1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/PatternMatch.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/InstructionCost.h" 135 #include "llvm/Support/MathExtras.h" 136 #include "llvm/Support/raw_ostream.h" 137 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 138 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 139 #include "llvm/Transforms/Utils/LoopSimplify.h" 140 #include "llvm/Transforms/Utils/LoopUtils.h" 141 #include "llvm/Transforms/Utils/LoopVersioning.h" 142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 143 #include "llvm/Transforms/Utils/SizeOpts.h" 144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 145 #include <algorithm> 146 #include <cassert> 147 #include <cstdint> 148 #include <cstdlib> 149 #include <functional> 150 #include <iterator> 151 #include <limits> 152 #include <memory> 153 #include <string> 154 #include <tuple> 155 #include <utility> 156 157 using namespace llvm; 158 159 #define LV_NAME "loop-vectorize" 160 #define DEBUG_TYPE LV_NAME 161 162 #ifndef NDEBUG 163 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 164 #endif 165 166 /// @{ 167 /// Metadata attribute names 168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 169 const char LLVMLoopVectorizeFollowupVectorized[] = 170 "llvm.loop.vectorize.followup_vectorized"; 171 const char LLVMLoopVectorizeFollowupEpilogue[] = 172 "llvm.loop.vectorize.followup_epilogue"; 173 /// @} 174 175 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 178 179 static cl::opt<bool> EnableEpilogueVectorization( 180 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 181 cl::desc("Enable vectorization of epilogue loops.")); 182 183 static cl::opt<unsigned> EpilogueVectorizationForceVF( 184 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 185 cl::desc("When epilogue vectorization is enabled, and a value greater than " 186 "1 is specified, forces the given VF for all applicable epilogue " 187 "loops.")); 188 189 static cl::opt<unsigned> EpilogueVectorizationMinVF( 190 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 191 cl::desc("Only loops with vectorization factor equal to or larger than " 192 "the specified value are considered for epilogue vectorization.")); 193 194 /// Loops with a known constant trip count below this number are vectorized only 195 /// if no scalar iteration overheads are incurred. 196 static cl::opt<unsigned> TinyTripCountVectorThreshold( 197 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 198 cl::desc("Loops with a constant trip count that is smaller than this " 199 "value are vectorized only if no scalar iteration overheads " 200 "are incurred.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 208 // that predication is preferred, and this lists all options. I.e., the 209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 210 // and predicate the instructions accordingly. If tail-folding fails, there are 211 // different fallback strategies depending on these values: 212 namespace PreferPredicateTy { 213 enum Option { 214 ScalarEpilogue = 0, 215 PredicateElseScalarEpilogue, 216 PredicateOrDontVectorize 217 }; 218 } // namespace PreferPredicateTy 219 220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 221 "prefer-predicate-over-epilogue", 222 cl::init(PreferPredicateTy::ScalarEpilogue), 223 cl::Hidden, 224 cl::desc("Tail-folding and predication preferences over creating a scalar " 225 "epilogue loop."), 226 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 227 "scalar-epilogue", 228 "Don't tail-predicate loops, create scalar epilogue"), 229 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 230 "predicate-else-scalar-epilogue", 231 "prefer tail-folding, create scalar epilogue if tail " 232 "folding fails."), 233 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 234 "predicate-dont-vectorize", 235 "prefers tail-folding, don't attempt vectorization if " 236 "tail-folding fails."))); 237 238 static cl::opt<bool> MaximizeBandwidth( 239 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 240 cl::desc("Maximize bandwidth when selecting vectorization factor which " 241 "will be determined by the smallest type in loop.")); 242 243 static cl::opt<bool> EnableInterleavedMemAccesses( 244 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 246 247 /// An interleave-group may need masking if it resides in a block that needs 248 /// predication, or in order to mask away gaps. 249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 250 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 251 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 252 253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 254 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 255 cl::desc("We don't interleave loops with a estimated constant trip count " 256 "below this number")); 257 258 static cl::opt<unsigned> ForceTargetNumScalarRegs( 259 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of scalar registers.")); 261 262 static cl::opt<unsigned> ForceTargetNumVectorRegs( 263 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's number of vector registers.")); 265 266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 267 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 268 cl::desc("A flag that overrides the target's max interleave factor for " 269 "scalar loops.")); 270 271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 272 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 273 cl::desc("A flag that overrides the target's max interleave factor for " 274 "vectorized loops.")); 275 276 static cl::opt<unsigned> ForceTargetInstructionCost( 277 "force-target-instruction-cost", cl::init(0), cl::Hidden, 278 cl::desc("A flag that overrides the target's expected cost for " 279 "an instruction to a single constant value. Mostly " 280 "useful for getting consistent testing.")); 281 282 static cl::opt<bool> ForceTargetSupportsScalableVectors( 283 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 284 cl::desc( 285 "Pretend that scalable vectors are supported, even if the target does " 286 "not support them. This flag should only be used for testing.")); 287 288 static cl::opt<unsigned> SmallLoopCost( 289 "small-loop-cost", cl::init(20), cl::Hidden, 290 cl::desc( 291 "The cost of a loop that is considered 'small' by the interleaver.")); 292 293 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 294 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 295 cl::desc("Enable the use of the block frequency analysis to access PGO " 296 "heuristics minimizing code growth in cold regions and being more " 297 "aggressive in hot regions.")); 298 299 // Runtime interleave loops for load/store throughput. 300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 301 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 302 cl::desc( 303 "Enable runtime interleaving until load/store ports are saturated")); 304 305 /// Interleave small loops with scalar reductions. 306 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 307 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 308 cl::desc("Enable interleaving for loops with small iteration counts that " 309 "contain scalar reductions to expose ILP.")); 310 311 /// The number of stores in a loop that are allowed to need predication. 312 static cl::opt<unsigned> NumberOfStoresToPredicate( 313 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 314 cl::desc("Max number of stores to be predicated behind an if.")); 315 316 static cl::opt<bool> EnableIndVarRegisterHeur( 317 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 318 cl::desc("Count the induction variable only once when interleaving")); 319 320 static cl::opt<bool> EnableCondStoresVectorization( 321 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 322 cl::desc("Enable if predication of stores during vectorization.")); 323 324 static cl::opt<unsigned> MaxNestedScalarReductionIC( 325 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 326 cl::desc("The maximum interleave count to use when interleaving a scalar " 327 "reduction in a nested loop.")); 328 329 static cl::opt<bool> 330 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 331 cl::Hidden, 332 cl::desc("Prefer in-loop vector reductions, " 333 "overriding the targets preference.")); 334 335 cl::opt<bool> EnableStrictReductions( 336 "enable-strict-reductions", cl::init(false), cl::Hidden, 337 cl::desc("Enable the vectorisation of loops with in-order (strict) " 338 "FP reductions")); 339 340 static cl::opt<bool> PreferPredicatedReductionSelect( 341 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 342 cl::desc( 343 "Prefer predicating a reduction operation over an after loop select.")); 344 345 cl::opt<bool> EnableVPlanNativePath( 346 "enable-vplan-native-path", cl::init(false), cl::Hidden, 347 cl::desc("Enable VPlan-native vectorization path with " 348 "support for outer loop vectorization.")); 349 350 // FIXME: Remove this switch once we have divergence analysis. Currently we 351 // assume divergent non-backedge branches when this switch is true. 352 cl::opt<bool> EnableVPlanPredication( 353 "enable-vplan-predication", cl::init(false), cl::Hidden, 354 cl::desc("Enable VPlan-native vectorization path predicator with " 355 "support for outer loop vectorization.")); 356 357 // This flag enables the stress testing of the VPlan H-CFG construction in the 358 // VPlan-native vectorization path. It must be used in conjuction with 359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 360 // verification of the H-CFGs built. 361 static cl::opt<bool> VPlanBuildStressTest( 362 "vplan-build-stress-test", cl::init(false), cl::Hidden, 363 cl::desc( 364 "Build VPlan for every supported loop nest in the function and bail " 365 "out right after the build (stress test the VPlan H-CFG construction " 366 "in the VPlan-native vectorization path).")); 367 368 cl::opt<bool> llvm::EnableLoopInterleaving( 369 "interleave-loops", cl::init(true), cl::Hidden, 370 cl::desc("Enable loop interleaving in Loop vectorization passes")); 371 cl::opt<bool> llvm::EnableLoopVectorization( 372 "vectorize-loops", cl::init(true), cl::Hidden, 373 cl::desc("Run the Loop vectorization passes")); 374 375 cl::opt<bool> PrintVPlansInDotFormat( 376 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 377 cl::desc("Use dot format instead of plain text when dumping VPlans")); 378 379 /// A helper function that returns true if the given type is irregular. The 380 /// type is irregular if its allocated size doesn't equal the store size of an 381 /// element of the corresponding vector type. 382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 383 // Determine if an array of N elements of type Ty is "bitcast compatible" 384 // with a <N x Ty> vector. 385 // This is only true if there is no padding between the array elements. 386 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 387 } 388 389 /// A helper function that returns the reciprocal of the block probability of 390 /// predicated blocks. If we return X, we are assuming the predicated block 391 /// will execute once for every X iterations of the loop header. 392 /// 393 /// TODO: We should use actual block probability here, if available. Currently, 394 /// we always assume predicated blocks have a 50% chance of executing. 395 static unsigned getReciprocalPredBlockProb() { return 2; } 396 397 /// A helper function that returns an integer or floating-point constant with 398 /// value C. 399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 400 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 401 : ConstantFP::get(Ty, C); 402 } 403 404 /// Returns "best known" trip count for the specified loop \p L as defined by 405 /// the following procedure: 406 /// 1) Returns exact trip count if it is known. 407 /// 2) Returns expected trip count according to profile data if any. 408 /// 3) Returns upper bound estimate if it is known. 409 /// 4) Returns None if all of the above failed. 410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 411 // Check if exact trip count is known. 412 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 413 return ExpectedTC; 414 415 // Check if there is an expected trip count available from profile data. 416 if (LoopVectorizeWithBlockFrequency) 417 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 418 return EstimatedTC; 419 420 // Check if upper bound estimate is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 422 return ExpectedTC; 423 424 return None; 425 } 426 427 // Forward declare GeneratedRTChecks. 428 class GeneratedRTChecks; 429 430 namespace llvm { 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop. 473 /// In the case of epilogue vectorization, this function is overriden to 474 /// handle the more complex control flow around the loops. 475 virtual BasicBlock *createVectorizedLoopSkeleton(); 476 477 /// Widen a single instruction within the innermost loop. 478 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 479 VPTransformState &State); 480 481 /// Widen a single call instruction within the innermost loop. 482 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 483 VPTransformState &State); 484 485 /// Widen a single select instruction within the innermost loop. 486 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 487 bool InvariantCond, VPTransformState &State); 488 489 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 490 void fixVectorizedLoop(VPTransformState &State); 491 492 // Return true if any runtime check is added. 493 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 494 495 /// A type for vectorized values in the new loop. Each value from the 496 /// original loop, when vectorized, is represented by UF vector values in the 497 /// new unrolled loop, where UF is the unroll factor. 498 using VectorParts = SmallVector<Value *, 2>; 499 500 /// Vectorize a single GetElementPtrInst based on information gathered and 501 /// decisions taken during planning. 502 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 503 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 504 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 505 506 /// Vectorize a single first-order recurrence or pointer induction PHINode in 507 /// a block. This method handles the induction variable canonicalization. It 508 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 509 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 510 VPTransformState &State); 511 512 /// A helper function to scalarize a single Instruction in the innermost loop. 513 /// Generates a sequence of scalar instances for each lane between \p MinLane 514 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 515 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 516 /// Instr's operands. 517 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 518 const VPIteration &Instance, bool IfPredicateInstr, 519 VPTransformState &State); 520 521 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 522 /// is provided, the integer induction variable will first be truncated to 523 /// the corresponding type. 524 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 525 VPValue *Def, VPValue *CastDef, 526 VPTransformState &State); 527 528 /// Construct the vector value of a scalarized value \p V one lane at a time. 529 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 530 VPTransformState &State); 531 532 /// Try to vectorize interleaved access group \p Group with the base address 533 /// given in \p Addr, optionally masking the vector operations if \p 534 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 535 /// values in the vectorized loop. 536 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 537 ArrayRef<VPValue *> VPDefs, 538 VPTransformState &State, VPValue *Addr, 539 ArrayRef<VPValue *> StoredValues, 540 VPValue *BlockInMask = nullptr); 541 542 /// Vectorize Load and Store instructions with the base address given in \p 543 /// Addr, optionally masking the vector operations if \p BlockInMask is 544 /// non-null. Use \p State to translate given VPValues to IR values in the 545 /// vectorized loop. 546 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 547 VPValue *Def, VPValue *Addr, 548 VPValue *StoredValue, VPValue *BlockInMask); 549 550 /// Set the debug location in the builder \p Ptr using the debug location in 551 /// \p V. If \p Ptr is None then it uses the class member's Builder. 552 void setDebugLocFromInst(const Value *V, 553 Optional<IRBuilder<> *> CustomBuilder = None); 554 555 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 556 void fixNonInductionPHIs(VPTransformState &State); 557 558 /// Returns true if the reordering of FP operations is not allowed, but we are 559 /// able to vectorize with strict in-order reductions for the given RdxDesc. 560 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 561 562 /// Create a broadcast instruction. This method generates a broadcast 563 /// instruction (shuffle) for loop invariant values and for the induction 564 /// value. If this is the induction variable then we extend it to N, N+1, ... 565 /// this is needed because each iteration in the loop corresponds to a SIMD 566 /// element. 567 virtual Value *getBroadcastInstrs(Value *V); 568 569 protected: 570 friend class LoopVectorizationPlanner; 571 572 /// A small list of PHINodes. 573 using PhiVector = SmallVector<PHINode *, 4>; 574 575 /// A type for scalarized values in the new loop. Each value from the 576 /// original loop, when scalarized, is represented by UF x VF scalar values 577 /// in the new unrolled loop, where UF is the unroll factor and VF is the 578 /// vectorization factor. 579 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 580 581 /// Set up the values of the IVs correctly when exiting the vector loop. 582 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 583 Value *CountRoundDown, Value *EndValue, 584 BasicBlock *MiddleBlock); 585 586 /// Create a new induction variable inside L. 587 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 588 Value *Step, Instruction *DL); 589 590 /// Handle all cross-iteration phis in the header. 591 void fixCrossIterationPHIs(VPTransformState &State); 592 593 /// Fix a first-order recurrence. This is the second phase of vectorizing 594 /// this phi node. 595 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 596 597 /// Fix a reduction cross-iteration phi. This is the second phase of 598 /// vectorizing this phi node. 599 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 600 601 /// Clear NSW/NUW flags from reduction instructions if necessary. 602 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 603 VPTransformState &State); 604 605 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 606 /// means we need to add the appropriate incoming value from the middle 607 /// block as exiting edges from the scalar epilogue loop (if present) are 608 /// already in place, and we exit the vector loop exclusively to the middle 609 /// block. 610 void fixLCSSAPHIs(VPTransformState &State); 611 612 /// Iteratively sink the scalarized operands of a predicated instruction into 613 /// the block that was created for it. 614 void sinkScalarOperands(Instruction *PredInst); 615 616 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 617 /// represented as. 618 void truncateToMinimalBitwidths(VPTransformState &State); 619 620 /// This function adds 621 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 622 /// to each vector element of Val. The sequence starts at StartIndex. 623 /// \p Opcode is relevant for FP induction variable. 624 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 625 Instruction::BinaryOps Opcode = 626 Instruction::BinaryOpsEnd); 627 628 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 629 /// variable on which to base the steps, \p Step is the size of the step, and 630 /// \p EntryVal is the value from the original loop that maps to the steps. 631 /// Note that \p EntryVal doesn't have to be an induction variable - it 632 /// can also be a truncate instruction. 633 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 634 const InductionDescriptor &ID, VPValue *Def, 635 VPValue *CastDef, VPTransformState &State); 636 637 /// Create a vector induction phi node based on an existing scalar one. \p 638 /// EntryVal is the value from the original loop that maps to the vector phi 639 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 640 /// truncate instruction, instead of widening the original IV, we widen a 641 /// version of the IV truncated to \p EntryVal's type. 642 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 643 Value *Step, Value *Start, 644 Instruction *EntryVal, VPValue *Def, 645 VPValue *CastDef, 646 VPTransformState &State); 647 648 /// Returns true if an instruction \p I should be scalarized instead of 649 /// vectorized for the chosen vectorization factor. 650 bool shouldScalarizeInstruction(Instruction *I) const; 651 652 /// Returns true if we should generate a scalar version of \p IV. 653 bool needsScalarInduction(Instruction *IV) const; 654 655 /// If there is a cast involved in the induction variable \p ID, which should 656 /// be ignored in the vectorized loop body, this function records the 657 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 658 /// cast. We had already proved that the casted Phi is equal to the uncasted 659 /// Phi in the vectorized loop (under a runtime guard), and therefore 660 /// there is no need to vectorize the cast - the same value can be used in the 661 /// vector loop for both the Phi and the cast. 662 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 663 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 664 /// 665 /// \p EntryVal is the value from the original loop that maps to the vector 666 /// phi node and is used to distinguish what is the IV currently being 667 /// processed - original one (if \p EntryVal is a phi corresponding to the 668 /// original IV) or the "newly-created" one based on the proof mentioned above 669 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 670 /// latter case \p EntryVal is a TruncInst and we must not record anything for 671 /// that IV, but it's error-prone to expect callers of this routine to care 672 /// about that, hence this explicit parameter. 673 void recordVectorLoopValueForInductionCast( 674 const InductionDescriptor &ID, const Instruction *EntryVal, 675 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 676 unsigned Part, unsigned Lane = UINT_MAX); 677 678 /// Generate a shuffle sequence that will reverse the vector Vec. 679 virtual Value *reverseVector(Value *Vec); 680 681 /// Returns (and creates if needed) the original loop trip count. 682 Value *getOrCreateTripCount(Loop *NewLoop); 683 684 /// Returns (and creates if needed) the trip count of the widened loop. 685 Value *getOrCreateVectorTripCount(Loop *NewLoop); 686 687 /// Returns a bitcasted value to the requested vector type. 688 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 689 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 690 const DataLayout &DL); 691 692 /// Emit a bypass check to see if the vector trip count is zero, including if 693 /// it overflows. 694 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 695 696 /// Emit a bypass check to see if all of the SCEV assumptions we've 697 /// had to make are correct. Returns the block containing the checks or 698 /// nullptr if no checks have been added. 699 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 700 701 /// Emit bypass checks to check any memory assumptions we may have made. 702 /// Returns the block containing the checks or nullptr if no checks have been 703 /// added. 704 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 705 706 /// Compute the transformed value of Index at offset StartValue using step 707 /// StepValue. 708 /// For integer induction, returns StartValue + Index * StepValue. 709 /// For pointer induction, returns StartValue[Index * StepValue]. 710 /// FIXME: The newly created binary instructions should contain nsw/nuw 711 /// flags, which can be found from the original scalar operations. 712 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 713 const DataLayout &DL, 714 const InductionDescriptor &ID) const; 715 716 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 717 /// vector loop preheader, middle block and scalar preheader. Also 718 /// allocate a loop object for the new vector loop and return it. 719 Loop *createVectorLoopSkeleton(StringRef Prefix); 720 721 /// Create new phi nodes for the induction variables to resume iteration count 722 /// in the scalar epilogue, from where the vectorized loop left off (given by 723 /// \p VectorTripCount). 724 /// In cases where the loop skeleton is more complicated (eg. epilogue 725 /// vectorization) and the resume values can come from an additional bypass 726 /// block, the \p AdditionalBypass pair provides information about the bypass 727 /// block and the end value on the edge from bypass to this loop. 728 void createInductionResumeValues( 729 Loop *L, Value *VectorTripCount, 730 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 731 732 /// Complete the loop skeleton by adding debug MDs, creating appropriate 733 /// conditional branches in the middle block, preparing the builder and 734 /// running the verifier. Take in the vector loop \p L as argument, and return 735 /// the preheader of the completed vector loop. 736 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 737 738 /// Add additional metadata to \p To that was not present on \p Orig. 739 /// 740 /// Currently this is used to add the noalias annotations based on the 741 /// inserted memchecks. Use this for instructions that are *cloned* into the 742 /// vector loop. 743 void addNewMetadata(Instruction *To, const Instruction *Orig); 744 745 /// Add metadata from one instruction to another. 746 /// 747 /// This includes both the original MDs from \p From and additional ones (\see 748 /// addNewMetadata). Use this for *newly created* instructions in the vector 749 /// loop. 750 void addMetadata(Instruction *To, Instruction *From); 751 752 /// Similar to the previous function but it adds the metadata to a 753 /// vector of instructions. 754 void addMetadata(ArrayRef<Value *> To, Instruction *From); 755 756 /// Allow subclasses to override and print debug traces before/after vplan 757 /// execution, when trace information is requested. 758 virtual void printDebugTracesAtStart(){}; 759 virtual void printDebugTracesAtEnd(){}; 760 761 /// The original loop. 762 Loop *OrigLoop; 763 764 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 765 /// dynamic knowledge to simplify SCEV expressions and converts them to a 766 /// more usable form. 767 PredicatedScalarEvolution &PSE; 768 769 /// Loop Info. 770 LoopInfo *LI; 771 772 /// Dominator Tree. 773 DominatorTree *DT; 774 775 /// Alias Analysis. 776 AAResults *AA; 777 778 /// Target Library Info. 779 const TargetLibraryInfo *TLI; 780 781 /// Target Transform Info. 782 const TargetTransformInfo *TTI; 783 784 /// Assumption Cache. 785 AssumptionCache *AC; 786 787 /// Interface to emit optimization remarks. 788 OptimizationRemarkEmitter *ORE; 789 790 /// LoopVersioning. It's only set up (non-null) if memchecks were 791 /// used. 792 /// 793 /// This is currently only used to add no-alias metadata based on the 794 /// memchecks. The actually versioning is performed manually. 795 std::unique_ptr<LoopVersioning> LVer; 796 797 /// The vectorization SIMD factor to use. Each vector will have this many 798 /// vector elements. 799 ElementCount VF; 800 801 /// The vectorization unroll factor to use. Each scalar is vectorized to this 802 /// many different vector instructions. 803 unsigned UF; 804 805 /// The builder that we use 806 IRBuilder<> Builder; 807 808 // --- Vectorization state --- 809 810 /// The vector-loop preheader. 811 BasicBlock *LoopVectorPreHeader; 812 813 /// The scalar-loop preheader. 814 BasicBlock *LoopScalarPreHeader; 815 816 /// Middle Block between the vector and the scalar. 817 BasicBlock *LoopMiddleBlock; 818 819 /// The unique ExitBlock of the scalar loop if one exists. Note that 820 /// there can be multiple exiting edges reaching this block. 821 BasicBlock *LoopExitBlock; 822 823 /// The vector loop body. 824 BasicBlock *LoopVectorBody; 825 826 /// The scalar loop body. 827 BasicBlock *LoopScalarBody; 828 829 /// A list of all bypass blocks. The first block is the entry of the loop. 830 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 831 832 /// The new Induction variable which was added to the new block. 833 PHINode *Induction = nullptr; 834 835 /// The induction variable of the old basic block. 836 PHINode *OldInduction = nullptr; 837 838 /// Store instructions that were predicated. 839 SmallVector<Instruction *, 4> PredicatedInstructions; 840 841 /// Trip count of the original loop. 842 Value *TripCount = nullptr; 843 844 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 845 Value *VectorTripCount = nullptr; 846 847 /// The legality analysis. 848 LoopVectorizationLegality *Legal; 849 850 /// The profitablity analysis. 851 LoopVectorizationCostModel *Cost; 852 853 // Record whether runtime checks are added. 854 bool AddedSafetyChecks = false; 855 856 // Holds the end values for each induction variable. We save the end values 857 // so we can later fix-up the external users of the induction variables. 858 DenseMap<PHINode *, Value *> IVEndValues; 859 860 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 861 // fixed up at the end of vector code generation. 862 SmallVector<PHINode *, 8> OrigPHIsToFix; 863 864 /// BFI and PSI are used to check for profile guided size optimizations. 865 BlockFrequencyInfo *BFI; 866 ProfileSummaryInfo *PSI; 867 868 // Whether this loop should be optimized for size based on profile guided size 869 // optimizatios. 870 bool OptForSizeBasedOnProfile; 871 872 /// Structure to hold information about generated runtime checks, responsible 873 /// for cleaning the checks, if vectorization turns out unprofitable. 874 GeneratedRTChecks &RTChecks; 875 }; 876 877 class InnerLoopUnroller : public InnerLoopVectorizer { 878 public: 879 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 880 LoopInfo *LI, DominatorTree *DT, 881 const TargetLibraryInfo *TLI, 882 const TargetTransformInfo *TTI, AssumptionCache *AC, 883 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 884 LoopVectorizationLegality *LVL, 885 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 886 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 887 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 888 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 889 BFI, PSI, Check) {} 890 891 private: 892 Value *getBroadcastInstrs(Value *V) override; 893 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 894 Instruction::BinaryOps Opcode = 895 Instruction::BinaryOpsEnd) override; 896 Value *reverseVector(Value *Vec) override; 897 }; 898 899 /// Encapsulate information regarding vectorization of a loop and its epilogue. 900 /// This information is meant to be updated and used across two stages of 901 /// epilogue vectorization. 902 struct EpilogueLoopVectorizationInfo { 903 ElementCount MainLoopVF = ElementCount::getFixed(0); 904 unsigned MainLoopUF = 0; 905 ElementCount EpilogueVF = ElementCount::getFixed(0); 906 unsigned EpilogueUF = 0; 907 BasicBlock *MainLoopIterationCountCheck = nullptr; 908 BasicBlock *EpilogueIterationCountCheck = nullptr; 909 BasicBlock *SCEVSafetyCheck = nullptr; 910 BasicBlock *MemSafetyCheck = nullptr; 911 Value *TripCount = nullptr; 912 Value *VectorTripCount = nullptr; 913 914 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 915 unsigned EUF) 916 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 917 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 918 assert(EUF == 1 && 919 "A high UF for the epilogue loop is likely not beneficial."); 920 } 921 }; 922 923 /// An extension of the inner loop vectorizer that creates a skeleton for a 924 /// vectorized loop that has its epilogue (residual) also vectorized. 925 /// The idea is to run the vplan on a given loop twice, firstly to setup the 926 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 927 /// from the first step and vectorize the epilogue. This is achieved by 928 /// deriving two concrete strategy classes from this base class and invoking 929 /// them in succession from the loop vectorizer planner. 930 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 931 public: 932 InnerLoopAndEpilogueVectorizer( 933 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 934 DominatorTree *DT, const TargetLibraryInfo *TLI, 935 const TargetTransformInfo *TTI, AssumptionCache *AC, 936 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 937 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 938 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 939 GeneratedRTChecks &Checks) 940 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 941 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 942 Checks), 943 EPI(EPI) {} 944 945 // Override this function to handle the more complex control flow around the 946 // three loops. 947 BasicBlock *createVectorizedLoopSkeleton() final override { 948 return createEpilogueVectorizedLoopSkeleton(); 949 } 950 951 /// The interface for creating a vectorized skeleton using one of two 952 /// different strategies, each corresponding to one execution of the vplan 953 /// as described above. 954 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 955 956 /// Holds and updates state information required to vectorize the main loop 957 /// and its epilogue in two separate passes. This setup helps us avoid 958 /// regenerating and recomputing runtime safety checks. It also helps us to 959 /// shorten the iteration-count-check path length for the cases where the 960 /// iteration count of the loop is so small that the main vector loop is 961 /// completely skipped. 962 EpilogueLoopVectorizationInfo &EPI; 963 }; 964 965 /// A specialized derived class of inner loop vectorizer that performs 966 /// vectorization of *main* loops in the process of vectorizing loops and their 967 /// epilogues. 968 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 969 public: 970 EpilogueVectorizerMainLoop( 971 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 972 DominatorTree *DT, const TargetLibraryInfo *TLI, 973 const TargetTransformInfo *TTI, AssumptionCache *AC, 974 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 975 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 976 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 977 GeneratedRTChecks &Check) 978 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 979 EPI, LVL, CM, BFI, PSI, Check) {} 980 /// Implements the interface for creating a vectorized skeleton using the 981 /// *main loop* strategy (ie the first pass of vplan execution). 982 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 983 984 protected: 985 /// Emits an iteration count bypass check once for the main loop (when \p 986 /// ForEpilogue is false) and once for the epilogue loop (when \p 987 /// ForEpilogue is true). 988 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 989 bool ForEpilogue); 990 void printDebugTracesAtStart() override; 991 void printDebugTracesAtEnd() override; 992 }; 993 994 // A specialized derived class of inner loop vectorizer that performs 995 // vectorization of *epilogue* loops in the process of vectorizing loops and 996 // their epilogues. 997 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 998 public: 999 EpilogueVectorizerEpilogueLoop( 1000 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1001 DominatorTree *DT, const TargetLibraryInfo *TLI, 1002 const TargetTransformInfo *TTI, AssumptionCache *AC, 1003 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1004 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1005 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1006 GeneratedRTChecks &Checks) 1007 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1008 EPI, LVL, CM, BFI, PSI, Checks) {} 1009 /// Implements the interface for creating a vectorized skeleton using the 1010 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1011 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1012 1013 protected: 1014 /// Emits an iteration count bypass check after the main vector loop has 1015 /// finished to see if there are any iterations left to execute by either 1016 /// the vector epilogue or the scalar epilogue. 1017 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1018 BasicBlock *Bypass, 1019 BasicBlock *Insert); 1020 void printDebugTracesAtStart() override; 1021 void printDebugTracesAtEnd() override; 1022 }; 1023 } // end namespace llvm 1024 1025 /// Look for a meaningful debug location on the instruction or it's 1026 /// operands. 1027 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1028 if (!I) 1029 return I; 1030 1031 DebugLoc Empty; 1032 if (I->getDebugLoc() != Empty) 1033 return I; 1034 1035 for (Use &Op : I->operands()) { 1036 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1037 if (OpInst->getDebugLoc() != Empty) 1038 return OpInst; 1039 } 1040 1041 return I; 1042 } 1043 1044 void InnerLoopVectorizer::setDebugLocFromInst( 1045 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1046 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1047 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1048 const DILocation *DIL = Inst->getDebugLoc(); 1049 1050 // When a FSDiscriminator is enabled, we don't need to add the multiply 1051 // factors to the discriminators. 1052 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1053 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1054 // FIXME: For scalable vectors, assume vscale=1. 1055 auto NewDIL = 1056 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1057 if (NewDIL) 1058 B->SetCurrentDebugLocation(NewDIL.getValue()); 1059 else 1060 LLVM_DEBUG(dbgs() 1061 << "Failed to create new discriminator: " 1062 << DIL->getFilename() << " Line: " << DIL->getLine()); 1063 } else 1064 B->SetCurrentDebugLocation(DIL); 1065 } else 1066 B->SetCurrentDebugLocation(DebugLoc()); 1067 } 1068 1069 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1070 /// is passed, the message relates to that particular instruction. 1071 #ifndef NDEBUG 1072 static void debugVectorizationMessage(const StringRef Prefix, 1073 const StringRef DebugMsg, 1074 Instruction *I) { 1075 dbgs() << "LV: " << Prefix << DebugMsg; 1076 if (I != nullptr) 1077 dbgs() << " " << *I; 1078 else 1079 dbgs() << '.'; 1080 dbgs() << '\n'; 1081 } 1082 #endif 1083 1084 /// Create an analysis remark that explains why vectorization failed 1085 /// 1086 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1087 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1088 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1089 /// the location of the remark. \return the remark object that can be 1090 /// streamed to. 1091 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1092 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1093 Value *CodeRegion = TheLoop->getHeader(); 1094 DebugLoc DL = TheLoop->getStartLoc(); 1095 1096 if (I) { 1097 CodeRegion = I->getParent(); 1098 // If there is no debug location attached to the instruction, revert back to 1099 // using the loop's. 1100 if (I->getDebugLoc()) 1101 DL = I->getDebugLoc(); 1102 } 1103 1104 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1105 } 1106 1107 /// Return a value for Step multiplied by VF. 1108 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1109 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1110 Constant *StepVal = ConstantInt::get( 1111 Step->getType(), 1112 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1113 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1114 } 1115 1116 namespace llvm { 1117 1118 /// Return the runtime value for VF. 1119 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1120 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1121 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1122 } 1123 1124 void reportVectorizationFailure(const StringRef DebugMsg, 1125 const StringRef OREMsg, const StringRef ORETag, 1126 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1127 Instruction *I) { 1128 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1129 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1130 ORE->emit( 1131 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1132 << "loop not vectorized: " << OREMsg); 1133 } 1134 1135 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1136 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1137 Instruction *I) { 1138 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1139 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1140 ORE->emit( 1141 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1142 << Msg); 1143 } 1144 1145 } // end namespace llvm 1146 1147 #ifndef NDEBUG 1148 /// \return string containing a file name and a line # for the given loop. 1149 static std::string getDebugLocString(const Loop *L) { 1150 std::string Result; 1151 if (L) { 1152 raw_string_ostream OS(Result); 1153 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1154 LoopDbgLoc.print(OS); 1155 else 1156 // Just print the module name. 1157 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1158 OS.flush(); 1159 } 1160 return Result; 1161 } 1162 #endif 1163 1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1165 const Instruction *Orig) { 1166 // If the loop was versioned with memchecks, add the corresponding no-alias 1167 // metadata. 1168 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1169 LVer->annotateInstWithNoAlias(To, Orig); 1170 } 1171 1172 void InnerLoopVectorizer::addMetadata(Instruction *To, 1173 Instruction *From) { 1174 propagateMetadata(To, From); 1175 addNewMetadata(To, From); 1176 } 1177 1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1179 Instruction *From) { 1180 for (Value *V : To) { 1181 if (Instruction *I = dyn_cast<Instruction>(V)) 1182 addMetadata(I, From); 1183 } 1184 } 1185 1186 namespace llvm { 1187 1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1189 // lowered. 1190 enum ScalarEpilogueLowering { 1191 1192 // The default: allowing scalar epilogues. 1193 CM_ScalarEpilogueAllowed, 1194 1195 // Vectorization with OptForSize: don't allow epilogues. 1196 CM_ScalarEpilogueNotAllowedOptSize, 1197 1198 // A special case of vectorisation with OptForSize: loops with a very small 1199 // trip count are considered for vectorization under OptForSize, thereby 1200 // making sure the cost of their loop body is dominant, free of runtime 1201 // guards and scalar iteration overheads. 1202 CM_ScalarEpilogueNotAllowedLowTripLoop, 1203 1204 // Loop hint predicate indicating an epilogue is undesired. 1205 CM_ScalarEpilogueNotNeededUsePredicate, 1206 1207 // Directive indicating we must either tail fold or not vectorize 1208 CM_ScalarEpilogueNotAllowedUsePredicate 1209 }; 1210 1211 /// ElementCountComparator creates a total ordering for ElementCount 1212 /// for the purposes of using it in a set structure. 1213 struct ElementCountComparator { 1214 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1215 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1216 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1217 } 1218 }; 1219 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1220 1221 /// LoopVectorizationCostModel - estimates the expected speedups due to 1222 /// vectorization. 1223 /// In many cases vectorization is not profitable. This can happen because of 1224 /// a number of reasons. In this class we mainly attempt to predict the 1225 /// expected speedup/slowdowns due to the supported instruction set. We use the 1226 /// TargetTransformInfo to query the different backends for the cost of 1227 /// different operations. 