 // Cost model is not run in the VPlan-native path - return conservative 1345 // result until this changes. 1346 if (EnableVPlanNativePath) 1347 return false; 1348 1349 auto UniformsPerVF = Uniforms.find(VF); 1350 assert(UniformsPerVF != Uniforms.end() && 1351 "VF not yet analyzed for uniformity"); 1352 return UniformsPerVF->second.count(I); 1353 } 1354 1355 /// Returns true if \p I is known to be scalar after vectorization. 1356 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1357 if (VF.isScalar()) 1358 return true; 1359 1360 // Cost model is not run in the VPlan-native path - return conservative 1361 // result until this changes. 1362 if (EnableVPlanNativePath) 1363 return false; 1364 1365 auto ScalarsPerVF = Scalars.find(VF); 1366 assert(ScalarsPerVF != Scalars.end() && 1367 "Scalar values are not calculated for VF"); 1368 return ScalarsPerVF->second.count(I); 1369 } 1370 1371 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1372 /// for vectorization factor \p VF. 1373 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1374 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1375 !isProfitableToScalarize(I, VF) && 1376 !isScalarAfterVectorization(I, VF); 1377 } 1378 1379 /// Decision that was taken during cost calculation for memory instruction. 1380 enum InstWidening { 1381 CM_Unknown, 1382 CM_Widen, // For consecutive accesses with stride +1. 1383 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1384 CM_Interleave, 1385 CM_GatherScatter, 1386 CM_Scalarize 1387 }; 1388 1389 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1390 /// instruction \p I and vector width \p VF. 1391 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1392 InstructionCost Cost) { 1393 assert(VF.isVector() && "Expected VF >=2"); 1394 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1395 } 1396 1397 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1398 /// interleaving group \p Grp and vector width \p VF. 1399 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1400 ElementCount VF, InstWidening W, 1401 InstructionCost Cost) { 1402 assert(VF.isVector() && "Expected VF >=2"); 1403 /// Broadcast this decicion to all instructions inside the group. 1404 /// But the cost will be assigned to one instruction only. 1405 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1406 if (auto *I = Grp->getMember(i)) { 1407 if (Grp->getInsertPos() == I) 1408 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1409 else 1410 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1411 } 1412 } 1413 } 1414 1415 /// Return the cost model decision for the given instruction \p I and vector 1416 /// width \p VF. Return CM_Unknown if this instruction did not pass 1417 /// through the cost modeling. 1418 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1419 assert(VF.isVector() && "Expected VF to be a vector VF"); 1420 // Cost model is not run in the VPlan-native path - return conservative 1421 // result until this changes. 1422 if (EnableVPlanNativePath) 1423 return CM_GatherScatter; 1424 1425 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1426 auto Itr = WideningDecisions.find(InstOnVF); 1427 if (Itr == WideningDecisions.end()) 1428 return CM_Unknown; 1429 return Itr->second.first; 1430 } 1431 1432 /// Return the vectorization cost for the given instruction \p I and vector 1433 /// width \p VF. 1434 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1435 assert(VF.isVector() && "Expected VF >=2"); 1436 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1437 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1438 "The cost is not calculated"); 1439 return WideningDecisions[InstOnVF].second; 1440 } 1441 1442 /// Return True if instruction \p I is an optimizable truncate whose operand 1443 /// is an induction variable. Such a truncate will be removed by adding a new 1444 /// induction variable with the destination type. 1445 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1446 // If the instruction is not a truncate, return false. 1447 auto *Trunc = dyn_cast<TruncInst>(I); 1448 if (!Trunc) 1449 return false; 1450 1451 // Get the source and destination types of the truncate. 1452 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1453 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1454 1455 // If the truncate is free for the given types, return false. Replacing a 1456 // free truncate with an induction variable would add an induction variable 1457 // update instruction to each iteration of the loop. We exclude from this 1458 // check the primary induction variable since it will need an update 1459 // instruction regardless. 1460 Value *Op = Trunc->getOperand(0); 1461 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1462 return false; 1463 1464 // If the truncated value is not an induction variable, return false. 1465 return Legal->isInductionPhi(Op); 1466 } 1467 1468 /// Collects the instructions to scalarize for each predicated instruction in 1469 /// the loop. 1470 void collectInstsToScalarize(ElementCount VF); 1471 1472 /// Collect Uniform and Scalar values for the given \p VF. 1473 /// The sets depend on CM decision for Load/Store instructions 1474 /// that may be vectorized as interleave, gather-scatter or scalarized. 1475 void collectUniformsAndScalars(ElementCount VF) { 1476 // Do the analysis once. 1477 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1478 return; 1479 setCostBasedWideningDecision(VF); 1480 collectLoopUniforms(VF); 1481 collectLoopScalars(VF); 1482 } 1483 1484 /// Returns true if the target machine supports masked store operation 1485 /// for the given \p DataType and kind of access to \p Ptr. 1486 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1487 return Legal->isConsecutivePtr(Ptr) && 1488 TTI.isLegalMaskedStore(DataType, Alignment); 1489 } 1490 1491 /// Returns true if the target machine supports masked load operation 1492 /// for the given \p DataType and kind of access to \p Ptr. 1493 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1494 return Legal->isConsecutivePtr(Ptr) && 1495 TTI.isLegalMaskedLoad(DataType, Alignment); 1496 } 1497 1498 /// Returns true if the target machine supports masked scatter operation 1499 /// for the given \p DataType. 1500 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1501 return TTI.isLegalMaskedScatter(DataType, Alignment); 1502 } 1503 1504 /// Returns true if the target machine supports masked gather operation 1505 /// for the given \p DataType. 1506 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1507 return TTI.isLegalMaskedGather(DataType, Alignment); 1508 } 1509 1510 /// Returns true if the target machine can represent \p V as a masked gather 1511 /// or scatter operation. 1512 bool isLegalGatherOrScatter(Value *V) { 1513 bool LI = isa<LoadInst>(V); 1514 bool SI = isa<StoreInst>(V); 1515 if (!LI && !SI) 1516 return false; 1517 auto *Ty = getMemInstValueType(V); 1518 Align Align = getLoadStoreAlignment(V); 1519 return (LI && isLegalMaskedGather(Ty, Align)) || 1520 (SI && isLegalMaskedScatter(Ty, Align)); 1521 } 1522 1523 /// Returns true if \p I is an instruction that will be scalarized with 1524 /// predication. Such instructions include conditional stores and 1525 /// instructions that may divide by zero. 1526 /// If a non-zero VF has been calculated, we check if I will be scalarized 1527 /// predication for that VF. 1528 bool isScalarWithPredication(Instruction *I, 1529 ElementCount VF = ElementCount::getFixed(1)); 1530 1531 // Returns true if \p I is an instruction that will be predicated either 1532 // through scalar predication or masked load/store or masked gather/scatter. 1533 // Superset of instructions that return true for isScalarWithPredication. 1534 bool isPredicatedInst(Instruction *I) { 1535 if (!blockNeedsPredication(I->getParent())) 1536 return false; 1537 // Loads and stores that need some form of masked operation are predicated 1538 // instructions. 1539 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1540 return Legal->isMaskRequired(I); 1541 return isScalarWithPredication(I); 1542 } 1543 1544 /// Returns true if \p I is a memory instruction with consecutive memory 1545 /// access that can be widened. 1546 bool 1547 memoryInstructionCanBeWidened(Instruction *I, 1548 ElementCount VF = ElementCount::getFixed(1)); 1549 1550 /// Returns true if \p I is a memory instruction in an interleaved-group 1551 /// of memory accesses that can be vectorized with wide vector loads/stores 1552 /// and shuffles. 1553 bool 1554 interleavedAccessCanBeWidened(Instruction *I, 1555 ElementCount VF = ElementCount::getFixed(1)); 1556 1557 /// Check if \p Instr belongs to any interleaved access group. 1558 bool isAccessInterleaved(Instruction *Instr) { 1559 return InterleaveInfo.isInterleaved(Instr); 1560 } 1561 1562 /// Get the interleaved access group that \p Instr belongs to. 1563 const InterleaveGroup<Instruction> * 1564 getInterleavedAccessGroup(Instruction *Instr) { 1565 return InterleaveInfo.getInterleaveGroup(Instr); 1566 } 1567 1568 /// Returns true if we're required to use a scalar epilogue for at least 1569 /// the final iteration of the original loop. 1570 bool requiresScalarEpilogue() const { 1571 if (!isScalarEpilogueAllowed()) 1572 return false; 1573 // If we might exit from anywhere but the latch, must run the exiting 1574 // iteration in scalar form. 1575 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1576 return true; 1577 return InterleaveInfo.requiresScalarEpilogue(); 1578 } 1579 1580 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1581 /// loop hint annotation. 1582 bool isScalarEpilogueAllowed() const { 1583 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1584 } 1585 1586 /// Returns true if all loop blocks should be masked to fold tail loop. 1587 bool foldTailByMasking() const { return FoldTailByMasking; } 1588 1589 bool blockNeedsPredication(BasicBlock *BB) { 1590 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1591 } 1592 1593 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1594 /// nodes to the chain of instructions representing the reductions. Uses a 1595 /// MapVector to ensure deterministic iteration order. 1596 using ReductionChainMap = 1597 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1598 1599 /// Return the chain of instructions representing an inloop reduction. 1600 const ReductionChainMap &getInLoopReductionChains() const { 1601 return InLoopReductionChains; 1602 } 1603 1604 /// Returns true if the Phi is part of an inloop reduction. 1605 bool isInLoopReduction(PHINode *Phi) const { 1606 return InLoopReductionChains.count(Phi); 1607 } 1608 1609 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1610 /// with factor VF. Return the cost of the instruction, including 1611 /// scalarization overhead if it's needed. 1612 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1613 1614 /// Estimate cost of a call instruction CI if it were vectorized with factor 1615 /// VF. Return the cost of the instruction, including scalarization overhead 1616 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1617 /// scalarized - 1618 /// i.e. either vector version isn't available, or is too expensive. 1619 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1620 bool &NeedToScalarize); 1621 1622 /// Invalidates decisions already taken by the cost model. 1623 void invalidateCostModelingDecisions() { 1624 WideningDecisions.clear(); 1625 Uniforms.clear(); 1626 Scalars.clear(); 1627 } 1628 1629 private: 1630 unsigned NumPredStores = 0; 1631 1632 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1633 /// than zero. One is returned if vectorization should best be avoided due 1634 /// to cost. 1635 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1636 ElementCount UserVF); 1637 1638 /// The vectorization cost is a combination of the cost itself and a boolean 1639 /// indicating whether any of the contributing operations will actually 1640 /// operate on 1641 /// vector values after type legalization in the backend. If this latter value 1642 /// is 1643 /// false, then all operations will be scalarized (i.e. no vectorization has 1644 /// actually taken place). 1645 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1646 1647 /// Returns the expected execution cost. The unit of the cost does 1648 /// not matter because we use the 'cost' units to compare different 1649 /// vector widths. The cost that is returned is *not* normalized by 1650 /// the factor width. 1651 VectorizationCostTy expectedCost(ElementCount VF); 1652 1653 /// Returns the execution time cost of an instruction for a given vector 1654 /// width. Vector width of one means scalar. 1655 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1656 1657 /// The cost-computation logic from getInstructionCost which provides 1658 /// the vector type as an output parameter. 1659 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1660 Type *&VectorTy); 1661 1662 /// Return the cost of instructions in an inloop reduction pattern, if I is 1663 /// part of that pattern. 1664 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1665 Type *VectorTy, 1666 TTI::TargetCostKind CostKind); 1667 1668 /// Calculate vectorization cost of memory instruction \p I. 1669 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1670 1671 /// The cost computation for scalarized memory instruction. 1672 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1673 1674 /// The cost computation for interleaving group of memory instructions. 1675 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1676 1677 /// The cost computation for Gather/Scatter instruction. 1678 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1679 1680 /// The cost computation for widening instruction \p I with consecutive 1681 /// memory access. 1682 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1683 1684 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1685 /// Load: scalar load + broadcast. 1686 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1687 /// element) 1688 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1689 1690 /// Estimate the overhead of scalarizing an instruction. This is a 1691 /// convenience wrapper for the type-based getScalarizationOverhead API. 1692 InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF); 1693 1694 /// Returns whether the instruction is a load or store and will be a emitted 1695 /// as a vector operation. 1696 bool isConsecutiveLoadOrStore(Instruction *I); 1697 1698 /// Returns true if an artificially high cost for emulated masked memrefs 1699 /// should be used. 1700 bool useEmulatedMaskMemRefHack(Instruction *I); 1701 1702 /// Map of scalar integer values to the smallest bitwidth they can be legally 1703 /// represented as. The vector equivalents of these values should be truncated 1704 /// to this type. 1705 MapVector<Instruction *, uint64_t> MinBWs; 1706 1707 /// A type representing the costs for instructions if they were to be 1708 /// scalarized rather than vectorized. The entries are Instruction-Cost 1709 /// pairs. 1710 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1711 1712 /// A set containing all BasicBlocks that are known to present after 1713 /// vectorization as a predicated block. 1714 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1715 1716 /// Records whether it is allowed to have the original scalar loop execute at 1717 /// least once. This may be needed as a fallback loop in case runtime 1718 /// aliasing/dependence checks fail, or to handle the tail/remainder 1719 /// iterations when the trip count is unknown or doesn't divide by the VF, 1720 /// or as a peel-loop to handle gaps in interleave-groups. 1721 /// Under optsize and when the trip count is very small we don't allow any 1722 /// iterations to execute in the scalar loop. 1723 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1724 1725 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1726 bool FoldTailByMasking = false; 1727 1728 /// A map holding scalar costs for different vectorization factors. The 1729 /// presence of a cost for an instruction in the mapping indicates that the 1730 /// instruction will be scalarized when vectorizing with the associated 1731 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1732 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1733 1734 /// Holds the instructions known to be uniform after vectorization. 1735 /// The data is collected per VF. 1736 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1737 1738 /// Holds the instructions known to be scalar after vectorization. 1739 /// The data is collected per VF. 1740 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1741 1742 /// Holds the instructions (address computations) that are forced to be 1743 /// scalarized. 1744 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1745 1746 /// PHINodes of the reductions that should be expanded in-loop along with 1747 /// their associated chains of reduction operations, in program order from top 1748 /// (PHI) to bottom 1749 ReductionChainMap InLoopReductionChains; 1750 1751 /// A Map of inloop reduction operations and their immediate chain operand. 1752 /// FIXME: This can be removed once reductions can be costed correctly in 1753 /// vplan. This was added to allow quick lookup to the inloop operations, 1754 /// without having to loop through InLoopReductionChains. 1755 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1756 1757 /// Returns the expected difference in cost from scalarizing the expression 1758 /// feeding a predicated instruction \p PredInst. The instructions to 1759 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1760 /// non-negative return value implies the expression will be scalarized. 1761 /// Currently, only single-use chains are considered for scalarization. 1762 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1763 ElementCount VF); 1764 1765 /// Collect the instructions that are uniform after vectorization. An 1766 /// instruction is uniform if we represent it with a single scalar value in 1767 /// the vectorized loop corresponding to each vector iteration. Examples of 1768 /// uniform instructions include pointer operands of consecutive or 1769 /// interleaved memory accesses. Note that although uniformity implies an 1770 /// instruction will be scalar, the reverse is not true. In general, a 1771 /// scalarized instruction will be represented by VF scalar values in the 1772 /// vectorized loop, each corresponding to an iteration of the original 1773 /// scalar loop. 1774 void collectLoopUniforms(ElementCount VF); 1775 1776 /// Collect the instructions that are scalar after vectorization. An 1777 /// instruction is scalar if it is known to be uniform or will be scalarized 1778 /// during vectorization. Non-uniform scalarized instructions will be 1779 /// represented by VF values in the vectorized loop, each corresponding to an 1780 /// iteration of the original scalar loop. 1781 void collectLoopScalars(ElementCount VF); 1782 1783 /// Keeps cost model vectorization decision and cost for instructions. 1784 /// Right now it is used for memory instructions only. 1785 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1786 std::pair<InstWidening, InstructionCost>>; 1787 1788 DecisionList WideningDecisions; 1789 1790 /// Returns true if \p V is expected to be vectorized and it needs to be 1791 /// extracted. 1792 bool needsExtract(Value *V, ElementCount VF) const { 1793 Instruction *I = dyn_cast<Instruction>(V); 1794 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1795 TheLoop->isLoopInvariant(I)) 1796 return false; 1797 1798 // Assume we can vectorize V (and hence we need extraction) if the 1799 // scalars are not computed yet. This can happen, because it is called 1800 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1801 // the scalars are collected. That should be a safe assumption in most 1802 // cases, because we check if the operands have vectorizable types 1803 // beforehand in LoopVectorizationLegality. 1804 return Scalars.find(VF) == Scalars.end() || 1805 !isScalarAfterVectorization(I, VF); 1806 }; 1807 1808 /// Returns a range containing only operands needing to be extracted. 1809 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1810 ElementCount VF) { 1811 return SmallVector<Value *, 4>(make_filter_range( 1812 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1813 } 1814 1815 /// Determines if we have the infrastructure to vectorize loop \p L and its 1816 /// epilogue, assuming the main loop is vectorized by \p VF. 1817 bool isCandidateForEpilogueVectorization(const Loop &L, 1818 const ElementCount VF) const; 1819 1820 /// Returns true if epilogue vectorization is considered profitable, and 1821 /// false otherwise. 1822 /// \p VF is the vectorization factor chosen for the original loop. 1823 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1824 1825 public: 1826 /// The loop that we evaluate. 1827 Loop *TheLoop; 1828 1829 /// Predicated scalar evolution analysis. 1830 PredicatedScalarEvolution &PSE; 1831 1832 /// Loop Info analysis. 1833 LoopInfo *LI; 1834 1835 /// Vectorization legality. 1836 LoopVectorizationLegality *Legal; 1837 1838 /// Vector target information. 1839 const TargetTransformInfo &TTI; 1840 1841 /// Target Library Info. 1842 const TargetLibraryInfo *TLI; 1843 1844 /// Demanded bits analysis. 1845 DemandedBits *DB; 1846 1847 /// Assumption cache. 1848 AssumptionCache *AC; 1849 1850 /// Interface to emit optimization remarks. 1851 OptimizationRemarkEmitter *ORE; 1852 1853 const Function *TheFunction; 1854 1855 /// Loop Vectorize Hint. 1856 const LoopVectorizeHints *Hints; 1857 1858 /// The interleave access information contains groups of interleaved accesses 1859 /// with the same stride and close to each other. 1860 InterleavedAccessInfo &InterleaveInfo; 1861 1862 /// Values to ignore in the cost model. 1863 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1864 1865 /// Values to ignore in the cost model when VF > 1. 1866 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1867 1868 /// Profitable vector factors. 1869 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1870 }; 1871 1872 } // end namespace llvm 1873 1874 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1875 // vectorization. The loop needs to be annotated with #pragma omp simd 1876 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1877 // vector length information is not provided, vectorization is not considered 1878 // explicit. Interleave hints are not allowed either. These limitations will be 1879 // relaxed in the future. 1880 // Please, note that we are currently forced to abuse the pragma 'clang 1881 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1882 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1883 // provides *explicit vectorization hints* (LV can bypass legal checks and 1884 // assume that vectorization is legal). However, both hints are implemented 1885 // using the same metadata (llvm.loop.vectorize, processed by 1886 // LoopVectorizeHints). This will be fixed in the future when the native IR 1887 // representation for pragma 'omp simd' is introduced. 1888 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1889 OptimizationRemarkEmitter *ORE) { 1890 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1891 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1892 1893 // Only outer loops with an explicit vectorization hint are supported. 1894 // Unannotated outer loops are ignored. 1895 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1896 return false; 1897 1898 Function *Fn = OuterLp->getHeader()->getParent(); 1899 if (!Hints.allowVectorization(Fn, OuterLp, 1900 true /*VectorizeOnlyWhenForced*/)) { 1901 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1902 return false; 1903 } 1904 1905 if (Hints.getInterleave() > 1) { 1906 // TODO: Interleave support is future work. 1907 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1908 "outer loops.\n"); 1909 Hints.emitRemarkWithHints(); 1910 return false; 1911 } 1912 1913 return true; 1914 } 1915 1916 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1917 OptimizationRemarkEmitter *ORE, 1918 SmallVectorImpl<Loop *> &V) { 1919 // Collect inner loops and outer loops without irreducible control flow. For 1920 // now, only collect outer loops that have explicit vectorization hints. If we 1921 // are stress testing the VPlan H-CFG construction, we collect the outermost 1922 // loop of every loop nest. 1923 if (L.isInnermost() || VPlanBuildStressTest || 1924 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1925 LoopBlocksRPO RPOT(&L); 1926 RPOT.perform(LI); 1927 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1928 V.push_back(&L); 1929 // TODO: Collect inner loops inside marked outer loops in case 1930 // vectorization fails for the outer loop. Do not invoke 1931 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1932 // already known to be reducible. We can use an inherited attribute for 1933 // that. 1934 return; 1935 } 1936 } 1937 for (Loop *InnerL : L) 1938 collectSupportedLoops(*InnerL, LI, ORE, V); 1939 } 1940 1941 namespace { 1942 1943 /// The LoopVectorize Pass. 1944 struct LoopVectorize : public FunctionPass { 1945 /// Pass identification, replacement for typeid 1946 static char ID; 1947 1948 LoopVectorizePass Impl; 1949 1950 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1951 bool VectorizeOnlyWhenForced = false) 1952 : FunctionPass(ID), 1953 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1954 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1955 } 1956 1957 bool runOnFunction(Function &F) override { 1958 if (skipFunction(F)) 1959 return false; 1960 1961 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1962 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1963 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1964 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1965 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1966 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1967 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1968 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1969 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1970 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1971 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1972 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1973 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1974 1975 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1976 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1977 1978 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1979 GetLAA, *ORE, PSI).MadeAnyChange; 1980 } 1981 1982 void getAnalysisUsage(AnalysisUsage &AU) const override { 1983 AU.addRequired<AssumptionCacheTracker>(); 1984 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1985 AU.addRequired<DominatorTreeWrapperPass>(); 1986 AU.addRequired<LoopInfoWrapperPass>(); 1987 AU.addRequired<ScalarEvolutionWrapperPass>(); 1988 AU.addRequired<TargetTransformInfoWrapperPass>(); 1989 AU.addRequired<AAResultsWrapperPass>(); 1990 AU.addRequired<LoopAccessLegacyAnalysis>(); 1991 AU.addRequired<DemandedBitsWrapperPass>(); 1992 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1993 AU.addRequired<InjectTLIMappingsLegacy>(); 1994 1995 // We currently do not preserve loopinfo/dominator analyses with outer loop 1996 // vectorization. Until this is addressed, mark these analyses as preserved 1997 // only for non-VPlan-native path. 1998 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1999 if (!EnableVPlanNativePath) { 2000 AU.addPreserved<LoopInfoWrapperPass>(); 2001 AU.addPreserved<DominatorTreeWrapperPass>(); 2002 } 2003 2004 AU.addPreserved<BasicAAWrapperPass>(); 2005 AU.addPreserved<GlobalsAAWrapperPass>(); 2006 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2007 } 2008 }; 2009 2010 } // end anonymous namespace 2011 2012 //===----------------------------------------------------------------------===// 2013 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2014 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2015 //===----------------------------------------------------------------------===// 2016 2017 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2018 // We need to place the broadcast of invariant variables outside the loop, 2019 // but only if it's proven safe to do so. Else, broadcast will be inside 2020 // vector loop body. 2021 Instruction *Instr = dyn_cast<Instruction>(V); 2022 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2023 (!Instr || 2024 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2025 // Place the code for broadcasting invariant variables in the new preheader. 2026 IRBuilder<>::InsertPointGuard Guard(Builder); 2027 if (SafeToHoist) 2028 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2029 2030 // Broadcast the scalar into all locations in the vector. 2031 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2032 2033 return Shuf; 2034 } 2035 2036 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2037 const InductionDescriptor &II, Value *Step, Value *Start, 2038 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2039 VPTransformState &State) { 2040 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2041 "Expected either an induction phi-node or a truncate of it!"); 2042 2043 // Construct the initial value of the vector IV in the vector loop preheader 2044 auto CurrIP = Builder.saveIP(); 2045 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2046 if (isa<TruncInst>(EntryVal)) { 2047 assert(Start->getType()->isIntegerTy() && 2048 "Truncation requires an integer type"); 2049 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2050 Step = Builder.CreateTrunc(Step, TruncType); 2051 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2052 } 2053 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2054 Value *SteppedStart = 2055 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2056 2057 // We create vector phi nodes for both integer and floating-point induction 2058 // variables. Here, we determine the kind of arithmetic we will perform. 2059 Instruction::BinaryOps AddOp; 2060 Instruction::BinaryOps MulOp; 2061 if (Step->getType()->isIntegerTy()) { 2062 AddOp = Instruction::Add; 2063 MulOp = Instruction::Mul; 2064 } else { 2065 AddOp = II.getInductionOpcode(); 2066 MulOp = Instruction::FMul; 2067 } 2068 2069 // Multiply the vectorization factor by the step using integer or 2070 // floating-point arithmetic as appropriate. 2071 Value *ConstVF = 2072 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 2073 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2074 2075 // Create a vector splat to use in the induction update. 2076 // 2077 // FIXME: If the step is non-constant, we create the vector splat with 2078 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2079 // handle a constant vector splat. 2080 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2081 Value *SplatVF = isa<Constant>(Mul) 2082 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2083 : Builder.CreateVectorSplat(VF, Mul); 2084 Builder.restoreIP(CurrIP); 2085 2086 // We may need to add the step a number of times, depending on the unroll 2087 // factor. The last of those goes into the PHI. 2088 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2089 &*LoopVectorBody->getFirstInsertionPt()); 2090 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2091 Instruction *LastInduction = VecInd; 2092 for (unsigned Part = 0; Part < UF; ++Part) { 2093 State.set(Def, EntryVal, LastInduction, Part); 2094 2095 if (isa<TruncInst>(EntryVal)) 2096 addMetadata(LastInduction, EntryVal); 2097 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2098 State, Part); 2099 2100 LastInduction = cast<Instruction>(addFastMathFlag( 2101 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2102 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2103 } 2104 2105 // Move the last step to the end of the latch block. This ensures consistent 2106 // placement of all induction updates. 2107 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2108 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2109 auto *ICmp = cast<Instruction>(Br->getCondition()); 2110 LastInduction->moveBefore(ICmp); 2111 LastInduction->setName("vec.ind.next"); 2112 2113 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2114 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2115 } 2116 2117 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2118 return Cost->isScalarAfterVectorization(I, VF) || 2119 Cost->isProfitableToScalarize(I, VF); 2120 } 2121 2122 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2123 if (shouldScalarizeInstruction(IV)) 2124 return true; 2125 auto isScalarInst = [&](User *U) -> bool { 2126 auto *I = cast<Instruction>(U); 2127 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2128 }; 2129 return llvm::any_of(IV->users(), isScalarInst); 2130 } 2131 2132 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2133 const InductionDescriptor &ID, const Instruction *EntryVal, 2134 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2135 unsigned Part, unsigned Lane) { 2136 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2137 "Expected either an induction phi-node or a truncate of it!"); 2138 2139 // This induction variable is not the phi from the original loop but the 2140 // newly-created IV based on the proof that casted Phi is equal to the 2141 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2142 // re-uses the same InductionDescriptor that original IV uses but we don't 2143 // have to do any recording in this case - that is done when original IV is 2144 // processed. 2145 if (isa<TruncInst>(EntryVal)) 2146 return; 2147 2148 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2149 if (Casts.empty()) 2150 return; 2151 // Only the first Cast instruction in the Casts vector is of interest. 2152 // The rest of the Casts (if exist) have no uses outside the 2153 // induction update chain itself. 2154 if (Lane < UINT_MAX) 2155 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2156 else 2157 State.set(CastDef, VectorLoopVal, Part); 2158 } 2159 2160 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2161 TruncInst *Trunc, VPValue *Def, 2162 VPValue *CastDef, 2163 VPTransformState &State) { 2164 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2165 "Primary induction variable must have an integer type"); 2166 2167 auto II = Legal->getInductionVars().find(IV); 2168 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2169 2170 auto ID = II->second; 2171 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2172 2173 // The value from the original loop to which we are mapping the new induction 2174 // variable. 2175 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2176 2177 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2178 2179 // Generate code for the induction step. Note that induction steps are 2180 // required to be loop-invariant 2181 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2182 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2183 "Induction step should be loop invariant"); 2184 if (PSE.getSE()->isSCEVable(IV->getType())) { 2185 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2186 return Exp.expandCodeFor(Step, Step->getType(), 2187 LoopVectorPreHeader->getTerminator()); 2188 } 2189 return cast<SCEVUnknown>(Step)->getValue(); 2190 }; 2191 2192 // The scalar value to broadcast. This is derived from the canonical 2193 // induction variable. If a truncation type is given, truncate the canonical 2194 // induction variable and step. Otherwise, derive these values from the 2195 // induction descriptor. 2196 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2197 Value *ScalarIV = Induction; 2198 if (IV != OldInduction) { 2199 ScalarIV = IV->getType()->isIntegerTy() 2200 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2201 : Builder.CreateCast(Instruction::SIToFP, Induction, 2202 IV->getType()); 2203 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2204 ScalarIV->setName("offset.idx"); 2205 } 2206 if (Trunc) { 2207 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2208 assert(Step->getType()->isIntegerTy() && 2209 "Truncation requires an integer step"); 2210 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2211 Step = Builder.CreateTrunc(Step, TruncType); 2212 } 2213 return ScalarIV; 2214 }; 2215 2216 // Create the vector values from the scalar IV, in the absence of creating a 2217 // vector IV. 2218 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2219 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2220 for (unsigned Part = 0; Part < UF; ++Part) { 2221 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2222 Value *EntryPart = 2223 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2224 ID.getInductionOpcode()); 2225 State.set(Def, EntryVal, EntryPart, Part); 2226 if (Trunc) 2227 addMetadata(EntryPart, Trunc); 2228 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2229 State, Part); 2230 } 2231 }; 2232 2233 // Now do the actual transformations, and start with creating the step value. 2234 Value *Step = CreateStepValue(ID.getStep()); 2235 if (VF.isZero() || VF.isScalar()) { 2236 Value *ScalarIV = CreateScalarIV(Step); 2237 CreateSplatIV(ScalarIV, Step); 2238 return; 2239 } 2240 2241 // Determine if we want a scalar version of the induction variable. This is 2242 // true if the induction variable itself is not widened, or if it has at 2243 // least one user in the loop that is not widened. 2244 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2245 if (!NeedsScalarIV) { 2246 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2247 State); 2248 return; 2249 } 2250 2251 // Try to create a new independent vector induction variable. If we can't 2252 // create the phi node, we will splat the scalar induction variable in each 2253 // loop iteration. 2254 if (!shouldScalarizeInstruction(EntryVal)) { 2255 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2256 State); 2257 Value *ScalarIV = CreateScalarIV(Step); 2258 // Create scalar steps that can be used by instructions we will later 2259 // scalarize. Note that the addition of the scalar steps will not increase 2260 // the number of instructions in the loop in the common case prior to 2261 // InstCombine. We will be trading one vector extract for each scalar step. 2262 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2263 return; 2264 } 2265 2266 // All IV users are scalar instructions, so only emit a scalar IV, not a 2267 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2268 // predicate used by the masked loads/stores. 2269 Value *ScalarIV = CreateScalarIV(Step); 2270 if (!Cost->isScalarEpilogueAllowed()) 2271 CreateSplatIV(ScalarIV, Step); 2272 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2273 } 2274 2275 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2276 Instruction::BinaryOps BinOp) { 2277 // Create and check the types. 2278 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2279 int VLen = ValVTy->getNumElements(); 2280 2281 Type *STy = Val->getType()->getScalarType(); 2282 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2283 "Induction Step must be an integer or FP"); 2284 assert(Step->getType() == STy && "Step has wrong type"); 2285 2286 SmallVector<Constant *, 8> Indices; 2287 2288 if (STy->isIntegerTy()) { 2289 // Create a vector of consecutive numbers from zero to VF. 2290 for (int i = 0; i < VLen; ++i) 2291 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2292 2293 // Add the consecutive indices to the vector value. 2294 Constant *Cv = ConstantVector::get(Indices); 2295 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2296 Step = Builder.CreateVectorSplat(VLen, Step); 2297 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2298 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2299 // which can be found from the original scalar operations. 2300 Step = Builder.CreateMul(Cv, Step); 2301 return Builder.CreateAdd(Val, Step, "induction"); 2302 } 2303 2304 // Floating point induction. 2305 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2306 "Binary Opcode should be specified for FP induction"); 2307 // Create a vector of consecutive numbers from zero to VF. 2308 for (int i = 0; i < VLen; ++i) 2309 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2310 2311 // Add the consecutive indices to the vector value. 2312 Constant *Cv = ConstantVector::get(Indices); 2313 2314 Step = Builder.CreateVectorSplat(VLen, Step); 2315 2316 // Floating point operations had to be 'fast' to enable the induction. 2317 FastMathFlags Flags; 2318 Flags.setFast(); 2319 2320 Value *MulOp = Builder.CreateFMul(Cv, Step); 2321 if (isa<Instruction>(MulOp)) 2322 // Have to check, MulOp may be a constant 2323 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2324 2325 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2326 if (isa<Instruction>(BOp)) 2327 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2328 return BOp; 2329 } 2330 2331 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2332 Instruction *EntryVal, 2333 const InductionDescriptor &ID, 2334 VPValue *Def, VPValue *CastDef, 2335 VPTransformState &State) { 2336 // We shouldn't have to build scalar steps if we aren't vectorizing. 2337 assert(VF.isVector() && "VF should be greater than one"); 2338 // Get the value type and ensure it and the step have the same integer type. 2339 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2340 assert(ScalarIVTy == Step->getType() && 2341 "Val and Step should have the same type"); 2342 2343 // We build scalar steps for both integer and floating-point induction 2344 // variables. Here, we determine the kind of arithmetic we will perform. 2345 Instruction::BinaryOps AddOp; 2346 Instruction::BinaryOps MulOp; 2347 if (ScalarIVTy->isIntegerTy()) { 2348 AddOp = Instruction::Add; 2349 MulOp = Instruction::Mul; 2350 } else { 2351 AddOp = ID.getInductionOpcode(); 2352 MulOp = Instruction::FMul; 2353 } 2354 2355 // Determine the number of scalars we need to generate for each unroll 2356 // iteration. If EntryVal is uniform, we only need to generate the first 2357 // lane. Otherwise, we generate all VF values. 2358 unsigned Lanes = 2359 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2360 ? 1 2361 : VF.getKnownMinValue(); 2362 assert((!VF.isScalable() || Lanes == 1) && 2363 "Should never scalarize a scalable vector"); 2364 // Compute the scalar steps and save the results in VectorLoopValueMap. 