1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 //    of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 //    widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 //    of vectorization. It decides on the optimal vector width, which
27 //    can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // Other ideas/concepts are from:
38 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39 //
40 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41 //  Vectorizing Compilers.
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #define LV_NAME "loop-vectorize"
46 #define DEBUG_TYPE LV_NAME
47 
48 #include "llvm/Transforms/Vectorize.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/EquivalenceClasses.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/SmallPtrSet.h"
54 #include "llvm/ADT/SmallSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/Analysis/AliasAnalysis.h"
58 #include "llvm/Analysis/Dominators.h"
59 #include "llvm/Analysis/LoopInfo.h"
60 #include "llvm/Analysis/LoopIterator.h"
61 #include "llvm/Analysis/LoopPass.h"
62 #include "llvm/Analysis/ScalarEvolution.h"
63 #include "llvm/Analysis/ScalarEvolutionExpander.h"
64 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/Analysis/ValueTracking.h"
67 #include "llvm/Analysis/Verifier.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/IRBuilder.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/LLVMContext.h"
76 #include "llvm/IR/Module.h"
77 #include "llvm/IR/Type.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/PatternMatch.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/Support/ValueHandle.h"
85 #include "llvm/Target/TargetLibraryInfo.h"
86 #include "llvm/Transforms/Scalar.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/Local.h"
89 #include <algorithm>
90 #include <map>
91 
92 using namespace llvm;
93 using namespace llvm::PatternMatch;
94 
95 static cl::opt<unsigned>
96 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
97                     cl::desc("Sets the SIMD width. Zero is autoselect."));
98 
99 static cl::opt<unsigned>
100 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
101                     cl::desc("Sets the vectorization unroll count. "
102                              "Zero is autoselect."));
103 
104 static cl::opt<bool>
105 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
106                    cl::desc("Enable if-conversion during vectorization."));
107 
108 /// We don't vectorize loops with a known constant trip count below this number.
109 static cl::opt<unsigned>
110 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
111                              cl::Hidden,
112                              cl::desc("Don't vectorize loops with a constant "
113                                       "trip count that is smaller than this "
114                                       "value."));
115 
116 /// We don't unroll loops with a known constant trip count below this number.
117 static const unsigned TinyTripCountUnrollThreshold = 128;
118 
119 /// When performing memory disambiguation checks at runtime do not make more
120 /// than this number of comparisons.
121 static const unsigned RuntimeMemoryCheckThreshold = 8;
122 
123 /// Maximum simd width.
124 static const unsigned MaxVectorWidth = 64;
125 
126 /// Maximum vectorization unroll count.
127 static const unsigned MaxUnrollFactor = 16;
128 
129 /// The cost of a loop that is considered 'small' by the unroller.
130 static const unsigned SmallLoopCost = 20;
131 
132 namespace {
133 
134 // Forward declarations.
135 class LoopVectorizationLegality;
136 class LoopVectorizationCostModel;
137 
138 /// InnerLoopVectorizer vectorizes loops which contain only one basic
139 /// block to a specified vectorization factor (VF).
140 /// This class performs the widening of scalars into vectors, or multiple
141 /// scalars. This class also implements the following features:
142 /// * It inserts an epilogue loop for handling loops that don't have iteration
143 ///   counts that are known to be a multiple of the vectorization factor.
144 /// * It handles the code generation for reduction variables.
145 /// * Scalarization (implementation using scalars) of un-vectorizable
146 ///   instructions.
147 /// InnerLoopVectorizer does not perform any vectorization-legality
148 /// checks, and relies on the caller to check for the different legality
149 /// aspects. The InnerLoopVectorizer relies on the
150 /// LoopVectorizationLegality class to provide information about the induction
151 /// and reduction variables that were found to a given vectorization factor.
152 class InnerLoopVectorizer {
153 public:
154   InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
155                       DominatorTree *DT, DataLayout *DL,
156                       const TargetLibraryInfo *TLI, unsigned VecWidth,
157                       unsigned UnrollFactor)
158       : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
159         VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
160         OldInduction(0), WidenMap(UnrollFactor) {}
161 
162   // Perform the actual loop widening (vectorization).
163   void vectorize(LoopVectorizationLegality *Legal) {
164     // Create a new empty loop. Unlink the old loop and connect the new one.
165     createEmptyLoop(Legal);
166     // Widen each instruction in the old loop to a new one in the new loop.
167     // Use the Legality module to find the induction and reduction variables.
168     vectorizeLoop(Legal);
169     // Register the new loop and update the analysis passes.
170     updateAnalysis();
171   }
172 
173   virtual ~InnerLoopVectorizer() {}
174 
175 protected:
176   /// A small list of PHINodes.
177   typedef SmallVector<PHINode*, 4> PhiVector;
178   /// When we unroll loops we have multiple vector values for each scalar.
179   /// This data structure holds the unrolled and vectorized values that
180   /// originated from one scalar instruction.
181   typedef SmallVector<Value*, 2> VectorParts;
182 
183   // When we if-convert we need create edge masks. We have to cache values so
184   // that we don't end up with exponential recursion/IR.
185   typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
186                    VectorParts> EdgeMaskCache;
187 
188   /// Add code that checks at runtime if the accessed arrays overlap.
189   /// Returns the comparator value or NULL if no check is needed.
190   Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
191                                Instruction *Loc);
192   /// Create an empty loop, based on the loop ranges of the old loop.
193   void createEmptyLoop(LoopVectorizationLegality *Legal);
194   /// Copy and widen the instructions from the old loop.
195   virtual void vectorizeLoop(LoopVectorizationLegality *Legal);
196 
197   /// \brief The Loop exit block may have single value PHI nodes where the
198   /// incoming value is 'Undef'. While vectorizing we only handled real values
199   /// that were defined inside the loop. Here we fix the 'undef case'.
200   /// See PR14725.
201   void fixLCSSAPHIs();
202 
203   /// A helper function that computes the predicate of the block BB, assuming
204   /// that the header block of the loop is set to True. It returns the *entry*
205   /// mask for the block BB.
206   VectorParts createBlockInMask(BasicBlock *BB);
207   /// A helper function that computes the predicate of the edge between SRC
208   /// and DST.
209   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
210 
211   /// A helper function to vectorize a single BB within the innermost loop.
212   void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
213                             PhiVector *PV);
214 
215   /// Vectorize a single PHINode in a block. This method handles the induction
216   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
217   /// arbitrary length vectors.
218   void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
219                            LoopVectorizationLegality *Legal,
220                            unsigned UF, unsigned VF, PhiVector *PV);
221 
222   /// Insert the new loop to the loop hierarchy and pass manager
223   /// and update the analysis passes.
224   void updateAnalysis();
225 
226   /// This instruction is un-vectorizable. Implement it as a sequence
227   /// of scalars.
228   virtual void scalarizeInstruction(Instruction *Instr);
229 
230   /// Vectorize Load and Store instructions,
231   virtual void vectorizeMemoryInstruction(Instruction *Instr,
232                                   LoopVectorizationLegality *Legal);
233 
234   /// Create a broadcast instruction. This method generates a broadcast
235   /// instruction (shuffle) for loop invariant values and for the induction
236   /// value. If this is the induction variable then we extend it to N, N+1, ...
237   /// this is needed because each iteration in the loop corresponds to a SIMD
238   /// element.
239   virtual Value *getBroadcastInstrs(Value *V);
240 
241   /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
242   /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
243   /// The sequence starts at StartIndex.
244   virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
245 
246   /// When we go over instructions in the basic block we rely on previous
247   /// values within the current basic block or on loop invariant values.
248   /// When we widen (vectorize) values we place them in the map. If the values
249   /// are not within the map, they have to be loop invariant, so we simply
250   /// broadcast them into a vector.
251   VectorParts &getVectorValue(Value *V);
252 
253   /// Generate a shuffle sequence that will reverse the vector Vec.
254   virtual Value *reverseVector(Value *Vec);
255 
256   /// This is a helper class that holds the vectorizer state. It maps scalar
257   /// instructions to vector instructions. When the code is 'unrolled' then
258   /// then a single scalar value is mapped to multiple vector parts. The parts
259   /// are stored in the VectorPart type.
260   struct ValueMap {
261     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
262     /// are mapped.
263     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
264 
265     /// \return True if 'Key' is saved in the Value Map.
266     bool has(Value *Key) const { return MapStorage.count(Key); }
267 
268     /// Initializes a new entry in the map. Sets all of the vector parts to the
269     /// save value in 'Val'.
270     /// \return A reference to a vector with splat values.
271     VectorParts &splat(Value *Key, Value *Val) {
272       VectorParts &Entry = MapStorage[Key];
273       Entry.assign(UF, Val);
274       return Entry;
275     }
276 
277     ///\return A reference to the value that is stored at 'Key'.
278     VectorParts &get(Value *Key) {
279       VectorParts &Entry = MapStorage[Key];
280       if (Entry.empty())
281         Entry.resize(UF);
282       assert(Entry.size() == UF);
283       return Entry;
284     }
285 
286   private:
287     /// The unroll factor. Each entry in the map stores this number of vector
288     /// elements.
289     unsigned UF;
290 
291     /// Map storage. We use std::map and not DenseMap because insertions to a
292     /// dense map invalidates its iterators.
293     std::map<Value *, VectorParts> MapStorage;
294   };
295 
296   /// The original loop.
297   Loop *OrigLoop;
298   /// Scev analysis to use.
299   ScalarEvolution *SE;
300   /// Loop Info.
301   LoopInfo *LI;
302   /// Dominator Tree.
303   DominatorTree *DT;
304   /// Data Layout.
305   DataLayout *DL;
306   /// Target Library Info.
307   const TargetLibraryInfo *TLI;
308 
309   /// The vectorization SIMD factor to use. Each vector will have this many
310   /// vector elements.
311   unsigned VF;
312 
313 protected:
314   /// The vectorization unroll factor to use. Each scalar is vectorized to this
315   /// many different vector instructions.
316   unsigned UF;
317 
318   /// The builder that we use
319   IRBuilder<> Builder;
320 
321   // --- Vectorization state ---
322 
323   /// The vector-loop preheader.
324   BasicBlock *LoopVectorPreHeader;
325   /// The scalar-loop preheader.
326   BasicBlock *LoopScalarPreHeader;
327   /// Middle Block between the vector and the scalar.
328   BasicBlock *LoopMiddleBlock;
329   ///The ExitBlock of the scalar loop.
330   BasicBlock *LoopExitBlock;
331   ///The vector loop body.
332   BasicBlock *LoopVectorBody;
333   ///The scalar loop body.
334   BasicBlock *LoopScalarBody;
335   /// A list of all bypass blocks. The first block is the entry of the loop.
336   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
337 
338   /// The new Induction variable which was added to the new block.
339   PHINode *Induction;
340   /// The induction variable of the old basic block.
341   PHINode *OldInduction;
342   /// Holds the extended (to the widest induction type) start index.
343   Value *ExtendedIdx;
344   /// Maps scalars to widened vectors.
345   ValueMap WidenMap;
346   EdgeMaskCache MaskCache;
347 };
348 
349 class InnerLoopUnroller : public InnerLoopVectorizer {
350 public:
351   InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
352                     DominatorTree *DT, DataLayout *DL,
353                     const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
354     InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
355 
356 private:
357   virtual void scalarizeInstruction(Instruction *Instr);
358   virtual void vectorizeMemoryInstruction(Instruction *Instr,
359                                           LoopVectorizationLegality *Legal);
360   virtual Value *getBroadcastInstrs(Value *V);
361   virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
362   virtual Value *reverseVector(Value *Vec);
363 };
364 
365 /// \brief Look for a meaningful debug location on the instruction or it's
366 /// operands.
367 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
368   if (!I)
369     return I;
370 
371   DebugLoc Empty;
372   if (I->getDebugLoc() != Empty)
373     return I;
374 
375   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
376     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
377       if (OpInst->getDebugLoc() != Empty)
378         return OpInst;
379   }
380 
381   return I;
382 }
383 
384 /// \brief Set the debug location in the builder using the debug location in the
385 /// instruction.
386 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
387   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
388     B.SetCurrentDebugLocation(Inst->getDebugLoc());
389   else
390     B.SetCurrentDebugLocation(DebugLoc());
391 }
392 
393 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
394 /// to what vectorization factor.
395 /// This class does not look at the profitability of vectorization, only the
396 /// legality. This class has two main kinds of checks:
397 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
398 ///   will change the order of memory accesses in a way that will change the
399 ///   correctness of the program.
400 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
401 /// checks for a number of different conditions, such as the availability of a
402 /// single induction variable, that all types are supported and vectorize-able,
403 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
404 /// This class is also used by InnerLoopVectorizer for identifying
405 /// induction variable and the different reduction variables.
406 class LoopVectorizationLegality {
407 public:
408   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
409                             DominatorTree *DT, TargetLibraryInfo *TLI)
410       : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
411         Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
412         MaxSafeDepDistBytes(-1U) {}
413 
414   /// This enum represents the kinds of reductions that we support.
415   enum ReductionKind {
416     RK_NoReduction, ///< Not a reduction.
417     RK_IntegerAdd,  ///< Sum of integers.
418     RK_IntegerMult, ///< Product of integers.
419     RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
420     RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
421     RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
422     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
423     RK_FloatAdd,    ///< Sum of floats.
424     RK_FloatMult,   ///< Product of floats.
425     RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
426   };
427 
428   /// This enum represents the kinds of inductions that we support.
429   enum InductionKind {
430     IK_NoInduction,         ///< Not an induction variable.
431     IK_IntInduction,        ///< Integer induction variable. Step = 1.
432     IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
433     IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
434     IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
435   };
436 
437   // This enum represents the kind of minmax reduction.
438   enum MinMaxReductionKind {
439     MRK_Invalid,
440     MRK_UIntMin,
441     MRK_UIntMax,
442     MRK_SIntMin,
443     MRK_SIntMax,
444     MRK_FloatMin,
445     MRK_FloatMax
446   };
447 
448   /// This struct holds information about reduction variables.
449   struct ReductionDescriptor {
450     ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
451       Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
452 
453     ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
454                         MinMaxReductionKind MK)
455         : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
456 
457     // The starting value of the reduction.
458     // It does not have to be zero!
459     TrackingVH<Value> StartValue;
460     // The instruction who's value is used outside the loop.
461     Instruction *LoopExitInstr;
462     // The kind of the reduction.
463     ReductionKind Kind;
464     // If this a min/max reduction the kind of reduction.
465     MinMaxReductionKind MinMaxKind;
466   };
467 
468   /// This POD struct holds information about a potential reduction operation.
469   struct ReductionInstDesc {
470     ReductionInstDesc(bool IsRedux, Instruction *I) :
471       IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
472 
473     ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
474       IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
475 
476     // Is this instruction a reduction candidate.
477     bool IsReduction;
478     // The last instruction in a min/max pattern (select of the select(icmp())
479     // pattern), or the current reduction instruction otherwise.
480     Instruction *PatternLastInst;
481     // If this is a min/max pattern the comparison predicate.
482     MinMaxReductionKind MinMaxKind;
483   };
484 
485   /// This struct holds information about the memory runtime legality
486   /// check that a group of pointers do not overlap.
487   struct RuntimePointerCheck {
488     RuntimePointerCheck() : Need(false) {}
489 
490     /// Reset the state of the pointer runtime information.
491     void reset() {
492       Need = false;
493       Pointers.clear();
494       Starts.clear();
495       Ends.clear();
496     }
497 
498     /// Insert a pointer and calculate the start and end SCEVs.
499     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
500                 unsigned DepSetId);
501 
502     /// This flag indicates if we need to add the runtime check.
503     bool Need;
504     /// Holds the pointers that we need to check.
505     SmallVector<TrackingVH<Value>, 2> Pointers;
506     /// Holds the pointer value at the beginning of the loop.
507     SmallVector<const SCEV*, 2> Starts;
508     /// Holds the pointer value at the end of the loop.
509     SmallVector<const SCEV*, 2> Ends;
510     /// Holds the information if this pointer is used for writing to memory.
511     SmallVector<bool, 2> IsWritePtr;
512     /// Holds the id of the set of pointers that could be dependent because of a
513     /// shared underlying object.
514     SmallVector<unsigned, 2> DependencySetId;
515   };
516 
517   /// A struct for saving information about induction variables.
518   struct InductionInfo {
519     InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
520     InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
521     /// Start value.
522     TrackingVH<Value> StartValue;
523     /// Induction kind.
524     InductionKind IK;
525   };
526 
527   /// ReductionList contains the reduction descriptors for all
528   /// of the reductions that were found in the loop.
529   typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
530 
531   /// InductionList saves induction variables and maps them to the
532   /// induction descriptor.
533   typedef MapVector<PHINode*, InductionInfo> InductionList;
534 
535   /// Returns true if it is legal to vectorize this loop.
536   /// This does not mean that it is profitable to vectorize this
537   /// loop, only that it is legal to do so.
538   bool canVectorize();
539 
540   /// Returns the Induction variable.
541   PHINode *getInduction() { return Induction; }
542 
543   /// Returns the reduction variables found in the loop.
544   ReductionList *getReductionVars() { return &Reductions; }
545 
546   /// Returns the induction variables found in the loop.
547   InductionList *getInductionVars() { return &Inductions; }
548 
549   /// Returns the widest induction type.
550   Type *getWidestInductionType() { return WidestIndTy; }
551 
552   /// Returns True if V is an induction variable in this loop.
553   bool isInductionVariable(const Value *V);
554 
555   /// Return true if the block BB needs to be predicated in order for the loop
556   /// to be vectorized.
557   bool blockNeedsPredication(BasicBlock *BB);
558 
559   /// Check if this  pointer is consecutive when vectorizing. This happens
560   /// when the last index of the GEP is the induction variable, or that the
561   /// pointer itself is an induction variable.
562   /// This check allows us to vectorize A[idx] into a wide load/store.
563   /// Returns:
564   /// 0 - Stride is unknown or non consecutive.
565   /// 1 - Address is consecutive.
566   /// -1 - Address is consecutive, and decreasing.
567   int isConsecutivePtr(Value *Ptr);
568 
569   /// Returns true if the value V is uniform within the loop.
570   bool isUniform(Value *V);
571 
572   /// Returns true if this instruction will remain scalar after vectorization.
573   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
574 
575   /// Returns the information that we collected about runtime memory check.
576   RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
577 
578   /// This function returns the identity element (or neutral element) for
579   /// the operation K.
580   static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
581 
582   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
583 
584 private:
585   /// Check if a single basic block loop is vectorizable.
586   /// At this point we know that this is a loop with a constant trip count
587   /// and we only need to check individual instructions.
588   bool canVectorizeInstrs();
589 
590   /// When we vectorize loops we may change the order in which
591   /// we read and write from memory. This method checks if it is
592   /// legal to vectorize the code, considering only memory constrains.
593   /// Returns true if the loop is vectorizable
594   bool canVectorizeMemory();
595 
596   /// Return true if we can vectorize this loop using the IF-conversion
597   /// transformation.
598   bool canVectorizeWithIfConvert();
599 
600   /// Collect the variables that need to stay uniform after vectorization.
601   void collectLoopUniforms();
602 
603   /// Return true if all of the instructions in the block can be speculatively
604   /// executed. \p SafePtrs is a list of addresses that are known to be legal
605   /// and we know that we can read from them without segfault.
606   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
607 
608   /// Returns True, if 'Phi' is the kind of reduction variable for type
609   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
610   bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
611   /// Returns a struct describing if the instruction 'I' can be a reduction
612   /// variable of type 'Kind'. If the reduction is a min/max pattern of
613   /// select(icmp()) this function advances the instruction pointer 'I' from the
614   /// compare instruction to the select instruction and stores this pointer in
615   /// 'PatternLastInst' member of the returned struct.
616   ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
617                                      ReductionInstDesc &Desc);
618   /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
619   /// pattern corresponding to a min(X, Y) or max(X, Y).
620   static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
621                                                     ReductionInstDesc &Prev);
622   /// Returns the induction kind of Phi. This function may return NoInduction
623   /// if the PHI is not an induction variable.
624   InductionKind isInductionVariable(PHINode *Phi);
625 
626   /// The loop that we evaluate.
627   Loop *TheLoop;
628   /// Scev analysis.
629   ScalarEvolution *SE;
630   /// DataLayout analysis.
631   DataLayout *DL;
632   /// Dominators.
633   DominatorTree *DT;
634   /// Target Library Info.
635   TargetLibraryInfo *TLI;
636 
637   //  ---  vectorization state --- //
638 
639   /// Holds the integer induction variable. This is the counter of the
640   /// loop.
641   PHINode *Induction;
642   /// Holds the reduction variables.
643   ReductionList Reductions;
644   /// Holds all of the induction variables that we found in the loop.
645   /// Notice that inductions don't need to start at zero and that induction
646   /// variables can be pointers.
