1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #define LV_NAME "loop-vectorize" 46 #define DEBUG_TYPE LV_NAME 47 48 #include "llvm/Transforms/Vectorize.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/EquivalenceClasses.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/Analysis/AliasAnalysis.h" 58 #include "llvm/Analysis/Dominators.h" 59 #include "llvm/Analysis/LoopInfo.h" 60 #include "llvm/Analysis/LoopIterator.h" 61 #include "llvm/Analysis/LoopPass.h" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/Analysis/ScalarEvolutionExpander.h" 64 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/Analysis/ValueTracking.h" 67 #include "llvm/Analysis/Verifier.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/LLVMContext.h" 76 #include "llvm/IR/Module.h" 77 #include "llvm/IR/Type.h" 78 #include "llvm/IR/Value.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/PatternMatch.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Support/ValueHandle.h" 85 #include "llvm/Target/TargetLibraryInfo.h" 86 #include "llvm/Transforms/Scalar.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/Local.h" 89 #include <algorithm> 90 #include <map> 91 92 using namespace llvm; 93 using namespace llvm::PatternMatch; 94 95 static cl::opt<unsigned> 96 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 97 cl::desc("Sets the SIMD width. Zero is autoselect.")); 98 99 static cl::opt<unsigned> 100 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 101 cl::desc("Sets the vectorization unroll count. " 102 "Zero is autoselect.")); 103 104 static cl::opt<bool> 105 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 106 cl::desc("Enable if-conversion during vectorization.")); 107 108 /// We don't vectorize loops with a known constant trip count below this number. 109 static cl::opt<unsigned> 110 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 111 cl::Hidden, 112 cl::desc("Don't vectorize loops with a constant " 113 "trip count that is smaller than this " 114 "value.")); 115 116 /// We don't unroll loops with a known constant trip count below this number. 117 static const unsigned TinyTripCountUnrollThreshold = 128; 118 119 /// When performing memory disambiguation checks at runtime do not make more 120 /// than this number of comparisons. 121 static const unsigned RuntimeMemoryCheckThreshold = 8; 122 123 /// Maximum simd width. 124 static const unsigned MaxVectorWidth = 64; 125 126 /// Maximum vectorization unroll count. 127 static const unsigned MaxUnrollFactor = 16; 128 129 /// The cost of a loop that is considered 'small' by the unroller. 130 static const unsigned SmallLoopCost = 20; 131 132 namespace { 133 134 // Forward declarations. 135 class LoopVectorizationLegality; 136 class LoopVectorizationCostModel; 137 138 /// InnerLoopVectorizer vectorizes loops which contain only one basic 139 /// block to a specified vectorization factor (VF). 140 /// This class performs the widening of scalars into vectors, or multiple 141 /// scalars. This class also implements the following features: 142 /// * It inserts an epilogue loop for handling loops that don't have iteration 143 /// counts that are known to be a multiple of the vectorization factor. 144 /// * It handles the code generation for reduction variables. 145 /// * Scalarization (implementation using scalars) of un-vectorizable 146 /// instructions. 147 /// InnerLoopVectorizer does not perform any vectorization-legality 148 /// checks, and relies on the caller to check for the different legality 149 /// aspects. The InnerLoopVectorizer relies on the 150 /// LoopVectorizationLegality class to provide information about the induction 151 /// and reduction variables that were found to a given vectorization factor. 152 class InnerLoopVectorizer { 153 public: 154 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 155 DominatorTree *DT, DataLayout *DL, 156 const TargetLibraryInfo *TLI, unsigned VecWidth, 157 unsigned UnrollFactor) 158 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 159 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0), 160 OldInduction(0), WidenMap(UnrollFactor) {} 161 162 // Perform the actual loop widening (vectorization). 163 void vectorize(LoopVectorizationLegality *Legal) { 164 // Create a new empty loop. Unlink the old loop and connect the new one. 165 createEmptyLoop(Legal); 166 // Widen each instruction in the old loop to a new one in the new loop. 167 // Use the Legality module to find the induction and reduction variables. 168 vectorizeLoop(Legal); 169 // Register the new loop and update the analysis passes. 170 updateAnalysis(); 171 } 172 173 virtual ~InnerLoopVectorizer() {} 174 175 protected: 176 /// A small list of PHINodes. 177 typedef SmallVector<PHINode*, 4> PhiVector; 178 /// When we unroll loops we have multiple vector values for each scalar. 179 /// This data structure holds the unrolled and vectorized values that 180 /// originated from one scalar instruction. 181 typedef SmallVector<Value*, 2> VectorParts; 182 183 // When we if-convert we need create edge masks. We have to cache values so 184 // that we don't end up with exponential recursion/IR. 185 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 186 VectorParts> EdgeMaskCache; 187 188 /// Add code that checks at runtime if the accessed arrays overlap. 189 /// Returns the comparator value or NULL if no check is needed. 190 Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal, 191 Instruction *Loc); 192 /// Create an empty loop, based on the loop ranges of the old loop. 193 void createEmptyLoop(LoopVectorizationLegality *Legal); 194 /// Copy and widen the instructions from the old loop. 195 virtual void vectorizeLoop(LoopVectorizationLegality *Legal); 196 197 /// \brief The Loop exit block may have single value PHI nodes where the 198 /// incoming value is 'Undef'. While vectorizing we only handled real values 199 /// that were defined inside the loop. Here we fix the 'undef case'. 200 /// See PR14725. 201 void fixLCSSAPHIs(); 202 203 /// A helper function that computes the predicate of the block BB, assuming 204 /// that the header block of the loop is set to True. It returns the *entry* 205 /// mask for the block BB. 206 VectorParts createBlockInMask(BasicBlock *BB); 207 /// A helper function that computes the predicate of the edge between SRC 208 /// and DST. 209 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 210 211 /// A helper function to vectorize a single BB within the innermost loop. 212 void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB, 213 PhiVector *PV); 214 215 /// Vectorize a single PHINode in a block. This method handles the induction 216 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 217 /// arbitrary length vectors. 218 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 219 LoopVectorizationLegality *Legal, 220 unsigned UF, unsigned VF, PhiVector *PV); 221 222 /// Insert the new loop to the loop hierarchy and pass manager 223 /// and update the analysis passes. 224 void updateAnalysis(); 225 226 /// This instruction is un-vectorizable. Implement it as a sequence 227 /// of scalars. 228 virtual void scalarizeInstruction(Instruction *Instr); 229 230 /// Vectorize Load and Store instructions, 231 virtual void vectorizeMemoryInstruction(Instruction *Instr, 232 LoopVectorizationLegality *Legal); 233 234 /// Create a broadcast instruction. This method generates a broadcast 235 /// instruction (shuffle) for loop invariant values and for the induction 236 /// value. If this is the induction variable then we extend it to N, N+1, ... 237 /// this is needed because each iteration in the loop corresponds to a SIMD 238 /// element. 239 virtual Value *getBroadcastInstrs(Value *V); 240 241 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 242 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 243 /// The sequence starts at StartIndex. 244 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 245 246 /// When we go over instructions in the basic block we rely on previous 247 /// values within the current basic block or on loop invariant values. 248 /// When we widen (vectorize) values we place them in the map. If the values 249 /// are not within the map, they have to be loop invariant, so we simply 250 /// broadcast them into a vector. 251 VectorParts &getVectorValue(Value *V); 252 253 /// Generate a shuffle sequence that will reverse the vector Vec. 254 virtual Value *reverseVector(Value *Vec); 255 256 /// This is a helper class that holds the vectorizer state. It maps scalar 257 /// instructions to vector instructions. When the code is 'unrolled' then 258 /// then a single scalar value is mapped to multiple vector parts. The parts 259 /// are stored in the VectorPart type. 260 struct ValueMap { 261 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 262 /// are mapped. 263 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 264 265 /// \return True if 'Key' is saved in the Value Map. 266 bool has(Value *Key) const { return MapStorage.count(Key); } 267 268 /// Initializes a new entry in the map. Sets all of the vector parts to the 269 /// save value in 'Val'. 270 /// \return A reference to a vector with splat values. 271 VectorParts &splat(Value *Key, Value *Val) { 272 VectorParts &Entry = MapStorage[Key]; 273 Entry.assign(UF, Val); 274 return Entry; 275 } 276 277 ///\return A reference to the value that is stored at 'Key'. 278 VectorParts &get(Value *Key) { 279 VectorParts &Entry = MapStorage[Key]; 280 if (Entry.empty()) 281 Entry.resize(UF); 282 assert(Entry.size() == UF); 283 return Entry; 284 } 285 286 private: 287 /// The unroll factor. Each entry in the map stores this number of vector 288 /// elements. 289 unsigned UF; 290 291 /// Map storage. We use std::map and not DenseMap because insertions to a 292 /// dense map invalidates its iterators. 293 std::map<Value *, VectorParts> MapStorage; 294 }; 295 296 /// The original loop. 297 Loop *OrigLoop; 298 /// Scev analysis to use. 299 ScalarEvolution *SE; 300 /// Loop Info. 301 LoopInfo *LI; 302 /// Dominator Tree. 303 DominatorTree *DT; 304 /// Data Layout. 305 DataLayout *DL; 306 /// Target Library Info. 307 const TargetLibraryInfo *TLI; 308 309 /// The vectorization SIMD factor to use. Each vector will have this many 310 /// vector elements. 311 unsigned VF; 312 313 protected: 314 /// The vectorization unroll factor to use. Each scalar is vectorized to this 315 /// many different vector instructions. 316 unsigned UF; 317 318 /// The builder that we use 319 IRBuilder<> Builder; 320 321 // --- Vectorization state --- 322 323 /// The vector-loop preheader. 324 BasicBlock *LoopVectorPreHeader; 325 /// The scalar-loop preheader. 326 BasicBlock *LoopScalarPreHeader; 327 /// Middle Block between the vector and the scalar. 328 BasicBlock *LoopMiddleBlock; 329 ///The ExitBlock of the scalar loop. 330 BasicBlock *LoopExitBlock; 331 ///The vector loop body. 332 BasicBlock *LoopVectorBody; 333 ///The scalar loop body. 334 BasicBlock *LoopScalarBody; 335 /// A list of all bypass blocks. The first block is the entry of the loop. 336 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 337 338 /// The new Induction variable which was added to the new block. 339 PHINode *Induction; 340 /// The induction variable of the old basic block. 341 PHINode *OldInduction; 342 /// Holds the extended (to the widest induction type) start index. 343 Value *ExtendedIdx; 344 /// Maps scalars to widened vectors. 345 ValueMap WidenMap; 346 EdgeMaskCache MaskCache; 347 }; 348 349 class InnerLoopUnroller : public InnerLoopVectorizer { 350 public: 351 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 352 DominatorTree *DT, DataLayout *DL, 353 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 354 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 355 356 private: 357 virtual void scalarizeInstruction(Instruction *Instr); 358 virtual void vectorizeMemoryInstruction(Instruction *Instr, 359 LoopVectorizationLegality *Legal); 360 virtual Value *getBroadcastInstrs(Value *V); 361 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 362 virtual Value *reverseVector(Value *Vec); 363 }; 364 365 /// \brief Look for a meaningful debug location on the instruction or it's 366 /// operands. 367 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 368 if (!I) 369 return I; 370 371 DebugLoc Empty; 372 if (I->getDebugLoc() != Empty) 373 return I; 374 375 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 376 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 377 if (OpInst->getDebugLoc() != Empty) 378 return OpInst; 379 } 380 381 return I; 382 } 383 384 /// \brief Set the debug location in the builder using the debug location in the 385 /// instruction. 386 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 387 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 388 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 389 else 390 B.SetCurrentDebugLocation(DebugLoc()); 391 } 392 393 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 394 /// to what vectorization factor. 395 /// This class does not look at the profitability of vectorization, only the 396 /// legality. This class has two main kinds of checks: 397 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 398 /// will change the order of memory accesses in a way that will change the 399 /// correctness of the program. 400 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 401 /// checks for a number of different conditions, such as the availability of a 402 /// single induction variable, that all types are supported and vectorize-able, 403 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 404 /// This class is also used by InnerLoopVectorizer for identifying 405 /// induction variable and the different reduction variables. 406 class LoopVectorizationLegality { 407 public: 408 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL, 409 DominatorTree *DT, TargetLibraryInfo *TLI) 410 : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI), 411 Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false), 412 MaxSafeDepDistBytes(-1U) {} 413 414 /// This enum represents the kinds of reductions that we support. 415 enum ReductionKind { 416 RK_NoReduction, ///< Not a reduction. 417 RK_IntegerAdd, ///< Sum of integers. 418 RK_IntegerMult, ///< Product of integers. 419 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 420 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 421 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 422 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 423 RK_FloatAdd, ///< Sum of floats. 424 RK_FloatMult, ///< Product of floats. 425 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 426 }; 427 428 /// This enum represents the kinds of inductions that we support. 429 enum InductionKind { 430 IK_NoInduction, ///< Not an induction variable. 431 IK_IntInduction, ///< Integer induction variable. Step = 1. 432 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 433 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 434 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 435 }; 436 437 // This enum represents the kind of minmax reduction. 438 enum MinMaxReductionKind { 439 MRK_Invalid, 440 MRK_UIntMin, 441 MRK_UIntMax, 442 MRK_SIntMin, 443 MRK_SIntMax, 444 MRK_FloatMin, 445 MRK_FloatMax 446 }; 447 448 /// This struct holds information about reduction variables. 449 struct ReductionDescriptor { 450 ReductionDescriptor() : StartValue(0), LoopExitInstr(0), 451 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 452 453 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 454 MinMaxReductionKind MK) 455 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 456 457 // The starting value of the reduction. 458 // It does not have to be zero! 459 TrackingVH<Value> StartValue; 460 // The instruction who's value is used outside the loop. 461 Instruction *LoopExitInstr; 462 // The kind of the reduction. 463 ReductionKind Kind; 464 // If this a min/max reduction the kind of reduction. 465 MinMaxReductionKind MinMaxKind; 466 }; 467 468 /// This POD struct holds information about a potential reduction operation. 469 struct ReductionInstDesc { 470 ReductionInstDesc(bool IsRedux, Instruction *I) : 471 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 472 473 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 474 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 475 476 // Is this instruction a reduction candidate. 477 bool IsReduction; 478 // The last instruction in a min/max pattern (select of the select(icmp()) 479 // pattern), or the current reduction instruction otherwise. 480 Instruction *PatternLastInst; 481 // If this is a min/max pattern the comparison predicate. 482 MinMaxReductionKind MinMaxKind; 483 }; 484 485 /// This struct holds information about the memory runtime legality 486 /// check that a group of pointers do not overlap. 487 struct RuntimePointerCheck { 488 RuntimePointerCheck() : Need(false) {} 489 490 /// Reset the state of the pointer runtime information. 491 void reset() { 492 Need = false; 493 Pointers.clear(); 494 Starts.clear(); 495 Ends.clear(); 496 } 497 498 /// Insert a pointer and calculate the start and end SCEVs. 499 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 500 unsigned DepSetId); 501 502 /// This flag indicates if we need to add the runtime check. 503 bool Need; 504 /// Holds the pointers that we need to check. 505 SmallVector<TrackingVH<Value>, 2> Pointers; 506 /// Holds the pointer value at the beginning of the loop. 507 SmallVector<const SCEV*, 2> Starts; 508 /// Holds the pointer value at the end of the loop. 509 SmallVector<const SCEV*, 2> Ends; 510 /// Holds the information if this pointer is used for writing to memory. 511 SmallVector<bool, 2> IsWritePtr; 512 /// Holds the id of the set of pointers that could be dependent because of a 513 /// shared underlying object. 514 SmallVector<unsigned, 2> DependencySetId; 515 }; 516 517 /// A struct for saving information about induction variables. 518 struct InductionInfo { 519 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 520 InductionInfo() : StartValue(0), IK(IK_NoInduction) {} 521 /// Start value. 522 TrackingVH<Value> StartValue; 523 /// Induction kind. 524 InductionKind IK; 525 }; 526 527 /// ReductionList contains the reduction descriptors for all 528 /// of the reductions that were found in the loop. 529 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 530 531 /// InductionList saves induction variables and maps them to the 532 /// induction descriptor. 533 typedef MapVector<PHINode*, InductionInfo> InductionList; 534 535 /// Returns true if it is legal to vectorize this loop. 536 /// This does not mean that it is profitable to vectorize this 537 /// loop, only that it is legal to do so. 538 bool canVectorize(); 539 540 /// Returns the Induction variable. 541 PHINode *getInduction() { return Induction; } 542 543 /// Returns the reduction variables found in the loop. 544 ReductionList *getReductionVars() { return &Reductions; } 545 546 /// Returns the induction variables found in the loop. 547 InductionList *getInductionVars() { return &Inductions; } 548 549 /// Returns the widest induction type. 550 Type *getWidestInductionType() { return WidestIndTy; } 551 552 /// Returns True if V is an induction variable in this loop. 553 bool isInductionVariable(const Value *V); 554 555 /// Return true if the block BB needs to be predicated in order for the loop 556 /// to be vectorized. 557 bool blockNeedsPredication(BasicBlock *BB); 558 559 /// Check if this pointer is consecutive when vectorizing. This happens 560 /// when the last index of the GEP is the induction variable, or that the 561 /// pointer itself is an induction variable. 562 /// This check allows us to vectorize A[idx] into a wide load/store. 563 /// Returns: 564 /// 0 - Stride is unknown or non consecutive. 565 /// 1 - Address is consecutive. 566 /// -1 - Address is consecutive, and decreasing. 567 int isConsecutivePtr(Value *Ptr); 568 569 /// Returns true if the value V is uniform within the loop. 570 bool isUniform(Value *V); 571 572 /// Returns true if this instruction will remain scalar after vectorization. 573 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 574 575 /// Returns the information that we collected about runtime memory check. 576 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 577 578 /// This function returns the identity element (or neutral element) for 579 /// the operation K. 580 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 581 582 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 583 584 private: 585 /// Check if a single basic block loop is vectorizable. 586 /// At this point we know that this is a loop with a constant trip count 587 /// and we only need to check individual instructions. 588 bool canVectorizeInstrs(); 589 590 /// When we vectorize loops we may change the order in which 591 /// we read and write from memory. This method checks if it is 592 /// legal to vectorize the code, considering only memory constrains. 593 /// Returns true if the loop is vectorizable 594 bool canVectorizeMemory(); 595 596 /// Return true if we can vectorize this loop using the IF-conversion 597 /// transformation. 598 bool canVectorizeWithIfConvert(); 599 600 /// Collect the variables that need to stay uniform after vectorization. 601 void collectLoopUniforms(); 602 603 /// Return true if all of the instructions in the block can be speculatively 604 /// executed. \p SafePtrs is a list of addresses that are known to be legal 605 /// and we know that we can read from them without segfault. 606 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs); 607 608 /// Returns True, if 'Phi' is the kind of reduction variable for type 609 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 610 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 611 /// Returns a struct describing if the instruction 'I' can be a reduction 612 /// variable of type 'Kind'. If the reduction is a min/max pattern of 613 /// select(icmp()) this function advances the instruction pointer 'I' from the 614 /// compare instruction to the select instruction and stores this pointer in 615 /// 'PatternLastInst' member of the returned struct. 616 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 617 ReductionInstDesc &Desc); 618 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 619 /// pattern corresponding to a min(X, Y) or max(X, Y). 620 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 621 ReductionInstDesc &Prev); 622 /// Returns the induction kind of Phi. This function may return NoInduction 623 /// if the PHI is not an induction variable. 624 InductionKind isInductionVariable(PHINode *Phi); 625 626 /// The loop that we evaluate. 