1228 class LoopVectorizationCostModel { 1229 public: 1230 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1231 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1232 LoopVectorizationLegality *Legal, 1233 const TargetTransformInfo &TTI, 1234 const TargetLibraryInfo *TLI, DemandedBits *DB, 1235 AssumptionCache *AC, 1236 OptimizationRemarkEmitter *ORE, const Function *F, 1237 const LoopVectorizeHints *Hints, 1238 InterleavedAccessInfo &IAI) 1239 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1240 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1241 Hints(Hints), InterleaveInfo(IAI) {} 1242 1243 /// \return An upper bound for the vectorization factors (both fixed and 1244 /// scalable). If the factors are 0, vectorization and interleaving should be 1245 /// avoided up front. 1246 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1247 1248 /// \return True if runtime checks are required for vectorization, and false 1249 /// otherwise. 1250 bool runtimeChecksRequired(); 1251 1252 /// \return The most profitable vectorization factor and the cost of that VF. 1253 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1254 /// then this vectorization factor will be selected if vectorization is 1255 /// possible. 1256 VectorizationFactor 1257 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1258 1259 VectorizationFactor 1260 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1261 const LoopVectorizationPlanner &LVP); 1262 1263 /// Setup cost-based decisions for user vectorization factor. 1264 /// \return true if the UserVF is a feasible VF to be chosen. 1265 bool selectUserVectorizationFactor(ElementCount UserVF) { 1266 collectUniformsAndScalars(UserVF); 1267 collectInstsToScalarize(UserVF); 1268 return expectedCost(UserVF).first.isValid(); 1269 } 1270 1271 /// \return The size (in bits) of the smallest and widest types in the code 1272 /// that needs to be vectorized. We ignore values that remain scalar such as 1273 /// 64 bit loop indices. 1274 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1275 1276 /// \return The desired interleave count. 1277 /// If interleave count has been specified by metadata it will be returned. 1278 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1279 /// are the selected vectorization factor and the cost of the selected VF. 1280 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1281 1282 /// Memory access instruction may be vectorized in more than one way. 1283 /// Form of instruction after vectorization depends on cost. 1284 /// This function takes cost-based decisions for Load/Store instructions 1285 /// and collects them in a map. This decisions map is used for building 1286 /// the lists of loop-uniform and loop-scalar instructions. 1287 /// The calculated cost is saved with widening decision in order to 1288 /// avoid redundant calculations. 1289 void setCostBasedWideningDecision(ElementCount VF); 1290 1291 /// A struct that represents some properties of the register usage 1292 /// of a loop. 1293 struct RegisterUsage { 1294 /// Holds the number of loop invariant values that are used in the loop. 1295 /// The key is ClassID of target-provided register class. 1296 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1297 /// Holds the maximum number of concurrent live intervals in the loop. 1298 /// The key is ClassID of target-provided register class. 1299 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1300 }; 1301 1302 /// \return Returns information about the register usages of the loop for the 1303 /// given vectorization factors. 1304 SmallVector<RegisterUsage, 8> 1305 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1306 1307 /// Collect values we want to ignore in the cost model. 1308 void collectValuesToIgnore(); 1309 1310 /// Collect all element types in the loop for which widening is needed. 1311 void collectElementTypesForWidening(); 1312 1313 /// Split reductions into those that happen in the loop, and those that happen 1314 /// outside. In loop reductions are collected into InLoopReductionChains. 1315 void collectInLoopReductions(); 1316 1317 /// Returns true if we should use strict in-order reductions for the given 1318 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1319 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1320 /// of FP operations. 1321 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1322 return EnableStrictReductions && !Hints->allowReordering() && 1323 RdxDesc.isOrdered(); 1324 } 1325 1326 /// \returns The smallest bitwidth each instruction can be represented with. 1327 /// The vector equivalents of these instructions should be truncated to this 1328 /// type. 1329 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1330 return MinBWs; 1331 } 1332 1333 /// \returns True if it is more profitable to scalarize instruction \p I for 1334 /// vectorization factor \p VF. 1335 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1336 assert(VF.isVector() && 1337 "Profitable to scalarize relevant only for VF > 1."); 1338 1339 // Cost model is not run in the VPlan-native path - return conservative 1340 // result until this changes. 1341 if (EnableVPlanNativePath) 1342 return false; 1343 1344 auto Scalars = InstsToScalarize.find(VF); 1345 assert(Scalars != InstsToScalarize.end() && 1346 "VF not yet analyzed for scalarization profitability"); 1347 return Scalars->second.find(I) != Scalars->second.end(); 1348 } 1349 1350 /// Returns true if \p I is known to be uniform after vectorization. 1351 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1352 if (VF.isScalar()) 1353 return true; 1354 1355 // Cost model is not run in the VPlan-native path - return conservative 1356 // result until this changes. 1357 if (EnableVPlanNativePath) 1358 return false; 1359 1360 auto UniformsPerVF = Uniforms.find(VF); 1361 assert(UniformsPerVF != Uniforms.end() && 1362 "VF not yet analyzed for uniformity"); 1363 return UniformsPerVF->second.count(I); 1364 } 1365 1366 /// Returns true if \p I is known to be scalar after vectorization. 1367 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1368 if (VF.isScalar()) 1369 return true; 1370 1371 // Cost model is not run in the VPlan-native path - return conservative 1372 // result until this changes. 1373 if (EnableVPlanNativePath) 1374 return false; 1375 1376 auto ScalarsPerVF = Scalars.find(VF); 1377 assert(ScalarsPerVF != Scalars.end() && 1378 "Scalar values are not calculated for VF"); 1379 return ScalarsPerVF->second.count(I); 1380 } 1381 1382 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1383 /// for vectorization factor \p VF. 1384 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1385 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1386 !isProfitableToScalarize(I, VF) && 1387 !isScalarAfterVectorization(I, VF); 1388 } 1389 1390 /// Decision that was taken during cost calculation for memory instruction. 1391 enum InstWidening { 1392 CM_Unknown, 1393 CM_Widen, // For consecutive accesses with stride +1. 1394 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1395 CM_Interleave, 1396 CM_GatherScatter, 1397 CM_Scalarize 1398 }; 1399 1400 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1401 /// instruction \p I and vector width \p VF. 1402 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1403 InstructionCost Cost) { 1404 assert(VF.isVector() && "Expected VF >=2"); 1405 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1406 } 1407 1408 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1409 /// interleaving group \p Grp and vector width \p VF. 1410 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1411 ElementCount VF, InstWidening W, 1412 InstructionCost Cost) { 1413 assert(VF.isVector() && "Expected VF >=2"); 1414 /// Broadcast this decicion to all instructions inside the group. 1415 /// But the cost will be assigned to one instruction only. 1416 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1417 if (auto *I = Grp->getMember(i)) { 1418 if (Grp->getInsertPos() == I) 1419 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1420 else 1421 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1422 } 1423 } 1424 } 1425 1426 /// Return the cost model decision for the given instruction \p I and vector 1427 /// width \p VF. Return CM_Unknown if this instruction did not pass 1428 /// through the cost modeling. 1429 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1430 assert(VF.isVector() && "Expected VF to be a vector VF"); 1431 // Cost model is not run in the VPlan-native path - return conservative 1432 // result until this changes. 1433 if (EnableVPlanNativePath) 1434 return CM_GatherScatter; 1435 1436 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1437 auto Itr = WideningDecisions.find(InstOnVF); 1438 if (Itr == WideningDecisions.end()) 1439 return CM_Unknown; 1440 return Itr->second.first; 1441 } 1442 1443 /// Return the vectorization cost for the given instruction \p I and vector 1444 /// width \p VF. 1445 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1446 assert(VF.isVector() && "Expected VF >=2"); 1447 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1448 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1449 "The cost is not calculated"); 1450 return WideningDecisions[InstOnVF].second; 1451 } 1452 1453 /// Return True if instruction \p I is an optimizable truncate whose operand 1454 /// is an induction variable. Such a truncate will be removed by adding a new 1455 /// induction variable with the destination type. 1456 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1457 // If the instruction is not a truncate, return false. 1458 auto *Trunc = dyn_cast<TruncInst>(I); 1459 if (!Trunc) 1460 return false; 1461 1462 // Get the source and destination types of the truncate. 1463 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1464 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1465 1466 // If the truncate is free for the given types, return false. Replacing a 1467 // free truncate with an induction variable would add an induction variable 1468 // update instruction to each iteration of the loop. We exclude from this 1469 // check the primary induction variable since it will need an update 1470 // instruction regardless. 1471 Value *Op = Trunc->getOperand(0); 1472 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1473 return false; 1474 1475 // If the truncated value is not an induction variable, return false. 1476 return Legal->isInductionPhi(Op); 1477 } 1478 1479 /// Collects the instructions to scalarize for each predicated instruction in 1480 /// the loop. 1481 void collectInstsToScalarize(ElementCount VF); 1482 1483 /// Collect Uniform and Scalar values for the given \p VF. 1484 /// The sets depend on CM decision for Load/Store instructions 1485 /// that may be vectorized as interleave, gather-scatter or scalarized. 1486 void collectUniformsAndScalars(ElementCount VF) { 1487 // Do the analysis once. 1488 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1489 return; 1490 setCostBasedWideningDecision(VF); 1491 collectLoopUniforms(VF); 1492 collectLoopScalars(VF); 1493 } 1494 1495 /// Returns true if the target machine supports masked store operation 1496 /// for the given \p DataType and kind of access to \p Ptr. 1497 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1498 return Legal->isConsecutivePtr(Ptr) && 1499 TTI.isLegalMaskedStore(DataType, Alignment); 1500 } 1501 1502 /// Returns true if the target machine supports masked load operation 1503 /// for the given \p DataType and kind of access to \p Ptr. 1504 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1505 return Legal->isConsecutivePtr(Ptr) && 1506 TTI.isLegalMaskedLoad(DataType, Alignment); 1507 } 1508 1509 /// Returns true if the target machine can represent \p V as a masked gather 1510 /// or scatter operation. 1511 bool isLegalGatherOrScatter(Value *V) { 1512 bool LI = isa<LoadInst>(V); 1513 bool SI = isa<StoreInst>(V); 1514 if (!LI && !SI) 1515 return false; 1516 auto *Ty = getLoadStoreType(V); 1517 Align Align = getLoadStoreAlignment(V); 1518 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1519 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1520 } 1521 1522 /// Returns true if the target machine supports all of the reduction 1523 /// variables found for the given VF. 1524 bool canVectorizeReductions(ElementCount VF) const { 1525 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1526 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1527 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1528 })); 1529 } 1530 1531 /// Returns true if \p I is an instruction that will be scalarized with 1532 /// predication. Such instructions include conditional stores and 1533 /// instructions that may divide by zero. 1534 /// If a non-zero VF has been calculated, we check if I will be scalarized 1535 /// predication for that VF. 1536 bool isScalarWithPredication(Instruction *I) const; 1537 1538 // Returns true if \p I is an instruction that will be predicated either 1539 // through scalar predication or masked load/store or masked gather/scatter. 1540 // Superset of instructions that return true for isScalarWithPredication. 1541 bool isPredicatedInst(Instruction *I) { 1542 if (!blockNeedsPredication(I->getParent())) 1543 return false; 1544 // Loads and stores that need some form of masked operation are predicated 1545 // instructions. 1546 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1547 return Legal->isMaskRequired(I); 1548 return isScalarWithPredication(I); 1549 } 1550 1551 /// Returns true if \p I is a memory instruction with consecutive memory 1552 /// access that can be widened. 1553 bool 1554 memoryInstructionCanBeWidened(Instruction *I, 1555 ElementCount VF = ElementCount::getFixed(1)); 1556 1557 /// Returns true if \p I is a memory instruction in an interleaved-group 1558 /// of memory accesses that can be vectorized with wide vector loads/stores 1559 /// and shuffles. 1560 bool 1561 interleavedAccessCanBeWidened(Instruction *I, 1562 ElementCount VF = ElementCount::getFixed(1)); 1563 1564 /// Check if \p Instr belongs to any interleaved access group. 1565 bool isAccessInterleaved(Instruction *Instr) { 1566 return InterleaveInfo.isInterleaved(Instr); 1567 } 1568 1569 /// Get the interleaved access group that \p Instr belongs to. 1570 const InterleaveGroup<Instruction> * 1571 getInterleavedAccessGroup(Instruction *Instr) { 1572 return InterleaveInfo.getInterleaveGroup(Instr); 1573 } 1574 1575 /// Returns true if we're required to use a scalar epilogue for at least 1576 /// the final iteration of the original loop. 1577 bool requiresScalarEpilogue(ElementCount VF) const { 1578 if (!isScalarEpilogueAllowed()) 1579 return false; 1580 // If we might exit from anywhere but the latch, must run the exiting 1581 // iteration in scalar form. 1582 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1583 return true; 1584 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1585 } 1586 1587 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1588 /// loop hint annotation. 1589 bool isScalarEpilogueAllowed() const { 1590 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1591 } 1592 1593 /// Returns true if all loop blocks should be masked to fold tail loop. 1594 bool foldTailByMasking() const { return FoldTailByMasking; } 1595 1596 bool blockNeedsPredication(BasicBlock *BB) const { 1597 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1598 } 1599 1600 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1601 /// nodes to the chain of instructions representing the reductions. Uses a 1602 /// MapVector to ensure deterministic iteration order. 1603 using ReductionChainMap = 1604 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1605 1606 /// Return the chain of instructions representing an inloop reduction. 1607 const ReductionChainMap &getInLoopReductionChains() const { 1608 return InLoopReductionChains; 1609 } 1610 1611 /// Returns true if the Phi is part of an inloop reduction. 1612 bool isInLoopReduction(PHINode *Phi) const { 1613 return InLoopReductionChains.count(Phi); 1614 } 1615 1616 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1617 /// with factor VF. Return the cost of the instruction, including 1618 /// scalarization overhead if it's needed. 1619 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1620 1621 /// Estimate cost of a call instruction CI if it were vectorized with factor 1622 /// VF. Return the cost of the instruction, including scalarization overhead 1623 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1624 /// scalarized - 1625 /// i.e. either vector version isn't available, or is too expensive. 1626 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1627 bool &NeedToScalarize) const; 1628 1629 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1630 /// that of B. 1631 bool isMoreProfitable(const VectorizationFactor &A, 1632 const VectorizationFactor &B) const; 1633 1634 /// Invalidates decisions already taken by the cost model. 1635 void invalidateCostModelingDecisions() { 1636 WideningDecisions.clear(); 1637 Uniforms.clear(); 1638 Scalars.clear(); 1639 } 1640 1641 private: 1642 unsigned NumPredStores = 0; 1643 1644 /// \return An upper bound for the vectorization factors for both 1645 /// fixed and scalable vectorization, where the minimum-known number of 1646 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1647 /// disabled or unsupported, then the scalable part will be equal to 1648 /// ElementCount::getScalable(0). 1649 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1650 ElementCount UserVF); 1651 1652 /// \return the maximized element count based on the targets vector 1653 /// registers and the loop trip-count, but limited to a maximum safe VF. 1654 /// This is a helper function of computeFeasibleMaxVF. 1655 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1656 /// issue that occurred on one of the buildbots which cannot be reproduced 1657 /// without having access to the properietary compiler (see comments on 1658 /// D98509). The issue is currently under investigation and this workaround 1659 /// will be removed as soon as possible. 1660 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1661 unsigned SmallestType, 1662 unsigned WidestType, 1663 const ElementCount &MaxSafeVF); 1664 1665 /// \return the maximum legal scalable VF, based on the safe max number 1666 /// of elements. 1667 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1668 1669 /// The vectorization cost is a combination of the cost itself and a boolean 1670 /// indicating whether any of the contributing operations will actually 1671 /// operate on vector values after type legalization in the backend. If this 1672 /// latter value is false, then all operations will be scalarized (i.e. no 1673 /// vectorization has actually taken place). 1674 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1675 1676 /// Returns the expected execution cost. The unit of the cost does 1677 /// not matter because we use the 'cost' units to compare different 1678 /// vector widths. The cost that is returned is *not* normalized by 1679 /// the factor width. 1680 VectorizationCostTy expectedCost(ElementCount VF); 1681 1682 /// Returns the execution time cost of an instruction for a given vector 1683 /// width. Vector width of one means scalar. 1684 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1685 1686 /// The cost-computation logic from getInstructionCost which provides 1687 /// the vector type as an output parameter. 1688 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1689 Type *&VectorTy); 1690 1691 /// Return the cost of instructions in an inloop reduction pattern, if I is 1692 /// part of that pattern. 1693 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1694 Type *VectorTy, 1695 TTI::TargetCostKind CostKind); 1696 1697 /// Calculate vectorization cost of memory instruction \p I. 1698 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1699 1700 /// The cost computation for scalarized memory instruction. 1701 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1702 1703 /// The cost computation for interleaving group of memory instructions. 1704 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1705 1706 /// The cost computation for Gather/Scatter instruction. 1707 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1708 1709 /// The cost computation for widening instruction \p I with consecutive 1710 /// memory access. 1711 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1712 1713 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1714 /// Load: scalar load + broadcast. 1715 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1716 /// element) 1717 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1718 1719 /// Estimate the overhead of scalarizing an instruction. This is a 1720 /// convenience wrapper for the type-based getScalarizationOverhead API. 1721 InstructionCost getScalarizationOverhead(Instruction *I, 1722 ElementCount VF) const; 1723 1724 /// Returns whether the instruction is a load or store and will be a emitted 1725 /// as a vector operation. 1726 bool isConsecutiveLoadOrStore(Instruction *I); 1727 1728 /// Returns true if an artificially high cost for emulated masked memrefs 1729 /// should be used. 1730 bool useEmulatedMaskMemRefHack(Instruction *I); 1731 1732 /// Map of scalar integer values to the smallest bitwidth they can be legally 1733 /// represented as. The vector equivalents of these values should be truncated 1734 /// to this type. 1735 MapVector<Instruction *, uint64_t> MinBWs; 1736 1737 /// A type representing the costs for instructions if they were to be 1738 /// scalarized rather than vectorized. The entries are Instruction-Cost 1739 /// pairs. 1740 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1741 1742 /// A set containing all BasicBlocks that are known to present after 1743 /// vectorization as a predicated block. 1744 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1745 1746 /// Records whether it is allowed to have the original scalar loop execute at 1747 /// least once. This may be needed as a fallback loop in case runtime 1748 /// aliasing/dependence checks fail, or to handle the tail/remainder 1749 /// iterations when the trip count is unknown or doesn't divide by the VF, 1750 /// or as a peel-loop to handle gaps in interleave-groups. 1751 /// Under optsize and when the trip count is very small we don't allow any 1752 /// iterations to execute in the scalar loop. 1753 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1754 1755 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1756 bool FoldTailByMasking = false; 1757 1758 /// A map holding scalar costs for different vectorization factors. The 1759 /// presence of a cost for an instruction in the mapping indicates that the 1760 /// instruction will be scalarized when vectorizing with the associated 1761 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1762 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1763 1764 /// Holds the instructions known to be uniform after vectorization. 1765 /// The data is collected per VF. 1766 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1767 1768 /// Holds the instructions known to be scalar after vectorization. 1769 /// The data is collected per VF. 1770 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1771 1772 /// Holds the instructions (address computations) that are forced to be 1773 /// scalarized. 1774 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1775 1776 /// PHINodes of the reductions that should be expanded in-loop along with 1777 /// their associated chains of reduction operations, in program order from top 1778 /// (PHI) to bottom 1779 ReductionChainMap InLoopReductionChains; 1780 1781 /// A Map of inloop reduction operations and their immediate chain operand. 1782 /// FIXME: This can be removed once reductions can be costed correctly in 1783 /// vplan. This was added to allow quick lookup to the inloop operations, 1784 /// without having to loop through InLoopReductionChains. 1785 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1786 1787 /// Returns the expected difference in cost from scalarizing the expression 1788 /// feeding a predicated instruction \p PredInst. The instructions to 1789 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1790 /// non-negative return value implies the expression will be scalarized. 1791 /// Currently, only single-use chains are considered for scalarization. 1792 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1793 ElementCount VF); 1794 1795 /// Collect the instructions that are uniform after vectorization. An 1796 /// instruction is uniform if we represent it with a single scalar value in 1797 /// the vectorized loop corresponding to each vector iteration. Examples of 1798 /// uniform instructions include pointer operands of consecutive or 1799 /// interleaved memory accesses. Note that although uniformity implies an 1800 /// instruction will be scalar, the reverse is not true. In general, a 1801 /// scalarized instruction will be represented by VF scalar values in the 1802 /// vectorized loop, each corresponding to an iteration of the original 1803 /// scalar loop. 1804 void collectLoopUniforms(ElementCount VF); 1805 1806 /// Collect the instructions that are scalar after vectorization. An 1807 /// instruction is scalar if it is known to be uniform or will be scalarized 1808 /// during vectorization. Non-uniform scalarized instructions will be 1809 /// represented by VF values in the vectorized loop, each corresponding to an 1810 /// iteration of the original scalar loop. 1811 void collectLoopScalars(ElementCount VF); 1812 1813 /// Keeps cost model vectorization decision and cost for instructions. 1814 /// Right now it is used for memory instructions only. 1815 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1816 std::pair<InstWidening, InstructionCost>>; 1817 1818 DecisionList WideningDecisions; 1819 1820 /// Returns true if \p V is expected to be vectorized and it needs to be 1821 /// extracted. 1822 bool needsExtract(Value *V, ElementCount VF) const { 1823 Instruction *I = dyn_cast<Instruction>(V); 1824 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1825 TheLoop->isLoopInvariant(I)) 1826 return false; 1827 1828 // Assume we can vectorize V (and hence we need extraction) if the 1829 // scalars are not computed yet. This can happen, because it is called 1830 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1831 // the scalars are collected. That should be a safe assumption in most 1832 // cases, because we check if the operands have vectorizable types 1833 // beforehand in LoopVectorizationLegality. 1834 return Scalars.find(VF) == Scalars.end() || 1835 !isScalarAfterVectorization(I, VF); 1836 }; 1837 1838 /// Returns a range containing only operands needing to be extracted. 1839 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1840 ElementCount VF) const { 1841 return SmallVector<Value *, 4>(make_filter_range( 1842 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1843 } 1844 1845 /// Determines if we have the infrastructure to vectorize loop \p L and its 1846 /// epilogue, assuming the main loop is vectorized by \p VF. 1847 bool isCandidateForEpilogueVectorization(const Loop &L, 1848 const ElementCount VF) const; 1849 1850 /// Returns true if epilogue vectorization is considered profitable, and 1851 /// false otherwise. 1852 /// \p VF is the vectorization factor chosen for the original loop. 1853 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1854 1855 public: 1856 /// The loop that we evaluate. 1857 Loop *TheLoop; 1858 1859 /// Predicated scalar evolution analysis. 1860 PredicatedScalarEvolution &PSE; 1861 1862 /// Loop Info analysis. 1863 LoopInfo *LI; 1864 1865 /// Vectorization legality. 1866 LoopVectorizationLegality *Legal; 1867 1868 /// Vector target information. 1869 const TargetTransformInfo &TTI; 1870 1871 /// Target Library Info. 1872 const TargetLibraryInfo *TLI; 1873 1874 /// Demanded bits analysis. 1875 DemandedBits *DB; 1876 1877 /// Assumption cache. 1878 AssumptionCache *AC; 1879 1880 /// Interface to emit optimization remarks. 1881 OptimizationRemarkEmitter *ORE; 1882 1883 const Function *TheFunction; 1884 1885 /// Loop Vectorize Hint. 1886 const LoopVectorizeHints *Hints; 1887 1888 /// The interleave access information contains groups of interleaved accesses 1889 /// with the same stride and close to each other. 1890 InterleavedAccessInfo &InterleaveInfo; 1891 1892 /// Values to ignore in the cost model. 1893 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1894 1895 /// Values to ignore in the cost model when VF > 1. 1896 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1897 1898 /// All element types found in the loop. 1899 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1900 1901 /// Profitable vector factors. 1902 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1903 }; 1904 } // end namespace llvm 1905 1906 /// Helper struct to manage generating runtime checks for vectorization. 1907 /// 1908 /// The runtime checks are created up-front in temporary blocks to allow better 1909 /// estimating the cost and un-linked from the existing IR. After deciding to 1910 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1911 /// temporary blocks are completely removed. 1912 class GeneratedRTChecks { 1913 /// Basic block which contains the generated SCEV checks, if any. 1914 BasicBlock *SCEVCheckBlock = nullptr; 1915 1916 /// The value representing the result of the generated SCEV checks. If it is 1917 /// nullptr, either no SCEV checks have been generated or they have been used. 1918 Value *SCEVCheckCond = nullptr; 1919 1920 /// Basic block which contains the generated memory runtime checks, if any. 1921 BasicBlock *MemCheckBlock = nullptr; 1922 1923 /// The value representing the result of the generated memory runtime checks. 1924 /// If it is nullptr, either no memory runtime checks have been generated or 1925 /// they have been used. 1926 Instruction *MemRuntimeCheckCond = nullptr; 1927 1928 DominatorTree *DT; 1929 LoopInfo *LI; 1930 1931 SCEVExpander SCEVExp; 1932 SCEVExpander MemCheckExp; 1933 1934 public: 1935 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1936 const DataLayout &DL) 1937 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1938 MemCheckExp(SE, DL, "scev.check") {} 1939 1940 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1941 /// accurately estimate the cost of the runtime checks. The blocks are 1942 /// un-linked from the IR and is added back during vector code generation. If 1943 /// there is no vector code generation, the check blocks are removed 1944 /// completely. 1945 void Create(Loop *L, const LoopAccessInfo &LAI, 1946 const SCEVUnionPredicate &UnionPred) { 1947 1948 BasicBlock *LoopHeader = L->getHeader(); 1949 BasicBlock *Preheader = L->getLoopPreheader(); 1950 1951 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1952 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1953 // may be used by SCEVExpander. The blocks will be un-linked from their 1954 // predecessors and removed from LI & DT at the end of the function. 1955 if (!UnionPred.isAlwaysTrue()) { 1956 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1957 nullptr, "vector.scevcheck"); 1958 1959 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1960 &UnionPred, SCEVCheckBlock->getTerminator()); 1961 } 1962 1963 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1964 if (RtPtrChecking.Need) { 1965 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1966 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1967 "vector.memcheck"); 1968 1969 std::tie(std::ignore, MemRuntimeCheckCond) = 1970 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1971 RtPtrChecking.getChecks(), MemCheckExp); 1972 assert(MemRuntimeCheckCond && 1973 "no RT checks generated although RtPtrChecking " 1974 "claimed checks are required"); 1975 } 1976 1977 if (!MemCheckBlock && !SCEVCheckBlock) 1978 return; 1979 1980 // Unhook the temporary block with the checks, update various places 1981 // accordingly. 1982 if (SCEVCheckBlock) 1983 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1984 if (MemCheckBlock) 1985 MemCheckBlock->replaceAllUsesWith(Preheader); 1986 1987 if (SCEVCheckBlock) { 1988 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1989 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1990 Preheader->getTerminator()->eraseFromParent(); 1991 } 1992 if (MemCheckBlock) { 1993 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1994 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1995 Preheader->getTerminator()->eraseFromParent(); 1996 } 1997 1998 DT->changeImmediateDominator(LoopHeader, Preheader); 1999 if (MemCheckBlock) { 2000 DT->eraseNode(MemCheckBlock); 2001 LI->removeBlock(MemCheckBlock); 2002 } 2003 if (SCEVCheckBlock) { 2004 DT->eraseNode(SCEVCheckBlock); 2005 LI->removeBlock(SCEVCheckBlock); 2006 } 2007 } 2008 2009 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2010 /// unused. 2011 ~GeneratedRTChecks() { 2012 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2013 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2014 if (!SCEVCheckCond) 2015 SCEVCleaner.markResultUsed(); 2016 2017 if (!MemRuntimeCheckCond) 2018 MemCheckCleaner.markResultUsed(); 2019 2020 if (MemRuntimeCheckCond) { 2021 auto &SE = *MemCheckExp.getSE(); 2022 // Memory runtime check generation creates compares that use expanded 2023 // values. Remove them before running the SCEVExpanderCleaners. 2024 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2025 if (MemCheckExp.isInsertedInstruction(&I)) 2026 continue; 2027 SE.forgetValue(&I); 2028 SE.eraseValueFromMap(&I); 2029 I.eraseFromParent(); 2030 } 2031 } 2032 MemCheckCleaner.cleanup(); 2033 SCEVCleaner.cleanup(); 2034 2035 if (SCEVCheckCond) 2036 SCEVCheckBlock->eraseFromParent(); 2037 if (MemRuntimeCheckCond) 2038 MemCheckBlock->eraseFromParent(); 2039 } 2040 2041 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2042 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2043 /// depending on the generated condition. 2044 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2045 BasicBlock *LoopVectorPreHeader, 2046 BasicBlock *LoopExitBlock) { 2047 if (!SCEVCheckCond) 2048 return nullptr; 2049 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2050 if (C->isZero()) 2051 return nullptr; 2052 2053 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2054 2055 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2056 // Create new preheader for vector loop. 2057 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2058 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2059 2060 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2061 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2062 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2063 SCEVCheckBlock); 2064 2065 DT->addNewBlock(SCEVCheckBlock, Pred); 2066 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2067 2068 ReplaceInstWithInst( 2069 SCEVCheckBlock->getTerminator(), 2070 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2071 // Mark the check as used, to prevent it from being removed during cleanup. 2072 SCEVCheckCond = nullptr; 2073 return SCEVCheckBlock; 2074 } 2075 2076 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2077 /// the branches to branch to the vector preheader or \p Bypass, depending on 2078 /// the generated condition. 2079 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2080 BasicBlock *LoopVectorPreHeader) { 2081 // Check if we generated code that checks in runtime if arrays overlap. 2082 if (!MemRuntimeCheckCond) 2083 return nullptr; 2084 2085 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2086 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2087 MemCheckBlock); 2088 2089 DT->addNewBlock(MemCheckBlock, Pred); 2090 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2091 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2092 2093 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2094 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2095 2096 ReplaceInstWithInst( 2097 MemCheckBlock->getTerminator(), 2098 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2099 MemCheckBlock->getTerminator()->setDebugLoc( 2100 Pred->getTerminator()->getDebugLoc()); 2101 2102 // Mark the check as used, to prevent it from being removed during cleanup. 2103 MemRuntimeCheckCond = nullptr; 2104 return MemCheckBlock; 2105 } 2106 }; 2107 2108 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2109 // vectorization. The loop needs to be annotated with #pragma omp simd 2110 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2111 // vector length information is not provided, vectorization is not considered 2112 // explicit. Interleave hints are not allowed either. These limitations will be 2113 // relaxed in the future. 2114 // Please, note that we are currently forced to abuse the pragma 'clang 2115 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2116 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2117 // provides *explicit vectorization hints* (LV can bypass legal checks and 2118 // assume that vectorization is legal). However, both hints are implemented 2119 // using the same metadata (llvm.loop.vectorize, processed by 2120 // LoopVectorizeHints). This will be fixed in the future when the native IR 2121 // representation for pragma 'omp simd' is introduced. 2122 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2123 OptimizationRemarkEmitter *ORE) { 2124 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2125 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2126 2127 // Only outer loops with an explicit vectorization hint are supported. 2128 // Unannotated outer loops are ignored. 2129 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2130 return false; 2131 2132 Function *Fn = OuterLp->getHeader()->getParent(); 2133 if (!Hints.allowVectorization(Fn, OuterLp, 2134 true /*VectorizeOnlyWhenForced*/)) { 2135 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2136 return false; 2137 } 2138 2139 if (Hints.getInterleave() > 1) { 2140 // TODO: Interleave support is future work. 2141 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2142 "outer loops.\n"); 2143 Hints.emitRemarkWithHints(); 2144 return false; 2145 } 2146 2147 return true; 2148 } 2149 2150 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2151 OptimizationRemarkEmitter *ORE, 2152 SmallVectorImpl<Loop *> &V) { 2153 // Collect inner loops and outer loops without irreducible control flow. For 2154 // now, only collect outer loops that have explicit vectorization hints. If we 2155 // are stress testing the VPlan H-CFG construction, we collect the outermost 2156 // loop of every loop nest. 2157 if (L.isInnermost() || VPlanBuildStressTest || 2158 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2159 LoopBlocksRPO RPOT(&L); 2160 RPOT.perform(LI); 2161 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2162 V.push_back(&L); 2163 // TODO: Collect inner loops inside marked outer loops in case 2164 // vectorization fails for the outer loop. Do not invoke 2165 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2166 // already known to be reducible. We can use an inherited attribute for 2167 // that. 2168 return; 2169 } 2170 } 2171 for (Loop *InnerL : L) 2172 collectSupportedLoops(*InnerL, LI, ORE, V); 2173 } 2174 2175 namespace { 2176 2177 /// The LoopVectorize Pass. 2178 struct LoopVectorize : public FunctionPass { 2179 /// Pass identification, replacement for typeid 2180 static char ID; 2181 2182 LoopVectorizePass Impl; 2183 2184 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2185 bool VectorizeOnlyWhenForced = false) 2186 : FunctionPass(ID), 2187 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2188 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2189 } 2190 2191 bool runOnFunction(Function &F) override { 2192 if (skipFunction(F)) 2193 return false; 2194 2195 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2196 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2197 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2198 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2199 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2200 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2201 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2202 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2203 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2204 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2205 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2206 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2207 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2208 2209 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2210 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2211 2212 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2213 GetLAA, *ORE, PSI).MadeAnyChange; 2214 } 2215 2216 void getAnalysisUsage(AnalysisUsage &AU) const override { 2217 AU.addRequired<AssumptionCacheTracker>(); 2218 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2219 AU.addRequired<DominatorTreeWrapperPass>(); 2220 AU.addRequired<LoopInfoWrapperPass>(); 2221 AU.addRequired<ScalarEvolutionWrapperPass>(); 2222 AU.addRequired<TargetTransformInfoWrapperPass>(); 2223 AU.addRequired<AAResultsWrapperPass>(); 2224 AU.addRequired<LoopAccessLegacyAnalysis>(); 2225 AU.addRequired<DemandedBitsWrapperPass>(); 2226 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2227 AU.addRequired<InjectTLIMappingsLegacy>(); 2228 2229 // We currently do not preserve loopinfo/dominator analyses with outer loop 2230 // vectorization. Until this is addressed, mark these analyses as preserved 2231 // only for non-VPlan-native path. 2232 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2233 if (!EnableVPlanNativePath) { 2234 AU.addPreserved<LoopInfoWrapperPass>(); 2235 AU.addPreserved<DominatorTreeWrapperPass>(); 2236 } 2237 2238 AU.addPreserved<BasicAAWrapperPass>(); 2239 AU.addPreserved<GlobalsAAWrapperPass>(); 2240 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2241 } 2242 }; 2243 2244 } // end anonymous namespace 2245 2246 //===----------------------------------------------------------------------===// 2247 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2248 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2249 //===----------------------------------------------------------------------===// 2250 2251 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2252 // We need to place the broadcast of invariant variables outside the loop, 2253 // but only if it's proven safe to do so. Else, broadcast will be inside 2254 // vector loop body. 2255 Instruction *Instr = dyn_cast<Instruction>(V); 2256 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2257 (!Instr || 2258 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2259 // Place the code for broadcasting invariant variables in the new preheader. 2260 IRBuilder<>::InsertPointGuard Guard(Builder); 2261 if (SafeToHoist) 2262 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2263 2264 // Broadcast the scalar into all locations in the vector. 2265 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2266 2267 return Shuf; 2268 } 2269 2270 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2271 const InductionDescriptor &II, Value *Step, Value *Start, 2272 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2273 VPTransformState &State) { 2274 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2275 "Expected either an induction phi-node or a truncate of it!"); 2276 2277 // Construct the initial value of the vector IV in the vector loop preheader 2278 auto CurrIP = Builder.saveIP(); 2279 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2280 if (isa<TruncInst>(EntryVal)) { 2281 assert(Start->getType()->isIntegerTy() && 2282 "Truncation requires an integer type"); 2283 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2284 Step = Builder.CreateTrunc(Step, TruncType); 2285 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2286 } 2287 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2288 Value *SteppedStart = 2289 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2290 2291 // We create vector phi nodes for both integer and floating-point induction 2292 // variables. Here, we determine the kind of arithmetic we will perform. 