2365 for (unsigned Part = 0; Part < UF; ++Part) { 2366 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2367 auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2368 ScalarIVTy->getScalarSizeInBits()); 2369 Value *StartIdx = 2370 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2371 if (ScalarIVTy->isFloatingPointTy()) 2372 StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy); 2373 StartIdx = addFastMathFlag(Builder.CreateBinOp( 2374 AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane))); 2375 // The step returned by `createStepForVF` is a runtime-evaluated value 2376 // when VF is scalable. Otherwise, it should be folded into a Constant. 2377 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2378 "Expected StartIdx to be folded to a constant when VF is not " 2379 "scalable"); 2380 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2381 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2382 State.set(Def, Add, VPIteration(Part, Lane)); 2383 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2384 Part, Lane); 2385 } 2386 } 2387 } 2388 2389 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2390 assert(V != Induction && "The new induction variable should not be used."); 2391 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2392 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2393 2394 // If we have a stride that is replaced by one, do it here. Defer this for 2395 // the VPlan-native path until we start running Legal checks in that path. 2396 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2397 V = ConstantInt::get(V->getType(), 1); 2398 2399 // If we have a vector mapped to this value, return it. 2400 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2401 return VectorLoopValueMap.getVectorValue(V, Part); 2402 2403 // If the value has not been vectorized, check if it has been scalarized 2404 // instead. If it has been scalarized, and we actually need the value in 2405 // vector form, we will construct the vector values on demand. 2406 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2407 Value *ScalarValue = 2408 VectorLoopValueMap.getScalarValue(V, VPIteration(Part, 0)); 2409 2410 // If we've scalarized a value, that value should be an instruction. 2411 auto *I = cast<Instruction>(V); 2412 2413 // If we aren't vectorizing, we can just copy the scalar map values over to 2414 // the vector map. 2415 if (VF.isScalar()) { 2416 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2417 return ScalarValue; 2418 } 2419 2420 // Get the last scalar instruction we generated for V and Part. If the value 2421 // is known to be uniform after vectorization, this corresponds to lane zero 2422 // of the Part unroll iteration. Otherwise, the last instruction is the one 2423 // we created for the last vector lane of the Part unroll iteration. 2424 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2425 ? 0 2426 : VF.getKnownMinValue() - 1; 2427 assert((!VF.isScalable() || LastLane == 0) && 2428 "Scalable vectorization can't lead to any scalarized values."); 2429 auto *LastInst = cast<Instruction>( 2430 VectorLoopValueMap.getScalarValue(V, VPIteration(Part, LastLane))); 2431 2432 // Set the insert point after the last scalarized instruction. This ensures 2433 // the insertelement sequence will directly follow the scalar definitions. 2434 auto OldIP = Builder.saveIP(); 2435 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2436 Builder.SetInsertPoint(&*NewIP); 2437 2438 // However, if we are vectorizing, we need to construct the vector values. 2439 // If the value is known to be uniform after vectorization, we can just 2440 // broadcast the scalar value corresponding to lane zero for each unroll 2441 // iteration. Otherwise, we construct the vector values using insertelement 2442 // instructions. Since the resulting vectors are stored in 2443 // VectorLoopValueMap, we will only generate the insertelements once. 2444 Value *VectorValue = nullptr; 2445 if (Cost->isUniformAfterVectorization(I, VF)) { 2446 VectorValue = getBroadcastInstrs(ScalarValue); 2447 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2448 } else { 2449 // Initialize packing with insertelements to start from poison. 2450 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2451 Value *Poison = PoisonValue::get(VectorType::get(V->getType(), VF)); 2452 VectorLoopValueMap.setVectorValue(V, Part, Poison); 2453 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2454 packScalarIntoVectorValue(V, VPIteration(Part, Lane)); 2455 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2456 } 2457 Builder.restoreIP(OldIP); 2458 return VectorValue; 2459 } 2460 2461 // If this scalar is unknown, assume that it is a constant or that it is 2462 // loop invariant. Broadcast V and save the value for future uses. 2463 Value *B = getBroadcastInstrs(V); 2464 VectorLoopValueMap.setVectorValue(V, Part, B); 2465 return B; 2466 } 2467 2468 Value * 2469 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2470 const VPIteration &Instance) { 2471 // If the value is not an instruction contained in the loop, it should 2472 // already be scalar. 2473 if (OrigLoop->isLoopInvariant(V)) 2474 return V; 2475 2476 assert(Instance.Lane > 0 2477 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2478 : true && "Uniform values only have lane zero"); 2479 2480 // If the value from the original loop has not been vectorized, it is 2481 // represented by UF x VF scalar values in the new loop. Return the requested 2482 // scalar value. 2483 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2484 return VectorLoopValueMap.getScalarValue(V, Instance); 2485 2486 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2487 // for the given unroll part. If this entry is not a vector type (i.e., the 2488 // vectorization factor is one), there is no need to generate an 2489 // extractelement instruction. 2490 auto *U = getOrCreateVectorValue(V, Instance.Part); 2491 if (!U->getType()->isVectorTy()) { 2492 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2493 return U; 2494 } 2495 2496 // Otherwise, the value from the original loop has been vectorized and is 2497 // represented by UF vector values. Extract and return the requested scalar 2498 // value from the appropriate vector lane. 2499 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2500 } 2501 2502 void InnerLoopVectorizer::packScalarIntoVectorValue( 2503 Value *V, const VPIteration &Instance) { 2504 assert(V != Induction && "The new induction variable should not be used."); 2505 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2506 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2507 2508 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2509 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2510 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2511 Builder.getInt32(Instance.Lane)); 2512 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2513 } 2514 2515 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2516 const VPIteration &Instance, 2517 VPTransformState &State) { 2518 Value *ScalarInst = State.get(Def, Instance); 2519 Value *VectorValue = State.get(Def, Instance.Part); 2520 VectorValue = Builder.CreateInsertElement( 2521 VectorValue, ScalarInst, State.Builder.getInt32(Instance.Lane)); 2522 State.set(Def, VectorValue, Instance.Part); 2523 } 2524 2525 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2526 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2527 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2528 SmallVector<int, 8> ShuffleMask; 2529 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2530 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2531 2532 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2533 } 2534 2535 // Return whether we allow using masked interleave-groups (for dealing with 2536 // strided loads/stores that reside in predicated blocks, or for dealing 2537 // with gaps). 2538 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2539 // If an override option has been passed in for interleaved accesses, use it. 2540 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2541 return EnableMaskedInterleavedMemAccesses; 2542 2543 return TTI.enableMaskedInterleavedAccessVectorization(); 2544 } 2545 2546 // Try to vectorize the interleave group that \p Instr belongs to. 2547 // 2548 // E.g. Translate following interleaved load group (factor = 3): 2549 // for (i = 0; i < N; i+=3) { 2550 // R = Pic[i]; // Member of index 0 2551 // G = Pic[i+1]; // Member of index 1 2552 // B = Pic[i+2]; // Member of index 2 2553 // ... // do something to R, G, B 2554 // } 2555 // To: 2556 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2557 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2558 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2559 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2560 // 2561 // Or translate following interleaved store group (factor = 3): 2562 // for (i = 0; i < N; i+=3) { 2563 // ... do something to R, G, B 2564 // Pic[i] = R; // Member of index 0 2565 // Pic[i+1] = G; // Member of index 1 2566 // Pic[i+2] = B; // Member of index 2 2567 // } 2568 // To: 2569 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2570 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2571 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2572 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2573 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2574 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2575 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2576 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2577 VPValue *BlockInMask) { 2578 Instruction *Instr = Group->getInsertPos(); 2579 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2580 2581 // Prepare for the vector type of the interleaved load/store. 2582 Type *ScalarTy = getMemInstValueType(Instr); 2583 unsigned InterleaveFactor = Group->getFactor(); 2584 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2585 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2586 2587 // Prepare for the new pointers. 2588 SmallVector<Value *, 2> AddrParts; 2589 unsigned Index = Group->getIndex(Instr); 2590 2591 // TODO: extend the masked interleaved-group support to reversed access. 2592 assert((!BlockInMask || !Group->isReverse()) && 2593 "Reversed masked interleave-group not supported."); 2594 2595 // If the group is reverse, adjust the index to refer to the last vector lane 2596 // instead of the first. We adjust the index from the first vector lane, 2597 // rather than directly getting the pointer for lane VF - 1, because the 2598 // pointer operand of the interleaved access is supposed to be uniform. For 2599 // uniform instructions, we're only required to generate a value for the 2600 // first vector lane in each unroll iteration. 2601 assert(!VF.isScalable() && 2602 "scalable vector reverse operation is not implemented"); 2603 if (Group->isReverse()) 2604 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2605 2606 for (unsigned Part = 0; Part < UF; Part++) { 2607 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2608 setDebugLocFromInst(Builder, AddrPart); 2609 2610 // Notice current instruction could be any index. Need to adjust the address 2611 // to the member of index 0. 2612 // 2613 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2614 // b = A[i]; // Member of index 0 2615 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2616 // 2617 // E.g. A[i+1] = a; // Member of index 1 2618 // A[i] = b; // Member of index 0 2619 // A[i+2] = c; // Member of index 2 (Current instruction) 2620 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2621 2622 bool InBounds = false; 2623 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2624 InBounds = gep->isInBounds(); 2625 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2626 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2627 2628 // Cast to the vector pointer type. 2629 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2630 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2631 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2632 } 2633 2634 setDebugLocFromInst(Builder, Instr); 2635 Value *PoisonVec = PoisonValue::get(VecTy); 2636 2637 Value *MaskForGaps = nullptr; 2638 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2639 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2640 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2641 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2642 } 2643 2644 // Vectorize the interleaved load group. 2645 if (isa<LoadInst>(Instr)) { 2646 // For each unroll part, create a wide load for the group. 2647 SmallVector<Value *, 2> NewLoads; 2648 for (unsigned Part = 0; Part < UF; Part++) { 2649 Instruction *NewLoad; 2650 if (BlockInMask || MaskForGaps) { 2651 assert(useMaskedInterleavedAccesses(*TTI) && 2652 "masked interleaved groups are not allowed."); 2653 Value *GroupMask = MaskForGaps; 2654 if (BlockInMask) { 2655 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2656 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2657 Value *ShuffledMask = Builder.CreateShuffleVector( 2658 BlockInMaskPart, 2659 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2660 "interleaved.mask"); 2661 GroupMask = MaskForGaps 2662 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2663 MaskForGaps) 2664 : ShuffledMask; 2665 } 2666 NewLoad = 2667 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2668 GroupMask, PoisonVec, "wide.masked.vec"); 2669 } 2670 else 2671 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2672 Group->getAlign(), "wide.vec"); 2673 Group->addMetadata(NewLoad); 2674 NewLoads.push_back(NewLoad); 2675 } 2676 2677 // For each member in the group, shuffle out the appropriate data from the 2678 // wide loads. 2679 unsigned J = 0; 2680 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2681 Instruction *Member = Group->getMember(I); 2682 2683 // Skip the gaps in the group. 2684 if (!Member) 2685 continue; 2686 2687 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2688 auto StrideMask = 2689 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2690 for (unsigned Part = 0; Part < UF; Part++) { 2691 Value *StridedVec = Builder.CreateShuffleVector( 2692 NewLoads[Part], StrideMask, "strided.vec"); 2693 2694 // If this member has different type, cast the result type. 2695 if (Member->getType() != ScalarTy) { 2696 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2697 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2698 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2699 } 2700 2701 if (Group->isReverse()) 2702 StridedVec = reverseVector(StridedVec); 2703 2704 State.set(VPDefs[J], Member, StridedVec, Part); 2705 } 2706 ++J; 2707 } 2708 return; 2709 } 2710 2711 // The sub vector type for current instruction. 2712 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2713 auto *SubVT = VectorType::get(ScalarTy, VF); 2714 2715 // Vectorize the interleaved store group. 2716 for (unsigned Part = 0; Part < UF; Part++) { 2717 // Collect the stored vector from each member. 2718 SmallVector<Value *, 4> StoredVecs; 2719 for (unsigned i = 0; i < InterleaveFactor; i++) { 2720 // Interleaved store group doesn't allow a gap, so each index has a member 2721 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2722 2723 Value *StoredVec = State.get(StoredValues[i], Part); 2724 2725 if (Group->isReverse()) 2726 StoredVec = reverseVector(StoredVec); 2727 2728 // If this member has different type, cast it to a unified type. 2729 2730 if (StoredVec->getType() != SubVT) 2731 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2732 2733 StoredVecs.push_back(StoredVec); 2734 } 2735 2736 // Concatenate all vectors into a wide vector. 2737 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2738 2739 // Interleave the elements in the wide vector. 2740 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2741 Value *IVec = Builder.CreateShuffleVector( 2742 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2743 "interleaved.vec"); 2744 2745 Instruction *NewStoreInstr; 2746 if (BlockInMask) { 2747 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2748 Value *ShuffledMask = Builder.CreateShuffleVector( 2749 BlockInMaskPart, 2750 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2751 "interleaved.mask"); 2752 NewStoreInstr = Builder.CreateMaskedStore( 2753 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2754 } 2755 else 2756 NewStoreInstr = 2757 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2758 2759 Group->addMetadata(NewStoreInstr); 2760 } 2761 } 2762 2763 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2764 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2765 VPValue *StoredValue, VPValue *BlockInMask) { 2766 // Attempt to issue a wide load. 2767 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2768 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2769 2770 assert((LI || SI) && "Invalid Load/Store instruction"); 2771 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2772 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2773 2774 LoopVectorizationCostModel::InstWidening Decision = 2775 Cost->getWideningDecision(Instr, VF); 2776 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2777 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2778 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2779 "CM decision is not to widen the memory instruction"); 2780 2781 Type *ScalarDataTy = getMemInstValueType(Instr); 2782 2783 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2784 const Align Alignment = getLoadStoreAlignment(Instr); 2785 2786 // Determine if the pointer operand of the access is either consecutive or 2787 // reverse consecutive. 2788 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2789 bool ConsecutiveStride = 2790 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2791 bool CreateGatherScatter = 2792 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2793 2794 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2795 // gather/scatter. Otherwise Decision should have been to Scalarize. 2796 assert((ConsecutiveStride || CreateGatherScatter) && 2797 "The instruction should be scalarized"); 2798 (void)ConsecutiveStride; 2799 2800 VectorParts BlockInMaskParts(UF); 2801 bool isMaskRequired = BlockInMask; 2802 if (isMaskRequired) 2803 for (unsigned Part = 0; Part < UF; ++Part) 2804 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2805 2806 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2807 // Calculate the pointer for the specific unroll-part. 2808 GetElementPtrInst *PartPtr = nullptr; 2809 2810 bool InBounds = false; 2811 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2812 InBounds = gep->isInBounds(); 2813 2814 if (Reverse) { 2815 assert(!VF.isScalable() && 2816 "Reversing vectors is not yet supported for scalable vectors."); 2817 2818 // If the address is consecutive but reversed, then the 2819 // wide store needs to start at the last vector element. 2820 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2821 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2822 PartPtr->setIsInBounds(InBounds); 2823 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2824 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2825 PartPtr->setIsInBounds(InBounds); 2826 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2827 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2828 } else { 2829 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2830 PartPtr = cast<GetElementPtrInst>( 2831 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2832 PartPtr->setIsInBounds(InBounds); 2833 } 2834 2835 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2836 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2837 }; 2838 2839 // Handle Stores: 2840 if (SI) { 2841 setDebugLocFromInst(Builder, SI); 2842 2843 for (unsigned Part = 0; Part < UF; ++Part) { 2844 Instruction *NewSI = nullptr; 2845 Value *StoredVal = State.get(StoredValue, Part); 2846 if (CreateGatherScatter) { 2847 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2848 Value *VectorGep = State.get(Addr, Part); 2849 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2850 MaskPart); 2851 } else { 2852 if (Reverse) { 2853 // If we store to reverse consecutive memory locations, then we need 2854 // to reverse the order of elements in the stored value. 2855 StoredVal = reverseVector(StoredVal); 2856 // We don't want to update the value in the map as it might be used in 2857 // another expression. So don't call resetVectorValue(StoredVal). 2858 } 2859 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2860 if (isMaskRequired) 2861 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2862 BlockInMaskParts[Part]); 2863 else 2864 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2865 } 2866 addMetadata(NewSI, SI); 2867 } 2868 return; 2869 } 2870 2871 // Handle loads. 2872 assert(LI && "Must have a load instruction"); 2873 setDebugLocFromInst(Builder, LI); 2874 for (unsigned Part = 0; Part < UF; ++Part) { 2875 Value *NewLI; 2876 if (CreateGatherScatter) { 2877 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2878 Value *VectorGep = State.get(Addr, Part); 2879 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2880 nullptr, "wide.masked.gather"); 2881 addMetadata(NewLI, LI); 2882 } else { 2883 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2884 if (isMaskRequired) 2885 NewLI = Builder.CreateMaskedLoad( 2886 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2887 "wide.masked.load"); 2888 else 2889 NewLI = 2890 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2891 2892 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2893 addMetadata(NewLI, LI); 2894 if (Reverse) 2895 NewLI = reverseVector(NewLI); 2896 } 2897 2898 State.set(Def, Instr, NewLI, Part); 2899 } 2900 } 2901 2902 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2903 const VPIteration &Instance, 2904 bool IfPredicateInstr, 2905 VPTransformState &State) { 2906 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2907 2908 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2909 // the first lane and part. 2910 if (isa<NoAliasScopeDeclInst>(Instr)) 2911 if (!Instance.isFirstIteration()) 2912 return; 2913 2914 setDebugLocFromInst(Builder, Instr); 2915 2916 // Does this instruction return a value ? 2917 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2918 2919 Instruction *Cloned = Instr->clone(); 2920 if (!IsVoidRetTy) 2921 Cloned->setName(Instr->getName() + ".cloned"); 2922 2923 // Replace the operands of the cloned instructions with their scalar 2924 // equivalents in the new loop. 2925 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2926 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2927 auto InputInstance = Instance; 2928 if (!Operand || !OrigLoop->contains(Operand) || 2929 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2930 InputInstance.Lane = 0; 2931 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2932 Cloned->setOperand(op, NewOp); 2933 } 2934 addNewMetadata(Cloned, Instr); 2935 2936 // Place the cloned scalar in the new loop. 2937 Builder.Insert(Cloned); 2938 2939 // TODO: Set result for VPValue of VPReciplicateRecipe. This requires 2940 // representing scalar values in VPTransformState. Add the cloned scalar to 2941 // the scalar map entry. 2942 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2943 2944 // If we just cloned a new assumption, add it the assumption cache. 2945 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2946 if (II->getIntrinsicID() == Intrinsic::assume) 2947 AC->registerAssumption(II); 2948 2949 // End if-block. 2950 if (IfPredicateInstr) 2951 PredicatedInstructions.push_back(Cloned); 2952 } 2953 2954 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2955 Value *End, Value *Step, 2956 Instruction *DL) { 2957 BasicBlock *Header = L->getHeader(); 2958 BasicBlock *Latch = L->getLoopLatch(); 2959 // As we're just creating this loop, it's possible no latch exists 2960 // yet. If so, use the header as this will be a single block loop. 2961 if (!Latch) 2962 Latch = Header; 2963 2964 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2965 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2966 setDebugLocFromInst(Builder, OldInst); 2967 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2968 2969 Builder.SetInsertPoint(Latch->getTerminator()); 2970 setDebugLocFromInst(Builder, OldInst); 2971 2972 // Create i+1 and fill the PHINode. 2973 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2974 Induction->addIncoming(Start, L->getLoopPreheader()); 2975 Induction->addIncoming(Next, Latch); 2976 // Create the compare. 2977 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2978 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 2979 2980 // Now we have two terminators. Remove the old one from the block. 2981 Latch->getTerminator()->eraseFromParent(); 2982 2983 return Induction; 2984 } 2985 2986 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2987 if (TripCount) 2988 return TripCount; 2989 2990 assert(L && "Create Trip Count for null loop."); 2991 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2992 // Find the loop boundaries. 2993 ScalarEvolution *SE = PSE.getSE(); 2994 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2995 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2996 "Invalid loop count"); 2997 2998 Type *IdxTy = Legal->getWidestInductionType(); 2999 assert(IdxTy && "No type for induction"); 3000 3001 // The exit count might have the type of i64 while the phi is i32. This can 3002 // happen if we have an induction variable that is sign extended before the 3003 // compare. The only way that we get a backedge taken count is that the 3004 // induction variable was signed and as such will not overflow. In such a case 3005 // truncation is legal. 3006 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3007 IdxTy->getPrimitiveSizeInBits()) 3008 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3009 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3010 3011 // Get the total trip count from the count by adding 1. 3012 const SCEV *ExitCount = SE->getAddExpr( 3013 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3014 3015 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3016 3017 // Expand the trip count and place the new instructions in the preheader. 3018 // Notice that the pre-header does not change, only the loop body. 3019 SCEVExpander Exp(*SE, DL, "induction"); 3020 3021 // Count holds the overall loop count (N). 3022 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3023 L->getLoopPreheader()->getTerminator()); 3024 3025 if (TripCount->getType()->isPointerTy()) 3026 TripCount = 3027 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3028 L->getLoopPreheader()->getTerminator()); 3029 3030 return TripCount; 3031 } 3032 3033 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3034 if (VectorTripCount) 3035 return VectorTripCount; 3036 3037 Value *TC = getOrCreateTripCount(L); 3038 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3039 3040 Type *Ty = TC->getType(); 3041 // This is where we can make the step a runtime constant. 3042 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3043 3044 // If the tail is to be folded by masking, round the number of iterations N 3045 // up to a multiple of Step instead of rounding down. This is done by first 3046 // adding Step-1 and then rounding down. Note that it's ok if this addition 3047 // overflows: the vector induction variable will eventually wrap to zero given 3048 // that it starts at zero and its Step is a power of two; the loop will then 3049 // exit, with the last early-exit vector comparison also producing all-true. 3050 if (Cost->foldTailByMasking()) { 3051 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3052 "VF*UF must be a power of 2 when folding tail by masking"); 3053 assert(!VF.isScalable() && 3054 "Tail folding not yet supported for scalable vectors"); 3055 TC = Builder.CreateAdd( 3056 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3057 } 3058 3059 // Now we need to generate the expression for the part of the loop that the 3060 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3061 // iterations are not required for correctness, or N - Step, otherwise. Step 3062 // is equal to the vectorization factor (number of SIMD elements) times the 3063 // unroll factor (number of SIMD instructions). 3064 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3065 3066 // There are two cases where we need to ensure (at least) the last iteration 3067 // runs in the scalar remainder loop. Thus, if the step evenly divides 3068 // the trip count, we set the remainder to be equal to the step. If the step 3069 // does not evenly divide the trip count, no adjustment is necessary since 3070 // there will already be scalar iterations. Note that the minimum iterations 3071 // check ensures that N >= Step. The cases are: 3072 // 1) If there is a non-reversed interleaved group that may speculatively 3073 // access memory out-of-bounds. 3074 // 2) If any instruction may follow a conditionally taken exit. That is, if 3075 // the loop contains multiple exiting blocks, or a single exiting block 3076 // which is not the latch. 3077 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3078 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3079 R = Builder.CreateSelect(IsZero, Step, R); 3080 } 3081 3082 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3083 3084 return VectorTripCount; 3085 } 3086 3087 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3088 const DataLayout &DL) { 3089 // Verify that V is a vector type with same number of elements as DstVTy. 3090 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3091 unsigned VF = DstFVTy->getNumElements(); 3092 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3093 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3094 Type *SrcElemTy = SrcVecTy->getElementType(); 3095 Type *DstElemTy = DstFVTy->getElementType(); 3096 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3097 "Vector elements must have same size"); 3098 3099 // Do a direct cast if element types are castable. 3100 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3101 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3102 } 3103 // V cannot be directly casted to desired vector type. 3104 // May happen when V is a floating point vector but DstVTy is a vector of 3105 // pointers or vice-versa. Handle this using a two-step bitcast using an 3106 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3107 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3108 "Only one type should be a pointer type"); 3109 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3110 "Only one type should be a floating point type"); 3111 Type *IntTy = 3112 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3113 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3114 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3115 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3116 } 3117 3118 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3119 BasicBlock *Bypass) { 3120 Value *Count = getOrCreateTripCount(L); 3121 // Reuse existing vector loop preheader for TC checks. 3122 // Note that new preheader block is generated for vector loop. 3123 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3124 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3125 3126 // Generate code to check if the loop's trip count is less than VF * UF, or 3127 // equal to it in case a scalar epilogue is required; this implies that the 3128 // vector trip count is zero. This check also covers the case where adding one 3129 // to the backedge-taken count overflowed leading to an incorrect trip count 3130 // of zero. In this case we will also jump to the scalar loop. 3131 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3132 : ICmpInst::ICMP_ULT; 3133 3134 // If tail is to be folded, vector loop takes care of all iterations. 3135 Value *CheckMinIters = Builder.getFalse(); 3136 if (!Cost->foldTailByMasking()) { 3137 Value *Step = 3138 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3139 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3140 } 3141 // Create new preheader for vector loop. 3142 LoopVectorPreHeader = 3143 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3144 "vector.ph"); 3145 3146 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3147 DT->getNode(Bypass)->getIDom()) && 3148 "TC check is expected to dominate Bypass"); 3149 3150 // Update dominator for Bypass & LoopExit. 3151 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3152 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3153 3154 ReplaceInstWithInst( 3155 TCCheckBlock->getTerminator(), 3156 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3157 LoopBypassBlocks.push_back(TCCheckBlock); 3158 } 3159 3160 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3161 // Reuse existing vector loop preheader for SCEV checks. 3162 // Note that new preheader block is generated for vector loop. 3163 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 3164 3165 // Generate the code to check that the SCEV assumptions that we made. 3166 // We want the new basic block to start at the first instruction in a 3167 // sequence of instructions that form a check. 3168 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3169 "scev.check"); 3170 Value *SCEVCheck = Exp.expandCodeForPredicate( 3171 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 3172 3173 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3174 if (C->isZero()) 3175 return; 3176 3177 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3178 (OptForSizeBasedOnProfile && 3179 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3180 "Cannot SCEV check stride or overflow when optimizing for size"); 3181 3182 SCEVCheckBlock->setName("vector.scevcheck"); 3183 // Create new preheader for vector loop. 3184 LoopVectorPreHeader = 3185 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 3186 nullptr, "vector.ph"); 3187 3188 // Update dominator only if this is first RT check. 3189 if (LoopBypassBlocks.empty()) { 3190 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3191 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3192 } 3193 3194 ReplaceInstWithInst( 3195 SCEVCheckBlock->getTerminator(), 3196 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 3197 LoopBypassBlocks.push_back(SCEVCheckBlock); 3198 AddedSafetyChecks = true; 3199 } 3200 3201 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3202 // VPlan-native path does not do any analysis for runtime checks currently. 3203 if (EnableVPlanNativePath) 3204 return; 3205 3206 // Reuse existing vector loop preheader for runtime memory checks. 3207 // Note that new preheader block is generated for vector loop. 3208 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 3209 3210 // Generate the code that checks in runtime if arrays overlap. We put the 3211 // checks into a separate block to make the more common case of few elements 3212 // faster. 3213 auto *LAI = Legal->getLAI(); 3214 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 3215 if (!RtPtrChecking.Need) 3216 return; 3217 3218 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3219 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3220 "Cannot emit memory checks when optimizing for size, unless forced " 3221 "to vectorize."); 3222 ORE->emit([&]() { 3223 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3224 L->getStartLoc(), L->getHeader()) 3225 << "Code-size may be reduced by not forcing " 3226 "vectorization, or by source-code modifications " 3227 "eliminating the need for runtime checks " 3228 "(e.g., adding 'restrict')."; 3229 }); 3230 } 3231 3232 MemCheckBlock->setName("vector.memcheck"); 3233 // Create new preheader for vector loop. 3234 LoopVectorPreHeader = 3235 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 3236 "vector.ph"); 3237 3238 auto *CondBranch = cast<BranchInst>( 3239 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 3240 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 3241 LoopBypassBlocks.push_back(MemCheckBlock); 3242 AddedSafetyChecks = true; 3243 3244 // Update dominator only if this is first RT check. 3245 if (LoopBypassBlocks.empty()) { 3246 DT->changeImmediateDominator(Bypass, MemCheckBlock); 3247 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 3248 } 3249 3250 Instruction *FirstCheckInst; 3251 Instruction *MemRuntimeCheck; 3252 SCEVExpander Exp(*PSE.getSE(), MemCheckBlock->getModule()->getDataLayout(), 3253 "induction"); 3254 std::tie(FirstCheckInst, MemRuntimeCheck) = addRuntimeChecks( 3255 MemCheckBlock->getTerminator(), OrigLoop, RtPtrChecking.getChecks(), Exp); 3256 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 3257 "claimed checks are required"); 3258 CondBranch->setCondition(MemRuntimeCheck); 3259 3260 // We currently don't use LoopVersioning for the actual loop cloning but we 3261 // still use it to add the noalias metadata. 3262 LVer = std::make_unique<LoopVersioning>( 3263 *Legal->getLAI(), 3264 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3265 DT, PSE.getSE()); 3266 LVer->prepareNoAliasMetadata(); 3267 } 3268 3269 Value *InnerLoopVectorizer::emitTransformedIndex( 3270 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3271 const InductionDescriptor &ID) const { 3272 3273 SCEVExpander Exp(*SE, DL, "induction"); 3274 auto Step = ID.getStep(); 3275 auto StartValue = ID.getStartValue(); 3276 assert(Index->getType() == Step->getType() && 3277 "Index type does not match StepValue type"); 3278 3279 // Note: the IR at this point is broken. We cannot use SE to create any new 3280 // SCEV and then expand it, hoping that SCEV's simplification will give us 3281 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3282 // lead to various SCEV crashes. So all we can do is to use builder and rely 3283 // on InstCombine for future simplifications. Here we handle some trivial 3284 // cases only. 3285 auto CreateAdd = [&B](Value *X, Value *Y) { 3286 assert(X->getType() == Y->getType() && "Types don't match!"); 3287 if (auto *CX = dyn_cast<ConstantInt>(X)) 3288 if (CX->isZero()) 3289 return Y; 3290 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3291 if (CY->isZero()) 3292 return X; 3293 return B.CreateAdd(X, Y); 3294 }; 3295 3296 auto CreateMul = [&B](Value *X, Value *Y) { 3297 assert(X->getType() == Y->getType() && "Types don't match!"); 3298 if (auto *CX = dyn_cast<ConstantInt>(X)) 3299 if (CX->isOne()) 3300 return Y; 3301 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3302 if (CY->isOne()) 3303 return X; 3304 return B.CreateMul(X, Y); 3305 }; 3306 3307 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3308 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3309 // the DomTree is not kept up-to-date for additional blocks generated in the 3310 // vector loop. By using the header as insertion point, we guarantee that the 3311 // expanded instructions dominate all their uses. 3312 auto GetInsertPoint = [this, &B]() { 3313 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3314 if (InsertBB != LoopVectorBody && 3315 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3316 return LoopVectorBody->getTerminator(); 3317 return &*B.GetInsertPoint(); 3318 }; 3319 switch (ID.getKind()) { 3320 case InductionDescriptor::IK_IntInduction: { 3321 assert(Index->getType() == StartValue->getType() && 3322 "Index type does not match StartValue type"); 3323 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3324 return B.CreateSub(StartValue, Index); 3325 auto *Offset = CreateMul( 3326 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3327 return CreateAdd(StartValue, Offset); 3328 } 3329 case InductionDescriptor::IK_PtrInduction: { 3330 assert(isa<SCEVConstant>(Step) && 3331 "Expected constant step for pointer induction"); 3332 return B.CreateGEP( 3333 StartValue->getType()->getPointerElementType(), StartValue, 3334 CreateMul(Index, 3335 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3336 } 3337 case InductionDescriptor::IK_FpInduction: { 3338 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3339 auto InductionBinOp = ID.getInductionBinOp(); 3340 assert(InductionBinOp && 3341 (InductionBinOp->getOpcode() == Instruction::FAdd || 3342 InductionBinOp->getOpcode() == Instruction::FSub) && 3343 "Original bin op should be defined for FP induction"); 3344 3345 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3346 3347 // Floating point operations had to be 'fast' to enable the induction. 3348 FastMathFlags Flags; 3349 Flags.setFast(); 3350 3351 Value *MulExp = B.CreateFMul(StepValue, Index); 3352 if (isa<Instruction>(MulExp)) 3353 // We have to check, the MulExp may be a constant. 3354 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3355 3356 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3357 "induction"); 3358 if (isa<Instruction>(BOp)) 3359 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3360 3361 return BOp; 3362 } 3363 case InductionDescriptor::IK_NoInduction: 3364 return nullptr; 3365 } 3366 llvm_unreachable("invalid enum"); 3367 } 3368 3369 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3370 LoopScalarBody = OrigLoop->getHeader(); 3371 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3372 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3373 assert(LoopExitBlock && "Must have an exit block"); 3374 assert(LoopVectorPreHeader && "Invalid loop structure"); 3375 3376 LoopMiddleBlock = 3377 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3378 LI, nullptr, Twine(Prefix) + "middle.block"); 3379 LoopScalarPreHeader = 3380 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3381 nullptr, Twine(Prefix) + "scalar.ph"); 3382 3383 // Set up branch from middle block to the exit and scalar preheader blocks. 3384 // completeLoopSkeleton will update the condition to use an iteration check, 3385 // if required to decide whether to execute the remainder. 3386 BranchInst *BrInst = 3387 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3388 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3389 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3390 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3391 3392 // We intentionally don't let SplitBlock to update LoopInfo since 3393 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3394 // LoopVectorBody is explicitly added to the correct place few lines later. 3395 LoopVectorBody = 3396 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3397 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3398 3399 // Update dominator for loop exit. 3400 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3401 3402 // Create and register the new vector loop. 3403 Loop *Lp = LI->AllocateLoop(); 3404 Loop *ParentLoop = OrigLoop->getParentLoop(); 3405 3406 // Insert the new loop into the loop nest and register the new basic blocks 3407 // before calling any utilities such as SCEV that require valid LoopInfo. 