647   InductionList Inductions;
648   /// Holds the widest induction type encountered.
649   Type *WidestIndTy;
650 
651   /// Allowed outside users. This holds the reduction
652   /// vars which can be accessed from outside the loop.
653   SmallPtrSet<Value*, 4> AllowedExit;
654   /// This set holds the variables which are known to be uniform after
655   /// vectorization.
656   SmallPtrSet<Instruction*, 4> Uniforms;
657   /// We need to check that all of the pointers in this list are disjoint
658   /// at runtime.
659   RuntimePointerCheck PtrRtCheck;
660   /// Can we assume the absence of NaNs.
661   bool HasFunNoNaNAttr;
662 
663   unsigned MaxSafeDepDistBytes;
664 };
665 
666 /// LoopVectorizationCostModel - estimates the expected speedups due to
667 /// vectorization.
668 /// In many cases vectorization is not profitable. This can happen because of
669 /// a number of reasons. In this class we mainly attempt to predict the
670 /// expected speedup/slowdowns due to the supported instruction set. We use the
671 /// TargetTransformInfo to query the different backends for the cost of
672 /// different operations.
673 class LoopVectorizationCostModel {
674 public:
675   LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
676                              LoopVectorizationLegality *Legal,
677                              const TargetTransformInfo &TTI,
678                              DataLayout *DL, const TargetLibraryInfo *TLI)
679       : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
680 
681   /// Information about vectorization costs
682   struct VectorizationFactor {
683     unsigned Width; // Vector width with best cost
684     unsigned Cost; // Cost of the loop with that width
685   };
686   /// \return The most profitable vectorization factor and the cost of that VF.
687   /// This method checks every power of two up to VF. If UserVF is not ZERO
688   /// then this vectorization factor will be selected if vectorization is
689   /// possible.
690   VectorizationFactor selectVectorizationFactor(bool OptForSize,
691                                                 unsigned UserVF);
692 
693   /// \return The size (in bits) of the widest type in the code that
694   /// needs to be vectorized. We ignore values that remain scalar such as
695   /// 64 bit loop indices.
696   unsigned getWidestType();
697 
698   /// \return The most profitable unroll factor.
699   /// If UserUF is non-zero then this method finds the best unroll-factor
700   /// based on register pressure and other parameters.
701   /// VF and LoopCost are the selected vectorization factor and the cost of the
702   /// selected VF.
703   unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
704                               unsigned LoopCost);
705 
706   /// \brief A struct that represents some properties of the register usage
707   /// of a loop.
708   struct RegisterUsage {
709     /// Holds the number of loop invariant values that are used in the loop.
710     unsigned LoopInvariantRegs;
711     /// Holds the maximum number of concurrent live intervals in the loop.
712     unsigned MaxLocalUsers;
713     /// Holds the number of instructions in the loop.
714     unsigned NumInstructions;
715   };
716 
717   /// \return  information about the register usage of the loop.
718   RegisterUsage calculateRegisterUsage();
719 
720 private:
721   /// Returns the expected execution cost. The unit of the cost does
722   /// not matter because we use the 'cost' units to compare different
723   /// vector widths. The cost that is returned is *not* normalized by
724   /// the factor width.
725   unsigned expectedCost(unsigned VF);
726 
727   /// Returns the execution time cost of an instruction for a given vector
728   /// width. Vector width of one means scalar.
729   unsigned getInstructionCost(Instruction *I, unsigned VF);
730 
731   /// A helper function for converting Scalar types to vector types.
732   /// If the incoming type is void, we return void. If the VF is 1, we return
733   /// the scalar type.
734   static Type* ToVectorTy(Type *Scalar, unsigned VF);
735 
736   /// Returns whether the instruction is a load or store and will be a emitted
737   /// as a vector operation.
738   bool isConsecutiveLoadOrStore(Instruction *I);
739 
740   /// The loop that we evaluate.
741   Loop *TheLoop;
742   /// Scev analysis.
743   ScalarEvolution *SE;
744   /// Loop Info analysis.
745   LoopInfo *LI;
746   /// Vectorization legality.
747   LoopVectorizationLegality *Legal;
748   /// Vector target information.
749   const TargetTransformInfo &TTI;
750   /// Target data layout information.
751   DataLayout *DL;
752   /// Target Library Info.
753   const TargetLibraryInfo *TLI;
754 };
755 
756 /// Utility class for getting and setting loop vectorizer hints in the form
757 /// of loop metadata.
758 struct LoopVectorizeHints {
759   /// Vectorization width.
760   unsigned Width;
761   /// Vectorization unroll factor.
762   unsigned Unroll;
763 
764   LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
765   : Width(VectorizationFactor)
766   , Unroll(DisableUnrolling ? 1 : VectorizationUnroll)
767   , LoopID(L->getLoopID()) {
768     getHints(L);
769     // The command line options override any loop metadata except for when
770     // width == 1 which is used to indicate the loop is already vectorized.
771     if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
772       Width = VectorizationFactor;
773     if (VectorizationUnroll.getNumOccurrences() > 0)
774       Unroll = VectorizationUnroll;
775 
776     DEBUG(if (DisableUnrolling && Unroll == 1)
777             dbgs() << "LV: Unrolling disabled by the pass manager\n");
778   }
779 
780   /// Return the loop vectorizer metadata prefix.
781   static StringRef Prefix() { return "llvm.vectorizer."; }
782 
783   MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
784     SmallVector<Value*, 2> Vals;
785     Vals.push_back(MDString::get(Context, Name));
786     Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
787     return MDNode::get(Context, Vals);
788   }
789 
790   /// Mark the loop L as already vectorized by setting the width to 1.
791   void setAlreadyVectorized(Loop *L) {
792     LLVMContext &Context = L->getHeader()->getContext();
793 
794     Width = 1;
795 
796     // Create a new loop id with one more operand for the already_vectorized
797     // hint. If the loop already has a loop id then copy the existing operands.
798     SmallVector<Value*, 4> Vals(1);
799     if (LoopID)
800       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
801         Vals.push_back(LoopID->getOperand(i));
802 
803     Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
804     Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
805 
806     MDNode *NewLoopID = MDNode::get(Context, Vals);
807     // Set operand 0 to refer to the loop id itself.
808     NewLoopID->replaceOperandWith(0, NewLoopID);
809 
810     L->setLoopID(NewLoopID);
811     if (LoopID)
812       LoopID->replaceAllUsesWith(NewLoopID);
813 
814     LoopID = NewLoopID;
815   }
816 
817 private:
818   MDNode *LoopID;
819 
820   /// Find hints specified in the loop metadata.
821   void getHints(const Loop *L) {
822     if (!LoopID)
823       return;
824 
825     // First operand should refer to the loop id itself.
826     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
827     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
828 
829     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
830       const MDString *S = 0;
831       SmallVector<Value*, 4> Args;
832 
833       // The expected hint is either a MDString or a MDNode with the first
834       // operand a MDString.
835       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
836         if (!MD || MD->getNumOperands() == 0)
837           continue;
838         S = dyn_cast<MDString>(MD->getOperand(0));
839         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
840           Args.push_back(MD->getOperand(i));
841       } else {
842         S = dyn_cast<MDString>(LoopID->getOperand(i));
843         assert(Args.size() == 0 && "too many arguments for MDString");
844       }
845 
846       if (!S)
847         continue;
848 
849       // Check if the hint starts with the vectorizer prefix.
850       StringRef Hint = S->getString();
851       if (!Hint.startswith(Prefix()))
852         continue;
853       // Remove the prefix.
854       Hint = Hint.substr(Prefix().size(), StringRef::npos);
855 
856       if (Args.size() == 1)
857         getHint(Hint, Args[0]);
858     }
859   }
860 
861   // Check string hint with one operand.
862   void getHint(StringRef Hint, Value *Arg) {
863     const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
864     if (!C) return;
865     unsigned Val = C->getZExtValue();
866 
867     if (Hint == "width") {
868       if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
869         Width = Val;
870       else
871         DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
872     } else if (Hint == "unroll") {
873       if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
874         Unroll = Val;
875       else
876         DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
877     } else {
878       DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
879     }
880   }
881 };
882 
883 /// The LoopVectorize Pass.
884 struct LoopVectorize : public LoopPass {
885   /// Pass identification, replacement for typeid
886   static char ID;
887 
888   explicit LoopVectorize(bool NoUnrolling = false)
889     : LoopPass(ID), DisableUnrolling(NoUnrolling) {
890     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
891   }
892 
893   ScalarEvolution *SE;
894   DataLayout *DL;
895   LoopInfo *LI;
896   TargetTransformInfo *TTI;
897   DominatorTree *DT;
898   TargetLibraryInfo *TLI;
899   bool DisableUnrolling;
900 
901   virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
902     // We only vectorize innermost loops.
903     if (!L->empty())
904       return false;
905 
906     SE = &getAnalysis<ScalarEvolution>();
907     DL = getAnalysisIfAvailable<DataLayout>();
908     LI = &getAnalysis<LoopInfo>();
909     TTI = &getAnalysis<TargetTransformInfo>();
910     DT = &getAnalysis<DominatorTree>();
911     TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
912 
913     // If the target claims to have no vector registers don't attempt
914     // vectorization.
915     if (!TTI->getNumberOfRegisters(true))
916       return false;
917 
918     if (DL == NULL) {
919       DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout\n");
920       return false;
921     }
922 
923     DEBUG(dbgs() << "LV: Checking a loop in \"" <<
924           L->getHeader()->getParent()->getName() << "\"\n");
925 
926     LoopVectorizeHints Hints(L, DisableUnrolling);
927 
928     if (Hints.Width == 1 && Hints.Unroll == 1) {
929       DEBUG(dbgs() << "LV: Not vectorizing.\n");
930       return false;
931     }
932 
933     // Check if it is legal to vectorize the loop.
934     LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
935     if (!LVL.canVectorize()) {
936       DEBUG(dbgs() << "LV: Not vectorizing.\n");
937       return false;
938     }
939 
940     // Use the cost model.
941     LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
942 
943     // Check the function attributes to find out if this function should be
944     // optimized for size.
945     Function *F = L->getHeader()->getParent();
946     Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
947     Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
948     unsigned FnIndex = AttributeSet::FunctionIndex;
949     bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
950     bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
951 
952     if (NoFloat) {
953       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
954             "attribute is used.\n");
955       return false;
956     }
957 
958     // Select the optimal vectorization factor.
959     LoopVectorizationCostModel::VectorizationFactor VF;
960     VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
961     // Select the unroll factor.
962     unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
963                                         VF.Cost);
964 
965     if (VF.Width == 1) {
966       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
967     }
968 
969     DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
970           F->getParent()->getModuleIdentifier() << '\n');
971     DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
972 
973     if (VF.Width == 1) {
974       if (UF == 1)
975         return false;
976       // We decided not to vectorize, but we may want to unroll.
977       InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
978       Unroller.vectorize(&LVL);
979     } else {
980       // If we decided that it is *legal* to vectorize the loop then do it.
981       InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
982       LB.vectorize(&LVL);
983     }
984 
985     // Mark the loop as already vectorized to avoid vectorizing again.
986     Hints.setAlreadyVectorized(L);
987 
988     DEBUG(verifyFunction(*L->getHeader()->getParent()));
989     return true;
990   }
991 
992   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
993     LoopPass::getAnalysisUsage(AU);
994     AU.addRequiredID(LoopSimplifyID);
995     AU.addRequiredID(LCSSAID);
996     AU.addRequired<DominatorTree>();
997     AU.addRequired<LoopInfo>();
998     AU.addRequired<ScalarEvolution>();
999     AU.addRequired<TargetTransformInfo>();
1000     AU.addPreserved<LoopInfo>();
1001     AU.addPreserved<DominatorTree>();
1002   }
1003 
1004 };
1005 
1006 } // end anonymous namespace
1007 
1008 //===----------------------------------------------------------------------===//
1009 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1010 // LoopVectorizationCostModel.
1011 //===----------------------------------------------------------------------===//
1012 
1013 void
1014 LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
1015                                                        Loop *Lp, Value *Ptr,
1016                                                        bool WritePtr,
1017                                                        unsigned DepSetId) {
1018   const SCEV *Sc = SE->getSCEV(Ptr);
1019   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1020   assert(AR && "Invalid addrec expression");
1021   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1022   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1023   Pointers.push_back(Ptr);
1024   Starts.push_back(AR->getStart());
1025   Ends.push_back(ScEnd);
1026   IsWritePtr.push_back(WritePtr);
1027   DependencySetId.push_back(DepSetId);
1028 }
1029 
1030 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1031   // We need to place the broadcast of invariant variables outside the loop.
1032   Instruction *Instr = dyn_cast<Instruction>(V);
1033   bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
1034   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1035 
1036   // Place the code for broadcasting invariant variables in the new preheader.
1037   IRBuilder<>::InsertPointGuard Guard(Builder);
1038   if (Invariant)
1039     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1040 
1041   // Broadcast the scalar into all locations in the vector.
1042   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1043 
1044   return Shuf;
1045 }
1046 
1047 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1048                                                  bool Negate) {
1049   assert(Val->getType()->isVectorTy() && "Must be a vector");
1050   assert(Val->getType()->getScalarType()->isIntegerTy() &&
1051          "Elem must be an integer");
1052   // Create the types.
1053   Type *ITy = Val->getType()->getScalarType();
1054   VectorType *Ty = cast<VectorType>(Val->getType());
1055   int VLen = Ty->getNumElements();
1056   SmallVector<Constant*, 8> Indices;
1057 
1058   // Create a vector of consecutive numbers from zero to VF.
1059   for (int i = 0; i < VLen; ++i) {
1060     int64_t Idx = Negate ? (-i) : i;
1061     Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1062   }
1063 
1064   // Add the consecutive indices to the vector value.
1065   Constant *Cv = ConstantVector::get(Indices);
1066   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1067   return Builder.CreateAdd(Val, Cv, "induction");
1068 }
1069 
1070 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1071   assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
1072   // Make sure that the pointer does not point to structs.
1073   if (Ptr->getType()->getPointerElementType()->isAggregateType())
1074     return 0;
1075 
1076   // If this value is a pointer induction variable we know it is consecutive.
1077   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1078   if (Phi && Inductions.count(Phi)) {
1079     InductionInfo II = Inductions[Phi];
1080     if (IK_PtrInduction == II.IK)
1081       return 1;
1082     else if (IK_ReversePtrInduction == II.IK)
1083       return -1;
1084   }
1085 
1086   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1087   if (!Gep)
1088     return 0;
1089 
1090   unsigned NumOperands = Gep->getNumOperands();
1091   Value *LastIndex = Gep->getOperand(NumOperands - 1);
1092 
1093   Value *GpPtr = Gep->getPointerOperand();
1094   // If this GEP value is a consecutive pointer induction variable and all of
1095   // the indices are constant then we know it is consecutive. We can
1096   Phi = dyn_cast<PHINode>(GpPtr);
1097   if (Phi && Inductions.count(Phi)) {
1098 
1099     // Make sure that the pointer does not point to structs.
1100     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1101     if (GepPtrType->getElementType()->isAggregateType())
1102       return 0;
1103 
1104     // Make sure that all of the index operands are loop invariant.
1105     for (unsigned i = 1; i < NumOperands; ++i)
1106       if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1107         return 0;
1108 
1109     InductionInfo II = Inductions[Phi];
1110     if (IK_PtrInduction == II.IK)
1111       return 1;
1112     else if (IK_ReversePtrInduction == II.IK)
1113       return -1;
1114   }
1115 
1116   // Check that all of the gep indices are uniform except for the last.
1117   for (unsigned i = 0; i < NumOperands - 1; ++i)
1118     if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1119       return 0;
1120 
1121   // We can emit wide load/stores only if the last index is the induction
1122   // variable.
1123   const SCEV *Last = SE->getSCEV(LastIndex);
1124   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1125     const SCEV *Step = AR->getStepRecurrence(*SE);
1126 
1127     // The memory is consecutive because the last index is consecutive
1128     // and all other indices are loop invariant.
1129     if (Step->isOne())
1130       return 1;
1131     if (Step->isAllOnesValue())
1132       return -1;
1133   }
1134 
1135   return 0;
1136 }
1137 
1138 bool LoopVectorizationLegality::isUniform(Value *V) {
1139   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1140 }
1141 
1142 InnerLoopVectorizer::VectorParts&
1143 InnerLoopVectorizer::getVectorValue(Value *V) {
1144   assert(V != Induction && "The new induction variable should not be used.");
1145   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1146 
1147   // If we have this scalar in the map, return it.
1148   if (WidenMap.has(V))
1149     return WidenMap.get(V);
1150 
1151   // If this scalar is unknown, assume that it is a constant or that it is
1152   // loop invariant. Broadcast V and save the value for future uses.
1153   Value *B = getBroadcastInstrs(V);
1154   return WidenMap.splat(V, B);
1155 }
1156 
1157 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1158   assert(Vec->getType()->isVectorTy() && "Invalid type");
1159   SmallVector<Constant*, 8> ShuffleMask;
1160   for (unsigned i = 0; i < VF; ++i)
1161     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1162 
1163   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1164                                      ConstantVector::get(ShuffleMask),
1165                                      "reverse");
1166 }
1167 
1168 
1169 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
1170                                              LoopVectorizationLegality *Legal) {
1171   // Attempt to issue a wide load.
1172   LoadInst *LI = dyn_cast<LoadInst>(Instr);
1173   StoreInst *SI = dyn_cast<StoreInst>(Instr);
1174 
1175   assert((LI || SI) && "Invalid Load/Store instruction");
1176 
1177   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1178   Type *DataTy = VectorType::get(ScalarDataTy, VF);
1179   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1180   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1181   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1182   unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1183   unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1184 
1185   if (ScalarAllocatedSize != VectorElementSize)
1186     return scalarizeInstruction(Instr);
1187 
1188   // If the pointer is loop invariant or if it is non consecutive,
1189   // scalarize the load.
1190   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1191   bool Reverse = ConsecutiveStride < 0;
1192   bool UniformLoad = LI && Legal->isUniform(Ptr);
1193   if (!ConsecutiveStride || UniformLoad)
1194     return scalarizeInstruction(Instr);
1195 
1196   Constant *Zero = Builder.getInt32(0);
1197   VectorParts &Entry = WidenMap.get(Instr);
1198 
1199   // Handle consecutive loads/stores.
1200   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1201   if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1202     setDebugLocFromInst(Builder, Gep);
1203     Value *PtrOperand = Gep->getPointerOperand();
1204     Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1205     FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1206 
1207     // Create the new GEP with the new induction variable.
1208     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1209     Gep2->setOperand(0, FirstBasePtr);
1210     Gep2->setName("gep.indvar.base");
1211     Ptr = Builder.Insert(Gep2);
1212   } else if (Gep) {
1213     setDebugLocFromInst(Builder, Gep);
1214     assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1215                                OrigLoop) && "Base ptr must be invariant");
1216 
1217     // The last index does not have to be the induction. It can be
1218     // consecutive and be a function of the index. For example A[I+1];
1219     unsigned NumOperands = Gep->getNumOperands();
1220     unsigned LastOperand = NumOperands - 1;
1221     // Create the new GEP with the new induction variable.
1222     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1223 
1224     for (unsigned i = 0; i < NumOperands; ++i) {
1225       Value *GepOperand = Gep->getOperand(i);
1226       Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1227 
1228       // Update last index or loop invariant instruction anchored in loop.
1229       if (i == LastOperand ||
1230           (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1231         assert((i == LastOperand ||
1232                SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1233                "Must be last index or loop invariant");
1234 
1235         VectorParts &GEPParts = getVectorValue(GepOperand);
1236         Value *Index = GEPParts[0];
1237         Index = Builder.CreateExtractElement(Index, Zero);
1238         Gep2->setOperand(i, Index);
1239         Gep2->setName("gep.indvar.idx");
1240       }
1241     }
1242     Ptr = Builder.Insert(Gep2);
1243   } else {
1244     // Use the induction element ptr.
1245     assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1246     setDebugLocFromInst(Builder, Ptr);
1247     VectorParts &PtrVal = getVectorValue(Ptr);
1248     Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1249   }
1250 
1251   // Handle Stores:
1252   if (SI) {
1253     assert(!Legal->isUniform(SI->getPointerOperand()) &&
1254            "We do not allow storing to uniform addresses");
1255     setDebugLocFromInst(Builder, SI);
1256     // We don't want to update the value in the map as it might be used in
1257     // another expression. So don't use a reference type for "StoredVal".
1258     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1259 
1260     for (unsigned Part = 0; Part < UF; ++Part) {
1261       // Calculate the pointer for the specific unroll-part.
1262       Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1263 
1264       if (Reverse) {
1265         // If we store to reverse consecutive memory locations then we need
1266         // to reverse the order of elements in the stored value.
1267         StoredVal[Part] = reverseVector(StoredVal[Part]);
1268         // If the address is consecutive but reversed, then the
1269         // wide store needs to start at the last vector element.