627 Loop *TheLoop; 628 /// Scev analysis. 629 ScalarEvolution *SE; 630 /// DataLayout analysis. 631 DataLayout *DL; 632 /// Dominators. 633 DominatorTree *DT; 634 /// Target Library Info. 635 TargetLibraryInfo *TLI; 636 637 // --- vectorization state --- // 638 639 /// Holds the integer induction variable. This is the counter of the 640 /// loop. 641 PHINode *Induction; 642 /// Holds the reduction variables. 643 ReductionList Reductions; 644 /// Holds all of the induction variables that we found in the loop. 645 /// Notice that inductions don't need to start at zero and that induction 646 /// variables can be pointers. 647 InductionList Inductions; 648 /// Holds the widest induction type encountered. 649 Type *WidestIndTy; 650 651 /// Allowed outside users. This holds the reduction 652 /// vars which can be accessed from outside the loop. 653 SmallPtrSet<Value*, 4> AllowedExit; 654 /// This set holds the variables which are known to be uniform after 655 /// vectorization. 656 SmallPtrSet<Instruction*, 4> Uniforms; 657 /// We need to check that all of the pointers in this list are disjoint 658 /// at runtime. 659 RuntimePointerCheck PtrRtCheck; 660 /// Can we assume the absence of NaNs. 661 bool HasFunNoNaNAttr; 662 663 unsigned MaxSafeDepDistBytes; 664 }; 665 666 /// LoopVectorizationCostModel - estimates the expected speedups due to 667 /// vectorization. 668 /// In many cases vectorization is not profitable. This can happen because of 669 /// a number of reasons. In this class we mainly attempt to predict the 670 /// expected speedup/slowdowns due to the supported instruction set. We use the 671 /// TargetTransformInfo to query the different backends for the cost of 672 /// different operations. 673 class LoopVectorizationCostModel { 674 public: 675 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 676 LoopVectorizationLegality *Legal, 677 const TargetTransformInfo &TTI, 678 DataLayout *DL, const TargetLibraryInfo *TLI) 679 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 680 681 /// Information about vectorization costs 682 struct VectorizationFactor { 683 unsigned Width; // Vector width with best cost 684 unsigned Cost; // Cost of the loop with that width 685 }; 686 /// \return The most profitable vectorization factor and the cost of that VF. 687 /// This method checks every power of two up to VF. If UserVF is not ZERO 688 /// then this vectorization factor will be selected if vectorization is 689 /// possible. 690 VectorizationFactor selectVectorizationFactor(bool OptForSize, 691 unsigned UserVF); 692 693 /// \return The size (in bits) of the widest type in the code that 694 /// needs to be vectorized. We ignore values that remain scalar such as 695 /// 64 bit loop indices. 696 unsigned getWidestType(); 697 698 /// \return The most profitable unroll factor. 699 /// If UserUF is non-zero then this method finds the best unroll-factor 700 /// based on register pressure and other parameters. 701 /// VF and LoopCost are the selected vectorization factor and the cost of the 702 /// selected VF. 703 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 704 unsigned LoopCost); 705 706 /// \brief A struct that represents some properties of the register usage 707 /// of a loop. 708 struct RegisterUsage { 709 /// Holds the number of loop invariant values that are used in the loop. 710 unsigned LoopInvariantRegs; 711 /// Holds the maximum number of concurrent live intervals in the loop. 712 unsigned MaxLocalUsers; 713 /// Holds the number of instructions in the loop. 714 unsigned NumInstructions; 715 }; 716 717 /// \return information about the register usage of the loop. 718 RegisterUsage calculateRegisterUsage(); 719 720 private: 721 /// Returns the expected execution cost. The unit of the cost does 722 /// not matter because we use the 'cost' units to compare different 723 /// vector widths. The cost that is returned is *not* normalized by 724 /// the factor width. 725 unsigned expectedCost(unsigned VF); 726 727 /// Returns the execution time cost of an instruction for a given vector 728 /// width. Vector width of one means scalar. 729 unsigned getInstructionCost(Instruction *I, unsigned VF); 730 731 /// A helper function for converting Scalar types to vector types. 732 /// If the incoming type is void, we return void. If the VF is 1, we return 733 /// the scalar type. 734 static Type* ToVectorTy(Type *Scalar, unsigned VF); 735 736 /// Returns whether the instruction is a load or store and will be a emitted 737 /// as a vector operation. 738 bool isConsecutiveLoadOrStore(Instruction *I); 739 740 /// The loop that we evaluate. 741 Loop *TheLoop; 742 /// Scev analysis. 743 ScalarEvolution *SE; 744 /// Loop Info analysis. 745 LoopInfo *LI; 746 /// Vectorization legality. 747 LoopVectorizationLegality *Legal; 748 /// Vector target information. 749 const TargetTransformInfo &TTI; 750 /// Target data layout information. 751 DataLayout *DL; 752 /// Target Library Info. 753 const TargetLibraryInfo *TLI; 754 }; 755 756 /// Utility class for getting and setting loop vectorizer hints in the form 757 /// of loop metadata. 758 struct LoopVectorizeHints { 759 /// Vectorization width. 760 unsigned Width; 761 /// Vectorization unroll factor. 762 unsigned Unroll; 763 764 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 765 : Width(VectorizationFactor) 766 , Unroll(DisableUnrolling ? 1 : VectorizationUnroll) 767 , LoopID(L->getLoopID()) { 768 getHints(L); 769 // The command line options override any loop metadata except for when 770 // width == 1 which is used to indicate the loop is already vectorized. 771 if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1) 772 Width = VectorizationFactor; 773 if (VectorizationUnroll.getNumOccurrences() > 0) 774 Unroll = VectorizationUnroll; 775 776 DEBUG(if (DisableUnrolling && Unroll == 1) 777 dbgs() << "LV: Unrolling disabled by the pass manager\n"); 778 } 779 780 /// Return the loop vectorizer metadata prefix. 781 static StringRef Prefix() { return "llvm.vectorizer."; } 782 783 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) { 784 SmallVector<Value*, 2> Vals; 785 Vals.push_back(MDString::get(Context, Name)); 786 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 787 return MDNode::get(Context, Vals); 788 } 789 790 /// Mark the loop L as already vectorized by setting the width to 1. 791 void setAlreadyVectorized(Loop *L) { 792 LLVMContext &Context = L->getHeader()->getContext(); 793 794 Width = 1; 795 796 // Create a new loop id with one more operand for the already_vectorized 797 // hint. If the loop already has a loop id then copy the existing operands. 798 SmallVector<Value*, 4> Vals(1); 799 if (LoopID) 800 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 801 Vals.push_back(LoopID->getOperand(i)); 802 803 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width)); 804 Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1)); 805 806 MDNode *NewLoopID = MDNode::get(Context, Vals); 807 // Set operand 0 to refer to the loop id itself. 808 NewLoopID->replaceOperandWith(0, NewLoopID); 809 810 L->setLoopID(NewLoopID); 811 if (LoopID) 812 LoopID->replaceAllUsesWith(NewLoopID); 813 814 LoopID = NewLoopID; 815 } 816 817 private: 818 MDNode *LoopID; 819 820 /// Find hints specified in the loop metadata. 821 void getHints(const Loop *L) { 822 if (!LoopID) 823 return; 824 825 // First operand should refer to the loop id itself. 826 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 827 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 828 829 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 830 const MDString *S = 0; 831 SmallVector<Value*, 4> Args; 832 833 // The expected hint is either a MDString or a MDNode with the first 834 // operand a MDString. 835 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 836 if (!MD || MD->getNumOperands() == 0) 837 continue; 838 S = dyn_cast<MDString>(MD->getOperand(0)); 839 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 840 Args.push_back(MD->getOperand(i)); 841 } else { 842 S = dyn_cast<MDString>(LoopID->getOperand(i)); 843 assert(Args.size() == 0 && "too many arguments for MDString"); 844 } 845 846 if (!S) 847 continue; 848 849 // Check if the hint starts with the vectorizer prefix. 850 StringRef Hint = S->getString(); 851 if (!Hint.startswith(Prefix())) 852 continue; 853 // Remove the prefix. 854 Hint = Hint.substr(Prefix().size(), StringRef::npos); 855 856 if (Args.size() == 1) 857 getHint(Hint, Args[0]); 858 } 859 } 860 861 // Check string hint with one operand. 862 void getHint(StringRef Hint, Value *Arg) { 863 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 864 if (!C) return; 865 unsigned Val = C->getZExtValue(); 866 867 if (Hint == "width") { 868 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth) 869 Width = Val; 870 else 871 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n"); 872 } else if (Hint == "unroll") { 873 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor) 874 Unroll = Val; 875 else 876 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n"); 877 } else { 878 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n'); 879 } 880 } 881 }; 882 883 /// The LoopVectorize Pass. 884 struct LoopVectorize : public LoopPass { 885 /// Pass identification, replacement for typeid 886 static char ID; 887 888 explicit LoopVectorize(bool NoUnrolling = false) 889 : LoopPass(ID), DisableUnrolling(NoUnrolling) { 890 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 891 } 892 893 ScalarEvolution *SE; 894 DataLayout *DL; 895 LoopInfo *LI; 896 TargetTransformInfo *TTI; 897 DominatorTree *DT; 898 TargetLibraryInfo *TLI; 899 bool DisableUnrolling; 900 901 virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { 902 // We only vectorize innermost loops. 903 if (!L->empty()) 904 return false; 905 906 SE = &getAnalysis<ScalarEvolution>(); 907 DL = getAnalysisIfAvailable<DataLayout>(); 908 LI = &getAnalysis<LoopInfo>(); 909 TTI = &getAnalysis<TargetTransformInfo>(); 910 DT = &getAnalysis<DominatorTree>(); 911 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 912 913 // If the target claims to have no vector registers don't attempt 914 // vectorization. 915 if (!TTI->getNumberOfRegisters(true)) 916 return false; 917 918 if (DL == NULL) { 919 DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout\n"); 920 return false; 921 } 922 923 DEBUG(dbgs() << "LV: Checking a loop in \"" << 924 L->getHeader()->getParent()->getName() << "\"\n"); 925 926 LoopVectorizeHints Hints(L, DisableUnrolling); 927 928 if (Hints.Width == 1 && Hints.Unroll == 1) { 929 DEBUG(dbgs() << "LV: Not vectorizing.\n"); 930 return false; 931 } 932 933 // Check if it is legal to vectorize the loop. 934 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI); 935 if (!LVL.canVectorize()) { 936 DEBUG(dbgs() << "LV: Not vectorizing.\n"); 937 return false; 938 } 939 940 // Use the cost model. 941 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 942 943 // Check the function attributes to find out if this function should be 944 // optimized for size. 945 Function *F = L->getHeader()->getParent(); 946 Attribute::AttrKind SzAttr = Attribute::OptimizeForSize; 947 Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat; 948 unsigned FnIndex = AttributeSet::FunctionIndex; 949 bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr); 950 bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr); 951 952 if (NoFloat) { 953 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 954 "attribute is used.\n"); 955 return false; 956 } 957 958 // Select the optimal vectorization factor. 959 LoopVectorizationCostModel::VectorizationFactor VF; 960 VF = CM.selectVectorizationFactor(OptForSize, Hints.Width); 961 // Select the unroll factor. 962 unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width, 963 VF.Cost); 964 965 if (VF.Width == 1) { 966 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 967 } 968 969 DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<< 970 F->getParent()->getModuleIdentifier() << '\n'); 971 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 972 973 if (VF.Width == 1) { 974 if (UF == 1) 975 return false; 976 // We decided not to vectorize, but we may want to unroll. 977 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 978 Unroller.vectorize(&LVL); 979 } else { 980 // If we decided that it is *legal* to vectorize the loop then do it. 981 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 982 LB.vectorize(&LVL); 983 } 984 985 // Mark the loop as already vectorized to avoid vectorizing again. 986 Hints.setAlreadyVectorized(L); 987 988 DEBUG(verifyFunction(*L->getHeader()->getParent())); 989 return true; 990 } 991 992 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 993 LoopPass::getAnalysisUsage(AU); 994 AU.addRequiredID(LoopSimplifyID); 995 AU.addRequiredID(LCSSAID); 996 AU.addRequired<DominatorTree>(); 997 AU.addRequired<LoopInfo>(); 998 AU.addRequired<ScalarEvolution>(); 999 AU.addRequired<TargetTransformInfo>(); 1000 AU.addPreserved<LoopInfo>(); 1001 AU.addPreserved<DominatorTree>(); 1002 } 1003 1004 }; 1005 1006 } // end anonymous namespace 1007 1008 //===----------------------------------------------------------------------===// 1009 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1010 // LoopVectorizationCostModel. 1011 //===----------------------------------------------------------------------===// 1012 1013 void 1014 LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE, 1015 Loop *Lp, Value *Ptr, 1016 bool WritePtr, 1017 unsigned DepSetId) { 1018 const SCEV *Sc = SE->getSCEV(Ptr); 1019 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1020 assert(AR && "Invalid addrec expression"); 1021 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1022 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1023 Pointers.push_back(Ptr); 1024 Starts.push_back(AR->getStart()); 1025 Ends.push_back(ScEnd); 1026 IsWritePtr.push_back(WritePtr); 1027 DependencySetId.push_back(DepSetId); 1028 } 1029 1030 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1031 // We need to place the broadcast of invariant variables outside the loop. 1032 Instruction *Instr = dyn_cast<Instruction>(V); 1033 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 1034 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1035 1036 // Place the code for broadcasting invariant variables in the new preheader. 1037 IRBuilder<>::InsertPointGuard Guard(Builder); 1038 if (Invariant) 1039 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1040 1041 // Broadcast the scalar into all locations in the vector. 1042 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1043 1044 return Shuf; 1045 } 1046 1047 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1048 bool Negate) { 1049 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1050 assert(Val->getType()->getScalarType()->isIntegerTy() && 1051 "Elem must be an integer"); 1052 // Create the types. 1053 Type *ITy = Val->getType()->getScalarType(); 1054 VectorType *Ty = cast<VectorType>(Val->getType()); 1055 int VLen = Ty->getNumElements(); 1056 SmallVector<Constant*, 8> Indices; 1057 1058 // Create a vector of consecutive numbers from zero to VF. 1059 for (int i = 0; i < VLen; ++i) { 1060 int64_t Idx = Negate ? (-i) : i; 1061 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1062 } 1063 1064 // Add the consecutive indices to the vector value. 1065 Constant *Cv = ConstantVector::get(Indices); 1066 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1067 return Builder.CreateAdd(Val, Cv, "induction"); 1068 } 1069 1070 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1071 assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr"); 1072 // Make sure that the pointer does not point to structs. 1073 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1074 return 0; 1075 1076 // If this value is a pointer induction variable we know it is consecutive. 1077 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1078 if (Phi && Inductions.count(Phi)) { 1079 InductionInfo II = Inductions[Phi]; 1080 if (IK_PtrInduction == II.IK) 1081 return 1; 1082 else if (IK_ReversePtrInduction == II.IK) 1083 return -1; 1084 } 1085 1086 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1087 if (!Gep) 1088 return 0; 1089 1090 unsigned NumOperands = Gep->getNumOperands(); 1091 Value *LastIndex = Gep->getOperand(NumOperands - 1); 1092 1093 Value *GpPtr = Gep->getPointerOperand(); 1094 // If this GEP value is a consecutive pointer induction variable and all of 1095 // the indices are constant then we know it is consecutive. We can 1096 Phi = dyn_cast<PHINode>(GpPtr); 1097 if (Phi && Inductions.count(Phi)) { 1098 1099 // Make sure that the pointer does not point to structs. 1100 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1101 if (GepPtrType->getElementType()->isAggregateType()) 1102 return 0; 1103 1104 // Make sure that all of the index operands are loop invariant. 1105 for (unsigned i = 1; i < NumOperands; ++i) 1106 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1107 return 0; 1108 1109 InductionInfo II = Inductions[Phi]; 1110 if (IK_PtrInduction == II.IK) 1111 return 1; 1112 else if (IK_ReversePtrInduction == II.IK) 1113 return -1; 1114 } 1115 1116 // Check that all of the gep indices are uniform except for the last. 1117 for (unsigned i = 0; i < NumOperands - 1; ++i) 1118 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1119 return 0; 1120 1121 // We can emit wide load/stores only if the last index is the induction 1122 // variable. 1123 const SCEV *Last = SE->getSCEV(LastIndex); 1124 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1125 const SCEV *Step = AR->getStepRecurrence(*SE); 1126 1127 // The memory is consecutive because the last index is consecutive 1128 // and all other indices are loop invariant. 1129 if (Step->isOne()) 1130 return 1; 1131 if (Step->isAllOnesValue()) 1132 return -1; 1133 } 1134 1135 return 0; 1136 } 1137 1138 bool LoopVectorizationLegality::isUniform(Value *V) { 1139 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1140 } 1141 1142 InnerLoopVectorizer::VectorParts& 1143 InnerLoopVectorizer::getVectorValue(Value *V) { 1144 assert(V != Induction && "The new induction variable should not be used."); 1145 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1146 1147 // If we have this scalar in the map, return it. 1148 if (WidenMap.has(V)) 1149 return WidenMap.get(V); 1150 1151 // If this scalar is unknown, assume that it is a constant or that it is 1152 // loop invariant. Broadcast V and save the value for future uses. 1153 Value *B = getBroadcastInstrs(V); 1154 return WidenMap.splat(V, B); 1155 } 1156 1157 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1158 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1159 SmallVector<Constant*, 8> ShuffleMask; 1160 for (unsigned i = 0; i < VF; ++i) 1161 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1162 1163 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1164 ConstantVector::get(ShuffleMask), 1165 "reverse"); 1166 } 1167 1168 1169 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 1170 LoopVectorizationLegality *Legal) { 1171 // Attempt to issue a wide load. 1172 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1173 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1174 1175 assert((LI || SI) && "Invalid Load/Store instruction"); 1176 1177 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1178 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1179 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1180 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1181 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1182 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1183 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1184 1185 if (ScalarAllocatedSize != VectorElementSize) 1186 return scalarizeInstruction(Instr); 1187 1188 // If the pointer is loop invariant or if it is non consecutive, 1189 // scalarize the load. 1190 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1191 bool Reverse = ConsecutiveStride < 0; 1192 bool UniformLoad = LI && Legal->isUniform(Ptr); 1193 if (!ConsecutiveStride || UniformLoad) 1194 return scalarizeInstruction(Instr); 1195 1196 Constant *Zero = Builder.getInt32(0); 1197 VectorParts &Entry = WidenMap.get(Instr); 1198 1199 // Handle consecutive loads/stores. 1200 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1201 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1202 setDebugLocFromInst(Builder, Gep); 1203 Value *PtrOperand = Gep->getPointerOperand(); 1204 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1205 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1206 1207 // Create the new GEP with the new induction variable. 1208 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1209 Gep2->setOperand(0, FirstBasePtr); 1210 Gep2->setName("gep.indvar.base"); 1211 Ptr = Builder.Insert(Gep2); 1212 } else if (Gep) { 1213 setDebugLocFromInst(Builder, Gep); 1214 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1215 OrigLoop) && "Base ptr must be invariant"); 1216 1217 // The last index does not have to be the induction. It can be 1218 // consecutive and be a function of the index. For example A[I+1]; 1219 unsigned NumOperands = Gep->getNumOperands(); 1220 unsigned LastOperand = NumOperands - 1; 1221 // Create the new GEP with the new induction variable. 1222 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1223 1224 for (unsigned i = 0; i < NumOperands; ++i) { 1225 Value *GepOperand = Gep->getOperand(i); 1226 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1227 1228 // Update last index or loop invariant instruction anchored in loop. 1229 if (i == LastOperand || 1230 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1231 assert((i == LastOperand || 1232 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1233 "Must be last index or loop invariant"); 1234 1235 VectorParts &GEPParts = getVectorValue(GepOperand); 1236 Value *Index = GEPParts[0]; 1237 Index = Builder.CreateExtractElement(Index, Zero); 1238 Gep2->setOperand(i, Index); 1239 Gep2->setName("gep.indvar.idx"); 1240 } 1241 } 1242 Ptr = Builder.Insert(Gep2); 1243 } else { 1244 // Use the induction element ptr. 1245 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1246 setDebugLocFromInst(Builder, Ptr); 1247 VectorParts &PtrVal = getVectorValue(Ptr); 1248 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1249 } 1250 1251 // Handle Stores: 1252 if (SI) { 1253 assert(!Legal->isUniform(SI->getPointerOperand()) && 1254 "We do not allow storing to uniform addresses"); 1255 setDebugLocFromInst(Builder, SI); 1256 // We don't want to update the value in the map as it might be used in 1257 // another expression. So don't use a reference type for "StoredVal". 