3408 if (ParentLoop) { 3409 ParentLoop->addChildLoop(Lp); 3410 } else { 3411 LI->addTopLevelLoop(Lp); 3412 } 3413 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3414 return Lp; 3415 } 3416 3417 void InnerLoopVectorizer::createInductionResumeValues( 3418 Loop *L, Value *VectorTripCount, 3419 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3420 assert(VectorTripCount && L && "Expected valid arguments"); 3421 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3422 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3423 "Inconsistent information about additional bypass."); 3424 // We are going to resume the execution of the scalar loop. 3425 // Go over all of the induction variables that we found and fix the 3426 // PHIs that are left in the scalar version of the loop. 3427 // The starting values of PHI nodes depend on the counter of the last 3428 // iteration in the vectorized loop. 3429 // If we come from a bypass edge then we need to start from the original 3430 // start value. 3431 for (auto &InductionEntry : Legal->getInductionVars()) { 3432 PHINode *OrigPhi = InductionEntry.first; 3433 InductionDescriptor II = InductionEntry.second; 3434 3435 // Create phi nodes to merge from the backedge-taken check block. 3436 PHINode *BCResumeVal = 3437 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3438 LoopScalarPreHeader->getTerminator()); 3439 // Copy original phi DL over to the new one. 3440 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3441 Value *&EndValue = IVEndValues[OrigPhi]; 3442 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3443 if (OrigPhi == OldInduction) { 3444 // We know what the end value is. 3445 EndValue = VectorTripCount; 3446 } else { 3447 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3448 Type *StepType = II.getStep()->getType(); 3449 Instruction::CastOps CastOp = 3450 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3451 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3452 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3453 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3454 EndValue->setName("ind.end"); 3455 3456 // Compute the end value for the additional bypass (if applicable). 3457 if (AdditionalBypass.first) { 3458 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3459 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3460 StepType, true); 3461 CRD = 3462 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3463 EndValueFromAdditionalBypass = 3464 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3465 EndValueFromAdditionalBypass->setName("ind.end"); 3466 } 3467 } 3468 // The new PHI merges the original incoming value, in case of a bypass, 3469 // or the value at the end of the vectorized loop. 3470 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3471 3472 // Fix the scalar body counter (PHI node). 3473 // The old induction's phi node in the scalar body needs the truncated 3474 // value. 3475 for (BasicBlock *BB : LoopBypassBlocks) 3476 BCResumeVal->addIncoming(II.getStartValue(), BB); 3477 3478 if (AdditionalBypass.first) 3479 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3480 EndValueFromAdditionalBypass); 3481 3482 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3483 } 3484 } 3485 3486 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3487 MDNode *OrigLoopID) { 3488 assert(L && "Expected valid loop."); 3489 3490 // The trip counts should be cached by now. 3491 Value *Count = getOrCreateTripCount(L); 3492 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3493 3494 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3495 3496 // Add a check in the middle block to see if we have completed 3497 // all of the iterations in the first vector loop. 3498 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3499 // If tail is to be folded, we know we don't need to run the remainder. 3500 if (!Cost->foldTailByMasking()) { 3501 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3502 Count, VectorTripCount, "cmp.n", 3503 LoopMiddleBlock->getTerminator()); 3504 3505 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3506 // of the corresponding compare because they may have ended up with 3507 // different line numbers and we want to avoid awkward line stepping while 3508 // debugging. Eg. if the compare has got a line number inside the loop. 3509 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3510 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3511 } 3512 3513 // Get ready to start creating new instructions into the vectorized body. 3514 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3515 "Inconsistent vector loop preheader"); 3516 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3517 3518 Optional<MDNode *> VectorizedLoopID = 3519 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3520 LLVMLoopVectorizeFollowupVectorized}); 3521 if (VectorizedLoopID.hasValue()) { 3522 L->setLoopID(VectorizedLoopID.getValue()); 3523 3524 // Do not setAlreadyVectorized if loop attributes have been defined 3525 // explicitly. 3526 return LoopVectorPreHeader; 3527 } 3528 3529 // Keep all loop hints from the original loop on the vector loop (we'll 3530 // replace the vectorizer-specific hints below). 3531 if (MDNode *LID = OrigLoop->getLoopID()) 3532 L->setLoopID(LID); 3533 3534 LoopVectorizeHints Hints(L, true, *ORE); 3535 Hints.setAlreadyVectorized(); 3536 3537 #ifdef EXPENSIVE_CHECKS 3538 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3539 LI->verify(*DT); 3540 #endif 3541 3542 return LoopVectorPreHeader; 3543 } 3544 3545 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3546 /* 3547 In this function we generate a new loop. The new loop will contain 3548 the vectorized instructions while the old loop will continue to run the 3549 scalar remainder. 3550 3551 [ ] <-- loop iteration number check. 3552 / | 3553 / v 3554 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3555 | / | 3556 | / v 3557 || [ ] <-- vector pre header. 3558 |/ | 3559 | v 3560 | [ ] \ 3561 | [ ]_| <-- vector loop. 3562 | | 3563 | v 3564 | -[ ] <--- middle-block. 3565 | / | 3566 | / v 3567 -|- >[ ] <--- new preheader. 3568 | | 3569 | v 3570 | [ ] \ 3571 | [ ]_| <-- old scalar loop to handle remainder. 3572 \ | 3573 \ v 3574 >[ ] <-- exit block. 3575 ... 3576 */ 3577 3578 // Get the metadata of the original loop before it gets modified. 3579 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3580 3581 // Create an empty vector loop, and prepare basic blocks for the runtime 3582 // checks. 3583 Loop *Lp = createVectorLoopSkeleton(""); 3584 3585 // Now, compare the new count to zero. If it is zero skip the vector loop and 3586 // jump to the scalar loop. This check also covers the case where the 3587 // backedge-taken count is uint##_max: adding one to it will overflow leading 3588 // to an incorrect trip count of zero. In this (rare) case we will also jump 3589 // to the scalar loop. 3590 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3591 3592 // Generate the code to check any assumptions that we've made for SCEV 3593 // expressions. 3594 emitSCEVChecks(Lp, LoopScalarPreHeader); 3595 3596 // Generate the code that checks in runtime if arrays overlap. We put the 3597 // checks into a separate block to make the more common case of few elements 3598 // faster. 3599 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3600 3601 // Some loops have a single integer induction variable, while other loops 3602 // don't. One example is c++ iterators that often have multiple pointer 3603 // induction variables. In the code below we also support a case where we 3604 // don't have a single induction variable. 3605 // 3606 // We try to obtain an induction variable from the original loop as hard 3607 // as possible. However if we don't find one that: 3608 // - is an integer 3609 // - counts from zero, stepping by one 3610 // - is the size of the widest induction variable type 3611 // then we create a new one. 3612 OldInduction = Legal->getPrimaryInduction(); 3613 Type *IdxTy = Legal->getWidestInductionType(); 3614 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3615 // The loop step is equal to the vectorization factor (num of SIMD elements) 3616 // times the unroll factor (num of SIMD instructions). 3617 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3618 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3619 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3620 Induction = 3621 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3622 getDebugLocFromInstOrOperands(OldInduction)); 3623 3624 // Emit phis for the new starting index of the scalar loop. 3625 createInductionResumeValues(Lp, CountRoundDown); 3626 3627 return completeLoopSkeleton(Lp, OrigLoopID); 3628 } 3629 3630 // Fix up external users of the induction variable. At this point, we are 3631 // in LCSSA form, with all external PHIs that use the IV having one input value, 3632 // coming from the remainder loop. We need those PHIs to also have a correct 3633 // value for the IV when arriving directly from the middle block. 3634 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3635 const InductionDescriptor &II, 3636 Value *CountRoundDown, Value *EndValue, 3637 BasicBlock *MiddleBlock) { 3638 // There are two kinds of external IV usages - those that use the value 3639 // computed in the last iteration (the PHI) and those that use the penultimate 3640 // value (the value that feeds into the phi from the loop latch). 3641 // We allow both, but they, obviously, have different values. 3642 3643 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3644 3645 DenseMap<Value *, Value *> MissingVals; 3646 3647 // An external user of the last iteration's value should see the value that 3648 // the remainder loop uses to initialize its own IV. 3649 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3650 for (User *U : PostInc->users()) { 3651 Instruction *UI = cast<Instruction>(U); 3652 if (!OrigLoop->contains(UI)) { 3653 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3654 MissingVals[UI] = EndValue; 3655 } 3656 } 3657 3658 // An external user of the penultimate value need to see EndValue - Step. 3659 // The simplest way to get this is to recompute it from the constituent SCEVs, 3660 // that is Start + (Step * (CRD - 1)). 3661 for (User *U : OrigPhi->users()) { 3662 auto *UI = cast<Instruction>(U); 3663 if (!OrigLoop->contains(UI)) { 3664 const DataLayout &DL = 3665 OrigLoop->getHeader()->getModule()->getDataLayout(); 3666 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3667 3668 IRBuilder<> B(MiddleBlock->getTerminator()); 3669 Value *CountMinusOne = B.CreateSub( 3670 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3671 Value *CMO = 3672 !II.getStep()->getType()->isIntegerTy() 3673 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3674 II.getStep()->getType()) 3675 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3676 CMO->setName("cast.cmo"); 3677 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3678 Escape->setName("ind.escape"); 3679 MissingVals[UI] = Escape; 3680 } 3681 } 3682 3683 for (auto &I : MissingVals) { 3684 PHINode *PHI = cast<PHINode>(I.first); 3685 // One corner case we have to handle is two IVs "chasing" each-other, 3686 // that is %IV2 = phi [...], [ %IV1, %latch ] 3687 // In this case, if IV1 has an external use, we need to avoid adding both 3688 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3689 // don't already have an incoming value for the middle block. 3690 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3691 PHI->addIncoming(I.second, MiddleBlock); 3692 } 3693 } 3694 3695 namespace { 3696 3697 struct CSEDenseMapInfo { 3698 static bool canHandle(const Instruction *I) { 3699 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3700 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3701 } 3702 3703 static inline Instruction *getEmptyKey() { 3704 return DenseMapInfo<Instruction *>::getEmptyKey(); 3705 } 3706 3707 static inline Instruction *getTombstoneKey() { 3708 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3709 } 3710 3711 static unsigned getHashValue(const Instruction *I) { 3712 assert(canHandle(I) && "Unknown instruction!"); 3713 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3714 I->value_op_end())); 3715 } 3716 3717 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3718 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3719 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3720 return LHS == RHS; 3721 return LHS->isIdenticalTo(RHS); 3722 } 3723 }; 3724 3725 } // end anonymous namespace 3726 3727 ///Perform cse of induction variable instructions. 3728 static void cse(BasicBlock *BB) { 3729 // Perform simple cse. 3730 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3731 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3732 Instruction *In = &*I++; 3733 3734 if (!CSEDenseMapInfo::canHandle(In)) 3735 continue; 3736 3737 // Check if we can replace this instruction with any of the 3738 // visited instructions. 3739 if (Instruction *V = CSEMap.lookup(In)) { 3740 In->replaceAllUsesWith(V); 3741 In->eraseFromParent(); 3742 continue; 3743 } 3744 3745 CSEMap[In] = In; 3746 } 3747 } 3748 3749 InstructionCost 3750 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3751 bool &NeedToScalarize) { 3752 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3753 Function *F = CI->getCalledFunction(); 3754 Type *ScalarRetTy = CI->getType(); 3755 SmallVector<Type *, 4> Tys, ScalarTys; 3756 for (auto &ArgOp : CI->arg_operands()) 3757 ScalarTys.push_back(ArgOp->getType()); 3758 3759 // Estimate cost of scalarized vector call. The source operands are assumed 3760 // to be vectors, so we need to extract individual elements from there, 3761 // execute VF scalar calls, and then gather the result into the vector return 3762 // value. 3763 InstructionCost ScalarCallCost = 3764 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3765 if (VF.isScalar()) 3766 return ScalarCallCost; 3767 3768 // Compute corresponding vector type for return value and arguments. 3769 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3770 for (Type *ScalarTy : ScalarTys) 3771 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3772 3773 // Compute costs of unpacking argument values for the scalar calls and 3774 // packing the return values to a vector. 3775 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3776 3777 InstructionCost Cost = 3778 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3779 3780 // If we can't emit a vector call for this function, then the currently found 3781 // cost is the cost we need to return. 3782 NeedToScalarize = true; 3783 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3784 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3785 3786 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3787 return Cost; 3788 3789 // If the corresponding vector cost is cheaper, return its cost. 3790 InstructionCost VectorCallCost = 3791 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3792 if (VectorCallCost < Cost) { 3793 NeedToScalarize = false; 3794 Cost = VectorCallCost; 3795 } 3796 return Cost; 3797 } 3798 3799 InstructionCost 3800 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3801 ElementCount VF) { 3802 auto MaybeVectorizeType = [](Type *Elt, ElementCount VF) -> Type * { 3803 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3804 return Elt; 3805 return VectorType::get(Elt, VF); 3806 }; 3807 3808 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3809 assert(ID && "Expected intrinsic call!"); 3810 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3811 FastMathFlags FMF; 3812 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3813 FMF = FPMO->getFastMathFlags(); 3814 3815 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3816 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3817 SmallVector<Type *> ParamTys; 3818 std::transform(FTy->param_begin(), FTy->param_end(), ParamTys.begin(), 3819 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3820 3821 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3822 dyn_cast<IntrinsicInst>(CI)); 3823 return TTI.getIntrinsicInstrCost(CostAttrs, 3824 TargetTransformInfo::TCK_RecipThroughput); 3825 } 3826 3827 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3828 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3829 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3830 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3831 } 3832 3833 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3834 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3835 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3836 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3837 } 3838 3839 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3840 // For every instruction `I` in MinBWs, truncate the operands, create a 3841 // truncated version of `I` and reextend its result. InstCombine runs 3842 // later and will remove any ext/trunc pairs. 3843 SmallPtrSet<Value *, 4> Erased; 3844 for (const auto &KV : Cost->getMinimalBitwidths()) { 3845 // If the value wasn't vectorized, we must maintain the original scalar 3846 // type. The absence of the value from VectorLoopValueMap indicates that it 3847 // wasn't vectorized. 3848 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3849 continue; 3850 for (unsigned Part = 0; Part < UF; ++Part) { 3851 Value *I = getOrCreateVectorValue(KV.first, Part); 3852 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3853 continue; 3854 Type *OriginalTy = I->getType(); 3855 Type *ScalarTruncatedTy = 3856 IntegerType::get(OriginalTy->getContext(), KV.second); 3857 auto *TruncatedTy = FixedVectorType::get( 3858 ScalarTruncatedTy, 3859 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3860 if (TruncatedTy == OriginalTy) 3861 continue; 3862 3863 IRBuilder<> B(cast<Instruction>(I)); 3864 auto ShrinkOperand = [&](Value *V) -> Value * { 3865 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3866 if (ZI->getSrcTy() == TruncatedTy) 3867 return ZI->getOperand(0); 3868 return B.CreateZExtOrTrunc(V, TruncatedTy); 3869 }; 3870 3871 // The actual instruction modification depends on the instruction type, 3872 // unfortunately. 3873 Value *NewI = nullptr; 3874 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3875 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3876 ShrinkOperand(BO->getOperand(1))); 3877 3878 // Any wrapping introduced by shrinking this operation shouldn't be 3879 // considered undefined behavior. So, we can't unconditionally copy 3880 // arithmetic wrapping flags to NewI. 3881 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3882 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3883 NewI = 3884 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3885 ShrinkOperand(CI->getOperand(1))); 3886 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3887 NewI = B.CreateSelect(SI->getCondition(), 3888 ShrinkOperand(SI->getTrueValue()), 3889 ShrinkOperand(SI->getFalseValue())); 3890 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3891 switch (CI->getOpcode()) { 3892 default: 3893 llvm_unreachable("Unhandled cast!"); 3894 case Instruction::Trunc: 3895 NewI = ShrinkOperand(CI->getOperand(0)); 3896 break; 3897 case Instruction::SExt: 3898 NewI = B.CreateSExtOrTrunc( 3899 CI->getOperand(0), 3900 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3901 break; 3902 case Instruction::ZExt: 3903 NewI = B.CreateZExtOrTrunc( 3904 CI->getOperand(0), 3905 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3906 break; 3907 } 3908 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3909 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3910 ->getNumElements(); 3911 auto *O0 = B.CreateZExtOrTrunc( 3912 SI->getOperand(0), 3913 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3914 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3915 ->getNumElements(); 3916 auto *O1 = B.CreateZExtOrTrunc( 3917 SI->getOperand(1), 3918 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3919 3920 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3921 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3922 // Don't do anything with the operands, just extend the result. 3923 continue; 3924 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3925 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3926 ->getNumElements(); 3927 auto *O0 = B.CreateZExtOrTrunc( 3928 IE->getOperand(0), 3929 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3930 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3931 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3932 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3933 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3934 ->getNumElements(); 3935 auto *O0 = B.CreateZExtOrTrunc( 3936 EE->getOperand(0), 3937 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3938 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3939 } else { 3940 // If we don't know what to do, be conservative and don't do anything. 3941 continue; 3942 } 3943 3944 // Lastly, extend the result. 3945 NewI->takeName(cast<Instruction>(I)); 3946 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3947 I->replaceAllUsesWith(Res); 3948 cast<Instruction>(I)->eraseFromParent(); 3949 Erased.insert(I); 3950 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3951 } 3952 } 3953 3954 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3955 for (const auto &KV : Cost->getMinimalBitwidths()) { 3956 // If the value wasn't vectorized, we must maintain the original scalar 3957 // type. The absence of the value from VectorLoopValueMap indicates that it 3958 // wasn't vectorized. 3959 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3960 continue; 3961 for (unsigned Part = 0; Part < UF; ++Part) { 3962 Value *I = getOrCreateVectorValue(KV.first, Part); 3963 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3964 if (Inst && Inst->use_empty()) { 3965 Value *NewI = Inst->getOperand(0); 3966 Inst->eraseFromParent(); 3967 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3968 } 3969 } 3970 } 3971 } 3972 3973 void InnerLoopVectorizer::fixVectorizedLoop() { 3974 // Insert truncates and extends for any truncated instructions as hints to 3975 // InstCombine. 3976 if (VF.isVector()) 3977 truncateToMinimalBitwidths(); 3978 3979 // Fix widened non-induction PHIs by setting up the PHI operands. 3980 if (OrigPHIsToFix.size()) { 3981 assert(EnableVPlanNativePath && 3982 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3983 fixNonInductionPHIs(); 3984 } 3985 3986 // At this point every instruction in the original loop is widened to a 3987 // vector form. Now we need to fix the recurrences in the loop. These PHI 3988 // nodes are currently empty because we did not want to introduce cycles. 3989 // This is the second stage of vectorizing recurrences. 3990 fixCrossIterationPHIs(); 3991 3992 // Forget the original basic block. 3993 PSE.getSE()->forgetLoop(OrigLoop); 3994 3995 // Fix-up external users of the induction variables. 3996 for (auto &Entry : Legal->getInductionVars()) 3997 fixupIVUsers(Entry.first, Entry.second, 3998 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3999 IVEndValues[Entry.first], LoopMiddleBlock); 4000 4001 fixLCSSAPHIs(); 4002 for (Instruction *PI : PredicatedInstructions) 4003 sinkScalarOperands(&*PI); 4004 4005 // Remove redundant induction instructions. 4006 cse(LoopVectorBody); 4007 4008 // Set/update profile weights for the vector and remainder loops as original 4009 // loop iterations are now distributed among them. Note that original loop 4010 // represented by LoopScalarBody becomes remainder loop after vectorization. 4011 // 4012 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4013 // end up getting slightly roughened result but that should be OK since 4014 // profile is not inherently precise anyway. Note also possible bypass of 4015 // vector code caused by legality checks is ignored, assigning all the weight 4016 // to the vector loop, optimistically. 4017 // 4018 // For scalable vectorization we can't know at compile time how many iterations 4019 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4020 // vscale of '1'. 4021 setProfileInfoAfterUnrolling( 4022 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4023 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4024 } 4025 4026 void InnerLoopVectorizer::fixCrossIterationPHIs() { 4027 // In order to support recurrences we need to be able to vectorize Phi nodes. 4028 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4029 // stage #2: We now need to fix the recurrences by adding incoming edges to 4030 // the currently empty PHI nodes. At this point every instruction in the 4031 // original loop is widened to a vector form so we can use them to construct 4032 // the incoming edges. 4033 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 4034 // Handle first-order recurrences and reductions that need to be fixed. 4035 if (Legal->isFirstOrderRecurrence(&Phi)) 4036 fixFirstOrderRecurrence(&Phi); 4037 else if (Legal->isReductionVariable(&Phi)) 4038 fixReduction(&Phi); 4039 } 4040 } 4041 4042 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4043 // This is the second phase of vectorizing first-order recurrences. An 4044 // overview of the transformation is described below. Suppose we have the 4045 // following loop. 4046 // 4047 // for (int i = 0; i < n; ++i) 4048 // b[i] = a[i] - a[i - 1]; 4049 // 4050 // There is a first-order recurrence on "a". For this loop, the shorthand 4051 // scalar IR looks like: 4052 // 4053 // scalar.ph: 4054 // s_init = a[-1] 4055 // br scalar.body 4056 // 4057 // scalar.body: 4058 // i = phi [0, scalar.ph], [i+1, scalar.body] 4059 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4060 // s2 = a[i] 4061 // b[i] = s2 - s1 4062 // br cond, scalar.body, ... 4063 // 4064 // In this example, s1 is a recurrence because it's value depends on the 4065 // previous iteration. In the first phase of vectorization, we created a 4066 // temporary value for s1. We now complete the vectorization and produce the 4067 // shorthand vector IR shown below (for VF = 4, UF = 1). 4068 // 4069 // vector.ph: 4070 // v_init = vector(..., ..., ..., a[-1]) 4071 // br vector.body 4072 // 4073 // vector.body 4074 // i = phi [0, vector.ph], [i+4, vector.body] 4075 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4076 // v2 = a[i, i+1, i+2, i+3]; 4077 // v3 = vector(v1(3), v2(0, 1, 2)) 4078 // b[i, i+1, i+2, i+3] = v2 - v3 4079 // br cond, vector.body, middle.block 4080 // 4081 // middle.block: 4082 // x = v2(3) 4083 // br scalar.ph 4084 // 4085 // scalar.ph: 4086 // s_init = phi [x, middle.block], [a[-1], otherwise] 4087 // br scalar.body 4088 // 4089 // After execution completes the vector loop, we extract the next value of 4090 // the recurrence (x) to use as the initial value in the scalar loop. 4091 4092 // Get the original loop preheader and single loop latch. 4093 auto *Preheader = OrigLoop->getLoopPreheader(); 4094 auto *Latch = OrigLoop->getLoopLatch(); 4095 4096 // Get the initial and previous values of the scalar recurrence. 4097 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4098 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4099 4100 // Create a vector from the initial value. 4101 auto *VectorInit = ScalarInit; 4102 if (VF.isVector()) { 4103 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4104 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4105 VectorInit = Builder.CreateInsertElement( 4106 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4107 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 4108 } 4109 4110 // We constructed a temporary phi node in the first phase of vectorization. 4111 // This phi node will eventually be deleted. 4112 Builder.SetInsertPoint( 4113 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4114 4115 // Create a phi node for the new recurrence. The current value will either be 4116 // the initial value inserted into a vector or loop-varying vector value. 4117 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4118 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4119 4120 // Get the vectorized previous value of the last part UF - 1. It appears last 4121 // among all unrolled iterations, due to the order of their construction. 4122 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4123 4124 // Find and set the insertion point after the previous value if it is an 4125 // instruction. 4126 BasicBlock::iterator InsertPt; 4127 // Note that the previous value may have been constant-folded so it is not 4128 // guaranteed to be an instruction in the vector loop. 4129 // FIXME: Loop invariant values do not form recurrences. We should deal with 4130 // them earlier. 4131 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4132 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4133 else { 4134 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4135 if (isa<PHINode>(PreviousLastPart)) 4136 // If the previous value is a phi node, we should insert after all the phi 4137 // nodes in the block containing the PHI to avoid breaking basic block 4138 // verification. Note that the basic block may be different to 4139 // LoopVectorBody, in case we predicate the loop. 4140 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4141 else 4142 InsertPt = ++PreviousInst->getIterator(); 4143 } 4144 Builder.SetInsertPoint(&*InsertPt); 4145 4146 // We will construct a vector for the recurrence by combining the values for 4147 // the current and previous iterations. This is the required shuffle mask. 4148 assert(!VF.isScalable()); 4149 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 4150 ShuffleMask[0] = VF.getKnownMinValue() - 1; 4151 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 4152 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 4153 4154 // The vector from which to take the initial value for the current iteration 4155 // (actual or unrolled). Initially, this is the vector phi node. 4156 Value *Incoming = VecPhi; 4157 4158 // Shuffle the current and previous vector and update the vector parts. 4159 for (unsigned Part = 0; Part < UF; ++Part) { 4160 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4161 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4162 auto *Shuffle = 4163 VF.isVector() 4164 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 4165 : Incoming; 4166 PhiPart->replaceAllUsesWith(Shuffle); 4167 cast<Instruction>(PhiPart)->eraseFromParent(); 4168 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4169 Incoming = PreviousPart; 4170 } 4171 4172 // Fix the latch value of the new recurrence in the vector loop. 4173 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4174 4175 // Extract the last vector element in the middle block. This will be the 4176 // initial value for the recurrence when jumping to the scalar loop. 4177 auto *ExtractForScalar = Incoming; 4178 if (VF.isVector()) { 4179 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4180 ExtractForScalar = Builder.CreateExtractElement( 4181 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 4182 "vector.recur.extract"); 4183 } 4184 // Extract the second last element in the middle block if the 4185 // Phi is used outside the loop. We need to extract the phi itself 4186 // and not the last element (the phi update in the current iteration). This 4187 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4188 // when the scalar loop is not run at all. 4189 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4190 if (VF.isVector()) 4191 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4192 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 4193 "vector.recur.extract.for.phi"); 4194 // When loop is unrolled without vectorizing, initialize 4195 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4196 // `Incoming`. This is analogous to the vectorized case above: extracting the 4197 // second last element when VF > 1. 4198 else if (UF > 1) 4199 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4200 4201 // Fix the initial value of the original recurrence in the scalar loop. 4202 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4203 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4204 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4205 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4206 Start->addIncoming(Incoming, BB); 4207 } 4208 4209 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4210 Phi->setName("scalar.recur"); 4211 4212 // Finally, fix users of the recurrence outside the loop. The users will need 4213 // either the last value of the scalar recurrence or the last value of the 4214 // vector recurrence we extracted in the middle block. Since the loop is in 4215 // LCSSA form, we just need to find all the phi nodes for the original scalar 4216 // recurrence in the exit block, and then add an edge for the middle block. 4217 // Note that LCSSA does not imply single entry when the original scalar loop 4218 // had multiple exiting edges (as we always run the last iteration in the 4219 // scalar epilogue); in that case, the exiting path through middle will be 4220 // dynamically dead and the value picked for the phi doesn't matter. 4221 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4222 if (any_of(LCSSAPhi.incoming_values(), 4223 [Phi](Value *V) { return V == Phi; })) 4224 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4225 } 4226 4227 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4228 // Get it's reduction variable descriptor. 4229 assert(Legal->isReductionVariable(Phi) && 4230 "Unable to find the reduction variable"); 4231 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4232 4233 RecurKind RK = RdxDesc.getRecurrenceKind(); 4234 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4235 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4236 setDebugLocFromInst(Builder, ReductionStartValue); 4237 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 4238 4239 // This is the vector-clone of the value that leaves the loop. 4240 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4241 4242 // Wrap flags are in general invalid after vectorization, clear them. 4243 clearReductionWrapFlags(RdxDesc); 4244 4245 // Fix the vector-loop phi. 4246 4247 // Reductions do not have to start at zero. They can start with 4248 // any loop invariant values. 4249 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4250 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4251 4252 for (unsigned Part = 0; Part < UF; ++Part) { 4253 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4254 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4255 cast<PHINode>(VecRdxPhi) 4256 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4257 } 4258 4259 // Before each round, move the insertion point right between 4260 // the PHIs and the values we are going to write. 4261 // This allows us to write both PHINodes and the extractelement 4262 // instructions. 4263 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4264 4265 setDebugLocFromInst(Builder, LoopExitInst); 4266 4267 // If tail is folded by masking, the vector value to leave the loop should be 4268 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4269 // instead of the former. For an inloop reduction the reduction will already 4270 // be predicated, and does not need to be handled here. 4271 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4272 for (unsigned Part = 0; Part < UF; ++Part) { 4273 Value *VecLoopExitInst = 4274 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4275 Value *Sel = nullptr; 4276 for (User *U : VecLoopExitInst->users()) { 4277 if (isa<SelectInst>(U)) { 4278 assert(!Sel && "Reduction exit feeding two selects"); 4279 Sel = U; 4280 } else 4281 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4282 } 4283 assert(Sel && "Reduction exit feeds no select"); 4284 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4285 4286 // If the target can create a predicated operator for the reduction at no 4287 // extra cost in the loop (for example a predicated vadd), it can be 4288 // cheaper for the select to remain in the loop than be sunk out of it, 4289 // and so use the select value for the phi instead of the old 4290 // LoopExitValue. 4291 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4292 if (PreferPredicatedReductionSelect || 4293 TTI->preferPredicatedReductionSelect( 4294 RdxDesc.getOpcode(), Phi->getType(), 4295 TargetTransformInfo::ReductionFlags())) { 4296 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4297 VecRdxPhi->setIncomingValueForBlock( 4298 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4299 } 4300 } 4301 } 4302 4303 // If the vector reduction can be performed in a smaller type, we truncate 4304 // then extend the loop exit value to enable InstCombine to evaluate the 4305 // entire expression in the smaller type. 4306 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4307 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4308 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4309 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4310 Builder.SetInsertPoint( 4311 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4312 VectorParts RdxParts(UF); 4313 for (unsigned Part = 0; Part < UF; ++Part) { 4314 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4315 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4316 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4317 : Builder.CreateZExt(Trunc, VecTy); 4318 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4319 UI != RdxParts[Part]->user_end();) 4320 if (*UI != Trunc) { 4321 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4322 RdxParts[Part] = Extnd; 4323 } else { 4324 ++UI; 4325 } 4326 } 4327 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4328 for (unsigned Part = 0; Part < UF; ++Part) { 4329 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4330 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4331 } 4332 } 4333 4334 // Reduce all of the unrolled parts into a single vector. 4335 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4336 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4337 4338 // The middle block terminator has already been assigned a DebugLoc here (the 4339 // OrigLoop's single latch terminator). We want the whole middle block to 4340 // appear to execute on this line because: (a) it is all compiler generated, 4341 // (b) these instructions are always executed after evaluating the latch 4342 // conditional branch, and (c) other passes may add new predecessors which 4343 // terminate on this line. This is the easiest way to ensure we don't 4344 // accidentally cause an extra step back into the loop while debugging. 4345 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4346 { 4347 // Floating-point operations should have some FMF to enable the reduction. 4348 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4349 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4350 for (unsigned Part = 1; Part < UF; ++Part) { 4351 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4352 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4353 ReducedPartRdx = Builder.CreateBinOp( 4354 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4355 } else { 4356 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4357 } 4358 } 4359 } 4360 4361 // Create the reduction after the loop. Note that inloop reductions create the 4362 // target reduction in the loop using a Reduction recipe. 4363 if (VF.isVector() && !IsInLoopReductionPhi) { 4364 ReducedPartRdx = 4365 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4366 // If the reduction can be performed in a smaller type, we need to extend 4367 // the reduction to the wider type before we branch to the original loop. 4368 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4369 ReducedPartRdx = 4370 RdxDesc.isSigned() 4371 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4372 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4373 } 4374 4375 // Create a phi node that merges control-flow from the backedge-taken check 4376 // block and the middle block. 4377 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4378 LoopScalarPreHeader->getTerminator()); 4379 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4380 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4381 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4382 4383 // Now, we need to fix the users of the reduction variable 4384 // inside and outside of the scalar remainder loop. 4385 4386 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4387 // in the exit blocks. See comment on analogous loop in 4388 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4389 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4390 if (any_of(LCSSAPhi.incoming_values(), 4391 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4392 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4393 4394 // Fix the scalar loop reduction variable with the incoming reduction sum 4395 // from the vector body and from the backedge value. 4396 int IncomingEdgeBlockIdx = 4397 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4398 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4399 // Pick the other block. 4400 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4401 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4402 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4403 } 4404 4405 void InnerLoopVectorizer::clearReductionWrapFlags( 4406 RecurrenceDescriptor &RdxDesc) { 4407 RecurKind RK = RdxDesc.getRecurrenceKind(); 4408 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4409 return; 4410 4411 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4412 assert(LoopExitInstr && "null loop exit instruction"); 4413 SmallVector<Instruction *, 8> Worklist; 4414 SmallPtrSet<Instruction *, 8> Visited; 4415 Worklist.push_back(LoopExitInstr); 4416 Visited.insert(LoopExitInstr); 4417 4418 while (!Worklist.empty()) { 4419 Instruction *Cur = Worklist.pop_back_val(); 4420 if (isa<OverflowingBinaryOperator>(Cur)) 4421 for (unsigned Part = 0; Part < UF; ++Part) { 4422 Value *V = getOrCreateVectorValue(Cur, Part); 4423 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4424 } 4425 4426 for (User *U : Cur->users()) { 4427 Instruction *UI = cast<Instruction>(U); 4428 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4429 Visited.insert(UI).second) 4430 Worklist.push_back(UI); 4431 } 4432 } 4433 } 4434 4435 void InnerLoopVectorizer::fixLCSSAPHIs() { 4436 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4437 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4438 // Some phis were already hand updated by the reduction and recurrence 4439 // code above, leave them alone. 4440 continue; 4441 4442 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4443 // Non-instruction incoming values will have only one value. 4444 unsigned LastLane = 0; 4445 if (isa<Instruction>(IncomingValue)) 4446 LastLane = Cost->isUniformAfterVectorization( 4447 cast<Instruction>(IncomingValue), VF) 4448 ? 