2293 Instruction::BinaryOps AddOp; 2294 Instruction::BinaryOps MulOp; 2295 if (Step->getType()->isIntegerTy()) { 2296 AddOp = Instruction::Add; 2297 MulOp = Instruction::Mul; 2298 } else { 2299 AddOp = II.getInductionOpcode(); 2300 MulOp = Instruction::FMul; 2301 } 2302 2303 // Multiply the vectorization factor by the step using integer or 2304 // floating-point arithmetic as appropriate. 2305 Type *StepType = Step->getType(); 2306 if (Step->getType()->isFloatingPointTy()) 2307 StepType = IntegerType::get(StepType->getContext(), 2308 StepType->getScalarSizeInBits()); 2309 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2310 if (Step->getType()->isFloatingPointTy()) 2311 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2312 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2313 2314 // Create a vector splat to use in the induction update. 2315 // 2316 // FIXME: If the step is non-constant, we create the vector splat with 2317 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2318 // handle a constant vector splat. 2319 Value *SplatVF = isa<Constant>(Mul) 2320 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2321 : Builder.CreateVectorSplat(VF, Mul); 2322 Builder.restoreIP(CurrIP); 2323 2324 // We may need to add the step a number of times, depending on the unroll 2325 // factor. The last of those goes into the PHI. 2326 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2327 &*LoopVectorBody->getFirstInsertionPt()); 2328 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2329 Instruction *LastInduction = VecInd; 2330 for (unsigned Part = 0; Part < UF; ++Part) { 2331 State.set(Def, LastInduction, Part); 2332 2333 if (isa<TruncInst>(EntryVal)) 2334 addMetadata(LastInduction, EntryVal); 2335 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2336 State, Part); 2337 2338 LastInduction = cast<Instruction>( 2339 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2340 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2341 } 2342 2343 // Move the last step to the end of the latch block. This ensures consistent 2344 // placement of all induction updates. 2345 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2346 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2347 auto *ICmp = cast<Instruction>(Br->getCondition()); 2348 LastInduction->moveBefore(ICmp); 2349 LastInduction->setName("vec.ind.next"); 2350 2351 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2352 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2353 } 2354 2355 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2356 return Cost->isScalarAfterVectorization(I, VF) || 2357 Cost->isProfitableToScalarize(I, VF); 2358 } 2359 2360 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2361 if (shouldScalarizeInstruction(IV)) 2362 return true; 2363 auto isScalarInst = [&](User *U) -> bool { 2364 auto *I = cast<Instruction>(U); 2365 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2366 }; 2367 return llvm::any_of(IV->users(), isScalarInst); 2368 } 2369 2370 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2371 const InductionDescriptor &ID, const Instruction *EntryVal, 2372 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2373 unsigned Part, unsigned Lane) { 2374 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2375 "Expected either an induction phi-node or a truncate of it!"); 2376 2377 // This induction variable is not the phi from the original loop but the 2378 // newly-created IV based on the proof that casted Phi is equal to the 2379 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2380 // re-uses the same InductionDescriptor that original IV uses but we don't 2381 // have to do any recording in this case - that is done when original IV is 2382 // processed. 2383 if (isa<TruncInst>(EntryVal)) 2384 return; 2385 2386 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2387 if (Casts.empty()) 2388 return; 2389 // Only the first Cast instruction in the Casts vector is of interest. 2390 // The rest of the Casts (if exist) have no uses outside the 2391 // induction update chain itself. 2392 if (Lane < UINT_MAX) 2393 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2394 else 2395 State.set(CastDef, VectorLoopVal, Part); 2396 } 2397 2398 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2399 TruncInst *Trunc, VPValue *Def, 2400 VPValue *CastDef, 2401 VPTransformState &State) { 2402 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2403 "Primary induction variable must have an integer type"); 2404 2405 auto II = Legal->getInductionVars().find(IV); 2406 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2407 2408 auto ID = II->second; 2409 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2410 2411 // The value from the original loop to which we are mapping the new induction 2412 // variable. 2413 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2414 2415 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2416 2417 // Generate code for the induction step. Note that induction steps are 2418 // required to be loop-invariant 2419 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2420 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2421 "Induction step should be loop invariant"); 2422 if (PSE.getSE()->isSCEVable(IV->getType())) { 2423 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2424 return Exp.expandCodeFor(Step, Step->getType(), 2425 LoopVectorPreHeader->getTerminator()); 2426 } 2427 return cast<SCEVUnknown>(Step)->getValue(); 2428 }; 2429 2430 // The scalar value to broadcast. This is derived from the canonical 2431 // induction variable. If a truncation type is given, truncate the canonical 2432 // induction variable and step. Otherwise, derive these values from the 2433 // induction descriptor. 2434 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2435 Value *ScalarIV = Induction; 2436 if (IV != OldInduction) { 2437 ScalarIV = IV->getType()->isIntegerTy() 2438 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2439 : Builder.CreateCast(Instruction::SIToFP, Induction, 2440 IV->getType()); 2441 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2442 ScalarIV->setName("offset.idx"); 2443 } 2444 if (Trunc) { 2445 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2446 assert(Step->getType()->isIntegerTy() && 2447 "Truncation requires an integer step"); 2448 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2449 Step = Builder.CreateTrunc(Step, TruncType); 2450 } 2451 return ScalarIV; 2452 }; 2453 2454 // Create the vector values from the scalar IV, in the absence of creating a 2455 // vector IV. 2456 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2457 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2458 for (unsigned Part = 0; Part < UF; ++Part) { 2459 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2460 Value *EntryPart = 2461 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2462 ID.getInductionOpcode()); 2463 State.set(Def, EntryPart, Part); 2464 if (Trunc) 2465 addMetadata(EntryPart, Trunc); 2466 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2467 State, Part); 2468 } 2469 }; 2470 2471 // Fast-math-flags propagate from the original induction instruction. 2472 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2473 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2474 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2475 2476 // Now do the actual transformations, and start with creating the step value. 2477 Value *Step = CreateStepValue(ID.getStep()); 2478 if (VF.isZero() || VF.isScalar()) { 2479 Value *ScalarIV = CreateScalarIV(Step); 2480 CreateSplatIV(ScalarIV, Step); 2481 return; 2482 } 2483 2484 // Determine if we want a scalar version of the induction variable. This is 2485 // true if the induction variable itself is not widened, or if it has at 2486 // least one user in the loop that is not widened. 2487 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2488 if (!NeedsScalarIV) { 2489 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2490 State); 2491 return; 2492 } 2493 2494 // Try to create a new independent vector induction variable. If we can't 2495 // create the phi node, we will splat the scalar induction variable in each 2496 // loop iteration. 2497 if (!shouldScalarizeInstruction(EntryVal)) { 2498 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2499 State); 2500 Value *ScalarIV = CreateScalarIV(Step); 2501 // Create scalar steps that can be used by instructions we will later 2502 // scalarize. Note that the addition of the scalar steps will not increase 2503 // the number of instructions in the loop in the common case prior to 2504 // InstCombine. We will be trading one vector extract for each scalar step. 2505 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2506 return; 2507 } 2508 2509 // All IV users are scalar instructions, so only emit a scalar IV, not a 2510 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2511 // predicate used by the masked loads/stores. 2512 Value *ScalarIV = CreateScalarIV(Step); 2513 if (!Cost->isScalarEpilogueAllowed()) 2514 CreateSplatIV(ScalarIV, Step); 2515 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2516 } 2517 2518 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2519 Instruction::BinaryOps BinOp) { 2520 // Create and check the types. 2521 auto *ValVTy = cast<VectorType>(Val->getType()); 2522 ElementCount VLen = ValVTy->getElementCount(); 2523 2524 Type *STy = Val->getType()->getScalarType(); 2525 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2526 "Induction Step must be an integer or FP"); 2527 assert(Step->getType() == STy && "Step has wrong type"); 2528 2529 SmallVector<Constant *, 8> Indices; 2530 2531 // Create a vector of consecutive numbers from zero to VF. 2532 VectorType *InitVecValVTy = ValVTy; 2533 Type *InitVecValSTy = STy; 2534 if (STy->isFloatingPointTy()) { 2535 InitVecValSTy = 2536 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2537 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2538 } 2539 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2540 2541 // Add on StartIdx 2542 Value *StartIdxSplat = Builder.CreateVectorSplat( 2543 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2544 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2545 2546 if (STy->isIntegerTy()) { 2547 Step = Builder.CreateVectorSplat(VLen, Step); 2548 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2549 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2550 // which can be found from the original scalar operations. 2551 Step = Builder.CreateMul(InitVec, Step); 2552 return Builder.CreateAdd(Val, Step, "induction"); 2553 } 2554 2555 // Floating point induction. 2556 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2557 "Binary Opcode should be specified for FP induction"); 2558 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2559 Step = Builder.CreateVectorSplat(VLen, Step); 2560 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2561 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2562 } 2563 2564 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2565 Instruction *EntryVal, 2566 const InductionDescriptor &ID, 2567 VPValue *Def, VPValue *CastDef, 2568 VPTransformState &State) { 2569 // We shouldn't have to build scalar steps if we aren't vectorizing. 2570 assert(VF.isVector() && "VF should be greater than one"); 2571 // Get the value type and ensure it and the step have the same integer type. 2572 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2573 assert(ScalarIVTy == Step->getType() && 2574 "Val and Step should have the same type"); 2575 2576 // We build scalar steps for both integer and floating-point induction 2577 // variables. Here, we determine the kind of arithmetic we will perform. 2578 Instruction::BinaryOps AddOp; 2579 Instruction::BinaryOps MulOp; 2580 if (ScalarIVTy->isIntegerTy()) { 2581 AddOp = Instruction::Add; 2582 MulOp = Instruction::Mul; 2583 } else { 2584 AddOp = ID.getInductionOpcode(); 2585 MulOp = Instruction::FMul; 2586 } 2587 2588 // Determine the number of scalars we need to generate for each unroll 2589 // iteration. If EntryVal is uniform, we only need to generate the first 2590 // lane. Otherwise, we generate all VF values. 2591 bool IsUniform = 2592 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2593 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2594 // Compute the scalar steps and save the results in State. 2595 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2596 ScalarIVTy->getScalarSizeInBits()); 2597 Type *VecIVTy = nullptr; 2598 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2599 if (!IsUniform && VF.isScalable()) { 2600 VecIVTy = VectorType::get(ScalarIVTy, VF); 2601 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2602 SplatStep = Builder.CreateVectorSplat(VF, Step); 2603 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2604 } 2605 2606 for (unsigned Part = 0; Part < UF; ++Part) { 2607 Value *StartIdx0 = 2608 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2609 2610 if (!IsUniform && VF.isScalable()) { 2611 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2612 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2613 if (ScalarIVTy->isFloatingPointTy()) 2614 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2615 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2616 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2617 State.set(Def, Add, Part); 2618 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2619 Part); 2620 // It's useful to record the lane values too for the known minimum number 2621 // of elements so we do those below. This improves the code quality when 2622 // trying to extract the first element, for example. 2623 } 2624 2625 if (ScalarIVTy->isFloatingPointTy()) 2626 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2627 2628 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2629 Value *StartIdx = Builder.CreateBinOp( 2630 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2631 // The step returned by `createStepForVF` is a runtime-evaluated value 2632 // when VF is scalable. Otherwise, it should be folded into a Constant. 2633 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2634 "Expected StartIdx to be folded to a constant when VF is not " 2635 "scalable"); 2636 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2637 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2638 State.set(Def, Add, VPIteration(Part, Lane)); 2639 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2640 Part, Lane); 2641 } 2642 } 2643 } 2644 2645 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2646 const VPIteration &Instance, 2647 VPTransformState &State) { 2648 Value *ScalarInst = State.get(Def, Instance); 2649 Value *VectorValue = State.get(Def, Instance.Part); 2650 VectorValue = Builder.CreateInsertElement( 2651 VectorValue, ScalarInst, 2652 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2653 State.set(Def, VectorValue, Instance.Part); 2654 } 2655 2656 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2657 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2658 return Builder.CreateVectorReverse(Vec, "reverse"); 2659 } 2660 2661 // Return whether we allow using masked interleave-groups (for dealing with 2662 // strided loads/stores that reside in predicated blocks, or for dealing 2663 // with gaps). 2664 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2665 // If an override option has been passed in for interleaved accesses, use it. 2666 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2667 return EnableMaskedInterleavedMemAccesses; 2668 2669 return TTI.enableMaskedInterleavedAccessVectorization(); 2670 } 2671 2672 // Try to vectorize the interleave group that \p Instr belongs to. 2673 // 2674 // E.g. Translate following interleaved load group (factor = 3): 2675 // for (i = 0; i < N; i+=3) { 2676 // R = Pic[i]; // Member of index 0 2677 // G = Pic[i+1]; // Member of index 1 2678 // B = Pic[i+2]; // Member of index 2 2679 // ... // do something to R, G, B 2680 // } 2681 // To: 2682 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2683 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2684 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2685 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2686 // 2687 // Or translate following interleaved store group (factor = 3): 2688 // for (i = 0; i < N; i+=3) { 2689 // ... do something to R, G, B 2690 // Pic[i] = R; // Member of index 0 2691 // Pic[i+1] = G; // Member of index 1 2692 // Pic[i+2] = B; // Member of index 2 2693 // } 2694 // To: 2695 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2696 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2697 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2698 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2699 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2700 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2701 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2702 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2703 VPValue *BlockInMask) { 2704 Instruction *Instr = Group->getInsertPos(); 2705 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2706 2707 // Prepare for the vector type of the interleaved load/store. 2708 Type *ScalarTy = getLoadStoreType(Instr); 2709 unsigned InterleaveFactor = Group->getFactor(); 2710 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2711 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2712 2713 // Prepare for the new pointers. 2714 SmallVector<Value *, 2> AddrParts; 2715 unsigned Index = Group->getIndex(Instr); 2716 2717 // TODO: extend the masked interleaved-group support to reversed access. 2718 assert((!BlockInMask || !Group->isReverse()) && 2719 "Reversed masked interleave-group not supported."); 2720 2721 // If the group is reverse, adjust the index to refer to the last vector lane 2722 // instead of the first. We adjust the index from the first vector lane, 2723 // rather than directly getting the pointer for lane VF - 1, because the 2724 // pointer operand of the interleaved access is supposed to be uniform. For 2725 // uniform instructions, we're only required to generate a value for the 2726 // first vector lane in each unroll iteration. 2727 if (Group->isReverse()) 2728 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2729 2730 for (unsigned Part = 0; Part < UF; Part++) { 2731 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2732 setDebugLocFromInst(AddrPart); 2733 2734 // Notice current instruction could be any index. Need to adjust the address 2735 // to the member of index 0. 2736 // 2737 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2738 // b = A[i]; // Member of index 0 2739 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2740 // 2741 // E.g. A[i+1] = a; // Member of index 1 2742 // A[i] = b; // Member of index 0 2743 // A[i+2] = c; // Member of index 2 (Current instruction) 2744 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2745 2746 bool InBounds = false; 2747 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2748 InBounds = gep->isInBounds(); 2749 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2750 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2751 2752 // Cast to the vector pointer type. 2753 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2754 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2755 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2756 } 2757 2758 setDebugLocFromInst(Instr); 2759 Value *PoisonVec = PoisonValue::get(VecTy); 2760 2761 Value *MaskForGaps = nullptr; 2762 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2763 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2764 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2765 } 2766 2767 // Vectorize the interleaved load group. 2768 if (isa<LoadInst>(Instr)) { 2769 // For each unroll part, create a wide load for the group. 2770 SmallVector<Value *, 2> NewLoads; 2771 for (unsigned Part = 0; Part < UF; Part++) { 2772 Instruction *NewLoad; 2773 if (BlockInMask || MaskForGaps) { 2774 assert(useMaskedInterleavedAccesses(*TTI) && 2775 "masked interleaved groups are not allowed."); 2776 Value *GroupMask = MaskForGaps; 2777 if (BlockInMask) { 2778 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2779 Value *ShuffledMask = Builder.CreateShuffleVector( 2780 BlockInMaskPart, 2781 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2782 "interleaved.mask"); 2783 GroupMask = MaskForGaps 2784 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2785 MaskForGaps) 2786 : ShuffledMask; 2787 } 2788 NewLoad = 2789 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2790 GroupMask, PoisonVec, "wide.masked.vec"); 2791 } 2792 else 2793 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2794 Group->getAlign(), "wide.vec"); 2795 Group->addMetadata(NewLoad); 2796 NewLoads.push_back(NewLoad); 2797 } 2798 2799 // For each member in the group, shuffle out the appropriate data from the 2800 // wide loads. 2801 unsigned J = 0; 2802 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2803 Instruction *Member = Group->getMember(I); 2804 2805 // Skip the gaps in the group. 2806 if (!Member) 2807 continue; 2808 2809 auto StrideMask = 2810 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2811 for (unsigned Part = 0; Part < UF; Part++) { 2812 Value *StridedVec = Builder.CreateShuffleVector( 2813 NewLoads[Part], StrideMask, "strided.vec"); 2814 2815 // If this member has different type, cast the result type. 2816 if (Member->getType() != ScalarTy) { 2817 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2818 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2819 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2820 } 2821 2822 if (Group->isReverse()) 2823 StridedVec = reverseVector(StridedVec); 2824 2825 State.set(VPDefs[J], StridedVec, Part); 2826 } 2827 ++J; 2828 } 2829 return; 2830 } 2831 2832 // The sub vector type for current instruction. 2833 auto *SubVT = VectorType::get(ScalarTy, VF); 2834 2835 // Vectorize the interleaved store group. 2836 for (unsigned Part = 0; Part < UF; Part++) { 2837 // Collect the stored vector from each member. 2838 SmallVector<Value *, 4> StoredVecs; 2839 for (unsigned i = 0; i < InterleaveFactor; i++) { 2840 // Interleaved store group doesn't allow a gap, so each index has a member 2841 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2842 2843 Value *StoredVec = State.get(StoredValues[i], Part); 2844 2845 if (Group->isReverse()) 2846 StoredVec = reverseVector(StoredVec); 2847 2848 // If this member has different type, cast it to a unified type. 2849 2850 if (StoredVec->getType() != SubVT) 2851 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2852 2853 StoredVecs.push_back(StoredVec); 2854 } 2855 2856 // Concatenate all vectors into a wide vector. 2857 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2858 2859 // Interleave the elements in the wide vector. 2860 Value *IVec = Builder.CreateShuffleVector( 2861 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2862 "interleaved.vec"); 2863 2864 Instruction *NewStoreInstr; 2865 if (BlockInMask) { 2866 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2867 Value *ShuffledMask = Builder.CreateShuffleVector( 2868 BlockInMaskPart, 2869 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2870 "interleaved.mask"); 2871 NewStoreInstr = Builder.CreateMaskedStore( 2872 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2873 } 2874 else 2875 NewStoreInstr = 2876 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2877 2878 Group->addMetadata(NewStoreInstr); 2879 } 2880 } 2881 2882 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2883 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2884 VPValue *StoredValue, VPValue *BlockInMask) { 2885 // Attempt to issue a wide load. 2886 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2887 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2888 2889 assert((LI || SI) && "Invalid Load/Store instruction"); 2890 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2891 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2892 2893 LoopVectorizationCostModel::InstWidening Decision = 2894 Cost->getWideningDecision(Instr, VF); 2895 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2896 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2897 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2898 "CM decision is not to widen the memory instruction"); 2899 2900 Type *ScalarDataTy = getLoadStoreType(Instr); 2901 2902 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2903 const Align Alignment = getLoadStoreAlignment(Instr); 2904 2905 // Determine if the pointer operand of the access is either consecutive or 2906 // reverse consecutive. 2907 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2908 bool ConsecutiveStride = 2909 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2910 bool CreateGatherScatter = 2911 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2912 2913 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2914 // gather/scatter. Otherwise Decision should have been to Scalarize. 2915 assert((ConsecutiveStride || CreateGatherScatter) && 2916 "The instruction should be scalarized"); 2917 (void)ConsecutiveStride; 2918 2919 VectorParts BlockInMaskParts(UF); 2920 bool isMaskRequired = BlockInMask; 2921 if (isMaskRequired) 2922 for (unsigned Part = 0; Part < UF; ++Part) 2923 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2924 2925 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2926 // Calculate the pointer for the specific unroll-part. 2927 GetElementPtrInst *PartPtr = nullptr; 2928 2929 bool InBounds = false; 2930 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2931 InBounds = gep->isInBounds(); 2932 if (Reverse) { 2933 // If the address is consecutive but reversed, then the 2934 // wide store needs to start at the last vector element. 2935 // RunTimeVF = VScale * VF.getKnownMinValue() 2936 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2937 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2938 // NumElt = -Part * RunTimeVF 2939 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2940 // LastLane = 1 - RunTimeVF 2941 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2942 PartPtr = 2943 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2944 PartPtr->setIsInBounds(InBounds); 2945 PartPtr = cast<GetElementPtrInst>( 2946 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2947 PartPtr->setIsInBounds(InBounds); 2948 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2949 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2950 } else { 2951 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2952 PartPtr = cast<GetElementPtrInst>( 2953 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2954 PartPtr->setIsInBounds(InBounds); 2955 } 2956 2957 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2958 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2959 }; 2960 2961 // Handle Stores: 2962 if (SI) { 2963 setDebugLocFromInst(SI); 2964 2965 for (unsigned Part = 0; Part < UF; ++Part) { 2966 Instruction *NewSI = nullptr; 2967 Value *StoredVal = State.get(StoredValue, Part); 2968 if (CreateGatherScatter) { 2969 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2970 Value *VectorGep = State.get(Addr, Part); 2971 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2972 MaskPart); 2973 } else { 2974 if (Reverse) { 2975 // If we store to reverse consecutive memory locations, then we need 2976 // to reverse the order of elements in the stored value. 2977 StoredVal = reverseVector(StoredVal); 2978 // We don't want to update the value in the map as it might be used in 2979 // another expression. So don't call resetVectorValue(StoredVal). 2980 } 2981 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2982 if (isMaskRequired) 2983 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2984 BlockInMaskParts[Part]); 2985 else 2986 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2987 } 2988 addMetadata(NewSI, SI); 2989 } 2990 return; 2991 } 2992 2993 // Handle loads. 2994 assert(LI && "Must have a load instruction"); 2995 setDebugLocFromInst(LI); 2996 for (unsigned Part = 0; Part < UF; ++Part) { 2997 Value *NewLI; 2998 if (CreateGatherScatter) { 2999 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 3000 Value *VectorGep = State.get(Addr, Part); 3001 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3002 nullptr, "wide.masked.gather"); 3003 addMetadata(NewLI, LI); 3004 } else { 3005 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3006 if (isMaskRequired) 3007 NewLI = Builder.CreateMaskedLoad( 3008 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3009 PoisonValue::get(DataTy), "wide.masked.load"); 3010 else 3011 NewLI = 3012 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3013 3014 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3015 addMetadata(NewLI, LI); 3016 if (Reverse) 3017 NewLI = reverseVector(NewLI); 3018 } 3019 3020 State.set(Def, NewLI, Part); 3021 } 3022 } 3023 3024 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3025 VPUser &User, 3026 const VPIteration &Instance, 3027 bool IfPredicateInstr, 3028 VPTransformState &State) { 3029 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3030 3031 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3032 // the first lane and part. 3033 if (isa<NoAliasScopeDeclInst>(Instr)) 3034 if (!Instance.isFirstIteration()) 3035 return; 3036 3037 setDebugLocFromInst(Instr); 3038 3039 // Does this instruction return a value ? 3040 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3041 3042 Instruction *Cloned = Instr->clone(); 3043 if (!IsVoidRetTy) 3044 Cloned->setName(Instr->getName() + ".cloned"); 3045 3046 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3047 Builder.GetInsertPoint()); 3048 // Replace the operands of the cloned instructions with their scalar 3049 // equivalents in the new loop. 3050 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3051 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3052 auto InputInstance = Instance; 3053 if (!Operand || !OrigLoop->contains(Operand) || 3054 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3055 InputInstance.Lane = VPLane::getFirstLane(); 3056 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3057 Cloned->setOperand(op, NewOp); 3058 } 3059 addNewMetadata(Cloned, Instr); 3060 3061 // Place the cloned scalar in the new loop. 3062 Builder.Insert(Cloned); 3063 3064 State.set(Def, Cloned, Instance); 3065 3066 // If we just cloned a new assumption, add it the assumption cache. 3067 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3068 AC->registerAssumption(II); 3069 3070 // End if-block. 3071 if (IfPredicateInstr) 3072 PredicatedInstructions.push_back(Cloned); 3073 } 3074 3075 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3076 Value *End, Value *Step, 3077 Instruction *DL) { 3078 BasicBlock *Header = L->getHeader(); 3079 BasicBlock *Latch = L->getLoopLatch(); 3080 // As we're just creating this loop, it's possible no latch exists 3081 // yet. If so, use the header as this will be a single block loop. 3082 if (!Latch) 3083 Latch = Header; 3084 3085 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3086 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3087 setDebugLocFromInst(OldInst, &B); 3088 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3089 3090 B.SetInsertPoint(Latch->getTerminator()); 3091 setDebugLocFromInst(OldInst, &B); 3092 3093 // Create i+1 and fill the PHINode. 3094 // 3095 // If the tail is not folded, we know that End - Start >= Step (either 3096 // statically or through the minimum iteration checks). We also know that both 3097 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3098 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3099 // overflows and we can mark the induction increment as NUW. 3100 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3101 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3102 Induction->addIncoming(Start, L->getLoopPreheader()); 3103 Induction->addIncoming(Next, Latch); 3104 // Create the compare. 3105 Value *ICmp = B.CreateICmpEQ(Next, End); 3106 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3107 3108 // Now we have two terminators. Remove the old one from the block. 3109 Latch->getTerminator()->eraseFromParent(); 3110 3111 return Induction; 3112 } 3113 3114 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3115 if (TripCount) 3116 return TripCount; 3117 3118 assert(L && "Create Trip Count for null loop."); 3119 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3120 // Find the loop boundaries. 3121 ScalarEvolution *SE = PSE.getSE(); 3122 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3123 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3124 "Invalid loop count"); 3125 3126 Type *IdxTy = Legal->getWidestInductionType(); 3127 assert(IdxTy && "No type for induction"); 3128 3129 // The exit count might have the type of i64 while the phi is i32. This can 3130 // happen if we have an induction variable that is sign extended before the 3131 // compare. The only way that we get a backedge taken count is that the 3132 // induction variable was signed and as such will not overflow. In such a case 3133 // truncation is legal. 3134 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3135 IdxTy->getPrimitiveSizeInBits()) 3136 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3137 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3138 3139 // Get the total trip count from the count by adding 1. 3140 const SCEV *ExitCount = SE->getAddExpr( 3141 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3142 3143 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3144 3145 // Expand the trip count and place the new instructions in the preheader. 3146 // Notice that the pre-header does not change, only the loop body. 3147 SCEVExpander Exp(*SE, DL, "induction"); 3148 3149 // Count holds the overall loop count (N). 3150 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3151 L->getLoopPreheader()->getTerminator()); 3152 3153 if (TripCount->getType()->isPointerTy()) 3154 TripCount = 3155 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3156 L->getLoopPreheader()->getTerminator()); 3157 3158 return TripCount; 3159 } 3160 3161 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3162 if (VectorTripCount) 3163 return VectorTripCount; 3164 3165 Value *TC = getOrCreateTripCount(L); 3166 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3167 3168 Type *Ty = TC->getType(); 3169 // This is where we can make the step a runtime constant. 3170 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3171 3172 // If the tail is to be folded by masking, round the number of iterations N 3173 // up to a multiple of Step instead of rounding down. This is done by first 3174 // adding Step-1 and then rounding down. Note that it's ok if this addition 3175 // overflows: the vector induction variable will eventually wrap to zero given 3176 // that it starts at zero and its Step is a power of two; the loop will then 3177 // exit, with the last early-exit vector comparison also producing all-true. 3178 if (Cost->foldTailByMasking()) { 3179 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3180 "VF*UF must be a power of 2 when folding tail by masking"); 3181 assert(!VF.isScalable() && 3182 "Tail folding not yet supported for scalable vectors"); 3183 TC = Builder.CreateAdd( 3184 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3185 } 3186 3187 // Now we need to generate the expression for the part of the loop that the 3188 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3189 // iterations are not required for correctness, or N - Step, otherwise. Step 3190 // is equal to the vectorization factor (number of SIMD elements) times the 3191 // unroll factor (number of SIMD instructions). 3192 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3193 3194 // There are cases where we *must* run at least one iteration in the remainder 3195 // loop. See the cost model for when this can happen. If the step evenly 3196 // divides the trip count, we set the remainder to be equal to the step. If 3197 // the step does not evenly divide the trip count, no adjustment is necessary 3198 // since there will already be scalar iterations. Note that the minimum 3199 // iterations check ensures that N >= Step. 3200 if (Cost->requiresScalarEpilogue(VF)) { 3201 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3202 R = Builder.CreateSelect(IsZero, Step, R); 3203 } 3204 3205 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3206 3207 return VectorTripCount; 3208 } 3209 3210 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3211 const DataLayout &DL) { 3212 // Verify that V is a vector type with same number of elements as DstVTy. 3213 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3214 unsigned VF = DstFVTy->getNumElements(); 3215 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3216 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3217 Type *SrcElemTy = SrcVecTy->getElementType(); 3218 Type *DstElemTy = DstFVTy->getElementType(); 3219 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3220 "Vector elements must have same size"); 3221 3222 // Do a direct cast if element types are castable. 3223 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3224 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3225 } 3226 // V cannot be directly casted to desired vector type. 3227 // May happen when V is a floating point vector but DstVTy is a vector of 3228 // pointers or vice-versa. Handle this using a two-step bitcast using an 3229 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3230 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3231 "Only one type should be a pointer type"); 3232 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3233 "Only one type should be a floating point type"); 3234 Type *IntTy = 3235 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3236 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3237 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3238 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3239 } 3240 3241 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3242 BasicBlock *Bypass) { 3243 Value *Count = getOrCreateTripCount(L); 3244 // Reuse existing vector loop preheader for TC checks. 3245 // Note that new preheader block is generated for vector loop. 3246 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3247 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3248 3249 // Generate code to check if the loop's trip count is less than VF * UF, or 3250 // equal to it in case a scalar epilogue is required; this implies that the 3251 // vector trip count is zero. This check also covers the case where adding one 3252 // to the backedge-taken count overflowed leading to an incorrect trip count 3253 // of zero. In this case we will also jump to the scalar loop. 3254 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3255 : ICmpInst::ICMP_ULT; 3256 3257 // If tail is to be folded, vector loop takes care of all iterations. 3258 Value *CheckMinIters = Builder.getFalse(); 3259 if (!Cost->foldTailByMasking()) { 3260 Value *Step = 3261 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3262 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3263 } 3264 // Create new preheader for vector loop. 3265 LoopVectorPreHeader = 3266 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3267 "vector.ph"); 3268 3269 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3270 DT->getNode(Bypass)->getIDom()) && 3271 "TC check is expected to dominate Bypass"); 3272 3273 // Update dominator for Bypass & LoopExit (if needed). 3274 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3275 if (!Cost->requiresScalarEpilogue(VF)) 3276 // If there is an epilogue which must run, there's no edge from the 3277 // middle block to exit blocks and thus no need to update the immediate 3278 // dominator of the exit blocks. 3279 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3280 3281 ReplaceInstWithInst( 3282 TCCheckBlock->getTerminator(), 3283 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3284 LoopBypassBlocks.push_back(TCCheckBlock); 3285 } 3286 3287 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3288 3289 BasicBlock *const SCEVCheckBlock = 3290 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3291 if (!SCEVCheckBlock) 3292 return nullptr; 3293 3294 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3295 (OptForSizeBasedOnProfile && 3296 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3297 "Cannot SCEV check stride or overflow when optimizing for size"); 3298 3299 3300 // Update dominator only if this is first RT check. 3301 if (LoopBypassBlocks.empty()) { 3302 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3303 if (!Cost->requiresScalarEpilogue(VF)) 3304 // If there is an epilogue which must run, there's no edge from the 3305 // middle block to exit blocks and thus no need to update the immediate 3306 // dominator of the exit blocks. 3307 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3308 } 3309 3310 LoopBypassBlocks.push_back(SCEVCheckBlock); 3311 AddedSafetyChecks = true; 3312 return SCEVCheckBlock; 3313 } 3314 3315 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3316 BasicBlock *Bypass) { 3317 // VPlan-native path does not do any analysis for runtime checks currently. 3318 if (EnableVPlanNativePath) 3319 return nullptr; 3320 3321 BasicBlock *const MemCheckBlock = 3322 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3323 3324 // Check if we generated code that checks in runtime if arrays overlap. We put 3325 // the checks into a separate block to make the more common case of few 3326 // elements faster. 3327 if (!MemCheckBlock) 3328 return nullptr; 3329 3330 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3331 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3332 "Cannot emit memory checks when optimizing for size, unless forced " 3333 "to vectorize."); 3334 ORE->emit([&]() { 3335 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3336 L->getStartLoc(), L->getHeader()) 3337 << "Code-size may be reduced by not forcing " 3338 "vectorization, or by source-code modifications " 3339 "eliminating the need for runtime checks " 3340 "(e.g., adding 'restrict')."; 3341 }); 3342 } 3343 3344 LoopBypassBlocks.push_back(MemCheckBlock); 3345 3346 AddedSafetyChecks = true; 3347 3348 // We currently don't use LoopVersioning for the actual loop cloning but we 3349 // still use it to add the noalias metadata. 3350 LVer = std::make_unique<LoopVersioning>( 3351 *Legal->getLAI(), 3352 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3353 DT, PSE.getSE()); 3354 LVer->prepareNoAliasMetadata(); 3355 return MemCheckBlock; 3356 } 3357 3358 Value *InnerLoopVectorizer::emitTransformedIndex( 3359 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3360 const InductionDescriptor &ID) const { 3361 3362 SCEVExpander Exp(*SE, DL, "induction"); 3363 auto Step = ID.getStep(); 3364 auto StartValue = ID.getStartValue(); 3365 assert(Index->getType()->getScalarType() == Step->getType() && 3366 "Index scalar type does not match StepValue type"); 3367 3368 // Note: the IR at this point is broken. We cannot use SE to create any new 3369 // SCEV and then expand it, hoping that SCEV's simplification will give us 3370 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3371 // lead to various SCEV crashes. So all we can do is to use builder and rely 3372 // on InstCombine for future simplifications. Here we handle some trivial 3373 // cases only. 3374 auto CreateAdd = [&B](Value *X, Value *Y) { 3375 assert(X->getType() == Y->getType() && "Types don't match!"); 3376 if (auto *CX = dyn_cast<ConstantInt>(X)) 3377 if (CX->isZero()) 3378 return Y; 3379 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3380 if (CY->isZero()) 3381 return X; 3382 return B.CreateAdd(X, Y); 3383 }; 3384 3385 // We allow X to be a vector type, in which case Y will potentially be 3386 // splatted into a vector with the same element count. 