1258 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1259 1260 for (unsigned Part = 0; Part < UF; ++Part) { 1261 // Calculate the pointer for the specific unroll-part. 1262 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1263 1264 if (Reverse) { 1265 // If we store to reverse consecutive memory locations then we need 1266 // to reverse the order of elements in the stored value. 1267 StoredVal[Part] = reverseVector(StoredVal[Part]); 1268 // If the address is consecutive but reversed, then the 1269 // wide store needs to start at the last vector element. 1270 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1271 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1272 } 1273 1274 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1275 DataTy->getPointerTo(AddressSpace)); 1276 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); 1277 } 1278 return; 1279 } 1280 1281 // Handle loads. 1282 assert(LI && "Must have a load instruction"); 1283 setDebugLocFromInst(Builder, LI); 1284 for (unsigned Part = 0; Part < UF; ++Part) { 1285 // Calculate the pointer for the specific unroll-part. 1286 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1287 1288 if (Reverse) { 1289 // If the address is consecutive but reversed, then the 1290 // wide store needs to start at the last vector element. 1291 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1292 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1293 } 1294 1295 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1296 DataTy->getPointerTo(AddressSpace)); 1297 Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); 1298 cast<LoadInst>(LI)->setAlignment(Alignment); 1299 Entry[Part] = Reverse ? reverseVector(LI) : LI; 1300 } 1301 } 1302 1303 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) { 1304 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1305 // Holds vector parameters or scalars, in case of uniform vals. 1306 SmallVector<VectorParts, 4> Params; 1307 1308 setDebugLocFromInst(Builder, Instr); 1309 1310 // Find all of the vectorized parameters. 1311 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1312 Value *SrcOp = Instr->getOperand(op); 1313 1314 // If we are accessing the old induction variable, use the new one. 1315 if (SrcOp == OldInduction) { 1316 Params.push_back(getVectorValue(SrcOp)); 1317 continue; 1318 } 1319 1320 // Try using previously calculated values. 1321 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1322 1323 // If the src is an instruction that appeared earlier in the basic block 1324 // then it should already be vectorized. 1325 if (SrcInst && OrigLoop->contains(SrcInst)) { 1326 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1327 // The parameter is a vector value from earlier. 1328 Params.push_back(WidenMap.get(SrcInst)); 1329 } else { 1330 // The parameter is a scalar from outside the loop. Maybe even a constant. 1331 VectorParts Scalars; 1332 Scalars.append(UF, SrcOp); 1333 Params.push_back(Scalars); 1334 } 1335 } 1336 1337 assert(Params.size() == Instr->getNumOperands() && 1338 "Invalid number of operands"); 1339 1340 // Does this instruction return a value ? 1341 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1342 1343 Value *UndefVec = IsVoidRetTy ? 0 : 1344 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1345 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1346 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1347 1348 // For each vector unroll 'part': 1349 for (unsigned Part = 0; Part < UF; ++Part) { 1350 // For each scalar that we create: 1351 for (unsigned Width = 0; Width < VF; ++Width) { 1352 Instruction *Cloned = Instr->clone(); 1353 if (!IsVoidRetTy) 1354 Cloned->setName(Instr->getName() + ".cloned"); 1355 // Replace the operands of the cloned instructions with extracted scalars. 1356 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1357 Value *Op = Params[op][Part]; 1358 // Param is a vector. Need to extract the right lane. 1359 if (Op->getType()->isVectorTy()) 1360 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1361 Cloned->setOperand(op, Op); 1362 } 1363 1364 // Place the cloned scalar in the new loop. 1365 Builder.Insert(Cloned); 1366 1367 // If the original scalar returns a value we need to place it in a vector 1368 // so that future users will be able to use it. 1369 if (!IsVoidRetTy) 1370 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1371 Builder.getInt32(Width)); 1372 } 1373 } 1374 } 1375 1376 Instruction * 1377 InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal, 1378 Instruction *Loc) { 1379 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1380 Legal->getRuntimePointerCheck(); 1381 1382 if (!PtrRtCheck->Need) 1383 return NULL; 1384 1385 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1386 SmallVector<TrackingVH<Value> , 2> Starts; 1387 SmallVector<TrackingVH<Value> , 2> Ends; 1388 1389 LLVMContext &Ctx = Loc->getContext(); 1390 SCEVExpander Exp(*SE, "induction"); 1391 1392 for (unsigned i = 0; i < NumPointers; ++i) { 1393 Value *Ptr = PtrRtCheck->Pointers[i]; 1394 const SCEV *Sc = SE->getSCEV(Ptr); 1395 1396 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1397 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1398 *Ptr <<"\n"); 1399 Starts.push_back(Ptr); 1400 Ends.push_back(Ptr); 1401 } else { 1402 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 1403 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1404 1405 // Use this type for pointer arithmetic. 1406 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1407 1408 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 1409 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 1410 Starts.push_back(Start); 1411 Ends.push_back(End); 1412 } 1413 } 1414 1415 IRBuilder<> ChkBuilder(Loc); 1416 // Our instructions might fold to a constant. 1417 Value *MemoryRuntimeCheck = 0; 1418 for (unsigned i = 0; i < NumPointers; ++i) { 1419 for (unsigned j = i+1; j < NumPointers; ++j) { 1420 // No need to check if two readonly pointers intersect. 1421 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 1422 continue; 1423 1424 // Only need to check pointers between two different dependency sets. 1425 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 1426 continue; 1427 1428 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1429 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1430 1431 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1432 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1433 "Trying to bounds check pointers with different address spaces"); 1434 1435 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1436 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1437 1438 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1439 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1440 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1441 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1442 1443 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1444 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1445 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1446 if (MemoryRuntimeCheck) 1447 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1448 "conflict.rdx"); 1449 MemoryRuntimeCheck = IsConflict; 1450 } 1451 } 1452 1453 // We have to do this trickery because the IRBuilder might fold the check to a 1454 // constant expression in which case there is no Instruction anchored in a 1455 // the block. 1456 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1457 ConstantInt::getTrue(Ctx)); 1458 ChkBuilder.Insert(Check, "memcheck.conflict"); 1459 return Check; 1460 } 1461 1462 void 1463 InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) { 1464 /* 1465 In this function we generate a new loop. The new loop will contain 1466 the vectorized instructions while the old loop will continue to run the 1467 scalar remainder. 1468 1469 [ ] <-- vector loop bypass (may consist of multiple blocks). 1470 / | 1471 / v 1472 | [ ] <-- vector pre header. 1473 | | 1474 | v 1475 | [ ] \ 1476 | [ ]_| <-- vector loop. 1477 | | 1478 \ v 1479 >[ ] <--- middle-block. 1480 / | 1481 / v 1482 | [ ] <--- new preheader. 1483 | | 1484 | v 1485 | [ ] \ 1486 | [ ]_| <-- old scalar loop to handle remainder. 1487 \ | 1488 \ v 1489 >[ ] <-- exit block. 1490 ... 1491 */ 1492 1493 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 1494 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 1495 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 1496 assert(ExitBlock && "Must have an exit block"); 1497 1498 // Some loops have a single integer induction variable, while other loops 1499 // don't. One example is c++ iterators that often have multiple pointer 1500 // induction variables. In the code below we also support a case where we 1501 // don't have a single induction variable. 1502 OldInduction = Legal->getInduction(); 1503 Type *IdxTy = Legal->getWidestInductionType(); 1504 1505 // Find the loop boundaries. 1506 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 1507 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 1508 1509 // Get the total trip count from the count by adding 1. 1510 ExitCount = SE->getAddExpr(ExitCount, 1511 SE->getConstant(ExitCount->getType(), 1)); 1512 1513 // Expand the trip count and place the new instructions in the preheader. 1514 // Notice that the pre-header does not change, only the loop body. 1515 SCEVExpander Exp(*SE, "induction"); 1516 1517 // Count holds the overall loop count (N). 1518 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 1519 BypassBlock->getTerminator()); 1520 1521 // The loop index does not have to start at Zero. Find the original start 1522 // value from the induction PHI node. If we don't have an induction variable 1523 // then we know that it starts at zero. 1524 Builder.SetInsertPoint(BypassBlock->getTerminator()); 1525 Value *StartIdx = ExtendedIdx = OldInduction ? 1526 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 1527 IdxTy): 1528 ConstantInt::get(IdxTy, 0); 1529 1530 assert(BypassBlock && "Invalid loop structure"); 1531 LoopBypassBlocks.push_back(BypassBlock); 1532 1533 // Split the single block loop into the two loop structure described above. 1534 BasicBlock *VectorPH = 1535 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 1536 BasicBlock *VecBody = 1537 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 1538 BasicBlock *MiddleBlock = 1539 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 1540 BasicBlock *ScalarPH = 1541 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 1542 1543 // Create and register the new vector loop. 1544 Loop* Lp = new Loop(); 1545 Loop *ParentLoop = OrigLoop->getParentLoop(); 1546 1547 // Insert the new loop into the loop nest and register the new basic blocks 1548 // before calling any utilities such as SCEV that require valid LoopInfo. 1549 if (ParentLoop) { 1550 ParentLoop->addChildLoop(Lp); 1551 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 1552 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 1553 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 1554 } else { 1555 LI->addTopLevelLoop(Lp); 1556 } 1557 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 1558 1559 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 1560 // inside the loop. 1561 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 1562 1563 // Generate the induction variable. 1564 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 1565 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 1566 // The loop step is equal to the vectorization factor (num of SIMD elements) 1567 // times the unroll factor (num of SIMD instructions). 1568 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 1569 1570 // This is the IR builder that we use to add all of the logic for bypassing 1571 // the new vector loop. 1572 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 1573 setDebugLocFromInst(BypassBuilder, 1574 getDebugLocFromInstOrOperands(OldInduction)); 1575 1576 // We may need to extend the index in case there is a type mismatch. 1577 // We know that the count starts at zero and does not overflow. 1578 if (Count->getType() != IdxTy) { 1579 // The exit count can be of pointer type. Convert it to the correct 1580 // integer type. 1581 if (ExitCount->getType()->isPointerTy()) 1582 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 1583 else 1584 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 1585 } 1586 1587 // Add the start index to the loop count to get the new end index. 1588 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 1589 1590 // Now we need to generate the expression for N - (N % VF), which is 1591 // the part that the vectorized body will execute. 1592 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 1593 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 1594 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 1595 "end.idx.rnd.down"); 1596 1597 // Now, compare the new count to zero. If it is zero skip the vector loop and 1598 // jump to the scalar loop. 1599 Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, 1600 "cmp.zero"); 1601 1602 BasicBlock *LastBypassBlock = BypassBlock; 1603 1604 // Generate the code that checks in runtime if arrays overlap. We put the 1605 // checks into a separate block to make the more common case of few elements 1606 // faster. 1607 Instruction *MemRuntimeCheck = addRuntimeCheck(Legal, 1608 BypassBlock->getTerminator()); 1609 if (MemRuntimeCheck) { 1610 // Create a new block containing the memory check. 1611 BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck, 1612 "vector.memcheck"); 1613 if (ParentLoop) 1614 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 1615 LoopBypassBlocks.push_back(CheckBlock); 1616 1617 // Replace the branch into the memory check block with a conditional branch 1618 // for the "few elements case". 1619 Instruction *OldTerm = BypassBlock->getTerminator(); 1620 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 1621 OldTerm->eraseFromParent(); 1622 1623 Cmp = MemRuntimeCheck; 1624 LastBypassBlock = CheckBlock; 1625 } 1626 1627 LastBypassBlock->getTerminator()->eraseFromParent(); 1628 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 1629 LastBypassBlock); 1630 1631 // We are going to resume the execution of the scalar loop. 1632 // Go over all of the induction variables that we found and fix the 1633 // PHIs that are left in the scalar version of the loop. 1634 // The starting values of PHI nodes depend on the counter of the last 1635 // iteration in the vectorized loop. 1636 // If we come from a bypass edge then we need to start from the original 1637 // start value. 1638 1639 // This variable saves the new starting index for the scalar loop. 1640 PHINode *ResumeIndex = 0; 1641 LoopVectorizationLegality::InductionList::iterator I, E; 1642 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 1643 // Set builder to point to last bypass block. 1644 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 1645 for (I = List->begin(), E = List->end(); I != E; ++I) { 1646 PHINode *OrigPhi = I->first; 1647 LoopVectorizationLegality::InductionInfo II = I->second; 1648 1649 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 1650 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 1651 MiddleBlock->getTerminator()); 1652 // We might have extended the type of the induction variable but we need a 1653 // truncated version for the scalar loop. 1654 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 1655 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 1656 MiddleBlock->getTerminator()) : 0; 1657 1658 Value *EndValue = 0; 1659 switch (II.IK) { 1660 case LoopVectorizationLegality::IK_NoInduction: 1661 llvm_unreachable("Unknown induction"); 1662 case LoopVectorizationLegality::IK_IntInduction: { 1663 // Handle the integer induction counter. 1664 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 1665 1666 // We have the canonical induction variable. 1667 if (OrigPhi == OldInduction) { 1668 // Create a truncated version of the resume value for the scalar loop, 1669 // we might have promoted the type to a larger width. 1670 EndValue = 1671 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 1672 // The new PHI merges the original incoming value, in case of a bypass, 1673 // or the value at the end of the vectorized loop. 1674 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 1675 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 1676 TruncResumeVal->addIncoming(EndValue, VecBody); 1677 1678 // We know what the end value is. 1679 EndValue = IdxEndRoundDown; 1680 // We also know which PHI node holds it. 1681 ResumeIndex = ResumeVal; 1682 break; 1683 } 1684 1685 // Not the canonical induction variable - add the vector loop count to the 1686 // start value. 1687 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 1688 II.StartValue->getType(), 1689 "cast.crd"); 1690 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 1691 break; 1692 } 1693 case LoopVectorizationLegality::IK_ReverseIntInduction: { 1694 // Convert the CountRoundDown variable to the PHI size. 1695 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 1696 II.StartValue->getType(), 1697 "cast.crd"); 1698 // Handle reverse integer induction counter. 1699 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 1700 break; 1701 } 1702 case LoopVectorizationLegality::IK_PtrInduction: { 1703 // For pointer induction variables, calculate the offset using 1704 // the end index. 1705 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 1706 "ptr.ind.end"); 1707 break; 1708 } 1709 case LoopVectorizationLegality::IK_ReversePtrInduction: { 1710 // The value at the end of the loop for the reverse pointer is calculated 1711 // by creating a GEP with a negative index starting from the start value. 1712 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 1713 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 1714 "rev.ind.end"); 1715 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 1716 "rev.ptr.ind.end"); 1717 break; 1718 } 1719 }// end of case 1720 1721 // The new PHI merges the original incoming value, in case of a bypass, 1722 // or the value at the end of the vectorized loop. 1723 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) { 1724 if (OrigPhi == OldInduction) 1725 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 1726 else 1727 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 1728 } 1729 ResumeVal->addIncoming(EndValue, VecBody); 1730 1731 // Fix the scalar body counter (PHI node). 1732 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 1733 // The old inductions phi node in the scalar body needs the truncated value. 1734 if (OrigPhi == OldInduction) 1735 OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal); 1736 else 1737 OrigPhi->setIncomingValue(BlockIdx, ResumeVal); 1738 } 1739 1740 // If we are generating a new induction variable then we also need to 1741 // generate the code that calculates the exit value. This value is not 1742 // simply the end of the counter because we may skip the vectorized body 1743 // in case of a runtime check. 1744 if (!OldInduction){ 1745 assert(!ResumeIndex && "Unexpected resume value found"); 1746 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 1747 MiddleBlock->getTerminator()); 1748 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 1749 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 1750 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 1751 } 1752 1753 // Make sure that we found the index where scalar loop needs to continue. 1754 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 1755 "Invalid resume Index"); 1756 1757 // Add a check in the middle block to see if we have completed 1758 // all of the iterations in the first vector loop. 1759 // If (N - N%VF) == N, then we *don't* need to run the remainder. 1760 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 1761 ResumeIndex, "cmp.n", 1762 MiddleBlock->getTerminator()); 1763 1764 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 1765 // Remove the old terminator. 1766 MiddleBlock->getTerminator()->eraseFromParent(); 1767 1768 // Create i+1 and fill the PHINode. 1769 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 1770 Induction->addIncoming(StartIdx, VectorPH); 1771 Induction->addIncoming(NextIdx, VecBody); 1772 // Create the compare. 1773 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 1774 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 1775 1776 // Now we have two terminators. Remove the old one from the block. 1777 VecBody->getTerminator()->eraseFromParent(); 1778 1779 // Get ready to start creating new instructions into the vectorized body. 1780 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 1781 1782 // Save the state. 1783 LoopVectorPreHeader = VectorPH; 1784 LoopScalarPreHeader = ScalarPH; 1785 LoopMiddleBlock = MiddleBlock; 1786 LoopExitBlock = ExitBlock; 1787 LoopVectorBody = VecBody; 1788 LoopScalarBody = OldBasicBlock; 1789 1790 LoopVectorizeHints Hints(Lp, true); 1791 Hints.setAlreadyVectorized(Lp); 1792 } 1793 1794 /// This function returns the identity element (or neutral element) for 1795 /// the operation K. 1796 Constant* 1797 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 1798 switch (K) { 1799 case RK_IntegerXor: 1800 case RK_IntegerAdd: 1801 case RK_IntegerOr: 1802 // Adding, Xoring, Oring zero to a number does not change it. 1803 return ConstantInt::get(Tp, 0); 1804 case RK_IntegerMult: 1805 // Multiplying a number by 1 does not change it. 1806 return ConstantInt::get(Tp, 1); 1807 case RK_IntegerAnd: 1808 // AND-ing a number with an all-1 value does not change it. 1809 return ConstantInt::get(Tp, -1, true); 1810 case RK_FloatMult: 1811 // Multiplying a number by 1 does not change it. 1812 return ConstantFP::get(Tp, 1.0L); 1813 case RK_FloatAdd: 1814 // Adding zero to a number does not change it. 1815 return ConstantFP::get(Tp, 0.0L); 1816 default: 1817 llvm_unreachable("Unknown reduction kind"); 1818 } 1819 } 1820 1821 static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I, 1822 Intrinsic::ID ValidIntrinsicID) { 1823 if (I.getNumArgOperands() != 1 || 1824 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 1825 I.getType() != I.getArgOperand(0)->getType() || 1826 !I.onlyReadsMemory()) 1827 return Intrinsic::not_intrinsic; 1828 1829 return ValidIntrinsicID; 1830 } 1831 1832 static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I, 1833 Intrinsic::ID ValidIntrinsicID) { 1834 if (I.getNumArgOperands() != 2 || 1835 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 1836 !I.getArgOperand(1)->getType()->isFloatingPointTy() || 1837 I.getType() != I.getArgOperand(0)->getType() || 1838 I.getType() != I.getArgOperand(1)->getType() || 1839 !I.onlyReadsMemory()) 1840 return Intrinsic::not_intrinsic; 1841 1842 return ValidIntrinsicID; 1843 } 1844 1845 1846 static Intrinsic::ID 1847 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) { 1848 // If we have an intrinsic call, check if it is trivially vectorizable. 