0 4449 : VF.getKnownMinValue() - 1; 4450 assert((!VF.isScalable() || LastLane == 0) && 4451 "scalable vectors dont support non-uniform scalars yet"); 4452 // Can be a loop invariant incoming value or the last scalar value to be 4453 // extracted from the vectorized loop. 4454 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4455 Value *lastIncomingValue = 4456 getOrCreateScalarValue(IncomingValue, VPIteration(UF - 1, LastLane)); 4457 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4458 } 4459 } 4460 4461 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4462 // The basic block and loop containing the predicated instruction. 4463 auto *PredBB = PredInst->getParent(); 4464 auto *VectorLoop = LI->getLoopFor(PredBB); 4465 4466 // Initialize a worklist with the operands of the predicated instruction. 4467 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4468 4469 // Holds instructions that we need to analyze again. An instruction may be 4470 // reanalyzed if we don't yet know if we can sink it or not. 4471 SmallVector<Instruction *, 8> InstsToReanalyze; 4472 4473 // Returns true if a given use occurs in the predicated block. Phi nodes use 4474 // their operands in their corresponding predecessor blocks. 4475 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4476 auto *I = cast<Instruction>(U.getUser()); 4477 BasicBlock *BB = I->getParent(); 4478 if (auto *Phi = dyn_cast<PHINode>(I)) 4479 BB = Phi->getIncomingBlock( 4480 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4481 return BB == PredBB; 4482 }; 4483 4484 // Iteratively sink the scalarized operands of the predicated instruction 4485 // into the block we created for it. When an instruction is sunk, it's 4486 // operands are then added to the worklist. The algorithm ends after one pass 4487 // through the worklist doesn't sink a single instruction. 4488 bool Changed; 4489 do { 4490 // Add the instructions that need to be reanalyzed to the worklist, and 4491 // reset the changed indicator. 4492 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4493 InstsToReanalyze.clear(); 4494 Changed = false; 4495 4496 while (!Worklist.empty()) { 4497 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4498 4499 // We can't sink an instruction if it is a phi node, is already in the 4500 // predicated block, is not in the loop, or may have side effects. 4501 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4502 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4503 continue; 4504 4505 // It's legal to sink the instruction if all its uses occur in the 4506 // predicated block. Otherwise, there's nothing to do yet, and we may 4507 // need to reanalyze the instruction. 4508 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4509 InstsToReanalyze.push_back(I); 4510 continue; 4511 } 4512 4513 // Move the instruction to the beginning of the predicated block, and add 4514 // it's operands to the worklist. 4515 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4516 Worklist.insert(I->op_begin(), I->op_end()); 4517 4518 // The sinking may have enabled other instructions to be sunk, so we will 4519 // need to iterate. 4520 Changed = true; 4521 } 4522 } while (Changed); 4523 } 4524 4525 void InnerLoopVectorizer::fixNonInductionPHIs() { 4526 for (PHINode *OrigPhi : OrigPHIsToFix) { 4527 PHINode *NewPhi = 4528 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4529 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4530 4531 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4532 predecessors(OrigPhi->getParent())); 4533 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4534 predecessors(NewPhi->getParent())); 4535 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4536 "Scalar and Vector BB should have the same number of predecessors"); 4537 4538 // The insertion point in Builder may be invalidated by the time we get 4539 // here. Force the Builder insertion point to something valid so that we do 4540 // not run into issues during insertion point restore in 4541 // getOrCreateVectorValue calls below. 4542 Builder.SetInsertPoint(NewPhi); 4543 4544 // The predecessor order is preserved and we can rely on mapping between 4545 // scalar and vector block predecessors. 4546 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4547 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4548 4549 // When looking up the new scalar/vector values to fix up, use incoming 4550 // values from original phi. 4551 Value *ScIncV = 4552 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4553 4554 // Scalar incoming value may need a broadcast 4555 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4556 NewPhi->addIncoming(NewIncV, NewPredBB); 4557 } 4558 } 4559 } 4560 4561 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4562 VPUser &Operands, unsigned UF, 4563 ElementCount VF, bool IsPtrLoopInvariant, 4564 SmallBitVector &IsIndexLoopInvariant, 4565 VPTransformState &State) { 4566 // Construct a vector GEP by widening the operands of the scalar GEP as 4567 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4568 // results in a vector of pointers when at least one operand of the GEP 4569 // is vector-typed. Thus, to keep the representation compact, we only use 4570 // vector-typed operands for loop-varying values. 4571 4572 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4573 // If we are vectorizing, but the GEP has only loop-invariant operands, 4574 // the GEP we build (by only using vector-typed operands for 4575 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4576 // produce a vector of pointers, we need to either arbitrarily pick an 4577 // operand to broadcast, or broadcast a clone of the original GEP. 4578 // Here, we broadcast a clone of the original. 4579 // 4580 // TODO: If at some point we decide to scalarize instructions having 4581 // loop-invariant operands, this special case will no longer be 4582 // required. We would add the scalarization decision to 4583 // collectLoopScalars() and teach getVectorValue() to broadcast 4584 // the lane-zero scalar value. 4585 auto *Clone = Builder.Insert(GEP->clone()); 4586 for (unsigned Part = 0; Part < UF; ++Part) { 4587 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4588 State.set(VPDef, GEP, EntryPart, Part); 4589 addMetadata(EntryPart, GEP); 4590 } 4591 } else { 4592 // If the GEP has at least one loop-varying operand, we are sure to 4593 // produce a vector of pointers. But if we are only unrolling, we want 4594 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4595 // produce with the code below will be scalar (if VF == 1) or vector 4596 // (otherwise). Note that for the unroll-only case, we still maintain 4597 // values in the vector mapping with initVector, as we do for other 4598 // instructions. 4599 for (unsigned Part = 0; Part < UF; ++Part) { 4600 // The pointer operand of the new GEP. If it's loop-invariant, we 4601 // won't broadcast it. 4602 auto *Ptr = IsPtrLoopInvariant 4603 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4604 : State.get(Operands.getOperand(0), Part); 4605 4606 // Collect all the indices for the new GEP. If any index is 4607 // loop-invariant, we won't broadcast it. 4608 SmallVector<Value *, 4> Indices; 4609 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4610 VPValue *Operand = Operands.getOperand(I); 4611 if (IsIndexLoopInvariant[I - 1]) 4612 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4613 else 4614 Indices.push_back(State.get(Operand, Part)); 4615 } 4616 4617 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4618 // but it should be a vector, otherwise. 4619 auto *NewGEP = 4620 GEP->isInBounds() 4621 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4622 Indices) 4623 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4624 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4625 "NewGEP is not a pointer vector"); 4626 State.set(VPDef, GEP, NewGEP, Part); 4627 addMetadata(NewGEP, GEP); 4628 } 4629 } 4630 } 4631 4632 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4633 RecurrenceDescriptor *RdxDesc, 4634 Value *StartV, unsigned UF, 4635 ElementCount VF) { 4636 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4637 PHINode *P = cast<PHINode>(PN); 4638 if (EnableVPlanNativePath) { 4639 // Currently we enter here in the VPlan-native path for non-induction 4640 // PHIs where all control flow is uniform. We simply widen these PHIs. 4641 // Create a vector phi with no operands - the vector phi operands will be 4642 // set at the end of vector code generation. 4643 Type *VecTy = 4644 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4645 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4646 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4647 OrigPHIsToFix.push_back(P); 4648 4649 return; 4650 } 4651 4652 assert(PN->getParent() == OrigLoop->getHeader() && 4653 "Non-header phis should have been handled elsewhere"); 4654 4655 // In order to support recurrences we need to be able to vectorize Phi nodes. 4656 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4657 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4658 // this value when we vectorize all of the instructions that use the PHI. 4659 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4660 Value *Iden = nullptr; 4661 bool ScalarPHI = 4662 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4663 Type *VecTy = 4664 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4665 4666 if (RdxDesc) { 4667 assert(Legal->isReductionVariable(P) && StartV && 4668 "RdxDesc should only be set for reduction variables; in that case " 4669 "a StartV is also required"); 4670 RecurKind RK = RdxDesc->getRecurrenceKind(); 4671 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4672 // MinMax reduction have the start value as their identify. 4673 if (ScalarPHI) { 4674 Iden = StartV; 4675 } else { 4676 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4677 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4678 StartV = Iden = Builder.CreateVectorSplat(VF, StartV, "minmax.ident"); 4679 } 4680 } else { 4681 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4682 RK, VecTy->getScalarType()); 4683 Iden = IdenC; 4684 4685 if (!ScalarPHI) { 4686 Iden = ConstantVector::getSplat(VF, IdenC); 4687 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4688 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4689 Constant *Zero = Builder.getInt32(0); 4690 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4691 } 4692 } 4693 } 4694 4695 for (unsigned Part = 0; Part < UF; ++Part) { 4696 // This is phase one of vectorizing PHIs. 4697 Value *EntryPart = PHINode::Create( 4698 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4699 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4700 if (StartV) { 4701 // Make sure to add the reduction start value only to the 4702 // first unroll part. 4703 Value *StartVal = (Part == 0) ? StartV : Iden; 4704 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4705 } 4706 } 4707 return; 4708 } 4709 4710 assert(!Legal->isReductionVariable(P) && 4711 "reductions should be handled above"); 4712 4713 setDebugLocFromInst(Builder, P); 4714 4715 // This PHINode must be an induction variable. 4716 // Make sure that we know about it. 4717 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4718 4719 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4720 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4721 4722 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4723 // which can be found from the original scalar operations. 4724 switch (II.getKind()) { 4725 case InductionDescriptor::IK_NoInduction: 4726 llvm_unreachable("Unknown induction"); 4727 case InductionDescriptor::IK_IntInduction: 4728 case InductionDescriptor::IK_FpInduction: 4729 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4730 case InductionDescriptor::IK_PtrInduction: { 4731 // Handle the pointer induction variable case. 4732 assert(P->getType()->isPointerTy() && "Unexpected type."); 4733 4734 if (Cost->isScalarAfterVectorization(P, VF)) { 4735 // This is the normalized GEP that starts counting at zero. 4736 Value *PtrInd = 4737 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4738 // Determine the number of scalars we need to generate for each unroll 4739 // iteration. If the instruction is uniform, we only need to generate the 4740 // first lane. Otherwise, we generate all VF values. 4741 unsigned Lanes = 4742 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4743 for (unsigned Part = 0; Part < UF; ++Part) { 4744 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4745 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4746 Lane + Part * VF.getKnownMinValue()); 4747 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4748 Value *SclrGep = 4749 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4750 SclrGep->setName("next.gep"); 4751 VectorLoopValueMap.setScalarValue(P, VPIteration(Part, Lane), 4752 SclrGep); 4753 } 4754 } 4755 return; 4756 } 4757 assert(isa<SCEVConstant>(II.getStep()) && 4758 "Induction step not a SCEV constant!"); 4759 Type *PhiType = II.getStep()->getType(); 4760 4761 // Build a pointer phi 4762 Value *ScalarStartValue = II.getStartValue(); 4763 Type *ScStValueType = ScalarStartValue->getType(); 4764 PHINode *NewPointerPhi = 4765 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4766 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4767 4768 // A pointer induction, performed by using a gep 4769 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4770 Instruction *InductionLoc = LoopLatch->getTerminator(); 4771 const SCEV *ScalarStep = II.getStep(); 4772 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4773 Value *ScalarStepValue = 4774 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4775 Value *InductionGEP = GetElementPtrInst::Create( 4776 ScStValueType->getPointerElementType(), NewPointerPhi, 4777 Builder.CreateMul( 4778 ScalarStepValue, 4779 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4780 "ptr.ind", InductionLoc); 4781 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4782 4783 // Create UF many actual address geps that use the pointer 4784 // phi as base and a vectorized version of the step value 4785 // (<step*0, ..., step*N>) as offset. 4786 for (unsigned Part = 0; Part < UF; ++Part) { 4787 SmallVector<Constant *, 8> Indices; 4788 // Create a vector of consecutive numbers from zero to VF. 4789 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4790 Indices.push_back( 4791 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4792 Constant *StartOffset = ConstantVector::get(Indices); 4793 4794 Value *GEP = Builder.CreateGEP( 4795 ScStValueType->getPointerElementType(), NewPointerPhi, 4796 Builder.CreateMul( 4797 StartOffset, 4798 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4799 "vector.gep")); 4800 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4801 } 4802 } 4803 } 4804 } 4805 4806 /// A helper function for checking whether an integer division-related 4807 /// instruction may divide by zero (in which case it must be predicated if 4808 /// executed conditionally in the scalar code). 4809 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4810 /// Non-zero divisors that are non compile-time constants will not be 4811 /// converted into multiplication, so we will still end up scalarizing 4812 /// the division, but can do so w/o predication. 4813 static bool mayDivideByZero(Instruction &I) { 4814 assert((I.getOpcode() == Instruction::UDiv || 4815 I.getOpcode() == Instruction::SDiv || 4816 I.getOpcode() == Instruction::URem || 4817 I.getOpcode() == Instruction::SRem) && 4818 "Unexpected instruction"); 4819 Value *Divisor = I.getOperand(1); 4820 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4821 return !CInt || CInt->isZero(); 4822 } 4823 4824 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4825 VPUser &User, 4826 VPTransformState &State) { 4827 switch (I.getOpcode()) { 4828 case Instruction::Call: 4829 case Instruction::Br: 4830 case Instruction::PHI: 4831 case Instruction::GetElementPtr: 4832 case Instruction::Select: 4833 llvm_unreachable("This instruction is handled by a different recipe."); 4834 case Instruction::UDiv: 4835 case Instruction::SDiv: 4836 case Instruction::SRem: 4837 case Instruction::URem: 4838 case Instruction::Add: 4839 case Instruction::FAdd: 4840 case Instruction::Sub: 4841 case Instruction::FSub: 4842 case Instruction::FNeg: 4843 case Instruction::Mul: 4844 case Instruction::FMul: 4845 case Instruction::FDiv: 4846 case Instruction::FRem: 4847 case Instruction::Shl: 4848 case Instruction::LShr: 4849 case Instruction::AShr: 4850 case Instruction::And: 4851 case Instruction::Or: 4852 case Instruction::Xor: { 4853 // Just widen unops and binops. 4854 setDebugLocFromInst(Builder, &I); 4855 4856 for (unsigned Part = 0; Part < UF; ++Part) { 4857 SmallVector<Value *, 2> Ops; 4858 for (VPValue *VPOp : User.operands()) 4859 Ops.push_back(State.get(VPOp, Part)); 4860 4861 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4862 4863 if (auto *VecOp = dyn_cast<Instruction>(V)) 4864 VecOp->copyIRFlags(&I); 4865 4866 // Use this vector value for all users of the original instruction. 4867 State.set(Def, &I, V, Part); 4868 addMetadata(V, &I); 4869 } 4870 4871 break; 4872 } 4873 case Instruction::ICmp: 4874 case Instruction::FCmp: { 4875 // Widen compares. Generate vector compares. 4876 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4877 auto *Cmp = cast<CmpInst>(&I); 4878 setDebugLocFromInst(Builder, Cmp); 4879 for (unsigned Part = 0; Part < UF; ++Part) { 4880 Value *A = State.get(User.getOperand(0), Part); 4881 Value *B = State.get(User.getOperand(1), Part); 4882 Value *C = nullptr; 4883 if (FCmp) { 4884 // Propagate fast math flags. 4885 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4886 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4887 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4888 } else { 4889 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4890 } 4891 State.set(Def, &I, C, Part); 4892 addMetadata(C, &I); 4893 } 4894 4895 break; 4896 } 4897 4898 case Instruction::ZExt: 4899 case Instruction::SExt: 4900 case Instruction::FPToUI: 4901 case Instruction::FPToSI: 4902 case Instruction::FPExt: 4903 case Instruction::PtrToInt: 4904 case Instruction::IntToPtr: 4905 case Instruction::SIToFP: 4906 case Instruction::UIToFP: 4907 case Instruction::Trunc: 4908 case Instruction::FPTrunc: 4909 case Instruction::BitCast: { 4910 auto *CI = cast<CastInst>(&I); 4911 setDebugLocFromInst(Builder, CI); 4912 4913 /// Vectorize casts. 4914 Type *DestTy = 4915 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4916 4917 for (unsigned Part = 0; Part < UF; ++Part) { 4918 Value *A = State.get(User.getOperand(0), Part); 4919 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4920 State.set(Def, &I, Cast, Part); 4921 addMetadata(Cast, &I); 4922 } 4923 break; 4924 } 4925 default: 4926 // This instruction is not vectorized by simple widening. 4927 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4928 llvm_unreachable("Unhandled instruction!"); 4929 } // end of switch. 4930 } 4931 4932 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4933 VPUser &ArgOperands, 4934 VPTransformState &State) { 4935 assert(!isa<DbgInfoIntrinsic>(I) && 4936 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4937 setDebugLocFromInst(Builder, &I); 4938 4939 Module *M = I.getParent()->getParent()->getParent(); 4940 auto *CI = cast<CallInst>(&I); 4941 4942 SmallVector<Type *, 4> Tys; 4943 for (Value *ArgOperand : CI->arg_operands()) 4944 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4945 4946 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4947 4948 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4949 // version of the instruction. 4950 // Is it beneficial to perform intrinsic call compared to lib call? 4951 bool NeedToScalarize = false; 4952 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4953 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4954 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4955 assert((UseVectorIntrinsic || !NeedToScalarize) && 4956 "Instruction should be scalarized elsewhere."); 4957 assert(IntrinsicCost.isValid() && CallCost.isValid() && 4958 "Cannot have invalid costs while widening"); 4959 4960 for (unsigned Part = 0; Part < UF; ++Part) { 4961 SmallVector<Value *, 4> Args; 4962 for (auto &I : enumerate(ArgOperands.operands())) { 4963 // Some intrinsics have a scalar argument - don't replace it with a 4964 // vector. 4965 Value *Arg; 4966 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4967 Arg = State.get(I.value(), Part); 4968 else 4969 Arg = State.get(I.value(), VPIteration(0, 0)); 4970 Args.push_back(Arg); 4971 } 4972 4973 Function *VectorF; 4974 if (UseVectorIntrinsic) { 4975 // Use vector version of the intrinsic. 4976 Type *TysForDecl[] = {CI->getType()}; 4977 if (VF.isVector()) { 4978 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4979 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4980 } 4981 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4982 assert(VectorF && "Can't retrieve vector intrinsic."); 4983 } else { 4984 // Use vector version of the function call. 4985 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4986 #ifndef NDEBUG 4987 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4988 "Can't create vector function."); 4989 #endif 4990 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4991 } 4992 SmallVector<OperandBundleDef, 1> OpBundles; 4993 CI->getOperandBundlesAsDefs(OpBundles); 4994 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4995 4996 if (isa<FPMathOperator>(V)) 4997 V->copyFastMathFlags(CI); 4998 4999 State.set(Def, &I, V, Part); 5000 addMetadata(V, &I); 5001 } 5002 } 5003 5004 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5005 VPUser &Operands, 5006 bool InvariantCond, 5007 VPTransformState &State) { 5008 setDebugLocFromInst(Builder, &I); 5009 5010 // The condition can be loop invariant but still defined inside the 5011 // loop. This means that we can't just use the original 'cond' value. 5012 // We have to take the 'vectorized' value and pick the first lane. 5013 // Instcombine will make this a no-op. 5014 auto *InvarCond = InvariantCond 5015 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5016 : nullptr; 5017 5018 for (unsigned Part = 0; Part < UF; ++Part) { 5019 Value *Cond = 5020 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5021 Value *Op0 = State.get(Operands.getOperand(1), Part); 5022 Value *Op1 = State.get(Operands.getOperand(2), Part); 5023 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5024 State.set(VPDef, &I, Sel, Part); 5025 addMetadata(Sel, &I); 5026 } 5027 } 5028 5029 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5030 // We should not collect Scalars more than once per VF. Right now, this 5031 // function is called from collectUniformsAndScalars(), which already does 5032 // this check. Collecting Scalars for VF=1 does not make any sense. 5033 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5034 "This function should not be visited twice for the same VF"); 5035 5036 SmallSetVector<Instruction *, 8> Worklist; 5037 5038 // These sets are used to seed the analysis with pointers used by memory 5039 // accesses that will remain scalar. 5040 SmallSetVector<Instruction *, 8> ScalarPtrs; 5041 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5042 auto *Latch = TheLoop->getLoopLatch(); 5043 5044 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5045 // The pointer operands of loads and stores will be scalar as long as the 5046 // memory access is not a gather or scatter operation. The value operand of a 5047 // store will remain scalar if the store is scalarized. 5048 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5049 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5050 assert(WideningDecision != CM_Unknown && 5051 "Widening decision should be ready at this moment"); 5052 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5053 if (Ptr == Store->getValueOperand()) 5054 return WideningDecision == CM_Scalarize; 5055 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5056 "Ptr is neither a value or pointer operand"); 5057 return WideningDecision != CM_GatherScatter; 5058 }; 5059 5060 // A helper that returns true if the given value is a bitcast or 5061 // getelementptr instruction contained in the loop. 5062 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5063 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5064 isa<GetElementPtrInst>(V)) && 5065 !TheLoop->isLoopInvariant(V); 5066 }; 5067 5068 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5069 if (!isa<PHINode>(Ptr) || 5070 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5071 return false; 5072 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5073 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5074 return false; 5075 return isScalarUse(MemAccess, Ptr); 5076 }; 5077 5078 // A helper that evaluates a memory access's use of a pointer. If the 5079 // pointer is actually the pointer induction of a loop, it is being 5080 // inserted into Worklist. If the use will be a scalar use, and the 5081 // pointer is only used by memory accesses, we place the pointer in 5082 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5083 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5084 if (isScalarPtrInduction(MemAccess, Ptr)) { 5085 Worklist.insert(cast<Instruction>(Ptr)); 5086 Instruction *Update = cast<Instruction>( 5087 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5088 Worklist.insert(Update); 5089 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5090 << "\n"); 5091 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5092 << "\n"); 5093 return; 5094 } 5095 // We only care about bitcast and getelementptr instructions contained in 5096 // the loop. 5097 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5098 return; 5099 5100 // If the pointer has already been identified as scalar (e.g., if it was 5101 // also identified as uniform), there's nothing to do. 5102 auto *I = cast<Instruction>(Ptr); 5103 if (Worklist.count(I)) 5104 return; 5105 5106 // If the use of the pointer will be a scalar use, and all users of the 5107 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5108 // place the pointer in PossibleNonScalarPtrs. 5109 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5110 return isa<LoadInst>(U) || isa<StoreInst>(U); 5111 })) 5112 ScalarPtrs.insert(I); 5113 else 5114 PossibleNonScalarPtrs.insert(I); 5115 }; 5116 5117 // We seed the scalars analysis with three classes of instructions: (1) 5118 // instructions marked uniform-after-vectorization and (2) bitcast, 5119 // getelementptr and (pointer) phi instructions used by memory accesses 5120 // requiring a scalar use. 5121 // 5122 // (1) Add to the worklist all instructions that have been identified as 5123 // uniform-after-vectorization. 5124 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5125 5126 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5127 // memory accesses requiring a scalar use. The pointer operands of loads and 5128 // stores will be scalar as long as the memory accesses is not a gather or 5129 // scatter operation. The value operand of a store will remain scalar if the 5130 // store is scalarized. 5131 for (auto *BB : TheLoop->blocks()) 5132 for (auto &I : *BB) { 5133 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5134 evaluatePtrUse(Load, Load->getPointerOperand()); 5135 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5136 evaluatePtrUse(Store, Store->getPointerOperand()); 5137 evaluatePtrUse(Store, Store->getValueOperand()); 5138 } 5139 } 5140 for (auto *I : ScalarPtrs) 5141 if (!PossibleNonScalarPtrs.count(I)) { 5142 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5143 Worklist.insert(I); 5144 } 5145 5146 // Insert the forced scalars. 5147 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5148 // induction variable when the PHI user is scalarized. 5149 auto ForcedScalar = ForcedScalars.find(VF); 5150 if (ForcedScalar != ForcedScalars.end()) 5151 for (auto *I : ForcedScalar->second) 5152 Worklist.insert(I); 5153 5154 // Expand the worklist by looking through any bitcasts and getelementptr 5155 // instructions we've already identified as scalar. This is similar to the 5156 // expansion step in collectLoopUniforms(); however, here we're only 5157 // expanding to include additional bitcasts and getelementptr instructions. 5158 unsigned Idx = 0; 5159 while (Idx != Worklist.size()) { 5160 Instruction *Dst = Worklist[Idx++]; 5161 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5162 continue; 5163 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5164 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5165 auto *J = cast<Instruction>(U); 5166 return !TheLoop->contains(J) || Worklist.count(J) || 5167 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5168 isScalarUse(J, Src)); 5169 })) { 5170 Worklist.insert(Src); 5171 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5172 } 5173 } 5174 5175 // An induction variable will remain scalar if all users of the induction 5176 // variable and induction variable update remain scalar. 5177 for (auto &Induction : Legal->getInductionVars()) { 5178 auto *Ind = Induction.first; 5179 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5180 5181 // If tail-folding is applied, the primary induction variable will be used 5182 // to feed a vector compare. 5183 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5184 continue; 5185 5186 // Determine if all users of the induction variable are scalar after 5187 // vectorization. 5188 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5189 auto *I = cast<Instruction>(U); 5190 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5191 }); 5192 if (!ScalarInd) 5193 continue; 5194 5195 // Determine if all users of the induction variable update instruction are 5196 // scalar after vectorization. 5197 auto ScalarIndUpdate = 5198 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5199 auto *I = cast<Instruction>(U); 5200 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5201 }); 5202 if (!ScalarIndUpdate) 5203 continue; 5204 5205 // The induction variable and its update instruction will remain scalar. 5206 Worklist.insert(Ind); 5207 Worklist.insert(IndUpdate); 5208 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5209 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5210 << "\n"); 5211 } 5212 5213 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5214 } 5215 5216 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 5217 ElementCount VF) { 5218 if (!blockNeedsPredication(I->getParent())) 5219 return false; 5220 switch(I->getOpcode()) { 5221 default: 5222 break; 5223 case Instruction::Load: 5224 case Instruction::Store: { 5225 if (!Legal->isMaskRequired(I)) 5226 return false; 5227 auto *Ptr = getLoadStorePointerOperand(I); 5228 auto *Ty = getMemInstValueType(I); 5229 // We have already decided how to vectorize this instruction, get that 5230 // result. 5231 if (VF.isVector()) { 5232 InstWidening WideningDecision = getWideningDecision(I, VF); 5233 assert(WideningDecision != CM_Unknown && 5234 "Widening decision should be ready at this moment"); 5235 return WideningDecision == CM_Scalarize; 5236 } 5237 const Align Alignment = getLoadStoreAlignment(I); 5238 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5239 isLegalMaskedGather(Ty, Alignment)) 5240 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5241 isLegalMaskedScatter(Ty, Alignment)); 5242 } 5243 case Instruction::UDiv: 5244 case Instruction::SDiv: 5245 case Instruction::SRem: 5246 case Instruction::URem: 5247 return mayDivideByZero(*I); 5248 } 5249 return false; 5250 } 5251 5252 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5253 Instruction *I, ElementCount VF) { 5254 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5255 assert(getWideningDecision(I, VF) == CM_Unknown && 5256 "Decision should not be set yet."); 5257 auto *Group = getInterleavedAccessGroup(I); 5258 assert(Group && "Must have a group."); 5259 5260 // If the instruction's allocated size doesn't equal it's type size, it 5261 // requires padding and will be scalarized. 5262 auto &DL = I->getModule()->getDataLayout(); 5263 auto *ScalarTy = getMemInstValueType(I); 5264 if (hasIrregularType(ScalarTy, DL, VF)) 5265 return false; 5266 5267 // Check if masking is required. 5268 // A Group may need masking for one of two reasons: it resides in a block that 5269 // needs predication, or it was decided to use masking to deal with gaps. 5270 bool PredicatedAccessRequiresMasking = 5271 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5272 bool AccessWithGapsRequiresMasking = 5273 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5274 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5275 return true; 5276 5277 // If masked interleaving is required, we expect that the user/target had 5278 // enabled it, because otherwise it either wouldn't have been created or 5279 // it should have been invalidated by the CostModel. 5280 assert(useMaskedInterleavedAccesses(TTI) && 5281 "Masked interleave-groups for predicated accesses are not enabled."); 5282 5283 auto *Ty = getMemInstValueType(I); 5284 const Align Alignment = getLoadStoreAlignment(I); 5285 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5286 : TTI.isLegalMaskedStore(Ty, Alignment); 5287 } 5288 5289 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5290 Instruction *I, ElementCount VF) { 5291 // Get and ensure we have a valid memory instruction. 5292 LoadInst *LI = dyn_cast<LoadInst>(I); 5293 StoreInst *SI = dyn_cast<StoreInst>(I); 5294 assert((LI || SI) && "Invalid memory instruction"); 5295 5296 auto *Ptr = getLoadStorePointerOperand(I); 5297 5298 // In order to be widened, the pointer should be consecutive, first of all. 5299 if (!Legal->isConsecutivePtr(Ptr)) 5300 return false; 5301 5302 // If the instruction is a store located in a predicated block, it will be 5303 // scalarized. 5304 if (isScalarWithPredication(I)) 5305 return false; 5306 5307 // If the instruction's allocated size doesn't equal it's type size, it 5308 // requires padding and will be scalarized. 5309 auto &DL = I->getModule()->getDataLayout(); 5310 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5311 if (hasIrregularType(ScalarTy, DL, VF)) 5312 return false; 5313 5314 return true; 5315 } 5316 5317 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5318 // We should not collect Uniforms more than once per VF. Right now, 5319 // this function is called from collectUniformsAndScalars(), which 5320 // already does this check. Collecting Uniforms for VF=1 does not make any 5321 // sense. 5322 5323 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5324 "This function should not be visited twice for the same VF"); 5325 5326 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5327 // not analyze again. Uniforms.count(VF) will return 1. 5328 Uniforms[VF].clear(); 5329 5330 // We now know that the loop is vectorizable! 5331 // Collect instructions inside the loop that will remain uniform after 5332 // vectorization. 5333 5334 // Global values, params and instructions outside of current loop are out of 5335 // scope. 5336 auto isOutOfScope = [&](Value *V) -> bool { 5337 Instruction *I = dyn_cast<Instruction>(V); 5338 return (!I || !TheLoop->contains(I)); 5339 }; 5340 5341 SetVector<Instruction *> Worklist; 5342 BasicBlock *Latch = TheLoop->getLoopLatch(); 5343 5344 // Instructions that are scalar with predication must not be considered 5345 // uniform after vectorization, because that would create an erroneous 5346 // replicating region where only a single instance out of VF should be formed. 5347 // TODO: optimize such seldom cases if found important, see PR40816. 5348 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5349 if (isOutOfScope(I)) { 5350 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5351 << *I << "\n"); 5352 return; 5353 } 5354 if (isScalarWithPredication(I, VF)) { 5355 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5356 << *I << "\n"); 5357 return; 5358 } 5359 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5360 Worklist.insert(I); 5361 }; 5362 5363 // Start with the conditional branch. If the branch condition is an 5364 // instruction contained in the loop that is only used by the branch, it is 5365 // uniform. 5366 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5367 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5368 addToWorklistIfAllowed(Cmp); 5369 5370 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5371 InstWidening WideningDecision = getWideningDecision(I, VF); 5372 assert(WideningDecision != CM_Unknown && 5373 "Widening decision should be ready at this moment"); 5374 5375 // A uniform memory op is itself uniform. We exclude uniform stores 5376 // here as they demand the last lane, not the first one. 5377 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5378 assert(WideningDecision == CM_Scalarize); 5379 return true; 5380 } 5381 5382 return (WideningDecision == CM_Widen || 5383 WideningDecision == CM_Widen_Reverse || 5384 WideningDecision == CM_Interleave); 5385 }; 5386 5387 5388 // Returns true if Ptr is the pointer operand of a memory access instruction 5389 // I, and I is known to not require scalarization. 5390 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5391 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5392 }; 5393 5394 // Holds a list of values which are known to have at least one uniform use. 5395 // Note that there may be other uses which aren't uniform. A "uniform use" 5396 // here is something which only demands lane 0 of the unrolled iterations; 5397 // it does not imply that all lanes produce the same value (e.g. this is not 5398 // the usual meaning of uniform) 5399 SmallPtrSet<Value *, 8> HasUniformUse; 5400 5401 // Scan the loop for instructions which are either a) known to have only 5402 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5403 for (auto *BB : TheLoop->blocks()) 5404 for (auto &I : *BB) { 5405 // If there's no pointer operand, there's nothing to do. 5406 auto *Ptr = getLoadStorePointerOperand(&I); 5407 if (!Ptr) 5408 continue; 5409 5410 // A uniform memory op is itself uniform. We exclude uniform stores 5411 // here as they demand the last lane, not the first one. 5412 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5413 addToWorklistIfAllowed(&I); 5414 5415 if (isUniformDecision(&I, VF)) { 5416 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5417 HasUniformUse.insert(Ptr); 5418 } 5419 } 5420 5421 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5422 // demanding) users. Since loops are assumed to be in LCSSA form, this 5423 // disallows uses outside the loop as well. 5424 for (auto *V : HasUniformUse) { 5425 if (isOutOfScope(V)) 5426 continue; 5427 auto *I = cast<Instruction>(V); 5428 auto UsersAreMemAccesses = 5429 llvm::all_of(I->users(), [&](User *U) -> bool { 5430 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5431 }); 5432 if (UsersAreMemAccesses) 5433 addToWorklistIfAllowed(I); 5434 } 5435 5436 // Expand Worklist in topological order: whenever a new instruction 5437 // is added , its users should be already inside Worklist. It ensures 5438 // a uniform instruction will only be used by uniform instructions. 5439 unsigned idx = 0; 5440 while (idx != Worklist.size()) { 5441 Instruction *I = Worklist[idx++]; 5442 5443 for (auto OV : I->operand_values()) { 5444 // isOutOfScope operands cannot be uniform instructions. 5445 if (isOutOfScope(OV)) 5446 continue; 5447 // First order recurrence Phi's should typically be considered 5448 // non-uniform. 5449 auto *OP = dyn_cast<PHINode>(OV); 5450 if (OP && Legal->isFirstOrderRecurrence(OP)) 5451 continue; 5452 // If all the users of the operand are uniform, then add the 5453 // operand into the uniform worklist. 5454 auto *OI = cast<Instruction>(OV); 5455 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5456 auto *J = cast<Instruction>(U); 5457 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5458 })) 5459 addToWorklistIfAllowed(OI); 5460 } 5461 } 5462 5463 // For an instruction to be added into Worklist above, all its users inside 5464 // the loop should also be in Worklist. However, this condition cannot be 5465 // true for phi nodes that form a cyclic dependence. We must process phi 5466 // nodes separately. An induction variable will remain uniform if all users 5467 // of the induction variable and induction variable update remain uniform. 5468 // The code below handles both pointer and non-pointer induction variables. 5469 for (auto &Induction : Legal->getInductionVars()) { 5470 auto *Ind = Induction.first; 5471 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5472 5473 // Determine if all users of the induction variable are uniform after 5474 // vectorization. 5475 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5476 auto *I = cast<Instruction>(U); 5477 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5478 isVectorizedMemAccessUse(I, Ind); 5479 }); 5480 if (!UniformInd) 5481 continue; 5482 5483 // Determine if all users of the induction variable update instruction are 5484 // uniform after vectorization. 5485 auto UniformIndUpdate = 5486 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5487 auto *I = cast<Instruction>(U); 5488 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5489 isVectorizedMemAccessUse(I, IndUpdate); 5490 }); 5491 if (!UniformIndUpdate) 5492 continue; 5493 5494 // The induction variable and its update instruction will remain uniform. 