3387 auto CreateMul = [&B](Value *X, Value *Y) { 3388 assert(X->getType()->getScalarType() == Y->getType() && 3389 "Types don't match!"); 3390 if (auto *CX = dyn_cast<ConstantInt>(X)) 3391 if (CX->isOne()) 3392 return Y; 3393 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3394 if (CY->isOne()) 3395 return X; 3396 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3397 if (XVTy && !isa<VectorType>(Y->getType())) 3398 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3399 return B.CreateMul(X, Y); 3400 }; 3401 3402 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3403 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3404 // the DomTree is not kept up-to-date for additional blocks generated in the 3405 // vector loop. By using the header as insertion point, we guarantee that the 3406 // expanded instructions dominate all their uses. 3407 auto GetInsertPoint = [this, &B]() { 3408 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3409 if (InsertBB != LoopVectorBody && 3410 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3411 return LoopVectorBody->getTerminator(); 3412 return &*B.GetInsertPoint(); 3413 }; 3414 3415 switch (ID.getKind()) { 3416 case InductionDescriptor::IK_IntInduction: { 3417 assert(!isa<VectorType>(Index->getType()) && 3418 "Vector indices not supported for integer inductions yet"); 3419 assert(Index->getType() == StartValue->getType() && 3420 "Index type does not match StartValue type"); 3421 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3422 return B.CreateSub(StartValue, Index); 3423 auto *Offset = CreateMul( 3424 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3425 return CreateAdd(StartValue, Offset); 3426 } 3427 case InductionDescriptor::IK_PtrInduction: { 3428 assert(isa<SCEVConstant>(Step) && 3429 "Expected constant step for pointer induction"); 3430 return B.CreateGEP( 3431 StartValue->getType()->getPointerElementType(), StartValue, 3432 CreateMul(Index, 3433 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3434 GetInsertPoint()))); 3435 } 3436 case InductionDescriptor::IK_FpInduction: { 3437 assert(!isa<VectorType>(Index->getType()) && 3438 "Vector indices not supported for FP inductions yet"); 3439 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3440 auto InductionBinOp = ID.getInductionBinOp(); 3441 assert(InductionBinOp && 3442 (InductionBinOp->getOpcode() == Instruction::FAdd || 3443 InductionBinOp->getOpcode() == Instruction::FSub) && 3444 "Original bin op should be defined for FP induction"); 3445 3446 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3447 Value *MulExp = B.CreateFMul(StepValue, Index); 3448 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3449 "induction"); 3450 } 3451 case InductionDescriptor::IK_NoInduction: 3452 return nullptr; 3453 } 3454 llvm_unreachable("invalid enum"); 3455 } 3456 3457 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3458 LoopScalarBody = OrigLoop->getHeader(); 3459 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3460 assert(LoopVectorPreHeader && "Invalid loop structure"); 3461 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3462 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3463 "multiple exit loop without required epilogue?"); 3464 3465 LoopMiddleBlock = 3466 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3467 LI, nullptr, Twine(Prefix) + "middle.block"); 3468 LoopScalarPreHeader = 3469 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3470 nullptr, Twine(Prefix) + "scalar.ph"); 3471 3472 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3473 3474 // Set up the middle block terminator. Two cases: 3475 // 1) If we know that we must execute the scalar epilogue, emit an 3476 // unconditional branch. 3477 // 2) Otherwise, we must have a single unique exit block (due to how we 3478 // implement the multiple exit case). In this case, set up a conditonal 3479 // branch from the middle block to the loop scalar preheader, and the 3480 // exit block. completeLoopSkeleton will update the condition to use an 3481 // iteration check, if required to decide whether to execute the remainder. 3482 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3483 BranchInst::Create(LoopScalarPreHeader) : 3484 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3485 Builder.getTrue()); 3486 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3487 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3488 3489 // We intentionally don't let SplitBlock to update LoopInfo since 3490 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3491 // LoopVectorBody is explicitly added to the correct place few lines later. 3492 LoopVectorBody = 3493 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3494 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3495 3496 // Update dominator for loop exit. 3497 if (!Cost->requiresScalarEpilogue(VF)) 3498 // If there is an epilogue which must run, there's no edge from the 3499 // middle block to exit blocks and thus no need to update the immediate 3500 // dominator of the exit blocks. 3501 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3502 3503 // Create and register the new vector loop. 3504 Loop *Lp = LI->AllocateLoop(); 3505 Loop *ParentLoop = OrigLoop->getParentLoop(); 3506 3507 // Insert the new loop into the loop nest and register the new basic blocks 3508 // before calling any utilities such as SCEV that require valid LoopInfo. 3509 if (ParentLoop) { 3510 ParentLoop->addChildLoop(Lp); 3511 } else { 3512 LI->addTopLevelLoop(Lp); 3513 } 3514 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3515 return Lp; 3516 } 3517 3518 void InnerLoopVectorizer::createInductionResumeValues( 3519 Loop *L, Value *VectorTripCount, 3520 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3521 assert(VectorTripCount && L && "Expected valid arguments"); 3522 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3523 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3524 "Inconsistent information about additional bypass."); 3525 // We are going to resume the execution of the scalar loop. 3526 // Go over all of the induction variables that we found and fix the 3527 // PHIs that are left in the scalar version of the loop. 3528 // The starting values of PHI nodes depend on the counter of the last 3529 // iteration in the vectorized loop. 3530 // If we come from a bypass edge then we need to start from the original 3531 // start value. 3532 for (auto &InductionEntry : Legal->getInductionVars()) { 3533 PHINode *OrigPhi = InductionEntry.first; 3534 InductionDescriptor II = InductionEntry.second; 3535 3536 // Create phi nodes to merge from the backedge-taken check block. 3537 PHINode *BCResumeVal = 3538 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3539 LoopScalarPreHeader->getTerminator()); 3540 // Copy original phi DL over to the new one. 3541 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3542 Value *&EndValue = IVEndValues[OrigPhi]; 3543 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3544 if (OrigPhi == OldInduction) { 3545 // We know what the end value is. 3546 EndValue = VectorTripCount; 3547 } else { 3548 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3549 3550 // Fast-math-flags propagate from the original induction instruction. 3551 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3552 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3553 3554 Type *StepType = II.getStep()->getType(); 3555 Instruction::CastOps CastOp = 3556 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3557 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3558 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3559 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3560 EndValue->setName("ind.end"); 3561 3562 // Compute the end value for the additional bypass (if applicable). 3563 if (AdditionalBypass.first) { 3564 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3565 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3566 StepType, true); 3567 CRD = 3568 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3569 EndValueFromAdditionalBypass = 3570 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3571 EndValueFromAdditionalBypass->setName("ind.end"); 3572 } 3573 } 3574 // The new PHI merges the original incoming value, in case of a bypass, 3575 // or the value at the end of the vectorized loop. 3576 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3577 3578 // Fix the scalar body counter (PHI node). 3579 // The old induction's phi node in the scalar body needs the truncated 3580 // value. 3581 for (BasicBlock *BB : LoopBypassBlocks) 3582 BCResumeVal->addIncoming(II.getStartValue(), BB); 3583 3584 if (AdditionalBypass.first) 3585 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3586 EndValueFromAdditionalBypass); 3587 3588 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3589 } 3590 } 3591 3592 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3593 MDNode *OrigLoopID) { 3594 assert(L && "Expected valid loop."); 3595 3596 // The trip counts should be cached by now. 3597 Value *Count = getOrCreateTripCount(L); 3598 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3599 3600 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3601 3602 // Add a check in the middle block to see if we have completed 3603 // all of the iterations in the first vector loop. Three cases: 3604 // 1) If we require a scalar epilogue, there is no conditional branch as 3605 // we unconditionally branch to the scalar preheader. Do nothing. 3606 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3607 // Thus if tail is to be folded, we know we don't need to run the 3608 // remainder and we can use the previous value for the condition (true). 3609 // 3) Otherwise, construct a runtime check. 3610 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3611 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3612 Count, VectorTripCount, "cmp.n", 3613 LoopMiddleBlock->getTerminator()); 3614 3615 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3616 // of the corresponding compare because they may have ended up with 3617 // different line numbers and we want to avoid awkward line stepping while 3618 // debugging. Eg. if the compare has got a line number inside the loop. 3619 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3620 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3621 } 3622 3623 // Get ready to start creating new instructions into the vectorized body. 3624 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3625 "Inconsistent vector loop preheader"); 3626 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3627 3628 Optional<MDNode *> VectorizedLoopID = 3629 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3630 LLVMLoopVectorizeFollowupVectorized}); 3631 if (VectorizedLoopID.hasValue()) { 3632 L->setLoopID(VectorizedLoopID.getValue()); 3633 3634 // Do not setAlreadyVectorized if loop attributes have been defined 3635 // explicitly. 3636 return LoopVectorPreHeader; 3637 } 3638 3639 // Keep all loop hints from the original loop on the vector loop (we'll 3640 // replace the vectorizer-specific hints below). 3641 if (MDNode *LID = OrigLoop->getLoopID()) 3642 L->setLoopID(LID); 3643 3644 LoopVectorizeHints Hints(L, true, *ORE); 3645 Hints.setAlreadyVectorized(); 3646 3647 #ifdef EXPENSIVE_CHECKS 3648 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3649 LI->verify(*DT); 3650 #endif 3651 3652 return LoopVectorPreHeader; 3653 } 3654 3655 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3656 /* 3657 In this function we generate a new loop. The new loop will contain 3658 the vectorized instructions while the old loop will continue to run the 3659 scalar remainder. 3660 3661 [ ] <-- loop iteration number check. 3662 / | 3663 / v 3664 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3665 | / | 3666 | / v 3667 || [ ] <-- vector pre header. 3668 |/ | 3669 | v 3670 | [ ] \ 3671 | [ ]_| <-- vector loop. 3672 | | 3673 | v 3674 \ -[ ] <--- middle-block. 3675 \/ | 3676 /\ v 3677 | ->[ ] <--- new preheader. 3678 | | 3679 (opt) v <-- edge from middle to exit iff epilogue is not required. 3680 | [ ] \ 3681 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3682 \ | 3683 \ v 3684 >[ ] <-- exit block(s). 3685 ... 3686 */ 3687 3688 // Get the metadata of the original loop before it gets modified. 3689 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3690 3691 // Workaround! Compute the trip count of the original loop and cache it 3692 // before we start modifying the CFG. This code has a systemic problem 3693 // wherein it tries to run analysis over partially constructed IR; this is 3694 // wrong, and not simply for SCEV. The trip count of the original loop 3695 // simply happens to be prone to hitting this in practice. In theory, we 3696 // can hit the same issue for any SCEV, or ValueTracking query done during 3697 // mutation. See PR49900. 3698 getOrCreateTripCount(OrigLoop); 3699 3700 // Create an empty vector loop, and prepare basic blocks for the runtime 3701 // checks. 3702 Loop *Lp = createVectorLoopSkeleton(""); 3703 3704 // Now, compare the new count to zero. If it is zero skip the vector loop and 3705 // jump to the scalar loop. This check also covers the case where the 3706 // backedge-taken count is uint##_max: adding one to it will overflow leading 3707 // to an incorrect trip count of zero. In this (rare) case we will also jump 3708 // to the scalar loop. 3709 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3710 3711 // Generate the code to check any assumptions that we've made for SCEV 3712 // expressions. 3713 emitSCEVChecks(Lp, LoopScalarPreHeader); 3714 3715 // Generate the code that checks in runtime if arrays overlap. We put the 3716 // checks into a separate block to make the more common case of few elements 3717 // faster. 3718 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3719 3720 // Some loops have a single integer induction variable, while other loops 3721 // don't. One example is c++ iterators that often have multiple pointer 3722 // induction variables. In the code below we also support a case where we 3723 // don't have a single induction variable. 3724 // 3725 // We try to obtain an induction variable from the original loop as hard 3726 // as possible. However if we don't find one that: 3727 // - is an integer 3728 // - counts from zero, stepping by one 3729 // - is the size of the widest induction variable type 3730 // then we create a new one. 3731 OldInduction = Legal->getPrimaryInduction(); 3732 Type *IdxTy = Legal->getWidestInductionType(); 3733 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3734 // The loop step is equal to the vectorization factor (num of SIMD elements) 3735 // times the unroll factor (num of SIMD instructions). 3736 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3737 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3738 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3739 Induction = 3740 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3741 getDebugLocFromInstOrOperands(OldInduction)); 3742 3743 // Emit phis for the new starting index of the scalar loop. 3744 createInductionResumeValues(Lp, CountRoundDown); 3745 3746 return completeLoopSkeleton(Lp, OrigLoopID); 3747 } 3748 3749 // Fix up external users of the induction variable. At this point, we are 3750 // in LCSSA form, with all external PHIs that use the IV having one input value, 3751 // coming from the remainder loop. We need those PHIs to also have a correct 3752 // value for the IV when arriving directly from the middle block. 3753 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3754 const InductionDescriptor &II, 3755 Value *CountRoundDown, Value *EndValue, 3756 BasicBlock *MiddleBlock) { 3757 // There are two kinds of external IV usages - those that use the value 3758 // computed in the last iteration (the PHI) and those that use the penultimate 3759 // value (the value that feeds into the phi from the loop latch). 3760 // We allow both, but they, obviously, have different values. 3761 3762 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3763 3764 DenseMap<Value *, Value *> MissingVals; 3765 3766 // An external user of the last iteration's value should see the value that 3767 // the remainder loop uses to initialize its own IV. 3768 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3769 for (User *U : PostInc->users()) { 3770 Instruction *UI = cast<Instruction>(U); 3771 if (!OrigLoop->contains(UI)) { 3772 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3773 MissingVals[UI] = EndValue; 3774 } 3775 } 3776 3777 // An external user of the penultimate value need to see EndValue - Step. 3778 // The simplest way to get this is to recompute it from the constituent SCEVs, 3779 // that is Start + (Step * (CRD - 1)). 3780 for (User *U : OrigPhi->users()) { 3781 auto *UI = cast<Instruction>(U); 3782 if (!OrigLoop->contains(UI)) { 3783 const DataLayout &DL = 3784 OrigLoop->getHeader()->getModule()->getDataLayout(); 3785 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3786 3787 IRBuilder<> B(MiddleBlock->getTerminator()); 3788 3789 // Fast-math-flags propagate from the original induction instruction. 3790 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3791 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3792 3793 Value *CountMinusOne = B.CreateSub( 3794 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3795 Value *CMO = 3796 !II.getStep()->getType()->isIntegerTy() 3797 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3798 II.getStep()->getType()) 3799 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3800 CMO->setName("cast.cmo"); 3801 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3802 Escape->setName("ind.escape"); 3803 MissingVals[UI] = Escape; 3804 } 3805 } 3806 3807 for (auto &I : MissingVals) { 3808 PHINode *PHI = cast<PHINode>(I.first); 3809 // One corner case we have to handle is two IVs "chasing" each-other, 3810 // that is %IV2 = phi [...], [ %IV1, %latch ] 3811 // In this case, if IV1 has an external use, we need to avoid adding both 3812 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3813 // don't already have an incoming value for the middle block. 3814 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3815 PHI->addIncoming(I.second, MiddleBlock); 3816 } 3817 } 3818 3819 namespace { 3820 3821 struct CSEDenseMapInfo { 3822 static bool canHandle(const Instruction *I) { 3823 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3824 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3825 } 3826 3827 static inline Instruction *getEmptyKey() { 3828 return DenseMapInfo<Instruction *>::getEmptyKey(); 3829 } 3830 3831 static inline Instruction *getTombstoneKey() { 3832 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3833 } 3834 3835 static unsigned getHashValue(const Instruction *I) { 3836 assert(canHandle(I) && "Unknown instruction!"); 3837 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3838 I->value_op_end())); 3839 } 3840 3841 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3842 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3843 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3844 return LHS == RHS; 3845 return LHS->isIdenticalTo(RHS); 3846 } 3847 }; 3848 3849 } // end anonymous namespace 3850 3851 ///Perform cse of induction variable instructions. 3852 static void cse(BasicBlock *BB) { 3853 // Perform simple cse. 3854 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3855 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3856 Instruction *In = &*I++; 3857 3858 if (!CSEDenseMapInfo::canHandle(In)) 3859 continue; 3860 3861 // Check if we can replace this instruction with any of the 3862 // visited instructions. 3863 if (Instruction *V = CSEMap.lookup(In)) { 3864 In->replaceAllUsesWith(V); 3865 In->eraseFromParent(); 3866 continue; 3867 } 3868 3869 CSEMap[In] = In; 3870 } 3871 } 3872 3873 InstructionCost 3874 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3875 bool &NeedToScalarize) const { 3876 Function *F = CI->getCalledFunction(); 3877 Type *ScalarRetTy = CI->getType(); 3878 SmallVector<Type *, 4> Tys, ScalarTys; 3879 for (auto &ArgOp : CI->arg_operands()) 3880 ScalarTys.push_back(ArgOp->getType()); 3881 3882 // Estimate cost of scalarized vector call. The source operands are assumed 3883 // to be vectors, so we need to extract individual elements from there, 3884 // execute VF scalar calls, and then gather the result into the vector return 3885 // value. 3886 InstructionCost ScalarCallCost = 3887 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3888 if (VF.isScalar()) 3889 return ScalarCallCost; 3890 3891 // Compute corresponding vector type for return value and arguments. 3892 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3893 for (Type *ScalarTy : ScalarTys) 3894 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3895 3896 // Compute costs of unpacking argument values for the scalar calls and 3897 // packing the return values to a vector. 3898 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3899 3900 InstructionCost Cost = 3901 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3902 3903 // If we can't emit a vector call for this function, then the currently found 3904 // cost is the cost we need to return. 3905 NeedToScalarize = true; 3906 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3907 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3908 3909 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3910 return Cost; 3911 3912 // If the corresponding vector cost is cheaper, return its cost. 3913 InstructionCost VectorCallCost = 3914 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3915 if (VectorCallCost < Cost) { 3916 NeedToScalarize = false; 3917 Cost = VectorCallCost; 3918 } 3919 return Cost; 3920 } 3921 3922 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3923 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3924 return Elt; 3925 return VectorType::get(Elt, VF); 3926 } 3927 3928 InstructionCost 3929 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3930 ElementCount VF) const { 3931 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3932 assert(ID && "Expected intrinsic call!"); 3933 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3934 FastMathFlags FMF; 3935 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3936 FMF = FPMO->getFastMathFlags(); 3937 3938 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3939 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3940 SmallVector<Type *> ParamTys; 3941 std::transform(FTy->param_begin(), FTy->param_end(), 3942 std::back_inserter(ParamTys), 3943 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3944 3945 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3946 dyn_cast<IntrinsicInst>(CI)); 3947 return TTI.getIntrinsicInstrCost(CostAttrs, 3948 TargetTransformInfo::TCK_RecipThroughput); 3949 } 3950 3951 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3952 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3953 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3954 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3955 } 3956 3957 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3958 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3959 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3960 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3961 } 3962 3963 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3964 // For every instruction `I` in MinBWs, truncate the operands, create a 3965 // truncated version of `I` and reextend its result. InstCombine runs 3966 // later and will remove any ext/trunc pairs. 3967 SmallPtrSet<Value *, 4> Erased; 3968 for (const auto &KV : Cost->getMinimalBitwidths()) { 3969 // If the value wasn't vectorized, we must maintain the original scalar 3970 // type. The absence of the value from State indicates that it 3971 // wasn't vectorized. 3972 VPValue *Def = State.Plan->getVPValue(KV.first); 3973 if (!State.hasAnyVectorValue(Def)) 3974 continue; 3975 for (unsigned Part = 0; Part < UF; ++Part) { 3976 Value *I = State.get(Def, Part); 3977 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3978 continue; 3979 Type *OriginalTy = I->getType(); 3980 Type *ScalarTruncatedTy = 3981 IntegerType::get(OriginalTy->getContext(), KV.second); 3982 auto *TruncatedTy = VectorType::get( 3983 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3984 if (TruncatedTy == OriginalTy) 3985 continue; 3986 3987 IRBuilder<> B(cast<Instruction>(I)); 3988 auto ShrinkOperand = [&](Value *V) -> Value * { 3989 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3990 if (ZI->getSrcTy() == TruncatedTy) 3991 return ZI->getOperand(0); 3992 return B.CreateZExtOrTrunc(V, TruncatedTy); 3993 }; 3994 3995 // The actual instruction modification depends on the instruction type, 3996 // unfortunately. 3997 Value *NewI = nullptr; 3998 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3999 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4000 ShrinkOperand(BO->getOperand(1))); 4001 4002 // Any wrapping introduced by shrinking this operation shouldn't be 4003 // considered undefined behavior. So, we can't unconditionally copy 4004 // arithmetic wrapping flags to NewI. 4005 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4006 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4007 NewI = 4008 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4009 ShrinkOperand(CI->getOperand(1))); 4010 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4011 NewI = B.CreateSelect(SI->getCondition(), 4012 ShrinkOperand(SI->getTrueValue()), 4013 ShrinkOperand(SI->getFalseValue())); 4014 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4015 switch (CI->getOpcode()) { 4016 default: 4017 llvm_unreachable("Unhandled cast!"); 4018 case Instruction::Trunc: 4019 NewI = ShrinkOperand(CI->getOperand(0)); 4020 break; 4021 case Instruction::SExt: 4022 NewI = B.CreateSExtOrTrunc( 4023 CI->getOperand(0), 4024 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4025 break; 4026 case Instruction::ZExt: 4027 NewI = B.CreateZExtOrTrunc( 4028 CI->getOperand(0), 4029 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4030 break; 4031 } 4032 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4033 auto Elements0 = 4034 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4035 auto *O0 = B.CreateZExtOrTrunc( 4036 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4037 auto Elements1 = 4038 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4039 auto *O1 = B.CreateZExtOrTrunc( 4040 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4041 4042 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4043 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4044 // Don't do anything with the operands, just extend the result. 4045 continue; 4046 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4047 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 4048 ->getNumElements(); 4049 auto *O0 = B.CreateZExtOrTrunc( 4050 IE->getOperand(0), 4051 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4052 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4053 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4054 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4055 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 4056 ->getNumElements(); 4057 auto *O0 = B.CreateZExtOrTrunc( 4058 EE->getOperand(0), 4059 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4060 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4061 } else { 4062 // If we don't know what to do, be conservative and don't do anything. 4063 continue; 4064 } 4065 4066 // Lastly, extend the result. 4067 NewI->takeName(cast<Instruction>(I)); 4068 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4069 I->replaceAllUsesWith(Res); 4070 cast<Instruction>(I)->eraseFromParent(); 4071 Erased.insert(I); 4072 State.reset(Def, Res, Part); 4073 } 4074 } 4075 4076 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4077 for (const auto &KV : Cost->getMinimalBitwidths()) { 4078 // If the value wasn't vectorized, we must maintain the original scalar 4079 // type. The absence of the value from State indicates that it 4080 // wasn't vectorized. 4081 VPValue *Def = State.Plan->getVPValue(KV.first); 4082 if (!State.hasAnyVectorValue(Def)) 4083 continue; 4084 for (unsigned Part = 0; Part < UF; ++Part) { 4085 Value *I = State.get(Def, Part); 4086 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4087 if (Inst && Inst->use_empty()) { 4088 Value *NewI = Inst->getOperand(0); 4089 Inst->eraseFromParent(); 4090 State.reset(Def, NewI, Part); 4091 } 4092 } 4093 } 4094 } 4095 4096 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4097 // Insert truncates and extends for any truncated instructions as hints to 4098 // InstCombine. 4099 if (VF.isVector()) 4100 truncateToMinimalBitwidths(State); 4101 4102 // Fix widened non-induction PHIs by setting up the PHI operands. 4103 if (OrigPHIsToFix.size()) { 4104 assert(EnableVPlanNativePath && 4105 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4106 fixNonInductionPHIs(State); 4107 } 4108 4109 // At this point every instruction in the original loop is widened to a 4110 // vector form. Now we need to fix the recurrences in the loop. These PHI 4111 // nodes are currently empty because we did not want to introduce cycles. 4112 // This is the second stage of vectorizing recurrences. 4113 fixCrossIterationPHIs(State); 4114 4115 // Forget the original basic block. 4116 PSE.getSE()->forgetLoop(OrigLoop); 4117 4118 // If we inserted an edge from the middle block to the unique exit block, 4119 // update uses outside the loop (phis) to account for the newly inserted 4120 // edge. 4121 if (!Cost->requiresScalarEpilogue(VF)) { 4122 // Fix-up external users of the induction variables. 4123 for (auto &Entry : Legal->getInductionVars()) 4124 fixupIVUsers(Entry.first, Entry.second, 4125 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4126 IVEndValues[Entry.first], LoopMiddleBlock); 4127 4128 fixLCSSAPHIs(State); 4129 } 4130 4131 for (Instruction *PI : PredicatedInstructions) 4132 sinkScalarOperands(&*PI); 4133 4134 // Remove redundant induction instructions. 4135 cse(LoopVectorBody); 4136 4137 // Set/update profile weights for the vector and remainder loops as original 4138 // loop iterations are now distributed among them. Note that original loop 4139 // represented by LoopScalarBody becomes remainder loop after vectorization. 4140 // 4141 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4142 // end up getting slightly roughened result but that should be OK since 4143 // profile is not inherently precise anyway. Note also possible bypass of 4144 // vector code caused by legality checks is ignored, assigning all the weight 4145 // to the vector loop, optimistically. 4146 // 4147 // For scalable vectorization we can't know at compile time how many iterations 4148 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4149 // vscale of '1'. 4150 setProfileInfoAfterUnrolling( 4151 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4152 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4153 } 4154 4155 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4156 // In order to support recurrences we need to be able to vectorize Phi nodes. 4157 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4158 // stage #2: We now need to fix the recurrences by adding incoming edges to 4159 // the currently empty PHI nodes. At this point every instruction in the 4160 // original loop is widened to a vector form so we can use them to construct 4161 // the incoming edges. 4162 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4163 for (VPRecipeBase &R : Header->phis()) { 4164 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 4165 if (!PhiR) 4166 continue; 4167 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4168 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(PhiR)) { 4169 fixReduction(ReductionPhi, State); 4170 } else if (Legal->isFirstOrderRecurrence(OrigPhi)) 4171 fixFirstOrderRecurrence(PhiR, State); 4172 } 4173 } 4174 4175 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4176 VPTransformState &State) { 4177 // This is the second phase of vectorizing first-order recurrences. An 4178 // overview of the transformation is described below. Suppose we have the 4179 // following loop. 4180 // 4181 // for (int i = 0; i < n; ++i) 4182 // b[i] = a[i] - a[i - 1]; 4183 // 4184 // There is a first-order recurrence on "a". For this loop, the shorthand 4185 // scalar IR looks like: 4186 // 4187 // scalar.ph: 4188 // s_init = a[-1] 4189 // br scalar.body 4190 // 4191 // scalar.body: 4192 // i = phi [0, scalar.ph], [i+1, scalar.body] 4193 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4194 // s2 = a[i] 4195 // b[i] = s2 - s1 4196 // br cond, scalar.body, ... 4197 // 4198 // In this example, s1 is a recurrence because it's value depends on the 4199 // previous iteration. In the first phase of vectorization, we created a 4200 // temporary value for s1. We now complete the vectorization and produce the 4201 // shorthand vector IR shown below (for VF = 4, UF = 1). 4202 // 4203 // vector.ph: 4204 // v_init = vector(..., ..., ..., a[-1]) 4205 // br vector.body 4206 // 4207 // vector.body 4208 // i = phi [0, vector.ph], [i+4, vector.body] 4209 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4210 // v2 = a[i, i+1, i+2, i+3]; 4211 // v3 = vector(v1(3), v2(0, 1, 2)) 4212 // b[i, i+1, i+2, i+3] = v2 - v3 4213 // br cond, vector.body, middle.block 4214 // 4215 // middle.block: 4216 // x = v2(3) 4217 // br scalar.ph 4218 // 4219 // scalar.ph: 4220 // s_init = phi [x, middle.block], [a[-1], otherwise] 4221 // br scalar.body 4222 // 4223 // After execution completes the vector loop, we extract the next value of 4224 // the recurrence (x) to use as the initial value in the scalar loop. 4225 4226 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4227 4228 auto *IdxTy = Builder.getInt32Ty(); 4229 auto *One = ConstantInt::get(IdxTy, 1); 4230 4231 // Create a vector from the initial value. 4232 auto *VectorInit = ScalarInit; 4233 if (VF.isVector()) { 4234 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4235 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4236 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4237 VectorInit = Builder.CreateInsertElement( 4238 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), 4239 VectorInit, LastIdx, "vector.recur.init"); 4240 } 4241 4242 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4243 // We constructed a temporary phi node in the first phase of vectorization. 4244 // This phi node will eventually be deleted. 4245 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiR, 0))); 4246 4247 // Create a phi node for the new recurrence. The current value will either be 4248 // the initial value inserted into a vector or loop-varying vector value. 4249 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4250 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4251 4252 // Get the vectorized previous value of the last part UF - 1. It appears last 4253 // among all unrolled iterations, due to the order of their construction. 4254 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4255 4256 // Find and set the insertion point after the previous value if it is an 4257 // instruction. 4258 BasicBlock::iterator InsertPt; 4259 // Note that the previous value may have been constant-folded so it is not 4260 // guaranteed to be an instruction in the vector loop. 4261 // FIXME: Loop invariant values do not form recurrences. We should deal with 4262 // them earlier. 4263 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4264 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4265 else { 4266 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4267 if (isa<PHINode>(PreviousLastPart)) 4268 // If the previous value is a phi node, we should insert after all the phi 4269 // nodes in the block containing the PHI to avoid breaking basic block 4270 // verification. Note that the basic block may be different to 4271 // LoopVectorBody, in case we predicate the loop. 4272 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4273 else 4274 InsertPt = ++PreviousInst->getIterator(); 4275 } 4276 Builder.SetInsertPoint(&*InsertPt); 4277 4278 // The vector from which to take the initial value for the current iteration 4279 // (actual or unrolled). Initially, this is the vector phi node. 4280 Value *Incoming = VecPhi; 4281 4282 // Shuffle the current and previous vector and update the vector parts. 4283 for (unsigned Part = 0; Part < UF; ++Part) { 4284 Value *PreviousPart = State.get(PreviousDef, Part); 4285 Value *PhiPart = State.get(PhiR, Part); 4286 auto *Shuffle = VF.isVector() 4287 ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1) 4288 : Incoming; 4289 PhiPart->replaceAllUsesWith(Shuffle); 4290 cast<Instruction>(PhiPart)->eraseFromParent(); 4291 State.reset(PhiR, Shuffle, Part); 4292 Incoming = PreviousPart; 4293 } 4294 4295 // Fix the latch value of the new recurrence in the vector loop. 4296 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4297 4298 // Extract the last vector element in the middle block. This will be the 4299 // initial value for the recurrence when jumping to the scalar loop. 4300 auto *ExtractForScalar = Incoming; 4301 if (VF.isVector()) { 4302 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4303 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4304 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4305 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4306 "vector.recur.extract"); 4307 } 4308 // Extract the second last element in the middle block if the 4309 // Phi is used outside the loop. We need to extract the phi itself 4310 // and not the last element (the phi update in the current iteration). This 4311 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4312 // when the scalar loop is not run at all. 4313 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4314 if (VF.isVector()) { 4315 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4316 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4317 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4318 Incoming, Idx, "vector.recur.extract.for.phi"); 4319 } else if (UF > 1) 4320 // When loop is unrolled without vectorizing, initialize 4321 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4322 // of `Incoming`. This is analogous to the vectorized case above: extracting 4323 // the second last element when VF > 1. 4324 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4325 4326 // Fix the initial value of the original recurrence in the scalar loop. 4327 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4328 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4329 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4330 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4331 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4332 Start->addIncoming(Incoming, BB); 4333 } 4334 4335 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4336 Phi->setName("scalar.recur"); 4337 4338 // Finally, fix users of the recurrence outside the loop. The users will need 4339 // either the last value of the scalar recurrence or the last value of the 4340 // vector recurrence we extracted in the middle block. Since the loop is in 4341 // LCSSA form, we just need to find all the phi nodes for the original scalar 4342 // recurrence in the exit block, and then add an edge for the middle block. 4343 // Note that LCSSA does not imply single entry when the original scalar loop 4344 // had multiple exiting edges (as we always run the last iteration in the 4345 // scalar epilogue); in that case, there is no edge from middle to exit and 4346 // and thus no phis which needed updated. 4347 if (!Cost->requiresScalarEpilogue(VF)) 4348 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4349 if (any_of(LCSSAPhi.incoming_values(), 4350 [Phi](Value *V) { return V == Phi; })) 4351 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4352 } 4353 4354 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4355 VPTransformState &State) { 4356 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4357 // Get it's reduction variable descriptor. 4358 assert(Legal->isReductionVariable(OrigPhi) && 4359 "Unable to find the reduction variable"); 4360 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4361 4362 RecurKind RK = RdxDesc.getRecurrenceKind(); 4363 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4364 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4365 setDebugLocFromInst(ReductionStartValue); 4366 4367 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4368 // This is the vector-clone of the value that leaves the loop. 4369 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4370 4371 // Wrap flags are in general invalid after vectorization, clear them. 4372 clearReductionWrapFlags(RdxDesc, State); 4373 4374 // Fix the vector-loop phi. 4375 4376 // Reductions do not have to start at zero. They can start with 4377 // any loop invariant values. 4378 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4379 4380 unsigned LastPartForNewPhi = PhiR->isOrdered() ? 1 : UF; 4381 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 4382 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4383 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4384 if (PhiR->isOrdered()) 4385 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4386 4387 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4388 } 4389 4390 // Before each round, move the insertion point right between 4391 // the PHIs and the values we are going to write. 4392 // This allows us to write both PHINodes and the extractelement 4393 // instructions. 4394 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4395 4396 setDebugLocFromInst(LoopExitInst); 4397 4398 Type *PhiTy = OrigPhi->getType(); 4399 // If tail is folded by masking, the vector value to leave the loop should be 4400 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4401 // instead of the former. For an inloop reduction the reduction will already 4402 // be predicated, and does not need to be handled here. 4403 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4404 for (unsigned Part = 0; Part < UF; ++Part) { 4405 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4406 Value *Sel = nullptr; 4407 for (User *U : VecLoopExitInst->users()) { 4408 if (isa<SelectInst>(U)) { 4409 assert(!Sel && "Reduction exit feeding two selects"); 4410 Sel = U; 4411 } else 4412 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4413 } 4414 assert(Sel && "Reduction exit feeds no select"); 4415 State.reset(LoopExitInstDef, Sel, Part); 4416 4417 // If the target can create a predicated operator for the reduction at no 4418 // extra cost in the loop (for example a predicated vadd), it can be 4419 // cheaper for the select to remain in the loop than be sunk out of it, 4420 // and so use the select value for the phi instead of the old 4421 // LoopExitValue. 