1849 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 1850 switch (II->getIntrinsicID()) { 1851 case Intrinsic::sqrt: 1852 case Intrinsic::sin: 1853 case Intrinsic::cos: 1854 case Intrinsic::exp: 1855 case Intrinsic::exp2: 1856 case Intrinsic::log: 1857 case Intrinsic::log10: 1858 case Intrinsic::log2: 1859 case Intrinsic::fabs: 1860 case Intrinsic::copysign: 1861 case Intrinsic::floor: 1862 case Intrinsic::ceil: 1863 case Intrinsic::trunc: 1864 case Intrinsic::rint: 1865 case Intrinsic::nearbyint: 1866 case Intrinsic::round: 1867 case Intrinsic::pow: 1868 case Intrinsic::fma: 1869 case Intrinsic::fmuladd: 1870 case Intrinsic::lifetime_start: 1871 case Intrinsic::lifetime_end: 1872 return II->getIntrinsicID(); 1873 default: 1874 return Intrinsic::not_intrinsic; 1875 } 1876 } 1877 1878 if (!TLI) 1879 return Intrinsic::not_intrinsic; 1880 1881 LibFunc::Func Func; 1882 Function *F = CI->getCalledFunction(); 1883 // We're going to make assumptions on the semantics of the functions, check 1884 // that the target knows that it's available in this environment and it does 1885 // not have local linkage. 1886 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func)) 1887 return Intrinsic::not_intrinsic; 1888 1889 // Otherwise check if we have a call to a function that can be turned into a 1890 // vector intrinsic. 1891 switch (Func) { 1892 default: 1893 break; 1894 case LibFunc::sin: 1895 case LibFunc::sinf: 1896 case LibFunc::sinl: 1897 return checkUnaryFloatSignature(*CI, Intrinsic::sin); 1898 case LibFunc::cos: 1899 case LibFunc::cosf: 1900 case LibFunc::cosl: 1901 return checkUnaryFloatSignature(*CI, Intrinsic::cos); 1902 case LibFunc::exp: 1903 case LibFunc::expf: 1904 case LibFunc::expl: 1905 return checkUnaryFloatSignature(*CI, Intrinsic::exp); 1906 case LibFunc::exp2: 1907 case LibFunc::exp2f: 1908 case LibFunc::exp2l: 1909 return checkUnaryFloatSignature(*CI, Intrinsic::exp2); 1910 case LibFunc::log: 1911 case LibFunc::logf: 1912 case LibFunc::logl: 1913 return checkUnaryFloatSignature(*CI, Intrinsic::log); 1914 case LibFunc::log10: 1915 case LibFunc::log10f: 1916 case LibFunc::log10l: 1917 return checkUnaryFloatSignature(*CI, Intrinsic::log10); 1918 case LibFunc::log2: 1919 case LibFunc::log2f: 1920 case LibFunc::log2l: 1921 return checkUnaryFloatSignature(*CI, Intrinsic::log2); 1922 case LibFunc::fabs: 1923 case LibFunc::fabsf: 1924 case LibFunc::fabsl: 1925 return checkUnaryFloatSignature(*CI, Intrinsic::fabs); 1926 case LibFunc::copysign: 1927 case LibFunc::copysignf: 1928 case LibFunc::copysignl: 1929 return checkBinaryFloatSignature(*CI, Intrinsic::copysign); 1930 case LibFunc::floor: 1931 case LibFunc::floorf: 1932 case LibFunc::floorl: 1933 return checkUnaryFloatSignature(*CI, Intrinsic::floor); 1934 case LibFunc::ceil: 1935 case LibFunc::ceilf: 1936 case LibFunc::ceill: 1937 return checkUnaryFloatSignature(*CI, Intrinsic::ceil); 1938 case LibFunc::trunc: 1939 case LibFunc::truncf: 1940 case LibFunc::truncl: 1941 return checkUnaryFloatSignature(*CI, Intrinsic::trunc); 1942 case LibFunc::rint: 1943 case LibFunc::rintf: 1944 case LibFunc::rintl: 1945 return checkUnaryFloatSignature(*CI, Intrinsic::rint); 1946 case LibFunc::nearbyint: 1947 case LibFunc::nearbyintf: 1948 case LibFunc::nearbyintl: 1949 return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint); 1950 case LibFunc::round: 1951 case LibFunc::roundf: 1952 case LibFunc::roundl: 1953 return checkUnaryFloatSignature(*CI, Intrinsic::round); 1954 case LibFunc::pow: 1955 case LibFunc::powf: 1956 case LibFunc::powl: 1957 return checkBinaryFloatSignature(*CI, Intrinsic::pow); 1958 } 1959 1960 return Intrinsic::not_intrinsic; 1961 } 1962 1963 /// This function translates the reduction kind to an LLVM binary operator. 1964 static unsigned 1965 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 1966 switch (Kind) { 1967 case LoopVectorizationLegality::RK_IntegerAdd: 1968 return Instruction::Add; 1969 case LoopVectorizationLegality::RK_IntegerMult: 1970 return Instruction::Mul; 1971 case LoopVectorizationLegality::RK_IntegerOr: 1972 return Instruction::Or; 1973 case LoopVectorizationLegality::RK_IntegerAnd: 1974 return Instruction::And; 1975 case LoopVectorizationLegality::RK_IntegerXor: 1976 return Instruction::Xor; 1977 case LoopVectorizationLegality::RK_FloatMult: 1978 return Instruction::FMul; 1979 case LoopVectorizationLegality::RK_FloatAdd: 1980 return Instruction::FAdd; 1981 case LoopVectorizationLegality::RK_IntegerMinMax: 1982 return Instruction::ICmp; 1983 case LoopVectorizationLegality::RK_FloatMinMax: 1984 return Instruction::FCmp; 1985 default: 1986 llvm_unreachable("Unknown reduction operation"); 1987 } 1988 } 1989 1990 Value *createMinMaxOp(IRBuilder<> &Builder, 1991 LoopVectorizationLegality::MinMaxReductionKind RK, 1992 Value *Left, 1993 Value *Right) { 1994 CmpInst::Predicate P = CmpInst::ICMP_NE; 1995 switch (RK) { 1996 default: 1997 llvm_unreachable("Unknown min/max reduction kind"); 1998 case LoopVectorizationLegality::MRK_UIntMin: 1999 P = CmpInst::ICMP_ULT; 2000 break; 2001 case LoopVectorizationLegality::MRK_UIntMax: 2002 P = CmpInst::ICMP_UGT; 2003 break; 2004 case LoopVectorizationLegality::MRK_SIntMin: 2005 P = CmpInst::ICMP_SLT; 2006 break; 2007 case LoopVectorizationLegality::MRK_SIntMax: 2008 P = CmpInst::ICMP_SGT; 2009 break; 2010 case LoopVectorizationLegality::MRK_FloatMin: 2011 P = CmpInst::FCMP_OLT; 2012 break; 2013 case LoopVectorizationLegality::MRK_FloatMax: 2014 P = CmpInst::FCMP_OGT; 2015 break; 2016 } 2017 2018 Value *Cmp; 2019 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2020 RK == LoopVectorizationLegality::MRK_FloatMax) 2021 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2022 else 2023 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2024 2025 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2026 return Select; 2027 } 2028 2029 void 2030 InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) { 2031 //===------------------------------------------------===// 2032 // 2033 // Notice: any optimization or new instruction that go 2034 // into the code below should be also be implemented in 2035 // the cost-model. 2036 // 2037 //===------------------------------------------------===// 2038 Constant *Zero = Builder.getInt32(0); 2039 2040 // In order to support reduction variables we need to be able to vectorize 2041 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2042 // stages. First, we create a new vector PHI node with no incoming edges. 2043 // We use this value when we vectorize all of the instructions that use the 2044 // PHI. Next, after all of the instructions in the block are complete we 2045 // add the new incoming edges to the PHI. At this point all of the 2046 // instructions in the basic block are vectorized, so we can use them to 2047 // construct the PHI. 2048 PhiVector RdxPHIsToFix; 2049 2050 // Scan the loop in a topological order to ensure that defs are vectorized 2051 // before users. 2052 LoopBlocksDFS DFS(OrigLoop); 2053 DFS.perform(LI); 2054 2055 // Vectorize all of the blocks in the original loop. 2056 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2057 be = DFS.endRPO(); bb != be; ++bb) 2058 vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix); 2059 2060 // At this point every instruction in the original loop is widened to 2061 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2062 // that we vectorized. The PHI nodes are currently empty because we did 2063 // not want to introduce cycles. Notice that the remaining PHI nodes 2064 // that we need to fix are reduction variables. 2065 2066 // Create the 'reduced' values for each of the induction vars. 2067 // The reduced values are the vector values that we scalarize and combine 2068 // after the loop is finished. 2069 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2070 it != e; ++it) { 2071 PHINode *RdxPhi = *it; 2072 assert(RdxPhi && "Unable to recover vectorized PHI"); 2073 2074 // Find the reduction variable descriptor. 2075 assert(Legal->getReductionVars()->count(RdxPhi) && 2076 "Unable to find the reduction variable"); 2077 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2078 (*Legal->getReductionVars())[RdxPhi]; 2079 2080 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2081 2082 // We need to generate a reduction vector from the incoming scalar. 2083 // To do so, we need to generate the 'identity' vector and overide 2084 // one of the elements with the incoming scalar reduction. We need 2085 // to do it in the vector-loop preheader. 2086 Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator()); 2087 2088 // This is the vector-clone of the value that leaves the loop. 2089 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2090 Type *VecTy = VectorExit[0]->getType(); 2091 2092 // Find the reduction identity variable. Zero for addition, or, xor, 2093 // one for multiplication, -1 for And. 2094 Value *Identity; 2095 Value *VectorStart; 2096 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2097 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2098 // MinMax reduction have the start value as their identify. 2099 if (VF == 1) { 2100 VectorStart = Identity = RdxDesc.StartValue; 2101 } else { 2102 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2103 RdxDesc.StartValue, 2104 "minmax.ident"); 2105 } 2106 } else { 2107 // Handle other reduction kinds: 2108 Constant *Iden = 2109 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2110 VecTy->getScalarType()); 2111 if (VF == 1) { 2112 Identity = Iden; 2113 // This vector is the Identity vector where the first element is the 2114 // incoming scalar reduction. 2115 VectorStart = RdxDesc.StartValue; 2116 } else { 2117 Identity = ConstantVector::getSplat(VF, Iden); 2118 2119 // This vector is the Identity vector where the first element is the 2120 // incoming scalar reduction. 2121 VectorStart = Builder.CreateInsertElement(Identity, 2122 RdxDesc.StartValue, Zero); 2123 } 2124 } 2125 2126 // Fix the vector-loop phi. 2127 // We created the induction variable so we know that the 2128 // preheader is the first entry. 2129 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2130 2131 // Reductions do not have to start at zero. They can start with 2132 // any loop invariant values. 2133 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2134 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2135 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2136 VectorParts &Val = getVectorValue(LoopVal); 2137 for (unsigned part = 0; part < UF; ++part) { 2138 // Make sure to add the reduction stat value only to the 2139 // first unroll part. 2140 Value *StartVal = (part == 0) ? VectorStart : Identity; 2141 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2142 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody); 2143 } 2144 2145 // Before each round, move the insertion point right between 2146 // the PHIs and the values we are going to write. 2147 // This allows us to write both PHINodes and the extractelement 2148 // instructions. 2149 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2150 2151 VectorParts RdxParts; 2152 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2153 for (unsigned part = 0; part < UF; ++part) { 2154 // This PHINode contains the vectorized reduction variable, or 2155 // the initial value vector, if we bypass the vector loop. 2156 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2157 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2158 Value *StartVal = (part == 0) ? VectorStart : Identity; 2159 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2160 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2161 NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody); 2162 RdxParts.push_back(NewPhi); 2163 } 2164 2165 // Reduce all of the unrolled parts into a single vector. 2166 Value *ReducedPartRdx = RdxParts[0]; 2167 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2168 setDebugLocFromInst(Builder, ReducedPartRdx); 2169 for (unsigned part = 1; part < UF; ++part) { 2170 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2171 ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op, 2172 RdxParts[part], ReducedPartRdx, 2173 "bin.rdx"); 2174 else 2175 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2176 ReducedPartRdx, RdxParts[part]); 2177 } 2178 2179 if (VF > 1) { 2180 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2181 // and vector ops, reducing the set of values being computed by half each 2182 // round. 2183 assert(isPowerOf2_32(VF) && 2184 "Reduction emission only supported for pow2 vectors!"); 2185 Value *TmpVec = ReducedPartRdx; 2186 SmallVector<Constant*, 32> ShuffleMask(VF, 0); 2187 for (unsigned i = VF; i != 1; i >>= 1) { 2188 // Move the upper half of the vector to the lower half. 2189 for (unsigned j = 0; j != i/2; ++j) 2190 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2191 2192 // Fill the rest of the mask with undef. 2193 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2194 UndefValue::get(Builder.getInt32Ty())); 2195 2196 Value *Shuf = 2197 Builder.CreateShuffleVector(TmpVec, 2198 UndefValue::get(TmpVec->getType()), 2199 ConstantVector::get(ShuffleMask), 2200 "rdx.shuf"); 2201 2202 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2203 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 2204 "bin.rdx"); 2205 else 2206 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2207 } 2208 2209 // The result is in the first element of the vector. 2210 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2211 Builder.getInt32(0)); 2212 } 2213 2214 // Now, we need to fix the users of the reduction variable 2215 // inside and outside of the scalar remainder loop. 2216 // We know that the loop is in LCSSA form. We need to update the 2217 // PHI nodes in the exit blocks. 2218 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2219 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2220 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2221 if (!LCSSAPhi) break; 2222 2223 // All PHINodes need to have a single entry edge, or two if 2224 // we already fixed them. 2225 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2226 2227 // We found our reduction value exit-PHI. Update it with the 2228 // incoming bypass edge. 2229 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2230 // Add an edge coming from the bypass. 2231 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2232 break; 2233 } 2234 }// end of the LCSSA phi scan. 2235 2236 // Fix the scalar loop reduction variable with the incoming reduction sum 2237 // from the vector body and from the backedge value. 2238 int IncomingEdgeBlockIdx = 2239 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2240 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2241 // Pick the other block. 2242 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2243 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx); 2244 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2245 }// end of for each redux variable. 2246 2247 fixLCSSAPHIs(); 2248 } 2249 2250 void InnerLoopVectorizer::fixLCSSAPHIs() { 2251 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2252 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2253 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2254 if (!LCSSAPhi) break; 2255 if (LCSSAPhi->getNumIncomingValues() == 1) 2256 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2257 LoopMiddleBlock); 2258 } 2259 } 2260 2261 InnerLoopVectorizer::VectorParts 2262 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2263 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2264 "Invalid edge"); 2265 2266 // Look for cached value. 2267 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2268 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2269 if (ECEntryIt != MaskCache.end()) 2270 return ECEntryIt->second; 2271 2272 VectorParts SrcMask = createBlockInMask(Src); 2273 2274 // The terminator has to be a branch inst! 2275 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2276 assert(BI && "Unexpected terminator found"); 2277 2278 if (BI->isConditional()) { 2279 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2280 2281 if (BI->getSuccessor(0) != Dst) 2282 for (unsigned part = 0; part < UF; ++part) 2283 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2284 2285 for (unsigned part = 0; part < UF; ++part) 2286 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2287 2288 MaskCache[Edge] = EdgeMask; 2289 return EdgeMask; 2290 } 2291 2292 MaskCache[Edge] = SrcMask; 2293 return SrcMask; 2294 } 2295 2296 InnerLoopVectorizer::VectorParts 2297 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2298 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2299 2300 // Loop incoming mask is all-one. 2301 if (OrigLoop->getHeader() == BB) { 2302 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2303 return getVectorValue(C); 2304 } 2305 2306 // This is the block mask. We OR all incoming edges, and with zero. 2307 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2308 VectorParts BlockMask = getVectorValue(Zero); 2309 2310 // For each pred: 2311 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2312 VectorParts EM = createEdgeMask(*it, BB); 2313 for (unsigned part = 0; part < UF; ++part) 2314 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2315 } 2316 2317 return BlockMask; 2318 } 2319 2320 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2321 InnerLoopVectorizer::VectorParts &Entry, 2322 LoopVectorizationLegality *Legal, 2323 unsigned UF, unsigned VF, PhiVector *PV) { 2324 PHINode* P = cast<PHINode>(PN); 2325 // Handle reduction variables: 2326 if (Legal->getReductionVars()->count(P)) { 2327 for (unsigned part = 0; part < UF; ++part) { 2328 // This is phase one of vectorizing PHIs. 2329 Type *VecTy = (VF == 1) ? PN->getType() : 2330 VectorType::get(PN->getType(), VF); 2331 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2332 LoopVectorBody-> getFirstInsertionPt()); 2333 } 2334 PV->push_back(P); 2335 return; 2336 } 2337 2338 setDebugLocFromInst(Builder, P); 2339 // Check for PHI nodes that are lowered to vector selects. 2340 if (P->getParent() != OrigLoop->getHeader()) { 2341 // We know that all PHIs in non header blocks are converted into 2342 // selects, so we don't have to worry about the insertion order and we 2343 // can just use the builder. 2344 // At this point we generate the predication tree. There may be 2345 // duplications since this is a simple recursive scan, but future 2346 // optimizations will clean it up. 2347 2348 unsigned NumIncoming = P->getNumIncomingValues(); 2349 2350 // Generate a sequence of selects of the form: 2351 // SELECT(Mask3, In3, 2352 // SELECT(Mask2, In2, 2353 // ( ...))) 2354 for (unsigned In = 0; In < NumIncoming; In++) { 2355 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2356 P->getParent()); 2357 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2358 2359 for (unsigned part = 0; part < UF; ++part) { 2360 // We might have single edge PHIs (blocks) - use an identity 2361 // 'select' for the first PHI operand. 2362 if (In == 0) 2363 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2364 In0[part]); 2365 else 2366 // Select between the current value and the previous incoming edge 2367 // based on the incoming mask. 2368 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2369 Entry[part], "predphi"); 2370 } 2371 } 2372 return; 2373 } 2374 2375 // This PHINode must be an induction variable. 2376 // Make sure that we know about it. 2377 assert(Legal->getInductionVars()->count(P) && 2378 "Not an induction variable"); 2379 2380 LoopVectorizationLegality::InductionInfo II = 2381 Legal->getInductionVars()->lookup(P); 2382 2383 switch (II.IK) { 2384 case LoopVectorizationLegality::IK_NoInduction: 2385 llvm_unreachable("Unknown induction"); 2386 case LoopVectorizationLegality::IK_IntInduction: { 2387 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2388 Type *PhiTy = P->getType(); 2389 Value *Broadcasted; 2390 if (P == OldInduction) { 2391 // Handle the canonical induction variable. We might have had to 2392 // extend the type. 2393 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2394 } else { 2395 // Handle other induction variables that are now based on the 2396 // canonical one. 2397 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2398 "normalized.idx"); 2399 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2400 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 2401 "offset.idx"); 2402 } 2403 Broadcasted = getBroadcastInstrs(Broadcasted); 2404 // After broadcasting the induction variable we need to make the vector 2405 // consecutive by adding 0, 1, 2, etc. 2406 for (unsigned part = 0; part < UF; ++part) 2407 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 2408 return; 2409 } 2410 case LoopVectorizationLegality::IK_ReverseIntInduction: 2411 case LoopVectorizationLegality::IK_PtrInduction: 2412 case LoopVectorizationLegality::IK_ReversePtrInduction: 2413 // Handle reverse integer and pointer inductions. 2414 Value *StartIdx = ExtendedIdx; 2415 // This is the normalized GEP that starts counting at zero. 2416 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 2417 "normalized.idx"); 2418 2419 // Handle the reverse integer induction variable case. 2420 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 2421 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 2422 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 2423 "resize.norm.idx"); 2424 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 2425 "reverse.idx"); 2426 2427 // This is a new value so do not hoist it out. 2428 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 2429 // After broadcasting the induction variable we need to make the 2430 // vector consecutive by adding ... -3, -2, -1, 0. 