5495 addToWorklistIfAllowed(Ind); 5496 addToWorklistIfAllowed(IndUpdate); 5497 } 5498 5499 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5500 } 5501 5502 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5503 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5504 5505 if (Legal->getRuntimePointerChecking()->Need) { 5506 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5507 "runtime pointer checks needed. Enable vectorization of this " 5508 "loop with '#pragma clang loop vectorize(enable)' when " 5509 "compiling with -Os/-Oz", 5510 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5511 return true; 5512 } 5513 5514 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5515 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5516 "runtime SCEV checks needed. Enable vectorization of this " 5517 "loop with '#pragma clang loop vectorize(enable)' when " 5518 "compiling with -Os/-Oz", 5519 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5520 return true; 5521 } 5522 5523 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5524 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5525 reportVectorizationFailure("Runtime stride check for small trip count", 5526 "runtime stride == 1 checks needed. Enable vectorization of " 5527 "this loop without such check by compiling with -Os/-Oz", 5528 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5529 return true; 5530 } 5531 5532 return false; 5533 } 5534 5535 Optional<ElementCount> 5536 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5537 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5538 // TODO: It may by useful to do since it's still likely to be dynamically 5539 // uniform if the target can skip. 5540 reportVectorizationFailure( 5541 "Not inserting runtime ptr check for divergent target", 5542 "runtime pointer checks needed. Not enabled for divergent target", 5543 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5544 return None; 5545 } 5546 5547 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5548 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5549 if (TC == 1) { 5550 reportVectorizationFailure("Single iteration (non) loop", 5551 "loop trip count is one, irrelevant for vectorization", 5552 "SingleIterationLoop", ORE, TheLoop); 5553 return None; 5554 } 5555 5556 switch (ScalarEpilogueStatus) { 5557 case CM_ScalarEpilogueAllowed: 5558 return computeFeasibleMaxVF(TC, UserVF); 5559 case CM_ScalarEpilogueNotAllowedUsePredicate: 5560 LLVM_FALLTHROUGH; 5561 case CM_ScalarEpilogueNotNeededUsePredicate: 5562 LLVM_DEBUG( 5563 dbgs() << "LV: vector predicate hint/switch found.\n" 5564 << "LV: Not allowing scalar epilogue, creating predicated " 5565 << "vector loop.\n"); 5566 break; 5567 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5568 // fallthrough as a special case of OptForSize 5569 case CM_ScalarEpilogueNotAllowedOptSize: 5570 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5571 LLVM_DEBUG( 5572 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5573 else 5574 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5575 << "count.\n"); 5576 5577 // Bail if runtime checks are required, which are not good when optimising 5578 // for size. 5579 if (runtimeChecksRequired()) 5580 return None; 5581 5582 break; 5583 } 5584 5585 // The only loops we can vectorize without a scalar epilogue, are loops with 5586 // a bottom-test and a single exiting block. We'd have to handle the fact 5587 // that not every instruction executes on the last iteration. This will 5588 // require a lane mask which varies through the vector loop body. (TODO) 5589 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5590 // If there was a tail-folding hint/switch, but we can't fold the tail by 5591 // masking, fallback to a vectorization with a scalar epilogue. 5592 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5593 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5594 "scalar epilogue instead.\n"); 5595 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5596 return computeFeasibleMaxVF(TC, UserVF); 5597 } 5598 return None; 5599 } 5600 5601 // Now try the tail folding 5602 5603 // Invalidate interleave groups that require an epilogue if we can't mask 5604 // the interleave-group. 5605 if (!useMaskedInterleavedAccesses(TTI)) { 5606 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5607 "No decisions should have been taken at this point"); 5608 // Note: There is no need to invalidate any cost modeling decisions here, as 5609 // non where taken so far. 5610 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5611 } 5612 5613 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5614 assert(!MaxVF.isScalable() && 5615 "Scalable vectors do not yet support tail folding"); 5616 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5617 "MaxVF must be a power of 2"); 5618 unsigned MaxVFtimesIC = 5619 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5620 // Avoid tail folding if the trip count is known to be a multiple of any VF we 5621 // chose. 5622 ScalarEvolution *SE = PSE.getSE(); 5623 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5624 const SCEV *ExitCount = SE->getAddExpr( 5625 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5626 const SCEV *Rem = SE->getURemExpr( 5627 SE->applyLoopGuards(ExitCount, TheLoop), 5628 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5629 if (Rem->isZero()) { 5630 // Accept MaxVF if we do not have a tail. 5631 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5632 return MaxVF; 5633 } 5634 5635 // If we don't know the precise trip count, or if the trip count that we 5636 // found modulo the vectorization factor is not zero, try to fold the tail 5637 // by masking. 5638 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5639 if (Legal->prepareToFoldTailByMasking()) { 5640 FoldTailByMasking = true; 5641 return MaxVF; 5642 } 5643 5644 // If there was a tail-folding hint/switch, but we can't fold the tail by 5645 // masking, fallback to a vectorization with a scalar epilogue. 5646 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5647 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5648 "scalar epilogue instead.\n"); 5649 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5650 return MaxVF; 5651 } 5652 5653 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5654 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5655 return None; 5656 } 5657 5658 if (TC == 0) { 5659 reportVectorizationFailure( 5660 "Unable to calculate the loop count due to complex control flow", 5661 "unable to calculate the loop count due to complex control flow", 5662 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5663 return None; 5664 } 5665 5666 reportVectorizationFailure( 5667 "Cannot optimize for size and vectorize at the same time.", 5668 "cannot optimize for size and vectorize at the same time. " 5669 "Enable vectorization of this loop with '#pragma clang loop " 5670 "vectorize(enable)' when compiling with -Os/-Oz", 5671 "NoTailLoopWithOptForSize", ORE, TheLoop); 5672 return None; 5673 } 5674 5675 ElementCount 5676 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5677 ElementCount UserVF) { 5678 bool IgnoreScalableUserVF = UserVF.isScalable() && 5679 !TTI.supportsScalableVectors() && 5680 !ForceTargetSupportsScalableVectors; 5681 if (IgnoreScalableUserVF) { 5682 LLVM_DEBUG( 5683 dbgs() << "LV: Ignoring VF=" << UserVF 5684 << " because target does not support scalable vectors.\n"); 5685 ORE->emit([&]() { 5686 return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF", 5687 TheLoop->getStartLoc(), 5688 TheLoop->getHeader()) 5689 << "Ignoring VF=" << ore::NV("UserVF", UserVF) 5690 << " because target does not support scalable vectors."; 5691 }); 5692 } 5693 5694 // Beyond this point two scenarios are handled. If UserVF isn't specified 5695 // then a suitable VF is chosen. If UserVF is specified and there are 5696 // dependencies, check if it's legal. However, if a UserVF is specified and 5697 // there are no dependencies, then there's nothing to do. 5698 if (UserVF.isNonZero() && !IgnoreScalableUserVF && 5699 Legal->isSafeForAnyVectorWidth()) 5700 return UserVF; 5701 5702 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5703 unsigned SmallestType, WidestType; 5704 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5705 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5706 5707 // Get the maximum safe dependence distance in bits computed by LAA. 5708 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5709 // the memory accesses that is most restrictive (involved in the smallest 5710 // dependence distance). 5711 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5712 5713 // If the user vectorization factor is legally unsafe, clamp it to a safe 5714 // value. Otherwise, return as is. 5715 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5716 unsigned MaxSafeElements = 5717 PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5718 ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements); 5719 5720 if (UserVF.isScalable()) { 5721 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5722 5723 // Scale VF by vscale before checking if it's safe. 5724 MaxSafeVF = ElementCount::getScalable( 5725 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5726 5727 if (MaxSafeVF.isZero()) { 5728 // The dependence distance is too small to use scalable vectors, 5729 // fallback on fixed. 5730 LLVM_DEBUG( 5731 dbgs() 5732 << "LV: Max legal vector width too small, scalable vectorization " 5733 "unfeasible. Using fixed-width vectorization instead.\n"); 5734 ORE->emit([&]() { 5735 return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible", 5736 TheLoop->getStartLoc(), 5737 TheLoop->getHeader()) 5738 << "Max legal vector width too small, scalable vectorization " 5739 << "unfeasible. Using fixed-width vectorization instead."; 5740 }); 5741 return computeFeasibleMaxVF( 5742 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5743 } 5744 } 5745 5746 LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n"); 5747 5748 if (ElementCount::isKnownLE(UserVF, MaxSafeVF)) 5749 return UserVF; 5750 5751 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5752 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5753 << ".\n"); 5754 ORE->emit([&]() { 5755 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5756 TheLoop->getStartLoc(), 5757 TheLoop->getHeader()) 5758 << "User-specified vectorization factor " 5759 << ore::NV("UserVectorizationFactor", UserVF) 5760 << " is unsafe, clamping to maximum safe vectorization factor " 5761 << ore::NV("VectorizationFactor", MaxSafeVF); 5762 }); 5763 return MaxSafeVF; 5764 } 5765 5766 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5767 5768 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5769 // Note that both WidestRegister and WidestType may not be a powers of 2. 5770 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5771 5772 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5773 << " / " << WidestType << " bits.\n"); 5774 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5775 << WidestRegister << " bits.\n"); 5776 5777 assert(MaxVectorSize <= WidestRegister && 5778 "Did not expect to pack so many elements" 5779 " into one vector!"); 5780 if (MaxVectorSize == 0) { 5781 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5782 MaxVectorSize = 1; 5783 return ElementCount::getFixed(MaxVectorSize); 5784 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5785 isPowerOf2_32(ConstTripCount)) { 5786 // We need to clamp the VF to be the ConstTripCount. There is no point in 5787 // choosing a higher viable VF as done in the loop below. 5788 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5789 << ConstTripCount << "\n"); 5790 MaxVectorSize = ConstTripCount; 5791 return ElementCount::getFixed(MaxVectorSize); 5792 } 5793 5794 unsigned MaxVF = MaxVectorSize; 5795 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5796 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5797 // Collect all viable vectorization factors larger than the default MaxVF 5798 // (i.e. MaxVectorSize). 5799 SmallVector<ElementCount, 8> VFs; 5800 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5801 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5802 VFs.push_back(ElementCount::getFixed(VS)); 5803 5804 // For each VF calculate its register usage. 5805 auto RUs = calculateRegisterUsage(VFs); 5806 5807 // Select the largest VF which doesn't require more registers than existing 5808 // ones. 5809 for (int i = RUs.size() - 1; i >= 0; --i) { 5810 bool Selected = true; 5811 for (auto& pair : RUs[i].MaxLocalUsers) { 5812 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5813 if (pair.second > TargetNumRegisters) 5814 Selected = false; 5815 } 5816 if (Selected) { 5817 MaxVF = VFs[i].getKnownMinValue(); 5818 break; 5819 } 5820 } 5821 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5822 if (MaxVF < MinVF) { 5823 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5824 << ") with target's minimum: " << MinVF << '\n'); 5825 MaxVF = MinVF; 5826 } 5827 } 5828 } 5829 return ElementCount::getFixed(MaxVF); 5830 } 5831 5832 VectorizationFactor 5833 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5834 // FIXME: This can be fixed for scalable vectors later, because at this stage 5835 // the LoopVectorizer will only consider vectorizing a loop with scalable 5836 // vectors when the loop has a hint to enable vectorization for a given VF. 5837 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5838 5839 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5840 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5841 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5842 5843 unsigned Width = 1; 5844 const float ScalarCost = *ExpectedCost.getValue(); 5845 float Cost = ScalarCost; 5846 5847 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5848 if (ForceVectorization && MaxVF.isVector()) { 5849 // Ignore scalar width, because the user explicitly wants vectorization. 5850 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5851 // evaluation. 5852 Cost = std::numeric_limits<float>::max(); 5853 } 5854 5855 for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) { 5856 // Notice that the vector loop needs to be executed less times, so 5857 // we need to divide the cost of the vector loops by the width of 5858 // the vector elements. 5859 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5860 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 5861 float VectorCost = *C.first.getValue() / (float)i; 5862 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5863 << " costs: " << (int)VectorCost << ".\n"); 5864 if (!C.second && !ForceVectorization) { 5865 LLVM_DEBUG( 5866 dbgs() << "LV: Not considering vector loop of width " << i 5867 << " because it will not generate any vector instructions.\n"); 5868 continue; 5869 } 5870 5871 // If profitable add it to ProfitableVF list. 5872 if (VectorCost < ScalarCost) { 5873 ProfitableVFs.push_back(VectorizationFactor( 5874 {ElementCount::getFixed(i), (unsigned)VectorCost})); 5875 } 5876 5877 if (VectorCost < Cost) { 5878 Cost = VectorCost; 5879 Width = i; 5880 } 5881 } 5882 5883 if (!EnableCondStoresVectorization && NumPredStores) { 5884 reportVectorizationFailure("There are conditional stores.", 5885 "store that is conditionally executed prevents vectorization", 5886 "ConditionalStore", ORE, TheLoop); 5887 Width = 1; 5888 Cost = ScalarCost; 5889 } 5890 5891 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5892 << "LV: Vectorization seems to be not beneficial, " 5893 << "but was forced by a user.\n"); 5894 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5895 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5896 (unsigned)(Width * Cost)}; 5897 return Factor; 5898 } 5899 5900 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5901 const Loop &L, ElementCount VF) const { 5902 // Cross iteration phis such as reductions need special handling and are 5903 // currently unsupported. 5904 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5905 return Legal->isFirstOrderRecurrence(&Phi) || 5906 Legal->isReductionVariable(&Phi); 5907 })) 5908 return false; 5909 5910 // Phis with uses outside of the loop require special handling and are 5911 // currently unsupported. 5912 for (auto &Entry : Legal->getInductionVars()) { 5913 // Look for uses of the value of the induction at the last iteration. 5914 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5915 for (User *U : PostInc->users()) 5916 if (!L.contains(cast<Instruction>(U))) 5917 return false; 5918 // Look for uses of penultimate value of the induction. 5919 for (User *U : Entry.first->users()) 5920 if (!L.contains(cast<Instruction>(U))) 5921 return false; 5922 } 5923 5924 // Induction variables that are widened require special handling that is 5925 // currently not supported. 5926 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5927 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5928 this->isProfitableToScalarize(Entry.first, VF)); 5929 })) 5930 return false; 5931 5932 return true; 5933 } 5934 5935 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5936 const ElementCount VF) const { 5937 // FIXME: We need a much better cost-model to take different parameters such 5938 // as register pressure, code size increase and cost of extra branches into 5939 // account. For now we apply a very crude heuristic and only consider loops 5940 // with vectorization factors larger than a certain value. 5941 // We also consider epilogue vectorization unprofitable for targets that don't 5942 // consider interleaving beneficial (eg. MVE). 5943 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5944 return false; 5945 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5946 return true; 5947 return false; 5948 } 5949 5950 VectorizationFactor 5951 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5952 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5953 VectorizationFactor Result = VectorizationFactor::Disabled(); 5954 if (!EnableEpilogueVectorization) { 5955 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5956 return Result; 5957 } 5958 5959 if (!isScalarEpilogueAllowed()) { 5960 LLVM_DEBUG( 5961 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5962 "allowed.\n";); 5963 return Result; 5964 } 5965 5966 // FIXME: This can be fixed for scalable vectors later, because at this stage 5967 // the LoopVectorizer will only consider vectorizing a loop with scalable 5968 // vectors when the loop has a hint to enable vectorization for a given VF. 5969 if (MainLoopVF.isScalable()) { 5970 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 5971 "yet supported.\n"); 5972 return Result; 5973 } 5974 5975 // Not really a cost consideration, but check for unsupported cases here to 5976 // simplify the logic. 5977 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5978 LLVM_DEBUG( 5979 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5980 "not a supported candidate.\n";); 5981 return Result; 5982 } 5983 5984 if (EpilogueVectorizationForceVF > 1) { 5985 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5986 if (LVP.hasPlanWithVFs( 5987 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 5988 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 5989 else { 5990 LLVM_DEBUG( 5991 dbgs() 5992 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5993 return Result; 5994 } 5995 } 5996 5997 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5998 TheLoop->getHeader()->getParent()->hasMinSize()) { 5999 LLVM_DEBUG( 6000 dbgs() 6001 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6002 return Result; 6003 } 6004 6005 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6006 return Result; 6007 6008 for (auto &NextVF : ProfitableVFs) 6009 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6010 (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) && 6011 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6012 Result = NextVF; 6013 6014 if (Result != VectorizationFactor::Disabled()) 6015 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6016 << Result.Width.getFixedValue() << "\n";); 6017 return Result; 6018 } 6019 6020 std::pair<unsigned, unsigned> 6021 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6022 unsigned MinWidth = -1U; 6023 unsigned MaxWidth = 8; 6024 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6025 6026 // For each block. 6027 for (BasicBlock *BB : TheLoop->blocks()) { 6028 // For each instruction in the loop. 6029 for (Instruction &I : BB->instructionsWithoutDebug()) { 6030 Type *T = I.getType(); 6031 6032 // Skip ignored values. 6033 if (ValuesToIgnore.count(&I)) 6034 continue; 6035 6036 // Only examine Loads, Stores and PHINodes. 6037 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6038 continue; 6039 6040 // Examine PHI nodes that are reduction variables. Update the type to 6041 // account for the recurrence type. 6042 if (auto *PN = dyn_cast<PHINode>(&I)) { 6043 if (!Legal->isReductionVariable(PN)) 6044 continue; 6045 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 6046 if (PreferInLoopReductions || 6047 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6048 RdxDesc.getRecurrenceType(), 6049 TargetTransformInfo::ReductionFlags())) 6050 continue; 6051 T = RdxDesc.getRecurrenceType(); 6052 } 6053 6054 // Examine the stored values. 6055 if (auto *ST = dyn_cast<StoreInst>(&I)) 6056 T = ST->getValueOperand()->getType(); 6057 6058 // Ignore loaded pointer types and stored pointer types that are not 6059 // vectorizable. 6060 // 6061 // FIXME: The check here attempts to predict whether a load or store will 6062 // be vectorized. We only know this for certain after a VF has 6063 // been selected. Here, we assume that if an access can be 6064 // vectorized, it will be. We should also look at extending this 6065 // optimization to non-pointer types. 6066 // 6067 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6068 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6069 continue; 6070 6071 MinWidth = std::min(MinWidth, 6072 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6073 MaxWidth = std::max(MaxWidth, 6074 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6075 } 6076 } 6077 6078 return {MinWidth, MaxWidth}; 6079 } 6080 6081 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6082 unsigned LoopCost) { 6083 // -- The interleave heuristics -- 6084 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6085 // There are many micro-architectural considerations that we can't predict 6086 // at this level. For example, frontend pressure (on decode or fetch) due to 6087 // code size, or the number and capabilities of the execution ports. 6088 // 6089 // We use the following heuristics to select the interleave count: 6090 // 1. If the code has reductions, then we interleave to break the cross 6091 // iteration dependency. 6092 // 2. If the loop is really small, then we interleave to reduce the loop 6093 // overhead. 6094 // 3. We don't interleave if we think that we will spill registers to memory 6095 // due to the increased register pressure. 6096 6097 if (!isScalarEpilogueAllowed()) 6098 return 1; 6099 6100 // We used the distance for the interleave count. 6101 if (Legal->getMaxSafeDepDistBytes() != -1U) 6102 return 1; 6103 6104 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6105 const bool HasReductions = !Legal->getReductionVars().empty(); 6106 // Do not interleave loops with a relatively small known or estimated trip 6107 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6108 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6109 // because with the above conditions interleaving can expose ILP and break 6110 // cross iteration dependences for reductions. 6111 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6112 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6113 return 1; 6114 6115 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6116 // We divide by these constants so assume that we have at least one 6117 // instruction that uses at least one register. 6118 for (auto& pair : R.MaxLocalUsers) { 6119 pair.second = std::max(pair.second, 1U); 6120 } 6121 6122 // We calculate the interleave count using the following formula. 6123 // Subtract the number of loop invariants from the number of available 6124 // registers. These registers are used by all of the interleaved instances. 6125 // Next, divide the remaining registers by the number of registers that is 6126 // required by the loop, in order to estimate how many parallel instances 6127 // fit without causing spills. All of this is rounded down if necessary to be 6128 // a power of two. We want power of two interleave count to simplify any 6129 // addressing operations or alignment considerations. 6130 // We also want power of two interleave counts to ensure that the induction 6131 // variable of the vector loop wraps to zero, when tail is folded by masking; 6132 // this currently happens when OptForSize, in which case IC is set to 1 above. 6133 unsigned IC = UINT_MAX; 6134 6135 for (auto& pair : R.MaxLocalUsers) { 6136 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6137 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6138 << " registers of " 6139 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6140 if (VF.isScalar()) { 6141 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6142 TargetNumRegisters = ForceTargetNumScalarRegs; 6143 } else { 6144 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6145 TargetNumRegisters = ForceTargetNumVectorRegs; 6146 } 6147 unsigned MaxLocalUsers = pair.second; 6148 unsigned LoopInvariantRegs = 0; 6149 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6150 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6151 6152 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6153 // Don't count the induction variable as interleaved. 6154 if (EnableIndVarRegisterHeur) { 6155 TmpIC = 6156 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6157 std::max(1U, (MaxLocalUsers - 1))); 6158 } 6159 6160 IC = std::min(IC, TmpIC); 6161 } 6162 6163 // Clamp the interleave ranges to reasonable counts. 6164 unsigned MaxInterleaveCount = 6165 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6166 6167 // Check if the user has overridden the max. 6168 if (VF.isScalar()) { 6169 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6170 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6171 } else { 6172 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6173 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6174 } 6175 6176 // If trip count is known or estimated compile time constant, limit the 6177 // interleave count to be less than the trip count divided by VF, provided it 6178 // is at least 1. 6179 // 6180 // For scalable vectors we can't know if interleaving is beneficial. It may 6181 // not be beneficial for small loops if none of the lanes in the second vector 6182 // iterations is enabled. However, for larger loops, there is likely to be a 6183 // similar benefit as for fixed-width vectors. For now, we choose to leave 6184 // the InterleaveCount as if vscale is '1', although if some information about 6185 // the vector is known (e.g. min vector size), we can make a better decision. 6186 if (BestKnownTC) { 6187 MaxInterleaveCount = 6188 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6189 // Make sure MaxInterleaveCount is greater than 0. 6190 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6191 } 6192 6193 assert(MaxInterleaveCount > 0 && 6194 "Maximum interleave count must be greater than 0"); 6195 6196 // Clamp the calculated IC to be between the 1 and the max interleave count 6197 // that the target and trip count allows. 6198 if (IC > MaxInterleaveCount) 6199 IC = MaxInterleaveCount; 6200 else 6201 // Make sure IC is greater than 0. 6202 IC = std::max(1u, IC); 6203 6204 assert(IC > 0 && "Interleave count must be greater than 0."); 6205 6206 // If we did not calculate the cost for VF (because the user selected the VF) 6207 // then we calculate the cost of VF here. 6208 if (LoopCost == 0) { 6209 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6210 LoopCost = *expectedCost(VF).first.getValue(); 6211 } 6212 6213 assert(LoopCost && "Non-zero loop cost expected"); 6214 6215 // Interleave if we vectorized this loop and there is a reduction that could 6216 // benefit from interleaving. 6217 if (VF.isVector() && HasReductions) { 6218 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6219 return IC; 6220 } 6221 6222 // Note that if we've already vectorized the loop we will have done the 6223 // runtime check and so interleaving won't require further checks. 6224 bool InterleavingRequiresRuntimePointerCheck = 6225 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6226 6227 // We want to interleave small loops in order to reduce the loop overhead and 6228 // potentially expose ILP opportunities. 6229 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6230 << "LV: IC is " << IC << '\n' 6231 << "LV: VF is " << VF << '\n'); 6232 const bool AggressivelyInterleaveReductions = 6233 TTI.enableAggressiveInterleaving(HasReductions); 6234 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6235 // We assume that the cost overhead is 1 and we use the cost model 6236 // to estimate the cost of the loop and interleave until the cost of the 6237 // loop overhead is about 5% of the cost of the loop. 6238 unsigned SmallIC = 6239 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6240 6241 // Interleave until store/load ports (estimated by max interleave count) are 6242 // saturated. 6243 unsigned NumStores = Legal->getNumStores(); 6244 unsigned NumLoads = Legal->getNumLoads(); 6245 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6246 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6247 6248 // If we have a scalar reduction (vector reductions are already dealt with 6249 // by this point), we can increase the critical path length if the loop 6250 // we're interleaving is inside another loop. Limit, by default to 2, so the 6251 // critical path only gets increased by one reduction operation. 6252 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6253 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6254 SmallIC = std::min(SmallIC, F); 6255 StoresIC = std::min(StoresIC, F); 6256 LoadsIC = std::min(LoadsIC, F); 6257 } 6258 6259 if (EnableLoadStoreRuntimeInterleave && 6260 std::max(StoresIC, LoadsIC) > SmallIC) { 6261 LLVM_DEBUG( 6262 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6263 return std::max(StoresIC, LoadsIC); 6264 } 6265 6266 // If there are scalar reductions and TTI has enabled aggressive 6267 // interleaving for reductions, we will interleave to expose ILP. 6268 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6269 AggressivelyInterleaveReductions) { 6270 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6271 // Interleave no less than SmallIC but not as aggressive as the normal IC 6272 // to satisfy the rare situation when resources are too limited. 6273 return std::max(IC / 2, SmallIC); 6274 } else { 6275 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6276 return SmallIC; 6277 } 6278 } 6279 6280 // Interleave if this is a large loop (small loops are already dealt with by 6281 // this point) that could benefit from interleaving. 6282 if (AggressivelyInterleaveReductions) { 6283 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6284 return IC; 6285 } 6286 6287 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6288 return 1; 6289 } 6290 6291 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6292 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6293 // This function calculates the register usage by measuring the highest number 6294 // of values that are alive at a single location. Obviously, this is a very 6295 // rough estimation. We scan the loop in a topological order in order and 6296 // assign a number to each instruction. We use RPO to ensure that defs are 6297 // met before their users. We assume that each instruction that has in-loop 6298 // users starts an interval. We record every time that an in-loop value is 6299 // used, so we have a list of the first and last occurrences of each 6300 // instruction. Next, we transpose this data structure into a multi map that 6301 // holds the list of intervals that *end* at a specific location. This multi 6302 // map allows us to perform a linear search. We scan the instructions linearly 6303 // and record each time that a new interval starts, by placing it in a set. 6304 // If we find this value in the multi-map then we remove it from the set. 6305 // The max register usage is the maximum size of the set. 6306 // We also search for instructions that are defined outside the loop, but are 6307 // used inside the loop. We need this number separately from the max-interval 6308 // usage number because when we unroll, loop-invariant values do not take 6309 // more register. 6310 LoopBlocksDFS DFS(TheLoop); 6311 DFS.perform(LI); 6312 6313 RegisterUsage RU; 6314 6315 // Each 'key' in the map opens a new interval. The values 6316 // of the map are the index of the 'last seen' usage of the 6317 // instruction that is the key. 6318 using IntervalMap = DenseMap<Instruction *, unsigned>; 6319 6320 // Maps instruction to its index. 6321 SmallVector<Instruction *, 64> IdxToInstr; 6322 // Marks the end of each interval. 6323 IntervalMap EndPoint; 6324 // Saves the list of instruction indices that are used in the loop. 6325 SmallPtrSet<Instruction *, 8> Ends; 6326 // Saves the list of values that are used in the loop but are 6327 // defined outside the loop, such as arguments and constants. 6328 SmallPtrSet<Value *, 8> LoopInvariants; 6329 6330 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6331 for (Instruction &I : BB->instructionsWithoutDebug()) { 6332 IdxToInstr.push_back(&I); 6333 6334 // Save the end location of each USE. 6335 for (Value *U : I.operands()) { 6336 auto *Instr = dyn_cast<Instruction>(U); 6337 6338 // Ignore non-instruction values such as arguments, constants, etc. 6339 if (!Instr) 6340 continue; 6341 6342 // If this instruction is outside the loop then record it and continue. 6343 if (!TheLoop->contains(Instr)) { 6344 LoopInvariants.insert(Instr); 6345 continue; 6346 } 6347 6348 // Overwrite previous end points. 6349 EndPoint[Instr] = IdxToInstr.size(); 6350 Ends.insert(Instr); 6351 } 6352 } 6353 } 6354 6355 // Saves the list of intervals that end with the index in 'key'. 6356 using InstrList = SmallVector<Instruction *, 2>; 6357 DenseMap<unsigned, InstrList> TransposeEnds; 6358 6359 // Transpose the EndPoints to a list of values that end at each index. 6360 for (auto &Interval : EndPoint) 6361 TransposeEnds[Interval.second].push_back(Interval.first); 6362 6363 SmallPtrSet<Instruction *, 8> OpenIntervals; 6364 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6365 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6366 6367 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6368 6369 // A lambda that gets the register usage for the given type and VF. 6370 const auto &TTICapture = TTI; 6371 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6372 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6373 return 0U; 6374 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6375 }; 6376 6377 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6378 Instruction *I = IdxToInstr[i]; 6379 6380 // Remove all of the instructions that end at this location. 6381 InstrList &List = TransposeEnds[i]; 6382 for (Instruction *ToRemove : List) 6383 OpenIntervals.erase(ToRemove); 6384 6385 // Ignore instructions that are never used within the loop. 6386 if (!Ends.count(I)) 6387 continue; 6388 6389 // Skip ignored values. 6390 if (ValuesToIgnore.count(I)) 6391 continue; 6392 6393 // For each VF find the maximum usage of registers. 6394 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6395 // Count the number of live intervals. 6396 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6397 6398 if (VFs[j].isScalar()) { 6399 for (auto Inst : OpenIntervals) { 6400 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6401 if (RegUsage.find(ClassID) == RegUsage.end()) 6402 RegUsage[ClassID] = 1; 6403 else 6404 RegUsage[ClassID] += 1; 6405 } 6406 } else { 6407 collectUniformsAndScalars(VFs[j]); 6408 for (auto Inst : OpenIntervals) { 6409 // Skip ignored values for VF > 1. 6410 if (VecValuesToIgnore.count(Inst)) 6411 continue; 6412 if (isScalarAfterVectorization(Inst, VFs[j])) { 6413 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6414 if (RegUsage.find(ClassID) == RegUsage.end()) 6415 RegUsage[ClassID] = 1; 6416 else 6417 RegUsage[ClassID] += 1; 6418 } else { 6419 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6420 if (RegUsage.find(ClassID) == RegUsage.end()) 6421 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6422 else 6423 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6424 } 6425 } 6426 } 6427 6428 for (auto& pair : RegUsage) { 6429 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6430 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6431 else 6432 MaxUsages[j][pair.first] = pair.second; 6433 } 6434 } 6435 6436 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6437 << OpenIntervals.size() << '\n'); 6438 6439 // Add the current instruction to the list of open intervals. 6440 OpenIntervals.insert(I); 6441 } 6442 6443 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6444 SmallMapVector<unsigned, unsigned, 4> Invariant; 6445 6446 for (auto Inst : LoopInvariants) { 6447 unsigned Usage = 6448 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6449 unsigned ClassID = 6450 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6451 if (Invariant.find(ClassID) == Invariant.end()) 6452 Invariant[ClassID] = Usage; 6453 else 6454 Invariant[ClassID] += Usage; 6455 } 6456 6457 LLVM_DEBUG({ 6458 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6459 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6460 << " item\n"; 6461 for (const auto &pair : MaxUsages[i]) { 6462 dbgs() << "LV(REG): RegisterClass: " 6463 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6464 << " registers\n"; 6465 } 6466 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6467 << " item\n"; 6468 for (const auto &pair : Invariant) { 6469 dbgs() << "LV(REG): RegisterClass: " 6470 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6471 << " registers\n"; 6472 } 6473 }); 6474 6475 RU.LoopInvariantRegs = Invariant; 6476 RU.MaxLocalUsers = MaxUsages[i]; 6477 RUs[i] = RU; 6478 } 6479 6480 return RUs; 6481 } 6482 6483 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6484 // TODO: Cost model for emulated masked load/store is completely 6485 // broken. This hack guides the cost model to use an artificially 6486 // high enough value to practically disable vectorization with such 6487 // operations, except where previously deployed legality hack allowed 6488 // using very low cost values. This is to avoid regressions coming simply 6489 // from moving "masked load/store" check from legality to cost model. 6490 // Masked Load/Gather emulation was previously never allowed. 6491 // Limited number of Masked Store/Scatter emulation was allowed. 6492 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 6493 return isa<LoadInst>(I) || 6494 (isa<StoreInst>(I) && 6495 NumPredStores > NumberOfStoresToPredicate); 6496 } 6497 6498 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6499 // If we aren't vectorizing the loop, or if we've already collected the 6500 // instructions to scalarize, there's nothing to do. Collection may already 6501 // have occurred if we have a user-selected VF and are now computing the 6502 // expected cost for interleaving. 6503 if (VF.isScalar() || VF.isZero() || 6504 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6505 return; 6506 6507 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6508 // not profitable to scalarize any instructions, the presence of VF in the 6509 // map will indicate that we've analyzed it already. 6510 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6511 6512 // Find all the instructions that are scalar with predication in the loop and 6513 // determine if it would be better to not if-convert the blocks they are in. 6514 // If so, we also record the instructions to scalarize. 6515 for (BasicBlock *BB : TheLoop->blocks()) { 6516 if (!blockNeedsPredication(BB)) 6517 continue; 6518 for (Instruction &I : *BB) 6519 if (isScalarWithPredication(&I)) { 6520 ScalarCostsTy ScalarCosts; 6521 // Do not apply discount logic if hacked cost is needed 6522 // for emulated masked memrefs. 6523 if (!useEmulatedMaskMemRefHack(&I) && 6524 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6525 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6526 // Remember that BB will remain after vectorization. 6527 PredicatedBBsAfterVectorization.insert(BB); 6528 } 6529 } 6530 } 6531 6532 int LoopVectorizationCostModel::computePredInstDiscount( 6533 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6534 assert(!isUniformAfterVectorization(PredInst, VF) && 6535 "Instruction marked uniform-after-vectorization will be predicated"); 6536 6537 // Initialize the discount to zero, meaning that the scalar version and the 6538 // vector version cost the same. 6539 InstructionCost Discount = 0; 6540 6541 // Holds instructions to analyze. The instructions we visit are mapped in 6542 // ScalarCosts. Those instructions are the ones that would be scalarized if 6543 // we find that the scalar version costs less. 6544 SmallVector<Instruction *, 8> Worklist; 6545 6546 // Returns true if the given instruction can be scalarized. 6547 auto canBeScalarized = [&](Instruction *I) -> bool { 6548 // We only attempt to scalarize instructions forming a single-use chain 6549 // from the original predicated block that would otherwise be vectorized. 6550 // Although not strictly necessary, we give up on instructions we know will 6551 // already be scalar to avoid traversing chains that are unlikely to be 6552 // beneficial. 6553 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6554 isScalarAfterVectorization(I, VF)) 6555 return false; 6556 6557 // If the instruction is scalar with predication, it will be analyzed 6558 // separately. We ignore it within the context of PredInst. 6559 if (isScalarWithPredication(I)) 6560 return false; 6561 6562 // If any of the instruction's operands are uniform after vectorization, 6563 // the instruction cannot be scalarized. This prevents, for example, a 6564 // masked load from being scalarized. 6565 // 6566 // We assume we will only emit a value for lane zero of an instruction 6567 // marked uniform after vectorization, rather than VF identical values. 6568 // Thus, if we scalarize an instruction that uses a uniform, we would 6569 // create uses of values corresponding to the lanes we aren't emitting code 6570 // for. This behavior can be changed by allowing getScalarValue to clone 6571 // the lane zero values for uniforms rather than asserting. 6572 for (Use &U : I->operands()) 6573 if (auto *J = dyn_cast<Instruction>(U.get())) 6574 if (isUniformAfterVectorization(J, VF)) 6575 return false; 6576 6577 // Otherwise, we can scalarize the instruction. 6578 return true; 6579 }; 6580 6581 // Compute the expected cost discount from scalarizing the entire expression 6582 // feeding the predicated instruction. We currently only consider expressions 6583 // that are single-use instruction chains. 6584 Worklist.push_back(PredInst); 6585 while (!Worklist.empty()) { 6586 Instruction *I = Worklist.pop_back_val(); 6587 6588 // If we've already analyzed the instruction, there's nothing to do. 6589 if (ScalarCosts.find(I) != ScalarCosts.end()) 6590 continue; 6591 6592 // Compute the cost of the vector instruction. Note that this cost already 6593 // includes the scalarization overhead of the predicated instruction. 