4422 if (PreferPredicatedReductionSelect || 4423 TTI->preferPredicatedReductionSelect( 4424 RdxDesc.getOpcode(), PhiTy, 4425 TargetTransformInfo::ReductionFlags())) { 4426 auto *VecRdxPhi = 4427 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4428 VecRdxPhi->setIncomingValueForBlock( 4429 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4430 } 4431 } 4432 } 4433 4434 // If the vector reduction can be performed in a smaller type, we truncate 4435 // then extend the loop exit value to enable InstCombine to evaluate the 4436 // entire expression in the smaller type. 4437 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4438 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4439 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4440 Builder.SetInsertPoint( 4441 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4442 VectorParts RdxParts(UF); 4443 for (unsigned Part = 0; Part < UF; ++Part) { 4444 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4445 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4446 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4447 : Builder.CreateZExt(Trunc, VecTy); 4448 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4449 UI != RdxParts[Part]->user_end();) 4450 if (*UI != Trunc) { 4451 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4452 RdxParts[Part] = Extnd; 4453 } else { 4454 ++UI; 4455 } 4456 } 4457 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4458 for (unsigned Part = 0; Part < UF; ++Part) { 4459 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4460 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4461 } 4462 } 4463 4464 // Reduce all of the unrolled parts into a single vector. 4465 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4466 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4467 4468 // The middle block terminator has already been assigned a DebugLoc here (the 4469 // OrigLoop's single latch terminator). We want the whole middle block to 4470 // appear to execute on this line because: (a) it is all compiler generated, 4471 // (b) these instructions are always executed after evaluating the latch 4472 // conditional branch, and (c) other passes may add new predecessors which 4473 // terminate on this line. This is the easiest way to ensure we don't 4474 // accidentally cause an extra step back into the loop while debugging. 4475 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4476 if (PhiR->isOrdered()) 4477 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4478 else { 4479 // Floating-point operations should have some FMF to enable the reduction. 4480 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4481 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4482 for (unsigned Part = 1; Part < UF; ++Part) { 4483 Value *RdxPart = State.get(LoopExitInstDef, Part); 4484 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4485 ReducedPartRdx = Builder.CreateBinOp( 4486 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4487 } else { 4488 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4489 } 4490 } 4491 } 4492 4493 // Create the reduction after the loop. Note that inloop reductions create the 4494 // target reduction in the loop using a Reduction recipe. 4495 if (VF.isVector() && !PhiR->isInLoop()) { 4496 ReducedPartRdx = 4497 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4498 // If the reduction can be performed in a smaller type, we need to extend 4499 // the reduction to the wider type before we branch to the original loop. 4500 if (PhiTy != RdxDesc.getRecurrenceType()) 4501 ReducedPartRdx = RdxDesc.isSigned() 4502 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4503 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4504 } 4505 4506 // Create a phi node that merges control-flow from the backedge-taken check 4507 // block and the middle block. 4508 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4509 LoopScalarPreHeader->getTerminator()); 4510 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4511 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4512 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4513 4514 // Now, we need to fix the users of the reduction variable 4515 // inside and outside of the scalar remainder loop. 4516 4517 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4518 // in the exit blocks. See comment on analogous loop in 4519 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4520 if (!Cost->requiresScalarEpilogue(VF)) 4521 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4522 if (any_of(LCSSAPhi.incoming_values(), 4523 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4524 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4525 4526 // Fix the scalar loop reduction variable with the incoming reduction sum 4527 // from the vector body and from the backedge value. 4528 int IncomingEdgeBlockIdx = 4529 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4530 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4531 // Pick the other block. 4532 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4533 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4534 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4535 } 4536 4537 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4538 VPTransformState &State) { 4539 RecurKind RK = RdxDesc.getRecurrenceKind(); 4540 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4541 return; 4542 4543 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4544 assert(LoopExitInstr && "null loop exit instruction"); 4545 SmallVector<Instruction *, 8> Worklist; 4546 SmallPtrSet<Instruction *, 8> Visited; 4547 Worklist.push_back(LoopExitInstr); 4548 Visited.insert(LoopExitInstr); 4549 4550 while (!Worklist.empty()) { 4551 Instruction *Cur = Worklist.pop_back_val(); 4552 if (isa<OverflowingBinaryOperator>(Cur)) 4553 for (unsigned Part = 0; Part < UF; ++Part) { 4554 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4555 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4556 } 4557 4558 for (User *U : Cur->users()) { 4559 Instruction *UI = cast<Instruction>(U); 4560 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4561 Visited.insert(UI).second) 4562 Worklist.push_back(UI); 4563 } 4564 } 4565 } 4566 4567 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4568 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4569 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4570 // Some phis were already hand updated by the reduction and recurrence 4571 // code above, leave them alone. 4572 continue; 4573 4574 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4575 // Non-instruction incoming values will have only one value. 4576 4577 VPLane Lane = VPLane::getFirstLane(); 4578 if (isa<Instruction>(IncomingValue) && 4579 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4580 VF)) 4581 Lane = VPLane::getLastLaneForVF(VF); 4582 4583 // Can be a loop invariant incoming value or the last scalar value to be 4584 // extracted from the vectorized loop. 4585 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4586 Value *lastIncomingValue = 4587 OrigLoop->isLoopInvariant(IncomingValue) 4588 ? IncomingValue 4589 : State.get(State.Plan->getVPValue(IncomingValue), 4590 VPIteration(UF - 1, Lane)); 4591 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4592 } 4593 } 4594 4595 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4596 // The basic block and loop containing the predicated instruction. 4597 auto *PredBB = PredInst->getParent(); 4598 auto *VectorLoop = LI->getLoopFor(PredBB); 4599 4600 // Initialize a worklist with the operands of the predicated instruction. 4601 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4602 4603 // Holds instructions that we need to analyze again. An instruction may be 4604 // reanalyzed if we don't yet know if we can sink it or not. 4605 SmallVector<Instruction *, 8> InstsToReanalyze; 4606 4607 // Returns true if a given use occurs in the predicated block. Phi nodes use 4608 // their operands in their corresponding predecessor blocks. 4609 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4610 auto *I = cast<Instruction>(U.getUser()); 4611 BasicBlock *BB = I->getParent(); 4612 if (auto *Phi = dyn_cast<PHINode>(I)) 4613 BB = Phi->getIncomingBlock( 4614 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4615 return BB == PredBB; 4616 }; 4617 4618 // Iteratively sink the scalarized operands of the predicated instruction 4619 // into the block we created for it. When an instruction is sunk, it's 4620 // operands are then added to the worklist. The algorithm ends after one pass 4621 // through the worklist doesn't sink a single instruction. 4622 bool Changed; 4623 do { 4624 // Add the instructions that need to be reanalyzed to the worklist, and 4625 // reset the changed indicator. 4626 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4627 InstsToReanalyze.clear(); 4628 Changed = false; 4629 4630 while (!Worklist.empty()) { 4631 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4632 4633 // We can't sink an instruction if it is a phi node, is not in the loop, 4634 // or may have side effects. 4635 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4636 I->mayHaveSideEffects()) 4637 continue; 4638 4639 // If the instruction is already in PredBB, check if we can sink its 4640 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4641 // sinking the scalar instruction I, hence it appears in PredBB; but it 4642 // may have failed to sink I's operands (recursively), which we try 4643 // (again) here. 4644 if (I->getParent() == PredBB) { 4645 Worklist.insert(I->op_begin(), I->op_end()); 4646 continue; 4647 } 4648 4649 // It's legal to sink the instruction if all its uses occur in the 4650 // predicated block. Otherwise, there's nothing to do yet, and we may 4651 // need to reanalyze the instruction. 4652 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4653 InstsToReanalyze.push_back(I); 4654 continue; 4655 } 4656 4657 // Move the instruction to the beginning of the predicated block, and add 4658 // it's operands to the worklist. 4659 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4660 Worklist.insert(I->op_begin(), I->op_end()); 4661 4662 // The sinking may have enabled other instructions to be sunk, so we will 4663 // need to iterate. 4664 Changed = true; 4665 } 4666 } while (Changed); 4667 } 4668 4669 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4670 for (PHINode *OrigPhi : OrigPHIsToFix) { 4671 VPWidenPHIRecipe *VPPhi = 4672 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4673 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4674 // Make sure the builder has a valid insert point. 4675 Builder.SetInsertPoint(NewPhi); 4676 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4677 VPValue *Inc = VPPhi->getIncomingValue(i); 4678 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4679 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4680 } 4681 } 4682 } 4683 4684 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4685 return Cost->useOrderedReductions(RdxDesc); 4686 } 4687 4688 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4689 VPUser &Operands, unsigned UF, 4690 ElementCount VF, bool IsPtrLoopInvariant, 4691 SmallBitVector &IsIndexLoopInvariant, 4692 VPTransformState &State) { 4693 // Construct a vector GEP by widening the operands of the scalar GEP as 4694 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4695 // results in a vector of pointers when at least one operand of the GEP 4696 // is vector-typed. Thus, to keep the representation compact, we only use 4697 // vector-typed operands for loop-varying values. 4698 4699 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4700 // If we are vectorizing, but the GEP has only loop-invariant operands, 4701 // the GEP we build (by only using vector-typed operands for 4702 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4703 // produce a vector of pointers, we need to either arbitrarily pick an 4704 // operand to broadcast, or broadcast a clone of the original GEP. 4705 // Here, we broadcast a clone of the original. 4706 // 4707 // TODO: If at some point we decide to scalarize instructions having 4708 // loop-invariant operands, this special case will no longer be 4709 // required. We would add the scalarization decision to 4710 // collectLoopScalars() and teach getVectorValue() to broadcast 4711 // the lane-zero scalar value. 4712 auto *Clone = Builder.Insert(GEP->clone()); 4713 for (unsigned Part = 0; Part < UF; ++Part) { 4714 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4715 State.set(VPDef, EntryPart, Part); 4716 addMetadata(EntryPart, GEP); 4717 } 4718 } else { 4719 // If the GEP has at least one loop-varying operand, we are sure to 4720 // produce a vector of pointers. But if we are only unrolling, we want 4721 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4722 // produce with the code below will be scalar (if VF == 1) or vector 4723 // (otherwise). Note that for the unroll-only case, we still maintain 4724 // values in the vector mapping with initVector, as we do for other 4725 // instructions. 4726 for (unsigned Part = 0; Part < UF; ++Part) { 4727 // The pointer operand of the new GEP. If it's loop-invariant, we 4728 // won't broadcast it. 4729 auto *Ptr = IsPtrLoopInvariant 4730 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4731 : State.get(Operands.getOperand(0), Part); 4732 4733 // Collect all the indices for the new GEP. If any index is 4734 // loop-invariant, we won't broadcast it. 4735 SmallVector<Value *, 4> Indices; 4736 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4737 VPValue *Operand = Operands.getOperand(I); 4738 if (IsIndexLoopInvariant[I - 1]) 4739 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4740 else 4741 Indices.push_back(State.get(Operand, Part)); 4742 } 4743 4744 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4745 // but it should be a vector, otherwise. 4746 auto *NewGEP = 4747 GEP->isInBounds() 4748 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4749 Indices) 4750 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4751 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4752 "NewGEP is not a pointer vector"); 4753 State.set(VPDef, NewGEP, Part); 4754 addMetadata(NewGEP, GEP); 4755 } 4756 } 4757 } 4758 4759 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4760 VPWidenPHIRecipe *PhiR, 4761 VPTransformState &State) { 4762 PHINode *P = cast<PHINode>(PN); 4763 if (EnableVPlanNativePath) { 4764 // Currently we enter here in the VPlan-native path for non-induction 4765 // PHIs where all control flow is uniform. We simply widen these PHIs. 4766 // Create a vector phi with no operands - the vector phi operands will be 4767 // set at the end of vector code generation. 4768 Type *VecTy = (State.VF.isScalar()) 4769 ? PN->getType() 4770 : VectorType::get(PN->getType(), State.VF); 4771 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4772 State.set(PhiR, VecPhi, 0); 4773 OrigPHIsToFix.push_back(P); 4774 4775 return; 4776 } 4777 4778 assert(PN->getParent() == OrigLoop->getHeader() && 4779 "Non-header phis should have been handled elsewhere"); 4780 4781 // In order to support recurrences we need to be able to vectorize Phi nodes. 4782 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4783 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4784 // this value when we vectorize all of the instructions that use the PHI. 4785 if (Legal->isFirstOrderRecurrence(P)) { 4786 Type *VecTy = State.VF.isScalar() 4787 ? PN->getType() 4788 : VectorType::get(PN->getType(), State.VF); 4789 4790 for (unsigned Part = 0; Part < State.UF; ++Part) { 4791 Value *EntryPart = PHINode::Create( 4792 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4793 State.set(PhiR, EntryPart, Part); 4794 } 4795 return; 4796 } 4797 4798 assert(!Legal->isReductionVariable(P) && 4799 "reductions should be handled elsewhere"); 4800 4801 setDebugLocFromInst(P); 4802 4803 // This PHINode must be an induction variable. 4804 // Make sure that we know about it. 4805 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4806 4807 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4808 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4809 4810 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4811 // which can be found from the original scalar operations. 4812 switch (II.getKind()) { 4813 case InductionDescriptor::IK_NoInduction: 4814 llvm_unreachable("Unknown induction"); 4815 case InductionDescriptor::IK_IntInduction: 4816 case InductionDescriptor::IK_FpInduction: 4817 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4818 case InductionDescriptor::IK_PtrInduction: { 4819 // Handle the pointer induction variable case. 4820 assert(P->getType()->isPointerTy() && "Unexpected type."); 4821 4822 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4823 // This is the normalized GEP that starts counting at zero. 4824 Value *PtrInd = 4825 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4826 // Determine the number of scalars we need to generate for each unroll 4827 // iteration. If the instruction is uniform, we only need to generate the 4828 // first lane. Otherwise, we generate all VF values. 4829 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4830 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4831 4832 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4833 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4834 if (NeedsVectorIndex) { 4835 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4836 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4837 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4838 } 4839 4840 for (unsigned Part = 0; Part < UF; ++Part) { 4841 Value *PartStart = createStepForVF( 4842 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4843 4844 if (NeedsVectorIndex) { 4845 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4846 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4847 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4848 Value *SclrGep = 4849 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4850 SclrGep->setName("next.gep"); 4851 State.set(PhiR, SclrGep, Part); 4852 // We've cached the whole vector, which means we can support the 4853 // extraction of any lane. 4854 continue; 4855 } 4856 4857 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4858 Value *Idx = Builder.CreateAdd( 4859 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4860 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4861 Value *SclrGep = 4862 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4863 SclrGep->setName("next.gep"); 4864 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4865 } 4866 } 4867 return; 4868 } 4869 assert(isa<SCEVConstant>(II.getStep()) && 4870 "Induction step not a SCEV constant!"); 4871 Type *PhiType = II.getStep()->getType(); 4872 4873 // Build a pointer phi 4874 Value *ScalarStartValue = II.getStartValue(); 4875 Type *ScStValueType = ScalarStartValue->getType(); 4876 PHINode *NewPointerPhi = 4877 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4878 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4879 4880 // A pointer induction, performed by using a gep 4881 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4882 Instruction *InductionLoc = LoopLatch->getTerminator(); 4883 const SCEV *ScalarStep = II.getStep(); 4884 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4885 Value *ScalarStepValue = 4886 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4887 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4888 Value *NumUnrolledElems = 4889 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4890 Value *InductionGEP = GetElementPtrInst::Create( 4891 ScStValueType->getPointerElementType(), NewPointerPhi, 4892 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4893 InductionLoc); 4894 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4895 4896 // Create UF many actual address geps that use the pointer 4897 // phi as base and a vectorized version of the step value 4898 // (<step*0, ..., step*N>) as offset. 4899 for (unsigned Part = 0; Part < State.UF; ++Part) { 4900 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4901 Value *StartOffsetScalar = 4902 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4903 Value *StartOffset = 4904 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4905 // Create a vector of consecutive numbers from zero to VF. 4906 StartOffset = 4907 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4908 4909 Value *GEP = Builder.CreateGEP( 4910 ScStValueType->getPointerElementType(), NewPointerPhi, 4911 Builder.CreateMul( 4912 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4913 "vector.gep")); 4914 State.set(PhiR, GEP, Part); 4915 } 4916 } 4917 } 4918 } 4919 4920 /// A helper function for checking whether an integer division-related 4921 /// instruction may divide by zero (in which case it must be predicated if 4922 /// executed conditionally in the scalar code). 4923 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4924 /// Non-zero divisors that are non compile-time constants will not be 4925 /// converted into multiplication, so we will still end up scalarizing 4926 /// the division, but can do so w/o predication. 4927 static bool mayDivideByZero(Instruction &I) { 4928 assert((I.getOpcode() == Instruction::UDiv || 4929 I.getOpcode() == Instruction::SDiv || 4930 I.getOpcode() == Instruction::URem || 4931 I.getOpcode() == Instruction::SRem) && 4932 "Unexpected instruction"); 4933 Value *Divisor = I.getOperand(1); 4934 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4935 return !CInt || CInt->isZero(); 4936 } 4937 4938 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4939 VPUser &User, 4940 VPTransformState &State) { 4941 switch (I.getOpcode()) { 4942 case Instruction::Call: 4943 case Instruction::Br: 4944 case Instruction::PHI: 4945 case Instruction::GetElementPtr: 4946 case Instruction::Select: 4947 llvm_unreachable("This instruction is handled by a different recipe."); 4948 case Instruction::UDiv: 4949 case Instruction::SDiv: 4950 case Instruction::SRem: 4951 case Instruction::URem: 4952 case Instruction::Add: 4953 case Instruction::FAdd: 4954 case Instruction::Sub: 4955 case Instruction::FSub: 4956 case Instruction::FNeg: 4957 case Instruction::Mul: 4958 case Instruction::FMul: 4959 case Instruction::FDiv: 4960 case Instruction::FRem: 4961 case Instruction::Shl: 4962 case Instruction::LShr: 4963 case Instruction::AShr: 4964 case Instruction::And: 4965 case Instruction::Or: 4966 case Instruction::Xor: { 4967 // Just widen unops and binops. 4968 setDebugLocFromInst(&I); 4969 4970 for (unsigned Part = 0; Part < UF; ++Part) { 4971 SmallVector<Value *, 2> Ops; 4972 for (VPValue *VPOp : User.operands()) 4973 Ops.push_back(State.get(VPOp, Part)); 4974 4975 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4976 4977 if (auto *VecOp = dyn_cast<Instruction>(V)) 4978 VecOp->copyIRFlags(&I); 4979 4980 // Use this vector value for all users of the original instruction. 4981 State.set(Def, V, Part); 4982 addMetadata(V, &I); 4983 } 4984 4985 break; 4986 } 4987 case Instruction::ICmp: 4988 case Instruction::FCmp: { 4989 // Widen compares. Generate vector compares. 4990 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4991 auto *Cmp = cast<CmpInst>(&I); 4992 setDebugLocFromInst(Cmp); 4993 for (unsigned Part = 0; Part < UF; ++Part) { 4994 Value *A = State.get(User.getOperand(0), Part); 4995 Value *B = State.get(User.getOperand(1), Part); 4996 Value *C = nullptr; 4997 if (FCmp) { 4998 // Propagate fast math flags. 4999 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 5000 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 5001 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 5002 } else { 5003 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 5004 } 5005 State.set(Def, C, Part); 5006 addMetadata(C, &I); 5007 } 5008 5009 break; 5010 } 5011 5012 case Instruction::ZExt: 5013 case Instruction::SExt: 5014 case Instruction::FPToUI: 5015 case Instruction::FPToSI: 5016 case Instruction::FPExt: 5017 case Instruction::PtrToInt: 5018 case Instruction::IntToPtr: 5019 case Instruction::SIToFP: 5020 case Instruction::UIToFP: 5021 case Instruction::Trunc: 5022 case Instruction::FPTrunc: 5023 case Instruction::BitCast: { 5024 auto *CI = cast<CastInst>(&I); 5025 setDebugLocFromInst(CI); 5026 5027 /// Vectorize casts. 5028 Type *DestTy = 5029 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 5030 5031 for (unsigned Part = 0; Part < UF; ++Part) { 5032 Value *A = State.get(User.getOperand(0), Part); 5033 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 5034 State.set(Def, Cast, Part); 5035 addMetadata(Cast, &I); 5036 } 5037 break; 5038 } 5039 default: 5040 // This instruction is not vectorized by simple widening. 5041 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 5042 llvm_unreachable("Unhandled instruction!"); 5043 } // end of switch. 5044 } 5045 5046 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 5047 VPUser &ArgOperands, 5048 VPTransformState &State) { 5049 assert(!isa<DbgInfoIntrinsic>(I) && 5050 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 5051 setDebugLocFromInst(&I); 5052 5053 Module *M = I.getParent()->getParent()->getParent(); 5054 auto *CI = cast<CallInst>(&I); 5055 5056 SmallVector<Type *, 4> Tys; 5057 for (Value *ArgOperand : CI->arg_operands()) 5058 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 5059 5060 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5061 5062 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5063 // version of the instruction. 5064 // Is it beneficial to perform intrinsic call compared to lib call? 5065 bool NeedToScalarize = false; 5066 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 5067 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 5068 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 5069 assert((UseVectorIntrinsic || !NeedToScalarize) && 5070 "Instruction should be scalarized elsewhere."); 5071 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5072 "Either the intrinsic cost or vector call cost must be valid"); 5073 5074 for (unsigned Part = 0; Part < UF; ++Part) { 5075 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5076 SmallVector<Value *, 4> Args; 5077 for (auto &I : enumerate(ArgOperands.operands())) { 5078 // Some intrinsics have a scalar argument - don't replace it with a 5079 // vector. 5080 Value *Arg; 5081 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5082 Arg = State.get(I.value(), Part); 5083 else { 5084 Arg = State.get(I.value(), VPIteration(0, 0)); 5085 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5086 TysForDecl.push_back(Arg->getType()); 5087 } 5088 Args.push_back(Arg); 5089 } 5090 5091 Function *VectorF; 5092 if (UseVectorIntrinsic) { 5093 // Use vector version of the intrinsic. 5094 if (VF.isVector()) 5095 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5096 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5097 assert(VectorF && "Can't retrieve vector intrinsic."); 5098 } else { 5099 // Use vector version of the function call. 5100 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5101 #ifndef NDEBUG 5102 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5103 "Can't create vector function."); 5104 #endif 5105 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5106 } 5107 SmallVector<OperandBundleDef, 1> OpBundles; 5108 CI->getOperandBundlesAsDefs(OpBundles); 5109 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5110 5111 if (isa<FPMathOperator>(V)) 5112 V->copyFastMathFlags(CI); 5113 5114 State.set(Def, V, Part); 5115 addMetadata(V, &I); 5116 } 5117 } 5118 5119 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5120 VPUser &Operands, 5121 bool InvariantCond, 5122 VPTransformState &State) { 5123 setDebugLocFromInst(&I); 5124 5125 // The condition can be loop invariant but still defined inside the 5126 // loop. This means that we can't just use the original 'cond' value. 5127 // We have to take the 'vectorized' value and pick the first lane. 5128 // Instcombine will make this a no-op. 5129 auto *InvarCond = InvariantCond 5130 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5131 : nullptr; 5132 5133 for (unsigned Part = 0; Part < UF; ++Part) { 5134 Value *Cond = 5135 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5136 Value *Op0 = State.get(Operands.getOperand(1), Part); 5137 Value *Op1 = State.get(Operands.getOperand(2), Part); 5138 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5139 State.set(VPDef, Sel, Part); 5140 addMetadata(Sel, &I); 5141 } 5142 } 5143 5144 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5145 // We should not collect Scalars more than once per VF. Right now, this 5146 // function is called from collectUniformsAndScalars(), which already does 5147 // this check. Collecting Scalars for VF=1 does not make any sense. 5148 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5149 "This function should not be visited twice for the same VF"); 5150 5151 SmallSetVector<Instruction *, 8> Worklist; 5152 5153 // These sets are used to seed the analysis with pointers used by memory 5154 // accesses that will remain scalar. 5155 SmallSetVector<Instruction *, 8> ScalarPtrs; 5156 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5157 auto *Latch = TheLoop->getLoopLatch(); 5158 5159 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5160 // The pointer operands of loads and stores will be scalar as long as the 5161 // memory access is not a gather or scatter operation. The value operand of a 5162 // store will remain scalar if the store is scalarized. 5163 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5164 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5165 assert(WideningDecision != CM_Unknown && 5166 "Widening decision should be ready at this moment"); 5167 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5168 if (Ptr == Store->getValueOperand()) 5169 return WideningDecision == CM_Scalarize; 5170 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5171 "Ptr is neither a value or pointer operand"); 5172 return WideningDecision != CM_GatherScatter; 5173 }; 5174 5175 // A helper that returns true if the given value is a bitcast or 5176 // getelementptr instruction contained in the loop. 5177 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5178 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5179 isa<GetElementPtrInst>(V)) && 5180 !TheLoop->isLoopInvariant(V); 5181 }; 5182 5183 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5184 if (!isa<PHINode>(Ptr) || 5185 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5186 return false; 5187 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5188 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5189 return false; 5190 return isScalarUse(MemAccess, Ptr); 5191 }; 5192 5193 // A helper that evaluates a memory access's use of a pointer. If the 5194 // pointer is actually the pointer induction of a loop, it is being 5195 // inserted into Worklist. If the use will be a scalar use, and the 5196 // pointer is only used by memory accesses, we place the pointer in 5197 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5198 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5199 if (isScalarPtrInduction(MemAccess, Ptr)) { 5200 Worklist.insert(cast<Instruction>(Ptr)); 5201 Instruction *Update = cast<Instruction>( 5202 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5203 Worklist.insert(Update); 5204 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5205 << "\n"); 5206 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5207 << "\n"); 5208 return; 5209 } 5210 // We only care about bitcast and getelementptr instructions contained in 5211 // the loop. 5212 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5213 return; 5214 5215 // If the pointer has already been identified as scalar (e.g., if it was 5216 // also identified as uniform), there's nothing to do. 5217 auto *I = cast<Instruction>(Ptr); 5218 if (Worklist.count(I)) 5219 return; 5220 5221 // If the use of the pointer will be a scalar use, and all users of the 5222 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5223 // place the pointer in PossibleNonScalarPtrs. 5224 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5225 return isa<LoadInst>(U) || isa<StoreInst>(U); 5226 })) 5227 ScalarPtrs.insert(I); 5228 else 5229 PossibleNonScalarPtrs.insert(I); 5230 }; 5231 5232 // We seed the scalars analysis with three classes of instructions: (1) 5233 // instructions marked uniform-after-vectorization and (2) bitcast, 5234 // getelementptr and (pointer) phi instructions used by memory accesses 5235 // requiring a scalar use. 5236 // 5237 // (1) Add to the worklist all instructions that have been identified as 5238 // uniform-after-vectorization. 5239 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5240 5241 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5242 // memory accesses requiring a scalar use. The pointer operands of loads and 5243 // stores will be scalar as long as the memory accesses is not a gather or 5244 // scatter operation. The value operand of a store will remain scalar if the 5245 // store is scalarized. 5246 for (auto *BB : TheLoop->blocks()) 5247 for (auto &I : *BB) { 5248 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5249 evaluatePtrUse(Load, Load->getPointerOperand()); 5250 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5251 evaluatePtrUse(Store, Store->getPointerOperand()); 5252 evaluatePtrUse(Store, Store->getValueOperand()); 5253 } 5254 } 5255 for (auto *I : ScalarPtrs) 5256 if (!PossibleNonScalarPtrs.count(I)) { 5257 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5258 Worklist.insert(I); 5259 } 5260 5261 // Insert the forced scalars. 5262 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5263 // induction variable when the PHI user is scalarized. 5264 auto ForcedScalar = ForcedScalars.find(VF); 5265 if (ForcedScalar != ForcedScalars.end()) 5266 for (auto *I : ForcedScalar->second) 5267 Worklist.insert(I); 5268 5269 // Expand the worklist by looking through any bitcasts and getelementptr 5270 // instructions we've already identified as scalar. This is similar to the 5271 // expansion step in collectLoopUniforms(); however, here we're only 5272 // expanding to include additional bitcasts and getelementptr instructions. 5273 unsigned Idx = 0; 5274 while (Idx != Worklist.size()) { 5275 Instruction *Dst = Worklist[Idx++]; 5276 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5277 continue; 5278 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5279 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5280 auto *J = cast<Instruction>(U); 5281 return !TheLoop->contains(J) || Worklist.count(J) || 5282 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5283 isScalarUse(J, Src)); 5284 })) { 5285 Worklist.insert(Src); 5286 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5287 } 5288 } 5289 5290 // An induction variable will remain scalar if all users of the induction 5291 // variable and induction variable update remain scalar. 5292 for (auto &Induction : Legal->getInductionVars()) { 5293 auto *Ind = Induction.first; 5294 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5295 5296 // If tail-folding is applied, the primary induction variable will be used 5297 // to feed a vector compare. 5298 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5299 continue; 5300 5301 // Determine if all users of the induction variable are scalar after 5302 // vectorization. 5303 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5304 auto *I = cast<Instruction>(U); 5305 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5306 }); 5307 if (!ScalarInd) 5308 continue; 5309 5310 // Determine if all users of the induction variable update instruction are 5311 // scalar after vectorization. 5312 auto ScalarIndUpdate = 5313 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5314 auto *I = cast<Instruction>(U); 5315 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5316 }); 5317 if (!ScalarIndUpdate) 5318 continue; 5319 5320 // The induction variable and its update instruction will remain scalar. 5321 Worklist.insert(Ind); 5322 Worklist.insert(IndUpdate); 5323 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5324 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5325 << "\n"); 5326 } 5327 5328 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5329 } 5330 5331 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5332 if (!blockNeedsPredication(I->getParent())) 5333 return false; 5334 switch(I->getOpcode()) { 5335 default: 5336 break; 5337 case Instruction::Load: 5338 case Instruction::Store: { 5339 if (!Legal->isMaskRequired(I)) 5340 return false; 5341 auto *Ptr = getLoadStorePointerOperand(I); 5342 auto *Ty = getLoadStoreType(I); 5343 const Align Alignment = getLoadStoreAlignment(I); 5344 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5345 TTI.isLegalMaskedGather(Ty, Alignment)) 5346 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5347 TTI.isLegalMaskedScatter(Ty, Alignment)); 5348 } 5349 case Instruction::UDiv: 5350 case Instruction::SDiv: 5351 case Instruction::SRem: 5352 case Instruction::URem: 5353 return mayDivideByZero(*I); 5354 } 5355 return false; 5356 } 5357 5358 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5359 Instruction *I, ElementCount VF) { 5360 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5361 assert(getWideningDecision(I, VF) == CM_Unknown && 5362 "Decision should not be set yet."); 5363 auto *Group = getInterleavedAccessGroup(I); 5364 assert(Group && "Must have a group."); 5365 5366 // If the instruction's allocated size doesn't equal it's type size, it 5367 // requires padding and will be scalarized. 5368 auto &DL = I->getModule()->getDataLayout(); 5369 auto *ScalarTy = getLoadStoreType(I); 5370 if (hasIrregularType(ScalarTy, DL)) 5371 return false; 5372 5373 // Check if masking is required. 5374 // A Group may need masking for one of two reasons: it resides in a block that 5375 // needs predication, or it was decided to use masking to deal with gaps. 5376 bool PredicatedAccessRequiresMasking = 5377 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5378 bool AccessWithGapsRequiresMasking = 5379 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5380 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5381 return true; 5382 5383 // If masked interleaving is required, we expect that the user/target had 5384 // enabled it, because otherwise it either wouldn't have been created or 5385 // it should have been invalidated by the CostModel. 5386 assert(useMaskedInterleavedAccesses(TTI) && 5387 "Masked interleave-groups for predicated accesses are not enabled."); 5388 5389 auto *Ty = getLoadStoreType(I); 5390 const Align Alignment = getLoadStoreAlignment(I); 5391 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5392 : TTI.isLegalMaskedStore(Ty, Alignment); 5393 } 5394 5395 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5396 Instruction *I, ElementCount VF) { 5397 // Get and ensure we have a valid memory instruction. 5398 LoadInst *LI = dyn_cast<LoadInst>(I); 5399 StoreInst *SI = dyn_cast<StoreInst>(I); 5400 assert((LI || SI) && "Invalid memory instruction"); 5401 5402 auto *Ptr = getLoadStorePointerOperand(I); 5403 5404 // In order to be widened, the pointer should be consecutive, first of all. 5405 if (!Legal->isConsecutivePtr(Ptr)) 5406 return false; 5407 5408 // If the instruction is a store located in a predicated block, it will be 5409 // scalarized. 5410 if (isScalarWithPredication(I)) 5411 return false; 5412 5413 // If the instruction's allocated size doesn't equal it's type size, it 5414 // requires padding and will be scalarized. 5415 auto &DL = I->getModule()->getDataLayout(); 5416 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5417 if (hasIrregularType(ScalarTy, DL)) 5418 return false; 5419 5420 return true; 5421 } 5422 5423 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5424 // We should not collect Uniforms more than once per VF. Right now, 5425 // this function is called from collectUniformsAndScalars(), which 5426 // already does this check. Collecting Uniforms for VF=1 does not make any 5427 // sense. 5428 5429 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5430 "This function should not be visited twice for the same VF"); 5431 5432 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5433 // not analyze again. Uniforms.count(VF) will return 1. 5434 Uniforms[VF].clear(); 5435 5436 // We now know that the loop is vectorizable! 5437 // Collect instructions inside the loop that will remain uniform after 5438 // vectorization. 5439 5440 // Global values, params and instructions outside of current loop are out of 5441 // scope. 5442 auto isOutOfScope = [&](Value *V) -> bool { 5443 Instruction *I = dyn_cast<Instruction>(V); 5444 return (!I || !TheLoop->contains(I)); 5445 }; 5446 5447 SetVector<Instruction *> Worklist; 5448 BasicBlock *Latch = TheLoop->getLoopLatch(); 5449 5450 // Instructions that are scalar with predication must not be considered 5451 // uniform after vectorization, because that would create an erroneous 5452 // replicating region where only a single instance out of VF should be formed. 5453 // TODO: optimize such seldom cases if found important, see PR40816. 5454 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5455 if (isOutOfScope(I)) { 5456 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5457 << *I << "\n"); 5458 return; 5459 } 5460 if (isScalarWithPredication(I)) { 5461 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5462 << *I << "\n"); 5463 return; 5464 } 5465 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5466 Worklist.insert(I); 5467 }; 5468 5469 // Start with the conditional branch. If the branch condition is an 5470 // instruction contained in the loop that is only used by the branch, it is 5471 // uniform. 5472 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5473 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5474 addToWorklistIfAllowed(Cmp); 5475 5476 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5477 InstWidening WideningDecision = getWideningDecision(I, VF); 5478 assert(WideningDecision != CM_Unknown && 5479 "Widening decision should be ready at this moment"); 5480 5481 // A uniform memory op is itself uniform. We exclude uniform stores 5482 // here as they demand the last lane, not the first one. 5483 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5484 assert(WideningDecision == CM_Scalarize); 5485 return true; 5486 } 5487 5488 return (WideningDecision == CM_Widen || 5489 WideningDecision == CM_Widen_Reverse || 5490 WideningDecision == CM_Interleave); 5491 }; 5492 5493 5494 // Returns true if Ptr is the pointer operand of a memory access instruction 5495 // I, and I is known to not require scalarization. 5496 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5497 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5498 }; 5499 5500 // Holds a list of values which are known to have at least one uniform use. 5501 // Note that there may be other uses which aren't uniform. A "uniform use" 5502 // here is something which only demands lane 0 of the unrolled iterations; 5503 // it does not imply that all lanes produce the same value (e.g. this is not 5504 // the usual meaning of uniform) 5505 SetVector<Value *> HasUniformUse; 5506 5507 // Scan the loop for instructions which are either a) known to have only 5508 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5509 for (auto *BB : TheLoop->blocks()) 5510 for (auto &I : *BB) { 5511 // If there's no pointer operand, there's nothing to do. 5512 auto *Ptr = getLoadStorePointerOperand(&I); 5513 if (!Ptr) 5514 continue; 5515 5516 // A uniform memory op is itself uniform. We exclude uniform stores 5517 // here as they demand the last lane, not the first one. 5518 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5519 addToWorklistIfAllowed(&I); 5520 5521 if (isUniformDecision(&I, VF)) { 5522 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5523 HasUniformUse.insert(Ptr); 5524 } 5525 } 5526 5527 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5528 // demanding) users. Since loops are assumed to be in LCSSA form, this 5529 // disallows uses outside the loop as well. 5530 for (auto *V : HasUniformUse) { 5531 if (isOutOfScope(V)) 5532 continue; 5533 auto *I = cast<Instruction>(V); 5534 auto UsersAreMemAccesses = 5535 llvm::all_of(I->users(), [&](User *U) -> bool { 5536 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5537 }); 5538 if (UsersAreMemAccesses) 5539 addToWorklistIfAllowed(I); 5540 } 5541 5542 // Expand Worklist in topological order: whenever a new instruction 5543 // is added , its users should be already inside Worklist. It ensures 5544 // a uniform instruction will only be used by uniform instructions. 