1270         PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1271         PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1272       }
1273 
1274       Value *VecPtr = Builder.CreateBitCast(PartPtr,
1275                                             DataTy->getPointerTo(AddressSpace));
1276       Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1277     }
1278     return;
1279   }
1280 
1281   // Handle loads.
1282   assert(LI && "Must have a load instruction");
1283   setDebugLocFromInst(Builder, LI);
1284   for (unsigned Part = 0; Part < UF; ++Part) {
1285     // Calculate the pointer for the specific unroll-part.
1286     Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1287 
1288     if (Reverse) {
1289       // If the address is consecutive but reversed, then the
1290       // wide store needs to start at the last vector element.
1291       PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1292       PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1293     }
1294 
1295     Value *VecPtr = Builder.CreateBitCast(PartPtr,
1296                                           DataTy->getPointerTo(AddressSpace));
1297     Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1298     cast<LoadInst>(LI)->setAlignment(Alignment);
1299     Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1300   }
1301 }
1302 
1303 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1304   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1305   // Holds vector parameters or scalars, in case of uniform vals.
1306   SmallVector<VectorParts, 4> Params;
1307 
1308   setDebugLocFromInst(Builder, Instr);
1309 
1310   // Find all of the vectorized parameters.
1311   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1312     Value *SrcOp = Instr->getOperand(op);
1313 
1314     // If we are accessing the old induction variable, use the new one.
1315     if (SrcOp == OldInduction) {
1316       Params.push_back(getVectorValue(SrcOp));
1317       continue;
1318     }
1319 
1320     // Try using previously calculated values.
1321     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1322 
1323     // If the src is an instruction that appeared earlier in the basic block
1324     // then it should already be vectorized.
1325     if (SrcInst && OrigLoop->contains(SrcInst)) {
1326       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1327       // The parameter is a vector value from earlier.
1328       Params.push_back(WidenMap.get(SrcInst));
1329     } else {
1330       // The parameter is a scalar from outside the loop. Maybe even a constant.
1331       VectorParts Scalars;
1332       Scalars.append(UF, SrcOp);
1333       Params.push_back(Scalars);
1334     }
1335   }
1336 
1337   assert(Params.size() == Instr->getNumOperands() &&
1338          "Invalid number of operands");
1339 
1340   // Does this instruction return a value ?
1341   bool IsVoidRetTy = Instr->getType()->isVoidTy();
1342 
1343   Value *UndefVec = IsVoidRetTy ? 0 :
1344     UndefValue::get(VectorType::get(Instr->getType(), VF));
1345   // Create a new entry in the WidenMap and initialize it to Undef or Null.
1346   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1347 
1348   // For each vector unroll 'part':
1349   for (unsigned Part = 0; Part < UF; ++Part) {
1350     // For each scalar that we create:
1351     for (unsigned Width = 0; Width < VF; ++Width) {
1352       Instruction *Cloned = Instr->clone();
1353       if (!IsVoidRetTy)
1354         Cloned->setName(Instr->getName() + ".cloned");
1355       // Replace the operands of the cloned instructions with extracted scalars.
1356       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1357         Value *Op = Params[op][Part];
1358         // Param is a vector. Need to extract the right lane.
1359         if (Op->getType()->isVectorTy())
1360           Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1361         Cloned->setOperand(op, Op);
1362       }
1363 
1364       // Place the cloned scalar in the new loop.
1365       Builder.Insert(Cloned);
1366 
1367       // If the original scalar returns a value we need to place it in a vector
1368       // so that future users will be able to use it.
1369       if (!IsVoidRetTy)
1370         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1371                                                        Builder.getInt32(Width));
1372     }
1373   }
1374 }
1375 
1376 Instruction *
1377 InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1378                                      Instruction *Loc) {
1379   LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1380   Legal->getRuntimePointerCheck();
1381 
1382   if (!PtrRtCheck->Need)
1383     return NULL;
1384 
1385   unsigned NumPointers = PtrRtCheck->Pointers.size();
1386   SmallVector<TrackingVH<Value> , 2> Starts;
1387   SmallVector<TrackingVH<Value> , 2> Ends;
1388 
1389   LLVMContext &Ctx = Loc->getContext();
1390   SCEVExpander Exp(*SE, "induction");
1391 
1392   for (unsigned i = 0; i < NumPointers; ++i) {
1393     Value *Ptr = PtrRtCheck->Pointers[i];
1394     const SCEV *Sc = SE->getSCEV(Ptr);
1395 
1396     if (SE->isLoopInvariant(Sc, OrigLoop)) {
1397       DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1398             *Ptr <<"\n");
1399       Starts.push_back(Ptr);
1400       Ends.push_back(Ptr);
1401     } else {
1402       DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
1403       unsigned AS = Ptr->getType()->getPointerAddressSpace();
1404 
1405       // Use this type for pointer arithmetic.
1406       Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1407 
1408       Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1409       Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1410       Starts.push_back(Start);
1411       Ends.push_back(End);
1412     }
1413   }
1414 
1415   IRBuilder<> ChkBuilder(Loc);
1416   // Our instructions might fold to a constant.
1417   Value *MemoryRuntimeCheck = 0;
1418   for (unsigned i = 0; i < NumPointers; ++i) {
1419     for (unsigned j = i+1; j < NumPointers; ++j) {
1420       // No need to check if two readonly pointers intersect.
1421       if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1422         continue;
1423 
1424       // Only need to check pointers between two different dependency sets.
1425       if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
1426        continue;
1427 
1428       unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1429       unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1430 
1431       assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1432              (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1433              "Trying to bounds check pointers with different address spaces");
1434 
1435       Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1436       Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1437 
1438       Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1439       Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1440       Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
1441       Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
1442 
1443       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1444       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1445       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1446       if (MemoryRuntimeCheck)
1447         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1448                                          "conflict.rdx");
1449       MemoryRuntimeCheck = IsConflict;
1450     }
1451   }
1452 
1453   // We have to do this trickery because the IRBuilder might fold the check to a
1454   // constant expression in which case there is no Instruction anchored in a
1455   // the block.
1456   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1457                                                  ConstantInt::getTrue(Ctx));
1458   ChkBuilder.Insert(Check, "memcheck.conflict");
1459   return Check;
1460 }
1461 
1462 void
1463 InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1464   /*
1465    In this function we generate a new loop. The new loop will contain
1466    the vectorized instructions while the old loop will continue to run the
1467    scalar remainder.
1468 
1469        [ ] <-- vector loop bypass (may consist of multiple blocks).
1470      /  |
1471     /   v
1472    |   [ ]     <-- vector pre header.
1473    |    |
1474    |    v
1475    |   [  ] \
1476    |   [  ]_|   <-- vector loop.
1477    |    |
1478     \   v
1479       >[ ]   <--- middle-block.
1480      /  |
1481     /   v
1482    |   [ ]     <--- new preheader.
1483    |    |
1484    |    v
1485    |   [ ] \
1486    |   [ ]_|   <-- old scalar loop to handle remainder.
1487     \   |
1488      \  v
1489       >[ ]     <-- exit block.
1490    ...
1491    */
1492 
1493   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1494   BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1495   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1496   assert(ExitBlock && "Must have an exit block");
1497 
1498   // Some loops have a single integer induction variable, while other loops
1499   // don't. One example is c++ iterators that often have multiple pointer
1500   // induction variables. In the code below we also support a case where we
1501   // don't have a single induction variable.
1502   OldInduction = Legal->getInduction();
1503   Type *IdxTy = Legal->getWidestInductionType();
1504 
1505   // Find the loop boundaries.
1506   const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
1507   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1508 
1509   // Get the total trip count from the count by adding 1.
1510   ExitCount = SE->getAddExpr(ExitCount,
1511                              SE->getConstant(ExitCount->getType(), 1));
1512 
1513   // Expand the trip count and place the new instructions in the preheader.
1514   // Notice that the pre-header does not change, only the loop body.
1515   SCEVExpander Exp(*SE, "induction");
1516 
1517   // Count holds the overall loop count (N).
1518   Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1519                                    BypassBlock->getTerminator());
1520 
1521   // The loop index does not have to start at Zero. Find the original start
1522   // value from the induction PHI node. If we don't have an induction variable
1523   // then we know that it starts at zero.
1524   Builder.SetInsertPoint(BypassBlock->getTerminator());
1525   Value *StartIdx = ExtendedIdx = OldInduction ?
1526     Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
1527                        IdxTy):
1528     ConstantInt::get(IdxTy, 0);
1529 
1530   assert(BypassBlock && "Invalid loop structure");
1531   LoopBypassBlocks.push_back(BypassBlock);
1532 
1533   // Split the single block loop into the two loop structure described above.
1534   BasicBlock *VectorPH =
1535   BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1536   BasicBlock *VecBody =
1537   VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1538   BasicBlock *MiddleBlock =
1539   VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1540   BasicBlock *ScalarPH =
1541   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1542 
1543   // Create and register the new vector loop.
1544   Loop* Lp = new Loop();
1545   Loop *ParentLoop = OrigLoop->getParentLoop();
1546 
1547   // Insert the new loop into the loop nest and register the new basic blocks
1548   // before calling any utilities such as SCEV that require valid LoopInfo.
1549   if (ParentLoop) {
1550     ParentLoop->addChildLoop(Lp);
1551     ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1552     ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1553     ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1554   } else {
1555     LI->addTopLevelLoop(Lp);
1556   }
1557   Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1558 
1559   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1560   // inside the loop.
1561   Builder.SetInsertPoint(VecBody->getFirstNonPHI());
1562 
1563   // Generate the induction variable.
1564   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
1565   Induction = Builder.CreatePHI(IdxTy, 2, "index");
1566   // The loop step is equal to the vectorization factor (num of SIMD elements)
1567   // times the unroll factor (num of SIMD instructions).
1568   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1569 
1570   // This is the IR builder that we use to add all of the logic for bypassing
1571   // the new vector loop.
1572   IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1573   setDebugLocFromInst(BypassBuilder,
1574                       getDebugLocFromInstOrOperands(OldInduction));
1575 
1576   // We may need to extend the index in case there is a type mismatch.
1577   // We know that the count starts at zero and does not overflow.
1578   if (Count->getType() != IdxTy) {
1579     // The exit count can be of pointer type. Convert it to the correct
1580     // integer type.
1581     if (ExitCount->getType()->isPointerTy())
1582       Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1583     else
1584       Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1585   }
1586 
1587   // Add the start index to the loop count to get the new end index.
1588   Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1589 
1590   // Now we need to generate the expression for N - (N % VF), which is
1591   // the part that the vectorized body will execute.
1592   Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1593   Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1594   Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1595                                                      "end.idx.rnd.down");
1596 
1597   // Now, compare the new count to zero. If it is zero skip the vector loop and
1598   // jump to the scalar loop.
1599   Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1600                                           "cmp.zero");
1601 
1602   BasicBlock *LastBypassBlock = BypassBlock;
1603 
1604   // Generate the code that checks in runtime if arrays overlap. We put the
1605   // checks into a separate block to make the more common case of few elements
1606   // faster.
1607   Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1608                                                  BypassBlock->getTerminator());
1609   if (MemRuntimeCheck) {
1610     // Create a new block containing the memory check.
1611     BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1612                                                           "vector.memcheck");
1613     if (ParentLoop)
1614       ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
1615     LoopBypassBlocks.push_back(CheckBlock);
1616 
1617     // Replace the branch into the memory check block with a conditional branch
1618     // for the "few elements case".
1619     Instruction *OldTerm = BypassBlock->getTerminator();
1620     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1621     OldTerm->eraseFromParent();
1622 
1623     Cmp = MemRuntimeCheck;
1624     LastBypassBlock = CheckBlock;
1625   }
1626 
1627   LastBypassBlock->getTerminator()->eraseFromParent();
1628   BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1629                      LastBypassBlock);
1630 
1631   // We are going to resume the execution of the scalar loop.
1632   // Go over all of the induction variables that we found and fix the
1633   // PHIs that are left in the scalar version of the loop.
1634   // The starting values of PHI nodes depend on the counter of the last
1635   // iteration in the vectorized loop.
1636   // If we come from a bypass edge then we need to start from the original
1637   // start value.
1638 
1639   // This variable saves the new starting index for the scalar loop.
1640   PHINode *ResumeIndex = 0;
1641   LoopVectorizationLegality::InductionList::iterator I, E;
1642   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1643   // Set builder to point to last bypass block.
1644   BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
1645   for (I = List->begin(), E = List->end(); I != E; ++I) {
1646     PHINode *OrigPhi = I->first;
1647     LoopVectorizationLegality::InductionInfo II = I->second;
1648 
1649     Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
1650     PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
1651                                          MiddleBlock->getTerminator());
1652     // We might have extended the type of the induction variable but we need a
1653     // truncated version for the scalar loop.
1654     PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
1655       PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
1656                       MiddleBlock->getTerminator()) : 0;
1657 
1658     Value *EndValue = 0;
1659     switch (II.IK) {
1660     case LoopVectorizationLegality::IK_NoInduction:
1661       llvm_unreachable("Unknown induction");
1662     case LoopVectorizationLegality::IK_IntInduction: {
1663       // Handle the integer induction counter.
1664       assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1665 
1666       // We have the canonical induction variable.
1667       if (OrigPhi == OldInduction) {
1668         // Create a truncated version of the resume value for the scalar loop,
1669         // we might have promoted the type to a larger width.
1670         EndValue =
1671           BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
1672         // The new PHI merges the original incoming value, in case of a bypass,
1673         // or the value at the end of the vectorized loop.
1674         for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1675           TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1676         TruncResumeVal->addIncoming(EndValue, VecBody);
1677 
1678         // We know what the end value is.
1679         EndValue = IdxEndRoundDown;
1680         // We also know which PHI node holds it.
1681         ResumeIndex = ResumeVal;
1682         break;
1683       }
1684 
1685       // Not the canonical induction variable - add the vector loop count to the
1686       // start value.
1687       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1688                                                    II.StartValue->getType(),
1689                                                    "cast.crd");
1690       EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
1691       break;
1692     }
1693     case LoopVectorizationLegality::IK_ReverseIntInduction: {
1694       // Convert the CountRoundDown variable to the PHI size.
1695       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1696                                                    II.StartValue->getType(),
1697                                                    "cast.crd");
1698       // Handle reverse integer induction counter.
1699       EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
1700       break;
1701     }
1702     case LoopVectorizationLegality::IK_PtrInduction: {
1703       // For pointer induction variables, calculate the offset using
1704       // the end index.
1705       EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
1706                                          "ptr.ind.end");
1707       break;
1708     }
1709     case LoopVectorizationLegality::IK_ReversePtrInduction: {
1710       // The value at the end of the loop for the reverse pointer is calculated
1711       // by creating a GEP with a negative index starting from the start value.
1712       Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1713       Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
1714                                               "rev.ind.end");
1715       EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
1716                                          "rev.ptr.ind.end");
1717       break;
1718     }
1719     }// end of case
1720 
1721     // The new PHI merges the original incoming value, in case of a bypass,
1722     // or the value at the end of the vectorized loop.
1723     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
1724       if (OrigPhi == OldInduction)
1725         ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
1726       else
1727         ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1728     }
1729     ResumeVal->addIncoming(EndValue, VecBody);
1730 
1731     // Fix the scalar body counter (PHI node).
1732     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1733     // The old inductions phi node in the scalar body needs the truncated value.
1734     if (OrigPhi == OldInduction)
1735       OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
1736     else
1737       OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1738   }
1739 
1740   // If we are generating a new induction variable then we also need to
1741   // generate the code that calculates the exit value. This value is not
1742   // simply the end of the counter because we may skip the vectorized body
1743   // in case of a runtime check.
1744   if (!OldInduction){
1745     assert(!ResumeIndex && "Unexpected resume value found");
1746     ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1747                                   MiddleBlock->getTerminator());
1748     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1749       ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1750     ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1751   }
1752 
1753   // Make sure that we found the index where scalar loop needs to continue.
1754   assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1755          "Invalid resume Index");
1756 
1757   // Add a check in the middle block to see if we have completed
1758   // all of the iterations in the first vector loop.
1759   // If (N - N%VF) == N, then we *don't* need to run the remainder.
1760   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1761                                 ResumeIndex, "cmp.n",
1762                                 MiddleBlock->getTerminator());
1763 
1764   BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1765   // Remove the old terminator.
1766   MiddleBlock->getTerminator()->eraseFromParent();
1767 
1768   // Create i+1 and fill the PHINode.
1769   Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1770   Induction->addIncoming(StartIdx, VectorPH);
1771   Induction->addIncoming(NextIdx, VecBody);
1772   // Create the compare.
1773   Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1774   Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1775 
1776   // Now we have two terminators. Remove the old one from the block.
1777   VecBody->getTerminator()->eraseFromParent();
1778 
1779   // Get ready to start creating new instructions into the vectorized body.
1780   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1781 
1782   // Save the state.
1783   LoopVectorPreHeader = VectorPH;
1784   LoopScalarPreHeader = ScalarPH;
1785   LoopMiddleBlock = MiddleBlock;
1786   LoopExitBlock = ExitBlock;
1787   LoopVectorBody = VecBody;
1788   LoopScalarBody = OldBasicBlock;
1789 
1790   LoopVectorizeHints Hints(Lp, true);
1791   Hints.setAlreadyVectorized(Lp);
1792 }
1793 
1794 /// This function returns the identity element (or neutral element) for
1795 /// the operation K.
1796 Constant*
1797 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
1798   switch (K) {
1799   case RK_IntegerXor:
1800   case RK_IntegerAdd:
1801   case RK_IntegerOr:
1802     // Adding, Xoring, Oring zero to a number does not change it.
1803     return ConstantInt::get(Tp, 0);
1804   case RK_IntegerMult:
1805     // Multiplying a number by 1 does not change it.
1806     return ConstantInt::get(Tp, 1);
1807   case RK_IntegerAnd:
1808     // AND-ing a number with an all-1 value does not change it.
1809     return ConstantInt::get(Tp, -1, true);
1810   case  RK_FloatMult:
1811     // Multiplying a number by 1 does not change it.
1812     return ConstantFP::get(Tp, 1.0L);
1813   case  RK_FloatAdd:
1814     // Adding zero to a number does not change it.
1815     return ConstantFP::get(Tp, 0.0L);
1816   default:
1817     llvm_unreachable("Unknown reduction kind");
1818   }
1819 }
1820 
1821 static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I,
1822                                               Intrinsic::ID ValidIntrinsicID) {
1823   if (I.getNumArgOperands() != 1 ||
1824       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1825       I.getType() != I.getArgOperand(0)->getType() ||
1826       !I.onlyReadsMemory())
1827     return Intrinsic::not_intrinsic;
1828 
1829   return ValidIntrinsicID;
1830 }
1831 
1832 static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I,
1833                                                Intrinsic::ID ValidIntrinsicID) {
1834   if (I.getNumArgOperands() != 2 ||
1835       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1836       !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
1837       I.getType() != I.getArgOperand(0)->getType() ||
1838       I.getType() != I.getArgOperand(1)->getType() ||
1839       !I.onlyReadsMemory())
1840     return Intrinsic::not_intrinsic;
1841 
1842   return ValidIntrinsicID;
1843 }
1844 
1845 
1846 static Intrinsic::ID
1847 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1848   // If we have an intrinsic call, check if it is trivially vectorizable.
1849   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1850     switch (II->getIntrinsicID()) {
1851     case Intrinsic::sqrt:
1852     case Intrinsic::sin:
1853     case Intrinsic::cos:
1854     case Intrinsic::exp:
1855     case Intrinsic::exp2:
1856     case Intrinsic::log:
1857     case Intrinsic::log10:
1858     case Intrinsic::log2:
1859     case Intrinsic::fabs:
1860     case Intrinsic::copysign:
1861     case Intrinsic::floor:
1862     case Intrinsic::ceil:
1863     case Intrinsic::trunc:
1864     case Intrinsic::rint:
1865     case Intrinsic::nearbyint:
1866     case Intrinsic::round:
1867     case Intrinsic::pow:
1868     case Intrinsic::fma:
1869     case Intrinsic::fmuladd:
1870     case Intrinsic::lifetime_start:
1871     case Intrinsic::lifetime_end:
1872       return II->getIntrinsicID();
1873     default:
1874       return Intrinsic::not_intrinsic;
1875     }
1876   }
1877 
1878   if (!TLI)
1879     return Intrinsic::not_intrinsic;
1880 
1881   LibFunc::Func Func;
1882   Function *F = CI->getCalledFunction();
1883   // We're going to make assumptions on the semantics of the functions, check
1884   // that the target knows that it's available in this environment and it does
1885   // not have local linkage.
1886   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
1887     return Intrinsic::not_intrinsic;
1888 
1889   // Otherwise check if we have a call to a function that can be turned into a
1890   // vector intrinsic.