6594 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6595 6596 // Compute the cost of the scalarized instruction. This cost is the cost of 6597 // the instruction as if it wasn't if-converted and instead remained in the 6598 // predicated block. We will scale this cost by block probability after 6599 // computing the scalarization overhead. 6600 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6601 InstructionCost ScalarCost = 6602 VF.getKnownMinValue() * 6603 getInstructionCost(I, ElementCount::getFixed(1)).first; 6604 6605 // Compute the scalarization overhead of needed insertelement instructions 6606 // and phi nodes. 6607 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6608 ScalarCost += TTI.getScalarizationOverhead( 6609 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6610 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6611 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6612 ScalarCost += 6613 VF.getKnownMinValue() * 6614 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6615 } 6616 6617 // Compute the scalarization overhead of needed extractelement 6618 // instructions. For each of the instruction's operands, if the operand can 6619 // be scalarized, add it to the worklist; otherwise, account for the 6620 // overhead. 6621 for (Use &U : I->operands()) 6622 if (auto *J = dyn_cast<Instruction>(U.get())) { 6623 assert(VectorType::isValidElementType(J->getType()) && 6624 "Instruction has non-scalar type"); 6625 if (canBeScalarized(J)) 6626 Worklist.push_back(J); 6627 else if (needsExtract(J, VF)) { 6628 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6629 ScalarCost += TTI.getScalarizationOverhead( 6630 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6631 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6632 } 6633 } 6634 6635 // Scale the total scalar cost by block probability. 6636 ScalarCost /= getReciprocalPredBlockProb(); 6637 6638 // Compute the discount. A non-negative discount means the vector version 6639 // of the instruction costs more, and scalarizing would be beneficial. 6640 Discount += VectorCost - ScalarCost; 6641 ScalarCosts[I] = ScalarCost; 6642 } 6643 6644 return *Discount.getValue(); 6645 } 6646 6647 LoopVectorizationCostModel::VectorizationCostTy 6648 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6649 VectorizationCostTy Cost; 6650 6651 // For each block. 6652 for (BasicBlock *BB : TheLoop->blocks()) { 6653 VectorizationCostTy BlockCost; 6654 6655 // For each instruction in the old loop. 6656 for (Instruction &I : BB->instructionsWithoutDebug()) { 6657 // Skip ignored values. 6658 if (ValuesToIgnore.count(&I) || 6659 (VF.isVector() && VecValuesToIgnore.count(&I))) 6660 continue; 6661 6662 VectorizationCostTy C = getInstructionCost(&I, VF); 6663 6664 // Check if we should override the cost. 6665 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6666 C.first = InstructionCost(ForceTargetInstructionCost); 6667 6668 BlockCost.first += C.first; 6669 BlockCost.second |= C.second; 6670 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6671 << " for VF " << VF << " For instruction: " << I 6672 << '\n'); 6673 } 6674 6675 // If we are vectorizing a predicated block, it will have been 6676 // if-converted. This means that the block's instructions (aside from 6677 // stores and instructions that may divide by zero) will now be 6678 // unconditionally executed. For the scalar case, we may not always execute 6679 // the predicated block, if it is an if-else block. Thus, scale the block's 6680 // cost by the probability of executing it. blockNeedsPredication from 6681 // Legal is used so as to not include all blocks in tail folded loops. 6682 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6683 BlockCost.first /= getReciprocalPredBlockProb(); 6684 6685 Cost.first += BlockCost.first; 6686 Cost.second |= BlockCost.second; 6687 } 6688 6689 return Cost; 6690 } 6691 6692 /// Gets Address Access SCEV after verifying that the access pattern 6693 /// is loop invariant except the induction variable dependence. 6694 /// 6695 /// This SCEV can be sent to the Target in order to estimate the address 6696 /// calculation cost. 6697 static const SCEV *getAddressAccessSCEV( 6698 Value *Ptr, 6699 LoopVectorizationLegality *Legal, 6700 PredicatedScalarEvolution &PSE, 6701 const Loop *TheLoop) { 6702 6703 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6704 if (!Gep) 6705 return nullptr; 6706 6707 // We are looking for a gep with all loop invariant indices except for one 6708 // which should be an induction variable. 6709 auto SE = PSE.getSE(); 6710 unsigned NumOperands = Gep->getNumOperands(); 6711 for (unsigned i = 1; i < NumOperands; ++i) { 6712 Value *Opd = Gep->getOperand(i); 6713 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6714 !Legal->isInductionVariable(Opd)) 6715 return nullptr; 6716 } 6717 6718 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6719 return PSE.getSCEV(Ptr); 6720 } 6721 6722 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6723 return Legal->hasStride(I->getOperand(0)) || 6724 Legal->hasStride(I->getOperand(1)); 6725 } 6726 6727 InstructionCost 6728 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6729 ElementCount VF) { 6730 assert(VF.isVector() && 6731 "Scalarization cost of instruction implies vectorization."); 6732 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6733 Type *ValTy = getMemInstValueType(I); 6734 auto SE = PSE.getSE(); 6735 6736 unsigned AS = getLoadStoreAddressSpace(I); 6737 Value *Ptr = getLoadStorePointerOperand(I); 6738 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6739 6740 // Figure out whether the access is strided and get the stride value 6741 // if it's known in compile time 6742 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6743 6744 // Get the cost of the scalar memory instruction and address computation. 6745 InstructionCost Cost = 6746 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6747 6748 // Don't pass *I here, since it is scalar but will actually be part of a 6749 // vectorized loop where the user of it is a vectorized instruction. 6750 const Align Alignment = getLoadStoreAlignment(I); 6751 Cost += VF.getKnownMinValue() * 6752 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6753 AS, TTI::TCK_RecipThroughput); 6754 6755 // Get the overhead of the extractelement and insertelement instructions 6756 // we might create due to scalarization. 6757 Cost += getScalarizationOverhead(I, VF); 6758 6759 // If we have a predicated store, it may not be executed for each vector 6760 // lane. Scale the cost by the probability of executing the predicated 6761 // block. 6762 if (isPredicatedInst(I)) { 6763 Cost /= getReciprocalPredBlockProb(); 6764 6765 if (useEmulatedMaskMemRefHack(I)) 6766 // Artificially setting to a high enough value to practically disable 6767 // vectorization with such operations. 6768 Cost = 3000000; 6769 } 6770 6771 return Cost; 6772 } 6773 6774 InstructionCost 6775 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6776 ElementCount VF) { 6777 Type *ValTy = getMemInstValueType(I); 6778 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6779 Value *Ptr = getLoadStorePointerOperand(I); 6780 unsigned AS = getLoadStoreAddressSpace(I); 6781 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6782 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6783 6784 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6785 "Stride should be 1 or -1 for consecutive memory access"); 6786 const Align Alignment = getLoadStoreAlignment(I); 6787 InstructionCost Cost = 0; 6788 if (Legal->isMaskRequired(I)) 6789 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6790 CostKind); 6791 else 6792 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6793 CostKind, I); 6794 6795 bool Reverse = ConsecutiveStride < 0; 6796 if (Reverse) 6797 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6798 return Cost; 6799 } 6800 6801 InstructionCost 6802 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6803 ElementCount VF) { 6804 assert(Legal->isUniformMemOp(*I)); 6805 6806 Type *ValTy = getMemInstValueType(I); 6807 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6808 const Align Alignment = getLoadStoreAlignment(I); 6809 unsigned AS = getLoadStoreAddressSpace(I); 6810 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6811 if (isa<LoadInst>(I)) { 6812 return TTI.getAddressComputationCost(ValTy) + 6813 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6814 CostKind) + 6815 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6816 } 6817 StoreInst *SI = cast<StoreInst>(I); 6818 6819 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6820 return TTI.getAddressComputationCost(ValTy) + 6821 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6822 CostKind) + 6823 (isLoopInvariantStoreValue 6824 ? 0 6825 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6826 VF.getKnownMinValue() - 1)); 6827 } 6828 6829 InstructionCost 6830 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6831 ElementCount VF) { 6832 Type *ValTy = getMemInstValueType(I); 6833 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6834 const Align Alignment = getLoadStoreAlignment(I); 6835 const Value *Ptr = getLoadStorePointerOperand(I); 6836 6837 return TTI.getAddressComputationCost(VectorTy) + 6838 TTI.getGatherScatterOpCost( 6839 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6840 TargetTransformInfo::TCK_RecipThroughput, I); 6841 } 6842 6843 InstructionCost 6844 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6845 ElementCount VF) { 6846 // TODO: Once we have support for interleaving with scalable vectors 6847 // we can calculate the cost properly here. 6848 if (VF.isScalable()) 6849 return InstructionCost::getInvalid(); 6850 6851 Type *ValTy = getMemInstValueType(I); 6852 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6853 unsigned AS = getLoadStoreAddressSpace(I); 6854 6855 auto Group = getInterleavedAccessGroup(I); 6856 assert(Group && "Fail to get an interleaved access group."); 6857 6858 unsigned InterleaveFactor = Group->getFactor(); 6859 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6860 6861 // Holds the indices of existing members in an interleaved load group. 6862 // An interleaved store group doesn't need this as it doesn't allow gaps. 6863 SmallVector<unsigned, 4> Indices; 6864 if (isa<LoadInst>(I)) { 6865 for (unsigned i = 0; i < InterleaveFactor; i++) 6866 if (Group->getMember(i)) 6867 Indices.push_back(i); 6868 } 6869 6870 // Calculate the cost of the whole interleaved group. 6871 bool UseMaskForGaps = 6872 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6873 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6874 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6875 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6876 6877 if (Group->isReverse()) { 6878 // TODO: Add support for reversed masked interleaved access. 6879 assert(!Legal->isMaskRequired(I) && 6880 "Reverse masked interleaved access not supported."); 6881 Cost += Group->getNumMembers() * 6882 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6883 } 6884 return Cost; 6885 } 6886 6887 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 6888 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6889 // Early exit for no inloop reductions 6890 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6891 return InstructionCost::getInvalid(); 6892 auto *VectorTy = cast<VectorType>(Ty); 6893 6894 // We are looking for a pattern of, and finding the minimal acceptable cost: 6895 // reduce(mul(ext(A), ext(B))) or 6896 // reduce(mul(A, B)) or 6897 // reduce(ext(A)) or 6898 // reduce(A). 6899 // The basic idea is that we walk down the tree to do that, finding the root 6900 // reduction instruction in InLoopReductionImmediateChains. From there we find 6901 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6902 // of the components. If the reduction cost is lower then we return it for the 6903 // reduction instruction and 0 for the other instructions in the pattern. If 6904 // it is not we return an invalid cost specifying the orignal cost method 6905 // should be used. 6906 Instruction *RetI = I; 6907 if ((RetI->getOpcode() == Instruction::SExt || 6908 RetI->getOpcode() == Instruction::ZExt)) { 6909 if (!RetI->hasOneUser()) 6910 return InstructionCost::getInvalid(); 6911 RetI = RetI->user_back(); 6912 } 6913 if (RetI->getOpcode() == Instruction::Mul && 6914 RetI->user_back()->getOpcode() == Instruction::Add) { 6915 if (!RetI->hasOneUser()) 6916 return InstructionCost::getInvalid(); 6917 RetI = RetI->user_back(); 6918 } 6919 6920 // Test if the found instruction is a reduction, and if not return an invalid 6921 // cost specifying the parent to use the original cost modelling. 6922 if (!InLoopReductionImmediateChains.count(RetI)) 6923 return InstructionCost::getInvalid(); 6924 6925 // Find the reduction this chain is a part of and calculate the basic cost of 6926 // the reduction on its own. 6927 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6928 Instruction *ReductionPhi = LastChain; 6929 while (!isa<PHINode>(ReductionPhi)) 6930 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6931 6932 RecurrenceDescriptor RdxDesc = 6933 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 6934 unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), 6935 VectorTy, false, CostKind); 6936 6937 // Get the operand that was not the reduction chain and match it to one of the 6938 // patterns, returning the better cost if it is found. 6939 Instruction *RedOp = RetI->getOperand(1) == LastChain 6940 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6941 : dyn_cast<Instruction>(RetI->getOperand(1)); 6942 6943 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6944 6945 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 6946 !TheLoop->isLoopInvariant(RedOp)) { 6947 bool IsUnsigned = isa<ZExtInst>(RedOp); 6948 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6949 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6950 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6951 CostKind); 6952 6953 unsigned ExtCost = 6954 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6955 TTI::CastContextHint::None, CostKind, RedOp); 6956 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6957 return I == RetI ? *RedCost.getValue() : 0; 6958 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 6959 Instruction *Mul = RedOp; 6960 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 6961 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 6962 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 6963 Op0->getOpcode() == Op1->getOpcode() && 6964 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6965 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6966 bool IsUnsigned = isa<ZExtInst>(Op0); 6967 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6968 // reduce(mul(ext, ext)) 6969 unsigned ExtCost = 6970 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 6971 TTI::CastContextHint::None, CostKind, Op0); 6972 unsigned MulCost = 6973 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6974 6975 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6976 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6977 CostKind); 6978 6979 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 6980 return I == RetI ? *RedCost.getValue() : 0; 6981 } else { 6982 unsigned MulCost = 6983 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6984 6985 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6986 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6987 CostKind); 6988 6989 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6990 return I == RetI ? *RedCost.getValue() : 0; 6991 } 6992 } 6993 6994 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 6995 } 6996 6997 InstructionCost 6998 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6999 ElementCount VF) { 7000 // Calculate scalar cost only. Vectorization cost should be ready at this 7001 // moment. 7002 if (VF.isScalar()) { 7003 Type *ValTy = getMemInstValueType(I); 7004 const Align Alignment = getLoadStoreAlignment(I); 7005 unsigned AS = getLoadStoreAddressSpace(I); 7006 7007 return TTI.getAddressComputationCost(ValTy) + 7008 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7009 TTI::TCK_RecipThroughput, I); 7010 } 7011 return getWideningCost(I, VF); 7012 } 7013 7014 LoopVectorizationCostModel::VectorizationCostTy 7015 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7016 ElementCount VF) { 7017 // If we know that this instruction will remain uniform, check the cost of 7018 // the scalar version. 7019 if (isUniformAfterVectorization(I, VF)) 7020 VF = ElementCount::getFixed(1); 7021 7022 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7023 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7024 7025 // Forced scalars do not have any scalarization overhead. 7026 auto ForcedScalar = ForcedScalars.find(VF); 7027 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7028 auto InstSet = ForcedScalar->second; 7029 if (InstSet.count(I)) 7030 return VectorizationCostTy( 7031 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7032 VF.getKnownMinValue()), 7033 false); 7034 } 7035 7036 Type *VectorTy; 7037 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7038 7039 bool TypeNotScalarized = 7040 VF.isVector() && VectorTy->isVectorTy() && 7041 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7042 return VectorizationCostTy(C, TypeNotScalarized); 7043 } 7044 7045 InstructionCost 7046 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7047 ElementCount VF) { 7048 7049 assert(!VF.isScalable() && 7050 "cannot compute scalarization overhead for scalable vectorization"); 7051 if (VF.isScalar()) 7052 return 0; 7053 7054 InstructionCost Cost = 0; 7055 Type *RetTy = ToVectorTy(I->getType(), VF); 7056 if (!RetTy->isVoidTy() && 7057 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7058 Cost += TTI.getScalarizationOverhead( 7059 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7060 true, false); 7061 7062 // Some targets keep addresses scalar. 7063 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7064 return Cost; 7065 7066 // Some targets support efficient element stores. 7067 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7068 return Cost; 7069 7070 // Collect operands to consider. 7071 CallInst *CI = dyn_cast<CallInst>(I); 7072 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7073 7074 // Skip operands that do not require extraction/scalarization and do not incur 7075 // any overhead. 7076 return Cost + TTI.getOperandsScalarizationOverhead( 7077 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 7078 } 7079 7080 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7081 if (VF.isScalar()) 7082 return; 7083 NumPredStores = 0; 7084 for (BasicBlock *BB : TheLoop->blocks()) { 7085 // For each instruction in the old loop. 7086 for (Instruction &I : *BB) { 7087 Value *Ptr = getLoadStorePointerOperand(&I); 7088 if (!Ptr) 7089 continue; 7090 7091 // TODO: We should generate better code and update the cost model for 7092 // predicated uniform stores. Today they are treated as any other 7093 // predicated store (see added test cases in 7094 // invariant-store-vectorization.ll). 7095 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7096 NumPredStores++; 7097 7098 if (Legal->isUniformMemOp(I)) { 7099 // TODO: Avoid replicating loads and stores instead of 7100 // relying on instcombine to remove them. 7101 // Load: Scalar load + broadcast 7102 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7103 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7104 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7105 continue; 7106 } 7107 7108 // We assume that widening is the best solution when possible. 7109 if (memoryInstructionCanBeWidened(&I, VF)) { 7110 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7111 int ConsecutiveStride = 7112 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7113 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7114 "Expected consecutive stride."); 7115 InstWidening Decision = 7116 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7117 setWideningDecision(&I, VF, Decision, Cost); 7118 continue; 7119 } 7120 7121 // Choose between Interleaving, Gather/Scatter or Scalarization. 7122 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7123 unsigned NumAccesses = 1; 7124 if (isAccessInterleaved(&I)) { 7125 auto Group = getInterleavedAccessGroup(&I); 7126 assert(Group && "Fail to get an interleaved access group."); 7127 7128 // Make one decision for the whole group. 7129 if (getWideningDecision(&I, VF) != CM_Unknown) 7130 continue; 7131 7132 NumAccesses = Group->getNumMembers(); 7133 if (interleavedAccessCanBeWidened(&I, VF)) 7134 InterleaveCost = getInterleaveGroupCost(&I, VF); 7135 } 7136 7137 InstructionCost GatherScatterCost = 7138 isLegalGatherOrScatter(&I) 7139 ? getGatherScatterCost(&I, VF) * NumAccesses 7140 : InstructionCost::getInvalid(); 7141 7142 InstructionCost ScalarizationCost = 7143 !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses 7144 : InstructionCost::getInvalid(); 7145 7146 // Choose better solution for the current VF, 7147 // write down this decision and use it during vectorization. 7148 InstructionCost Cost; 7149 InstWidening Decision; 7150 if (InterleaveCost <= GatherScatterCost && 7151 InterleaveCost < ScalarizationCost) { 7152 Decision = CM_Interleave; 7153 Cost = InterleaveCost; 7154 } else if (GatherScatterCost < ScalarizationCost) { 7155 Decision = CM_GatherScatter; 7156 Cost = GatherScatterCost; 7157 } else { 7158 assert(!VF.isScalable() && 7159 "We cannot yet scalarise for scalable vectors"); 7160 Decision = CM_Scalarize; 7161 Cost = ScalarizationCost; 7162 } 7163 // If the instructions belongs to an interleave group, the whole group 7164 // receives the same decision. The whole group receives the cost, but 7165 // the cost will actually be assigned to one instruction. 7166 if (auto Group = getInterleavedAccessGroup(&I)) 7167 setWideningDecision(Group, VF, Decision, Cost); 7168 else 7169 setWideningDecision(&I, VF, Decision, Cost); 7170 } 7171 } 7172 7173 // Make sure that any load of address and any other address computation 7174 // remains scalar unless there is gather/scatter support. This avoids 7175 // inevitable extracts into address registers, and also has the benefit of 7176 // activating LSR more, since that pass can't optimize vectorized 7177 // addresses. 7178 if (TTI.prefersVectorizedAddressing()) 7179 return; 7180 7181 // Start with all scalar pointer uses. 7182 SmallPtrSet<Instruction *, 8> AddrDefs; 7183 for (BasicBlock *BB : TheLoop->blocks()) 7184 for (Instruction &I : *BB) { 7185 Instruction *PtrDef = 7186 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7187 if (PtrDef && TheLoop->contains(PtrDef) && 7188 getWideningDecision(&I, VF) != CM_GatherScatter) 7189 AddrDefs.insert(PtrDef); 7190 } 7191 7192 // Add all instructions used to generate the addresses. 7193 SmallVector<Instruction *, 4> Worklist; 7194 append_range(Worklist, AddrDefs); 7195 while (!Worklist.empty()) { 7196 Instruction *I = Worklist.pop_back_val(); 7197 for (auto &Op : I->operands()) 7198 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7199 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7200 AddrDefs.insert(InstOp).second) 7201 Worklist.push_back(InstOp); 7202 } 7203 7204 for (auto *I : AddrDefs) { 7205 if (isa<LoadInst>(I)) { 7206 // Setting the desired widening decision should ideally be handled in 7207 // by cost functions, but since this involves the task of finding out 7208 // if the loaded register is involved in an address computation, it is 7209 // instead changed here when we know this is the case. 7210 InstWidening Decision = getWideningDecision(I, VF); 7211 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7212 // Scalarize a widened load of address. 7213 setWideningDecision( 7214 I, VF, CM_Scalarize, 7215 (VF.getKnownMinValue() * 7216 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7217 else if (auto Group = getInterleavedAccessGroup(I)) { 7218 // Scalarize an interleave group of address loads. 7219 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7220 if (Instruction *Member = Group->getMember(I)) 7221 setWideningDecision( 7222 Member, VF, CM_Scalarize, 7223 (VF.getKnownMinValue() * 7224 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7225 } 7226 } 7227 } else 7228 // Make sure I gets scalarized and a cost estimate without 7229 // scalarization overhead. 7230 ForcedScalars[VF].insert(I); 7231 } 7232 } 7233 7234 InstructionCost 7235 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7236 Type *&VectorTy) { 7237 Type *RetTy = I->getType(); 7238 if (canTruncateToMinimalBitwidth(I, VF)) 7239 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7240 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7241 auto SE = PSE.getSE(); 7242 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7243 7244 // TODO: We need to estimate the cost of intrinsic calls. 7245 switch (I->getOpcode()) { 7246 case Instruction::GetElementPtr: 7247 // We mark this instruction as zero-cost because the cost of GEPs in 7248 // vectorized code depends on whether the corresponding memory instruction 7249 // is scalarized or not. Therefore, we handle GEPs with the memory 7250 // instruction cost. 7251 return 0; 7252 case Instruction::Br: { 7253 // In cases of scalarized and predicated instructions, there will be VF 7254 // predicated blocks in the vectorized loop. Each branch around these 7255 // blocks requires also an extract of its vector compare i1 element. 7256 bool ScalarPredicatedBB = false; 7257 BranchInst *BI = cast<BranchInst>(I); 7258 if (VF.isVector() && BI->isConditional() && 7259 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7260 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7261 ScalarPredicatedBB = true; 7262 7263 if (ScalarPredicatedBB) { 7264 // Return cost for branches around scalarized and predicated blocks. 7265 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7266 auto *Vec_i1Ty = 7267 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7268 return (TTI.getScalarizationOverhead( 7269 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7270 false, true) + 7271 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7272 VF.getKnownMinValue())); 7273 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7274 // The back-edge branch will remain, as will all scalar branches. 7275 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7276 else 7277 // This branch will be eliminated by if-conversion. 7278 return 0; 7279 // Note: We currently assume zero cost for an unconditional branch inside 7280 // a predicated block since it will become a fall-through, although we 7281 // may decide in the future to call TTI for all branches. 7282 } 7283 case Instruction::PHI: { 7284 auto *Phi = cast<PHINode>(I); 7285 7286 // First-order recurrences are replaced by vector shuffles inside the loop. 7287 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7288 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7289 return TTI.getShuffleCost( 7290 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7291 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7292 7293 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7294 // converted into select instructions. We require N - 1 selects per phi 7295 // node, where N is the number of incoming values. 7296 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7297 return (Phi->getNumIncomingValues() - 1) * 7298 TTI.getCmpSelInstrCost( 7299 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7300 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7301 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7302 7303 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7304 } 7305 case Instruction::UDiv: 7306 case Instruction::SDiv: 7307 case Instruction::URem: 7308 case Instruction::SRem: 7309 // If we have a predicated instruction, it may not be executed for each 7310 // vector lane. Get the scalarization cost and scale this amount by the 7311 // probability of executing the predicated block. If the instruction is not 7312 // predicated, we fall through to the next case. 7313 if (VF.isVector() && isScalarWithPredication(I)) { 7314 InstructionCost Cost = 0; 7315 7316 // These instructions have a non-void type, so account for the phi nodes 7317 // that we will create. This cost is likely to be zero. The phi node 7318 // cost, if any, should be scaled by the block probability because it 7319 // models a copy at the end of each predicated block. 7320 Cost += VF.getKnownMinValue() * 7321 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7322 7323 // The cost of the non-predicated instruction. 7324 Cost += VF.getKnownMinValue() * 7325 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7326 7327 // The cost of insertelement and extractelement instructions needed for 7328 // scalarization. 7329 Cost += getScalarizationOverhead(I, VF); 7330 7331 // Scale the cost by the probability of executing the predicated blocks. 7332 // This assumes the predicated block for each vector lane is equally 7333 // likely. 7334 return Cost / getReciprocalPredBlockProb(); 7335 } 7336 LLVM_FALLTHROUGH; 7337 case Instruction::Add: 7338 case Instruction::FAdd: 7339 case Instruction::Sub: 7340 case Instruction::FSub: 7341 case Instruction::Mul: 7342 case Instruction::FMul: 7343 case Instruction::FDiv: 7344 case Instruction::FRem: 7345 case Instruction::Shl: 7346 case Instruction::LShr: 7347 case Instruction::AShr: 7348 case Instruction::And: 7349 case Instruction::Or: 7350 case Instruction::Xor: { 7351 // Since we will replace the stride by 1 the multiplication should go away. 7352 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7353 return 0; 7354 7355 // Detect reduction patterns 7356 InstructionCost RedCost; 7357 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7358 .isValid()) 7359 return RedCost; 7360 7361 // Certain instructions can be cheaper to vectorize if they have a constant 7362 // second vector operand. One example of this are shifts on x86. 7363 Value *Op2 = I->getOperand(1); 7364 TargetTransformInfo::OperandValueProperties Op2VP; 7365 TargetTransformInfo::OperandValueKind Op2VK = 7366 TTI.getOperandInfo(Op2, Op2VP); 7367 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7368 Op2VK = TargetTransformInfo::OK_UniformValue; 7369 7370 SmallVector<const Value *, 4> Operands(I->operand_values()); 7371 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7372 return N * TTI.getArithmeticInstrCost( 7373 I->getOpcode(), VectorTy, CostKind, 7374 TargetTransformInfo::OK_AnyValue, 7375 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7376 } 7377 case Instruction::FNeg: { 7378 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7379 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7380 return N * TTI.getArithmeticInstrCost( 7381 I->getOpcode(), VectorTy, CostKind, 7382 TargetTransformInfo::OK_AnyValue, 7383 TargetTransformInfo::OK_AnyValue, 7384 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 7385 I->getOperand(0), I); 7386 } 7387 case Instruction::Select: { 7388 SelectInst *SI = cast<SelectInst>(I); 7389 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7390 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7391 Type *CondTy = SI->getCondition()->getType(); 7392 if (!ScalarCond) 7393 CondTy = VectorType::get(CondTy, VF); 7394 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7395 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7396 } 7397 case Instruction::ICmp: 7398 case Instruction::FCmp: { 7399 Type *ValTy = I->getOperand(0)->getType(); 7400 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7401 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7402 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7403 VectorTy = ToVectorTy(ValTy, VF); 7404 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7405 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7406 } 7407 case Instruction::Store: 7408 case Instruction::Load: { 7409 ElementCount Width = VF; 7410 if (Width.isVector()) { 7411 InstWidening Decision = getWideningDecision(I, Width); 7412 assert(Decision != CM_Unknown && 7413 "CM decision should be taken at this point"); 7414 if (Decision == CM_Scalarize) 7415 Width = ElementCount::getFixed(1); 7416 } 7417 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7418 return getMemoryInstructionCost(I, VF); 7419 } 7420 case Instruction::ZExt: 7421 case Instruction::SExt: 7422 case Instruction::FPToUI: 7423 case Instruction::FPToSI: 7424 case Instruction::FPExt: 7425 case Instruction::PtrToInt: 7426 case Instruction::IntToPtr: 7427 case Instruction::SIToFP: 7428 case Instruction::UIToFP: 7429 case Instruction::Trunc: 7430 case Instruction::FPTrunc: 7431 case Instruction::BitCast: { 7432 // Computes the CastContextHint from a Load/Store instruction. 7433 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7434 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7435 "Expected a load or a store!"); 7436 7437 if (VF.isScalar() || !TheLoop->contains(I)) 7438 return TTI::CastContextHint::Normal; 7439 7440 switch (getWideningDecision(I, VF)) { 7441 case LoopVectorizationCostModel::CM_GatherScatter: 7442 return TTI::CastContextHint::GatherScatter; 7443 case LoopVectorizationCostModel::CM_Interleave: 7444 return TTI::CastContextHint::Interleave; 7445 case LoopVectorizationCostModel::CM_Scalarize: 7446 case LoopVectorizationCostModel::CM_Widen: 7447 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7448 : TTI::CastContextHint::Normal; 7449 case LoopVectorizationCostModel::CM_Widen_Reverse: 7450 return TTI::CastContextHint::Reversed; 7451 case LoopVectorizationCostModel::CM_Unknown: 7452 llvm_unreachable("Instr did not go through cost modelling?"); 7453 } 7454 7455 llvm_unreachable("Unhandled case!"); 7456 }; 7457 7458 unsigned Opcode = I->getOpcode(); 7459 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7460 // For Trunc, the context is the only user, which must be a StoreInst. 7461 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7462 if (I->hasOneUse()) 7463 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7464 CCH = ComputeCCH(Store); 7465 } 7466 // For Z/Sext, the context is the operand, which must be a LoadInst. 7467 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7468 Opcode == Instruction::FPExt) { 7469 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7470 CCH = ComputeCCH(Load); 7471 } 7472 7473 // We optimize the truncation of induction variables having constant 7474 // integer steps. The cost of these truncations is the same as the scalar 7475 // operation. 7476 if (isOptimizableIVTruncate(I, VF)) { 7477 auto *Trunc = cast<TruncInst>(I); 7478 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7479 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7480 } 7481 7482 // Detect reduction patterns 7483 InstructionCost RedCost; 7484 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7485 .isValid()) 7486 return RedCost; 7487 7488 Type *SrcScalarTy = I->getOperand(0)->getType(); 7489 Type *SrcVecTy = 7490 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7491 if (canTruncateToMinimalBitwidth(I, VF)) { 7492 // This cast is going to be shrunk. This may remove the cast or it might 7493 // turn it into slightly different cast. For example, if MinBW == 16, 7494 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7495 // 7496 // Calculate the modified src and dest types. 7497 Type *MinVecTy = VectorTy; 7498 if (Opcode == Instruction::Trunc) { 7499 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7500 VectorTy = 7501 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7502 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7503 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7504 VectorTy = 7505 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7506 } 7507 } 7508 7509 unsigned N; 7510 if (isScalarAfterVectorization(I, VF)) { 7511 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 7512 N = VF.getKnownMinValue(); 7513 } else 7514 N = 1; 7515 return N * 7516 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7517 } 7518 case Instruction::Call: { 7519 bool NeedToScalarize; 7520 CallInst *CI = cast<CallInst>(I); 7521 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7522 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7523 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7524 return std::min(CallCost, IntrinsicCost); 7525 } 7526 return CallCost; 7527 } 7528 case Instruction::ExtractValue: 7529 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7530 default: 7531 // The cost of executing VF copies of the scalar instruction. This opcode 7532 // is unknown. Assume that it is the same as 'mul'. 7533 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 7534 Instruction::Mul, VectorTy, CostKind) + 7535 getScalarizationOverhead(I, VF); 7536 } // end of switch. 7537 } 7538 7539 char LoopVectorize::ID = 0; 7540 7541 static const char lv_name[] = "Loop Vectorization"; 7542 7543 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7544 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7545 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7546 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7547 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7548 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7549 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7550 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7551 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7552 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7553 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7554 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7555 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7556 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7557 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7558 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7559 7560 namespace llvm { 7561 7562 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7563 7564 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7565 bool VectorizeOnlyWhenForced) { 7566 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7567 } 7568 7569 } // end namespace llvm 7570 7571 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7572 // Check if the pointer operand of a load or store instruction is 7573 // consecutive. 7574 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7575 return Legal->isConsecutivePtr(Ptr); 7576 return false; 7577 } 7578 7579 void LoopVectorizationCostModel::collectValuesToIgnore() { 7580 // Ignore ephemeral values. 7581 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7582 7583 // Ignore type-promoting instructions we identified during reduction 7584 // detection. 7585 for (auto &Reduction : Legal->getReductionVars()) { 7586 RecurrenceDescriptor &RedDes = Reduction.second; 7587 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7588 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7589 } 7590 // Ignore type-casting instructions we identified during induction 7591 // detection. 7592 for (auto &Induction : Legal->getInductionVars()) { 7593 InductionDescriptor &IndDes = Induction.second; 7594 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7595 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7596 } 7597 } 7598 7599 void LoopVectorizationCostModel::collectInLoopReductions() { 7600 for (auto &Reduction : Legal->getReductionVars()) { 7601 PHINode *Phi = Reduction.first; 7602 RecurrenceDescriptor &RdxDesc = Reduction.second; 7603 7604 // We don't collect reductions that are type promoted (yet). 7605 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7606 continue; 7607 7608 // If the target would prefer this reduction to happen "in-loop", then we 7609 // want to record it as such. 7610 unsigned Opcode = RdxDesc.getOpcode(); 7611 if (!PreferInLoopReductions && 7612 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7613 TargetTransformInfo::ReductionFlags())) 7614 continue; 7615 7616 // Check that we can correctly put the reductions into the loop, by 7617 // finding the chain of operations that leads from the phi to the loop 7618 // exit value. 7619 SmallVector<Instruction *, 4> ReductionOperations = 7620 RdxDesc.getReductionOpChain(Phi, TheLoop); 7621 bool InLoop = !ReductionOperations.empty(); 7622 if (InLoop) { 7623 InLoopReductionChains[Phi] = ReductionOperations; 7624 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7625 Instruction *LastChain = Phi; 7626 for (auto *I : ReductionOperations) { 7627 InLoopReductionImmediateChains[I] = LastChain; 7628 LastChain = I; 7629 } 7630 } 7631 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7632 << " reduction for phi: " << *Phi << "\n"); 7633 } 7634 } 7635 7636 // TODO: we could return a pair of values that specify the max VF and 7637 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7638 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7639 // doesn't have a cost model that can choose which plan to execute if 7640 // more than one is generated. 7641 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7642 LoopVectorizationCostModel &CM) { 7643 unsigned WidestType; 7644 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7645 return WidestVectorRegBits / WidestType; 7646 } 7647 7648 VectorizationFactor 7649 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7650 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7651 ElementCount VF = UserVF; 7652 // Outer loop handling: They may require CFG and instruction level 7653 // transformations before even evaluating whether vectorization is profitable. 7654 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7655 // the vectorization pipeline. 7656 if (!OrigLoop->isInnermost()) { 7657 // If the user doesn't provide a vectorization factor, determine a 7658 // reasonable one. 7659 if (UserVF.isZero()) { 7660 VF = ElementCount::getFixed( 7661 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7662 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7663 7664 // Make sure we have a VF > 1 for stress testing. 7665 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7666 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7667 << "overriding computed VF.\n"); 7668 VF = ElementCount::getFixed(4); 7669 } 7670 } 7671 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7672 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7673 "VF needs to be a power of two"); 7674 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7675 << "VF " << VF << " to build VPlans.\n"); 7676 buildVPlans(VF, VF); 7677 7678 // For VPlan build stress testing, we bail out after VPlan construction. 7679 if (VPlanBuildStressTest) 7680 return VectorizationFactor::Disabled(); 7681 7682 return {VF, 0 /*Cost*/}; 7683 } 7684 7685 LLVM_DEBUG( 7686 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7687 "VPlan-native path.