2431 for (unsigned part = 0; part < UF; ++part) 2432 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 2433 true); 2434 return; 2435 } 2436 2437 // Handle the pointer induction variable case. 2438 assert(P->getType()->isPointerTy() && "Unexpected type."); 2439 2440 // Is this a reverse induction ptr or a consecutive induction ptr. 2441 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 2442 II.IK); 2443 2444 // This is the vector of results. Notice that we don't generate 2445 // vector geps because scalar geps result in better code. 2446 for (unsigned part = 0; part < UF; ++part) { 2447 if (VF == 1) { 2448 int EltIndex = (part) * (Reverse ? -1 : 1); 2449 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2450 Value *GlobalIdx; 2451 if (Reverse) 2452 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2453 else 2454 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2455 2456 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2457 "next.gep"); 2458 Entry[part] = SclrGep; 2459 continue; 2460 } 2461 2462 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 2463 for (unsigned int i = 0; i < VF; ++i) { 2464 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 2465 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2466 Value *GlobalIdx; 2467 if (!Reverse) 2468 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2469 else 2470 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2471 2472 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2473 "next.gep"); 2474 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 2475 Builder.getInt32(i), 2476 "insert.gep"); 2477 } 2478 Entry[part] = VecVal; 2479 } 2480 return; 2481 } 2482 } 2483 2484 void 2485 InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal, 2486 BasicBlock *BB, PhiVector *PV) { 2487 // For each instruction in the old loop. 2488 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2489 VectorParts &Entry = WidenMap.get(it); 2490 switch (it->getOpcode()) { 2491 case Instruction::Br: 2492 // Nothing to do for PHIs and BR, since we already took care of the 2493 // loop control flow instructions. 2494 continue; 2495 case Instruction::PHI:{ 2496 // Vectorize PHINodes. 2497 widenPHIInstruction(it, Entry, Legal, UF, VF, PV); 2498 continue; 2499 }// End of PHI. 2500 2501 case Instruction::Add: 2502 case Instruction::FAdd: 2503 case Instruction::Sub: 2504 case Instruction::FSub: 2505 case Instruction::Mul: 2506 case Instruction::FMul: 2507 case Instruction::UDiv: 2508 case Instruction::SDiv: 2509 case Instruction::FDiv: 2510 case Instruction::URem: 2511 case Instruction::SRem: 2512 case Instruction::FRem: 2513 case Instruction::Shl: 2514 case Instruction::LShr: 2515 case Instruction::AShr: 2516 case Instruction::And: 2517 case Instruction::Or: 2518 case Instruction::Xor: { 2519 // Just widen binops. 2520 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 2521 setDebugLocFromInst(Builder, BinOp); 2522 VectorParts &A = getVectorValue(it->getOperand(0)); 2523 VectorParts &B = getVectorValue(it->getOperand(1)); 2524 2525 // Use this vector value for all users of the original instruction. 2526 for (unsigned Part = 0; Part < UF; ++Part) { 2527 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 2528 2529 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 2530 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 2531 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 2532 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 2533 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 2534 } 2535 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 2536 VecOp->setIsExact(BinOp->isExact()); 2537 2538 Entry[Part] = V; 2539 } 2540 break; 2541 } 2542 case Instruction::Select: { 2543 // Widen selects. 2544 // If the selector is loop invariant we can create a select 2545 // instruction with a scalar condition. Otherwise, use vector-select. 2546 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 2547 OrigLoop); 2548 setDebugLocFromInst(Builder, it); 2549 2550 // The condition can be loop invariant but still defined inside the 2551 // loop. This means that we can't just use the original 'cond' value. 2552 // We have to take the 'vectorized' value and pick the first lane. 2553 // Instcombine will make this a no-op. 2554 VectorParts &Cond = getVectorValue(it->getOperand(0)); 2555 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 2556 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 2557 2558 Value *ScalarCond = (VF == 1) ? Cond[0] : 2559 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 2560 2561 for (unsigned Part = 0; Part < UF; ++Part) { 2562 Entry[Part] = Builder.CreateSelect( 2563 InvariantCond ? ScalarCond : Cond[Part], 2564 Op0[Part], 2565 Op1[Part]); 2566 } 2567 break; 2568 } 2569 2570 case Instruction::ICmp: 2571 case Instruction::FCmp: { 2572 // Widen compares. Generate vector compares. 2573 bool FCmp = (it->getOpcode() == Instruction::FCmp); 2574 CmpInst *Cmp = dyn_cast<CmpInst>(it); 2575 setDebugLocFromInst(Builder, it); 2576 VectorParts &A = getVectorValue(it->getOperand(0)); 2577 VectorParts &B = getVectorValue(it->getOperand(1)); 2578 for (unsigned Part = 0; Part < UF; ++Part) { 2579 Value *C = 0; 2580 if (FCmp) 2581 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 2582 else 2583 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 2584 Entry[Part] = C; 2585 } 2586 break; 2587 } 2588 2589 case Instruction::Store: 2590 case Instruction::Load: 2591 vectorizeMemoryInstruction(it, Legal); 2592 break; 2593 case Instruction::ZExt: 2594 case Instruction::SExt: 2595 case Instruction::FPToUI: 2596 case Instruction::FPToSI: 2597 case Instruction::FPExt: 2598 case Instruction::PtrToInt: 2599 case Instruction::IntToPtr: 2600 case Instruction::SIToFP: 2601 case Instruction::UIToFP: 2602 case Instruction::Trunc: 2603 case Instruction::FPTrunc: 2604 case Instruction::BitCast: { 2605 CastInst *CI = dyn_cast<CastInst>(it); 2606 setDebugLocFromInst(Builder, it); 2607 /// Optimize the special case where the source is the induction 2608 /// variable. Notice that we can only optimize the 'trunc' case 2609 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 2610 /// c. other casts depend on pointer size. 2611 if (CI->getOperand(0) == OldInduction && 2612 it->getOpcode() == Instruction::Trunc) { 2613 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 2614 CI->getType()); 2615 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 2616 for (unsigned Part = 0; Part < UF; ++Part) 2617 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 2618 break; 2619 } 2620 /// Vectorize casts. 2621 Type *DestTy = (VF == 1) ? CI->getType() : 2622 VectorType::get(CI->getType(), VF); 2623 2624 VectorParts &A = getVectorValue(it->getOperand(0)); 2625 for (unsigned Part = 0; Part < UF; ++Part) 2626 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 2627 break; 2628 } 2629 2630 case Instruction::Call: { 2631 // Ignore dbg intrinsics. 2632 if (isa<DbgInfoIntrinsic>(it)) 2633 break; 2634 setDebugLocFromInst(Builder, it); 2635 2636 Module *M = BB->getParent()->getParent(); 2637 CallInst *CI = cast<CallInst>(it); 2638 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2639 assert(ID && "Not an intrinsic call!"); 2640 switch (ID) { 2641 case Intrinsic::lifetime_end: 2642 case Intrinsic::lifetime_start: 2643 scalarizeInstruction(it); 2644 break; 2645 default: 2646 for (unsigned Part = 0; Part < UF; ++Part) { 2647 SmallVector<Value *, 4> Args; 2648 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 2649 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 2650 Args.push_back(Arg[Part]); 2651 } 2652 Type *Tys[] = {CI->getType()}; 2653 if (VF > 1) 2654 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 2655 2656 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 2657 Entry[Part] = Builder.CreateCall(F, Args); 2658 } 2659 break; 2660 } 2661 break; 2662 } 2663 2664 default: 2665 // All other instructions are unsupported. Scalarize them. 2666 scalarizeInstruction(it); 2667 break; 2668 }// end of switch. 2669 }// end of for_each instr. 2670 } 2671 2672 void InnerLoopVectorizer::updateAnalysis() { 2673 // Forget the original basic block. 2674 SE->forgetLoop(OrigLoop); 2675 2676 // Update the dominator tree information. 2677 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 2678 "Entry does not dominate exit."); 2679 2680 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2681 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 2682 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 2683 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 2684 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front()); 2685 DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock); 2686 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 2687 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 2688 2689 DEBUG(DT->verifyAnalysis()); 2690 } 2691 2692 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 2693 if (!EnableIfConversion) 2694 return false; 2695 2696 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 2697 2698 // A list of pointers that we can safely read and write to. 2699 SmallPtrSet<Value *, 8> SafePointes; 2700 2701 // Collect safe addresses. 2702 for (Loop::block_iterator BI = TheLoop->block_begin(), 2703 BE = TheLoop->block_end(); BI != BE; ++BI) { 2704 BasicBlock *BB = *BI; 2705 2706 if (blockNeedsPredication(BB)) 2707 continue; 2708 2709 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 2710 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 2711 SafePointes.insert(LI->getPointerOperand()); 2712 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 2713 SafePointes.insert(SI->getPointerOperand()); 2714 } 2715 } 2716 2717 // Collect the blocks that need predication. 2718 for (Loop::block_iterator BI = TheLoop->block_begin(), 2719 BE = TheLoop->block_end(); BI != BE; ++BI) { 2720 BasicBlock *BB = *BI; 2721 2722 // We don't support switch statements inside loops. 2723 if (!isa<BranchInst>(BB->getTerminator())) 2724 return false; 2725 2726 // We must be able to predicate all blocks that need to be predicated. 2727 if (blockNeedsPredication(BB) && !blockCanBePredicated(BB, SafePointes)) 2728 return false; 2729 } 2730 2731 // We can if-convert this loop. 2732 return true; 2733 } 2734 2735 bool LoopVectorizationLegality::canVectorize() { 2736 // We must have a loop in canonical form. Loops with indirectbr in them cannot 2737 // be canonicalized. 2738 if (!TheLoop->getLoopPreheader()) 2739 return false; 2740 2741 // We can only vectorize innermost loops. 2742 if (TheLoop->getSubLoopsVector().size()) 2743 return false; 2744 2745 // We must have a single backedge. 2746 if (TheLoop->getNumBackEdges() != 1) 2747 return false; 2748 2749 // We must have a single exiting block. 2750 if (!TheLoop->getExitingBlock()) 2751 return false; 2752 2753 // We need to have a loop header. 2754 DEBUG(dbgs() << "LV: Found a loop: " << 2755 TheLoop->getHeader()->getName() << '\n'); 2756 2757 // Check if we can if-convert non single-bb loops. 2758 unsigned NumBlocks = TheLoop->getNumBlocks(); 2759 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 2760 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 2761 return false; 2762 } 2763 2764 // ScalarEvolution needs to be able to find the exit count. 2765 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 2766 if (ExitCount == SE->getCouldNotCompute()) { 2767 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 2768 return false; 2769 } 2770 2771 // Do not loop-vectorize loops with a tiny trip count. 2772 BasicBlock *Latch = TheLoop->getLoopLatch(); 2773 unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch); 2774 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 2775 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " << 2776 "This loop is not worth vectorizing.\n"); 2777 return false; 2778 } 2779 2780 // Check if we can vectorize the instructions and CFG in this loop. 2781 if (!canVectorizeInstrs()) { 2782 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 2783 return false; 2784 } 2785 2786 // Go over each instruction and look at memory deps. 2787 if (!canVectorizeMemory()) { 2788 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 2789 return false; 2790 } 2791 2792 // Collect all of the variables that remain uniform after vectorization. 2793 collectLoopUniforms(); 2794 2795 DEBUG(dbgs() << "LV: We can vectorize this loop" << 2796 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 2797 <<"!\n"); 2798 2799 // Okay! We can vectorize. At this point we don't have any other mem analysis 2800 // which may limit our maximum vectorization factor, so just return true with 2801 // no restrictions. 2802 return true; 2803 } 2804 2805 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) { 2806 if (Ty->isPointerTy()) 2807 return DL.getIntPtrType(Ty); 2808 2809 return Ty; 2810 } 2811 2812 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) { 2813 Ty0 = convertPointerToIntegerType(DL, Ty0); 2814 Ty1 = convertPointerToIntegerType(DL, Ty1); 2815 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 2816 return Ty0; 2817 return Ty1; 2818 } 2819 2820 /// \brief Check that the instruction has outside loop users and is not an 2821 /// identified reduction variable. 2822 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 2823 SmallPtrSet<Value *, 4> &Reductions) { 2824 // Reduction instructions are allowed to have exit users. All other 2825 // instructions must not have external users. 2826 if (!Reductions.count(Inst)) 2827 //Check that all of the users of the loop are inside the BB. 2828 for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end(); 2829 I != E; ++I) { 2830 Instruction *U = cast<Instruction>(*I); 2831 // This user may be a reduction exit value. 2832 if (!TheLoop->contains(U)) { 2833 DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n'); 2834 return true; 2835 } 2836 } 2837 return false; 2838 } 2839 2840 bool LoopVectorizationLegality::canVectorizeInstrs() { 2841 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 2842 BasicBlock *Header = TheLoop->getHeader(); 2843 2844 // Look for the attribute signaling the absence of NaNs. 2845 Function &F = *Header->getParent(); 2846 if (F.hasFnAttribute("no-nans-fp-math")) 2847 HasFunNoNaNAttr = F.getAttributes().getAttribute( 2848 AttributeSet::FunctionIndex, 2849 "no-nans-fp-math").getValueAsString() == "true"; 2850 2851 // For each block in the loop. 2852 for (Loop::block_iterator bb = TheLoop->block_begin(), 2853 be = TheLoop->block_end(); bb != be; ++bb) { 2854 2855 // Scan the instructions in the block and look for hazards. 2856 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 2857 ++it) { 2858 2859 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 2860 Type *PhiTy = Phi->getType(); 2861 // Check that this PHI type is allowed. 2862 if (!PhiTy->isIntegerTy() && 2863 !PhiTy->isFloatingPointTy() && 2864 !PhiTy->isPointerTy()) { 2865 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 2866 return false; 2867 } 2868 2869 // If this PHINode is not in the header block, then we know that we 2870 // can convert it to select during if-conversion. No need to check if 2871 // the PHIs in this block are induction or reduction variables. 2872 if (*bb != Header) { 2873 // Check that this instruction has no outside users or is an 2874 // identified reduction value with an outside user. 2875 if(!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 2876 continue; 2877 return false; 2878 } 2879 2880 // We only allow if-converted PHIs with more than two incoming values. 2881 if (Phi->getNumIncomingValues() != 2) { 2882 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 2883 return false; 2884 } 2885 2886 // This is the value coming from the preheader. 2887 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 2888 // Check if this is an induction variable. 2889 InductionKind IK = isInductionVariable(Phi); 2890 2891 if (IK_NoInduction != IK) { 2892 // Get the widest type. 2893 if (!WidestIndTy) 2894 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 2895 else 2896 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 2897 2898 // Int inductions are special because we only allow one IV. 2899 if (IK == IK_IntInduction) { 2900 // Use the phi node with the widest type as induction. Use the last 2901 // one if there are multiple (no good reason for doing this other 2902 // than it is expedient). 2903 if (!Induction || PhiTy == WidestIndTy) 2904 Induction = Phi; 2905 } 2906 2907 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 2908 Inductions[Phi] = InductionInfo(StartValue, IK); 2909 2910 // Until we explicitly handle the case of an induction variable with 2911 // an outside loop user we have to give up vectorizing this loop. 2912 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 2913 return false; 2914 2915 continue; 2916 } 2917 2918 if (AddReductionVar(Phi, RK_IntegerAdd)) { 2919 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 2920 continue; 2921 } 2922 if (AddReductionVar(Phi, RK_IntegerMult)) { 2923 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 2924 continue; 2925 } 2926 if (AddReductionVar(Phi, RK_IntegerOr)) { 2927 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 2928 continue; 2929 } 2930 if (AddReductionVar(Phi, RK_IntegerAnd)) { 2931 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 2932 continue; 2933 } 2934 if (AddReductionVar(Phi, RK_IntegerXor)) { 2935 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 2936 continue; 2937 } 2938 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 2939 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 2940 continue; 2941 } 2942 if (AddReductionVar(Phi, RK_FloatMult)) { 2943 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 2944 continue; 2945 } 2946 if (AddReductionVar(Phi, RK_FloatAdd)) { 2947 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 2948 continue; 2949 } 2950 if (AddReductionVar(Phi, RK_FloatMinMax)) { 2951 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 2952 "\n"); 2953 continue; 2954 } 2955 2956 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 2957 return false; 2958 }// end of PHI handling 2959 2960 // We still don't handle functions. However, we can ignore dbg intrinsic 2961 // calls and we do handle certain intrinsic and libm functions. 2962 CallInst *CI = dyn_cast<CallInst>(it); 2963 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 2964 DEBUG(dbgs() << "LV: Found a call site.\n"); 2965 return false; 2966 } 2967 2968 // Check that the instruction return type is vectorizable. 2969 // Also, we can't vectorize extractelement instructions. 2970 if ((!VectorType::isValidElementType(it->getType()) && 2971 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 2972 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 2973 return false; 2974 } 2975 2976 // Check that the stored type is vectorizable. 2977 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 2978 Type *T = ST->getValueOperand()->getType(); 2979 if (!VectorType::isValidElementType(T)) 2980 return false; 2981 } 2982 2983 // Reduction instructions are allowed to have exit users. 2984 // All other instructions must not have external users. 2985 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 2986 return false; 2987 2988 } // next instr. 2989 2990 } 2991 2992 if (!Induction) { 2993 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 2994 if (Inductions.empty()) 2995 return false; 2996 } 2997 2998 return true; 2999 } 3000 3001 void LoopVectorizationLegality::collectLoopUniforms() { 3002 // We now know that the loop is vectorizable! 3003 // Collect variables that will remain uniform after vectorization. 3004 std::vector<Value*> Worklist; 3005 BasicBlock *Latch = TheLoop->getLoopLatch(); 3006 3007 // Start with the conditional branch and walk up the block. 3008 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3009 3010 while (Worklist.size()) { 3011 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3012 Worklist.pop_back(); 3013 3014 // Look at instructions inside this loop. 3015 // Stop when reaching PHI nodes. 3016 // TODO: we need to follow values all over the loop, not only in this block. 3017 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3018 continue; 3019 3020 // This is a known uniform. 3021 Uniforms.insert(I); 3022 3023 // Insert all operands. 3024 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3025 } 3026 } 3027 3028 namespace { 3029 /// \brief Analyses memory accesses in a loop. 3030 /// 3031 /// Checks whether run time pointer checks are needed and builds sets for data 3032 /// dependence checking. 3033 class AccessAnalysis { 3034 public: 3035 /// \brief Read or write access location. 3036 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3037 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3038 3039 /// \brief Set of potential dependent memory accesses. 3040 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 3041 3042 AccessAnalysis(DataLayout *Dl, DepCandidates &DA) : 3043 DL(Dl), DepCands(DA), AreAllWritesIdentified(true), 3044 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {} 3045 3046 /// \brief Register a load and whether it is only read from. 3047 void addLoad(Value *Ptr, bool IsReadOnly) { 3048 Accesses.insert(MemAccessInfo(Ptr, false)); 3049 if (IsReadOnly) 3050 ReadOnlyPtr.insert(Ptr); 3051 } 3052 3053 /// \brief Register a store. 3054 void addStore(Value *Ptr) { 3055 Accesses.insert(MemAccessInfo(Ptr, true)); 3056 } 3057 3058 /// \brief Check whether we can check the pointers at runtime for 3059 /// non-intersection. 3060 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3061 unsigned &NumComparisons, ScalarEvolution *SE, 3062 Loop *TheLoop); 3063 3064 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3065 /// and builds sets of dependent accesses. 3066 void buildDependenceSets() { 3067 // Process read-write pointers first. 3068 processMemAccesses(false); 3069 // Next, process read pointers. 3070 processMemAccesses(true); 3071 } 3072 3073 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3074 3075 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3076 3077 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3078 3079 private: 3080 typedef SetVector<MemAccessInfo> PtrAccessSet; 3081 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 3082 3083 /// \brief Go over all memory access or only the deferred ones if 3084 /// \p UseDeferred is true and check whether runtime pointer checks are needed 3085 /// and build sets of dependency check candidates. 3086 void processMemAccesses(bool UseDeferred); 3087 3088 /// Set of all accesses. 3089 PtrAccessSet Accesses; 3090 3091 /// Set of access to check after all writes have been processed. 3092 PtrAccessSet DeferredAccesses; 3093 3094 /// Map of pointers to last access encountered. 3095 UnderlyingObjToAccessMap ObjToLastAccess; 3096 3097 /// Set of accesses that need a further dependence check. 3098 MemAccessInfoSet CheckDeps; 3099 3100 /// Set of pointers that are read only. 3101 SmallPtrSet<Value*, 16> ReadOnlyPtr; 3102 3103 /// Set of underlying objects already written to. 3104 SmallPtrSet<Value*, 16> WriteObjects; 3105 3106 DataLayout *DL; 3107 3108 /// Sets of potentially dependent accesses - members of one set share an 3109 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 3110 /// dependence check. 3111 DepCandidates &DepCands; 3112 3113 bool AreAllWritesIdentified; 3114 bool AreAllReadsIdentified; 3115 bool IsRTCheckNeeded; 3116 }; 3117 3118 } // end anonymous namespace 3119 3120 /// \brief Check whether a pointer can participate in a runtime bounds check. 