1891   switch (Func) {
1892   default:
1893     break;
1894   case LibFunc::sin:
1895   case LibFunc::sinf:
1896   case LibFunc::sinl:
1897     return checkUnaryFloatSignature(*CI, Intrinsic::sin);
1898   case LibFunc::cos:
1899   case LibFunc::cosf:
1900   case LibFunc::cosl:
1901     return checkUnaryFloatSignature(*CI, Intrinsic::cos);
1902   case LibFunc::exp:
1903   case LibFunc::expf:
1904   case LibFunc::expl:
1905     return checkUnaryFloatSignature(*CI, Intrinsic::exp);
1906   case LibFunc::exp2:
1907   case LibFunc::exp2f:
1908   case LibFunc::exp2l:
1909     return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
1910   case LibFunc::log:
1911   case LibFunc::logf:
1912   case LibFunc::logl:
1913     return checkUnaryFloatSignature(*CI, Intrinsic::log);
1914   case LibFunc::log10:
1915   case LibFunc::log10f:
1916   case LibFunc::log10l:
1917     return checkUnaryFloatSignature(*CI, Intrinsic::log10);
1918   case LibFunc::log2:
1919   case LibFunc::log2f:
1920   case LibFunc::log2l:
1921     return checkUnaryFloatSignature(*CI, Intrinsic::log2);
1922   case LibFunc::fabs:
1923   case LibFunc::fabsf:
1924   case LibFunc::fabsl:
1925     return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
1926   case LibFunc::copysign:
1927   case LibFunc::copysignf:
1928   case LibFunc::copysignl:
1929     return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
1930   case LibFunc::floor:
1931   case LibFunc::floorf:
1932   case LibFunc::floorl:
1933     return checkUnaryFloatSignature(*CI, Intrinsic::floor);
1934   case LibFunc::ceil:
1935   case LibFunc::ceilf:
1936   case LibFunc::ceill:
1937     return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
1938   case LibFunc::trunc:
1939   case LibFunc::truncf:
1940   case LibFunc::truncl:
1941     return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
1942   case LibFunc::rint:
1943   case LibFunc::rintf:
1944   case LibFunc::rintl:
1945     return checkUnaryFloatSignature(*CI, Intrinsic::rint);
1946   case LibFunc::nearbyint:
1947   case LibFunc::nearbyintf:
1948   case LibFunc::nearbyintl:
1949     return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
1950   case LibFunc::round:
1951   case LibFunc::roundf:
1952   case LibFunc::roundl:
1953     return checkUnaryFloatSignature(*CI, Intrinsic::round);
1954   case LibFunc::pow:
1955   case LibFunc::powf:
1956   case LibFunc::powl:
1957     return checkBinaryFloatSignature(*CI, Intrinsic::pow);
1958   }
1959 
1960   return Intrinsic::not_intrinsic;
1961 }
1962 
1963 /// This function translates the reduction kind to an LLVM binary operator.
1964 static unsigned
1965 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1966   switch (Kind) {
1967     case LoopVectorizationLegality::RK_IntegerAdd:
1968       return Instruction::Add;
1969     case LoopVectorizationLegality::RK_IntegerMult:
1970       return Instruction::Mul;
1971     case LoopVectorizationLegality::RK_IntegerOr:
1972       return Instruction::Or;
1973     case LoopVectorizationLegality::RK_IntegerAnd:
1974       return Instruction::And;
1975     case LoopVectorizationLegality::RK_IntegerXor:
1976       return Instruction::Xor;
1977     case LoopVectorizationLegality::RK_FloatMult:
1978       return Instruction::FMul;
1979     case LoopVectorizationLegality::RK_FloatAdd:
1980       return Instruction::FAdd;
1981     case LoopVectorizationLegality::RK_IntegerMinMax:
1982       return Instruction::ICmp;
1983     case LoopVectorizationLegality::RK_FloatMinMax:
1984       return Instruction::FCmp;
1985     default:
1986       llvm_unreachable("Unknown reduction operation");
1987   }
1988 }
1989 
1990 Value *createMinMaxOp(IRBuilder<> &Builder,
1991                       LoopVectorizationLegality::MinMaxReductionKind RK,
1992                       Value *Left,
1993                       Value *Right) {
1994   CmpInst::Predicate P = CmpInst::ICMP_NE;
1995   switch (RK) {
1996   default:
1997     llvm_unreachable("Unknown min/max reduction kind");
1998   case LoopVectorizationLegality::MRK_UIntMin:
1999     P = CmpInst::ICMP_ULT;
2000     break;
2001   case LoopVectorizationLegality::MRK_UIntMax:
2002     P = CmpInst::ICMP_UGT;
2003     break;
2004   case LoopVectorizationLegality::MRK_SIntMin:
2005     P = CmpInst::ICMP_SLT;
2006     break;
2007   case LoopVectorizationLegality::MRK_SIntMax:
2008     P = CmpInst::ICMP_SGT;
2009     break;
2010   case LoopVectorizationLegality::MRK_FloatMin:
2011     P = CmpInst::FCMP_OLT;
2012     break;
2013   case LoopVectorizationLegality::MRK_FloatMax:
2014     P = CmpInst::FCMP_OGT;
2015     break;
2016   }
2017 
2018   Value *Cmp;
2019   if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2020       RK == LoopVectorizationLegality::MRK_FloatMax)
2021     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2022   else
2023     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2024 
2025   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2026   return Select;
2027 }
2028 
2029 void
2030 InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
2031   //===------------------------------------------------===//
2032   //
2033   // Notice: any optimization or new instruction that go
2034   // into the code below should be also be implemented in
2035   // the cost-model.
2036   //
2037   //===------------------------------------------------===//
2038   Constant *Zero = Builder.getInt32(0);
2039 
2040   // In order to support reduction variables we need to be able to vectorize
2041   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2042   // stages. First, we create a new vector PHI node with no incoming edges.
2043   // We use this value when we vectorize all of the instructions that use the
2044   // PHI. Next, after all of the instructions in the block are complete we
2045   // add the new incoming edges to the PHI. At this point all of the
2046   // instructions in the basic block are vectorized, so we can use them to
2047   // construct the PHI.
2048   PhiVector RdxPHIsToFix;
2049 
2050   // Scan the loop in a topological order to ensure that defs are vectorized
2051   // before users.
2052   LoopBlocksDFS DFS(OrigLoop);
2053   DFS.perform(LI);
2054 
2055   // Vectorize all of the blocks in the original loop.
2056   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2057        be = DFS.endRPO(); bb != be; ++bb)
2058     vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
2059 
2060   // At this point every instruction in the original loop is widened to
2061   // a vector form. We are almost done. Now, we need to fix the PHI nodes
2062   // that we vectorized. The PHI nodes are currently empty because we did
2063   // not want to introduce cycles. Notice that the remaining PHI nodes
2064   // that we need to fix are reduction variables.
2065 
2066   // Create the 'reduced' values for each of the induction vars.
2067   // The reduced values are the vector values that we scalarize and combine
2068   // after the loop is finished.
2069   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2070        it != e; ++it) {
2071     PHINode *RdxPhi = *it;
2072     assert(RdxPhi && "Unable to recover vectorized PHI");
2073 
2074     // Find the reduction variable descriptor.
2075     assert(Legal->getReductionVars()->count(RdxPhi) &&
2076            "Unable to find the reduction variable");
2077     LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2078     (*Legal->getReductionVars())[RdxPhi];
2079 
2080     setDebugLocFromInst(Builder, RdxDesc.StartValue);
2081 
2082     // We need to generate a reduction vector from the incoming scalar.
2083     // To do so, we need to generate the 'identity' vector and overide
2084     // one of the elements with the incoming scalar reduction. We need
2085     // to do it in the vector-loop preheader.
2086     Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
2087 
2088     // This is the vector-clone of the value that leaves the loop.
2089     VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2090     Type *VecTy = VectorExit[0]->getType();
2091 
2092     // Find the reduction identity variable. Zero for addition, or, xor,
2093     // one for multiplication, -1 for And.
2094     Value *Identity;
2095     Value *VectorStart;
2096     if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2097         RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2098       // MinMax reduction have the start value as their identify.
2099       if (VF == 1) {
2100         VectorStart = Identity = RdxDesc.StartValue;
2101       } else {
2102         VectorStart = Identity = Builder.CreateVectorSplat(VF,
2103                                                            RdxDesc.StartValue,
2104                                                            "minmax.ident");
2105       }
2106     } else {
2107       // Handle other reduction kinds:
2108       Constant *Iden =
2109       LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2110                                                       VecTy->getScalarType());
2111       if (VF == 1) {
2112         Identity = Iden;
2113         // This vector is the Identity vector where the first element is the
2114         // incoming scalar reduction.
2115         VectorStart = RdxDesc.StartValue;
2116       } else {
2117         Identity = ConstantVector::getSplat(VF, Iden);
2118 
2119         // This vector is the Identity vector where the first element is the
2120         // incoming scalar reduction.
2121         VectorStart = Builder.CreateInsertElement(Identity,
2122                                                   RdxDesc.StartValue, Zero);
2123       }
2124     }
2125 
2126     // Fix the vector-loop phi.
2127     // We created the induction variable so we know that the
2128     // preheader is the first entry.
2129     BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2130 
2131     // Reductions do not have to start at zero. They can start with
2132     // any loop invariant values.
2133     VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2134     BasicBlock *Latch = OrigLoop->getLoopLatch();
2135     Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2136     VectorParts &Val = getVectorValue(LoopVal);
2137     for (unsigned part = 0; part < UF; ++part) {
2138       // Make sure to add the reduction stat value only to the
2139       // first unroll part.
2140       Value *StartVal = (part == 0) ? VectorStart : Identity;
2141       cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2142       cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
2143     }
2144 
2145     // Before each round, move the insertion point right between
2146     // the PHIs and the values we are going to write.
2147     // This allows us to write both PHINodes and the extractelement
2148     // instructions.
2149     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2150 
2151     VectorParts RdxParts;
2152     setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2153     for (unsigned part = 0; part < UF; ++part) {
2154       // This PHINode contains the vectorized reduction variable, or
2155       // the initial value vector, if we bypass the vector loop.
2156       VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2157       PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2158       Value *StartVal = (part == 0) ? VectorStart : Identity;
2159       for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2160         NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2161       NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
2162       RdxParts.push_back(NewPhi);
2163     }
2164 
2165     // Reduce all of the unrolled parts into a single vector.
2166     Value *ReducedPartRdx = RdxParts[0];
2167     unsigned Op = getReductionBinOp(RdxDesc.Kind);
2168     setDebugLocFromInst(Builder, ReducedPartRdx);
2169     for (unsigned part = 1; part < UF; ++part) {
2170       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2171         ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
2172                                              RdxParts[part], ReducedPartRdx,
2173                                              "bin.rdx");
2174       else
2175         ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2176                                         ReducedPartRdx, RdxParts[part]);
2177     }
2178 
2179     if (VF > 1) {
2180       // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2181       // and vector ops, reducing the set of values being computed by half each
2182       // round.
2183       assert(isPowerOf2_32(VF) &&
2184              "Reduction emission only supported for pow2 vectors!");
2185       Value *TmpVec = ReducedPartRdx;
2186       SmallVector<Constant*, 32> ShuffleMask(VF, 0);
2187       for (unsigned i = VF; i != 1; i >>= 1) {
2188         // Move the upper half of the vector to the lower half.
2189         for (unsigned j = 0; j != i/2; ++j)
2190           ShuffleMask[j] = Builder.getInt32(i/2 + j);
2191 
2192         // Fill the rest of the mask with undef.
2193         std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2194                   UndefValue::get(Builder.getInt32Ty()));
2195 
2196         Value *Shuf =
2197         Builder.CreateShuffleVector(TmpVec,
2198                                     UndefValue::get(TmpVec->getType()),
2199                                     ConstantVector::get(ShuffleMask),
2200                                     "rdx.shuf");
2201 
2202         if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2203           TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
2204                                        "bin.rdx");
2205         else
2206           TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2207       }
2208 
2209       // The result is in the first element of the vector.
2210       ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2211                                                     Builder.getInt32(0));
2212     }
2213 
2214     // Now, we need to fix the users of the reduction variable
2215     // inside and outside of the scalar remainder loop.
2216     // We know that the loop is in LCSSA form. We need to update the
2217     // PHI nodes in the exit blocks.
2218     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2219          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2220       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2221       if (!LCSSAPhi) break;
2222 
2223       // All PHINodes need to have a single entry edge, or two if
2224       // we already fixed them.
2225       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2226 
2227       // We found our reduction value exit-PHI. Update it with the
2228       // incoming bypass edge.
2229       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2230         // Add an edge coming from the bypass.
2231         LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2232         break;
2233       }
2234     }// end of the LCSSA phi scan.
2235 
2236     // Fix the scalar loop reduction variable with the incoming reduction sum
2237     // from the vector body and from the backedge value.
2238     int IncomingEdgeBlockIdx =
2239     (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2240     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2241     // Pick the other block.
2242     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2243     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx);
2244     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2245   }// end of for each redux variable.
2246 
2247   fixLCSSAPHIs();
2248 }
2249 
2250 void InnerLoopVectorizer::fixLCSSAPHIs() {
2251   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2252        LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2253     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2254     if (!LCSSAPhi) break;
2255     if (LCSSAPhi->getNumIncomingValues() == 1)
2256       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2257                             LoopMiddleBlock);
2258   }
2259 }
2260 
2261 InnerLoopVectorizer::VectorParts
2262 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2263   assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2264          "Invalid edge");
2265 
2266   // Look for cached value.
2267   std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2268   EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2269   if (ECEntryIt != MaskCache.end())
2270     return ECEntryIt->second;
2271 
2272   VectorParts SrcMask = createBlockInMask(Src);
2273 
2274   // The terminator has to be a branch inst!
2275   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2276   assert(BI && "Unexpected terminator found");
2277 
2278   if (BI->isConditional()) {
2279     VectorParts EdgeMask = getVectorValue(BI->getCondition());
2280 
2281     if (BI->getSuccessor(0) != Dst)
2282       for (unsigned part = 0; part < UF; ++part)
2283         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2284 
2285     for (unsigned part = 0; part < UF; ++part)
2286       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2287 
2288     MaskCache[Edge] = EdgeMask;
2289     return EdgeMask;
2290   }
2291 
2292   MaskCache[Edge] = SrcMask;
2293   return SrcMask;
2294 }
2295 
2296 InnerLoopVectorizer::VectorParts
2297 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2298   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2299 
2300   // Loop incoming mask is all-one.
2301   if (OrigLoop->getHeader() == BB) {
2302     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
2303     return getVectorValue(C);
2304   }
2305 
2306   // This is the block mask. We OR all incoming edges, and with zero.
2307   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
2308   VectorParts BlockMask = getVectorValue(Zero);
2309 
2310   // For each pred:
2311   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2312     VectorParts EM = createEdgeMask(*it, BB);
2313     for (unsigned part = 0; part < UF; ++part)
2314       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2315   }
2316 
2317   return BlockMask;
2318 }
2319 
2320 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
2321                                               InnerLoopVectorizer::VectorParts &Entry,
2322                                               LoopVectorizationLegality *Legal,
2323                                               unsigned UF, unsigned VF, PhiVector *PV) {
2324   PHINode* P = cast<PHINode>(PN);
2325   // Handle reduction variables:
2326   if (Legal->getReductionVars()->count(P)) {
2327     for (unsigned part = 0; part < UF; ++part) {
2328       // This is phase one of vectorizing PHIs.
2329       Type *VecTy = (VF == 1) ? PN->getType() :
2330       VectorType::get(PN->getType(), VF);
2331       Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2332                                     LoopVectorBody-> getFirstInsertionPt());
2333     }
2334     PV->push_back(P);
2335     return;
2336   }
2337 
2338   setDebugLocFromInst(Builder, P);
2339   // Check for PHI nodes that are lowered to vector selects.
2340   if (P->getParent() != OrigLoop->getHeader()) {
2341     // We know that all PHIs in non header blocks are converted into
2342     // selects, so we don't have to worry about the insertion order and we
2343     // can just use the builder.
2344     // At this point we generate the predication tree. There may be
2345     // duplications since this is a simple recursive scan, but future
2346     // optimizations will clean it up.
2347 
2348     unsigned NumIncoming = P->getNumIncomingValues();
2349 
2350     // Generate a sequence of selects of the form:
2351     // SELECT(Mask3, In3,
2352     //      SELECT(Mask2, In2,
2353     //                   ( ...)))
2354     for (unsigned In = 0; In < NumIncoming; In++) {
2355       VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2356                                         P->getParent());
2357       VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2358 
2359       for (unsigned part = 0; part < UF; ++part) {
2360         // We might have single edge PHIs (blocks) - use an identity
2361         // 'select' for the first PHI operand.
2362         if (In == 0)
2363           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2364                                              In0[part]);
2365         else
2366           // Select between the current value and the previous incoming edge
2367           // based on the incoming mask.
2368           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2369                                              Entry[part], "predphi");
2370       }
2371     }
2372     return;
2373   }
2374 
2375   // This PHINode must be an induction variable.
2376   // Make sure that we know about it.
2377   assert(Legal->getInductionVars()->count(P) &&
2378          "Not an induction variable");
2379 
2380   LoopVectorizationLegality::InductionInfo II =
2381   Legal->getInductionVars()->lookup(P);
2382 
2383   switch (II.IK) {
2384     case LoopVectorizationLegality::IK_NoInduction:
2385       llvm_unreachable("Unknown induction");
2386     case LoopVectorizationLegality::IK_IntInduction: {
2387       assert(P->getType() == II.StartValue->getType() && "Types must match");
2388       Type *PhiTy = P->getType();
2389       Value *Broadcasted;
2390       if (P == OldInduction) {
2391         // Handle the canonical induction variable. We might have had to
2392         // extend the type.
2393         Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2394       } else {
2395         // Handle other induction variables that are now based on the
2396         // canonical one.
2397         Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2398                                                  "normalized.idx");
2399         NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2400         Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2401                                         "offset.idx");
2402       }
2403       Broadcasted = getBroadcastInstrs(Broadcasted);
2404       // After broadcasting the induction variable we need to make the vector
2405       // consecutive by adding 0, 1, 2, etc.
2406       for (unsigned part = 0; part < UF; ++part)
2407         Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2408       return;
2409     }
2410     case LoopVectorizationLegality::IK_ReverseIntInduction:
2411     case LoopVectorizationLegality::IK_PtrInduction:
2412     case LoopVectorizationLegality::IK_ReversePtrInduction:
2413       // Handle reverse integer and pointer inductions.
2414       Value *StartIdx = ExtendedIdx;
2415       // This is the normalized GEP that starts counting at zero.
2416       Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2417                                                "normalized.idx");
2418 
2419       // Handle the reverse integer induction variable case.
2420       if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2421         IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2422         Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2423                                                "resize.norm.idx");
2424         Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
2425                                                "reverse.idx");
2426 
2427         // This is a new value so do not hoist it out.
2428         Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2429         // After broadcasting the induction variable we need to make the
2430         // vector consecutive by adding  ... -3, -2, -1, 0.
2431         for (unsigned part = 0; part < UF; ++part)
2432           Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
2433                                              true);
2434         return;
2435       }
2436 
2437       // Handle the pointer induction variable case.
2438       assert(P->getType()->isPointerTy() && "Unexpected type.");
2439 
2440       // Is this a reverse induction ptr or a consecutive induction ptr.
2441       bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2442                       II.IK);
2443 
2444       // This is the vector of results. Notice that we don't generate
2445       // vector geps because scalar geps result in better code.
2446       for (unsigned part = 0; part < UF; ++part) {
2447         if (VF == 1) {
2448           int EltIndex = (part) * (Reverse ? -1 : 1);
2449           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2450           Value *GlobalIdx;
2451           if (Reverse)
2452             GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2453           else
2454             GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2455 
2456           Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2457                                              "next.gep");
2458           Entry[part] = SclrGep;
2459           continue;
2460         }
2461 
2462         Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2463         for (unsigned int i = 0; i < VF; ++i) {
2464           int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2465           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2466           Value *GlobalIdx;
2467           if (!Reverse)
2468             GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2469           else
2470             GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2471 
2472           Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2473                                              "next.gep");
2474           VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2475                                                Builder.getInt32(i),
2476                                                "insert.gep");
2477         }
2478         Entry[part] = VecVal;
2479       }
2480       return;
2481   }
2482 }
2483 
2484 void
2485 InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
2486                                           BasicBlock *BB, PhiVector *PV) {
2487   // For each instruction in the old loop.
2488   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2489     VectorParts &Entry = WidenMap.get(it);
2490     switch (it->getOpcode()) {
2491     case Instruction::Br:
2492       // Nothing to do for PHIs and BR, since we already took care of the
2493       // loop control flow instructions.
2494       continue;
2495     case Instruction::PHI:{
2496       // Vectorize PHINodes.
2497       widenPHIInstruction(it, Entry, Legal, UF, VF, PV);
2498       continue;
2499     }// End of PHI.