5545 unsigned idx = 0; 5546 while (idx != Worklist.size()) { 5547 Instruction *I = Worklist[idx++]; 5548 5549 for (auto OV : I->operand_values()) { 5550 // isOutOfScope operands cannot be uniform instructions. 5551 if (isOutOfScope(OV)) 5552 continue; 5553 // First order recurrence Phi's should typically be considered 5554 // non-uniform. 5555 auto *OP = dyn_cast<PHINode>(OV); 5556 if (OP && Legal->isFirstOrderRecurrence(OP)) 5557 continue; 5558 // If all the users of the operand are uniform, then add the 5559 // operand into the uniform worklist. 5560 auto *OI = cast<Instruction>(OV); 5561 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5562 auto *J = cast<Instruction>(U); 5563 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5564 })) 5565 addToWorklistIfAllowed(OI); 5566 } 5567 } 5568 5569 // For an instruction to be added into Worklist above, all its users inside 5570 // the loop should also be in Worklist. However, this condition cannot be 5571 // true for phi nodes that form a cyclic dependence. We must process phi 5572 // nodes separately. An induction variable will remain uniform if all users 5573 // of the induction variable and induction variable update remain uniform. 5574 // The code below handles both pointer and non-pointer induction variables. 5575 for (auto &Induction : Legal->getInductionVars()) { 5576 auto *Ind = Induction.first; 5577 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5578 5579 // Determine if all users of the induction variable are uniform after 5580 // vectorization. 5581 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5582 auto *I = cast<Instruction>(U); 5583 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5584 isVectorizedMemAccessUse(I, Ind); 5585 }); 5586 if (!UniformInd) 5587 continue; 5588 5589 // Determine if all users of the induction variable update instruction are 5590 // uniform after vectorization. 5591 auto UniformIndUpdate = 5592 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5593 auto *I = cast<Instruction>(U); 5594 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5595 isVectorizedMemAccessUse(I, IndUpdate); 5596 }); 5597 if (!UniformIndUpdate) 5598 continue; 5599 5600 // The induction variable and its update instruction will remain uniform. 5601 addToWorklistIfAllowed(Ind); 5602 addToWorklistIfAllowed(IndUpdate); 5603 } 5604 5605 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5606 } 5607 5608 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5609 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5610 5611 if (Legal->getRuntimePointerChecking()->Need) { 5612 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5613 "runtime pointer checks needed. Enable vectorization of this " 5614 "loop with '#pragma clang loop vectorize(enable)' when " 5615 "compiling with -Os/-Oz", 5616 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5617 return true; 5618 } 5619 5620 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5621 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5622 "runtime SCEV checks needed. Enable vectorization of this " 5623 "loop with '#pragma clang loop vectorize(enable)' when " 5624 "compiling with -Os/-Oz", 5625 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5626 return true; 5627 } 5628 5629 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5630 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5631 reportVectorizationFailure("Runtime stride check for small trip count", 5632 "runtime stride == 1 checks needed. Enable vectorization of " 5633 "this loop without such check by compiling with -Os/-Oz", 5634 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5635 return true; 5636 } 5637 5638 return false; 5639 } 5640 5641 ElementCount 5642 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5643 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5644 reportVectorizationInfo( 5645 "Disabling scalable vectorization, because target does not " 5646 "support scalable vectors.", 5647 "ScalableVectorsUnsupported", ORE, TheLoop); 5648 return ElementCount::getScalable(0); 5649 } 5650 5651 if (Hints->isScalableVectorizationDisabled()) { 5652 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5653 "ScalableVectorizationDisabled", ORE, TheLoop); 5654 return ElementCount::getScalable(0); 5655 } 5656 5657 auto MaxScalableVF = ElementCount::getScalable( 5658 std::numeric_limits<ElementCount::ScalarTy>::max()); 5659 5660 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5661 // FIXME: While for scalable vectors this is currently sufficient, this should 5662 // be replaced by a more detailed mechanism that filters out specific VFs, 5663 // instead of invalidating vectorization for a whole set of VFs based on the 5664 // MaxVF. 5665 5666 // Disable scalable vectorization if the loop contains unsupported reductions. 5667 if (!canVectorizeReductions(MaxScalableVF)) { 5668 reportVectorizationInfo( 5669 "Scalable vectorization not supported for the reduction " 5670 "operations found in this loop.", 5671 "ScalableVFUnfeasible", ORE, TheLoop); 5672 return ElementCount::getScalable(0); 5673 } 5674 5675 // Disable scalable vectorization if the loop contains any instructions 5676 // with element types not supported for scalable vectors. 5677 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5678 return !Ty->isVoidTy() && 5679 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5680 })) { 5681 reportVectorizationInfo("Scalable vectorization is not supported " 5682 "for all element types found in this loop.", 5683 "ScalableVFUnfeasible", ORE, TheLoop); 5684 return ElementCount::getScalable(0); 5685 } 5686 5687 if (Legal->isSafeForAnyVectorWidth()) 5688 return MaxScalableVF; 5689 5690 // Limit MaxScalableVF by the maximum safe dependence distance. 5691 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5692 MaxScalableVF = ElementCount::getScalable( 5693 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5694 if (!MaxScalableVF) 5695 reportVectorizationInfo( 5696 "Max legal vector width too small, scalable vectorization " 5697 "unfeasible.", 5698 "ScalableVFUnfeasible", ORE, TheLoop); 5699 5700 return MaxScalableVF; 5701 } 5702 5703 FixedScalableVFPair 5704 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5705 ElementCount UserVF) { 5706 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5707 unsigned SmallestType, WidestType; 5708 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5709 5710 // Get the maximum safe dependence distance in bits computed by LAA. 5711 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5712 // the memory accesses that is most restrictive (involved in the smallest 5713 // dependence distance). 5714 unsigned MaxSafeElements = 5715 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5716 5717 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5718 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5719 5720 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5721 << ".\n"); 5722 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5723 << ".\n"); 5724 5725 // First analyze the UserVF, fall back if the UserVF should be ignored. 5726 if (UserVF) { 5727 auto MaxSafeUserVF = 5728 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5729 5730 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5731 // If `VF=vscale x N` is safe, then so is `VF=N` 5732 if (UserVF.isScalable()) 5733 return FixedScalableVFPair( 5734 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5735 else 5736 return UserVF; 5737 } 5738 5739 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5740 5741 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5742 // is better to ignore the hint and let the compiler choose a suitable VF. 5743 if (!UserVF.isScalable()) { 5744 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5745 << " is unsafe, clamping to max safe VF=" 5746 << MaxSafeFixedVF << ".\n"); 5747 ORE->emit([&]() { 5748 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5749 TheLoop->getStartLoc(), 5750 TheLoop->getHeader()) 5751 << "User-specified vectorization factor " 5752 << ore::NV("UserVectorizationFactor", UserVF) 5753 << " is unsafe, clamping to maximum safe vectorization factor " 5754 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5755 }); 5756 return MaxSafeFixedVF; 5757 } 5758 5759 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5760 << " is unsafe. Ignoring scalable UserVF.\n"); 5761 ORE->emit([&]() { 5762 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5763 TheLoop->getStartLoc(), 5764 TheLoop->getHeader()) 5765 << "User-specified vectorization factor " 5766 << ore::NV("UserVectorizationFactor", UserVF) 5767 << " is unsafe. Ignoring the hint to let the compiler pick a " 5768 "suitable VF."; 5769 }); 5770 } 5771 5772 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5773 << " / " << WidestType << " bits.\n"); 5774 5775 FixedScalableVFPair Result(ElementCount::getFixed(1), 5776 ElementCount::getScalable(0)); 5777 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5778 WidestType, MaxSafeFixedVF)) 5779 Result.FixedVF = MaxVF; 5780 5781 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5782 WidestType, MaxSafeScalableVF)) 5783 if (MaxVF.isScalable()) { 5784 Result.ScalableVF = MaxVF; 5785 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5786 << "\n"); 5787 } 5788 5789 return Result; 5790 } 5791 5792 FixedScalableVFPair 5793 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5794 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5795 // TODO: It may by useful to do since it's still likely to be dynamically 5796 // uniform if the target can skip. 5797 reportVectorizationFailure( 5798 "Not inserting runtime ptr check for divergent target", 5799 "runtime pointer checks needed. Not enabled for divergent target", 5800 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5801 return FixedScalableVFPair::getNone(); 5802 } 5803 5804 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5805 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5806 if (TC == 1) { 5807 reportVectorizationFailure("Single iteration (non) loop", 5808 "loop trip count is one, irrelevant for vectorization", 5809 "SingleIterationLoop", ORE, TheLoop); 5810 return FixedScalableVFPair::getNone(); 5811 } 5812 5813 switch (ScalarEpilogueStatus) { 5814 case CM_ScalarEpilogueAllowed: 5815 return computeFeasibleMaxVF(TC, UserVF); 5816 case CM_ScalarEpilogueNotAllowedUsePredicate: 5817 LLVM_FALLTHROUGH; 5818 case CM_ScalarEpilogueNotNeededUsePredicate: 5819 LLVM_DEBUG( 5820 dbgs() << "LV: vector predicate hint/switch found.\n" 5821 << "LV: Not allowing scalar epilogue, creating predicated " 5822 << "vector loop.\n"); 5823 break; 5824 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5825 // fallthrough as a special case of OptForSize 5826 case CM_ScalarEpilogueNotAllowedOptSize: 5827 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5828 LLVM_DEBUG( 5829 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5830 else 5831 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5832 << "count.\n"); 5833 5834 // Bail if runtime checks are required, which are not good when optimising 5835 // for size. 5836 if (runtimeChecksRequired()) 5837 return FixedScalableVFPair::getNone(); 5838 5839 break; 5840 } 5841 5842 // The only loops we can vectorize without a scalar epilogue, are loops with 5843 // a bottom-test and a single exiting block. We'd have to handle the fact 5844 // that not every instruction executes on the last iteration. This will 5845 // require a lane mask which varies through the vector loop body. (TODO) 5846 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5847 // If there was a tail-folding hint/switch, but we can't fold the tail by 5848 // masking, fallback to a vectorization with a scalar epilogue. 5849 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5850 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5851 "scalar epilogue instead.\n"); 5852 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5853 return computeFeasibleMaxVF(TC, UserVF); 5854 } 5855 return FixedScalableVFPair::getNone(); 5856 } 5857 5858 // Now try the tail folding 5859 5860 // Invalidate interleave groups that require an epilogue if we can't mask 5861 // the interleave-group. 5862 if (!useMaskedInterleavedAccesses(TTI)) { 5863 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5864 "No decisions should have been taken at this point"); 5865 // Note: There is no need to invalidate any cost modeling decisions here, as 5866 // non where taken so far. 5867 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5868 } 5869 5870 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5871 // Avoid tail folding if the trip count is known to be a multiple of any VF 5872 // we chose. 5873 // FIXME: The condition below pessimises the case for fixed-width vectors, 5874 // when scalable VFs are also candidates for vectorization. 5875 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5876 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5877 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5878 "MaxFixedVF must be a power of 2"); 5879 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5880 : MaxFixedVF.getFixedValue(); 5881 ScalarEvolution *SE = PSE.getSE(); 5882 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5883 const SCEV *ExitCount = SE->getAddExpr( 5884 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5885 const SCEV *Rem = SE->getURemExpr( 5886 SE->applyLoopGuards(ExitCount, TheLoop), 5887 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5888 if (Rem->isZero()) { 5889 // Accept MaxFixedVF if we do not have a tail. 5890 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5891 return MaxFactors; 5892 } 5893 } 5894 5895 // If we don't know the precise trip count, or if the trip count that we 5896 // found modulo the vectorization factor is not zero, try to fold the tail 5897 // by masking. 5898 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5899 if (Legal->prepareToFoldTailByMasking()) { 5900 FoldTailByMasking = true; 5901 return MaxFactors; 5902 } 5903 5904 // If there was a tail-folding hint/switch, but we can't fold the tail by 5905 // masking, fallback to a vectorization with a scalar epilogue. 5906 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5907 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5908 "scalar epilogue instead.\n"); 5909 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5910 return MaxFactors; 5911 } 5912 5913 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5914 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5915 return FixedScalableVFPair::getNone(); 5916 } 5917 5918 if (TC == 0) { 5919 reportVectorizationFailure( 5920 "Unable to calculate the loop count due to complex control flow", 5921 "unable to calculate the loop count due to complex control flow", 5922 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5923 return FixedScalableVFPair::getNone(); 5924 } 5925 5926 reportVectorizationFailure( 5927 "Cannot optimize for size and vectorize at the same time.", 5928 "cannot optimize for size and vectorize at the same time. " 5929 "Enable vectorization of this loop with '#pragma clang loop " 5930 "vectorize(enable)' when compiling with -Os/-Oz", 5931 "NoTailLoopWithOptForSize", ORE, TheLoop); 5932 return FixedScalableVFPair::getNone(); 5933 } 5934 5935 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5936 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5937 const ElementCount &MaxSafeVF) { 5938 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5939 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5940 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5941 : TargetTransformInfo::RGK_FixedWidthVector); 5942 5943 // Convenience function to return the minimum of two ElementCounts. 5944 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5945 assert((LHS.isScalable() == RHS.isScalable()) && 5946 "Scalable flags must match"); 5947 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5948 }; 5949 5950 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5951 // Note that both WidestRegister and WidestType may not be a powers of 2. 5952 auto MaxVectorElementCount = ElementCount::get( 5953 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5954 ComputeScalableMaxVF); 5955 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5956 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5957 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5958 5959 if (!MaxVectorElementCount) { 5960 LLVM_DEBUG(dbgs() << "LV: The target has no " 5961 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5962 << " vector registers.\n"); 5963 return ElementCount::getFixed(1); 5964 } 5965 5966 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5967 if (ConstTripCount && 5968 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5969 isPowerOf2_32(ConstTripCount)) { 5970 // We need to clamp the VF to be the ConstTripCount. There is no point in 5971 // choosing a higher viable VF as done in the loop below. If 5972 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5973 // the TC is less than or equal to the known number of lanes. 5974 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5975 << ConstTripCount << "\n"); 5976 return TripCountEC; 5977 } 5978 5979 ElementCount MaxVF = MaxVectorElementCount; 5980 if (TTI.shouldMaximizeVectorBandwidth() || 5981 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5982 auto MaxVectorElementCountMaxBW = ElementCount::get( 5983 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5984 ComputeScalableMaxVF); 5985 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5986 5987 // Collect all viable vectorization factors larger than the default MaxVF 5988 // (i.e. MaxVectorElementCount). 5989 SmallVector<ElementCount, 8> VFs; 5990 for (ElementCount VS = MaxVectorElementCount * 2; 5991 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5992 VFs.push_back(VS); 5993 5994 // For each VF calculate its register usage. 5995 auto RUs = calculateRegisterUsage(VFs); 5996 5997 // Select the largest VF which doesn't require more registers than existing 5998 // ones. 5999 for (int i = RUs.size() - 1; i >= 0; --i) { 6000 bool Selected = true; 6001 for (auto &pair : RUs[i].MaxLocalUsers) { 6002 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6003 if (pair.second > TargetNumRegisters) 6004 Selected = false; 6005 } 6006 if (Selected) { 6007 MaxVF = VFs[i]; 6008 break; 6009 } 6010 } 6011 if (ElementCount MinVF = 6012 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 6013 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6014 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6015 << ") with target's minimum: " << MinVF << '\n'); 6016 MaxVF = MinVF; 6017 } 6018 } 6019 } 6020 return MaxVF; 6021 } 6022 6023 bool LoopVectorizationCostModel::isMoreProfitable( 6024 const VectorizationFactor &A, const VectorizationFactor &B) const { 6025 InstructionCost CostA = A.Cost; 6026 InstructionCost CostB = B.Cost; 6027 6028 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6029 6030 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6031 MaxTripCount) { 6032 // If we are folding the tail and the trip count is a known (possibly small) 6033 // constant, the trip count will be rounded up to an integer number of 6034 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6035 // which we compare directly. When not folding the tail, the total cost will 6036 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6037 // approximated with the per-lane cost below instead of using the tripcount 6038 // as here. 6039 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6040 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6041 return RTCostA < RTCostB; 6042 } 6043 6044 // When set to preferred, for now assume vscale may be larger than 1, so 6045 // that scalable vectorization is slightly favorable over fixed-width 6046 // vectorization. 6047 if (Hints->isScalableVectorizationPreferred()) 6048 if (A.Width.isScalable() && !B.Width.isScalable()) 6049 return (CostA * B.Width.getKnownMinValue()) <= 6050 (CostB * A.Width.getKnownMinValue()); 6051 6052 // To avoid the need for FP division: 6053 // (CostA / A.Width) < (CostB / B.Width) 6054 // <=> (CostA * B.Width) < (CostB * A.Width) 6055 return (CostA * B.Width.getKnownMinValue()) < 6056 (CostB * A.Width.getKnownMinValue()); 6057 } 6058 6059 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6060 const ElementCountSet &VFCandidates) { 6061 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6062 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6063 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6064 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6065 "Expected Scalar VF to be a candidate"); 6066 6067 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6068 VectorizationFactor ChosenFactor = ScalarCost; 6069 6070 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6071 if (ForceVectorization && VFCandidates.size() > 1) { 6072 // Ignore scalar width, because the user explicitly wants vectorization. 6073 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6074 // evaluation. 6075 ChosenFactor.Cost = InstructionCost::getMax(); 6076 } 6077 6078 for (const auto &i : VFCandidates) { 6079 // The cost for scalar VF=1 is already calculated, so ignore it. 6080 if (i.isScalar()) 6081 continue; 6082 6083 VectorizationCostTy C = expectedCost(i); 6084 VectorizationFactor Candidate(i, C.first); 6085 LLVM_DEBUG( 6086 dbgs() << "LV: Vector loop of width " << i << " costs: " 6087 << (Candidate.Cost / Candidate.Width.getKnownMinValue()) 6088 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6089 << ".\n"); 6090 6091 if (!C.second && !ForceVectorization) { 6092 LLVM_DEBUG( 6093 dbgs() << "LV: Not considering vector loop of width " << i 6094 << " because it will not generate any vector instructions.\n"); 6095 continue; 6096 } 6097 6098 // If profitable add it to ProfitableVF list. 6099 if (isMoreProfitable(Candidate, ScalarCost)) 6100 ProfitableVFs.push_back(Candidate); 6101 6102 if (isMoreProfitable(Candidate, ChosenFactor)) 6103 ChosenFactor = Candidate; 6104 } 6105 6106 if (!EnableCondStoresVectorization && NumPredStores) { 6107 reportVectorizationFailure("There are conditional stores.", 6108 "store that is conditionally executed prevents vectorization", 6109 "ConditionalStore", ORE, TheLoop); 6110 ChosenFactor = ScalarCost; 6111 } 6112 6113 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6114 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 6115 << "LV: Vectorization seems to be not beneficial, " 6116 << "but was forced by a user.\n"); 6117 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6118 return ChosenFactor; 6119 } 6120 6121 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6122 const Loop &L, ElementCount VF) const { 6123 // Cross iteration phis such as reductions need special handling and are 6124 // currently unsupported. 6125 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6126 return Legal->isFirstOrderRecurrence(&Phi) || 6127 Legal->isReductionVariable(&Phi); 6128 })) 6129 return false; 6130 6131 // Phis with uses outside of the loop require special handling and are 6132 // currently unsupported. 6133 for (auto &Entry : Legal->getInductionVars()) { 6134 // Look for uses of the value of the induction at the last iteration. 6135 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6136 for (User *U : PostInc->users()) 6137 if (!L.contains(cast<Instruction>(U))) 6138 return false; 6139 // Look for uses of penultimate value of the induction. 6140 for (User *U : Entry.first->users()) 6141 if (!L.contains(cast<Instruction>(U))) 6142 return false; 6143 } 6144 6145 // Induction variables that are widened require special handling that is 6146 // currently not supported. 6147 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6148 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6149 this->isProfitableToScalarize(Entry.first, VF)); 6150 })) 6151 return false; 6152 6153 // Epilogue vectorization code has not been auditted to ensure it handles 6154 // non-latch exits properly. It may be fine, but it needs auditted and 6155 // tested. 6156 if (L.getExitingBlock() != L.getLoopLatch()) 6157 return false; 6158 6159 return true; 6160 } 6161 6162 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6163 const ElementCount VF) const { 6164 // FIXME: We need a much better cost-model to take different parameters such 6165 // as register pressure, code size increase and cost of extra branches into 6166 // account. For now we apply a very crude heuristic and only consider loops 6167 // with vectorization factors larger than a certain value. 6168 // We also consider epilogue vectorization unprofitable for targets that don't 6169 // consider interleaving beneficial (eg. MVE). 6170 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6171 return false; 6172 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6173 return true; 6174 return false; 6175 } 6176 6177 VectorizationFactor 6178 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6179 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6180 VectorizationFactor Result = VectorizationFactor::Disabled(); 6181 if (!EnableEpilogueVectorization) { 6182 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6183 return Result; 6184 } 6185 6186 if (!isScalarEpilogueAllowed()) { 6187 LLVM_DEBUG( 6188 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6189 "allowed.\n";); 6190 return Result; 6191 } 6192 6193 // FIXME: This can be fixed for scalable vectors later, because at this stage 6194 // the LoopVectorizer will only consider vectorizing a loop with scalable 6195 // vectors when the loop has a hint to enable vectorization for a given VF. 6196 if (MainLoopVF.isScalable()) { 6197 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6198 "yet supported.\n"); 6199 return Result; 6200 } 6201 6202 // Not really a cost consideration, but check for unsupported cases here to 6203 // simplify the logic. 6204 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6205 LLVM_DEBUG( 6206 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6207 "not a supported candidate.\n";); 6208 return Result; 6209 } 6210 6211 if (EpilogueVectorizationForceVF > 1) { 6212 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6213 if (LVP.hasPlanWithVFs( 6214 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6215 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6216 else { 6217 LLVM_DEBUG( 6218 dbgs() 6219 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6220 return Result; 6221 } 6222 } 6223 6224 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6225 TheLoop->getHeader()->getParent()->hasMinSize()) { 6226 LLVM_DEBUG( 6227 dbgs() 6228 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6229 return Result; 6230 } 6231 6232 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6233 return Result; 6234 6235 for (auto &NextVF : ProfitableVFs) 6236 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6237 (Result.Width.getFixedValue() == 1 || 6238 isMoreProfitable(NextVF, Result)) && 6239 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6240 Result = NextVF; 6241 6242 if (Result != VectorizationFactor::Disabled()) 6243 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6244 << Result.Width.getFixedValue() << "\n";); 6245 return Result; 6246 } 6247 6248 std::pair<unsigned, unsigned> 6249 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6250 unsigned MinWidth = -1U; 6251 unsigned MaxWidth = 8; 6252 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6253 for (Type *T : ElementTypesInLoop) { 6254 MinWidth = std::min<unsigned>( 6255 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6256 MaxWidth = std::max<unsigned>( 6257 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6258 } 6259 return {MinWidth, MaxWidth}; 6260 } 6261 6262 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6263 ElementTypesInLoop.clear(); 6264 // For each block. 6265 for (BasicBlock *BB : TheLoop->blocks()) { 6266 // For each instruction in the loop. 6267 for (Instruction &I : BB->instructionsWithoutDebug()) { 6268 Type *T = I.getType(); 6269 6270 // Skip ignored values. 6271 if (ValuesToIgnore.count(&I)) 6272 continue; 6273 6274 // Only examine Loads, Stores and PHINodes. 6275 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6276 continue; 6277 6278 // Examine PHI nodes that are reduction variables. Update the type to 6279 // account for the recurrence type. 6280 if (auto *PN = dyn_cast<PHINode>(&I)) { 6281 if (!Legal->isReductionVariable(PN)) 6282 continue; 6283 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6284 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6285 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6286 RdxDesc.getRecurrenceType(), 6287 TargetTransformInfo::ReductionFlags())) 6288 continue; 6289 T = RdxDesc.getRecurrenceType(); 6290 } 6291 6292 // Examine the stored values. 6293 if (auto *ST = dyn_cast<StoreInst>(&I)) 6294 T = ST->getValueOperand()->getType(); 6295 6296 // Ignore loaded pointer types and stored pointer types that are not 6297 // vectorizable. 6298 // 6299 // FIXME: The check here attempts to predict whether a load or store will 6300 // be vectorized. We only know this for certain after a VF has 6301 // been selected. Here, we assume that if an access can be 6302 // vectorized, it will be. We should also look at extending this 6303 // optimization to non-pointer types. 6304 // 6305 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6306 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6307 continue; 6308 6309 ElementTypesInLoop.insert(T); 6310 } 6311 } 6312 } 6313 6314 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6315 unsigned LoopCost) { 6316 // -- The interleave heuristics -- 6317 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6318 // There are many micro-architectural considerations that we can't predict 6319 // at this level. For example, frontend pressure (on decode or fetch) due to 6320 // code size, or the number and capabilities of the execution ports. 6321 // 6322 // We use the following heuristics to select the interleave count: 6323 // 1. If the code has reductions, then we interleave to break the cross 6324 // iteration dependency. 6325 // 2. If the loop is really small, then we interleave to reduce the loop 6326 // overhead. 6327 // 3. We don't interleave if we think that we will spill registers to memory 6328 // due to the increased register pressure. 6329 6330 if (!isScalarEpilogueAllowed()) 6331 return 1; 6332 6333 // We used the distance for the interleave count. 6334 if (Legal->getMaxSafeDepDistBytes() != -1U) 6335 return 1; 6336 6337 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6338 const bool HasReductions = !Legal->getReductionVars().empty(); 6339 // Do not interleave loops with a relatively small known or estimated trip 6340 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6341 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6342 // because with the above conditions interleaving can expose ILP and break 6343 // cross iteration dependences for reductions. 6344 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6345 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6346 return 1; 6347 6348 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6349 // We divide by these constants so assume that we have at least one 6350 // instruction that uses at least one register. 6351 for (auto& pair : R.MaxLocalUsers) { 6352 pair.second = std::max(pair.second, 1U); 6353 } 6354 6355 // We calculate the interleave count using the following formula. 6356 // Subtract the number of loop invariants from the number of available 6357 // registers. These registers are used by all of the interleaved instances. 6358 // Next, divide the remaining registers by the number of registers that is 6359 // required by the loop, in order to estimate how many parallel instances 6360 // fit without causing spills. All of this is rounded down if necessary to be 6361 // a power of two. We want power of two interleave count to simplify any 6362 // addressing operations or alignment considerations. 6363 // We also want power of two interleave counts to ensure that the induction 6364 // variable of the vector loop wraps to zero, when tail is folded by masking; 6365 // this currently happens when OptForSize, in which case IC is set to 1 above. 6366 unsigned IC = UINT_MAX; 6367 6368 for (auto& pair : R.MaxLocalUsers) { 6369 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6370 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6371 << " registers of " 6372 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6373 if (VF.isScalar()) { 6374 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6375 TargetNumRegisters = ForceTargetNumScalarRegs; 6376 } else { 6377 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6378 TargetNumRegisters = ForceTargetNumVectorRegs; 6379 } 6380 unsigned MaxLocalUsers = pair.second; 6381 unsigned LoopInvariantRegs = 0; 6382 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6383 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6384 6385 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6386 // Don't count the induction variable as interleaved. 6387 if (EnableIndVarRegisterHeur) { 6388 TmpIC = 6389 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6390 std::max(1U, (MaxLocalUsers - 1))); 6391 } 6392 6393 IC = std::min(IC, TmpIC); 6394 } 6395 6396 // Clamp the interleave ranges to reasonable counts. 6397 unsigned MaxInterleaveCount = 6398 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6399 6400 // Check if the user has overridden the max. 6401 if (VF.isScalar()) { 6402 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6403 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6404 } else { 6405 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6406 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6407 } 6408 6409 // If trip count is known or estimated compile time constant, limit the 6410 // interleave count to be less than the trip count divided by VF, provided it 6411 // is at least 1. 6412 // 6413 // For scalable vectors we can't know if interleaving is beneficial. It may 6414 // not be beneficial for small loops if none of the lanes in the second vector 6415 // iterations is enabled. However, for larger loops, there is likely to be a 6416 // similar benefit as for fixed-width vectors. For now, we choose to leave 6417 // the InterleaveCount as if vscale is '1', although if some information about 6418 // the vector is known (e.g. min vector size), we can make a better decision. 6419 if (BestKnownTC) { 6420 MaxInterleaveCount = 6421 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6422 // Make sure MaxInterleaveCount is greater than 0. 6423 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6424 } 6425 6426 assert(MaxInterleaveCount > 0 && 6427 "Maximum interleave count must be greater than 0"); 6428 6429 // Clamp the calculated IC to be between the 1 and the max interleave count 6430 // that the target and trip count allows. 6431 if (IC > MaxInterleaveCount) 6432 IC = MaxInterleaveCount; 6433 else 6434 // Make sure IC is greater than 0. 6435 IC = std::max(1u, IC); 6436 6437 assert(IC > 0 && "Interleave count must be greater than 0."); 6438 6439 // If we did not calculate the cost for VF (because the user selected the VF) 6440 // then we calculate the cost of VF here. 6441 if (LoopCost == 0) { 6442 InstructionCost C = expectedCost(VF).first; 6443 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6444 LoopCost = *C.getValue(); 6445 } 6446 6447 assert(LoopCost && "Non-zero loop cost expected"); 6448 6449 // Interleave if we vectorized this loop and there is a reduction that could 6450 // benefit from interleaving. 6451 if (VF.isVector() && HasReductions) { 6452 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6453 return IC; 6454 } 6455 6456 // Note that if we've already vectorized the loop we will have done the 6457 // runtime check and so interleaving won't require further checks. 6458 bool InterleavingRequiresRuntimePointerCheck = 6459 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6460 6461 // We want to interleave small loops in order to reduce the loop overhead and 6462 // potentially expose ILP opportunities. 6463 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6464 << "LV: IC is " << IC << '\n' 6465 << "LV: VF is " << VF << '\n'); 6466 const bool AggressivelyInterleaveReductions = 6467 TTI.enableAggressiveInterleaving(HasReductions); 6468 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6469 // We assume that the cost overhead is 1 and we use the cost model 6470 // to estimate the cost of the loop and interleave until the cost of the 6471 // loop overhead is about 5% of the cost of the loop. 6472 unsigned SmallIC = 6473 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6474 6475 // Interleave until store/load ports (estimated by max interleave count) are 6476 // saturated. 6477 unsigned NumStores = Legal->getNumStores(); 6478 unsigned NumLoads = Legal->getNumLoads(); 6479 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6480 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6481 6482 // If we have a scalar reduction (vector reductions are already dealt with 6483 // by this point), we can increase the critical path length if the loop 6484 // we're interleaving is inside another loop. Limit, by default to 2, so the 6485 // critical path only gets increased by one reduction operation. 6486 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6487 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6488 SmallIC = std::min(SmallIC, F); 6489 StoresIC = std::min(StoresIC, F); 6490 LoadsIC = std::min(LoadsIC, F); 6491 } 6492 6493 if (EnableLoadStoreRuntimeInterleave && 6494 std::max(StoresIC, LoadsIC) > SmallIC) { 6495 LLVM_DEBUG( 6496 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6497 return std::max(StoresIC, LoadsIC); 6498 } 6499 6500 // If there are scalar reductions and TTI has enabled aggressive 6501 // interleaving for reductions, we will interleave to expose ILP. 6502 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6503 AggressivelyInterleaveReductions) { 6504 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6505 // Interleave no less than SmallIC but not as aggressive as the normal IC 6506 // to satisfy the rare situation when resources are too limited. 6507 return std::max(IC / 2, SmallIC); 6508 } else { 6509 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6510 return SmallIC; 6511 } 6512 } 6513 6514 // Interleave if this is a large loop (small loops are already dealt with by 6515 // this point) that could benefit from interleaving. 6516 if (AggressivelyInterleaveReductions) { 6517 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6518 return IC; 6519 } 6520 6521 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6522 return 1; 6523 } 6524 6525 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6526 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6527 // This function calculates the register usage by measuring the highest number 6528 // of values that are alive at a single location. Obviously, this is a very 6529 // rough estimation. We scan the loop in a topological order in order and 6530 // assign a number to each instruction. We use RPO to ensure that defs are 6531 // met before their users. We assume that each instruction that has in-loop 6532 // users starts an interval. We record every time that an in-loop value is 6533 // used, so we have a list of the first and last occurrences of each 6534 // instruction. Next, we transpose this data structure into a multi map that 6535 // holds the list of intervals that *end* at a specific location. This multi 6536 // map allows us to perform a linear search. We scan the instructions linearly 6537 // and record each time that a new interval starts, by placing it in a set. 6538 // If we find this value in the multi-map then we remove it from the set. 6539 // The max register usage is the maximum size of the set. 6540 // We also search for instructions that are defined outside the loop, but are 6541 // used inside the loop. We need this number separately from the max-interval 6542 // usage number because when we unroll, loop-invariant values do not take 6543 // more register. 6544 LoopBlocksDFS DFS(TheLoop); 6545 DFS.perform(LI); 6546 6547 RegisterUsage RU; 6548 6549 // Each 'key' in the map opens a new interval. The values 6550 // of the map are the index of the 'last seen' usage of the 6551 // instruction that is the key. 6552 using IntervalMap = DenseMap<Instruction *, unsigned>; 6553 6554 // Maps instruction to its index. 6555 SmallVector<Instruction *, 64> IdxToInstr; 6556 // Marks the end of each interval. 6557 IntervalMap EndPoint; 6558 // Saves the list of instruction indices that are used in the loop. 6559 SmallPtrSet<Instruction *, 8> Ends; 6560 // Saves the list of values that are used in the loop but are 6561 // defined outside the loop, such as arguments and constants. 6562 SmallPtrSet<Value *, 8> LoopInvariants; 6563 6564 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6565 for (Instruction &I : BB->instructionsWithoutDebug()) { 6566 IdxToInstr.push_back(&I); 6567 6568 // Save the end location of each USE. 6569 for (Value *U : I.operands()) { 6570 auto *Instr = dyn_cast<Instruction>(U); 6571 6572 // Ignore non-instruction values such as arguments, constants, etc. 6573 if (!Instr) 6574 continue; 6575 6576 // If this instruction is outside the loop then record it and continue. 6577 if (!TheLoop->contains(Instr)) { 6578 LoopInvariants.insert(Instr); 6579 continue; 6580 } 6581 6582 // Overwrite previous end points. 6583 EndPoint[Instr] = IdxToInstr.size(); 6584 Ends.insert(Instr); 6585 } 6586 } 6587 } 6588 6589 // Saves the list of intervals that end with the index in 'key'. 6590 using InstrList = SmallVector<Instruction *, 2>; 6591 DenseMap<unsigned, InstrList> TransposeEnds; 6592 6593 // Transpose the EndPoints to a list of values that end at each index. 6594 for (auto &Interval : EndPoint) 6595 TransposeEnds[Interval.second].push_back(Interval.first); 6596 6597 SmallPtrSet<Instruction *, 8> OpenIntervals; 6598 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6599 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6600 6601 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6602 6603 // A lambda that gets the register usage for the given type and VF. 6604 const auto &TTICapture = TTI; 6605 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6606 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6607 return 0; 6608 InstructionCost::CostType RegUsage = 6609 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6610 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6611 "Nonsensical values for register usage."); 6612 return RegUsage; 6613 }; 6614 6615 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6616 Instruction *I = IdxToInstr[i]; 6617 6618 // Remove all of the instructions that end at this location. 