\n"); 7688 return VectorizationFactor::Disabled(); 7689 } 7690 7691 Optional<VectorizationFactor> 7692 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7693 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7694 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7695 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7696 return None; 7697 7698 // Invalidate interleave groups if all blocks of loop will be predicated. 7699 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7700 !useMaskedInterleavedAccesses(*TTI)) { 7701 LLVM_DEBUG( 7702 dbgs() 7703 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7704 "which requires masked-interleaved support.\n"); 7705 if (CM.InterleaveInfo.invalidateGroups()) 7706 // Invalidating interleave groups also requires invalidating all decisions 7707 // based on them, which includes widening decisions and uniform and scalar 7708 // values. 7709 CM.invalidateCostModelingDecisions(); 7710 } 7711 7712 ElementCount MaxVF = MaybeMaxVF.getValue(); 7713 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7714 7715 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF); 7716 if (!UserVF.isZero() && 7717 (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) { 7718 // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable 7719 // VFs here, this should be reverted to only use legal UserVFs once the 7720 // loop below supports scalable VFs. 7721 ElementCount VF = UserVFIsLegal ? UserVF : MaxVF; 7722 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7723 << " VF " << VF << ".\n"); 7724 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7725 "VF needs to be a power of two"); 7726 // Collect the instructions (and their associated costs) that will be more 7727 // profitable to scalarize. 7728 CM.selectUserVectorizationFactor(VF); 7729 CM.collectInLoopReductions(); 7730 buildVPlansWithVPRecipes(VF, VF); 7731 LLVM_DEBUG(printPlans(dbgs())); 7732 return {{VF, 0}}; 7733 } 7734 7735 assert(!MaxVF.isScalable() && 7736 "Scalable vectors not yet supported beyond this point"); 7737 7738 for (ElementCount VF = ElementCount::getFixed(1); 7739 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7740 // Collect Uniform and Scalar instructions after vectorization with VF. 7741 CM.collectUniformsAndScalars(VF); 7742 7743 // Collect the instructions (and their associated costs) that will be more 7744 // profitable to scalarize. 7745 if (VF.isVector()) 7746 CM.collectInstsToScalarize(VF); 7747 } 7748 7749 CM.collectInLoopReductions(); 7750 7751 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7752 LLVM_DEBUG(printPlans(dbgs())); 7753 if (MaxVF.isScalar()) 7754 return VectorizationFactor::Disabled(); 7755 7756 // Select the optimal vectorization factor. 7757 return CM.selectVectorizationFactor(MaxVF); 7758 } 7759 7760 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7761 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7762 << '\n'); 7763 BestVF = VF; 7764 BestUF = UF; 7765 7766 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7767 return !Plan->hasVF(VF); 7768 }); 7769 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7770 } 7771 7772 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7773 DominatorTree *DT) { 7774 // Perform the actual loop transformation. 7775 7776 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7777 VPCallbackILV CallbackILV(ILV); 7778 7779 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7780 7781 VPTransformState State{*BestVF, 7782 BestUF, 7783 LI, 7784 DT, 7785 ILV.Builder, 7786 ILV.VectorLoopValueMap, 7787 &ILV, 7788 CallbackILV}; 7789 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7790 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7791 State.CanonicalIV = ILV.Induction; 7792 7793 ILV.printDebugTracesAtStart(); 7794 7795 //===------------------------------------------------===// 7796 // 7797 // Notice: any optimization or new instruction that go 7798 // into the code below should also be implemented in 7799 // the cost-model. 7800 // 7801 //===------------------------------------------------===// 7802 7803 // 2. Copy and widen instructions from the old loop into the new loop. 7804 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7805 VPlans.front()->execute(&State); 7806 7807 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7808 // predication, updating analyses. 7809 ILV.fixVectorizedLoop(); 7810 7811 ILV.printDebugTracesAtEnd(); 7812 } 7813 7814 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7815 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7816 7817 // We create new control-flow for the vectorized loop, so the original exit 7818 // conditions will be dead after vectorization if it's only used by the 7819 // terminator 7820 SmallVector<BasicBlock*> ExitingBlocks; 7821 OrigLoop->getExitingBlocks(ExitingBlocks); 7822 for (auto *BB : ExitingBlocks) { 7823 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7824 if (!Cmp || !Cmp->hasOneUse()) 7825 continue; 7826 7827 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7828 if (!DeadInstructions.insert(Cmp).second) 7829 continue; 7830 7831 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7832 // TODO: can recurse through operands in general 7833 for (Value *Op : Cmp->operands()) { 7834 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7835 DeadInstructions.insert(cast<Instruction>(Op)); 7836 } 7837 } 7838 7839 // We create new "steps" for induction variable updates to which the original 7840 // induction variables map. An original update instruction will be dead if 7841 // all its users except the induction variable are dead. 7842 auto *Latch = OrigLoop->getLoopLatch(); 7843 for (auto &Induction : Legal->getInductionVars()) { 7844 PHINode *Ind = Induction.first; 7845 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7846 7847 // If the tail is to be folded by masking, the primary induction variable, 7848 // if exists, isn't dead: it will be used for masking. Don't kill it. 7849 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7850 continue; 7851 7852 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7853 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7854 })) 7855 DeadInstructions.insert(IndUpdate); 7856 7857 // We record as "Dead" also the type-casting instructions we had identified 7858 // during induction analysis. We don't need any handling for them in the 7859 // vectorized loop because we have proven that, under a proper runtime 7860 // test guarding the vectorized loop, the value of the phi, and the casted 7861 // value of the phi, are the same. The last instruction in this casting chain 7862 // will get its scalar/vector/widened def from the scalar/vector/widened def 7863 // of the respective phi node. Any other casts in the induction def-use chain 7864 // have no other uses outside the phi update chain, and will be ignored. 7865 InductionDescriptor &IndDes = Induction.second; 7866 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7867 DeadInstructions.insert(Casts.begin(), Casts.end()); 7868 } 7869 } 7870 7871 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7872 7873 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7874 7875 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7876 Instruction::BinaryOps BinOp) { 7877 // When unrolling and the VF is 1, we only need to add a simple scalar. 7878 Type *Ty = Val->getType(); 7879 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7880 7881 if (Ty->isFloatingPointTy()) { 7882 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7883 7884 // Floating point operations had to be 'fast' to enable the unrolling. 7885 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7886 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7887 } 7888 Constant *C = ConstantInt::get(Ty, StartIdx); 7889 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7890 } 7891 7892 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7893 SmallVector<Metadata *, 4> MDs; 7894 // Reserve first location for self reference to the LoopID metadata node. 7895 MDs.push_back(nullptr); 7896 bool IsUnrollMetadata = false; 7897 MDNode *LoopID = L->getLoopID(); 7898 if (LoopID) { 7899 // First find existing loop unrolling disable metadata. 7900 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7901 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7902 if (MD) { 7903 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7904 IsUnrollMetadata = 7905 S && S->getString().startswith("llvm.loop.unroll.disable"); 7906 } 7907 MDs.push_back(LoopID->getOperand(i)); 7908 } 7909 } 7910 7911 if (!IsUnrollMetadata) { 7912 // Add runtime unroll disable metadata. 7913 LLVMContext &Context = L->getHeader()->getContext(); 7914 SmallVector<Metadata *, 1> DisableOperands; 7915 DisableOperands.push_back( 7916 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7917 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7918 MDs.push_back(DisableNode); 7919 MDNode *NewLoopID = MDNode::get(Context, MDs); 7920 // Set operand 0 to refer to the loop id itself. 7921 NewLoopID->replaceOperandWith(0, NewLoopID); 7922 L->setLoopID(NewLoopID); 7923 } 7924 } 7925 7926 //===--------------------------------------------------------------------===// 7927 // EpilogueVectorizerMainLoop 7928 //===--------------------------------------------------------------------===// 7929 7930 /// This function is partially responsible for generating the control flow 7931 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7932 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7933 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7934 Loop *Lp = createVectorLoopSkeleton(""); 7935 7936 // Generate the code to check the minimum iteration count of the vector 7937 // epilogue (see below). 7938 EPI.EpilogueIterationCountCheck = 7939 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7940 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7941 7942 // Generate the code to check any assumptions that we've made for SCEV 7943 // expressions. 7944 BasicBlock *SavedPreHeader = LoopVectorPreHeader; 7945 emitSCEVChecks(Lp, LoopScalarPreHeader); 7946 7947 // If a safety check was generated save it. 7948 if (SavedPreHeader != LoopVectorPreHeader) 7949 EPI.SCEVSafetyCheck = SavedPreHeader; 7950 7951 // Generate the code that checks at runtime if arrays overlap. We put the 7952 // checks into a separate block to make the more common case of few elements 7953 // faster. 7954 SavedPreHeader = LoopVectorPreHeader; 7955 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7956 7957 // If a safety check was generated save/overwite it. 7958 if (SavedPreHeader != LoopVectorPreHeader) 7959 EPI.MemSafetyCheck = SavedPreHeader; 7960 7961 // Generate the iteration count check for the main loop, *after* the check 7962 // for the epilogue loop, so that the path-length is shorter for the case 7963 // that goes directly through the vector epilogue. The longer-path length for 7964 // the main loop is compensated for, by the gain from vectorizing the larger 7965 // trip count. Note: the branch will get updated later on when we vectorize 7966 // the epilogue. 7967 EPI.MainLoopIterationCountCheck = 7968 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7969 7970 // Generate the induction variable. 7971 OldInduction = Legal->getPrimaryInduction(); 7972 Type *IdxTy = Legal->getWidestInductionType(); 7973 Value *StartIdx = ConstantInt::get(IdxTy, 0); 7974 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7975 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7976 EPI.VectorTripCount = CountRoundDown; 7977 Induction = 7978 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7979 getDebugLocFromInstOrOperands(OldInduction)); 7980 7981 // Skip induction resume value creation here because they will be created in 7982 // the second pass. If we created them here, they wouldn't be used anyway, 7983 // because the vplan in the second pass still contains the inductions from the 7984 // original loop. 7985 7986 return completeLoopSkeleton(Lp, OrigLoopID); 7987 } 7988 7989 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7990 LLVM_DEBUG({ 7991 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7992 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 7993 << ", Main Loop UF:" << EPI.MainLoopUF 7994 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 7995 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7996 }); 7997 } 7998 7999 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8000 DEBUG_WITH_TYPE(VerboseDebug, { 8001 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8002 }); 8003 } 8004 8005 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8006 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8007 assert(L && "Expected valid Loop."); 8008 assert(Bypass && "Expected valid bypass basic block."); 8009 unsigned VFactor = 8010 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8011 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8012 Value *Count = getOrCreateTripCount(L); 8013 // Reuse existing vector loop preheader for TC checks. 8014 // Note that new preheader block is generated for vector loop. 8015 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8016 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8017 8018 // Generate code to check if the loop's trip count is less than VF * UF of the 8019 // main vector loop. 8020 auto P = 8021 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8022 8023 Value *CheckMinIters = Builder.CreateICmp( 8024 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8025 "min.iters.check"); 8026 8027 if (!ForEpilogue) 8028 TCCheckBlock->setName("vector.main.loop.iter.check"); 8029 8030 // Create new preheader for vector loop. 8031 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8032 DT, LI, nullptr, "vector.ph"); 8033 8034 if (ForEpilogue) { 8035 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8036 DT->getNode(Bypass)->getIDom()) && 8037 "TC check is expected to dominate Bypass"); 8038 8039 // Update dominator for Bypass & LoopExit. 8040 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8041 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8042 8043 LoopBypassBlocks.push_back(TCCheckBlock); 8044 8045 // Save the trip count so we don't have to regenerate it in the 8046 // vec.epilog.iter.check. This is safe to do because the trip count 8047 // generated here dominates the vector epilog iter check. 8048 EPI.TripCount = Count; 8049 } 8050 8051 ReplaceInstWithInst( 8052 TCCheckBlock->getTerminator(), 8053 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8054 8055 return TCCheckBlock; 8056 } 8057 8058 //===--------------------------------------------------------------------===// 8059 // EpilogueVectorizerEpilogueLoop 8060 //===--------------------------------------------------------------------===// 8061 8062 /// This function is partially responsible for generating the control flow 8063 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8064 BasicBlock * 8065 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8066 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8067 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8068 8069 // Now, compare the remaining count and if there aren't enough iterations to 8070 // execute the vectorized epilogue skip to the scalar part. 8071 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8072 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8073 LoopVectorPreHeader = 8074 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8075 LI, nullptr, "vec.epilog.ph"); 8076 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8077 VecEpilogueIterationCountCheck); 8078 8079 // Adjust the control flow taking the state info from the main loop 8080 // vectorization into account. 8081 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8082 "expected this to be saved from the previous pass."); 8083 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8084 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8085 8086 DT->changeImmediateDominator(LoopVectorPreHeader, 8087 EPI.MainLoopIterationCountCheck); 8088 8089 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8090 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8091 8092 if (EPI.SCEVSafetyCheck) 8093 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8094 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8095 if (EPI.MemSafetyCheck) 8096 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8097 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8098 8099 DT->changeImmediateDominator( 8100 VecEpilogueIterationCountCheck, 8101 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8102 8103 DT->changeImmediateDominator(LoopScalarPreHeader, 8104 EPI.EpilogueIterationCountCheck); 8105 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8106 8107 // Keep track of bypass blocks, as they feed start values to the induction 8108 // phis in the scalar loop preheader. 8109 if (EPI.SCEVSafetyCheck) 8110 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8111 if (EPI.MemSafetyCheck) 8112 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8113 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8114 8115 // Generate a resume induction for the vector epilogue and put it in the 8116 // vector epilogue preheader 8117 Type *IdxTy = Legal->getWidestInductionType(); 8118 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8119 LoopVectorPreHeader->getFirstNonPHI()); 8120 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8121 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8122 EPI.MainLoopIterationCountCheck); 8123 8124 // Generate the induction variable. 8125 OldInduction = Legal->getPrimaryInduction(); 8126 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8127 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8128 Value *StartIdx = EPResumeVal; 8129 Induction = 8130 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8131 getDebugLocFromInstOrOperands(OldInduction)); 8132 8133 // Generate induction resume values. These variables save the new starting 8134 // indexes for the scalar loop. They are used to test if there are any tail 8135 // iterations left once the vector loop has completed. 8136 // Note that when the vectorized epilogue is skipped due to iteration count 8137 // check, then the resume value for the induction variable comes from 8138 // the trip count of the main vector loop, hence passing the AdditionalBypass 8139 // argument. 8140 createInductionResumeValues(Lp, CountRoundDown, 8141 {VecEpilogueIterationCountCheck, 8142 EPI.VectorTripCount} /* AdditionalBypass */); 8143 8144 AddRuntimeUnrollDisableMetaData(Lp); 8145 return completeLoopSkeleton(Lp, OrigLoopID); 8146 } 8147 8148 BasicBlock * 8149 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8150 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8151 8152 assert(EPI.TripCount && 8153 "Expected trip count to have been safed in the first pass."); 8154 assert( 8155 (!isa<Instruction>(EPI.TripCount) || 8156 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8157 "saved trip count does not dominate insertion point."); 8158 Value *TC = EPI.TripCount; 8159 IRBuilder<> Builder(Insert->getTerminator()); 8160 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8161 8162 // Generate code to check if the loop's trip count is less than VF * UF of the 8163 // vector epilogue loop. 8164 auto P = 8165 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8166 8167 Value *CheckMinIters = Builder.CreateICmp( 8168 P, Count, 8169 ConstantInt::get(Count->getType(), 8170 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8171 "min.epilog.iters.check"); 8172 8173 ReplaceInstWithInst( 8174 Insert->getTerminator(), 8175 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8176 8177 LoopBypassBlocks.push_back(Insert); 8178 return Insert; 8179 } 8180 8181 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8182 LLVM_DEBUG({ 8183 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8184 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8185 << ", Main Loop UF:" << EPI.MainLoopUF 8186 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8187 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8188 }); 8189 } 8190 8191 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8192 DEBUG_WITH_TYPE(VerboseDebug, { 8193 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8194 }); 8195 } 8196 8197 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8198 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8199 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8200 bool PredicateAtRangeStart = Predicate(Range.Start); 8201 8202 for (ElementCount TmpVF = Range.Start * 2; 8203 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8204 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8205 Range.End = TmpVF; 8206 break; 8207 } 8208 8209 return PredicateAtRangeStart; 8210 } 8211 8212 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8213 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8214 /// of VF's starting at a given VF and extending it as much as possible. Each 8215 /// vectorization decision can potentially shorten this sub-range during 8216 /// buildVPlan(). 8217 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8218 ElementCount MaxVF) { 8219 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8220 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8221 VFRange SubRange = {VF, MaxVFPlusOne}; 8222 VPlans.push_back(buildVPlan(SubRange)); 8223 VF = SubRange.End; 8224 } 8225 } 8226 8227 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8228 VPlanPtr &Plan) { 8229 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8230 8231 // Look for cached value. 8232 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8233 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8234 if (ECEntryIt != EdgeMaskCache.end()) 8235 return ECEntryIt->second; 8236 8237 VPValue *SrcMask = createBlockInMask(Src, Plan); 8238 8239 // The terminator has to be a branch inst! 8240 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8241 assert(BI && "Unexpected terminator found"); 8242 8243 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8244 return EdgeMaskCache[Edge] = SrcMask; 8245 8246 // If source is an exiting block, we know the exit edge is dynamically dead 8247 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8248 // adding uses of an otherwise potentially dead instruction. 8249 if (OrigLoop->isLoopExiting(Src)) 8250 return EdgeMaskCache[Edge] = SrcMask; 8251 8252 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8253 assert(EdgeMask && "No Edge Mask found for condition"); 8254 8255 if (BI->getSuccessor(0) != Dst) 8256 EdgeMask = Builder.createNot(EdgeMask); 8257 8258 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 8259 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 8260 8261 return EdgeMaskCache[Edge] = EdgeMask; 8262 } 8263 8264 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8265 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8266 8267 // Look for cached value. 8268 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8269 if (BCEntryIt != BlockMaskCache.end()) 8270 return BCEntryIt->second; 8271 8272 // All-one mask is modelled as no-mask following the convention for masked 8273 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8274 VPValue *BlockMask = nullptr; 8275 8276 if (OrigLoop->getHeader() == BB) { 8277 if (!CM.blockNeedsPredication(BB)) 8278 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8279 8280 // Create the block in mask as the first non-phi instruction in the block. 8281 VPBuilder::InsertPointGuard Guard(Builder); 8282 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8283 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8284 8285 // Introduce the early-exit compare IV <= BTC to form header block mask. 8286 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8287 // Start by constructing the desired canonical IV. 8288 VPValue *IV = nullptr; 8289 if (Legal->getPrimaryInduction()) 8290 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8291 else { 8292 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8293 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8294 IV = IVRecipe->getVPValue(); 8295 } 8296 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8297 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8298 8299 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8300 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8301 // as a second argument, we only pass the IV here and extract the 8302 // tripcount from the transform state where codegen of the VP instructions 8303 // happen. 8304 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8305 } else { 8306 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8307 } 8308 return BlockMaskCache[BB] = BlockMask; 8309 } 8310 8311 // This is the block mask. We OR all incoming edges. 8312 for (auto *Predecessor : predecessors(BB)) { 8313 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8314 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8315 return BlockMaskCache[BB] = EdgeMask; 8316 8317 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8318 BlockMask = EdgeMask; 8319 continue; 8320 } 8321 8322 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8323 } 8324 8325 return BlockMaskCache[BB] = BlockMask; 8326 } 8327 8328 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 8329 VPlanPtr &Plan) { 8330 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8331 "Must be called with either a load or store"); 8332 8333 auto willWiden = [&](ElementCount VF) -> bool { 8334 if (VF.isScalar()) 8335 return false; 8336 LoopVectorizationCostModel::InstWidening Decision = 8337 CM.getWideningDecision(I, VF); 8338 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8339 "CM decision should be taken at this point."); 8340 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8341 return true; 8342 if (CM.isScalarAfterVectorization(I, VF) || 8343 CM.isProfitableToScalarize(I, VF)) 8344 return false; 8345 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8346 }; 8347 8348 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8349 return nullptr; 8350 8351 VPValue *Mask = nullptr; 8352 if (Legal->isMaskRequired(I)) 8353 Mask = createBlockInMask(I->getParent(), Plan); 8354 8355 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 8356 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8357 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 8358 8359 StoreInst *Store = cast<StoreInst>(I); 8360 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 8361 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 8362 } 8363 8364 VPWidenIntOrFpInductionRecipe * 8365 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, VPlan &Plan) const { 8366 // Check if this is an integer or fp induction. If so, build the recipe that 8367 // produces its scalar and vector values. 8368 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8369 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8370 II.getKind() == InductionDescriptor::IK_FpInduction) { 8371 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8372 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8373 return new VPWidenIntOrFpInductionRecipe( 8374 Phi, Start, Casts.empty() ? nullptr : Casts.front()); 8375 } 8376 8377 return nullptr; 8378 } 8379 8380 VPWidenIntOrFpInductionRecipe * 8381 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, VFRange &Range, 8382 VPlan &Plan) const { 8383 // Optimize the special case where the source is a constant integer 8384 // induction variable. Notice that we can only optimize the 'trunc' case 8385 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8386 // (c) other casts depend on pointer size. 8387 8388 // Determine whether \p K is a truncation based on an induction variable that 8389 // can be optimized. 8390 auto isOptimizableIVTruncate = 8391 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8392 return [=](ElementCount VF) -> bool { 8393 return CM.isOptimizableIVTruncate(K, VF); 8394 }; 8395 }; 8396 8397 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8398 isOptimizableIVTruncate(I), Range)) { 8399 8400 InductionDescriptor II = 8401 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8402 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8403 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8404 Start, nullptr, I); 8405 } 8406 return nullptr; 8407 } 8408 8409 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 8410 // We know that all PHIs in non-header blocks are converted into selects, so 8411 // we don't have to worry about the insertion order and we can just use the 8412 // builder. At this point we generate the predication tree. There may be 8413 // duplications since this is a simple recursive scan, but future 8414 // optimizations will clean it up. 8415 8416 SmallVector<VPValue *, 2> Operands; 8417 unsigned NumIncoming = Phi->getNumIncomingValues(); 8418 for (unsigned In = 0; In < NumIncoming; In++) { 8419 VPValue *EdgeMask = 8420 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8421 assert((EdgeMask || NumIncoming == 1) && 8422 "Multiple predecessors with one having a full mask"); 8423 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 8424 if (EdgeMask) 8425 Operands.push_back(EdgeMask); 8426 } 8427 return new VPBlendRecipe(Phi, Operands); 8428 } 8429 8430 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 8431 VPlan &Plan) const { 8432 8433 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8434 [this, CI](ElementCount VF) { 8435 return CM.isScalarWithPredication(CI, VF); 8436 }, 8437 Range); 8438 8439 if (IsPredicated) 8440 return nullptr; 8441 8442 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8443 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8444 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8445 ID == Intrinsic::pseudoprobe || 8446 ID == Intrinsic::experimental_noalias_scope_decl)) 8447 return nullptr; 8448 8449 auto willWiden = [&](ElementCount VF) -> bool { 8450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8451 // The following case may be scalarized depending on the VF. 8452 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8453 // version of the instruction. 8454 // Is it beneficial to perform intrinsic call compared to lib call? 8455 bool NeedToScalarize = false; 8456 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8457 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8458 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8459 assert(IntrinsicCost.isValid() && CallCost.isValid() && 8460 "Cannot have invalid costs while widening"); 8461 return UseVectorIntrinsic || !NeedToScalarize; 8462 }; 8463 8464 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8465 return nullptr; 8466 8467 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 8468 } 8469 8470 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8471 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8472 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8473 // Instruction should be widened, unless it is scalar after vectorization, 8474 // scalarization is profitable or it is predicated. 8475 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8476 return CM.isScalarAfterVectorization(I, VF) || 8477 CM.isProfitableToScalarize(I, VF) || 8478 CM.isScalarWithPredication(I, VF); 8479 }; 8480 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8481 Range); 8482 } 8483 8484 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 8485 auto IsVectorizableOpcode = [](unsigned Opcode) { 8486 switch (Opcode) { 8487 case Instruction::Add: 8488 case Instruction::And: 8489 case Instruction::AShr: 8490 case Instruction::BitCast: 8491 case Instruction::FAdd: 8492 case Instruction::FCmp: 8493 case Instruction::FDiv: 8494 case Instruction::FMul: 8495 case Instruction::FNeg: 8496 case Instruction::FPExt: 8497 case Instruction::FPToSI: 8498 case Instruction::FPToUI: 8499 case Instruction::FPTrunc: 8500 case Instruction::FRem: 8501 case Instruction::FSub: 8502 case Instruction::ICmp: 8503 case Instruction::IntToPtr: 8504 case Instruction::LShr: 8505 case Instruction::Mul: 8506 case Instruction::Or: 8507 case Instruction::PtrToInt: 8508 case Instruction::SDiv: 8509 case Instruction::Select: 8510 case Instruction::SExt: 8511 case Instruction::Shl: 8512 case Instruction::SIToFP: 8513 case Instruction::SRem: 8514 case Instruction::Sub: 8515 case Instruction::Trunc: 8516 case Instruction::UDiv: 8517 case Instruction::UIToFP: 8518 case Instruction::URem: 8519 case Instruction::Xor: 8520 case Instruction::ZExt: 8521 return true; 8522 } 8523 return false; 8524 }; 8525 8526 if (!IsVectorizableOpcode(I->getOpcode())) 8527 return nullptr; 8528 8529 // Success: widen this instruction. 8530 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 8531 } 8532 8533 VPBasicBlock *VPRecipeBuilder::handleReplication( 8534 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8535 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8536 VPlanPtr &Plan) { 8537 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8538 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8539 Range); 8540 8541 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8542 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 8543 Range); 8544 8545 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8546 IsUniform, IsPredicated); 8547 setRecipe(I, Recipe); 8548 Plan->addVPValue(I, Recipe); 8549 8550 // Find if I uses a predicated instruction. If so, it will use its scalar 8551 // value. Avoid hoisting the insert-element which packs the scalar value into 8552 // a vector value, as that happens iff all users use the vector value. 8553 for (auto &Op : I->operands()) 8554 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8555 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8556 PredInst2Recipe[PredInst]->setAlsoPack(false); 8557 8558 // Finalize the recipe for Instr, first if it is not predicated. 8559 if (!IsPredicated) { 8560 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8561 VPBB->appendRecipe(Recipe); 8562 return VPBB; 8563 } 8564 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8565 assert(VPBB->getSuccessors().empty() && 8566 "VPBB has successors when handling predicated replication."); 8567 // Record predicated instructions for above packing optimizations. 8568 PredInst2Recipe[I] = Recipe; 8569 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8570 VPBlockUtils::insertBlockAfter(Region, VPBB); 8571 auto *RegSucc = new VPBasicBlock(); 8572 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8573 return RegSucc; 8574 } 8575 8576 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8577 VPRecipeBase *PredRecipe, 8578 VPlanPtr &Plan) { 8579 // Instructions marked for predication are replicated and placed under an 8580 // if-then construct to prevent side-effects. 8581 8582 // Generate recipes to compute the block mask for this region. 8583 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8584 8585 // Build the triangular if-then region. 8586 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8587 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8588 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8589 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8590 auto *PHIRecipe = Instr->getType()->isVoidTy() 8591 ? nullptr 8592 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8593 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8594 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8595 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8596 8597 // Note: first set Entry as region entry and then connect successors starting 8598 // from it in order, to propagate the "parent" of each VPBasicBlock. 8599 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8600 VPBlockUtils::connectBlocks(Pred, Exit); 8601 8602 return Region; 8603 } 8604 8605 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8606 VFRange &Range, 8607 VPlanPtr &Plan) { 8608 // First, check for specific widening recipes that deal with calls, memory 8609 // operations, inductions and Phi nodes. 8610 if (auto *CI = dyn_cast<CallInst>(Instr)) 8611 return tryToWidenCall(CI, Range, *Plan); 8612 8613 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8614 return tryToWidenMemory(Instr, Range, Plan); 8615 8616 VPRecipeBase *Recipe; 8617 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8618 if (Phi->getParent() != OrigLoop->getHeader()) 8619 return tryToBlend(Phi, Plan); 8620 if ((Recipe = tryToOptimizeInductionPHI(Phi, *Plan))) 8621 return Recipe; 8622 8623 if (Legal->isReductionVariable(Phi)) { 8624 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8625 VPValue *StartV = 8626 Plan->getOrAddVPValue(RdxDesc.getRecurrenceStartValue()); 8627 return new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8628 } 8629 8630 return new VPWidenPHIRecipe(Phi); 8631 } 8632 8633 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate( 8634 cast<TruncInst>(Instr), Range, *Plan))) 8635 return Recipe; 8636 8637 if (!shouldWiden(Instr, Range)) 8638 return nullptr; 8639 8640 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8641 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 8642 OrigLoop); 8643 8644 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8645 bool InvariantCond = 8646 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8647 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 8648 InvariantCond); 8649 } 8650 8651 return tryToWiden(Instr, *Plan); 8652 } 8653 8654 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8655 ElementCount MaxVF) { 8656 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8657 8658 // Collect instructions from the original loop that will become trivially dead 8659 // in the vectorized loop. We don't need to vectorize these instructions. For 8660 // example, original induction update instructions can become dead because we 8661 // separately emit induction "steps" when generating code for the new loop. 8662 // Similarly, we create a new latch condition when setting up the structure 8663 // of the new loop, so the old one can become dead. 8664 SmallPtrSet<Instruction *, 4> DeadInstructions; 8665 collectTriviallyDeadInstructions(DeadInstructions); 8666 8667 // Add assume instructions we need to drop to DeadInstructions, to prevent 8668 // them from being added to the VPlan. 8669 // TODO: We only need to drop assumes in blocks that get flattend. If the 8670 // control flow is preserved, we should keep them. 8671 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8672 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8673 8674 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8675 // Dead instructions do not need sinking. Remove them from SinkAfter. 8676 for (Instruction *I : DeadInstructions) 8677 SinkAfter.erase(I); 8678 8679 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8680 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8681 VFRange SubRange = {VF, MaxVFPlusOne}; 8682 VPlans.push_back( 8683 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8684 VF = SubRange.End; 8685 } 8686 } 8687 8688 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8689 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8690 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8691 8692 // Hold a mapping from predicated instructions to their recipes, in order to 8693 // fix their AlsoPack behavior if a user is determined to replicate and use a 8694 // scalar instead of vector value. 8695 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8696 8697 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8698 8699 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8700 8701 // --------------------------------------------------------------------------- 8702 // Pre-construction: record ingredients whose recipes we'll need to further 8703 // process after constructing the initial VPlan. 8704 // --------------------------------------------------------------------------- 8705 8706 // Mark instructions we'll need to sink later and their targets as 8707 // ingredients whose recipe we'll need to record. 8708 for (auto &Entry : SinkAfter) { 8709 RecipeBuilder.recordRecipeOf(Entry.first); 8710 RecipeBuilder.recordRecipeOf(Entry.second); 8711 } 8712 for (auto &Reduction : CM.getInLoopReductionChains()) { 8713 PHINode *Phi = Reduction.first; 8714 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 8715 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8716 8717 RecipeBuilder.recordRecipeOf(Phi); 8718 for (auto &R : ReductionOperations) { 8719 RecipeBuilder.recordRecipeOf(R); 8720 // For min/max reducitons, where we have a pair of icmp/select, we also 8721 // need to record the ICmp recipe, so it can be removed later. 8722 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8723 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8724 } 8725 } 8726 8727 // For each interleave group which is relevant for this (possibly trimmed) 8728 // Range, add it to the set of groups to be later applied to the VPlan and add 8729 // placeholders for its members' Recipes which we'll be replacing with a 8730 // single VPInterleaveRecipe. 8731 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8732 auto applyIG = [IG, this](ElementCount VF) -> bool { 8733 return (VF.isVector() && // Query is illegal for VF == 1 8734 CM.getWideningDecision(IG->getInsertPos(), VF) == 8735 LoopVectorizationCostModel::CM_Interleave); 8736 }; 8737 if (!getDecisionAndClampRange(applyIG, Range)) 8738 continue; 8739 InterleaveGroups.insert(IG); 8740 for (unsigned i = 0; i < IG->getFactor(); i++) 8741 if (Instruction *Member = IG->getMember(i)) 8742 RecipeBuilder.recordRecipeOf(Member); 8743 }; 8744 8745 // --------------------------------------------------------------------------- 8746 // Build initial VPlan: Scan the body of the loop in a topological order to 8747 // visit each basic block after having visited its predecessor basic blocks. 8748 // --------------------------------------------------------------------------- 8749 8750 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8751 auto Plan = std::make_unique<VPlan>(); 8752 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8753 Plan->setEntry(VPBB); 8754 8755 // Scan the body of the loop in a topological order to visit each basic block 8756 // after having visited its predecessor basic blocks. 8757 LoopBlocksDFS DFS(OrigLoop); 8758 DFS.perform(LI); 8759 8760 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8761 // Relevant instructions from basic block BB will be grouped into VPRecipe 8762 // ingredients and fill a new VPBasicBlock. 8763 unsigned VPBBsForBB = 0; 8764 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8765 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 8766 VPBB = FirstVPBBForBB; 8767 Builder.setInsertPoint(VPBB); 8768 8769 // Introduce each ingredient into VPlan. 