2500 
2501     case Instruction::Add:
2502     case Instruction::FAdd:
2503     case Instruction::Sub:
2504     case Instruction::FSub:
2505     case Instruction::Mul:
2506     case Instruction::FMul:
2507     case Instruction::UDiv:
2508     case Instruction::SDiv:
2509     case Instruction::FDiv:
2510     case Instruction::URem:
2511     case Instruction::SRem:
2512     case Instruction::FRem:
2513     case Instruction::Shl:
2514     case Instruction::LShr:
2515     case Instruction::AShr:
2516     case Instruction::And:
2517     case Instruction::Or:
2518     case Instruction::Xor: {
2519       // Just widen binops.
2520       BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2521       setDebugLocFromInst(Builder, BinOp);
2522       VectorParts &A = getVectorValue(it->getOperand(0));
2523       VectorParts &B = getVectorValue(it->getOperand(1));
2524 
2525       // Use this vector value for all users of the original instruction.
2526       for (unsigned Part = 0; Part < UF; ++Part) {
2527         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2528 
2529         // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2530         BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2531         if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2532           VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2533           VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2534         }
2535         if (VecOp && isa<PossiblyExactOperator>(VecOp))
2536           VecOp->setIsExact(BinOp->isExact());
2537 
2538         Entry[Part] = V;
2539       }
2540       break;
2541     }
2542     case Instruction::Select: {
2543       // Widen selects.
2544       // If the selector is loop invariant we can create a select
2545       // instruction with a scalar condition. Otherwise, use vector-select.
2546       bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2547                                                OrigLoop);
2548       setDebugLocFromInst(Builder, it);
2549 
2550       // The condition can be loop invariant  but still defined inside the
2551       // loop. This means that we can't just use the original 'cond' value.
2552       // We have to take the 'vectorized' value and pick the first lane.
2553       // Instcombine will make this a no-op.
2554       VectorParts &Cond = getVectorValue(it->getOperand(0));
2555       VectorParts &Op0  = getVectorValue(it->getOperand(1));
2556       VectorParts &Op1  = getVectorValue(it->getOperand(2));
2557 
2558       Value *ScalarCond = (VF == 1) ? Cond[0] :
2559         Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
2560 
2561       for (unsigned Part = 0; Part < UF; ++Part) {
2562         Entry[Part] = Builder.CreateSelect(
2563           InvariantCond ? ScalarCond : Cond[Part],
2564           Op0[Part],
2565           Op1[Part]);
2566       }
2567       break;
2568     }
2569 
2570     case Instruction::ICmp:
2571     case Instruction::FCmp: {
2572       // Widen compares. Generate vector compares.
2573       bool FCmp = (it->getOpcode() == Instruction::FCmp);
2574       CmpInst *Cmp = dyn_cast<CmpInst>(it);
2575       setDebugLocFromInst(Builder, it);
2576       VectorParts &A = getVectorValue(it->getOperand(0));
2577       VectorParts &B = getVectorValue(it->getOperand(1));
2578       for (unsigned Part = 0; Part < UF; ++Part) {
2579         Value *C = 0;
2580         if (FCmp)
2581           C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2582         else
2583           C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2584         Entry[Part] = C;
2585       }
2586       break;
2587     }
2588 
2589     case Instruction::Store:
2590     case Instruction::Load:
2591         vectorizeMemoryInstruction(it, Legal);
2592         break;
2593     case Instruction::ZExt:
2594     case Instruction::SExt:
2595     case Instruction::FPToUI:
2596     case Instruction::FPToSI:
2597     case Instruction::FPExt:
2598     case Instruction::PtrToInt:
2599     case Instruction::IntToPtr:
2600     case Instruction::SIToFP:
2601     case Instruction::UIToFP:
2602     case Instruction::Trunc:
2603     case Instruction::FPTrunc:
2604     case Instruction::BitCast: {
2605       CastInst *CI = dyn_cast<CastInst>(it);
2606       setDebugLocFromInst(Builder, it);
2607       /// Optimize the special case where the source is the induction
2608       /// variable. Notice that we can only optimize the 'trunc' case
2609       /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2610       /// c. other casts depend on pointer size.
2611       if (CI->getOperand(0) == OldInduction &&
2612           it->getOpcode() == Instruction::Trunc) {
2613         Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2614                                                CI->getType());
2615         Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2616         for (unsigned Part = 0; Part < UF; ++Part)
2617           Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2618         break;
2619       }
2620       /// Vectorize casts.
2621       Type *DestTy = (VF == 1) ? CI->getType() :
2622                                  VectorType::get(CI->getType(), VF);
2623 
2624       VectorParts &A = getVectorValue(it->getOperand(0));
2625       for (unsigned Part = 0; Part < UF; ++Part)
2626         Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2627       break;
2628     }
2629 
2630     case Instruction::Call: {
2631       // Ignore dbg intrinsics.
2632       if (isa<DbgInfoIntrinsic>(it))
2633         break;
2634       setDebugLocFromInst(Builder, it);
2635 
2636       Module *M = BB->getParent()->getParent();
2637       CallInst *CI = cast<CallInst>(it);
2638       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2639       assert(ID && "Not an intrinsic call!");
2640       switch (ID) {
2641       case Intrinsic::lifetime_end:
2642       case Intrinsic::lifetime_start:
2643         scalarizeInstruction(it);
2644         break;
2645       default:
2646         for (unsigned Part = 0; Part < UF; ++Part) {
2647           SmallVector<Value *, 4> Args;
2648           for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2649             VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2650             Args.push_back(Arg[Part]);
2651           }
2652           Type *Tys[] = {CI->getType()};
2653           if (VF > 1)
2654             Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
2655 
2656           Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2657           Entry[Part] = Builder.CreateCall(F, Args);
2658         }
2659         break;
2660       }
2661       break;
2662     }
2663 
2664     default:
2665       // All other instructions are unsupported. Scalarize them.
2666       scalarizeInstruction(it);
2667       break;
2668     }// end of switch.
2669   }// end of for_each instr.
2670 }
2671 
2672 void InnerLoopVectorizer::updateAnalysis() {
2673   // Forget the original basic block.
2674   SE->forgetLoop(OrigLoop);
2675 
2676   // Update the dominator tree information.
2677   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2678          "Entry does not dominate exit.");
2679 
2680   for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2681     DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2682   DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2683   DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2684   DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2685   DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2686   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2687   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2688 
2689   DEBUG(DT->verifyAnalysis());
2690 }
2691 
2692 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2693   if (!EnableIfConversion)
2694     return false;
2695 
2696   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2697 
2698   // A list of pointers that we can safely read and write to.
2699   SmallPtrSet<Value *, 8> SafePointes;
2700 
2701   // Collect safe addresses.
2702   for (Loop::block_iterator BI = TheLoop->block_begin(),
2703          BE = TheLoop->block_end(); BI != BE; ++BI) {
2704     BasicBlock *BB = *BI;
2705 
2706     if (blockNeedsPredication(BB))
2707       continue;
2708 
2709     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2710       if (LoadInst *LI = dyn_cast<LoadInst>(I))
2711         SafePointes.insert(LI->getPointerOperand());
2712       else if (StoreInst *SI = dyn_cast<StoreInst>(I))
2713         SafePointes.insert(SI->getPointerOperand());
2714     }
2715   }
2716 
2717   // Collect the blocks that need predication.
2718   for (Loop::block_iterator BI = TheLoop->block_begin(),
2719          BE = TheLoop->block_end(); BI != BE; ++BI) {
2720     BasicBlock *BB = *BI;
2721 
2722     // We don't support switch statements inside loops.
2723     if (!isa<BranchInst>(BB->getTerminator()))
2724       return false;
2725 
2726     // We must be able to predicate all blocks that need to be predicated.
2727     if (blockNeedsPredication(BB) && !blockCanBePredicated(BB, SafePointes))
2728       return false;
2729   }
2730 
2731   // We can if-convert this loop.
2732   return true;
2733 }
2734 
2735 bool LoopVectorizationLegality::canVectorize() {
2736   // We must have a loop in canonical form. Loops with indirectbr in them cannot
2737   // be canonicalized.
2738   if (!TheLoop->getLoopPreheader())
2739     return false;
2740 
2741   // We can only vectorize innermost loops.
2742   if (TheLoop->getSubLoopsVector().size())
2743     return false;
2744 
2745   // We must have a single backedge.
2746   if (TheLoop->getNumBackEdges() != 1)
2747     return false;
2748 
2749   // We must have a single exiting block.
2750   if (!TheLoop->getExitingBlock())
2751     return false;
2752 
2753   // We need to have a loop header.
2754   DEBUG(dbgs() << "LV: Found a loop: " <<
2755         TheLoop->getHeader()->getName() << '\n');
2756 
2757   // Check if we can if-convert non single-bb loops.
2758   unsigned NumBlocks = TheLoop->getNumBlocks();
2759   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2760     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2761     return false;
2762   }
2763 
2764   // ScalarEvolution needs to be able to find the exit count.
2765   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
2766   if (ExitCount == SE->getCouldNotCompute()) {
2767     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2768     return false;
2769   }
2770 
2771   // Do not loop-vectorize loops with a tiny trip count.
2772   BasicBlock *Latch = TheLoop->getLoopLatch();
2773   unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2774   if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2775     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2776           "This loop is not worth vectorizing.\n");
2777     return false;
2778   }
2779 
2780   // Check if we can vectorize the instructions and CFG in this loop.
2781   if (!canVectorizeInstrs()) {
2782     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2783     return false;
2784   }
2785 
2786   // Go over each instruction and look at memory deps.
2787   if (!canVectorizeMemory()) {
2788     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2789     return false;
2790   }
2791 
2792   // Collect all of the variables that remain uniform after vectorization.
2793   collectLoopUniforms();
2794 
2795   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2796         (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2797         <<"!\n");
2798 
2799   // Okay! We can vectorize. At this point we don't have any other mem analysis
2800   // which may limit our maximum vectorization factor, so just return true with
2801   // no restrictions.
2802   return true;
2803 }
2804 
2805 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
2806   if (Ty->isPointerTy())
2807     return DL.getIntPtrType(Ty);
2808 
2809   return Ty;
2810 }
2811 
2812 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
2813   Ty0 = convertPointerToIntegerType(DL, Ty0);
2814   Ty1 = convertPointerToIntegerType(DL, Ty1);
2815   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
2816     return Ty0;
2817   return Ty1;
2818 }
2819 
2820 /// \brief Check that the instruction has outside loop users and is not an
2821 /// identified reduction variable.
2822 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
2823                                SmallPtrSet<Value *, 4> &Reductions) {
2824   // Reduction instructions are allowed to have exit users. All other
2825   // instructions must not have external users.
2826   if (!Reductions.count(Inst))
2827     //Check that all of the users of the loop are inside the BB.
2828     for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
2829          I != E; ++I) {
2830       Instruction *U = cast<Instruction>(*I);
2831       // This user may be a reduction exit value.
2832       if (!TheLoop->contains(U)) {
2833         DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n');
2834         return true;
2835       }
2836     }
2837   return false;
2838 }
2839 
2840 bool LoopVectorizationLegality::canVectorizeInstrs() {
2841   BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2842   BasicBlock *Header = TheLoop->getHeader();
2843 
2844   // Look for the attribute signaling the absence of NaNs.
2845   Function &F = *Header->getParent();
2846   if (F.hasFnAttribute("no-nans-fp-math"))
2847     HasFunNoNaNAttr = F.getAttributes().getAttribute(
2848       AttributeSet::FunctionIndex,
2849       "no-nans-fp-math").getValueAsString() == "true";
2850 
2851   // For each block in the loop.
2852   for (Loop::block_iterator bb = TheLoop->block_begin(),
2853        be = TheLoop->block_end(); bb != be; ++bb) {
2854 
2855     // Scan the instructions in the block and look for hazards.
2856     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2857          ++it) {
2858 
2859       if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2860         Type *PhiTy = Phi->getType();
2861         // Check that this PHI type is allowed.
2862         if (!PhiTy->isIntegerTy() &&
2863             !PhiTy->isFloatingPointTy() &&
2864             !PhiTy->isPointerTy()) {
2865           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2866           return false;
2867         }
2868 
2869         // If this PHINode is not in the header block, then we know that we
2870         // can convert it to select during if-conversion. No need to check if
2871         // the PHIs in this block are induction or reduction variables.
2872         if (*bb != Header) {
2873           // Check that this instruction has no outside users or is an
2874           // identified reduction value with an outside user.
2875           if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
2876             continue;
2877           return false;
2878         }
2879 
2880         // We only allow if-converted PHIs with more than two incoming values.
2881         if (Phi->getNumIncomingValues() != 2) {
2882           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2883           return false;
2884         }
2885 
2886         // This is the value coming from the preheader.
2887         Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2888         // Check if this is an induction variable.
2889         InductionKind IK = isInductionVariable(Phi);
2890 
2891         if (IK_NoInduction != IK) {
2892           // Get the widest type.
2893           if (!WidestIndTy)
2894             WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
2895           else
2896             WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
2897 
2898           // Int inductions are special because we only allow one IV.
2899           if (IK == IK_IntInduction) {
2900             // Use the phi node with the widest type as induction. Use the last
2901             // one if there are multiple (no good reason for doing this other
2902             // than it is expedient).
2903             if (!Induction || PhiTy == WidestIndTy)
2904               Induction = Phi;
2905           }
2906 
2907           DEBUG(dbgs() << "LV: Found an induction variable.\n");
2908           Inductions[Phi] = InductionInfo(StartValue, IK);
2909 
2910           // Until we explicitly handle the case of an induction variable with
2911           // an outside loop user we have to give up vectorizing this loop.
2912           if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
2913             return false;
2914 
2915           continue;
2916         }
2917 
2918         if (AddReductionVar(Phi, RK_IntegerAdd)) {
2919           DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
2920           continue;
2921         }
2922         if (AddReductionVar(Phi, RK_IntegerMult)) {
2923           DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
2924           continue;
2925         }
2926         if (AddReductionVar(Phi, RK_IntegerOr)) {
2927           DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
2928           continue;
2929         }
2930         if (AddReductionVar(Phi, RK_IntegerAnd)) {
2931           DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
2932           continue;
2933         }
2934         if (AddReductionVar(Phi, RK_IntegerXor)) {
2935           DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
2936           continue;
2937         }
2938         if (AddReductionVar(Phi, RK_IntegerMinMax)) {
2939           DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
2940           continue;
2941         }
2942         if (AddReductionVar(Phi, RK_FloatMult)) {
2943           DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
2944           continue;
2945         }
2946         if (AddReductionVar(Phi, RK_FloatAdd)) {
2947           DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
2948           continue;
2949         }
2950         if (AddReductionVar(Phi, RK_FloatMinMax)) {
2951           DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
2952                 "\n");
2953           continue;
2954         }
2955 
2956         DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
2957         return false;
2958       }// end of PHI handling
2959 
2960       // We still don't handle functions. However, we can ignore dbg intrinsic
2961       // calls and we do handle certain intrinsic and libm functions.
2962       CallInst *CI = dyn_cast<CallInst>(it);
2963       if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
2964         DEBUG(dbgs() << "LV: Found a call site.\n");
2965         return false;
2966       }
2967 
2968       // Check that the instruction return type is vectorizable.
2969       // Also, we can't vectorize extractelement instructions.
2970       if ((!VectorType::isValidElementType(it->getType()) &&
2971            !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
2972         DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
2973         return false;
2974       }
2975 
2976       // Check that the stored type is vectorizable.
2977       if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
2978         Type *T = ST->getValueOperand()->getType();
2979         if (!VectorType::isValidElementType(T))
2980           return false;
2981       }
2982 
2983       // Reduction instructions are allowed to have exit users.
2984       // All other instructions must not have external users.
2985       if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
2986         return false;
2987 
2988     } // next instr.
2989 
2990   }
2991 
2992   if (!Induction) {
2993     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
2994     if (Inductions.empty())
2995       return false;
2996   }
2997 
2998   return true;
2999 }
3000 
3001 void LoopVectorizationLegality::collectLoopUniforms() {
3002   // We now know that the loop is vectorizable!
3003   // Collect variables that will remain uniform after vectorization.
3004   std::vector<Value*> Worklist;
3005   BasicBlock *Latch = TheLoop->getLoopLatch();
3006 
3007   // Start with the conditional branch and walk up the block.
3008   Worklist.push_back(Latch->getTerminator()->getOperand(0));
3009 
3010   while (Worklist.size()) {
3011     Instruction *I = dyn_cast<Instruction>(Worklist.back());
3012     Worklist.pop_back();
3013 
3014     // Look at instructions inside this loop.
3015     // Stop when reaching PHI nodes.
3016     // TODO: we need to follow values all over the loop, not only in this block.
3017     if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
3018       continue;
3019 
3020     // This is a known uniform.
3021     Uniforms.insert(I);
3022 
3023     // Insert all operands.
3024     Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3025   }
3026 }
3027 
3028 namespace {
3029 /// \brief Analyses memory accesses in a loop.
3030 ///
3031 /// Checks whether run time pointer checks are needed and builds sets for data
3032 /// dependence checking.
3033 class AccessAnalysis {
3034 public:
3035   /// \brief Read or write access location.
3036   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3037   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3038 
3039   /// \brief Set of potential dependent memory accesses.
3040   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
3041 
3042   AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
3043     DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
3044     AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
3045 
3046   /// \brief Register a load  and whether it is only read from.
3047   void addLoad(Value *Ptr, bool IsReadOnly) {
3048     Accesses.insert(MemAccessInfo(Ptr, false));
3049     if (IsReadOnly)
3050       ReadOnlyPtr.insert(Ptr);
3051   }
3052 
3053   /// \brief Register a store.
3054   void addStore(Value *Ptr) {
3055     Accesses.insert(MemAccessInfo(Ptr, true));
3056   }
3057 
3058   /// \brief Check whether we can check the pointers at runtime for
3059   /// non-intersection.
3060   bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3061                        unsigned &NumComparisons, ScalarEvolution *SE,
3062                        Loop *TheLoop);
3063 
3064   /// \brief Goes over all memory accesses, checks whether a RT check is needed
3065   /// and builds sets of dependent accesses.
3066   void buildDependenceSets() {
3067     // Process read-write pointers first.
3068     processMemAccesses(false);
3069     // Next, process read pointers.
3070     processMemAccesses(true);
3071   }
3072 
3073   bool isRTCheckNeeded() { return IsRTCheckNeeded; }
3074 
3075   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
3076 
3077   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
3078 
3079 private:
3080   typedef SetVector<MemAccessInfo> PtrAccessSet;
3081   typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
3082 
3083   /// \brief Go over all memory access or only the deferred ones if
3084   /// \p UseDeferred is true and check whether runtime pointer checks are needed
3085   /// and build sets of dependency check candidates.
3086   void processMemAccesses(bool UseDeferred);
3087 
3088   /// Set of all accesses.
3089   PtrAccessSet Accesses;
3090 
3091   /// Set of access to check after all writes have been processed.
3092   PtrAccessSet DeferredAccesses;
3093 
3094   /// Map of pointers to last access encountered.
3095   UnderlyingObjToAccessMap ObjToLastAccess;
3096 
3097   /// Set of accesses that need a further dependence check.
3098   MemAccessInfoSet CheckDeps;
3099 
3100   /// Set of pointers that are read only.
3101   SmallPtrSet<Value*, 16> ReadOnlyPtr;
3102 
3103   /// Set of underlying objects already written to.
3104   SmallPtrSet<Value*, 16> WriteObjects;
3105 
3106   DataLayout *DL;
3107 
3108   /// Sets of potentially dependent accesses - members of one set share an
3109   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
3110   /// dependence check.
3111   DepCandidates &DepCands;
3112 
3113   bool AreAllWritesIdentified;
3114   bool AreAllReadsIdentified;
3115   bool IsRTCheckNeeded;
3116 };
3117 
3118 } // end anonymous namespace
3119 
3120 /// \brief Check whether a pointer can participate in a runtime bounds check.
3121 static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
3122   const SCEV *PtrScev = SE->getSCEV(Ptr);
3123   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3124   if (!AR)
3125     return false;
3126 
3127   return AR->isAffine();
3128 }
3129 
3130 bool AccessAnalysis::canCheckPtrAtRT(
3131                        LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3132                         unsigned &NumComparisons, ScalarEvolution *SE,
3133                         Loop *TheLoop) {
3134   // Find pointers with computable bounds. We are going to use this information
3135   // to place a runtime bound check.
3136   unsigned NumReadPtrChecks = 0;
3137   unsigned NumWritePtrChecks = 0;
3138   bool CanDoRT = true;
3139 
3140   bool IsDepCheckNeeded = isDependencyCheckNeeded();
3141   // We assign consecutive id to access from different dependence sets.
3142   // Accesses within the same set don't need a runtime check.