6619 InstrList &List = TransposeEnds[i]; 6620 for (Instruction *ToRemove : List) 6621 OpenIntervals.erase(ToRemove); 6622 6623 // Ignore instructions that are never used within the loop. 6624 if (!Ends.count(I)) 6625 continue; 6626 6627 // Skip ignored values. 6628 if (ValuesToIgnore.count(I)) 6629 continue; 6630 6631 // For each VF find the maximum usage of registers. 6632 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6633 // Count the number of live intervals. 6634 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6635 6636 if (VFs[j].isScalar()) { 6637 for (auto Inst : OpenIntervals) { 6638 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6639 if (RegUsage.find(ClassID) == RegUsage.end()) 6640 RegUsage[ClassID] = 1; 6641 else 6642 RegUsage[ClassID] += 1; 6643 } 6644 } else { 6645 collectUniformsAndScalars(VFs[j]); 6646 for (auto Inst : OpenIntervals) { 6647 // Skip ignored values for VF > 1. 6648 if (VecValuesToIgnore.count(Inst)) 6649 continue; 6650 if (isScalarAfterVectorization(Inst, VFs[j])) { 6651 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6652 if (RegUsage.find(ClassID) == RegUsage.end()) 6653 RegUsage[ClassID] = 1; 6654 else 6655 RegUsage[ClassID] += 1; 6656 } else { 6657 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6658 if (RegUsage.find(ClassID) == RegUsage.end()) 6659 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6660 else 6661 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6662 } 6663 } 6664 } 6665 6666 for (auto& pair : RegUsage) { 6667 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6668 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6669 else 6670 MaxUsages[j][pair.first] = pair.second; 6671 } 6672 } 6673 6674 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6675 << OpenIntervals.size() << '\n'); 6676 6677 // Add the current instruction to the list of open intervals. 6678 OpenIntervals.insert(I); 6679 } 6680 6681 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6682 SmallMapVector<unsigned, unsigned, 4> Invariant; 6683 6684 for (auto Inst : LoopInvariants) { 6685 unsigned Usage = 6686 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6687 unsigned ClassID = 6688 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6689 if (Invariant.find(ClassID) == Invariant.end()) 6690 Invariant[ClassID] = Usage; 6691 else 6692 Invariant[ClassID] += Usage; 6693 } 6694 6695 LLVM_DEBUG({ 6696 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6697 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6698 << " item\n"; 6699 for (const auto &pair : MaxUsages[i]) { 6700 dbgs() << "LV(REG): RegisterClass: " 6701 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6702 << " registers\n"; 6703 } 6704 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6705 << " item\n"; 6706 for (const auto &pair : Invariant) { 6707 dbgs() << "LV(REG): RegisterClass: " 6708 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6709 << " registers\n"; 6710 } 6711 }); 6712 6713 RU.LoopInvariantRegs = Invariant; 6714 RU.MaxLocalUsers = MaxUsages[i]; 6715 RUs[i] = RU; 6716 } 6717 6718 return RUs; 6719 } 6720 6721 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6722 // TODO: Cost model for emulated masked load/store is completely 6723 // broken. This hack guides the cost model to use an artificially 6724 // high enough value to practically disable vectorization with such 6725 // operations, except where previously deployed legality hack allowed 6726 // using very low cost values. This is to avoid regressions coming simply 6727 // from moving "masked load/store" check from legality to cost model. 6728 // Masked Load/Gather emulation was previously never allowed. 6729 // Limited number of Masked Store/Scatter emulation was allowed. 6730 assert(isPredicatedInst(I) && 6731 "Expecting a scalar emulated instruction"); 6732 return isa<LoadInst>(I) || 6733 (isa<StoreInst>(I) && 6734 NumPredStores > NumberOfStoresToPredicate); 6735 } 6736 6737 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6738 // If we aren't vectorizing the loop, or if we've already collected the 6739 // instructions to scalarize, there's nothing to do. Collection may already 6740 // have occurred if we have a user-selected VF and are now computing the 6741 // expected cost for interleaving. 6742 if (VF.isScalar() || VF.isZero() || 6743 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6744 return; 6745 6746 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6747 // not profitable to scalarize any instructions, the presence of VF in the 6748 // map will indicate that we've analyzed it already. 6749 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6750 6751 // Find all the instructions that are scalar with predication in the loop and 6752 // determine if it would be better to not if-convert the blocks they are in. 6753 // If so, we also record the instructions to scalarize. 6754 for (BasicBlock *BB : TheLoop->blocks()) { 6755 if (!blockNeedsPredication(BB)) 6756 continue; 6757 for (Instruction &I : *BB) 6758 if (isScalarWithPredication(&I)) { 6759 ScalarCostsTy ScalarCosts; 6760 // Do not apply discount logic if hacked cost is needed 6761 // for emulated masked memrefs. 6762 if (!useEmulatedMaskMemRefHack(&I) && 6763 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6764 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6765 // Remember that BB will remain after vectorization. 6766 PredicatedBBsAfterVectorization.insert(BB); 6767 } 6768 } 6769 } 6770 6771 int LoopVectorizationCostModel::computePredInstDiscount( 6772 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6773 assert(!isUniformAfterVectorization(PredInst, VF) && 6774 "Instruction marked uniform-after-vectorization will be predicated"); 6775 6776 // Initialize the discount to zero, meaning that the scalar version and the 6777 // vector version cost the same. 6778 InstructionCost Discount = 0; 6779 6780 // Holds instructions to analyze. The instructions we visit are mapped in 6781 // ScalarCosts. Those instructions are the ones that would be scalarized if 6782 // we find that the scalar version costs less. 6783 SmallVector<Instruction *, 8> Worklist; 6784 6785 // Returns true if the given instruction can be scalarized. 6786 auto canBeScalarized = [&](Instruction *I) -> bool { 6787 // We only attempt to scalarize instructions forming a single-use chain 6788 // from the original predicated block that would otherwise be vectorized. 6789 // Although not strictly necessary, we give up on instructions we know will 6790 // already be scalar to avoid traversing chains that are unlikely to be 6791 // beneficial. 6792 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6793 isScalarAfterVectorization(I, VF)) 6794 return false; 6795 6796 // If the instruction is scalar with predication, it will be analyzed 6797 // separately. We ignore it within the context of PredInst. 6798 if (isScalarWithPredication(I)) 6799 return false; 6800 6801 // If any of the instruction's operands are uniform after vectorization, 6802 // the instruction cannot be scalarized. This prevents, for example, a 6803 // masked load from being scalarized. 6804 // 6805 // We assume we will only emit a value for lane zero of an instruction 6806 // marked uniform after vectorization, rather than VF identical values. 6807 // Thus, if we scalarize an instruction that uses a uniform, we would 6808 // create uses of values corresponding to the lanes we aren't emitting code 6809 // for. This behavior can be changed by allowing getScalarValue to clone 6810 // the lane zero values for uniforms rather than asserting. 6811 for (Use &U : I->operands()) 6812 if (auto *J = dyn_cast<Instruction>(U.get())) 6813 if (isUniformAfterVectorization(J, VF)) 6814 return false; 6815 6816 // Otherwise, we can scalarize the instruction. 6817 return true; 6818 }; 6819 6820 // Compute the expected cost discount from scalarizing the entire expression 6821 // feeding the predicated instruction. We currently only consider expressions 6822 // that are single-use instruction chains. 6823 Worklist.push_back(PredInst); 6824 while (!Worklist.empty()) { 6825 Instruction *I = Worklist.pop_back_val(); 6826 6827 // If we've already analyzed the instruction, there's nothing to do. 6828 if (ScalarCosts.find(I) != ScalarCosts.end()) 6829 continue; 6830 6831 // Compute the cost of the vector instruction. Note that this cost already 6832 // includes the scalarization overhead of the predicated instruction. 6833 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6834 6835 // Compute the cost of the scalarized instruction. This cost is the cost of 6836 // the instruction as if it wasn't if-converted and instead remained in the 6837 // predicated block. We will scale this cost by block probability after 6838 // computing the scalarization overhead. 6839 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6840 InstructionCost ScalarCost = 6841 VF.getKnownMinValue() * 6842 getInstructionCost(I, ElementCount::getFixed(1)).first; 6843 6844 // Compute the scalarization overhead of needed insertelement instructions 6845 // and phi nodes. 6846 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6847 ScalarCost += TTI.getScalarizationOverhead( 6848 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6849 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6850 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6851 ScalarCost += 6852 VF.getKnownMinValue() * 6853 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6854 } 6855 6856 // Compute the scalarization overhead of needed extractelement 6857 // instructions. For each of the instruction's operands, if the operand can 6858 // be scalarized, add it to the worklist; otherwise, account for the 6859 // overhead. 6860 for (Use &U : I->operands()) 6861 if (auto *J = dyn_cast<Instruction>(U.get())) { 6862 assert(VectorType::isValidElementType(J->getType()) && 6863 "Instruction has non-scalar type"); 6864 if (canBeScalarized(J)) 6865 Worklist.push_back(J); 6866 else if (needsExtract(J, VF)) { 6867 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6868 ScalarCost += TTI.getScalarizationOverhead( 6869 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6870 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6871 } 6872 } 6873 6874 // Scale the total scalar cost by block probability. 6875 ScalarCost /= getReciprocalPredBlockProb(); 6876 6877 // Compute the discount. A non-negative discount means the vector version 6878 // of the instruction costs more, and scalarizing would be beneficial. 6879 Discount += VectorCost - ScalarCost; 6880 ScalarCosts[I] = ScalarCost; 6881 } 6882 6883 return *Discount.getValue(); 6884 } 6885 6886 LoopVectorizationCostModel::VectorizationCostTy 6887 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6888 VectorizationCostTy Cost; 6889 6890 // For each block. 6891 for (BasicBlock *BB : TheLoop->blocks()) { 6892 VectorizationCostTy BlockCost; 6893 6894 // For each instruction in the old loop. 6895 for (Instruction &I : BB->instructionsWithoutDebug()) { 6896 // Skip ignored values. 6897 if (ValuesToIgnore.count(&I) || 6898 (VF.isVector() && VecValuesToIgnore.count(&I))) 6899 continue; 6900 6901 VectorizationCostTy C = getInstructionCost(&I, VF); 6902 6903 // Check if we should override the cost. 6904 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6905 C.first = InstructionCost(ForceTargetInstructionCost); 6906 6907 BlockCost.first += C.first; 6908 BlockCost.second |= C.second; 6909 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6910 << " for VF " << VF << " For instruction: " << I 6911 << '\n'); 6912 } 6913 6914 // If we are vectorizing a predicated block, it will have been 6915 // if-converted. This means that the block's instructions (aside from 6916 // stores and instructions that may divide by zero) will now be 6917 // unconditionally executed. For the scalar case, we may not always execute 6918 // the predicated block, if it is an if-else block. Thus, scale the block's 6919 // cost by the probability of executing it. blockNeedsPredication from 6920 // Legal is used so as to not include all blocks in tail folded loops. 6921 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6922 BlockCost.first /= getReciprocalPredBlockProb(); 6923 6924 Cost.first += BlockCost.first; 6925 Cost.second |= BlockCost.second; 6926 } 6927 6928 return Cost; 6929 } 6930 6931 /// Gets Address Access SCEV after verifying that the access pattern 6932 /// is loop invariant except the induction variable dependence. 6933 /// 6934 /// This SCEV can be sent to the Target in order to estimate the address 6935 /// calculation cost. 6936 static const SCEV *getAddressAccessSCEV( 6937 Value *Ptr, 6938 LoopVectorizationLegality *Legal, 6939 PredicatedScalarEvolution &PSE, 6940 const Loop *TheLoop) { 6941 6942 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6943 if (!Gep) 6944 return nullptr; 6945 6946 // We are looking for a gep with all loop invariant indices except for one 6947 // which should be an induction variable. 6948 auto SE = PSE.getSE(); 6949 unsigned NumOperands = Gep->getNumOperands(); 6950 for (unsigned i = 1; i < NumOperands; ++i) { 6951 Value *Opd = Gep->getOperand(i); 6952 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6953 !Legal->isInductionVariable(Opd)) 6954 return nullptr; 6955 } 6956 6957 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6958 return PSE.getSCEV(Ptr); 6959 } 6960 6961 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6962 return Legal->hasStride(I->getOperand(0)) || 6963 Legal->hasStride(I->getOperand(1)); 6964 } 6965 6966 InstructionCost 6967 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6968 ElementCount VF) { 6969 assert(VF.isVector() && 6970 "Scalarization cost of instruction implies vectorization."); 6971 if (VF.isScalable()) 6972 return InstructionCost::getInvalid(); 6973 6974 Type *ValTy = getLoadStoreType(I); 6975 auto SE = PSE.getSE(); 6976 6977 unsigned AS = getLoadStoreAddressSpace(I); 6978 Value *Ptr = getLoadStorePointerOperand(I); 6979 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6980 6981 // Figure out whether the access is strided and get the stride value 6982 // if it's known in compile time 6983 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6984 6985 // Get the cost of the scalar memory instruction and address computation. 6986 InstructionCost Cost = 6987 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6988 6989 // Don't pass *I here, since it is scalar but will actually be part of a 6990 // vectorized loop where the user of it is a vectorized instruction. 6991 const Align Alignment = getLoadStoreAlignment(I); 6992 Cost += VF.getKnownMinValue() * 6993 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6994 AS, TTI::TCK_RecipThroughput); 6995 6996 // Get the overhead of the extractelement and insertelement instructions 6997 // we might create due to scalarization. 6998 Cost += getScalarizationOverhead(I, VF); 6999 7000 // If we have a predicated load/store, it will need extra i1 extracts and 7001 // conditional branches, but may not be executed for each vector lane. Scale 7002 // the cost by the probability of executing the predicated block. 7003 if (isPredicatedInst(I)) { 7004 Cost /= getReciprocalPredBlockProb(); 7005 7006 // Add the cost of an i1 extract and a branch 7007 auto *Vec_i1Ty = 7008 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7009 Cost += TTI.getScalarizationOverhead( 7010 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7011 /*Insert=*/false, /*Extract=*/true); 7012 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7013 7014 if (useEmulatedMaskMemRefHack(I)) 7015 // Artificially setting to a high enough value to practically disable 7016 // vectorization with such operations. 7017 Cost = 3000000; 7018 } 7019 7020 return Cost; 7021 } 7022 7023 InstructionCost 7024 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7025 ElementCount VF) { 7026 Type *ValTy = getLoadStoreType(I); 7027 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7028 Value *Ptr = getLoadStorePointerOperand(I); 7029 unsigned AS = getLoadStoreAddressSpace(I); 7030 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7031 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7032 7033 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7034 "Stride should be 1 or -1 for consecutive memory access"); 7035 const Align Alignment = getLoadStoreAlignment(I); 7036 InstructionCost Cost = 0; 7037 if (Legal->isMaskRequired(I)) 7038 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7039 CostKind); 7040 else 7041 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7042 CostKind, I); 7043 7044 bool Reverse = ConsecutiveStride < 0; 7045 if (Reverse) 7046 Cost += 7047 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7048 return Cost; 7049 } 7050 7051 InstructionCost 7052 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7053 ElementCount VF) { 7054 assert(Legal->isUniformMemOp(*I)); 7055 7056 Type *ValTy = getLoadStoreType(I); 7057 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7058 const Align Alignment = getLoadStoreAlignment(I); 7059 unsigned AS = getLoadStoreAddressSpace(I); 7060 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7061 if (isa<LoadInst>(I)) { 7062 return TTI.getAddressComputationCost(ValTy) + 7063 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7064 CostKind) + 7065 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7066 } 7067 StoreInst *SI = cast<StoreInst>(I); 7068 7069 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7070 return TTI.getAddressComputationCost(ValTy) + 7071 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7072 CostKind) + 7073 (isLoopInvariantStoreValue 7074 ? 0 7075 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7076 VF.getKnownMinValue() - 1)); 7077 } 7078 7079 InstructionCost 7080 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7081 ElementCount VF) { 7082 Type *ValTy = getLoadStoreType(I); 7083 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7084 const Align Alignment = getLoadStoreAlignment(I); 7085 const Value *Ptr = getLoadStorePointerOperand(I); 7086 7087 return TTI.getAddressComputationCost(VectorTy) + 7088 TTI.getGatherScatterOpCost( 7089 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7090 TargetTransformInfo::TCK_RecipThroughput, I); 7091 } 7092 7093 InstructionCost 7094 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7095 ElementCount VF) { 7096 // TODO: Once we have support for interleaving with scalable vectors 7097 // we can calculate the cost properly here. 7098 if (VF.isScalable()) 7099 return InstructionCost::getInvalid(); 7100 7101 Type *ValTy = getLoadStoreType(I); 7102 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7103 unsigned AS = getLoadStoreAddressSpace(I); 7104 7105 auto Group = getInterleavedAccessGroup(I); 7106 assert(Group && "Fail to get an interleaved access group."); 7107 7108 unsigned InterleaveFactor = Group->getFactor(); 7109 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7110 7111 // Holds the indices of existing members in an interleaved load group. 7112 // An interleaved store group doesn't need this as it doesn't allow gaps. 7113 SmallVector<unsigned, 4> Indices; 7114 if (isa<LoadInst>(I)) { 7115 for (unsigned i = 0; i < InterleaveFactor; i++) 7116 if (Group->getMember(i)) 7117 Indices.push_back(i); 7118 } 7119 7120 // Calculate the cost of the whole interleaved group. 7121 bool UseMaskForGaps = 7122 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7123 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7124 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7125 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7126 7127 if (Group->isReverse()) { 7128 // TODO: Add support for reversed masked interleaved access. 7129 assert(!Legal->isMaskRequired(I) && 7130 "Reverse masked interleaved access not supported."); 7131 Cost += 7132 Group->getNumMembers() * 7133 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7134 } 7135 return Cost; 7136 } 7137 7138 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 7139 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7140 // Early exit for no inloop reductions 7141 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7142 return InstructionCost::getInvalid(); 7143 auto *VectorTy = cast<VectorType>(Ty); 7144 7145 // We are looking for a pattern of, and finding the minimal acceptable cost: 7146 // reduce(mul(ext(A), ext(B))) or 7147 // reduce(mul(A, B)) or 7148 // reduce(ext(A)) or 7149 // reduce(A). 7150 // The basic idea is that we walk down the tree to do that, finding the root 7151 // reduction instruction in InLoopReductionImmediateChains. From there we find 7152 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7153 // of the components. If the reduction cost is lower then we return it for the 7154 // reduction instruction and 0 for the other instructions in the pattern. If 7155 // it is not we return an invalid cost specifying the orignal cost method 7156 // should be used. 7157 Instruction *RetI = I; 7158 if ((RetI->getOpcode() == Instruction::SExt || 7159 RetI->getOpcode() == Instruction::ZExt)) { 7160 if (!RetI->hasOneUser()) 7161 return InstructionCost::getInvalid(); 7162 RetI = RetI->user_back(); 7163 } 7164 if (RetI->getOpcode() == Instruction::Mul && 7165 RetI->user_back()->getOpcode() == Instruction::Add) { 7166 if (!RetI->hasOneUser()) 7167 return InstructionCost::getInvalid(); 7168 RetI = RetI->user_back(); 7169 } 7170 7171 // Test if the found instruction is a reduction, and if not return an invalid 7172 // cost specifying the parent to use the original cost modelling. 7173 if (!InLoopReductionImmediateChains.count(RetI)) 7174 return InstructionCost::getInvalid(); 7175 7176 // Find the reduction this chain is a part of and calculate the basic cost of 7177 // the reduction on its own. 7178 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7179 Instruction *ReductionPhi = LastChain; 7180 while (!isa<PHINode>(ReductionPhi)) 7181 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7182 7183 const RecurrenceDescriptor &RdxDesc = 7184 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7185 InstructionCost BaseCost = 7186 TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), VectorTy, CostKind); 7187 7188 // Get the operand that was not the reduction chain and match it to one of the 7189 // patterns, returning the better cost if it is found. 7190 Instruction *RedOp = RetI->getOperand(1) == LastChain 7191 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7192 : dyn_cast<Instruction>(RetI->getOperand(1)); 7193 7194 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7195 7196 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7197 !TheLoop->isLoopInvariant(RedOp)) { 7198 bool IsUnsigned = isa<ZExtInst>(RedOp); 7199 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7200 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7201 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7202 CostKind); 7203 7204 InstructionCost ExtCost = 7205 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7206 TTI::CastContextHint::None, CostKind, RedOp); 7207 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7208 return I == RetI ? *RedCost.getValue() : 0; 7209 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7210 Instruction *Mul = RedOp; 7211 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7212 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7213 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7214 Op0->getOpcode() == Op1->getOpcode() && 7215 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7216 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7217 bool IsUnsigned = isa<ZExtInst>(Op0); 7218 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7219 // reduce(mul(ext, ext)) 7220 InstructionCost ExtCost = 7221 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7222 TTI::CastContextHint::None, CostKind, Op0); 7223 InstructionCost MulCost = 7224 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7225 7226 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7227 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7228 CostKind); 7229 7230 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7231 return I == RetI ? *RedCost.getValue() : 0; 7232 } else { 7233 InstructionCost MulCost = 7234 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7235 7236 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7237 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7238 CostKind); 7239 7240 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7241 return I == RetI ? *RedCost.getValue() : 0; 7242 } 7243 } 7244 7245 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7246 } 7247 7248 InstructionCost 7249 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7250 ElementCount VF) { 7251 // Calculate scalar cost only. Vectorization cost should be ready at this 7252 // moment. 7253 if (VF.isScalar()) { 7254 Type *ValTy = getLoadStoreType(I); 7255 const Align Alignment = getLoadStoreAlignment(I); 7256 unsigned AS = getLoadStoreAddressSpace(I); 7257 7258 return TTI.getAddressComputationCost(ValTy) + 7259 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7260 TTI::TCK_RecipThroughput, I); 7261 } 7262 return getWideningCost(I, VF); 7263 } 7264 7265 LoopVectorizationCostModel::VectorizationCostTy 7266 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7267 ElementCount VF) { 7268 // If we know that this instruction will remain uniform, check the cost of 7269 // the scalar version. 7270 if (isUniformAfterVectorization(I, VF)) 7271 VF = ElementCount::getFixed(1); 7272 7273 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7274 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7275 7276 // Forced scalars do not have any scalarization overhead. 7277 auto ForcedScalar = ForcedScalars.find(VF); 7278 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7279 auto InstSet = ForcedScalar->second; 7280 if (InstSet.count(I)) 7281 return VectorizationCostTy( 7282 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7283 VF.getKnownMinValue()), 7284 false); 7285 } 7286 7287 Type *VectorTy; 7288 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7289 7290 bool TypeNotScalarized = 7291 VF.isVector() && VectorTy->isVectorTy() && 7292 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7293 return VectorizationCostTy(C, TypeNotScalarized); 7294 } 7295 7296 InstructionCost 7297 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7298 ElementCount VF) const { 7299 7300 // There is no mechanism yet to create a scalable scalarization loop, 7301 // so this is currently Invalid. 7302 if (VF.isScalable()) 7303 return InstructionCost::getInvalid(); 7304 7305 if (VF.isScalar()) 7306 return 0; 7307 7308 InstructionCost Cost = 0; 7309 Type *RetTy = ToVectorTy(I->getType(), VF); 7310 if (!RetTy->isVoidTy() && 7311 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7312 Cost += TTI.getScalarizationOverhead( 7313 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7314 true, false); 7315 7316 // Some targets keep addresses scalar. 7317 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7318 return Cost; 7319 7320 // Some targets support efficient element stores. 7321 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7322 return Cost; 7323 7324 // Collect operands to consider. 7325 CallInst *CI = dyn_cast<CallInst>(I); 7326 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7327 7328 // Skip operands that do not require extraction/scalarization and do not incur 7329 // any overhead. 7330 SmallVector<Type *> Tys; 7331 for (auto *V : filterExtractingOperands(Ops, VF)) 7332 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7333 return Cost + TTI.getOperandsScalarizationOverhead( 7334 filterExtractingOperands(Ops, VF), Tys); 7335 } 7336 7337 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7338 if (VF.isScalar()) 7339 return; 7340 NumPredStores = 0; 7341 for (BasicBlock *BB : TheLoop->blocks()) { 7342 // For each instruction in the old loop. 7343 for (Instruction &I : *BB) { 7344 Value *Ptr = getLoadStorePointerOperand(&I); 7345 if (!Ptr) 7346 continue; 7347 7348 // TODO: We should generate better code and update the cost model for 7349 // predicated uniform stores. Today they are treated as any other 7350 // predicated store (see added test cases in 7351 // invariant-store-vectorization.ll). 7352 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7353 NumPredStores++; 7354 7355 if (Legal->isUniformMemOp(I)) { 7356 // TODO: Avoid replicating loads and stores instead of 7357 // relying on instcombine to remove them. 7358 // Load: Scalar load + broadcast 7359 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7360 InstructionCost Cost; 7361 if (isa<StoreInst>(&I) && VF.isScalable() && 7362 isLegalGatherOrScatter(&I)) { 7363 Cost = getGatherScatterCost(&I, VF); 7364 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7365 } else { 7366 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7367 "Cannot yet scalarize uniform stores"); 7368 Cost = getUniformMemOpCost(&I, VF); 7369 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7370 } 7371 continue; 7372 } 7373 7374 // We assume that widening is the best solution when possible. 7375 if (memoryInstructionCanBeWidened(&I, VF)) { 7376 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7377 int ConsecutiveStride = 7378 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7379 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7380 "Expected consecutive stride."); 7381 InstWidening Decision = 7382 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7383 setWideningDecision(&I, VF, Decision, Cost); 7384 continue; 7385 } 7386 7387 // Choose between Interleaving, Gather/Scatter or Scalarization. 7388 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7389 unsigned NumAccesses = 1; 7390 if (isAccessInterleaved(&I)) { 7391 auto Group = getInterleavedAccessGroup(&I); 7392 assert(Group && "Fail to get an interleaved access group."); 7393 7394 // Make one decision for the whole group. 7395 if (getWideningDecision(&I, VF) != CM_Unknown) 7396 continue; 7397 7398 NumAccesses = Group->getNumMembers(); 7399 if (interleavedAccessCanBeWidened(&I, VF)) 7400 InterleaveCost = getInterleaveGroupCost(&I, VF); 7401 } 7402 7403 InstructionCost GatherScatterCost = 7404 isLegalGatherOrScatter(&I) 7405 ? getGatherScatterCost(&I, VF) * NumAccesses 7406 : InstructionCost::getInvalid(); 7407 7408 InstructionCost ScalarizationCost = 7409 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7410 7411 // Choose better solution for the current VF, 7412 // write down this decision and use it during vectorization. 7413 InstructionCost Cost; 7414 InstWidening Decision; 7415 if (InterleaveCost <= GatherScatterCost && 7416 InterleaveCost < ScalarizationCost) { 7417 Decision = CM_Interleave; 7418 Cost = InterleaveCost; 7419 } else if (GatherScatterCost < ScalarizationCost) { 7420 Decision = CM_GatherScatter; 7421 Cost = GatherScatterCost; 7422 } else { 7423 assert(!VF.isScalable() && 7424 "We cannot yet scalarise for scalable vectors"); 7425 Decision = CM_Scalarize; 7426 Cost = ScalarizationCost; 7427 } 7428 // If the instructions belongs to an interleave group, the whole group 7429 // receives the same decision. The whole group receives the cost, but 7430 // the cost will actually be assigned to one instruction. 7431 if (auto Group = getInterleavedAccessGroup(&I)) 7432 setWideningDecision(Group, VF, Decision, Cost); 7433 else 7434 setWideningDecision(&I, VF, Decision, Cost); 7435 } 7436 } 7437 7438 // Make sure that any load of address and any other address computation 7439 // remains scalar unless there is gather/scatter support. This avoids 7440 // inevitable extracts into address registers, and also has the benefit of 7441 // activating LSR more, since that pass can't optimize vectorized 7442 // addresses. 7443 if (TTI.prefersVectorizedAddressing()) 7444 return; 7445 7446 // Start with all scalar pointer uses. 7447 SmallPtrSet<Instruction *, 8> AddrDefs; 7448 for (BasicBlock *BB : TheLoop->blocks()) 7449 for (Instruction &I : *BB) { 7450 Instruction *PtrDef = 7451 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7452 if (PtrDef && TheLoop->contains(PtrDef) && 7453 getWideningDecision(&I, VF) != CM_GatherScatter) 7454 AddrDefs.insert(PtrDef); 7455 } 7456 7457 // Add all instructions used to generate the addresses. 7458 SmallVector<Instruction *, 4> Worklist; 7459 append_range(Worklist, AddrDefs); 7460 while (!Worklist.empty()) { 7461 Instruction *I = Worklist.pop_back_val(); 7462 for (auto &Op : I->operands()) 7463 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7464 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7465 AddrDefs.insert(InstOp).second) 7466 Worklist.push_back(InstOp); 7467 } 7468 7469 for (auto *I : AddrDefs) { 7470 if (isa<LoadInst>(I)) { 7471 // Setting the desired widening decision should ideally be handled in 7472 // by cost functions, but since this involves the task of finding out 7473 // if the loaded register is involved in an address computation, it is 7474 // instead changed here when we know this is the case. 7475 InstWidening Decision = getWideningDecision(I, VF); 7476 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7477 // Scalarize a widened load of address. 7478 setWideningDecision( 7479 I, VF, CM_Scalarize, 7480 (VF.getKnownMinValue() * 7481 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7482 else if (auto Group = getInterleavedAccessGroup(I)) { 7483 // Scalarize an interleave group of address loads. 7484 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7485 if (Instruction *Member = Group->getMember(I)) 7486 setWideningDecision( 7487 Member, VF, CM_Scalarize, 7488 (VF.getKnownMinValue() * 7489 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7490 } 7491 } 7492 } else 7493 // Make sure I gets scalarized and a cost estimate without 7494 // scalarization overhead. 7495 ForcedScalars[VF].insert(I); 7496 } 7497 } 7498 7499 InstructionCost 7500 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7501 Type *&VectorTy) { 7502 Type *RetTy = I->getType(); 7503 if (canTruncateToMinimalBitwidth(I, VF)) 7504 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7505 auto SE = PSE.getSE(); 7506 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7507 7508 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7509 ElementCount VF) -> bool { 7510 if (VF.isScalar()) 7511 return true; 7512 7513 auto Scalarized = InstsToScalarize.find(VF); 7514 assert(Scalarized != InstsToScalarize.end() && 7515 "VF not yet analyzed for scalarization profitability"); 7516 return !Scalarized->second.count(I) && 7517 llvm::all_of(I->users(), [&](User *U) { 7518 auto *UI = cast<Instruction>(U); 7519 return !Scalarized->second.count(UI); 7520 }); 7521 }; 7522 (void) hasSingleCopyAfterVectorization; 7523 7524 if (isScalarAfterVectorization(I, VF)) { 7525 // With the exception of GEPs and PHIs, after scalarization there should 7526 // only be one copy of the instruction generated in the loop. This is 7527 // because the VF is either 1, or any instructions that need scalarizing 7528 // have already been dealt with by the the time we get here. As a result, 7529 // it means we don't have to multiply the instruction cost by VF. 7530 assert(I->getOpcode() == Instruction::GetElementPtr || 7531 I->getOpcode() == Instruction::PHI || 7532 (I->getOpcode() == Instruction::BitCast && 7533 I->getType()->isPointerTy()) || 7534 hasSingleCopyAfterVectorization(I, VF)); 7535 VectorTy = RetTy; 7536 } else 7537 VectorTy = ToVectorTy(RetTy, VF); 7538 7539 // TODO: We need to estimate the cost of intrinsic calls. 7540 switch (I->getOpcode()) { 7541 case Instruction::GetElementPtr: 7542 // We mark this instruction as zero-cost because the cost of GEPs in 7543 // vectorized code depends on whether the corresponding memory instruction 7544 // is scalarized or not. Therefore, we handle GEPs with the memory 7545 // instruction cost. 7546 return 0; 7547 case Instruction::Br: { 7548 // In cases of scalarized and predicated instructions, there will be VF 7549 // predicated blocks in the vectorized loop. Each branch around these 7550 // blocks requires also an extract of its vector compare i1 element. 7551 bool ScalarPredicatedBB = false; 7552 BranchInst *BI = cast<BranchInst>(I); 7553 if (VF.isVector() && BI->isConditional() && 7554 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7555 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7556 ScalarPredicatedBB = true; 7557 7558 if (ScalarPredicatedBB) { 7559 // Return cost for branches around scalarized and predicated blocks. 7560 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7561 auto *Vec_i1Ty = 7562 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7563 return (TTI.getScalarizationOverhead( 7564 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7565 false, true) + 7566 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7567 VF.getKnownMinValue())); 7568 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7569 // The back-edge branch will remain, as will all scalar branches. 7570 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7571 else 7572 // This branch will be eliminated by if-conversion. 7573 return 0; 7574 // Note: We currently assume zero cost for an unconditional branch inside 7575 // a predicated block since it will become a fall-through, although we 7576 // may decide in the future to call TTI for all branches. 7577 } 7578 case Instruction::PHI: { 7579 auto *Phi = cast<PHINode>(I); 7580 7581 // First-order recurrences are replaced by vector shuffles inside the loop. 7582 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7583 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7584 return TTI.getShuffleCost( 7585 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7586 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7587 7588 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7589 // converted into select instructions. We require N - 1 selects per phi 7590 // node, where N is the number of incoming values. 7591 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7592 return (Phi->getNumIncomingValues() - 1) * 7593 TTI.getCmpSelInstrCost( 7594 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7595 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7596 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7597 7598 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7599 } 7600 case Instruction::UDiv: 7601 case Instruction::SDiv: 7602 case Instruction::URem: 7603 case Instruction::SRem: 7604 // If we have a predicated instruction, it may not be executed for each 7605 // vector lane. Get the scalarization cost and scale this amount by the 7606 // probability of executing the predicated block. If the instruction is not 7607 // predicated, we fall through to the next case. 7608 if (VF.isVector() && isScalarWithPredication(I)) { 7609 InstructionCost Cost = 0; 7610 7611 // These instructions have a non-void type, so account for the phi nodes 7612 // that we will create. This cost is likely to be zero. The phi node 7613 // cost, if any, should be scaled by the block probability because it 7614 // models a copy at the end of each predicated block. 7615 Cost += VF.getKnownMinValue() * 7616 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7617 7618 // The cost of the non-predicated instruction. 7619 Cost += VF.getKnownMinValue() * 7620 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7621 7622 // The cost of insertelement and extractelement instructions needed for 7623 // scalarization. 7624 Cost += getScalarizationOverhead(I, VF); 7625 7626 // Scale the cost by the probability of executing the predicated blocks. 7627 // This assumes the predicated block for each vector lane is equally 7628 // likely. 7629 return Cost / getReciprocalPredBlockProb(); 7630 } 7631 LLVM_FALLTHROUGH; 7632 case Instruction::Add: 7633 case Instruction::FAdd: 7634 case Instruction::Sub: 7635 case Instruction::FSub: 7636 case Instruction::Mul: 7637 case Instruction::FMul: 7638 case Instruction::FDiv: 7639 case Instruction::FRem: 7640 case Instruction::Shl: 7641 case Instruction::LShr: 7642 case Instruction::AShr: 7643 case Instruction::And: 7644 case Instruction::Or: 7645 case Instruction::Xor: { 7646 // Since we will replace the stride by 1 the multiplication should go away. 7647 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7648 return 0; 7649 7650 // Detect reduction patterns 7651 InstructionCost RedCost; 7652 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7653 .isValid()) 7654 return RedCost; 7655 7656 // Certain instructions can be cheaper to vectorize if they have a constant 7657 // second vector operand. One example of this are shifts on x86. 7658 Value *Op2 = I->getOperand(1); 7659 TargetTransformInfo::OperandValueProperties Op2VP; 7660 TargetTransformInfo::OperandValueKind Op2VK = 7661 TTI.getOperandInfo(Op2, Op2VP); 7662 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7663 Op2VK = TargetTransformInfo::OK_UniformValue; 7664 7665 SmallVector<const Value *, 4> Operands(I->operand_values()); 7666 return TTI.getArithmeticInstrCost( 7667 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7668 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7669 } 7670 case Instruction::FNeg: { 7671 return TTI.getArithmeticInstrCost( 7672 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7673 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7674 TargetTransformInfo::OP_None, I->getOperand(0), I); 7675 } 7676 case Instruction::Select: { 7677 SelectInst *SI = cast<SelectInst>(I); 7678 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7679 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7680 7681 const Value *Op0, *Op1; 7682 using namespace llvm::PatternMatch; 7683 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7684 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7685 // select x, y, false --> x & y 7686 // select x, true, y --> x | y 7687 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7688 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7689 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7690 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7691 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7692 Op1->getType()->getScalarSizeInBits() == 1); 7693 7694 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7695 return TTI.getArithmeticInstrCost( 7696 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7697 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7698 } 7699 7700 Type *CondTy = SI->getCondition()->getType(); 7701 if (!ScalarCond) 7702 CondTy = VectorType::get(CondTy, VF); 7703 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7704 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7705 } 7706 case Instruction::ICmp: 7707 case Instruction::FCmp: { 7708 Type *ValTy = I->getOperand(0)->getType(); 7709 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7710 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7711 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7712 VectorTy = ToVectorTy(ValTy, VF); 7713 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7714 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7715 } 7716 case Instruction::Store: 7717 case Instruction::Load: { 7718 ElementCount Width = VF; 7719 if (Width.isVector()) { 7720 InstWidening Decision = getWideningDecision(I, Width); 7721 assert(Decision != CM_Unknown && 7722 "CM decision should be taken at this point"); 7723 if (Decision == CM_Scalarize) 7724 Width = ElementCount::getFixed(1); 7725 } 7726 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7727 return getMemoryInstructionCost(I, VF); 7728 } 7729 case Instruction::BitCast: 7730 if (I->getType()->isPointerTy()) 7731 return 0; 7732 LLVM_FALLTHROUGH; 7733 case Instruction::ZExt: 7734 case Instruction::SExt: 7735 case Instruction::FPToUI: 7736 case Instruction::FPToSI: 7737 case Instruction::FPExt: 7738 case Instruction::PtrToInt: 7739 case Instruction::IntToPtr: 7740 case Instruction::SIToFP: 7741 case Instruction::UIToFP: 7742 case Instruction::Trunc: 7743 case Instruction::FPTrunc: { 7744 // Computes the CastContextHint from a Load/Store instruction. 