8770 // TODO: Model and preserve debug instrinsics in VPlan. 8771 for (Instruction &I : BB->instructionsWithoutDebug()) { 8772 Instruction *Instr = &I; 8773 8774 // First filter out irrelevant instructions, to ensure no recipes are 8775 // built for them. 8776 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8777 continue; 8778 8779 if (auto Recipe = 8780 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 8781 for (auto *Def : Recipe->definedValues()) { 8782 auto *UV = Def->getUnderlyingValue(); 8783 Plan->addVPValue(UV, Def); 8784 } 8785 8786 RecipeBuilder.setRecipe(Instr, Recipe); 8787 VPBB->appendRecipe(Recipe); 8788 continue; 8789 } 8790 8791 // Otherwise, if all widening options failed, Instruction is to be 8792 // replicated. This may create a successor for VPBB. 8793 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 8794 Instr, Range, VPBB, PredInst2Recipe, Plan); 8795 if (NextVPBB != VPBB) { 8796 VPBB = NextVPBB; 8797 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8798 : ""); 8799 } 8800 } 8801 } 8802 8803 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8804 // may also be empty, such as the last one VPBB, reflecting original 8805 // basic-blocks with no recipes. 8806 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8807 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8808 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8809 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 8810 delete PreEntry; 8811 8812 // --------------------------------------------------------------------------- 8813 // Transform initial VPlan: Apply previously taken decisions, in order, to 8814 // bring the VPlan to its final state. 8815 // --------------------------------------------------------------------------- 8816 8817 // Apply Sink-After legal constraints. 8818 for (auto &Entry : SinkAfter) { 8819 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8820 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8821 // If the target is in a replication region, make sure to move Sink to the 8822 // block after it, not into the replication region itself. 8823 if (auto *Region = 8824 dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) { 8825 if (Region->isReplicator()) { 8826 assert(Region->getNumSuccessors() == 1 && "Expected SESE region!"); 8827 VPBasicBlock *NextBlock = 8828 cast<VPBasicBlock>(Region->getSuccessors().front()); 8829 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8830 continue; 8831 } 8832 } 8833 Sink->moveAfter(Target); 8834 } 8835 8836 // Interleave memory: for each Interleave Group we marked earlier as relevant 8837 // for this VPlan, replace the Recipes widening its memory instructions with a 8838 // single VPInterleaveRecipe at its insertion point. 8839 for (auto IG : InterleaveGroups) { 8840 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8841 RecipeBuilder.getRecipe(IG->getInsertPos())); 8842 SmallVector<VPValue *, 4> StoredValues; 8843 for (unsigned i = 0; i < IG->getFactor(); ++i) 8844 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 8845 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 8846 8847 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8848 Recipe->getMask()); 8849 VPIG->insertBefore(Recipe); 8850 unsigned J = 0; 8851 for (unsigned i = 0; i < IG->getFactor(); ++i) 8852 if (Instruction *Member = IG->getMember(i)) { 8853 if (!Member->getType()->isVoidTy()) { 8854 VPValue *OriginalV = Plan->getVPValue(Member); 8855 Plan->removeVPValueFor(Member); 8856 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8857 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8858 J++; 8859 } 8860 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8861 } 8862 } 8863 8864 // Adjust the recipes for any inloop reductions. 8865 if (Range.Start.isVector()) 8866 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 8867 8868 // Finally, if tail is folded by masking, introduce selects between the phi 8869 // and the live-out instruction of each reduction, at the end of the latch. 8870 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 8871 Builder.setInsertPoint(VPBB); 8872 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 8873 for (auto &Reduction : Legal->getReductionVars()) { 8874 if (CM.isInLoopReduction(Reduction.first)) 8875 continue; 8876 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 8877 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 8878 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 8879 } 8880 } 8881 8882 std::string PlanName; 8883 raw_string_ostream RSO(PlanName); 8884 ElementCount VF = Range.Start; 8885 Plan->addVF(VF); 8886 RSO << "Initial VPlan for VF={" << VF; 8887 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 8888 Plan->addVF(VF); 8889 RSO << "," << VF; 8890 } 8891 RSO << "},UF>=1"; 8892 RSO.flush(); 8893 Plan->setName(PlanName); 8894 8895 return Plan; 8896 } 8897 8898 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8899 // Outer loop handling: They may require CFG and instruction level 8900 // transformations before even evaluating whether vectorization is profitable. 8901 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8902 // the vectorization pipeline. 8903 assert(!OrigLoop->isInnermost()); 8904 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8905 8906 // Create new empty VPlan 8907 auto Plan = std::make_unique<VPlan>(); 8908 8909 // Build hierarchical CFG 8910 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 8911 HCFGBuilder.buildHierarchicalCFG(); 8912 8913 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 8914 VF *= 2) 8915 Plan->addVF(VF); 8916 8917 if (EnableVPlanPredication) { 8918 VPlanPredicator VPP(*Plan); 8919 VPP.predicate(); 8920 8921 // Avoid running transformation to recipes until masked code generation in 8922 // VPlan-native path is in place. 8923 return Plan; 8924 } 8925 8926 SmallPtrSet<Instruction *, 1> DeadInstructions; 8927 VPlanTransforms::VPInstructionsToVPRecipes( 8928 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 8929 return Plan; 8930 } 8931 8932 // Adjust the recipes for any inloop reductions. The chain of instructions 8933 // leading from the loop exit instr to the phi need to be converted to 8934 // reductions, with one operand being vector and the other being the scalar 8935 // reduction chain. 8936 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 8937 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 8938 for (auto &Reduction : CM.getInLoopReductionChains()) { 8939 PHINode *Phi = Reduction.first; 8940 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8941 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8942 8943 // ReductionOperations are orders top-down from the phi's use to the 8944 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 8945 // which of the two operands will remain scalar and which will be reduced. 8946 // For minmax the chain will be the select instructions. 8947 Instruction *Chain = Phi; 8948 for (Instruction *R : ReductionOperations) { 8949 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 8950 RecurKind Kind = RdxDesc.getRecurrenceKind(); 8951 8952 VPValue *ChainOp = Plan->getVPValue(Chain); 8953 unsigned FirstOpId; 8954 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8955 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 8956 "Expected to replace a VPWidenSelectSC"); 8957 FirstOpId = 1; 8958 } else { 8959 assert(isa<VPWidenRecipe>(WidenRecipe) && 8960 "Expected to replace a VPWidenSC"); 8961 FirstOpId = 0; 8962 } 8963 unsigned VecOpId = 8964 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 8965 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 8966 8967 auto *CondOp = CM.foldTailByMasking() 8968 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 8969 : nullptr; 8970 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 8971 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 8972 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8973 Plan->removeVPValueFor(R); 8974 Plan->addVPValue(R, RedRecipe); 8975 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 8976 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8977 WidenRecipe->eraseFromParent(); 8978 8979 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8980 VPRecipeBase *CompareRecipe = 8981 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 8982 assert(isa<VPWidenRecipe>(CompareRecipe) && 8983 "Expected to replace a VPWidenSC"); 8984 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 8985 "Expected no remaining users"); 8986 CompareRecipe->eraseFromParent(); 8987 } 8988 Chain = R; 8989 } 8990 } 8991 } 8992 8993 Value* LoopVectorizationPlanner::VPCallbackILV:: 8994 getOrCreateVectorValues(Value *V, unsigned Part) { 8995 return ILV.getOrCreateVectorValue(V, Part); 8996 } 8997 8998 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 8999 Value *V, const VPIteration &Instance) { 9000 return ILV.getOrCreateScalarValue(V, Instance); 9001 } 9002 9003 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9004 VPSlotTracker &SlotTracker) const { 9005 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9006 IG->getInsertPos()->printAsOperand(O, false); 9007 O << ", "; 9008 getAddr()->printAsOperand(O, SlotTracker); 9009 VPValue *Mask = getMask(); 9010 if (Mask) { 9011 O << ", "; 9012 Mask->printAsOperand(O, SlotTracker); 9013 } 9014 for (unsigned i = 0; i < IG->getFactor(); ++i) 9015 if (Instruction *I = IG->getMember(i)) 9016 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 9017 } 9018 9019 void VPWidenCallRecipe::execute(VPTransformState &State) { 9020 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9021 *this, State); 9022 } 9023 9024 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9025 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9026 this, *this, InvariantCond, State); 9027 } 9028 9029 void VPWidenRecipe::execute(VPTransformState &State) { 9030 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9031 } 9032 9033 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9034 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9035 *this, State.UF, State.VF, IsPtrLoopInvariant, 9036 IsIndexLoopInvariant, State); 9037 } 9038 9039 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9040 assert(!State.Instance && "Int or FP induction being replicated."); 9041 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9042 getTruncInst(), getVPValue(0), 9043 getCastValue(), State); 9044 } 9045 9046 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9047 Value *StartV = 9048 getStartValue() ? getStartValue()->getLiveInIRValue() : nullptr; 9049 State.ILV->widenPHIInstruction(Phi, RdxDesc, StartV, State.UF, State.VF); 9050 } 9051 9052 void VPBlendRecipe::execute(VPTransformState &State) { 9053 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9054 // We know that all PHIs in non-header blocks are converted into 9055 // selects, so we don't have to worry about the insertion order and we 9056 // can just use the builder. 9057 // At this point we generate the predication tree. There may be 9058 // duplications since this is a simple recursive scan, but future 9059 // optimizations will clean it up. 9060 9061 unsigned NumIncoming = getNumIncomingValues(); 9062 9063 // Generate a sequence of selects of the form: 9064 // SELECT(Mask3, In3, 9065 // SELECT(Mask2, In2, 9066 // SELECT(Mask1, In1, 9067 // In0))) 9068 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9069 // are essentially undef are taken from In0. 9070 InnerLoopVectorizer::VectorParts Entry(State.UF); 9071 for (unsigned In = 0; In < NumIncoming; ++In) { 9072 for (unsigned Part = 0; Part < State.UF; ++Part) { 9073 // We might have single edge PHIs (blocks) - use an identity 9074 // 'select' for the first PHI operand. 9075 Value *In0 = State.get(getIncomingValue(In), Part); 9076 if (In == 0) 9077 Entry[Part] = In0; // Initialize with the first incoming value. 9078 else { 9079 // Select between the current value and the previous incoming edge 9080 // based on the incoming mask. 9081 Value *Cond = State.get(getMask(In), Part); 9082 Entry[Part] = 9083 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9084 } 9085 } 9086 } 9087 for (unsigned Part = 0; Part < State.UF; ++Part) 9088 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 9089 } 9090 9091 void VPInterleaveRecipe::execute(VPTransformState &State) { 9092 assert(!State.Instance && "Interleave group being replicated."); 9093 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9094 getStoredValues(), getMask()); 9095 } 9096 9097 void VPReductionRecipe::execute(VPTransformState &State) { 9098 assert(!State.Instance && "Reduction being replicated."); 9099 for (unsigned Part = 0; Part < State.UF; ++Part) { 9100 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9101 Value *NewVecOp = State.get(getVecOp(), Part); 9102 if (VPValue *Cond = getCondOp()) { 9103 Value *NewCond = State.get(Cond, Part); 9104 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9105 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9106 Kind, VecTy->getElementType()); 9107 Constant *IdenVec = 9108 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9109 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9110 NewVecOp = Select; 9111 } 9112 Value *NewRed = 9113 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9114 Value *PrevInChain = State.get(getChainOp(), Part); 9115 Value *NextInChain; 9116 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9117 NextInChain = 9118 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9119 NewRed, PrevInChain); 9120 } else { 9121 NextInChain = State.Builder.CreateBinOp( 9122 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9123 PrevInChain); 9124 } 9125 State.set(this, getUnderlyingInstr(), NextInChain, Part); 9126 } 9127 } 9128 9129 void VPReplicateRecipe::execute(VPTransformState &State) { 9130 if (State.Instance) { // Generate a single instance. 9131 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9132 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, 9133 *State.Instance, IsPredicated, State); 9134 // Insert scalar instance packing it into a vector. 9135 if (AlsoPack && State.VF.isVector()) { 9136 // If we're constructing lane 0, initialize to start from poison. 9137 if (State.Instance->Lane == 0) { 9138 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9139 Value *Poison = PoisonValue::get( 9140 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9141 State.ValueMap.setVectorValue(getUnderlyingInstr(), 9142 State.Instance->Part, Poison); 9143 } 9144 State.ILV->packScalarIntoVectorValue(getUnderlyingInstr(), 9145 *State.Instance); 9146 } 9147 return; 9148 } 9149 9150 // Generate scalar instances for all VF lanes of all UF parts, unless the 9151 // instruction is uniform inwhich case generate only the first lane for each 9152 // of the UF parts. 9153 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9154 assert((!State.VF.isScalable() || IsUniform) && 9155 "Can't scalarize a scalable vector"); 9156 for (unsigned Part = 0; Part < State.UF; ++Part) 9157 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9158 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, 9159 VPIteration(Part, Lane), IsPredicated, 9160 State); 9161 } 9162 9163 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9164 assert(State.Instance && "Branch on Mask works only on single instance."); 9165 9166 unsigned Part = State.Instance->Part; 9167 unsigned Lane = State.Instance->Lane; 9168 9169 Value *ConditionBit = nullptr; 9170 VPValue *BlockInMask = getMask(); 9171 if (BlockInMask) { 9172 ConditionBit = State.get(BlockInMask, Part); 9173 if (ConditionBit->getType()->isVectorTy()) 9174 ConditionBit = State.Builder.CreateExtractElement( 9175 ConditionBit, State.Builder.getInt32(Lane)); 9176 } else // Block in mask is all-one. 9177 ConditionBit = State.Builder.getTrue(); 9178 9179 // Replace the temporary unreachable terminator with a new conditional branch, 9180 // whose two destinations will be set later when they are created. 9181 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9182 assert(isa<UnreachableInst>(CurrentTerminator) && 9183 "Expected to replace unreachable terminator with conditional branch."); 9184 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9185 CondBr->setSuccessor(0, nullptr); 9186 ReplaceInstWithInst(CurrentTerminator, CondBr); 9187 } 9188 9189 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9190 assert(State.Instance && "Predicated instruction PHI works per instance."); 9191 Instruction *ScalarPredInst = 9192 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9193 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9194 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9195 assert(PredicatingBB && "Predicated block has no single predecessor."); 9196 9197 // By current pack/unpack logic we need to generate only a single phi node: if 9198 // a vector value for the predicated instruction exists at this point it means 9199 // the instruction has vector users only, and a phi for the vector value is 9200 // needed. In this case the recipe of the predicated instruction is marked to 9201 // also do that packing, thereby "hoisting" the insert-element sequence. 9202 // Otherwise, a phi node for the scalar value is needed. 9203 unsigned Part = State.Instance->Part; 9204 Instruction *PredInst = 9205 cast<Instruction>(getOperand(0)->getUnderlyingValue()); 9206 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 9207 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 9208 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9209 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9210 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9211 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9212 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 9213 } else { 9214 Type *PredInstType = PredInst->getType(); 9215 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9216 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), PredicatingBB); 9217 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9218 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 9219 } 9220 } 9221 9222 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9223 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9224 State.ILV->vectorizeMemoryInstruction(&Ingredient, State, 9225 StoredValue ? nullptr : getVPValue(), 9226 getAddr(), StoredValue, getMask()); 9227 } 9228 9229 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9230 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9231 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9232 // for predication. 9233 static ScalarEpilogueLowering getScalarEpilogueLowering( 9234 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9235 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9236 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9237 LoopVectorizationLegality &LVL) { 9238 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9239 // don't look at hints or options, and don't request a scalar epilogue. 9240 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9241 // LoopAccessInfo (due to code dependency and not being able to reliably get 9242 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9243 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9244 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9245 // back to the old way and vectorize with versioning when forced. See D81345.) 9246 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9247 PGSOQueryType::IRPass) && 9248 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9249 return CM_ScalarEpilogueNotAllowedOptSize; 9250 9251 // 2) If set, obey the directives 9252 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9253 switch (PreferPredicateOverEpilogue) { 9254 case PreferPredicateTy::ScalarEpilogue: 9255 return CM_ScalarEpilogueAllowed; 9256 case PreferPredicateTy::PredicateElseScalarEpilogue: 9257 return CM_ScalarEpilogueNotNeededUsePredicate; 9258 case PreferPredicateTy::PredicateOrDontVectorize: 9259 return CM_ScalarEpilogueNotAllowedUsePredicate; 9260 }; 9261 } 9262 9263 // 3) If set, obey the hints 9264 switch (Hints.getPredicate()) { 9265 case LoopVectorizeHints::FK_Enabled: 9266 return CM_ScalarEpilogueNotNeededUsePredicate; 9267 case LoopVectorizeHints::FK_Disabled: 9268 return CM_ScalarEpilogueAllowed; 9269 }; 9270 9271 // 4) if the TTI hook indicates this is profitable, request predication. 9272 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9273 LVL.getLAI())) 9274 return CM_ScalarEpilogueNotNeededUsePredicate; 9275 9276 return CM_ScalarEpilogueAllowed; 9277 } 9278 9279 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 9280 const VPIteration &Instance) { 9281 set(Def, V, Instance); 9282 ILV->setScalarValue(IRDef, Instance, V); 9283 } 9284 9285 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 9286 unsigned Part) { 9287 set(Def, V, Part); 9288 ILV->setVectorValue(IRDef, Part, V); 9289 } 9290 9291 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9292 // If Values have been set for this Def return the one relevant for \p Part. 9293 if (hasVectorValue(Def, Part)) 9294 return Data.PerPartOutput[Def][Part]; 9295 9296 // TODO: Remove the callback once all scalar recipes are managed using 9297 // VPValues. 9298 if (!hasScalarValue(Def, {Part, 0})) 9299 return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); 9300 9301 Value *ScalarValue = get(Def, {Part, 0}); 9302 // If we aren't vectorizing, we can just copy the scalar map values over 9303 // to the vector map. 9304 if (VF.isScalar()) { 9305 set(Def, ScalarValue, Part); 9306 return ScalarValue; 9307 } 9308 9309 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9310 bool IsUniform = RepR && RepR->isUniform(); 9311 9312 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9313 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9314 9315 // Set the insert point after the last scalarized instruction. This 9316 // ensures the insertelement sequence will directly follow the scalar 9317 // definitions. 9318 auto OldIP = Builder.saveIP(); 9319 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9320 Builder.SetInsertPoint(&*NewIP); 9321 9322 // However, if we are vectorizing, we need to construct the vector values. 9323 // If the value is known to be uniform after vectorization, we can just 9324 // broadcast the scalar value corresponding to lane zero for each unroll 9325 // iteration. Otherwise, we construct the vector values using 9326 // insertelement instructions. Since the resulting vectors are stored in 9327 // VectorLoopValueMap, we will only generate the insertelements once. 9328 Value *VectorValue = nullptr; 9329 if (IsUniform) { 9330 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9331 set(Def, VectorValue, Part); 9332 } else { 9333 // Initialize packing with insertelements to start from undef. 9334 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9335 Value *Undef = UndefValue::get(VectorType::get(LastInst->getType(), VF)); 9336 set(Def, Undef, Part); 9337 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9338 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9339 VectorValue = get(Def, Part); 9340 } 9341 Builder.restoreIP(OldIP); 9342 return VectorValue; 9343 } 9344 9345 // Process the loop in the VPlan-native vectorization path. This path builds 9346 // VPlan upfront in the vectorization pipeline, which allows to apply 9347 // VPlan-to-VPlan transformations from the very beginning without modifying the 9348 // input LLVM IR. 9349 static bool processLoopInVPlanNativePath( 9350 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9351 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9352 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9353 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9354 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 9355 9356 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9357 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9358 return false; 9359 } 9360 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9361 Function *F = L->getHeader()->getParent(); 9362 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9363 9364 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9365 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9366 9367 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9368 &Hints, IAI); 9369 // Use the planner for outer loop vectorization. 9370 // TODO: CM is not used at this point inside the planner. Turn CM into an 9371 // optional argument if we don't need it in the future. 9372 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 9373 9374 // Get user vectorization factor. 9375 ElementCount UserVF = Hints.getWidth(); 9376 9377 // Plan how to best vectorize, return the best VF and its cost. 9378 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9379 9380 // If we are stress testing VPlan builds, do not attempt to generate vector 9381 // code. Masked vector code generation support will follow soon. 9382 // Also, do not attempt to vectorize if no vector code will be produced. 9383 if (VPlanBuildStressTest || EnableVPlanPredication || 9384 VectorizationFactor::Disabled() == VF) 9385 return false; 9386 9387 LVP.setBestPlan(VF.Width, 1); 9388 9389 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9390 &CM, BFI, PSI); 9391 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9392 << L->getHeader()->getParent()->getName() << "\"\n"); 9393 LVP.executePlan(LB, DT); 9394 9395 // Mark the loop as already vectorized to avoid vectorizing again. 9396 Hints.setAlreadyVectorized(); 9397 9398 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9399 return true; 9400 } 9401 9402 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9403 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9404 !EnableLoopInterleaving), 9405 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9406 !EnableLoopVectorization) {} 9407 9408 bool LoopVectorizePass::processLoop(Loop *L) { 9409 assert((EnableVPlanNativePath || L->isInnermost()) && 9410 "VPlan-native path is not enabled. Only process inner loops."); 9411 9412 #ifndef NDEBUG 9413 const std::string DebugLocStr = getDebugLocString(L); 9414 #endif /* NDEBUG */ 9415 9416 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9417 << L->getHeader()->getParent()->getName() << "\" from " 9418 << DebugLocStr << "\n"); 9419 9420 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9421 9422 LLVM_DEBUG( 9423 dbgs() << "LV: Loop hints:" 9424 << " force=" 9425 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9426 ? "disabled" 9427 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9428 ? "enabled" 9429 : "?")) 9430 << " width=" << Hints.getWidth() 9431 << " unroll=" << Hints.getInterleave() << "\n"); 9432 9433 // Function containing loop 9434 Function *F = L->getHeader()->getParent(); 9435 9436 // Looking at the diagnostic output is the only way to determine if a loop 9437 // was vectorized (other than looking at the IR or machine code), so it 9438 // is important to generate an optimization remark for each loop. Most of 9439 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9440 // generated as OptimizationRemark and OptimizationRemarkMissed are 9441 // less verbose reporting vectorized loops and unvectorized loops that may 9442 // benefit from vectorization, respectively. 9443 9444 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9445 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9446 return false; 9447 } 9448 9449 PredicatedScalarEvolution PSE(*SE, *L); 9450 9451 // Check if it is legal to vectorize the loop. 9452 LoopVectorizationRequirements Requirements(*ORE); 9453 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9454 &Requirements, &Hints, DB, AC, BFI, PSI); 9455 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9456 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9457 Hints.emitRemarkWithHints(); 9458 return false; 9459 } 9460 9461 // Check the function attributes and profiles to find out if this function 9462 // should be optimized for size. 9463 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9464 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9465 9466 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9467 // here. They may require CFG and instruction level transformations before 9468 // even evaluating whether vectorization is profitable. Since we cannot modify 9469 // the incoming IR, we need to build VPlan upfront in the vectorization 9470 // pipeline. 9471 if (!L->isInnermost()) 9472 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9473 ORE, BFI, PSI, Hints); 9474 9475 assert(L->isInnermost() && "Inner loop expected."); 9476 9477 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9478 // count by optimizing for size, to minimize overheads. 9479 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9480 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9481 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9482 << "This loop is worth vectorizing only if no scalar " 9483 << "iteration overheads are incurred."); 9484 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9485 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9486 else { 9487 LLVM_DEBUG(dbgs() << "\n"); 9488 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9489 } 9490 } 9491 9492 // Check the function attributes to see if implicit floats are allowed. 9493 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9494 // an integer loop and the vector instructions selected are purely integer 9495 // vector instructions? 9496 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9497 reportVectorizationFailure( 9498 "Can't vectorize when the NoImplicitFloat attribute is used", 9499 "loop not vectorized due to NoImplicitFloat attribute", 9500 "NoImplicitFloat", ORE, L); 9501 Hints.emitRemarkWithHints(); 9502 return false; 9503 } 9504 9505 // Check if the target supports potentially unsafe FP vectorization. 9506 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9507 // for the target we're vectorizing for, to make sure none of the 9508 // additional fp-math flags can help. 9509 if (Hints.isPotentiallyUnsafe() && 9510 TTI->isFPVectorizationPotentiallyUnsafe()) { 9511 reportVectorizationFailure( 9512 "Potentially unsafe FP op prevents vectorization", 9513 "loop not vectorized due to unsafe FP support.", 9514 "UnsafeFP", ORE, L); 9515 Hints.emitRemarkWithHints(); 9516 return false; 9517 } 9518 9519 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9520 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9521 9522 // If an override option has been passed in for interleaved accesses, use it. 9523 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9524 UseInterleaved = EnableInterleavedMemAccesses; 9525 9526 // Analyze interleaved memory accesses. 9527 if (UseInterleaved) { 9528 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9529 } 9530 9531 // Use the cost model. 9532 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9533 F, &Hints, IAI); 9534 CM.collectValuesToIgnore(); 9535 9536 // Use the planner for vectorization. 9537 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 9538 9539 // Get user vectorization factor and interleave count. 9540 ElementCount UserVF = Hints.getWidth(); 9541 unsigned UserIC = Hints.getInterleave(); 9542 9543 // Plan how to best vectorize, return the best VF and its cost. 9544 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9545 9546 VectorizationFactor VF = VectorizationFactor::Disabled(); 9547 unsigned IC = 1; 9548 9549 if (MaybeVF) { 9550 VF = *MaybeVF; 9551 // Select the interleave count. 9552 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 9553 } 9554 9555 // Identify the diagnostic messages that should be produced. 9556 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9557 bool VectorizeLoop = true, InterleaveLoop = true; 9558 if (Requirements.doesNotMeet(F, L, Hints)) { 9559 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 9560 "requirements.\n"); 9561 Hints.emitRemarkWithHints(); 9562 return false; 9563 } 9564 9565 if (VF.Width.isScalar()) { 9566 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9567 VecDiagMsg = std::make_pair( 9568 "VectorizationNotBeneficial", 9569 "the cost-model indicates that vectorization is not beneficial"); 9570 VectorizeLoop = false; 9571 } 9572 9573 if (!MaybeVF && UserIC > 1) { 9574 // Tell the user interleaving was avoided up-front, despite being explicitly 9575 // requested. 9576 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9577 "interleaving should be avoided up front\n"); 9578 IntDiagMsg = std::make_pair( 9579 "InterleavingAvoided", 9580 "Ignoring UserIC, because interleaving was avoided up front"); 9581 InterleaveLoop = false; 9582 } else if (IC == 1 && UserIC <= 1) { 9583 // Tell the user interleaving is not beneficial. 9584 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9585 IntDiagMsg = std::make_pair( 9586 "InterleavingNotBeneficial", 9587 "the cost-model indicates that interleaving is not beneficial"); 9588 InterleaveLoop = false; 9589 if (UserIC == 1) { 9590 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9591 IntDiagMsg.second += 9592 " and is explicitly disabled or interleave count is set to 1"; 9593 } 9594 } else if (IC > 1 && UserIC == 1) { 9595 // Tell the user interleaving is beneficial, but it explicitly disabled. 9596 LLVM_DEBUG( 9597 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9598 IntDiagMsg = std::make_pair( 9599 "InterleavingBeneficialButDisabled", 9600 "the cost-model indicates that interleaving is beneficial " 9601 "but is explicitly disabled or interleave count is set to 1"); 9602 InterleaveLoop = false; 9603 } 9604 9605 // Override IC if user provided an interleave count. 9606 IC = UserIC > 0 ? UserIC : IC; 9607 9608 // Emit diagnostic messages, if any. 9609 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 9610 if (!VectorizeLoop && !InterleaveLoop) { 9611 // Do not vectorize or interleaving the loop. 9612 ORE->emit([&]() { 9613 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 9614 L->getStartLoc(), L->getHeader()) 9615 << VecDiagMsg.second; 9616 }); 9617 ORE->emit([&]() { 9618 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 9619 L->getStartLoc(), L->getHeader()) 9620 << IntDiagMsg.second; 9621 }); 9622 return false; 9623 } else if (!VectorizeLoop && InterleaveLoop) { 9624 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9625 ORE->emit([&]() { 9626 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 9627 L->getStartLoc(), L->getHeader()) 9628 << VecDiagMsg.second; 9629 }); 9630 } else if (VectorizeLoop && !InterleaveLoop) { 9631 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9632 << ") in " << DebugLocStr << '\n'); 9633 ORE->emit([&]() { 9634 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 9635 L->getStartLoc(), L->getHeader()) 9636 << IntDiagMsg.second; 9637 }); 9638 } else if (VectorizeLoop && InterleaveLoop) { 9639 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9640 << ") in " << DebugLocStr << '\n'); 9641 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9642 } 9643 9644 LVP.setBestPlan(VF.Width, IC); 9645 9646 using namespace ore; 9647 bool DisableRuntimeUnroll = false; 9648 MDNode *OrigLoopID = L->getLoopID(); 9649 9650 if (!VectorizeLoop) { 9651 assert(IC > 1 && "interleave count should not be 1 or 0"); 9652 // If we decided that it is not legal to vectorize the loop, then 9653 // interleave it. 9654 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 9655 BFI, PSI); 9656 LVP.executePlan(Unroller, DT); 9657 9658 ORE->emit([&]() { 9659 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 9660 L->getHeader()) 9661 << "interleaved loop (interleaved count: " 9662 << NV("InterleaveCount", IC) << ")"; 9663 }); 9664 } else { 9665 // If we decided that it is *legal* to vectorize the loop, then do it. 9666 9667 // Consider vectorizing the epilogue too if it's profitable. 9668 VectorizationFactor EpilogueVF = 9669 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 9670 if (EpilogueVF.Width.isVector()) { 9671 9672 // The first pass vectorizes the main loop and creates a scalar epilogue 9673 // to be vectorized by executing the plan (potentially with a different 9674 // factor) again shortly afterwards. 9675 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 9676 EpilogueVF.Width.getKnownMinValue(), 1); 9677 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, EPI, 9678 &LVL, &CM, BFI, PSI); 9679 9680 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 9681 LVP.executePlan(MainILV, DT); 9682 ++LoopsVectorized; 9683 9684 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9685 formLCSSARecursively(*L, *DT, LI, SE); 9686 9687 // Second pass vectorizes the epilogue and adjusts the control flow 9688 // edges from the first pass. 9689 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 9690 EPI.MainLoopVF = EPI.EpilogueVF; 9691 EPI.MainLoopUF = EPI.EpilogueUF; 9692 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 9693 ORE, EPI, &LVL, &CM, BFI, PSI); 9694 LVP.executePlan(EpilogILV, DT); 9695 ++LoopsEpilogueVectorized; 9696 9697 if (!MainILV.areSafetyChecksAdded()) 9698 DisableRuntimeUnroll = true; 9699 } else { 9700 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 9701 &LVL, &CM, BFI, PSI); 9702 LVP.executePlan(LB, DT); 9703 ++LoopsVectorized; 9704 9705 // Add metadata to disable runtime unrolling a scalar loop when there are 9706 // no runtime checks about strides and memory. A scalar loop that is 9707 // rarely used is not worth unrolling. 9708 if (!LB.areSafetyChecksAdded()) 9709 DisableRuntimeUnroll = true; 9710 } 9711 9712 // Report the vectorization decision. 9713 ORE->emit([&]() { 9714 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 9715 L->getHeader()) 9716 << "vectorized loop (vectorization width: " 9717 << NV("VectorizationFactor", VF.Width) 9718 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 9719 }); 9720 } 9721 9722 Optional<MDNode *> RemainderLoopID = 9723 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 9724 LLVMLoopVectorizeFollowupEpilogue}); 9725 if (RemainderLoopID.hasValue()) { 9726 L->setLoopID(RemainderLoopID.getValue()); 9727 } else { 9728 if (DisableRuntimeUnroll) 9729 AddRuntimeUnrollDisableMetaData(L); 9730 9731 // Mark the loop as already vectorized to avoid vectorizing again. 9732 Hints.setAlreadyVectorized(); 9733 } 9734 9735 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9736 return true; 9737 } 9738 9739 LoopVectorizeResult LoopVectorizePass::runImpl( 9740 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 9741 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 9742 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 9743 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 9744 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 9745 SE = &SE_; 9746 LI = &LI_; 9747 TTI = &TTI_; 9748 DT = &DT_; 9749 BFI = &BFI_; 9750 TLI = TLI_; 9751 AA = &AA_; 9752 AC = &AC_; 9753 GetLAA = &GetLAA_; 9754 DB = &DB_; 9755 ORE = &ORE_; 9756 PSI = PSI_; 9757 9758 // Don't attempt if 9759 // 1. the target claims to have no vector registers, and 9760 // 2. interleaving won't help ILP. 9761 // 9762 // The second condition is necessary because, even if the target has no 9763 // vector registers, loop vectorization may still enable scalar 9764 // interleaving. 9765 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 9766 TTI->getMaxInterleaveFactor(1) < 2) 9767 return LoopVectorizeResult(false, false); 9768 9769 bool Changed = false, CFGChanged = false; 9770 9771 // The vectorizer requires loops to be in simplified form. 9772 // Since simplification may add new inner loops, it has to run before the 9773 // legality and profitability checks. This means running the loop vectorizer 9774 // will simplify all loops, regardless of whether anything end up being 9775 // vectorized. 9776 for (auto &L : *LI) 9777 Changed |= CFGChanged |= 9778 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9779 9780 // Build up a worklist of inner-loops to vectorize. This is necessary as 9781 // the act of vectorizing or partially unrolling a loop creates new loops 9782 // and can invalidate iterators across the loops. 9783 SmallVector<Loop *, 8> Worklist; 9784 9785 for (Loop *L : *LI) 9786 collectSupportedLoops(*L, LI, ORE, Worklist); 9787 9788 LoopsAnalyzed += Worklist.size(); 9789 9790 // Now walk the identified inner loops. 9791 while (!Worklist.empty()) { 9792 Loop *L = Worklist.pop_back_val(); 9793 9794 // For the inner loops we actually process, form LCSSA to simplify the 9795 // transform. 9796 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 9797 9798 Changed |= CFGChanged |= processLoop(L); 9799 } 9800 9801 // Process each loop nest in the function. 9802 return LoopVectorizeResult(Changed, CFGChanged); 9803 } 9804 9805 PreservedAnalyses LoopVectorizePass::run(Function &F, 9806 FunctionAnalysisManager &AM) { 9807 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 9808 auto &LI = AM.getResult<LoopAnalysis>(F); 9809 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 9810 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 9811 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 9812 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 9813 auto &AA = AM.getResult<AAManager>(F); 9814 auto &AC = AM.getResult<AssumptionAnalysis>(F); 9815 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 9816 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9817 MemorySSA *MSSA = EnableMSSALoopDependency 9818 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 9819 : nullptr; 9820 9821 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 9822 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 9823 [&](Loop &L) -> const LoopAccessInfo & { 9824 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 9825 TLI, TTI, nullptr, MSSA}; 9826 return LAM.getResult<LoopAccessAnalysis>(L, AR); 9827 }; 9828 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 9829 ProfileSummaryInfo *PSI = 9830 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 9831 LoopVectorizeResult Result = 9832 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 9833 if (!Result.MadeAnyChange) 9834 return PreservedAnalyses::all(); 9835 PreservedAnalyses PA; 9836 9837 // We currently do not preserve loopinfo/dominator analyses with outer loop 9838 // vectorization. Until this is addressed, mark these analyses as preserved 9839 // only for non-VPlan-native path. 9840 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 9841 if (!EnableVPlanNativePath) { 9842 PA.preserve<LoopAnalysis>(); 9843 PA.preserve<DominatorTreeAnalysis>(); 9844 } 9845 PA.preserve<BasicAA>(); 9846 PA.preserve<GlobalsAA>(); 9847 if (!Result.MadeCFGChange) 9848 PA.preserveSet<CFGAnalyses>(); 9849 return PA; 9850 } 9851