3143   unsigned RunningDepId = 1;
3144   DenseMap<Value *, unsigned> DepSetId;
3145 
3146   for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
3147        AI != AE; ++AI) {
3148     const MemAccessInfo &Access = *AI;
3149     Value *Ptr = Access.getPointer();
3150     bool IsWrite = Access.getInt();
3151 
3152     // Just add write checks if we have both.
3153     if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
3154       continue;
3155 
3156     if (IsWrite)
3157       ++NumWritePtrChecks;
3158     else
3159       ++NumReadPtrChecks;
3160 
3161     if (hasComputableBounds(SE, Ptr)) {
3162       // The id of the dependence set.
3163       unsigned DepId;
3164 
3165       if (IsDepCheckNeeded) {
3166         Value *Leader = DepCands.getLeaderValue(Access).getPointer();
3167         unsigned &LeaderId = DepSetId[Leader];
3168         if (!LeaderId)
3169           LeaderId = RunningDepId++;
3170         DepId = LeaderId;
3171       } else
3172         // Each access has its own dependence set.
3173         DepId = RunningDepId++;
3174 
3175       RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
3176 
3177       DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
3178     } else {
3179       CanDoRT = false;
3180     }
3181   }
3182 
3183   if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
3184     NumComparisons = 0; // Only one dependence set.
3185   else {
3186     NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
3187                                            NumWritePtrChecks - 1));
3188   }
3189 
3190   // If the pointers that we would use for the bounds comparison have different
3191   // address spaces, assume the values aren't directly comparable, so we can't
3192   // use them for the runtime check. We also have to assume they could
3193   // overlap. In the future there should be metadata for whether address spaces
3194   // are disjoint.
3195   unsigned NumPointers = RtCheck.Pointers.size();
3196   for (unsigned i = 0; i < NumPointers; ++i) {
3197     for (unsigned j = i + 1; j < NumPointers; ++j) {
3198       // Only need to check pointers between two different dependency sets.
3199       if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
3200        continue;
3201 
3202       Value *PtrI = RtCheck.Pointers[i];
3203       Value *PtrJ = RtCheck.Pointers[j];
3204 
3205       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
3206       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
3207       if (ASi != ASj) {
3208         DEBUG(dbgs() << "LV: Runtime check would require comparison between"
3209                        " different address spaces\n");
3210         return false;
3211       }
3212     }
3213   }
3214 
3215   return CanDoRT;
3216 }
3217 
3218 static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
3219   return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
3220 }
3221 
3222 void AccessAnalysis::processMemAccesses(bool UseDeferred) {
3223   // We process the set twice: first we process read-write pointers, last we
3224   // process read-only pointers. This allows us to skip dependence tests for
3225   // read-only pointers.
3226 
3227   PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
3228   for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
3229     const MemAccessInfo &Access = *AI;
3230     Value *Ptr = Access.getPointer();
3231     bool IsWrite = Access.getInt();
3232 
3233     DepCands.insert(Access);
3234 
3235     // Memorize read-only pointers for later processing and skip them in the
3236     // first round (they need to be checked after we have seen all write
3237     // pointers). Note: we also mark pointer that are not consecutive as
3238     // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
3239     // second check for "!IsWrite".
3240     bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
3241     if (!UseDeferred && IsReadOnlyPtr) {
3242       DeferredAccesses.insert(Access);
3243       continue;
3244     }
3245 
3246     bool NeedDepCheck = false;
3247     // Check whether there is the possiblity of dependency because of underlying
3248     // objects being the same.
3249     typedef SmallVector<Value*, 16> ValueVector;
3250     ValueVector TempObjects;
3251     GetUnderlyingObjects(Ptr, TempObjects, DL);
3252     for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
3253          UI != UE; ++UI) {
3254       Value *UnderlyingObj = *UI;
3255 
3256       // If this is a write then it needs to be an identified object.  If this a
3257       // read and all writes (so far) are identified function scope objects we
3258       // don't need an identified underlying object but only an Argument (the
3259       // next write is going to invalidate this assumption if it is
3260       // unidentified).
3261       // This is a micro-optimization for the case where all writes are
3262       // identified and we have one argument pointer.
3263       // Otherwise, we do need a runtime check.
3264       if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
3265           (!IsWrite && (!AreAllWritesIdentified ||
3266                         !isa<Argument>(UnderlyingObj)) &&
3267            !isIdentifiedObject(UnderlyingObj))) {
3268         DEBUG(dbgs() << "LV: Found an unidentified " <<
3269               (IsWrite ?  "write" : "read" ) << " ptr: " << *UnderlyingObj <<
3270               "\n");
3271         IsRTCheckNeeded = (IsRTCheckNeeded ||
3272                            !isIdentifiedObject(UnderlyingObj) ||
3273                            !AreAllReadsIdentified);
3274 
3275         if (IsWrite)
3276           AreAllWritesIdentified = false;
3277         if (!IsWrite)
3278           AreAllReadsIdentified = false;
3279       }
3280 
3281       // If this is a write - check other reads and writes for conflicts.  If
3282       // this is a read only check other writes for conflicts (but only if there
3283       // is no other write to the ptr - this is an optimization to catch "a[i] =
3284       // a[i] + " without having to do a dependence check).
3285       if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
3286         NeedDepCheck = true;
3287 
3288       if (IsWrite)
3289         WriteObjects.insert(UnderlyingObj);
3290 
3291       // Create sets of pointers connected by shared underlying objects.
3292       UnderlyingObjToAccessMap::iterator Prev =
3293         ObjToLastAccess.find(UnderlyingObj);
3294       if (Prev != ObjToLastAccess.end())
3295         DepCands.unionSets(Access, Prev->second);
3296 
3297       ObjToLastAccess[UnderlyingObj] = Access;
3298     }
3299 
3300     if (NeedDepCheck)
3301       CheckDeps.insert(Access);
3302   }
3303 }
3304 
3305 namespace {
3306 /// \brief Checks memory dependences among accesses to the same underlying
3307 /// object to determine whether there vectorization is legal or not (and at
3308 /// which vectorization factor).
3309 ///
3310 /// This class works under the assumption that we already checked that memory
3311 /// locations with different underlying pointers are "must-not alias".
3312 /// We use the ScalarEvolution framework to symbolically evalutate access
3313 /// functions pairs. Since we currently don't restructure the loop we can rely
3314 /// on the program order of memory accesses to determine their safety.
3315 /// At the moment we will only deem accesses as safe for:
3316 ///  * A negative constant distance assuming program order.
3317 ///
3318 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
3319 ///            a[i] = tmp;                y = a[i];
3320 ///
3321 ///   The latter case is safe because later checks guarantuee that there can't
3322 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
3323 ///   the same variable: a header phi can only be an induction or a reduction, a
3324 ///   reduction can't have a memory sink, an induction can't have a memory
3325 ///   source). This is important and must not be violated (or we have to
3326 ///   resort to checking for cycles through memory).
3327 ///
3328 ///  * A positive constant distance assuming program order that is bigger
3329 ///    than the biggest memory access.
3330 ///
3331 ///     tmp = a[i]        OR              b[i] = x
3332 ///     a[i+2] = tmp                      y = b[i+2];
3333 ///
3334 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
3335 ///
3336 ///  * Zero distances and all accesses have the same size.
3337 ///
3338 class MemoryDepChecker {
3339 public:
3340   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3341   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3342 
3343   MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) :
3344     SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0) {}
3345 
3346   /// \brief Register the location (instructions are given increasing numbers)
3347   /// of a write access.
3348   void addAccess(StoreInst *SI) {
3349     Value *Ptr = SI->getPointerOperand();
3350     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
3351     InstMap.push_back(SI);
3352     ++AccessIdx;
3353   }
3354 
3355   /// \brief Register the location (instructions are given increasing numbers)
3356   /// of a write access.
3357   void addAccess(LoadInst *LI) {
3358     Value *Ptr = LI->getPointerOperand();
3359     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
3360     InstMap.push_back(LI);
3361     ++AccessIdx;
3362   }
3363 
3364   /// \brief Check whether the dependencies between the accesses are safe.
3365   ///
3366   /// Only checks sets with elements in \p CheckDeps.
3367   bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3368                    MemAccessInfoSet &CheckDeps);
3369 
3370   /// \brief The maximum number of bytes of a vector register we can vectorize
3371   /// the accesses safely with.
3372   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
3373 
3374 private:
3375   ScalarEvolution *SE;
3376   DataLayout *DL;
3377   const Loop *InnermostLoop;
3378 
3379   /// \brief Maps access locations (ptr, read/write) to program order.
3380   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
3381 
3382   /// \brief Memory access instructions in program order.
3383   SmallVector<Instruction *, 16> InstMap;
3384 
3385   /// \brief The program order index to be used for the next instruction.
3386   unsigned AccessIdx;
3387 
3388   // We can access this many bytes in parallel safely.
3389   unsigned MaxSafeDepDistBytes;
3390 
3391   /// \brief Check whether there is a plausible dependence between the two
3392   /// accesses.
3393   ///
3394   /// Access \p A must happen before \p B in program order. The two indices
3395   /// identify the index into the program order map.
3396   ///
3397   /// This function checks  whether there is a plausible dependence (or the
3398   /// absence of such can't be proved) between the two accesses. If there is a
3399   /// plausible dependence but the dependence distance is bigger than one
3400   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
3401   /// distance is smaller than any other distance encountered so far).
3402   /// Otherwise, this function returns true signaling a possible dependence.
3403   bool isDependent(const MemAccessInfo &A, unsigned AIdx,
3404                    const MemAccessInfo &B, unsigned BIdx);
3405 
3406   /// \brief Check whether the data dependence could prevent store-load
3407   /// forwarding.
3408   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
3409 };
3410 
3411 } // end anonymous namespace
3412 
3413 static bool isInBoundsGep(Value *Ptr) {
3414   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
3415     return GEP->isInBounds();
3416   return false;
3417 }
3418 
3419 /// \brief Check whether the access through \p Ptr has a constant stride.
3420 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3421                         const Loop *Lp) {
3422   const Type *Ty = Ptr->getType();
3423   assert(Ty->isPointerTy() && "Unexpected non ptr");
3424 
3425   // Make sure that the pointer does not point to aggregate types.
3426   const PointerType *PtrTy = cast<PointerType>(Ty);
3427   if (PtrTy->getElementType()->isAggregateType()) {
3428     DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
3429           "\n");
3430     return 0;
3431   }
3432 
3433   const SCEV *PtrScev = SE->getSCEV(Ptr);
3434   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3435   if (!AR) {
3436     DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
3437           << *Ptr << " SCEV: " << *PtrScev << "\n");
3438     return 0;
3439   }
3440 
3441   // The accesss function must stride over the innermost loop.
3442   if (Lp != AR->getLoop()) {
3443     DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
3444           *Ptr << " SCEV: " << *PtrScev << "\n");
3445   }
3446 
3447   // The address calculation must not wrap. Otherwise, a dependence could be
3448   // inverted.
3449   // An inbounds getelementptr that is a AddRec with a unit stride
3450   // cannot wrap per definition. The unit stride requirement is checked later.
3451   // An getelementptr without an inbounds attribute and unit stride would have
3452   // to access the pointer value "0" which is undefined behavior in address
3453   // space 0, therefore we can also vectorize this case.
3454   bool IsInBoundsGEP = isInBoundsGep(Ptr);
3455   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
3456   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
3457   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
3458     DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
3459           << *Ptr << " SCEV: " << *PtrScev << "\n");
3460     return 0;
3461   }
3462 
3463   // Check the step is constant.
3464   const SCEV *Step = AR->getStepRecurrence(*SE);
3465 
3466   // Calculate the pointer stride and check if it is consecutive.
3467   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3468   if (!C) {
3469     DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
3470           " SCEV: " << *PtrScev << "\n");
3471     return 0;
3472   }
3473 
3474   int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
3475   const APInt &APStepVal = C->getValue()->getValue();
3476 
3477   // Huge step value - give up.
3478   if (APStepVal.getBitWidth() > 64)
3479     return 0;
3480 
3481   int64_t StepVal = APStepVal.getSExtValue();
3482 
3483   // Strided access.
3484   int64_t Stride = StepVal / Size;
3485   int64_t Rem = StepVal % Size;
3486   if (Rem)
3487     return 0;
3488 
3489   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
3490   // know we can't "wrap around the address space". In case of address space
3491   // zero we know that this won't happen without triggering undefined behavior.
3492   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
3493       Stride != 1 && Stride != -1)
3494     return 0;
3495 
3496   return Stride;
3497 }
3498 
3499 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
3500                                                     unsigned TypeByteSize) {
3501   // If loads occur at a distance that is not a multiple of a feasible vector
3502   // factor store-load forwarding does not take place.
3503   // Positive dependences might cause troubles because vectorizing them might
3504   // prevent store-load forwarding making vectorized code run a lot slower.
3505   //   a[i] = a[i-3] ^ a[i-8];
3506   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
3507   //   hence on your typical architecture store-load forwarding does not take
3508   //   place. Vectorizing in such cases does not make sense.
3509   // Store-load forwarding distance.
3510   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
3511   // Maximum vector factor.
3512   unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
3513   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
3514     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
3515 
3516   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
3517        vf *= 2) {
3518     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
3519       MaxVFWithoutSLForwardIssues = (vf >>=1);
3520       break;
3521     }
3522   }
3523 
3524   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
3525     DEBUG(dbgs() << "LV: Distance " << Distance <<
3526           " that could cause a store-load forwarding conflict\n");
3527     return true;
3528   }
3529 
3530   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
3531       MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
3532     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
3533   return false;
3534 }
3535 
3536 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
3537                                    const MemAccessInfo &B, unsigned BIdx) {
3538   assert (AIdx < BIdx && "Must pass arguments in program order");
3539 
3540   Value *APtr = A.getPointer();
3541   Value *BPtr = B.getPointer();
3542   bool AIsWrite = A.getInt();
3543   bool BIsWrite = B.getInt();
3544 
3545   // Two reads are independent.
3546   if (!AIsWrite && !BIsWrite)
3547     return false;
3548 
3549   const SCEV *AScev = SE->getSCEV(APtr);
3550   const SCEV *BScev = SE->getSCEV(BPtr);
3551 
3552   int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
3553   int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
3554 
3555   const SCEV *Src = AScev;
3556   const SCEV *Sink = BScev;
3557 
3558   // If the induction step is negative we have to invert source and sink of the
3559   // dependence.
3560   if (StrideAPtr < 0) {
3561     //Src = BScev;
3562     //Sink = AScev;
3563     std::swap(APtr, BPtr);
3564     std::swap(Src, Sink);
3565     std::swap(AIsWrite, BIsWrite);
3566     std::swap(AIdx, BIdx);
3567     std::swap(StrideAPtr, StrideBPtr);
3568   }
3569 
3570   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
3571 
3572   DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
3573         << "(Induction step: " << StrideAPtr <<  ")\n");
3574   DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
3575         << *InstMap[BIdx] << ": " << *Dist << "\n");
3576 
3577   // Need consecutive accesses. We don't want to vectorize
3578   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
3579   // the address space.
3580   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
3581     DEBUG(dbgs() << "Non-consecutive pointer access\n");
3582     return true;
3583   }
3584 
3585   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
3586   if (!C) {
3587     DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
3588     return true;
3589   }
3590 
3591   Type *ATy = APtr->getType()->getPointerElementType();
3592   Type *BTy = BPtr->getType()->getPointerElementType();
3593   unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
3594 
3595   // Negative distances are not plausible dependencies.
3596   const APInt &Val = C->getValue()->getValue();
3597   if (Val.isNegative()) {
3598     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
3599     if (IsTrueDataDependence &&
3600         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
3601          ATy != BTy))
3602       return true;
3603 
3604     DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
3605     return false;
3606   }
3607 
3608   // Write to the same location with the same size.
3609   // Could be improved to assert type sizes are the same (i32 == float, etc).
3610   if (Val == 0) {
3611     if (ATy == BTy)
3612       return false;
3613     DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
3614     return true;
3615   }
3616 
3617   assert(Val.isStrictlyPositive() && "Expect a positive value");
3618 
3619   // Positive distance bigger than max vectorization factor.
3620   if (ATy != BTy) {
3621     DEBUG(dbgs() <<
3622           "LV: ReadWrite-Write positive dependency with different types\n");
3623     return false;
3624   }
3625 
3626   unsigned Distance = (unsigned) Val.getZExtValue();
3627 
3628   // Bail out early if passed-in parameters make vectorization not feasible.
3629   unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
3630   unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
3631 
3632   // The distance must be bigger than the size needed for a vectorized version
3633   // of the operation and the size of the vectorized operation must not be
3634   // bigger than the currrent maximum size.
3635   if (Distance < 2*TypeByteSize ||
3636       2*TypeByteSize > MaxSafeDepDistBytes ||
3637       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
3638     DEBUG(dbgs() << "LV: Failure because of Positive distance "
3639         << Val.getSExtValue() << '\n');
3640     return true;
3641   }
3642 
3643   MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
3644     Distance : MaxSafeDepDistBytes;
3645 
3646   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
3647   if (IsTrueDataDependence &&
3648       couldPreventStoreLoadForward(Distance, TypeByteSize))
3649      return true;
3650 
3651   DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
3652         " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
3653 
3654   return false;
3655 }
3656 
3657 bool
3658 MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3659                               MemAccessInfoSet &CheckDeps) {
3660 
3661   MaxSafeDepDistBytes = -1U;
3662   while (!CheckDeps.empty()) {
3663     MemAccessInfo CurAccess = *CheckDeps.begin();
3664 
3665     // Get the relevant memory access set.
3666     EquivalenceClasses<MemAccessInfo>::iterator I =
3667       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
3668 
3669     // Check accesses within this set.
3670     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
3671     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
3672 
3673     // Check every access pair.
3674     while (AI != AE) {
3675       CheckDeps.erase(*AI);
3676       EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI);
3677       while (OI != AE) {
3678         // Check every accessing instruction pair in program order.
3679         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
3680              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
3681           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
3682                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
3683             if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
3684               return false;
3685             if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
3686               return false;
3687           }
3688         ++OI;
3689       }
3690       AI++;
3691     }
3692   }
3693   return true;
3694 }
3695 
3696 bool LoopVectorizationLegality::canVectorizeMemory() {
3697 
3698   typedef SmallVector<Value*, 16> ValueVector;
3699   typedef SmallPtrSet<Value*, 16> ValueSet;
3700 
3701   // Holds the Load and Store *instructions*.
3702   ValueVector Loads;
3703   ValueVector Stores;
3704 
3705   // Holds all the different accesses in the loop.
3706   unsigned NumReads = 0;
3707   unsigned NumReadWrites = 0;
3708 
3709   PtrRtCheck.Pointers.clear();
3710   PtrRtCheck.Need = false;
3711 
3712   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
3713   MemoryDepChecker DepChecker(SE, DL, TheLoop);
3714 
3715   // For each block.
3716   for (Loop::block_iterator bb = TheLoop->block_begin(),
3717        be = TheLoop->block_end(); bb != be; ++bb) {
3718 
3719     // Scan the BB and collect legal loads and stores.
3720     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3721          ++it) {
3722 
3723       // If this is a load, save it. If this instruction can read from memory
3724       // but is not a load, then we quit. Notice that we don't handle function
3725       // calls that read or write.
3726       if (it->mayReadFromMemory()) {
3727         // Many math library functions read the rounding mode. We will only
3728         // vectorize a loop if it contains known function calls that don't set
3729         // the flag. Therefore, it is safe to ignore this read from memory.
3730         CallInst *Call = dyn_cast<CallInst>(it);
3731         if (Call && getIntrinsicIDForCall(Call, TLI))
3732           continue;
3733 
3734         LoadInst *Ld = dyn_cast<LoadInst>(it);
3735         if (!Ld) return false;
3736         if (!Ld->isSimple() && !IsAnnotatedParallel) {
3737           DEBUG(dbgs() << "LV: Found a non-simple load.\n");
3738           return false;
3739         }
3740         Loads.push_back(Ld);
3741         DepChecker.addAccess(Ld);
3742         continue;
3743       }
3744 
3745       // Save 'store' instructions. Abort if other instructions write to memory.
3746       if (it->mayWriteToMemory()) {
3747         StoreInst *St = dyn_cast<StoreInst>(it);
3748         if (!St) return false;
3749         if (!St->isSimple() && !IsAnnotatedParallel) {
3750           DEBUG(dbgs() << "LV: Found a non-simple store.\n");
3751           return false;
3752         }
3753         Stores.push_back(St);
3754         DepChecker.addAccess(St);
3755       }
3756     } // Next instr.
3757   } // Next block.
3758 
3759   // Now we have two lists that hold the loads and the stores.
3760   // Next, we find the pointers that they use.
3761 
3762   // Check if we see any stores. If there are no stores, then we don't
3763   // care if the pointers are *restrict*.