3121 static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) { 3122 const SCEV *PtrScev = SE->getSCEV(Ptr); 3123 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3124 if (!AR) 3125 return false; 3126 3127 return AR->isAffine(); 3128 } 3129 3130 bool AccessAnalysis::canCheckPtrAtRT( 3131 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3132 unsigned &NumComparisons, ScalarEvolution *SE, 3133 Loop *TheLoop) { 3134 // Find pointers with computable bounds. We are going to use this information 3135 // to place a runtime bound check. 3136 unsigned NumReadPtrChecks = 0; 3137 unsigned NumWritePtrChecks = 0; 3138 bool CanDoRT = true; 3139 3140 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 3141 // We assign consecutive id to access from different dependence sets. 3142 // Accesses within the same set don't need a runtime check. 3143 unsigned RunningDepId = 1; 3144 DenseMap<Value *, unsigned> DepSetId; 3145 3146 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end(); 3147 AI != AE; ++AI) { 3148 const MemAccessInfo &Access = *AI; 3149 Value *Ptr = Access.getPointer(); 3150 bool IsWrite = Access.getInt(); 3151 3152 // Just add write checks if we have both. 3153 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true))) 3154 continue; 3155 3156 if (IsWrite) 3157 ++NumWritePtrChecks; 3158 else 3159 ++NumReadPtrChecks; 3160 3161 if (hasComputableBounds(SE, Ptr)) { 3162 // The id of the dependence set. 3163 unsigned DepId; 3164 3165 if (IsDepCheckNeeded) { 3166 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 3167 unsigned &LeaderId = DepSetId[Leader]; 3168 if (!LeaderId) 3169 LeaderId = RunningDepId++; 3170 DepId = LeaderId; 3171 } else 3172 // Each access has its own dependence set. 3173 DepId = RunningDepId++; 3174 3175 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId); 3176 3177 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 3178 } else { 3179 CanDoRT = false; 3180 } 3181 } 3182 3183 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 3184 NumComparisons = 0; // Only one dependence set. 3185 else { 3186 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks + 3187 NumWritePtrChecks - 1)); 3188 } 3189 3190 // If the pointers that we would use for the bounds comparison have different 3191 // address spaces, assume the values aren't directly comparable, so we can't 3192 // use them for the runtime check. We also have to assume they could 3193 // overlap. In the future there should be metadata for whether address spaces 3194 // are disjoint. 3195 unsigned NumPointers = RtCheck.Pointers.size(); 3196 for (unsigned i = 0; i < NumPointers; ++i) { 3197 for (unsigned j = i + 1; j < NumPointers; ++j) { 3198 // Only need to check pointers between two different dependency sets. 3199 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 3200 continue; 3201 3202 Value *PtrI = RtCheck.Pointers[i]; 3203 Value *PtrJ = RtCheck.Pointers[j]; 3204 3205 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 3206 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 3207 if (ASi != ASj) { 3208 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 3209 " different address spaces\n"); 3210 return false; 3211 } 3212 } 3213 } 3214 3215 return CanDoRT; 3216 } 3217 3218 static bool isFunctionScopeIdentifiedObject(Value *Ptr) { 3219 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr); 3220 } 3221 3222 void AccessAnalysis::processMemAccesses(bool UseDeferred) { 3223 // We process the set twice: first we process read-write pointers, last we 3224 // process read-only pointers. This allows us to skip dependence tests for 3225 // read-only pointers. 3226 3227 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 3228 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) { 3229 const MemAccessInfo &Access = *AI; 3230 Value *Ptr = Access.getPointer(); 3231 bool IsWrite = Access.getInt(); 3232 3233 DepCands.insert(Access); 3234 3235 // Memorize read-only pointers for later processing and skip them in the 3236 // first round (they need to be checked after we have seen all write 3237 // pointers). Note: we also mark pointer that are not consecutive as 3238 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the 3239 // second check for "!IsWrite". 3240 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 3241 if (!UseDeferred && IsReadOnlyPtr) { 3242 DeferredAccesses.insert(Access); 3243 continue; 3244 } 3245 3246 bool NeedDepCheck = false; 3247 // Check whether there is the possiblity of dependency because of underlying 3248 // objects being the same. 3249 typedef SmallVector<Value*, 16> ValueVector; 3250 ValueVector TempObjects; 3251 GetUnderlyingObjects(Ptr, TempObjects, DL); 3252 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end(); 3253 UI != UE; ++UI) { 3254 Value *UnderlyingObj = *UI; 3255 3256 // If this is a write then it needs to be an identified object. If this a 3257 // read and all writes (so far) are identified function scope objects we 3258 // don't need an identified underlying object but only an Argument (the 3259 // next write is going to invalidate this assumption if it is 3260 // unidentified). 3261 // This is a micro-optimization for the case where all writes are 3262 // identified and we have one argument pointer. 3263 // Otherwise, we do need a runtime check. 3264 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) || 3265 (!IsWrite && (!AreAllWritesIdentified || 3266 !isa<Argument>(UnderlyingObj)) && 3267 !isIdentifiedObject(UnderlyingObj))) { 3268 DEBUG(dbgs() << "LV: Found an unidentified " << 3269 (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj << 3270 "\n"); 3271 IsRTCheckNeeded = (IsRTCheckNeeded || 3272 !isIdentifiedObject(UnderlyingObj) || 3273 !AreAllReadsIdentified); 3274 3275 if (IsWrite) 3276 AreAllWritesIdentified = false; 3277 if (!IsWrite) 3278 AreAllReadsIdentified = false; 3279 } 3280 3281 // If this is a write - check other reads and writes for conflicts. If 3282 // this is a read only check other writes for conflicts (but only if there 3283 // is no other write to the ptr - this is an optimization to catch "a[i] = 3284 // a[i] + " without having to do a dependence check). 3285 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj)) 3286 NeedDepCheck = true; 3287 3288 if (IsWrite) 3289 WriteObjects.insert(UnderlyingObj); 3290 3291 // Create sets of pointers connected by shared underlying objects. 3292 UnderlyingObjToAccessMap::iterator Prev = 3293 ObjToLastAccess.find(UnderlyingObj); 3294 if (Prev != ObjToLastAccess.end()) 3295 DepCands.unionSets(Access, Prev->second); 3296 3297 ObjToLastAccess[UnderlyingObj] = Access; 3298 } 3299 3300 if (NeedDepCheck) 3301 CheckDeps.insert(Access); 3302 } 3303 } 3304 3305 namespace { 3306 /// \brief Checks memory dependences among accesses to the same underlying 3307 /// object to determine whether there vectorization is legal or not (and at 3308 /// which vectorization factor). 3309 /// 3310 /// This class works under the assumption that we already checked that memory 3311 /// locations with different underlying pointers are "must-not alias". 3312 /// We use the ScalarEvolution framework to symbolically evalutate access 3313 /// functions pairs. Since we currently don't restructure the loop we can rely 3314 /// on the program order of memory accesses to determine their safety. 3315 /// At the moment we will only deem accesses as safe for: 3316 /// * A negative constant distance assuming program order. 3317 /// 3318 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 3319 /// a[i] = tmp; y = a[i]; 3320 /// 3321 /// The latter case is safe because later checks guarantuee that there can't 3322 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 3323 /// the same variable: a header phi can only be an induction or a reduction, a 3324 /// reduction can't have a memory sink, an induction can't have a memory 3325 /// source). This is important and must not be violated (or we have to 3326 /// resort to checking for cycles through memory). 3327 /// 3328 /// * A positive constant distance assuming program order that is bigger 3329 /// than the biggest memory access. 3330 /// 3331 /// tmp = a[i] OR b[i] = x 3332 /// a[i+2] = tmp y = b[i+2]; 3333 /// 3334 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 3335 /// 3336 /// * Zero distances and all accesses have the same size. 3337 /// 3338 class MemoryDepChecker { 3339 public: 3340 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3341 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3342 3343 MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) : 3344 SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0) {} 3345 3346 /// \brief Register the location (instructions are given increasing numbers) 3347 /// of a write access. 3348 void addAccess(StoreInst *SI) { 3349 Value *Ptr = SI->getPointerOperand(); 3350 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 3351 InstMap.push_back(SI); 3352 ++AccessIdx; 3353 } 3354 3355 /// \brief Register the location (instructions are given increasing numbers) 3356 /// of a write access. 3357 void addAccess(LoadInst *LI) { 3358 Value *Ptr = LI->getPointerOperand(); 3359 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 3360 InstMap.push_back(LI); 3361 ++AccessIdx; 3362 } 3363 3364 /// \brief Check whether the dependencies between the accesses are safe. 3365 /// 3366 /// Only checks sets with elements in \p CheckDeps. 3367 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 3368 MemAccessInfoSet &CheckDeps); 3369 3370 /// \brief The maximum number of bytes of a vector register we can vectorize 3371 /// the accesses safely with. 3372 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 3373 3374 private: 3375 ScalarEvolution *SE; 3376 DataLayout *DL; 3377 const Loop *InnermostLoop; 3378 3379 /// \brief Maps access locations (ptr, read/write) to program order. 3380 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 3381 3382 /// \brief Memory access instructions in program order. 3383 SmallVector<Instruction *, 16> InstMap; 3384 3385 /// \brief The program order index to be used for the next instruction. 3386 unsigned AccessIdx; 3387 3388 // We can access this many bytes in parallel safely. 3389 unsigned MaxSafeDepDistBytes; 3390 3391 /// \brief Check whether there is a plausible dependence between the two 3392 /// accesses. 3393 /// 3394 /// Access \p A must happen before \p B in program order. The two indices 3395 /// identify the index into the program order map. 3396 /// 3397 /// This function checks whether there is a plausible dependence (or the 3398 /// absence of such can't be proved) between the two accesses. If there is a 3399 /// plausible dependence but the dependence distance is bigger than one 3400 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 3401 /// distance is smaller than any other distance encountered so far). 3402 /// Otherwise, this function returns true signaling a possible dependence. 3403 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 3404 const MemAccessInfo &B, unsigned BIdx); 3405 3406 /// \brief Check whether the data dependence could prevent store-load 3407 /// forwarding. 3408 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 3409 }; 3410 3411 } // end anonymous namespace 3412 3413 static bool isInBoundsGep(Value *Ptr) { 3414 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 3415 return GEP->isInBounds(); 3416 return false; 3417 } 3418 3419 /// \brief Check whether the access through \p Ptr has a constant stride. 3420 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr, 3421 const Loop *Lp) { 3422 const Type *Ty = Ptr->getType(); 3423 assert(Ty->isPointerTy() && "Unexpected non ptr"); 3424 3425 // Make sure that the pointer does not point to aggregate types. 3426 const PointerType *PtrTy = cast<PointerType>(Ty); 3427 if (PtrTy->getElementType()->isAggregateType()) { 3428 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 3429 "\n"); 3430 return 0; 3431 } 3432 3433 const SCEV *PtrScev = SE->getSCEV(Ptr); 3434 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3435 if (!AR) { 3436 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 3437 << *Ptr << " SCEV: " << *PtrScev << "\n"); 3438 return 0; 3439 } 3440 3441 // The accesss function must stride over the innermost loop. 3442 if (Lp != AR->getLoop()) { 3443 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 3444 *Ptr << " SCEV: " << *PtrScev << "\n"); 3445 } 3446 3447 // The address calculation must not wrap. Otherwise, a dependence could be 3448 // inverted. 3449 // An inbounds getelementptr that is a AddRec with a unit stride 3450 // cannot wrap per definition. The unit stride requirement is checked later. 3451 // An getelementptr without an inbounds attribute and unit stride would have 3452 // to access the pointer value "0" which is undefined behavior in address 3453 // space 0, therefore we can also vectorize this case. 3454 bool IsInBoundsGEP = isInBoundsGep(Ptr); 3455 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 3456 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 3457 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 3458 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 3459 << *Ptr << " SCEV: " << *PtrScev << "\n"); 3460 return 0; 3461 } 3462 3463 // Check the step is constant. 3464 const SCEV *Step = AR->getStepRecurrence(*SE); 3465 3466 // Calculate the pointer stride and check if it is consecutive. 3467 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 3468 if (!C) { 3469 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 3470 " SCEV: " << *PtrScev << "\n"); 3471 return 0; 3472 } 3473 3474 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 3475 const APInt &APStepVal = C->getValue()->getValue(); 3476 3477 // Huge step value - give up. 3478 if (APStepVal.getBitWidth() > 64) 3479 return 0; 3480 3481 int64_t StepVal = APStepVal.getSExtValue(); 3482 3483 // Strided access. 3484 int64_t Stride = StepVal / Size; 3485 int64_t Rem = StepVal % Size; 3486 if (Rem) 3487 return 0; 3488 3489 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 3490 // know we can't "wrap around the address space". In case of address space 3491 // zero we know that this won't happen without triggering undefined behavior. 3492 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 3493 Stride != 1 && Stride != -1) 3494 return 0; 3495 3496 return Stride; 3497 } 3498 3499 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 3500 unsigned TypeByteSize) { 3501 // If loads occur at a distance that is not a multiple of a feasible vector 3502 // factor store-load forwarding does not take place. 3503 // Positive dependences might cause troubles because vectorizing them might 3504 // prevent store-load forwarding making vectorized code run a lot slower. 3505 // a[i] = a[i-3] ^ a[i-8]; 3506 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 3507 // hence on your typical architecture store-load forwarding does not take 3508 // place. Vectorizing in such cases does not make sense. 3509 // Store-load forwarding distance. 3510 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 3511 // Maximum vector factor. 3512 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 3513 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 3514 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 3515 3516 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 3517 vf *= 2) { 3518 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 3519 MaxVFWithoutSLForwardIssues = (vf >>=1); 3520 break; 3521 } 3522 } 3523 3524 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 3525 DEBUG(dbgs() << "LV: Distance " << Distance << 3526 " that could cause a store-load forwarding conflict\n"); 3527 return true; 3528 } 3529 3530 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 3531 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 3532 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 3533 return false; 3534 } 3535 3536 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 3537 const MemAccessInfo &B, unsigned BIdx) { 3538 assert (AIdx < BIdx && "Must pass arguments in program order"); 3539 3540 Value *APtr = A.getPointer(); 3541 Value *BPtr = B.getPointer(); 3542 bool AIsWrite = A.getInt(); 3543 bool BIsWrite = B.getInt(); 3544 3545 // Two reads are independent. 3546 if (!AIsWrite && !BIsWrite) 3547 return false; 3548 3549 const SCEV *AScev = SE->getSCEV(APtr); 3550 const SCEV *BScev = SE->getSCEV(BPtr); 3551 3552 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop); 3553 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop); 3554 3555 const SCEV *Src = AScev; 3556 const SCEV *Sink = BScev; 3557 3558 // If the induction step is negative we have to invert source and sink of the 3559 // dependence. 3560 if (StrideAPtr < 0) { 3561 //Src = BScev; 3562 //Sink = AScev; 3563 std::swap(APtr, BPtr); 3564 std::swap(Src, Sink); 3565 std::swap(AIsWrite, BIsWrite); 3566 std::swap(AIdx, BIdx); 3567 std::swap(StrideAPtr, StrideBPtr); 3568 } 3569 3570 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 3571 3572 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 3573 << "(Induction step: " << StrideAPtr << ")\n"); 3574 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 3575 << *InstMap[BIdx] << ": " << *Dist << "\n"); 3576 3577 // Need consecutive accesses. We don't want to vectorize 3578 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 3579 // the address space. 3580 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 3581 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 3582 return true; 3583 } 3584 3585 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 3586 if (!C) { 3587 DEBUG(dbgs() << "LV: Dependence because of non constant distance\n"); 3588 return true; 3589 } 3590 3591 Type *ATy = APtr->getType()->getPointerElementType(); 3592 Type *BTy = BPtr->getType()->getPointerElementType(); 3593 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 3594 3595 // Negative distances are not plausible dependencies. 3596 const APInt &Val = C->getValue()->getValue(); 3597 if (Val.isNegative()) { 3598 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 3599 if (IsTrueDataDependence && 3600 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 3601 ATy != BTy)) 3602 return true; 3603 3604 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 3605 return false; 3606 } 3607 3608 // Write to the same location with the same size. 3609 // Could be improved to assert type sizes are the same (i32 == float, etc). 3610 if (Val == 0) { 3611 if (ATy == BTy) 3612 return false; 3613 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 3614 return true; 3615 } 3616 3617 assert(Val.isStrictlyPositive() && "Expect a positive value"); 3618 3619 // Positive distance bigger than max vectorization factor. 3620 if (ATy != BTy) { 3621 DEBUG(dbgs() << 3622 "LV: ReadWrite-Write positive dependency with different types\n"); 3623 return false; 3624 } 3625 3626 unsigned Distance = (unsigned) Val.getZExtValue(); 3627 3628 // Bail out early if passed-in parameters make vectorization not feasible. 3629 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 3630 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 3631 3632 // The distance must be bigger than the size needed for a vectorized version 3633 // of the operation and the size of the vectorized operation must not be 3634 // bigger than the currrent maximum size. 3635 if (Distance < 2*TypeByteSize || 3636 2*TypeByteSize > MaxSafeDepDistBytes || 3637 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 3638 DEBUG(dbgs() << "LV: Failure because of Positive distance " 3639 << Val.getSExtValue() << '\n'); 3640 return true; 3641 } 3642 3643 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 3644 Distance : MaxSafeDepDistBytes; 3645 3646 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 3647 if (IsTrueDataDependence && 3648 couldPreventStoreLoadForward(Distance, TypeByteSize)) 3649 return true; 3650 3651 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 3652 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 3653 3654 return false; 3655 } 3656 3657 bool 3658 MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 3659 MemAccessInfoSet &CheckDeps) { 3660 3661 MaxSafeDepDistBytes = -1U; 3662 while (!CheckDeps.empty()) { 3663 MemAccessInfo CurAccess = *CheckDeps.begin(); 3664 3665 // Get the relevant memory access set. 3666 EquivalenceClasses<MemAccessInfo>::iterator I = 3667 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 3668 3669 // Check accesses within this set. 3670 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 3671 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 3672 3673 // Check every access pair. 3674 while (AI != AE) { 3675 CheckDeps.erase(*AI); 3676 EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI); 3677 while (OI != AE) { 3678 // Check every accessing instruction pair in program order. 3679 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 3680 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 3681 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 3682 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 3683 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2)) 3684 return false; 3685 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1)) 3686 return false; 3687 } 3688 ++OI; 3689 } 3690 AI++; 3691 } 3692 } 3693 return true; 3694 } 3695 3696 bool LoopVectorizationLegality::canVectorizeMemory() { 3697 3698 typedef SmallVector<Value*, 16> ValueVector; 3699 typedef SmallPtrSet<Value*, 16> ValueSet; 3700 3701 // Holds the Load and Store *instructions*. 3702 ValueVector Loads; 3703 ValueVector Stores; 3704 3705 // Holds all the different accesses in the loop. 3706 unsigned NumReads = 0; 3707 unsigned NumReadWrites = 0; 3708 3709 PtrRtCheck.Pointers.clear(); 3710 PtrRtCheck.Need = false; 3711 3712 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 3713 MemoryDepChecker DepChecker(SE, DL, TheLoop); 3714 3715 // For each block. 3716 for (Loop::block_iterator bb = TheLoop->block_begin(), 3717 be = TheLoop->block_end(); bb != be; ++bb) { 3718 3719 // Scan the BB and collect legal loads and stores. 3720 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3721 ++it) { 3722 3723 // If this is a load, save it. If this instruction can read from memory 3724 // but is not a load, then we quit. Notice that we don't handle function 3725 // calls that read or write. 3726 if (it->mayReadFromMemory()) { 3727 // Many math library functions read the rounding mode. We will only 3728 // vectorize a loop if it contains known function calls that don't set 3729 // the flag. Therefore, it is safe to ignore this read from memory. 