3764   if (!Stores.size()) {
3765     DEBUG(dbgs() << "LV: Found a read-only loop!\n");
3766     return true;
3767   }
3768 
3769   AccessAnalysis::DepCandidates DependentAccesses;
3770   AccessAnalysis Accesses(DL, DependentAccesses);
3771 
3772   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
3773   // multiple times on the same object. If the ptr is accessed twice, once
3774   // for read and once for write, it will only appear once (on the write
3775   // list). This is okay, since we are going to check for conflicts between
3776   // writes and between reads and writes, but not between reads and reads.
3777   ValueSet Seen;
3778 
3779   ValueVector::iterator I, IE;
3780   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
3781     StoreInst *ST = cast<StoreInst>(*I);
3782     Value* Ptr = ST->getPointerOperand();
3783 
3784     if (isUniform(Ptr)) {
3785       DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
3786       return false;
3787     }
3788 
3789     // If we did *not* see this pointer before, insert it to  the read-write
3790     // list. At this phase it is only a 'write' list.
3791     if (Seen.insert(Ptr)) {
3792       ++NumReadWrites;
3793       Accesses.addStore(Ptr);
3794     }
3795   }
3796 
3797   if (IsAnnotatedParallel) {
3798     DEBUG(dbgs()
3799           << "LV: A loop annotated parallel, ignore memory dependency "
3800           << "checks.\n");
3801     return true;
3802   }
3803 
3804   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
3805     LoadInst *LD = cast<LoadInst>(*I);
3806     Value* Ptr = LD->getPointerOperand();
3807     // If we did *not* see this pointer before, insert it to the
3808     // read list. If we *did* see it before, then it is already in
3809     // the read-write list. This allows us to vectorize expressions
3810     // such as A[i] += x;  Because the address of A[i] is a read-write
3811     // pointer. This only works if the index of A[i] is consecutive.
3812     // If the address of i is unknown (for example A[B[i]]) then we may
3813     // read a few words, modify, and write a few words, and some of the
3814     // words may be written to the same address.
3815     bool IsReadOnlyPtr = false;
3816     if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
3817       ++NumReads;
3818       IsReadOnlyPtr = true;
3819     }
3820     Accesses.addLoad(Ptr, IsReadOnlyPtr);
3821   }
3822 
3823   // If we write (or read-write) to a single destination and there are no
3824   // other reads in this loop then is it safe to vectorize.
3825   if (NumReadWrites == 1 && NumReads == 0) {
3826     DEBUG(dbgs() << "LV: Found a write-only loop!\n");
3827     return true;
3828   }
3829 
3830   // Build dependence sets and check whether we need a runtime pointer bounds
3831   // check.
3832   Accesses.buildDependenceSets();
3833   bool NeedRTCheck = Accesses.isRTCheckNeeded();
3834 
3835   // Find pointers with computable bounds. We are going to use this information
3836   // to place a runtime bound check.
3837   unsigned NumComparisons = 0;
3838   bool CanDoRT = false;
3839   if (NeedRTCheck)
3840     CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
3841 
3842 
3843   DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
3844         " pointer comparisons.\n");
3845 
3846   // If we only have one set of dependences to check pointers among we don't
3847   // need a runtime check.
3848   if (NumComparisons == 0 && NeedRTCheck)
3849     NeedRTCheck = false;
3850 
3851   // Check that we did not collect too many pointers or found an unsizeable
3852   // pointer.
3853   if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
3854     PtrRtCheck.reset();
3855     CanDoRT = false;
3856   }
3857 
3858   if (CanDoRT) {
3859     DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
3860   }
3861 
3862   if (NeedRTCheck && !CanDoRT) {
3863     DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
3864           "the array bounds.\n");
3865     PtrRtCheck.reset();
3866     return false;
3867   }
3868 
3869   PtrRtCheck.Need = NeedRTCheck;
3870 
3871   bool CanVecMem = true;
3872   if (Accesses.isDependencyCheckNeeded()) {
3873     DEBUG(dbgs() << "LV: Checking memory dependencies\n");
3874     CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
3875                                        Accesses.getDependenciesToCheck());
3876     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
3877   }
3878 
3879   DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
3880         " need a runtime memory check.\n");
3881 
3882   return CanVecMem;
3883 }
3884 
3885 static bool hasMultipleUsesOf(Instruction *I,
3886                               SmallPtrSet<Instruction *, 8> &Insts) {
3887   unsigned NumUses = 0;
3888   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
3889     if (Insts.count(dyn_cast<Instruction>(*Use)))
3890       ++NumUses;
3891     if (NumUses > 1)
3892       return true;
3893   }
3894 
3895   return false;
3896 }
3897 
3898 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
3899   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
3900     if (!Set.count(dyn_cast<Instruction>(*Use)))
3901       return false;
3902   return true;
3903 }
3904 
3905 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
3906                                                 ReductionKind Kind) {
3907   if (Phi->getNumIncomingValues() != 2)
3908     return false;
3909 
3910   // Reduction variables are only found in the loop header block.
3911   if (Phi->getParent() != TheLoop->getHeader())
3912     return false;
3913 
3914   // Obtain the reduction start value from the value that comes from the loop
3915   // preheader.
3916   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
3917 
3918   // ExitInstruction is the single value which is used outside the loop.
3919   // We only allow for a single reduction value to be used outside the loop.
3920   // This includes users of the reduction, variables (which form a cycle
3921   // which ends in the phi node).
3922   Instruction *ExitInstruction = 0;
3923   // Indicates that we found a reduction operation in our scan.
3924   bool FoundReduxOp = false;
3925 
3926   // We start with the PHI node and scan for all of the users of this
3927   // instruction. All users must be instructions that can be used as reduction
3928   // variables (such as ADD). We must have a single out-of-block user. The cycle
3929   // must include the original PHI.
3930   bool FoundStartPHI = false;
3931 
3932   // To recognize min/max patterns formed by a icmp select sequence, we store
3933   // the number of instruction we saw from the recognized min/max pattern,
3934   //  to make sure we only see exactly the two instructions.
3935   unsigned NumCmpSelectPatternInst = 0;
3936   ReductionInstDesc ReduxDesc(false, 0);
3937 
3938   SmallPtrSet<Instruction *, 8> VisitedInsts;
3939   SmallVector<Instruction *, 8> Worklist;
3940   Worklist.push_back(Phi);
3941   VisitedInsts.insert(Phi);
3942 
3943   // A value in the reduction can be used:
3944   //  - By the reduction:
3945   //      - Reduction operation:
3946   //        - One use of reduction value (safe).
3947   //        - Multiple use of reduction value (not safe).
3948   //      - PHI:
3949   //        - All uses of the PHI must be the reduction (safe).
3950   //        - Otherwise, not safe.
3951   //  - By one instruction outside of the loop (safe).
3952   //  - By further instructions outside of the loop (not safe).
3953   //  - By an instruction that is not part of the reduction (not safe).
3954   //    This is either:
3955   //      * An instruction type other than PHI or the reduction operation.
3956   //      * A PHI in the header other than the initial PHI.
3957   while (!Worklist.empty()) {
3958     Instruction *Cur = Worklist.back();
3959     Worklist.pop_back();
3960 
3961     // No Users.
3962     // If the instruction has no users then this is a broken chain and can't be
3963     // a reduction variable.
3964     if (Cur->use_empty())
3965       return false;
3966 
3967     bool IsAPhi = isa<PHINode>(Cur);
3968 
3969     // A header PHI use other than the original PHI.
3970     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
3971       return false;
3972 
3973     // Reductions of instructions such as Div, and Sub is only possible if the
3974     // LHS is the reduction variable.
3975     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
3976         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
3977         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
3978       return false;
3979 
3980     // Any reduction instruction must be of one of the allowed kinds.
3981     ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
3982     if (!ReduxDesc.IsReduction)
3983       return false;
3984 
3985     // A reduction operation must only have one use of the reduction value.
3986     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
3987         hasMultipleUsesOf(Cur, VisitedInsts))
3988       return false;
3989 
3990     // All inputs to a PHI node must be a reduction value.
3991     if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
3992       return false;
3993 
3994     if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
3995                                      isa<SelectInst>(Cur)))
3996       ++NumCmpSelectPatternInst;
3997     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
3998                                    isa<SelectInst>(Cur)))
3999       ++NumCmpSelectPatternInst;
4000 
4001     // Check  whether we found a reduction operator.
4002     FoundReduxOp |= !IsAPhi;
4003 
4004     // Process users of current instruction. Push non PHI nodes after PHI nodes
4005     // onto the stack. This way we are going to have seen all inputs to PHI
4006     // nodes once we get to them.
4007     SmallVector<Instruction *, 8> NonPHIs;
4008     SmallVector<Instruction *, 8> PHIs;
4009     for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
4010          ++UI) {
4011       Instruction *Usr = cast<Instruction>(*UI);
4012 
4013       // Check if we found the exit user.
4014       BasicBlock *Parent = Usr->getParent();
4015       if (!TheLoop->contains(Parent)) {
4016         // Exit if you find multiple outside users or if the header phi node is
4017         // being used. In this case the user uses the value of the previous
4018         // iteration, in which case we would loose "VF-1" iterations of the
4019         // reduction operation if we vectorize.
4020         if (ExitInstruction != 0 || Cur == Phi)
4021           return false;
4022 
4023         // The instruction used by an outside user must be the last instruction
4024         // before we feed back to the reduction phi. Otherwise, we loose VF-1
4025         // operations on the value.
4026         if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
4027          return false;
4028 
4029         ExitInstruction = Cur;
4030         continue;
4031       }
4032 
4033       // Process instructions only once (termination).
4034       if (VisitedInsts.insert(Usr)) {
4035         if (isa<PHINode>(Usr))
4036           PHIs.push_back(Usr);
4037         else
4038           NonPHIs.push_back(Usr);
4039       }
4040       // Remember that we completed the cycle.
4041       if (Usr == Phi)
4042         FoundStartPHI = true;
4043     }
4044     Worklist.append(PHIs.begin(), PHIs.end());
4045     Worklist.append(NonPHIs.begin(), NonPHIs.end());
4046   }
4047 
4048   // This means we have seen one but not the other instruction of the
4049   // pattern or more than just a select and cmp.
4050   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
4051       NumCmpSelectPatternInst != 2)
4052     return false;
4053 
4054   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
4055     return false;
4056 
4057   // We found a reduction var if we have reached the original phi node and we
4058   // only have a single instruction with out-of-loop users.
4059 
4060   // This instruction is allowed to have out-of-loop users.
4061   AllowedExit.insert(ExitInstruction);
4062 
4063   // Save the description of this reduction variable.
4064   ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
4065                          ReduxDesc.MinMaxKind);
4066   Reductions[Phi] = RD;
4067   // We've ended the cycle. This is a reduction variable if we have an
4068   // outside user and it has a binary op.
4069 
4070   return true;
4071 }
4072 
4073 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
4074 /// pattern corresponding to a min(X, Y) or max(X, Y).
4075 LoopVectorizationLegality::ReductionInstDesc
4076 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
4077                                                     ReductionInstDesc &Prev) {
4078 
4079   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
4080          "Expect a select instruction");
4081   Instruction *Cmp = 0;
4082   SelectInst *Select = 0;
4083 
4084   // We must handle the select(cmp()) as a single instruction. Advance to the
4085   // select.
4086   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
4087     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
4088       return ReductionInstDesc(false, I);
4089     return ReductionInstDesc(Select, Prev.MinMaxKind);
4090   }
4091 
4092   // Only handle single use cases for now.
4093   if (!(Select = dyn_cast<SelectInst>(I)))
4094     return ReductionInstDesc(false, I);
4095   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
4096       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
4097     return ReductionInstDesc(false, I);
4098   if (!Cmp->hasOneUse())
4099     return ReductionInstDesc(false, I);
4100 
4101   Value *CmpLeft;
4102   Value *CmpRight;
4103 
4104   // Look for a min/max pattern.
4105   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4106     return ReductionInstDesc(Select, MRK_UIntMin);
4107   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4108     return ReductionInstDesc(Select, MRK_UIntMax);
4109   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4110     return ReductionInstDesc(Select, MRK_SIntMax);
4111   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4112     return ReductionInstDesc(Select, MRK_SIntMin);
4113   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4114     return ReductionInstDesc(Select, MRK_FloatMin);
4115   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4116     return ReductionInstDesc(Select, MRK_FloatMax);
4117   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4118     return ReductionInstDesc(Select, MRK_FloatMin);
4119   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4120     return ReductionInstDesc(Select, MRK_FloatMax);
4121 
4122   return ReductionInstDesc(false, I);
4123 }
4124 
4125 LoopVectorizationLegality::ReductionInstDesc
4126 LoopVectorizationLegality::isReductionInstr(Instruction *I,
4127                                             ReductionKind Kind,
4128                                             ReductionInstDesc &Prev) {
4129   bool FP = I->getType()->isFloatingPointTy();
4130   bool FastMath = (FP && I->isCommutative() && I->isAssociative());
4131   switch (I->getOpcode()) {
4132   default:
4133     return ReductionInstDesc(false, I);
4134   case Instruction::PHI:
4135       if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
4136                  Kind != RK_FloatMinMax))
4137         return ReductionInstDesc(false, I);
4138     return ReductionInstDesc(I, Prev.MinMaxKind);
4139   case Instruction::Sub:
4140   case Instruction::Add:
4141     return ReductionInstDesc(Kind == RK_IntegerAdd, I);
4142   case Instruction::Mul:
4143     return ReductionInstDesc(Kind == RK_IntegerMult, I);
4144   case Instruction::And:
4145     return ReductionInstDesc(Kind == RK_IntegerAnd, I);
4146   case Instruction::Or:
4147     return ReductionInstDesc(Kind == RK_IntegerOr, I);
4148   case Instruction::Xor:
4149     return ReductionInstDesc(Kind == RK_IntegerXor, I);
4150   case Instruction::FMul:
4151     return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
4152   case Instruction::FAdd:
4153     return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
4154   case Instruction::FCmp:
4155   case Instruction::ICmp:
4156   case Instruction::Select:
4157     if (Kind != RK_IntegerMinMax &&
4158         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
4159       return ReductionInstDesc(false, I);
4160     return isMinMaxSelectCmpPattern(I, Prev);
4161   }
4162 }
4163 
4164 LoopVectorizationLegality::InductionKind
4165 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
4166   Type *PhiTy = Phi->getType();
4167   // We only handle integer and pointer inductions variables.
4168   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
4169     return IK_NoInduction;
4170 
4171   // Check that the PHI is consecutive.
4172   const SCEV *PhiScev = SE->getSCEV(Phi);
4173   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
4174   if (!AR) {
4175     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
4176     return IK_NoInduction;
4177   }
4178   const SCEV *Step = AR->getStepRecurrence(*SE);
4179 
4180   // Integer inductions need to have a stride of one.
4181   if (PhiTy->isIntegerTy()) {
4182     if (Step->isOne())
4183       return IK_IntInduction;
4184     if (Step->isAllOnesValue())
4185       return IK_ReverseIntInduction;
4186     return IK_NoInduction;
4187   }
4188 
4189   // Calculate the pointer stride and check if it is consecutive.
4190   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4191   if (!C)
4192     return IK_NoInduction;
4193 
4194   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
4195   uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
4196   if (C->getValue()->equalsInt(Size))
4197     return IK_PtrInduction;
4198   else if (C->getValue()->equalsInt(0 - Size))
4199     return IK_ReversePtrInduction;
4200 
4201   return IK_NoInduction;
4202 }
4203 
4204 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4205   Value *In0 = const_cast<Value*>(V);
4206   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4207   if (!PN)
4208     return false;
4209 
4210   return Inductions.count(PN);
4211 }
4212 
4213 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
4214   assert(TheLoop->contains(BB) && "Unknown block used");
4215 
4216   // Blocks that do not dominate the latch need predication.
4217   BasicBlock* Latch = TheLoop->getLoopLatch();
4218   return !DT->dominates(BB, Latch);
4219 }
4220 
4221 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
4222                                             SmallPtrSet<Value *, 8>& SafePtrs) {
4223   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4224     // We might be able to hoist the load.
4225     if (it->mayReadFromMemory()) {
4226       LoadInst *LI = dyn_cast<LoadInst>(it);
4227       if (!LI || !SafePtrs.count(LI->getPointerOperand()))
4228         return false;
4229     }
4230 
4231     // We don't predicate stores at the moment.
4232     if (it->mayWriteToMemory() || it->mayThrow())
4233       return false;
4234 
4235     // The instructions below can trap.
4236     switch (it->getOpcode()) {
4237     default: continue;
4238     case Instruction::UDiv:
4239     case Instruction::SDiv:
4240     case Instruction::URem:
4241     case Instruction::SRem:
4242              return false;
4243     }
4244   }
4245 
4246   return true;
4247 }
4248 
4249 LoopVectorizationCostModel::VectorizationFactor
4250 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
4251                                                       unsigned UserVF) {
4252   // Width 1 means no vectorize
4253   VectorizationFactor Factor = { 1U, 0U };
4254   if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
4255     DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
4256     return Factor;
4257   }
4258 
4259   // Find the trip count.
4260   unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
4261   DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4262 
4263   unsigned WidestType = getWidestType();
4264   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4265   unsigned MaxSafeDepDist = -1U;
4266   if (Legal->getMaxSafeDepDistBytes() != -1U)
4267     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
4268   WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
4269                     WidestRegister : MaxSafeDepDist);
4270   unsigned MaxVectorSize = WidestRegister / WidestType;
4271   DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
4272   DEBUG(dbgs() << "LV: The Widest register is: "
4273           << WidestRegister << " bits.\n");
4274 
4275   if (MaxVectorSize == 0) {
4276     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4277     MaxVectorSize = 1;
4278   }
4279 
4280   assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
4281          " into one vector!");
4282 
4283   unsigned VF = MaxVectorSize;
4284 
4285   // If we optimize the program for size, avoid creating the tail loop.
4286   if (OptForSize) {
4287     // If we are unable to calculate the trip count then don't try to vectorize.
4288     if (TC < 2) {
4289       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4290       return Factor;
4291     }
4292 
4293     // Find the maximum SIMD width that can fit within the trip count.
4294     VF = TC % MaxVectorSize;
4295 
4296     if (VF == 0)
4297       VF = MaxVectorSize;
4298 
4299     // If the trip count that we found modulo the vectorization factor is not
4300     // zero then we require a tail.
4301     if (VF < 2) {
4302       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4303       return Factor;
4304     }
4305   }
4306 
4307   if (UserVF != 0) {
4308     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4309     DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
4310 
4311     Factor.Width = UserVF;
4312     return Factor;
4313   }
4314 
4315   float Cost = expectedCost(1);
4316   unsigned Width = 1;
4317   DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n");
4318   for (unsigned i=2; i <= VF; i*=2) {
4319     // Notice that the vector loop needs to be executed less times, so
4320     // we need to divide the cost of the vector loops by the width of
4321     // the vector elements.
4322     float VectorCost = expectedCost(i) / (float)i;
4323     DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
4324           (int)VectorCost << ".\n");
4325     if (VectorCost < Cost) {
4326       Cost = VectorCost;
4327       Width = i;
4328     }
4329   }
4330 
4331   DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
4332   Factor.Width = Width;
4333   Factor.Cost = Width * Cost;
4334   return Factor;
4335 }
4336 
4337 unsigned LoopVectorizationCostModel::getWidestType() {
4338   unsigned MaxWidth = 8;
4339 
4340   // For each block.
4341   for (Loop::block_iterator bb = TheLoop->block_begin(),
4342        be = TheLoop->block_end(); bb != be; ++bb) {
4343     BasicBlock *BB = *bb;
4344 
4345     // For each instruction in the loop.
4346     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4347       Type *T = it->getType();
4348 
4349       // Only examine Loads, Stores and PHINodes.
4350       if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4351         continue;
4352 
4353       // Examine PHI nodes that are reduction variables.
4354       if (PHINode *PN = dyn_cast<PHINode>(it))
4355         if (!Legal->getReductionVars()->count(PN))
4356           continue;
4357 
4358       // Examine the stored values.
4359       if (StoreInst *ST = dyn_cast<StoreInst>(it))
4360         T = ST->getValueOperand()->getType();
4361 
4362       // Ignore loaded pointer types and stored pointer types that are not
4363       // consecutive. However, we do want to take consecutive stores/loads of
4364       // pointer vectors into account.
4365       if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
4366         continue;
4367 
4368       MaxWidth = std::max(MaxWidth,
4369                           (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
4370     }
4371   }
4372 
4373   return MaxWidth;
4374 }
4375 
4376 unsigned
4377 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
4378                                                unsigned UserUF,
4379                                                unsigned VF,
4380                                                unsigned LoopCost) {
4381 
4382   // -- The unroll heuristics --
4383   // We unroll the loop in order to expose ILP and reduce the loop overhead.