3730 CallInst *Call = dyn_cast<CallInst>(it); 3731 if (Call && getIntrinsicIDForCall(Call, TLI)) 3732 continue; 3733 3734 LoadInst *Ld = dyn_cast<LoadInst>(it); 3735 if (!Ld) return false; 3736 if (!Ld->isSimple() && !IsAnnotatedParallel) { 3737 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 3738 return false; 3739 } 3740 Loads.push_back(Ld); 3741 DepChecker.addAccess(Ld); 3742 continue; 3743 } 3744 3745 // Save 'store' instructions. Abort if other instructions write to memory. 3746 if (it->mayWriteToMemory()) { 3747 StoreInst *St = dyn_cast<StoreInst>(it); 3748 if (!St) return false; 3749 if (!St->isSimple() && !IsAnnotatedParallel) { 3750 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 3751 return false; 3752 } 3753 Stores.push_back(St); 3754 DepChecker.addAccess(St); 3755 } 3756 } // Next instr. 3757 } // Next block. 3758 3759 // Now we have two lists that hold the loads and the stores. 3760 // Next, we find the pointers that they use. 3761 3762 // Check if we see any stores. If there are no stores, then we don't 3763 // care if the pointers are *restrict*. 3764 if (!Stores.size()) { 3765 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 3766 return true; 3767 } 3768 3769 AccessAnalysis::DepCandidates DependentAccesses; 3770 AccessAnalysis Accesses(DL, DependentAccesses); 3771 3772 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 3773 // multiple times on the same object. If the ptr is accessed twice, once 3774 // for read and once for write, it will only appear once (on the write 3775 // list). This is okay, since we are going to check for conflicts between 3776 // writes and between reads and writes, but not between reads and reads. 3777 ValueSet Seen; 3778 3779 ValueVector::iterator I, IE; 3780 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 3781 StoreInst *ST = cast<StoreInst>(*I); 3782 Value* Ptr = ST->getPointerOperand(); 3783 3784 if (isUniform(Ptr)) { 3785 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 3786 return false; 3787 } 3788 3789 // If we did *not* see this pointer before, insert it to the read-write 3790 // list. At this phase it is only a 'write' list. 3791 if (Seen.insert(Ptr)) { 3792 ++NumReadWrites; 3793 Accesses.addStore(Ptr); 3794 } 3795 } 3796 3797 if (IsAnnotatedParallel) { 3798 DEBUG(dbgs() 3799 << "LV: A loop annotated parallel, ignore memory dependency " 3800 << "checks.\n"); 3801 return true; 3802 } 3803 3804 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 3805 LoadInst *LD = cast<LoadInst>(*I); 3806 Value* Ptr = LD->getPointerOperand(); 3807 // If we did *not* see this pointer before, insert it to the 3808 // read list. If we *did* see it before, then it is already in 3809 // the read-write list. This allows us to vectorize expressions 3810 // such as A[i] += x; Because the address of A[i] is a read-write 3811 // pointer. This only works if the index of A[i] is consecutive. 3812 // If the address of i is unknown (for example A[B[i]]) then we may 3813 // read a few words, modify, and write a few words, and some of the 3814 // words may be written to the same address. 3815 bool IsReadOnlyPtr = false; 3816 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) { 3817 ++NumReads; 3818 IsReadOnlyPtr = true; 3819 } 3820 Accesses.addLoad(Ptr, IsReadOnlyPtr); 3821 } 3822 3823 // If we write (or read-write) to a single destination and there are no 3824 // other reads in this loop then is it safe to vectorize. 3825 if (NumReadWrites == 1 && NumReads == 0) { 3826 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 3827 return true; 3828 } 3829 3830 // Build dependence sets and check whether we need a runtime pointer bounds 3831 // check. 3832 Accesses.buildDependenceSets(); 3833 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 3834 3835 // Find pointers with computable bounds. We are going to use this information 3836 // to place a runtime bound check. 3837 unsigned NumComparisons = 0; 3838 bool CanDoRT = false; 3839 if (NeedRTCheck) 3840 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop); 3841 3842 3843 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 3844 " pointer comparisons.\n"); 3845 3846 // If we only have one set of dependences to check pointers among we don't 3847 // need a runtime check. 3848 if (NumComparisons == 0 && NeedRTCheck) 3849 NeedRTCheck = false; 3850 3851 // Check that we did not collect too many pointers or found an unsizeable 3852 // pointer. 3853 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 3854 PtrRtCheck.reset(); 3855 CanDoRT = false; 3856 } 3857 3858 if (CanDoRT) { 3859 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 3860 } 3861 3862 if (NeedRTCheck && !CanDoRT) { 3863 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 3864 "the array bounds.\n"); 3865 PtrRtCheck.reset(); 3866 return false; 3867 } 3868 3869 PtrRtCheck.Need = NeedRTCheck; 3870 3871 bool CanVecMem = true; 3872 if (Accesses.isDependencyCheckNeeded()) { 3873 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 3874 CanVecMem = DepChecker.areDepsSafe(DependentAccesses, 3875 Accesses.getDependenciesToCheck()); 3876 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 3877 } 3878 3879 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 3880 " need a runtime memory check.\n"); 3881 3882 return CanVecMem; 3883 } 3884 3885 static bool hasMultipleUsesOf(Instruction *I, 3886 SmallPtrSet<Instruction *, 8> &Insts) { 3887 unsigned NumUses = 0; 3888 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 3889 if (Insts.count(dyn_cast<Instruction>(*Use))) 3890 ++NumUses; 3891 if (NumUses > 1) 3892 return true; 3893 } 3894 3895 return false; 3896 } 3897 3898 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 3899 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 3900 if (!Set.count(dyn_cast<Instruction>(*Use))) 3901 return false; 3902 return true; 3903 } 3904 3905 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 3906 ReductionKind Kind) { 3907 if (Phi->getNumIncomingValues() != 2) 3908 return false; 3909 3910 // Reduction variables are only found in the loop header block. 3911 if (Phi->getParent() != TheLoop->getHeader()) 3912 return false; 3913 3914 // Obtain the reduction start value from the value that comes from the loop 3915 // preheader. 3916 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 3917 3918 // ExitInstruction is the single value which is used outside the loop. 3919 // We only allow for a single reduction value to be used outside the loop. 3920 // This includes users of the reduction, variables (which form a cycle 3921 // which ends in the phi node). 3922 Instruction *ExitInstruction = 0; 3923 // Indicates that we found a reduction operation in our scan. 3924 bool FoundReduxOp = false; 3925 3926 // We start with the PHI node and scan for all of the users of this 3927 // instruction. All users must be instructions that can be used as reduction 3928 // variables (such as ADD). We must have a single out-of-block user. The cycle 3929 // must include the original PHI. 3930 bool FoundStartPHI = false; 3931 3932 // To recognize min/max patterns formed by a icmp select sequence, we store 3933 // the number of instruction we saw from the recognized min/max pattern, 3934 // to make sure we only see exactly the two instructions. 3935 unsigned NumCmpSelectPatternInst = 0; 3936 ReductionInstDesc ReduxDesc(false, 0); 3937 3938 SmallPtrSet<Instruction *, 8> VisitedInsts; 3939 SmallVector<Instruction *, 8> Worklist; 3940 Worklist.push_back(Phi); 3941 VisitedInsts.insert(Phi); 3942 3943 // A value in the reduction can be used: 3944 // - By the reduction: 3945 // - Reduction operation: 3946 // - One use of reduction value (safe). 3947 // - Multiple use of reduction value (not safe). 3948 // - PHI: 3949 // - All uses of the PHI must be the reduction (safe). 3950 // - Otherwise, not safe. 3951 // - By one instruction outside of the loop (safe). 3952 // - By further instructions outside of the loop (not safe). 3953 // - By an instruction that is not part of the reduction (not safe). 3954 // This is either: 3955 // * An instruction type other than PHI or the reduction operation. 3956 // * A PHI in the header other than the initial PHI. 3957 while (!Worklist.empty()) { 3958 Instruction *Cur = Worklist.back(); 3959 Worklist.pop_back(); 3960 3961 // No Users. 3962 // If the instruction has no users then this is a broken chain and can't be 3963 // a reduction variable. 3964 if (Cur->use_empty()) 3965 return false; 3966 3967 bool IsAPhi = isa<PHINode>(Cur); 3968 3969 // A header PHI use other than the original PHI. 3970 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 3971 return false; 3972 3973 // Reductions of instructions such as Div, and Sub is only possible if the 3974 // LHS is the reduction variable. 3975 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 3976 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 3977 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 3978 return false; 3979 3980 // Any reduction instruction must be of one of the allowed kinds. 3981 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 3982 if (!ReduxDesc.IsReduction) 3983 return false; 3984 3985 // A reduction operation must only have one use of the reduction value. 3986 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 3987 hasMultipleUsesOf(Cur, VisitedInsts)) 3988 return false; 3989 3990 // All inputs to a PHI node must be a reduction value. 3991 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 3992 return false; 3993 3994 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 3995 isa<SelectInst>(Cur))) 3996 ++NumCmpSelectPatternInst; 3997 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 3998 isa<SelectInst>(Cur))) 3999 ++NumCmpSelectPatternInst; 4000 4001 // Check whether we found a reduction operator. 4002 FoundReduxOp |= !IsAPhi; 4003 4004 // Process users of current instruction. Push non PHI nodes after PHI nodes 4005 // onto the stack. This way we are going to have seen all inputs to PHI 4006 // nodes once we get to them. 4007 SmallVector<Instruction *, 8> NonPHIs; 4008 SmallVector<Instruction *, 8> PHIs; 4009 for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E; 4010 ++UI) { 4011 Instruction *Usr = cast<Instruction>(*UI); 4012 4013 // Check if we found the exit user. 4014 BasicBlock *Parent = Usr->getParent(); 4015 if (!TheLoop->contains(Parent)) { 4016 // Exit if you find multiple outside users or if the header phi node is 4017 // being used. In this case the user uses the value of the previous 4018 // iteration, in which case we would loose "VF-1" iterations of the 4019 // reduction operation if we vectorize. 4020 if (ExitInstruction != 0 || Cur == Phi) 4021 return false; 4022 4023 // The instruction used by an outside user must be the last instruction 4024 // before we feed back to the reduction phi. Otherwise, we loose VF-1 4025 // operations on the value. 4026 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 4027 return false; 4028 4029 ExitInstruction = Cur; 4030 continue; 4031 } 4032 4033 // Process instructions only once (termination). 4034 if (VisitedInsts.insert(Usr)) { 4035 if (isa<PHINode>(Usr)) 4036 PHIs.push_back(Usr); 4037 else 4038 NonPHIs.push_back(Usr); 4039 } 4040 // Remember that we completed the cycle. 4041 if (Usr == Phi) 4042 FoundStartPHI = true; 4043 } 4044 Worklist.append(PHIs.begin(), PHIs.end()); 4045 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4046 } 4047 4048 // This means we have seen one but not the other instruction of the 4049 // pattern or more than just a select and cmp. 4050 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4051 NumCmpSelectPatternInst != 2) 4052 return false; 4053 4054 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4055 return false; 4056 4057 // We found a reduction var if we have reached the original phi node and we 4058 // only have a single instruction with out-of-loop users. 4059 4060 // This instruction is allowed to have out-of-loop users. 4061 AllowedExit.insert(ExitInstruction); 4062 4063 // Save the description of this reduction variable. 4064 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4065 ReduxDesc.MinMaxKind); 4066 Reductions[Phi] = RD; 4067 // We've ended the cycle. This is a reduction variable if we have an 4068 // outside user and it has a binary op. 4069 4070 return true; 4071 } 4072 4073 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4074 /// pattern corresponding to a min(X, Y) or max(X, Y). 4075 LoopVectorizationLegality::ReductionInstDesc 4076 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4077 ReductionInstDesc &Prev) { 4078 4079 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4080 "Expect a select instruction"); 4081 Instruction *Cmp = 0; 4082 SelectInst *Select = 0; 4083 4084 // We must handle the select(cmp()) as a single instruction. Advance to the 4085 // select. 4086 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4087 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin()))) 4088 return ReductionInstDesc(false, I); 4089 return ReductionInstDesc(Select, Prev.MinMaxKind); 4090 } 4091 4092 // Only handle single use cases for now. 4093 if (!(Select = dyn_cast<SelectInst>(I))) 4094 return ReductionInstDesc(false, I); 4095 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4096 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4097 return ReductionInstDesc(false, I); 4098 if (!Cmp->hasOneUse()) 4099 return ReductionInstDesc(false, I); 4100 4101 Value *CmpLeft; 4102 Value *CmpRight; 4103 4104 // Look for a min/max pattern. 4105 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4106 return ReductionInstDesc(Select, MRK_UIntMin); 4107 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4108 return ReductionInstDesc(Select, MRK_UIntMax); 4109 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4110 return ReductionInstDesc(Select, MRK_SIntMax); 4111 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4112 return ReductionInstDesc(Select, MRK_SIntMin); 4113 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4114 return ReductionInstDesc(Select, MRK_FloatMin); 4115 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4116 return ReductionInstDesc(Select, MRK_FloatMax); 4117 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4118 return ReductionInstDesc(Select, MRK_FloatMin); 4119 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4120 return ReductionInstDesc(Select, MRK_FloatMax); 4121 4122 return ReductionInstDesc(false, I); 4123 } 4124 4125 LoopVectorizationLegality::ReductionInstDesc 4126 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4127 ReductionKind Kind, 4128 ReductionInstDesc &Prev) { 4129 bool FP = I->getType()->isFloatingPointTy(); 4130 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 4131 switch (I->getOpcode()) { 4132 default: 4133 return ReductionInstDesc(false, I); 4134 case Instruction::PHI: 4135 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4136 Kind != RK_FloatMinMax)) 4137 return ReductionInstDesc(false, I); 4138 return ReductionInstDesc(I, Prev.MinMaxKind); 4139 case Instruction::Sub: 4140 case Instruction::Add: 4141 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4142 case Instruction::Mul: 4143 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4144 case Instruction::And: 4145 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4146 case Instruction::Or: 4147 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4148 case Instruction::Xor: 4149 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4150 case Instruction::FMul: 4151 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4152 case Instruction::FAdd: 4153 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4154 case Instruction::FCmp: 4155 case Instruction::ICmp: 4156 case Instruction::Select: 4157 if (Kind != RK_IntegerMinMax && 4158 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4159 return ReductionInstDesc(false, I); 4160 return isMinMaxSelectCmpPattern(I, Prev); 4161 } 4162 } 4163 4164 LoopVectorizationLegality::InductionKind 4165 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 4166 Type *PhiTy = Phi->getType(); 4167 // We only handle integer and pointer inductions variables. 4168 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4169 return IK_NoInduction; 4170 4171 // Check that the PHI is consecutive. 4172 const SCEV *PhiScev = SE->getSCEV(Phi); 4173 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4174 if (!AR) { 4175 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4176 return IK_NoInduction; 4177 } 4178 const SCEV *Step = AR->getStepRecurrence(*SE); 4179 4180 // Integer inductions need to have a stride of one. 4181 if (PhiTy->isIntegerTy()) { 4182 if (Step->isOne()) 4183 return IK_IntInduction; 4184 if (Step->isAllOnesValue()) 4185 return IK_ReverseIntInduction; 4186 return IK_NoInduction; 4187 } 4188 4189 // Calculate the pointer stride and check if it is consecutive. 4190 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4191 if (!C) 4192 return IK_NoInduction; 4193 4194 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4195 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 4196 if (C->getValue()->equalsInt(Size)) 4197 return IK_PtrInduction; 4198 else if (C->getValue()->equalsInt(0 - Size)) 4199 return IK_ReversePtrInduction; 4200 4201 return IK_NoInduction; 4202 } 4203 4204 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4205 Value *In0 = const_cast<Value*>(V); 4206 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4207 if (!PN) 4208 return false; 4209 4210 return Inductions.count(PN); 4211 } 4212 4213 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4214 assert(TheLoop->contains(BB) && "Unknown block used"); 4215 4216 // Blocks that do not dominate the latch need predication. 4217 BasicBlock* Latch = TheLoop->getLoopLatch(); 4218 return !DT->dominates(BB, Latch); 4219 } 4220 4221 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4222 SmallPtrSet<Value *, 8>& SafePtrs) { 4223 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4224 // We might be able to hoist the load. 4225 if (it->mayReadFromMemory()) { 4226 LoadInst *LI = dyn_cast<LoadInst>(it); 4227 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 4228 return false; 4229 } 4230 4231 // We don't predicate stores at the moment. 4232 if (it->mayWriteToMemory() || it->mayThrow()) 4233 return false; 4234 4235 // The instructions below can trap. 4236 switch (it->getOpcode()) { 4237 default: continue; 4238 case Instruction::UDiv: 4239 case Instruction::SDiv: 4240 case Instruction::URem: 4241 case Instruction::SRem: 4242 return false; 4243 } 4244 } 4245 4246 return true; 4247 } 4248 4249 LoopVectorizationCostModel::VectorizationFactor 4250 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 4251 unsigned UserVF) { 4252 // Width 1 means no vectorize 4253 VectorizationFactor Factor = { 1U, 0U }; 4254 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4255 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4256 return Factor; 4257 } 4258 4259 // Find the trip count. 4260 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 4261 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4262 4263 unsigned WidestType = getWidestType(); 4264 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4265 unsigned MaxSafeDepDist = -1U; 4266 if (Legal->getMaxSafeDepDistBytes() != -1U) 4267 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4268 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4269 WidestRegister : MaxSafeDepDist); 4270 unsigned MaxVectorSize = WidestRegister / WidestType; 4271 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4272 DEBUG(dbgs() << "LV: The Widest register is: " 4273 << WidestRegister << " bits.\n"); 4274 4275 if (MaxVectorSize == 0) { 4276 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4277 MaxVectorSize = 1; 4278 } 4279 4280 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 4281 " into one vector!"); 4282 4283 unsigned VF = MaxVectorSize; 4284 4285 // If we optimize the program for size, avoid creating the tail loop. 4286 if (OptForSize) { 4287 // If we are unable to calculate the trip count then don't try to vectorize. 4288 if (TC < 2) { 4289 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4290 return Factor; 4291 } 4292 4293 // Find the maximum SIMD width that can fit within the trip count. 4294 VF = TC % MaxVectorSize; 4295 4296 if (VF == 0) 4297 VF = MaxVectorSize; 4298 4299 // If the trip count that we found modulo the vectorization factor is not 4300 // zero then we require a tail. 4301 if (VF < 2) { 4302 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4303 return Factor; 4304 } 4305 } 4306 4307 if (UserVF != 0) { 4308 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4309 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4310 4311 Factor.Width = UserVF; 4312 return Factor; 4313 } 4314 4315 float Cost = expectedCost(1); 4316 unsigned Width = 1; 4317 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n"); 4318 for (unsigned i=2; i <= VF; i*=2) { 4319 // Notice that the vector loop needs to be executed less times, so 4320 // we need to divide the cost of the vector loops by the width of 4321 // the vector elements. 4322 float VectorCost = expectedCost(i) / (float)i; 4323 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4324 (int)VectorCost << ".\n"); 4325 if (VectorCost < Cost) { 4326 Cost = VectorCost; 4327 Width = i; 4328 } 4329 } 4330 4331 DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n"); 4332 Factor.Width = Width; 4333 Factor.Cost = Width * Cost; 4334 return Factor; 4335 } 4336 4337 unsigned LoopVectorizationCostModel::getWidestType() { 4338 unsigned MaxWidth = 8; 4339 4340 // For each block. 4341 for (Loop::block_iterator bb = TheLoop->block_begin(), 4342 be = TheLoop->block_end(); bb != be; ++bb) { 4343 BasicBlock *BB = *bb; 4344 4345 // For each instruction in the loop. 4346 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4347 Type *T = it->getType(); 4348 4349 // Only examine Loads, Stores and PHINodes. 4350 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4351 continue; 4352 4353 // Examine PHI nodes that are reduction variables. 4354 if (PHINode *PN = dyn_cast<PHINode>(it)) 4355 if (!Legal->getReductionVars()->count(PN)) 4356 continue; 4357 4358 // Examine the stored values. 4359 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4360 T = ST->getValueOperand()->getType(); 4361 4362 // Ignore loaded pointer types and stored pointer types that are not 4363 // consecutive. However, we do want to take consecutive stores/loads of 4364 // pointer vectors into account. 4365 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4366 continue; 4367 4368 MaxWidth = std::max(MaxWidth, 4369 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 4370 } 4371 } 4372 4373 return MaxWidth; 4374 } 4375 4376 unsigned 4377 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4378 unsigned UserUF, 4379 unsigned VF, 4380 unsigned LoopCost) { 4381 4382 // -- The unroll heuristics -- 4383 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4384 // There are many micro-architectural considerations that we can't predict 4385 // at this level. For example frontend pressure (on decode or fetch) due to 4386 // code size, or the number and capabilities of the execution ports. 4387 // 4388 // We use the following heuristics to select the unroll factor: 4389 // 1. If the code has reductions the we unroll in order to break the cross 4390 // iteration dependency. 4391 // 2. If the loop is really small then we unroll in order to reduce the loop 4392 // overhead. 4393 // 3. We don't unroll if we think that we will spill registers to memory due 4394 // to the increased register pressure. 4395 4396 // Use the user preference, unless 'auto' is selected. 4397 if (UserUF != 0) 4398 return UserUF; 4399 4400 // When we optimize for size we don't unroll. 4401 if (OptForSize) 4402 return 1; 4403 4404 // We used the distance for the unroll factor. 4405 if (Legal->getMaxSafeDepDistBytes() != -1U) 4406 return 1; 4407 4408 // Do not unroll loops with a relatively small trip count. 4409 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 4410 TheLoop->getLoopLatch()); 4411 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4412 return 1; 4413 4414 unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true); 4415 DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters << 4416 " vector registers\n"); 4417 4418 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4419 // We divide by these constants so assume that we have at least one 4420 // instruction that uses at least one register. 4421 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4422 R.NumInstructions = std::max(R.NumInstructions, 1U); 4423 4424 // We calculate the unroll factor using the following formula. 4425 // Subtract the number of loop invariants from the number of available 4426 // registers. These registers are used by all of the unrolled instances. 4427 // Next, divide the remaining registers by the number of registers that is 4428 // required by the loop, in order to estimate how many parallel instances 4429 // fit without causing spills. 4430 unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers; 4431 4432 // Clamp the unroll factor ranges to reasonable factors. 4433 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 4434 4435 // If we did not calculate the cost for VF (because the user selected the VF) 4436 // then we calculate the cost of VF here. 4437 if (LoopCost == 0) 4438 LoopCost = expectedCost(VF); 4439 4440 // Clamp the calculated UF to be between the 1 and the max unroll factor 4441 // that the target allows. 4442 if (UF > MaxUnrollSize) 4443 UF = MaxUnrollSize; 4444 else if (UF < 1) 4445 UF = 1; 4446 4447 bool HasReductions = Legal->getReductionVars()->size(); 4448 4449 // Decide if we want to unroll if we decided that it is legal to vectorize 4450 // but not profitable. 4451 if (VF == 1) { 4452 if (TheLoop->getNumBlocks() > 1 || !HasReductions || 4453 LoopCost > SmallLoopCost) 4454 return 1; 4455 4456 return UF; 4457 } 4458 4459 if (HasReductions) { 4460 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4461 return UF; 4462 } 4463 4464 // We want to unroll tiny loops in order to reduce the loop overhead. 4465 // We assume that the cost overhead is 1 and we use the cost model 4466 // to estimate the cost of the loop and unroll until the cost of the 4467 // loop overhead is about 5% of the cost of the loop. 4468 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4469 if (LoopCost < SmallLoopCost) { 4470 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4471 unsigned NewUF = SmallLoopCost / (LoopCost + 1); 4472 return std::min(NewUF, UF); 4473 } 4474 4475 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4476 return 1; 4477 } 4478 4479 LoopVectorizationCostModel::RegisterUsage 4480 LoopVectorizationCostModel::calculateRegisterUsage() { 4481 // This function calculates the register usage by measuring the highest number 4482 // of values that are alive at a single location. Obviously, this is a very 4483 // rough estimation. We scan the loop in a topological order in order and 4484 // assign a number to each instruction. We use RPO to ensure that defs are 4485 // met before their users. We assume that each instruction that has in-loop 4486 // users starts an interval. We record every time that an in-loop value is 4487 // used, so we have a list of the first and last occurrences of each 4488 // instruction. Next, we transpose this data structure into a multi map that 4489 // holds the list of intervals that *end* at a specific location. This multi 4490 // map allows us to perform a linear search. We scan the instructions linearly 4491 // and record each time that a new interval starts, by placing it in a set. 4492 // If we find this value in the multi-map then we remove it from the set. 4493 // The max register usage is the maximum size of the set. 4494 // We also search for instructions that are defined outside the loop, but are 4495 // used inside the loop. We need this number separately from the max-interval 4496 // usage number because when we unroll, loop-invariant values do not take 4497 // more register. 4498 LoopBlocksDFS DFS(TheLoop); 4499 DFS.perform(LI); 4500 4501 RegisterUsage R; 4502 R.NumInstructions = 0; 4503 4504 // Each 'key' in the map opens a new interval. The values 4505 // of the map are the index of the 'last seen' usage of the 4506 // instruction that is the key. 4507 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4508 // Maps instruction to its index. 4509 DenseMap<unsigned, Instruction*> IdxToInstr; 4510 // Marks the end of each interval. 4511 IntervalMap EndPoint; 4512 // Saves the list of instruction indices that are used in the loop. 4513 SmallSet<Instruction*, 8> Ends; 4514 // Saves the list of values that are used in the loop but are 4515 // defined outside the loop, such as arguments and constants. 4516 SmallPtrSet<Value*, 8> LoopInvariants; 4517 4518 unsigned Index = 0; 4519 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4520 be = DFS.endRPO(); bb != be; ++bb) { 4521 R.NumInstructions += (*bb)->size(); 4522 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4523 ++it) { 4524 Instruction *I = it; 4525 IdxToInstr[Index++] = I; 4526 4527 // Save the end location of each USE. 4528 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4529 Value *U = I->getOperand(i); 4530 Instruction *Instr = dyn_cast<Instruction>(U); 4531 4532 // Ignore non-instruction values such as arguments, constants, etc. 4533 if (!Instr) continue; 4534 4535 // If this instruction is outside the loop then record it and continue. 4536 if (!TheLoop->contains(Instr)) { 4537 LoopInvariants.insert(Instr); 4538 continue; 4539 } 4540 4541 // Overwrite previous end points. 4542 EndPoint[Instr] = Index; 4543 Ends.insert(Instr); 4544 } 4545 } 4546 } 4547 4548 // Saves the list of intervals that end with the index in 'key'. 4549 typedef SmallVector<Instruction*, 2> InstrList; 4550 DenseMap<unsigned, InstrList> TransposeEnds; 4551 4552 // Transpose the EndPoints to a list of values that end at each index. 4553 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4554 it != e; ++it) 4555 TransposeEnds[it->second].push_back(it->first); 4556 4557 SmallSet<Instruction*, 8> OpenIntervals; 4558 unsigned MaxUsage = 0; 4559 4560 4561 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4562 for (unsigned int i = 0; i < Index; ++i) { 4563 Instruction *I = IdxToInstr[i]; 4564 // Ignore instructions that are never used within the loop. 4565 if (!Ends.count(I)) continue; 4566 4567 // Remove all of the instructions that end at this location. 4568 InstrList &List = TransposeEnds[i]; 4569 for (unsigned int j=0, e = List.size(); j < e; ++j) 4570 OpenIntervals.erase(List[j]); 4571 4572 // Count the number of live interals. 4573 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4574 4575 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4576 OpenIntervals.size() << '\n'); 4577 4578 // Add the current instruction to the list of open intervals. 4579 OpenIntervals.insert(I); 4580 } 4581 4582 unsigned Invariant = LoopInvariants.size(); 4583 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 4584 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 4585 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 4586 4587 R.LoopInvariantRegs = Invariant; 4588 R.MaxLocalUsers = MaxUsage; 4589 return R; 4590 } 4591 4592 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 4593 unsigned Cost = 0; 4594 4595 // For each block. 4596 for (Loop::block_iterator bb = TheLoop->block_begin(), 4597 be = TheLoop->block_end(); bb != be; ++bb) { 4598 unsigned BlockCost = 0; 4599 BasicBlock *BB = *bb; 4600 4601 // For each instruction in the old loop. 4602 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4603 // Skip dbg intrinsics. 4604 if (isa<DbgInfoIntrinsic>(it)) 4605 continue; 4606 4607 unsigned C = getInstructionCost(it, VF); 4608 BlockCost += C; 4609 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 4610 VF << " For instruction: " << *it << '\n'); 4611 } 4612 4613 // We assume that if-converted blocks have a 50% chance of being executed. 4614 // When the code is scalar then some of the blocks are avoided due to CF. 4615 // When the code is vectorized we execute all code paths. 4616 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 4617 BlockCost /= 2; 4618 4619 Cost += BlockCost; 4620 } 4621 4622 return Cost; 4623 } 4624 4625 /// \brief Check whether the address computation for a non-consecutive memory 4626 /// access looks like an unlikely candidate for being merged into the indexing 4627 /// mode. 4628 /// 4629 /// We look for a GEP which has one index that is an induction variable and all 4630 /// other indices are loop invariant. If the stride of this access is also 4631 /// within a small bound we decide that this address computation can likely be 4632 /// merged into the addressing mode. 4633 /// In all other cases, we identify the address computation as complex. 4634 static bool isLikelyComplexAddressComputation(Value *Ptr, 4635 LoopVectorizationLegality *Legal, 4636 ScalarEvolution *SE, 4637 const Loop *TheLoop) { 4638 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 4639 if (!Gep) 4640 return true; 4641 4642 // We are looking for a gep with all loop invariant indices except for one 4643 // which should be an induction variable. 4644 unsigned NumOperands = Gep->getNumOperands(); 4645 for (unsigned i = 1; i < NumOperands; ++i) { 4646 Value *Opd = Gep->getOperand(i); 4647 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 4648 !Legal->isInductionVariable(Opd)) 4649 return true; 4650 } 4651 4652 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 4653 // can likely be merged into the address computation. 4654 unsigned MaxMergeDistance = 64; 4655 4656 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 4657 if (!AddRec) 4658 return true; 4659 4660 // Check the step is constant. 4661 const SCEV *Step = AddRec->getStepRecurrence(*SE); 4662 // Calculate the pointer stride and check if it is consecutive. 4663 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4664 if (!C) 4665 return true; 4666 4667 const APInt &APStepVal = C->getValue()->getValue(); 4668 4669 // Huge step value - give up. 4670 if (APStepVal.getBitWidth() > 64) 4671 return true; 4672 4673 int64_t StepVal = APStepVal.getSExtValue(); 4674 4675 return StepVal > MaxMergeDistance; 4676 } 4677 4678 unsigned 4679 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 4680 // If we know that this instruction will remain uniform, check the cost of 4681 // the scalar version. 4682 if (Legal->isUniformAfterVectorization(I)) 4683 VF = 1; 4684 4685 Type *RetTy = I->getType(); 4686 Type *VectorTy = ToVectorTy(RetTy, VF); 4687 4688 // TODO: We need to estimate the cost of intrinsic calls. 4689 switch (I->getOpcode()) { 4690 case Instruction::GetElementPtr: 4691 // We mark this instruction as zero-cost because the cost of GEPs in 4692 // vectorized code depends on whether the corresponding memory instruction 4693 // is scalarized or not. Therefore, we handle GEPs with the memory 4694 // instruction cost. 4695 return 0; 4696 case Instruction::Br: { 4697 return TTI.getCFInstrCost(I->getOpcode()); 4698 } 4699 case Instruction::PHI: 4700 //TODO: IF-converted IFs become selects. 4701 return 0; 4702 case Instruction::Add: 4703 case Instruction::FAdd: 4704 case Instruction::Sub: 4705 case Instruction::FSub: 4706 case Instruction::Mul: 4707 case Instruction::FMul: 4708 case Instruction::UDiv: 4709 case Instruction::SDiv: 4710 case Instruction::FDiv: 4711 case Instruction::URem: 4712 case Instruction::SRem: 4713 case Instruction::FRem: 4714 case Instruction::Shl: 4715 case Instruction::LShr: 4716 case Instruction::AShr: 4717 case Instruction::And: 4718 case Instruction::Or: 4719 case Instruction::Xor: { 4720 // Certain instructions can be cheaper to vectorize if they have a constant 4721 // second vector operand. One example of this are shifts on x86. 4722 TargetTransformInfo::OperandValueKind Op1VK = 4723 TargetTransformInfo::OK_AnyValue; 4724 TargetTransformInfo::OperandValueKind Op2VK = 4725 TargetTransformInfo::OK_AnyValue; 4726 4727 if (isa<ConstantInt>(I->getOperand(1))) 4728 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4729 4730 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 4731 } 4732 case Instruction::Select: { 4733 SelectInst *SI = cast<SelectInst>(I); 4734 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 4735 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 4736 Type *CondTy = SI->getCondition()->getType(); 4737 if (!ScalarCond) 4738 CondTy = VectorType::get(CondTy, VF); 4739 4740 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 4741 } 4742 case Instruction::ICmp: 4743 case Instruction::FCmp: { 4744 Type *ValTy = I->getOperand(0)->getType(); 4745 VectorTy = ToVectorTy(ValTy, VF); 4746 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 4747 } 4748 case Instruction::Store: 4749 case Instruction::Load: { 4750 StoreInst *SI = dyn_cast<StoreInst>(I); 4751 LoadInst *LI = dyn_cast<LoadInst>(I); 4752 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 4753 LI->getType()); 4754 VectorTy = ToVectorTy(ValTy, VF); 4755 4756 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 4757 unsigned AS = SI ? SI->getPointerAddressSpace() : 4758 LI->getPointerAddressSpace(); 4759 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 4760 // We add the cost of address computation here instead of with the gep 4761 // instruction because only here we know whether the operation is 4762 // scalarized. 4763 if (VF == 1) 4764 return TTI.getAddressComputationCost(VectorTy) + 4765 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4766 4767 // Scalarized loads/stores. 4768 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 4769 bool Reverse = ConsecutiveStride < 0; 4770 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 4771 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 4772 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 4773 bool IsComplexComputation = 4774 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 4775 unsigned Cost = 0; 4776 // The cost of extracting from the value vector and pointer vector. 4777 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 4778 for (unsigned i = 0; i < VF; ++i) { 4779 // The cost of extracting the pointer operand. 4780 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 4781 // In case of STORE, the cost of ExtractElement from the vector. 4782 // In case of LOAD, the cost of InsertElement into the returned 4783 // vector. 4784 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 4785 Instruction::InsertElement, 4786 VectorTy, i); 4787 } 4788 4789 // The cost of the scalar loads/stores. 4790 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 4791 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 4792 Alignment, AS); 4793 return Cost; 4794 } 4795 4796 // Wide load/stores. 4797 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 4798 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4799 4800 if (Reverse) 4801 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 4802 VectorTy, 0); 4803 return Cost; 4804 } 4805 case Instruction::ZExt: 4806 case Instruction::SExt: 4807 case Instruction::FPToUI: 4808 case Instruction::FPToSI: 4809 case Instruction::FPExt: 4810 case Instruction::PtrToInt: 4811 case Instruction::IntToPtr: 4812 case Instruction::SIToFP: 4813 case Instruction::UIToFP: 4814 case Instruction::Trunc: 4815 case Instruction::FPTrunc: 4816 case Instruction::BitCast: { 4817 // We optimize the truncation of induction variable. 4818 // The cost of these is the same as the scalar operation. 4819 if (I->getOpcode() == Instruction::Trunc && 4820 Legal->isInductionVariable(I->getOperand(0))) 4821 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 4822 I->getOperand(0)->getType()); 4823 4824 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 4825 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 4826 } 4827 case Instruction::Call: { 4828 CallInst *CI = cast<CallInst>(I); 4829 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 4830 assert(ID && "Not an intrinsic call!"); 4831 Type *RetTy = ToVectorTy(CI->getType(), VF); 4832 SmallVector<Type*, 4> Tys; 4833 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4834 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4835 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 4836 } 4837 default: { 4838 // We are scalarizing the instruction. Return the cost of the scalar 4839 // instruction, plus the cost of insert and extract into vector 4840 // elements, times the vector width. 4841 unsigned Cost = 0; 4842 4843 if (!RetTy->isVoidTy() && VF != 1) { 4844 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 4845 VectorTy); 4846 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 4847 VectorTy); 4848 4849 // The cost of inserting the results plus extracting each one of the 4850 // operands. 4851 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 4852 } 4853 4854 // The cost of executing VF copies of the scalar instruction. This opcode 4855 // is unknown. Assume that it is the same as 'mul'. 4856 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 4857 return Cost; 4858 } 4859 }// end of switch. 4860 } 4861 4862 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 4863 if (Scalar->isVoidTy() || VF == 1) 4864 return Scalar; 4865 return VectorType::get(Scalar, VF); 4866 } 4867 4868 char LoopVectorize::ID = 0; 4869 static const char lv_name[] = "Loop Vectorization"; 4870 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 4871 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 4872 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 4873 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4874 INITIALIZE_PASS_DEPENDENCY(LCSSA) 4875 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 4876 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4877 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 4878 4879 namespace llvm { 4880 Pass *createLoopVectorizePass(bool NoUnrolling) { 4881 return new LoopVectorize(NoUnrolling); 4882 } 4883 } 4884 4885 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 4886 // Check for a store. 4887 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 4888 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 4889 4890 // Check for a load. 4891 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 4892 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 4893 4894 return false; 4895 } 4896 4897 4898 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) { 4899 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 4900 // Holds vector parameters or scalars, in case of uniform vals. 4901 SmallVector<VectorParts, 4> Params; 4902 4903 setDebugLocFromInst(Builder, Instr); 4904 4905 // Find all of the vectorized parameters. 4906 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 4907 Value *SrcOp = Instr->getOperand(op); 4908 4909 // If we are accessing the old induction variable, use the new one. 4910 if (SrcOp == OldInduction) { 4911 Params.push_back(getVectorValue(SrcOp)); 4912 continue; 4913 } 4914 4915 // Try using previously calculated values. 4916 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 4917 4918 // If the src is an instruction that appeared earlier in the basic block 4919 // then it should already be vectorized. 4920 if (SrcInst && OrigLoop->contains(SrcInst)) { 4921 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 4922 // The parameter is a vector value from earlier. 4923 Params.push_back(WidenMap.get(SrcInst)); 4924 } else { 4925 // The parameter is a scalar from outside the loop. Maybe even a constant. 4926 VectorParts Scalars; 4927 Scalars.append(UF, SrcOp); 4928 Params.push_back(Scalars); 4929 } 4930 } 4931 4932 assert(Params.size() == Instr->getNumOperands() && 4933 "Invalid number of operands"); 4934 4935 // Does this instruction return a value ? 4936 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 4937 4938 Value *UndefVec = IsVoidRetTy ? 0 : 4939 UndefValue::get(Instr->getType()); 4940 // Create a new entry in the WidenMap and initialize it to Undef or Null. 4941 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 4942 4943 // For each vector unroll 'part': 4944 for (unsigned Part = 0; Part < UF; ++Part) { 4945 // For each scalar that we create: 4946 4947 Instruction *Cloned = Instr->clone(); 4948 if (!IsVoidRetTy) 4949 Cloned->setName(Instr->getName() + ".cloned"); 4950 // Replace the operands of the cloned instructions with extracted scalars. 4951 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 4952 Value *Op = Params[op][Part]; 4953 Cloned->setOperand(op, Op); 4954 } 4955 4956 // Place the cloned scalar in the new loop. 4957 Builder.Insert(Cloned); 4958 4959 // If the original scalar returns a value we need to place it in a vector 4960 // so that future users will be able to use it. 4961 if (!IsVoidRetTy) 4962 VecResults[Part] = Cloned; 4963 } 4964 } 4965 4966 void 4967 InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr, 4968 LoopVectorizationLegality*) { 4969 return scalarizeInstruction(Instr); 4970 } 4971 4972 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 4973 return Vec; 4974 } 4975 4976 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 4977 return V; 4978 } 4979 4980 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 4981 bool Negate) { 4982 // When unrolling and the VF is 1, we only need to add a simple scalar. 4983 Type *ITy = Val->getType(); 4984 assert(!ITy->isVectorTy() && "Val must be a scalar"); 4985 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 4986 return Builder.CreateAdd(Val, C, "induction"); 4987 } 4988 4989