4384   // There are many micro-architectural considerations that we can't predict
4385   // at this level. For example frontend pressure (on decode or fetch) due to
4386   // code size, or the number and capabilities of the execution ports.
4387   //
4388   // We use the following heuristics to select the unroll factor:
4389   // 1. If the code has reductions the we unroll in order to break the cross
4390   // iteration dependency.
4391   // 2. If the loop is really small then we unroll in order to reduce the loop
4392   // overhead.
4393   // 3. We don't unroll if we think that we will spill registers to memory due
4394   // to the increased register pressure.
4395 
4396   // Use the user preference, unless 'auto' is selected.
4397   if (UserUF != 0)
4398     return UserUF;
4399 
4400   // When we optimize for size we don't unroll.
4401   if (OptForSize)
4402     return 1;
4403 
4404   // We used the distance for the unroll factor.
4405   if (Legal->getMaxSafeDepDistBytes() != -1U)
4406     return 1;
4407 
4408   // Do not unroll loops with a relatively small trip count.
4409   unsigned TC = SE->getSmallConstantTripCount(TheLoop,
4410                                               TheLoop->getLoopLatch());
4411   if (TC > 1 && TC < TinyTripCountUnrollThreshold)
4412     return 1;
4413 
4414   unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
4415   DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
4416         " vector registers\n");
4417 
4418   LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
4419   // We divide by these constants so assume that we have at least one
4420   // instruction that uses at least one register.
4421   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4422   R.NumInstructions = std::max(R.NumInstructions, 1U);
4423 
4424   // We calculate the unroll factor using the following formula.
4425   // Subtract the number of loop invariants from the number of available
4426   // registers. These registers are used by all of the unrolled instances.
4427   // Next, divide the remaining registers by the number of registers that is
4428   // required by the loop, in order to estimate how many parallel instances
4429   // fit without causing spills.
4430   unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
4431 
4432   // Clamp the unroll factor ranges to reasonable factors.
4433   unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
4434 
4435   // If we did not calculate the cost for VF (because the user selected the VF)
4436   // then we calculate the cost of VF here.
4437   if (LoopCost == 0)
4438     LoopCost = expectedCost(VF);
4439 
4440   // Clamp the calculated UF to be between the 1 and the max unroll factor
4441   // that the target allows.
4442   if (UF > MaxUnrollSize)
4443     UF = MaxUnrollSize;
4444   else if (UF < 1)
4445     UF = 1;
4446 
4447   bool HasReductions = Legal->getReductionVars()->size();
4448 
4449   // Decide if we want to unroll if we decided that it is legal to vectorize
4450   // but not profitable.
4451   if (VF == 1) {
4452     if (TheLoop->getNumBlocks() > 1 || !HasReductions ||
4453         LoopCost > SmallLoopCost)
4454       return 1;
4455 
4456     return UF;
4457   }
4458 
4459   if (HasReductions) {
4460     DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
4461     return UF;
4462   }
4463 
4464   // We want to unroll tiny loops in order to reduce the loop overhead.
4465   // We assume that the cost overhead is 1 and we use the cost model
4466   // to estimate the cost of the loop and unroll until the cost of the
4467   // loop overhead is about 5% of the cost of the loop.
4468   DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
4469   if (LoopCost < SmallLoopCost) {
4470     DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
4471     unsigned NewUF = SmallLoopCost / (LoopCost + 1);
4472     return std::min(NewUF, UF);
4473   }
4474 
4475   DEBUG(dbgs() << "LV: Not Unrolling.\n");
4476   return 1;
4477 }
4478 
4479 LoopVectorizationCostModel::RegisterUsage
4480 LoopVectorizationCostModel::calculateRegisterUsage() {
4481   // This function calculates the register usage by measuring the highest number
4482   // of values that are alive at a single location. Obviously, this is a very
4483   // rough estimation. We scan the loop in a topological order in order and
4484   // assign a number to each instruction. We use RPO to ensure that defs are
4485   // met before their users. We assume that each instruction that has in-loop
4486   // users starts an interval. We record every time that an in-loop value is
4487   // used, so we have a list of the first and last occurrences of each
4488   // instruction. Next, we transpose this data structure into a multi map that
4489   // holds the list of intervals that *end* at a specific location. This multi
4490   // map allows us to perform a linear search. We scan the instructions linearly
4491   // and record each time that a new interval starts, by placing it in a set.
4492   // If we find this value in the multi-map then we remove it from the set.
4493   // The max register usage is the maximum size of the set.
4494   // We also search for instructions that are defined outside the loop, but are
4495   // used inside the loop. We need this number separately from the max-interval
4496   // usage number because when we unroll, loop-invariant values do not take
4497   // more register.
4498   LoopBlocksDFS DFS(TheLoop);
4499   DFS.perform(LI);
4500 
4501   RegisterUsage R;
4502   R.NumInstructions = 0;
4503 
4504   // Each 'key' in the map opens a new interval. The values
4505   // of the map are the index of the 'last seen' usage of the
4506   // instruction that is the key.
4507   typedef DenseMap<Instruction*, unsigned> IntervalMap;
4508   // Maps instruction to its index.
4509   DenseMap<unsigned, Instruction*> IdxToInstr;
4510   // Marks the end of each interval.
4511   IntervalMap EndPoint;
4512   // Saves the list of instruction indices that are used in the loop.
4513   SmallSet<Instruction*, 8> Ends;
4514   // Saves the list of values that are used in the loop but are
4515   // defined outside the loop, such as arguments and constants.
4516   SmallPtrSet<Value*, 8> LoopInvariants;
4517 
4518   unsigned Index = 0;
4519   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
4520        be = DFS.endRPO(); bb != be; ++bb) {
4521     R.NumInstructions += (*bb)->size();
4522     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4523          ++it) {
4524       Instruction *I = it;
4525       IdxToInstr[Index++] = I;
4526 
4527       // Save the end location of each USE.
4528       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
4529         Value *U = I->getOperand(i);
4530         Instruction *Instr = dyn_cast<Instruction>(U);
4531 
4532         // Ignore non-instruction values such as arguments, constants, etc.
4533         if (!Instr) continue;
4534 
4535         // If this instruction is outside the loop then record it and continue.
4536         if (!TheLoop->contains(Instr)) {
4537           LoopInvariants.insert(Instr);
4538           continue;
4539         }
4540 
4541         // Overwrite previous end points.
4542         EndPoint[Instr] = Index;
4543         Ends.insert(Instr);
4544       }
4545     }
4546   }
4547 
4548   // Saves the list of intervals that end with the index in 'key'.
4549   typedef SmallVector<Instruction*, 2> InstrList;
4550   DenseMap<unsigned, InstrList> TransposeEnds;
4551 
4552   // Transpose the EndPoints to a list of values that end at each index.
4553   for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
4554        it != e; ++it)
4555     TransposeEnds[it->second].push_back(it->first);
4556 
4557   SmallSet<Instruction*, 8> OpenIntervals;
4558   unsigned MaxUsage = 0;
4559 
4560 
4561   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
4562   for (unsigned int i = 0; i < Index; ++i) {
4563     Instruction *I = IdxToInstr[i];
4564     // Ignore instructions that are never used within the loop.
4565     if (!Ends.count(I)) continue;
4566 
4567     // Remove all of the instructions that end at this location.
4568     InstrList &List = TransposeEnds[i];
4569     for (unsigned int j=0, e = List.size(); j < e; ++j)
4570       OpenIntervals.erase(List[j]);
4571 
4572     // Count the number of live interals.
4573     MaxUsage = std::max(MaxUsage, OpenIntervals.size());
4574 
4575     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
4576           OpenIntervals.size() << '\n');
4577 
4578     // Add the current instruction to the list of open intervals.
4579     OpenIntervals.insert(I);
4580   }
4581 
4582   unsigned Invariant = LoopInvariants.size();
4583   DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
4584   DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
4585   DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
4586 
4587   R.LoopInvariantRegs = Invariant;
4588   R.MaxLocalUsers = MaxUsage;
4589   return R;
4590 }
4591 
4592 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
4593   unsigned Cost = 0;
4594 
4595   // For each block.
4596   for (Loop::block_iterator bb = TheLoop->block_begin(),
4597        be = TheLoop->block_end(); bb != be; ++bb) {
4598     unsigned BlockCost = 0;
4599     BasicBlock *BB = *bb;
4600 
4601     // For each instruction in the old loop.
4602     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4603       // Skip dbg intrinsics.
4604       if (isa<DbgInfoIntrinsic>(it))
4605         continue;
4606 
4607       unsigned C = getInstructionCost(it, VF);
4608       BlockCost += C;
4609       DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
4610             VF << " For instruction: " << *it << '\n');
4611     }
4612 
4613     // We assume that if-converted blocks have a 50% chance of being executed.
4614     // When the code is scalar then some of the blocks are avoided due to CF.
4615     // When the code is vectorized we execute all code paths.
4616     if (VF == 1 && Legal->blockNeedsPredication(*bb))
4617       BlockCost /= 2;
4618 
4619     Cost += BlockCost;
4620   }
4621 
4622   return Cost;
4623 }
4624 
4625 /// \brief Check whether the address computation for a non-consecutive memory
4626 /// access looks like an unlikely candidate for being merged into the indexing
4627 /// mode.
4628 ///
4629 /// We look for a GEP which has one index that is an induction variable and all
4630 /// other indices are loop invariant. If the stride of this access is also
4631 /// within a small bound we decide that this address computation can likely be
4632 /// merged into the addressing mode.
4633 /// In all other cases, we identify the address computation as complex.
4634 static bool isLikelyComplexAddressComputation(Value *Ptr,
4635                                               LoopVectorizationLegality *Legal,
4636                                               ScalarEvolution *SE,
4637                                               const Loop *TheLoop) {
4638   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
4639   if (!Gep)
4640     return true;
4641 
4642   // We are looking for a gep with all loop invariant indices except for one
4643   // which should be an induction variable.
4644   unsigned NumOperands = Gep->getNumOperands();
4645   for (unsigned i = 1; i < NumOperands; ++i) {
4646     Value *Opd = Gep->getOperand(i);
4647     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
4648         !Legal->isInductionVariable(Opd))
4649       return true;
4650   }
4651 
4652   // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
4653   // can likely be merged into the address computation.
4654   unsigned MaxMergeDistance = 64;
4655 
4656   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
4657   if (!AddRec)
4658     return true;
4659 
4660   // Check the step is constant.
4661   const SCEV *Step = AddRec->getStepRecurrence(*SE);
4662   // Calculate the pointer stride and check if it is consecutive.
4663   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4664   if (!C)
4665     return true;
4666 
4667   const APInt &APStepVal = C->getValue()->getValue();
4668 
4669   // Huge step value - give up.
4670   if (APStepVal.getBitWidth() > 64)
4671     return true;
4672 
4673   int64_t StepVal = APStepVal.getSExtValue();
4674 
4675   return StepVal > MaxMergeDistance;
4676 }
4677 
4678 unsigned
4679 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
4680   // If we know that this instruction will remain uniform, check the cost of
4681   // the scalar version.
4682   if (Legal->isUniformAfterVectorization(I))
4683     VF = 1;
4684 
4685   Type *RetTy = I->getType();
4686   Type *VectorTy = ToVectorTy(RetTy, VF);
4687 
4688   // TODO: We need to estimate the cost of intrinsic calls.
4689   switch (I->getOpcode()) {
4690   case Instruction::GetElementPtr:
4691     // We mark this instruction as zero-cost because the cost of GEPs in
4692     // vectorized code depends on whether the corresponding memory instruction
4693     // is scalarized or not. Therefore, we handle GEPs with the memory
4694     // instruction cost.
4695     return 0;
4696   case Instruction::Br: {
4697     return TTI.getCFInstrCost(I->getOpcode());
4698   }
4699   case Instruction::PHI:
4700     //TODO: IF-converted IFs become selects.
4701     return 0;
4702   case Instruction::Add:
4703   case Instruction::FAdd:
4704   case Instruction::Sub:
4705   case Instruction::FSub:
4706   case Instruction::Mul:
4707   case Instruction::FMul:
4708   case Instruction::UDiv:
4709   case Instruction::SDiv:
4710   case Instruction::FDiv:
4711   case Instruction::URem:
4712   case Instruction::SRem:
4713   case Instruction::FRem:
4714   case Instruction::Shl:
4715   case Instruction::LShr:
4716   case Instruction::AShr:
4717   case Instruction::And:
4718   case Instruction::Or:
4719   case Instruction::Xor: {
4720     // Certain instructions can be cheaper to vectorize if they have a constant
4721     // second vector operand. One example of this are shifts on x86.
4722     TargetTransformInfo::OperandValueKind Op1VK =
4723       TargetTransformInfo::OK_AnyValue;
4724     TargetTransformInfo::OperandValueKind Op2VK =
4725       TargetTransformInfo::OK_AnyValue;
4726 
4727     if (isa<ConstantInt>(I->getOperand(1)))
4728       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
4729 
4730     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
4731   }
4732   case Instruction::Select: {
4733     SelectInst *SI = cast<SelectInst>(I);
4734     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
4735     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
4736     Type *CondTy = SI->getCondition()->getType();
4737     if (!ScalarCond)
4738       CondTy = VectorType::get(CondTy, VF);
4739 
4740     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
4741   }
4742   case Instruction::ICmp:
4743   case Instruction::FCmp: {
4744     Type *ValTy = I->getOperand(0)->getType();
4745     VectorTy = ToVectorTy(ValTy, VF);
4746     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
4747   }
4748   case Instruction::Store:
4749   case Instruction::Load: {
4750     StoreInst *SI = dyn_cast<StoreInst>(I);
4751     LoadInst *LI = dyn_cast<LoadInst>(I);
4752     Type *ValTy = (SI ? SI->getValueOperand()->getType() :
4753                    LI->getType());
4754     VectorTy = ToVectorTy(ValTy, VF);
4755 
4756     unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
4757     unsigned AS = SI ? SI->getPointerAddressSpace() :
4758       LI->getPointerAddressSpace();
4759     Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
4760     // We add the cost of address computation here instead of with the gep
4761     // instruction because only here we know whether the operation is
4762     // scalarized.
4763     if (VF == 1)
4764       return TTI.getAddressComputationCost(VectorTy) +
4765         TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4766 
4767     // Scalarized loads/stores.
4768     int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
4769     bool Reverse = ConsecutiveStride < 0;
4770     unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
4771     unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
4772     if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
4773       bool IsComplexComputation =
4774         isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
4775       unsigned Cost = 0;
4776       // The cost of extracting from the value vector and pointer vector.
4777       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
4778       for (unsigned i = 0; i < VF; ++i) {
4779         //  The cost of extracting the pointer operand.
4780         Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
4781         // In case of STORE, the cost of ExtractElement from the vector.
4782         // In case of LOAD, the cost of InsertElement into the returned
4783         // vector.
4784         Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
4785                                             Instruction::InsertElement,
4786                                             VectorTy, i);
4787       }
4788 
4789       // The cost of the scalar loads/stores.
4790       Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
4791       Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
4792                                        Alignment, AS);
4793       return Cost;
4794     }
4795 
4796     // Wide load/stores.
4797     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
4798     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4799 
4800     if (Reverse)
4801       Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4802                                   VectorTy, 0);
4803     return Cost;
4804   }
4805   case Instruction::ZExt:
4806   case Instruction::SExt:
4807   case Instruction::FPToUI:
4808   case Instruction::FPToSI:
4809   case Instruction::FPExt:
4810   case Instruction::PtrToInt:
4811   case Instruction::IntToPtr:
4812   case Instruction::SIToFP:
4813   case Instruction::UIToFP:
4814   case Instruction::Trunc:
4815   case Instruction::FPTrunc:
4816   case Instruction::BitCast: {
4817     // We optimize the truncation of induction variable.
4818     // The cost of these is the same as the scalar operation.
4819     if (I->getOpcode() == Instruction::Trunc &&
4820         Legal->isInductionVariable(I->getOperand(0)))
4821       return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
4822                                   I->getOperand(0)->getType());
4823 
4824     Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
4825     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
4826   }
4827   case Instruction::Call: {
4828     CallInst *CI = cast<CallInst>(I);
4829     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
4830     assert(ID && "Not an intrinsic call!");
4831     Type *RetTy = ToVectorTy(CI->getType(), VF);
4832     SmallVector<Type*, 4> Tys;
4833     for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
4834       Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
4835     return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
4836   }
4837   default: {
4838     // We are scalarizing the instruction. Return the cost of the scalar
4839     // instruction, plus the cost of insert and extract into vector
4840     // elements, times the vector width.
4841     unsigned Cost = 0;
4842 
4843     if (!RetTy->isVoidTy() && VF != 1) {
4844       unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
4845                                                 VectorTy);
4846       unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
4847                                                 VectorTy);
4848 
4849       // The cost of inserting the results plus extracting each one of the
4850       // operands.
4851       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
4852     }
4853 
4854     // The cost of executing VF copies of the scalar instruction. This opcode
4855     // is unknown. Assume that it is the same as 'mul'.
4856     Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
4857     return Cost;
4858   }
4859   }// end of switch.
4860 }
4861 
4862 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
4863   if (Scalar->isVoidTy() || VF == 1)
4864     return Scalar;
4865   return VectorType::get(Scalar, VF);
4866 }
4867 
4868 char LoopVectorize::ID = 0;
4869 static const char lv_name[] = "Loop Vectorization";
4870 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
4871 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
4872 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
4873 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4874 INITIALIZE_PASS_DEPENDENCY(LCSSA)
4875 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
4876 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4877 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
4878 
4879 namespace llvm {
4880   Pass *createLoopVectorizePass(bool NoUnrolling) {
4881     return new LoopVectorize(NoUnrolling);
4882   }
4883 }
4884 
4885 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
4886   // Check for a store.
4887   if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
4888     return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
4889 
4890   // Check for a load.
4891   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
4892     return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
4893 
4894   return false;
4895 }
4896 
4897 
4898 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) {
4899   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
4900   // Holds vector parameters or scalars, in case of uniform vals.
4901   SmallVector<VectorParts, 4> Params;
4902 
4903   setDebugLocFromInst(Builder, Instr);
4904 
4905   // Find all of the vectorized parameters.
4906   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
4907     Value *SrcOp = Instr->getOperand(op);
4908 
4909     // If we are accessing the old induction variable, use the new one.
4910     if (SrcOp == OldInduction) {
4911       Params.push_back(getVectorValue(SrcOp));
4912       continue;
4913     }
4914 
4915     // Try using previously calculated values.
4916     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
4917 
4918     // If the src is an instruction that appeared earlier in the basic block
4919     // then it should already be vectorized.
4920     if (SrcInst && OrigLoop->contains(SrcInst)) {
4921       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
4922       // The parameter is a vector value from earlier.
4923       Params.push_back(WidenMap.get(SrcInst));
4924     } else {
4925       // The parameter is a scalar from outside the loop. Maybe even a constant.
4926       VectorParts Scalars;
4927       Scalars.append(UF, SrcOp);
4928       Params.push_back(Scalars);
4929     }
4930   }
4931 
4932   assert(Params.size() == Instr->getNumOperands() &&
4933          "Invalid number of operands");
4934 
4935   // Does this instruction return a value ?
4936   bool IsVoidRetTy = Instr->getType()->isVoidTy();
4937 
4938   Value *UndefVec = IsVoidRetTy ? 0 :
4939   UndefValue::get(Instr->getType());
4940   // Create a new entry in the WidenMap and initialize it to Undef or Null.
4941   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
4942 
4943   // For each vector unroll 'part':
4944   for (unsigned Part = 0; Part < UF; ++Part) {
4945     // For each scalar that we create:
4946 
4947     Instruction *Cloned = Instr->clone();
4948       if (!IsVoidRetTy)
4949         Cloned->setName(Instr->getName() + ".cloned");
4950       // Replace the operands of the cloned instructions with extracted scalars.
4951       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
4952         Value *Op = Params[op][Part];
4953         Cloned->setOperand(op, Op);
4954       }
4955 
4956       // Place the cloned scalar in the new loop.
4957       Builder.Insert(Cloned);
4958 
4959       // If the original scalar returns a value we need to place it in a vector
4960       // so that future users will be able to use it.
4961       if (!IsVoidRetTy)
4962         VecResults[Part] = Cloned;
4963   }
4964 }
4965 
4966 void
4967 InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr,
4968                                               LoopVectorizationLegality*) {
4969   return scalarizeInstruction(Instr);
4970 }
4971 
4972 Value *InnerLoopUnroller::reverseVector(Value *Vec) {
4973   return Vec;
4974 }
4975 
4976 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
4977   return V;
4978 }
4979 
4980 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
4981                                                bool Negate) {
4982   // When unrolling and the VF is 1, we only need to add a simple scalar.
4983   Type *ITy = Val->getType();
4984   assert(!ITy->isVectorTy() && "Val must be a scalar");
4985   Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
4986   return Builder.CreateAdd(Val, C, "induction");
4987 }
4988 
4989