7745 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7746 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7747 "Expected a load or a store!"); 7748 7749 if (VF.isScalar() || !TheLoop->contains(I)) 7750 return TTI::CastContextHint::Normal; 7751 7752 switch (getWideningDecision(I, VF)) { 7753 case LoopVectorizationCostModel::CM_GatherScatter: 7754 return TTI::CastContextHint::GatherScatter; 7755 case LoopVectorizationCostModel::CM_Interleave: 7756 return TTI::CastContextHint::Interleave; 7757 case LoopVectorizationCostModel::CM_Scalarize: 7758 case LoopVectorizationCostModel::CM_Widen: 7759 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7760 : TTI::CastContextHint::Normal; 7761 case LoopVectorizationCostModel::CM_Widen_Reverse: 7762 return TTI::CastContextHint::Reversed; 7763 case LoopVectorizationCostModel::CM_Unknown: 7764 llvm_unreachable("Instr did not go through cost modelling?"); 7765 } 7766 7767 llvm_unreachable("Unhandled case!"); 7768 }; 7769 7770 unsigned Opcode = I->getOpcode(); 7771 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7772 // For Trunc, the context is the only user, which must be a StoreInst. 7773 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7774 if (I->hasOneUse()) 7775 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7776 CCH = ComputeCCH(Store); 7777 } 7778 // For Z/Sext, the context is the operand, which must be a LoadInst. 7779 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7780 Opcode == Instruction::FPExt) { 7781 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7782 CCH = ComputeCCH(Load); 7783 } 7784 7785 // We optimize the truncation of induction variables having constant 7786 // integer steps. The cost of these truncations is the same as the scalar 7787 // operation. 7788 if (isOptimizableIVTruncate(I, VF)) { 7789 auto *Trunc = cast<TruncInst>(I); 7790 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7791 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7792 } 7793 7794 // Detect reduction patterns 7795 InstructionCost RedCost; 7796 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7797 .isValid()) 7798 return RedCost; 7799 7800 Type *SrcScalarTy = I->getOperand(0)->getType(); 7801 Type *SrcVecTy = 7802 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7803 if (canTruncateToMinimalBitwidth(I, VF)) { 7804 // This cast is going to be shrunk. This may remove the cast or it might 7805 // turn it into slightly different cast. For example, if MinBW == 16, 7806 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7807 // 7808 // Calculate the modified src and dest types. 7809 Type *MinVecTy = VectorTy; 7810 if (Opcode == Instruction::Trunc) { 7811 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7812 VectorTy = 7813 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7814 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7815 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7816 VectorTy = 7817 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7818 } 7819 } 7820 7821 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7822 } 7823 case Instruction::Call: { 7824 bool NeedToScalarize; 7825 CallInst *CI = cast<CallInst>(I); 7826 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7827 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7828 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7829 return std::min(CallCost, IntrinsicCost); 7830 } 7831 return CallCost; 7832 } 7833 case Instruction::ExtractValue: 7834 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7835 default: 7836 // This opcode is unknown. Assume that it is the same as 'mul'. 7837 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7838 } // end of switch. 7839 } 7840 7841 char LoopVectorize::ID = 0; 7842 7843 static const char lv_name[] = "Loop Vectorization"; 7844 7845 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7846 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7847 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7848 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7849 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7850 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7851 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7852 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7853 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7854 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7855 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7856 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7857 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7858 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7859 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7860 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7861 7862 namespace llvm { 7863 7864 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7865 7866 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7867 bool VectorizeOnlyWhenForced) { 7868 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7869 } 7870 7871 } // end namespace llvm 7872 7873 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7874 // Check if the pointer operand of a load or store instruction is 7875 // consecutive. 7876 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7877 return Legal->isConsecutivePtr(Ptr); 7878 return false; 7879 } 7880 7881 void LoopVectorizationCostModel::collectValuesToIgnore() { 7882 // Ignore ephemeral values. 7883 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7884 7885 // Ignore type-promoting instructions we identified during reduction 7886 // detection. 7887 for (auto &Reduction : Legal->getReductionVars()) { 7888 RecurrenceDescriptor &RedDes = Reduction.second; 7889 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7890 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7891 } 7892 // Ignore type-casting instructions we identified during induction 7893 // detection. 7894 for (auto &Induction : Legal->getInductionVars()) { 7895 InductionDescriptor &IndDes = Induction.second; 7896 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7897 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7898 } 7899 } 7900 7901 void LoopVectorizationCostModel::collectInLoopReductions() { 7902 for (auto &Reduction : Legal->getReductionVars()) { 7903 PHINode *Phi = Reduction.first; 7904 RecurrenceDescriptor &RdxDesc = Reduction.second; 7905 7906 // We don't collect reductions that are type promoted (yet). 7907 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7908 continue; 7909 7910 // If the target would prefer this reduction to happen "in-loop", then we 7911 // want to record it as such. 7912 unsigned Opcode = RdxDesc.getOpcode(); 7913 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7914 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7915 TargetTransformInfo::ReductionFlags())) 7916 continue; 7917 7918 // Check that we can correctly put the reductions into the loop, by 7919 // finding the chain of operations that leads from the phi to the loop 7920 // exit value. 7921 SmallVector<Instruction *, 4> ReductionOperations = 7922 RdxDesc.getReductionOpChain(Phi, TheLoop); 7923 bool InLoop = !ReductionOperations.empty(); 7924 if (InLoop) { 7925 InLoopReductionChains[Phi] = ReductionOperations; 7926 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7927 Instruction *LastChain = Phi; 7928 for (auto *I : ReductionOperations) { 7929 InLoopReductionImmediateChains[I] = LastChain; 7930 LastChain = I; 7931 } 7932 } 7933 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7934 << " reduction for phi: " << *Phi << "\n"); 7935 } 7936 } 7937 7938 // TODO: we could return a pair of values that specify the max VF and 7939 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7940 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7941 // doesn't have a cost model that can choose which plan to execute if 7942 // more than one is generated. 7943 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7944 LoopVectorizationCostModel &CM) { 7945 unsigned WidestType; 7946 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7947 return WidestVectorRegBits / WidestType; 7948 } 7949 7950 VectorizationFactor 7951 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7952 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7953 ElementCount VF = UserVF; 7954 // Outer loop handling: They may require CFG and instruction level 7955 // transformations before even evaluating whether vectorization is profitable. 7956 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7957 // the vectorization pipeline. 7958 if (!OrigLoop->isInnermost()) { 7959 // If the user doesn't provide a vectorization factor, determine a 7960 // reasonable one. 7961 if (UserVF.isZero()) { 7962 VF = ElementCount::getFixed(determineVPlanVF( 7963 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7964 .getFixedSize(), 7965 CM)); 7966 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7967 7968 // Make sure we have a VF > 1 for stress testing. 7969 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7970 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7971 << "overriding computed VF.\n"); 7972 VF = ElementCount::getFixed(4); 7973 } 7974 } 7975 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7976 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7977 "VF needs to be a power of two"); 7978 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7979 << "VF " << VF << " to build VPlans.\n"); 7980 buildVPlans(VF, VF); 7981 7982 // For VPlan build stress testing, we bail out after VPlan construction. 7983 if (VPlanBuildStressTest) 7984 return VectorizationFactor::Disabled(); 7985 7986 return {VF, 0 /*Cost*/}; 7987 } 7988 7989 LLVM_DEBUG( 7990 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7991 "VPlan-native path.\n"); 7992 return VectorizationFactor::Disabled(); 7993 } 7994 7995 Optional<VectorizationFactor> 7996 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7997 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7998 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7999 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 8000 return None; 8001 8002 // Invalidate interleave groups if all blocks of loop will be predicated. 8003 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 8004 !useMaskedInterleavedAccesses(*TTI)) { 8005 LLVM_DEBUG( 8006 dbgs() 8007 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8008 "which requires masked-interleaved support.\n"); 8009 if (CM.InterleaveInfo.invalidateGroups()) 8010 // Invalidating interleave groups also requires invalidating all decisions 8011 // based on them, which includes widening decisions and uniform and scalar 8012 // values. 8013 CM.invalidateCostModelingDecisions(); 8014 } 8015 8016 ElementCount MaxUserVF = 8017 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8018 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8019 if (!UserVF.isZero() && UserVFIsLegal) { 8020 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8021 "VF needs to be a power of two"); 8022 // Collect the instructions (and their associated costs) that will be more 8023 // profitable to scalarize. 8024 if (CM.selectUserVectorizationFactor(UserVF)) { 8025 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 8026 CM.collectInLoopReductions(); 8027 buildVPlansWithVPRecipes(UserVF, UserVF); 8028 LLVM_DEBUG(printPlans(dbgs())); 8029 return {{UserVF, 0}}; 8030 } else 8031 reportVectorizationInfo("UserVF ignored because of invalid costs.", 8032 "InvalidCost", ORE, OrigLoop); 8033 } 8034 8035 // Populate the set of Vectorization Factor Candidates. 8036 ElementCountSet VFCandidates; 8037 for (auto VF = ElementCount::getFixed(1); 8038 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8039 VFCandidates.insert(VF); 8040 for (auto VF = ElementCount::getScalable(1); 8041 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8042 VFCandidates.insert(VF); 8043 8044 for (const auto &VF : VFCandidates) { 8045 // Collect Uniform and Scalar instructions after vectorization with VF. 8046 CM.collectUniformsAndScalars(VF); 8047 8048 // Collect the instructions (and their associated costs) that will be more 8049 // profitable to scalarize. 8050 if (VF.isVector()) 8051 CM.collectInstsToScalarize(VF); 8052 } 8053 8054 CM.collectInLoopReductions(); 8055 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8056 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8057 8058 LLVM_DEBUG(printPlans(dbgs())); 8059 if (!MaxFactors.hasVector()) 8060 return VectorizationFactor::Disabled(); 8061 8062 // Select the optimal vectorization factor. 8063 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8064 8065 // Check if it is profitable to vectorize with runtime checks. 8066 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8067 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8068 bool PragmaThresholdReached = 8069 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8070 bool ThresholdReached = 8071 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8072 if ((ThresholdReached && !Hints.allowReordering()) || 8073 PragmaThresholdReached) { 8074 ORE->emit([&]() { 8075 return OptimizationRemarkAnalysisAliasing( 8076 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8077 OrigLoop->getHeader()) 8078 << "loop not vectorized: cannot prove it is safe to reorder " 8079 "memory operations"; 8080 }); 8081 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8082 Hints.emitRemarkWithHints(); 8083 return VectorizationFactor::Disabled(); 8084 } 8085 } 8086 return SelectedVF; 8087 } 8088 8089 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8090 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8091 << '\n'); 8092 BestVF = VF; 8093 BestUF = UF; 8094 8095 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8096 return !Plan->hasVF(VF); 8097 }); 8098 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8099 } 8100 8101 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8102 DominatorTree *DT) { 8103 // Perform the actual loop transformation. 8104 8105 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8106 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8107 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8108 8109 VPTransformState State{ 8110 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8111 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8112 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8113 State.CanonicalIV = ILV.Induction; 8114 8115 ILV.printDebugTracesAtStart(); 8116 8117 //===------------------------------------------------===// 8118 // 8119 // Notice: any optimization or new instruction that go 8120 // into the code below should also be implemented in 8121 // the cost-model. 8122 // 8123 //===------------------------------------------------===// 8124 8125 // 2. Copy and widen instructions from the old loop into the new loop. 8126 VPlans.front()->execute(&State); 8127 8128 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8129 // predication, updating analyses. 8130 ILV.fixVectorizedLoop(State); 8131 8132 ILV.printDebugTracesAtEnd(); 8133 } 8134 8135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8136 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8137 for (const auto &Plan : VPlans) 8138 if (PrintVPlansInDotFormat) 8139 Plan->printDOT(O); 8140 else 8141 Plan->print(O); 8142 } 8143 #endif 8144 8145 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8146 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8147 8148 // We create new control-flow for the vectorized loop, so the original exit 8149 // conditions will be dead after vectorization if it's only used by the 8150 // terminator 8151 SmallVector<BasicBlock*> ExitingBlocks; 8152 OrigLoop->getExitingBlocks(ExitingBlocks); 8153 for (auto *BB : ExitingBlocks) { 8154 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8155 if (!Cmp || !Cmp->hasOneUse()) 8156 continue; 8157 8158 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8159 if (!DeadInstructions.insert(Cmp).second) 8160 continue; 8161 8162 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8163 // TODO: can recurse through operands in general 8164 for (Value *Op : Cmp->operands()) { 8165 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8166 DeadInstructions.insert(cast<Instruction>(Op)); 8167 } 8168 } 8169 8170 // We create new "steps" for induction variable updates to which the original 8171 // induction variables map. An original update instruction will be dead if 8172 // all its users except the induction variable are dead. 8173 auto *Latch = OrigLoop->getLoopLatch(); 8174 for (auto &Induction : Legal->getInductionVars()) { 8175 PHINode *Ind = Induction.first; 8176 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8177 8178 // If the tail is to be folded by masking, the primary induction variable, 8179 // if exists, isn't dead: it will be used for masking. Don't kill it. 8180 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8181 continue; 8182 8183 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8184 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8185 })) 8186 DeadInstructions.insert(IndUpdate); 8187 8188 // We record as "Dead" also the type-casting instructions we had identified 8189 // during induction analysis. We don't need any handling for them in the 8190 // vectorized loop because we have proven that, under a proper runtime 8191 // test guarding the vectorized loop, the value of the phi, and the casted 8192 // value of the phi, are the same. The last instruction in this casting chain 8193 // will get its scalar/vector/widened def from the scalar/vector/widened def 8194 // of the respective phi node. Any other casts in the induction def-use chain 8195 // have no other uses outside the phi update chain, and will be ignored. 8196 InductionDescriptor &IndDes = Induction.second; 8197 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8198 DeadInstructions.insert(Casts.begin(), Casts.end()); 8199 } 8200 } 8201 8202 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8203 8204 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8205 8206 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8207 Instruction::BinaryOps BinOp) { 8208 // When unrolling and the VF is 1, we only need to add a simple scalar. 8209 Type *Ty = Val->getType(); 8210 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8211 8212 if (Ty->isFloatingPointTy()) { 8213 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8214 8215 // Floating-point operations inherit FMF via the builder's flags. 8216 Value *MulOp = Builder.CreateFMul(C, Step); 8217 return Builder.CreateBinOp(BinOp, Val, MulOp); 8218 } 8219 Constant *C = ConstantInt::get(Ty, StartIdx); 8220 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8221 } 8222 8223 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8224 SmallVector<Metadata *, 4> MDs; 8225 // Reserve first location for self reference to the LoopID metadata node. 8226 MDs.push_back(nullptr); 8227 bool IsUnrollMetadata = false; 8228 MDNode *LoopID = L->getLoopID(); 8229 if (LoopID) { 8230 // First find existing loop unrolling disable metadata. 8231 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8232 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8233 if (MD) { 8234 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8235 IsUnrollMetadata = 8236 S && S->getString().startswith("llvm.loop.unroll.disable"); 8237 } 8238 MDs.push_back(LoopID->getOperand(i)); 8239 } 8240 } 8241 8242 if (!IsUnrollMetadata) { 8243 // Add runtime unroll disable metadata. 8244 LLVMContext &Context = L->getHeader()->getContext(); 8245 SmallVector<Metadata *, 1> DisableOperands; 8246 DisableOperands.push_back( 8247 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8248 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8249 MDs.push_back(DisableNode); 8250 MDNode *NewLoopID = MDNode::get(Context, MDs); 8251 // Set operand 0 to refer to the loop id itself. 8252 NewLoopID->replaceOperandWith(0, NewLoopID); 8253 L->setLoopID(NewLoopID); 8254 } 8255 } 8256 8257 //===--------------------------------------------------------------------===// 8258 // EpilogueVectorizerMainLoop 8259 //===--------------------------------------------------------------------===// 8260 8261 /// This function is partially responsible for generating the control flow 8262 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8263 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8264 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8265 Loop *Lp = createVectorLoopSkeleton(""); 8266 8267 // Generate the code to check the minimum iteration count of the vector 8268 // epilogue (see below). 8269 EPI.EpilogueIterationCountCheck = 8270 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8271 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8272 8273 // Generate the code to check any assumptions that we've made for SCEV 8274 // expressions. 8275 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8276 8277 // Generate the code that checks at runtime if arrays overlap. We put the 8278 // checks into a separate block to make the more common case of few elements 8279 // faster. 8280 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8281 8282 // Generate the iteration count check for the main loop, *after* the check 8283 // for the epilogue loop, so that the path-length is shorter for the case 8284 // that goes directly through the vector epilogue. The longer-path length for 8285 // the main loop is compensated for, by the gain from vectorizing the larger 8286 // trip count. Note: the branch will get updated later on when we vectorize 8287 // the epilogue. 8288 EPI.MainLoopIterationCountCheck = 8289 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8290 8291 // Generate the induction variable. 8292 OldInduction = Legal->getPrimaryInduction(); 8293 Type *IdxTy = Legal->getWidestInductionType(); 8294 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8295 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8296 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8297 EPI.VectorTripCount = CountRoundDown; 8298 Induction = 8299 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8300 getDebugLocFromInstOrOperands(OldInduction)); 8301 8302 // Skip induction resume value creation here because they will be created in 8303 // the second pass. If we created them here, they wouldn't be used anyway, 8304 // because the vplan in the second pass still contains the inductions from the 8305 // original loop. 8306 8307 return completeLoopSkeleton(Lp, OrigLoopID); 8308 } 8309 8310 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8311 LLVM_DEBUG({ 8312 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8313 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8314 << ", Main Loop UF:" << EPI.MainLoopUF 8315 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8316 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8317 }); 8318 } 8319 8320 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8321 DEBUG_WITH_TYPE(VerboseDebug, { 8322 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8323 }); 8324 } 8325 8326 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8327 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8328 assert(L && "Expected valid Loop."); 8329 assert(Bypass && "Expected valid bypass basic block."); 8330 unsigned VFactor = 8331 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8332 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8333 Value *Count = getOrCreateTripCount(L); 8334 // Reuse existing vector loop preheader for TC checks. 8335 // Note that new preheader block is generated for vector loop. 8336 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8337 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8338 8339 // Generate code to check if the loop's trip count is less than VF * UF of the 8340 // main vector loop. 8341 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8342 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8343 8344 Value *CheckMinIters = Builder.CreateICmp( 8345 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8346 "min.iters.check"); 8347 8348 if (!ForEpilogue) 8349 TCCheckBlock->setName("vector.main.loop.iter.check"); 8350 8351 // Create new preheader for vector loop. 8352 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8353 DT, LI, nullptr, "vector.ph"); 8354 8355 if (ForEpilogue) { 8356 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8357 DT->getNode(Bypass)->getIDom()) && 8358 "TC check is expected to dominate Bypass"); 8359 8360 // Update dominator for Bypass & LoopExit. 8361 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8362 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8363 // For loops with multiple exits, there's no edge from the middle block 8364 // to exit blocks (as the epilogue must run) and thus no need to update 8365 // the immediate dominator of the exit blocks. 8366 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8367 8368 LoopBypassBlocks.push_back(TCCheckBlock); 8369 8370 // Save the trip count so we don't have to regenerate it in the 8371 // vec.epilog.iter.check. This is safe to do because the trip count 8372 // generated here dominates the vector epilog iter check. 8373 EPI.TripCount = Count; 8374 } 8375 8376 ReplaceInstWithInst( 8377 TCCheckBlock->getTerminator(), 8378 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8379 8380 return TCCheckBlock; 8381 } 8382 8383 //===--------------------------------------------------------------------===// 8384 // EpilogueVectorizerEpilogueLoop 8385 //===--------------------------------------------------------------------===// 8386 8387 /// This function is partially responsible for generating the control flow 8388 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8389 BasicBlock * 8390 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8391 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8392 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8393 8394 // Now, compare the remaining count and if there aren't enough iterations to 8395 // execute the vectorized epilogue skip to the scalar part. 8396 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8397 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8398 LoopVectorPreHeader = 8399 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8400 LI, nullptr, "vec.epilog.ph"); 8401 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8402 VecEpilogueIterationCountCheck); 8403 8404 // Adjust the control flow taking the state info from the main loop 8405 // vectorization into account. 8406 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8407 "expected this to be saved from the previous pass."); 8408 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8409 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8410 8411 DT->changeImmediateDominator(LoopVectorPreHeader, 8412 EPI.MainLoopIterationCountCheck); 8413 8414 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8415 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8416 8417 if (EPI.SCEVSafetyCheck) 8418 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8419 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8420 if (EPI.MemSafetyCheck) 8421 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8422 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8423 8424 DT->changeImmediateDominator( 8425 VecEpilogueIterationCountCheck, 8426 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8427 8428 DT->changeImmediateDominator(LoopScalarPreHeader, 8429 EPI.EpilogueIterationCountCheck); 8430 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8431 // If there is an epilogue which must run, there's no edge from the 8432 // middle block to exit blocks and thus no need to update the immediate 8433 // dominator of the exit blocks. 8434 DT->changeImmediateDominator(LoopExitBlock, 8435 EPI.EpilogueIterationCountCheck); 8436 8437 // Keep track of bypass blocks, as they feed start values to the induction 8438 // phis in the scalar loop preheader. 8439 if (EPI.SCEVSafetyCheck) 8440 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8441 if (EPI.MemSafetyCheck) 8442 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8443 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8444 8445 // Generate a resume induction for the vector epilogue and put it in the 8446 // vector epilogue preheader 8447 Type *IdxTy = Legal->getWidestInductionType(); 8448 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8449 LoopVectorPreHeader->getFirstNonPHI()); 8450 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8451 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8452 EPI.MainLoopIterationCountCheck); 8453 8454 // Generate the induction variable. 8455 OldInduction = Legal->getPrimaryInduction(); 8456 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8457 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8458 Value *StartIdx = EPResumeVal; 8459 Induction = 8460 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8461 getDebugLocFromInstOrOperands(OldInduction)); 8462 8463 // Generate induction resume values. These variables save the new starting 8464 // indexes for the scalar loop. They are used to test if there are any tail 8465 // iterations left once the vector loop has completed. 8466 // Note that when the vectorized epilogue is skipped due to iteration count 8467 // check, then the resume value for the induction variable comes from 8468 // the trip count of the main vector loop, hence passing the AdditionalBypass 8469 // argument. 8470 createInductionResumeValues(Lp, CountRoundDown, 8471 {VecEpilogueIterationCountCheck, 8472 EPI.VectorTripCount} /* AdditionalBypass */); 8473 8474 AddRuntimeUnrollDisableMetaData(Lp); 8475 return completeLoopSkeleton(Lp, OrigLoopID); 8476 } 8477 8478 BasicBlock * 8479 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8480 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8481 8482 assert(EPI.TripCount && 8483 "Expected trip count to have been safed in the first pass."); 8484 assert( 8485 (!isa<Instruction>(EPI.TripCount) || 8486 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8487 "saved trip count does not dominate insertion point."); 8488 Value *TC = EPI.TripCount; 8489 IRBuilder<> Builder(Insert->getTerminator()); 8490 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8491 8492 // Generate code to check if the loop's trip count is less than VF * UF of the 8493 // vector epilogue loop. 8494 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8495 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8496 8497 Value *CheckMinIters = Builder.CreateICmp( 8498 P, Count, 8499 ConstantInt::get(Count->getType(), 8500 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8501 "min.epilog.iters.check"); 8502 8503 ReplaceInstWithInst( 8504 Insert->getTerminator(), 8505 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8506 8507 LoopBypassBlocks.push_back(Insert); 8508 return Insert; 8509 } 8510 8511 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8512 LLVM_DEBUG({ 8513 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8514 << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8515 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8516 }); 8517 } 8518 8519 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8520 DEBUG_WITH_TYPE(VerboseDebug, { 8521 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8522 }); 8523 } 8524 8525 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8526 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8527 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8528 bool PredicateAtRangeStart = Predicate(Range.Start); 8529 8530 for (ElementCount TmpVF = Range.Start * 2; 8531 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8532 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8533 Range.End = TmpVF; 8534 break; 8535 } 8536 8537 return PredicateAtRangeStart; 8538 } 8539 8540 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8541 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8542 /// of VF's starting at a given VF and extending it as much as possible. Each 8543 /// vectorization decision can potentially shorten this sub-range during 8544 /// buildVPlan(). 8545 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8546 ElementCount MaxVF) { 8547 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8548 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8549 VFRange SubRange = {VF, MaxVFPlusOne}; 8550 VPlans.push_back(buildVPlan(SubRange)); 8551 VF = SubRange.End; 8552 } 8553 } 8554 8555 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8556 VPlanPtr &Plan) { 8557 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8558 8559 // Look for cached value. 8560 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8561 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8562 if (ECEntryIt != EdgeMaskCache.end()) 8563 return ECEntryIt->second; 8564 8565 VPValue *SrcMask = createBlockInMask(Src, Plan); 8566 8567 // The terminator has to be a branch inst! 8568 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8569 assert(BI && "Unexpected terminator found"); 8570 8571 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8572 return EdgeMaskCache[Edge] = SrcMask; 8573 8574 // If source is an exiting block, we know the exit edge is dynamically dead 8575 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8576 // adding uses of an otherwise potentially dead instruction. 8577 if (OrigLoop->isLoopExiting(Src)) 8578 return EdgeMaskCache[Edge] = SrcMask; 8579 8580 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8581 assert(EdgeMask && "No Edge Mask found for condition"); 8582 8583 if (BI->getSuccessor(0) != Dst) 8584 EdgeMask = Builder.createNot(EdgeMask); 8585 8586 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8587 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8588 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8589 // The select version does not introduce new UB if SrcMask is false and 8590 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8591 VPValue *False = Plan->getOrAddVPValue( 8592 ConstantInt::getFalse(BI->getCondition()->getType())); 8593 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8594 } 8595 8596 return EdgeMaskCache[Edge] = EdgeMask; 8597 } 8598 8599 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8600 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8601 8602 // Look for cached value. 8603 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8604 if (BCEntryIt != BlockMaskCache.end()) 8605 return BCEntryIt->second; 8606 8607 // All-one mask is modelled as no-mask following the convention for masked 8608 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8609 VPValue *BlockMask = nullptr; 8610 8611 if (OrigLoop->getHeader() == BB) { 8612 if (!CM.blockNeedsPredication(BB)) 8613 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8614 8615 // Create the block in mask as the first non-phi instruction in the block. 8616 VPBuilder::InsertPointGuard Guard(Builder); 8617 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8618 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8619 8620 // Introduce the early-exit compare IV <= BTC to form header block mask. 8621 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8622 // Start by constructing the desired canonical IV. 8623 VPValue *IV = nullptr; 8624 if (Legal->getPrimaryInduction()) 8625 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8626 else { 8627 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8628 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8629 IV = IVRecipe->getVPSingleValue(); 8630 } 8631 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8632 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8633 8634 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8635 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8636 // as a second argument, we only pass the IV here and extract the 8637 // tripcount from the transform state where codegen of the VP instructions 8638 // happen. 8639 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8640 } else { 8641 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8642 } 8643 return BlockMaskCache[BB] = BlockMask; 8644 } 8645 8646 // This is the block mask. We OR all incoming edges. 8647 for (auto *Predecessor : predecessors(BB)) { 8648 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8649 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8650 return BlockMaskCache[BB] = EdgeMask; 8651 8652 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8653 BlockMask = EdgeMask; 8654 continue; 8655 } 8656 8657 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8658 } 8659 8660 return BlockMaskCache[BB] = BlockMask; 8661 } 8662 8663 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8664 ArrayRef<VPValue *> Operands, 8665 VFRange &Range, 8666 VPlanPtr &Plan) { 8667 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8668 "Must be called with either a load or store"); 8669 8670 auto willWiden = [&](ElementCount VF) -> bool { 8671 if (VF.isScalar()) 8672 return false; 8673 LoopVectorizationCostModel::InstWidening Decision = 8674 CM.getWideningDecision(I, VF); 8675 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8676 "CM decision should be taken at this point."); 8677 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8678 return true; 8679 if (CM.isScalarAfterVectorization(I, VF) || 8680 CM.isProfitableToScalarize(I, VF)) 8681 return false; 8682 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8683 }; 8684 8685 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8686 return nullptr; 8687 8688 VPValue *Mask = nullptr; 8689 if (Legal->isMaskRequired(I)) 8690 Mask = createBlockInMask(I->getParent(), Plan); 8691 8692 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8693 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8694 8695 StoreInst *Store = cast<StoreInst>(I); 8696 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8697 Mask); 8698 } 8699 8700 VPWidenIntOrFpInductionRecipe * 8701 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8702 ArrayRef<VPValue *> Operands) const { 8703 // Check if this is an integer or fp induction. If so, build the recipe that 8704 // produces its scalar and vector values. 8705 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8706 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8707 II.getKind() == InductionDescriptor::IK_FpInduction) { 8708 assert(II.getStartValue() == 8709 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8710 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8711 return new VPWidenIntOrFpInductionRecipe( 8712 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8713 } 8714 8715 return nullptr; 8716 } 8717 8718 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8719 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8720 VPlan &Plan) const { 8721 // Optimize the special case where the source is a constant integer 8722 // induction variable. Notice that we can only optimize the 'trunc' case 8723 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8724 // (c) other casts depend on pointer size. 8725 8726 // Determine whether \p K is a truncation based on an induction variable that 8727 // can be optimized. 8728 auto isOptimizableIVTruncate = 8729 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8730 return [=](ElementCount VF) -> bool { 8731 return CM.isOptimizableIVTruncate(K, VF); 8732 }; 8733 }; 8734 8735 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8736 isOptimizableIVTruncate(I), Range)) { 8737 8738 InductionDescriptor II = 8739 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8740 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8741 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8742 Start, nullptr, I); 8743 } 8744 return nullptr; 8745 } 8746 8747 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8748 ArrayRef<VPValue *> Operands, 8749 VPlanPtr &Plan) { 8750 // If all incoming values are equal, the incoming VPValue can be used directly 8751 // instead of creating a new VPBlendRecipe. 8752 VPValue *FirstIncoming = Operands[0]; 8753 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8754 return FirstIncoming == Inc; 8755 })) { 8756 return Operands[0]; 8757 } 8758 8759 // We know that all PHIs in non-header blocks are converted into selects, so 8760 // we don't have to worry about the insertion order and we can just use the 8761 // builder. At this point we generate the predication tree. There may be 8762 // duplications since this is a simple recursive scan, but future 8763 // optimizations will clean it up. 8764 SmallVector<VPValue *, 2> OperandsWithMask; 8765 unsigned NumIncoming = Phi->getNumIncomingValues(); 8766 8767 for (unsigned In = 0; In < NumIncoming; In++) { 8768 VPValue *EdgeMask = 8769 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8770 assert((EdgeMask || NumIncoming == 1) && 8771 "Multiple predecessors with one having a full mask"); 8772 OperandsWithMask.push_back(Operands[In]); 8773 if (EdgeMask) 8774 OperandsWithMask.push_back(EdgeMask); 8775 } 8776 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8777 } 8778 8779 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8780 ArrayRef<VPValue *> Operands, 8781 VFRange &Range) const { 8782 8783 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8784 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8785 Range); 8786 8787 if (IsPredicated) 8788 return nullptr; 8789 8790 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8791 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8792 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8793 ID == Intrinsic::pseudoprobe || 8794 ID == Intrinsic::experimental_noalias_scope_decl)) 8795 return nullptr; 8796 8797 auto willWiden = [&](ElementCount VF) -> bool { 8798 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8799 // The following case may be scalarized depending on the VF. 8800 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8801 // version of the instruction. 8802 // Is it beneficial to perform intrinsic call compared to lib call? 8803 bool NeedToScalarize = false; 8804 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8805 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8806 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8807 return UseVectorIntrinsic || !NeedToScalarize; 8808 }; 8809 8810 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8811 return nullptr; 8812 8813 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8814 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8815 } 8816 8817 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8818 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8819 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8820 // Instruction should be widened, unless it is scalar after vectorization, 8821 // scalarization is profitable or it is predicated. 8822 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8823 return CM.isScalarAfterVectorization(I, VF) || 8824 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8825 }; 8826 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8827 Range); 8828 } 8829 8830 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8831 ArrayRef<VPValue *> Operands) const { 8832 auto IsVectorizableOpcode = [](unsigned Opcode) { 8833 switch (Opcode) { 8834 case Instruction::Add: 8835 case Instruction::And: 8836 case Instruction::AShr: 8837 case Instruction::BitCast: 8838 case Instruction::FAdd: 8839 case Instruction::FCmp: 8840 case Instruction::FDiv: 8841 case Instruction::FMul: 8842 case Instruction::FNeg: 8843 case Instruction::FPExt: 8844 case Instruction::FPToSI: 8845 case Instruction::FPToUI: 8846 case Instruction::FPTrunc: 8847 case Instruction::FRem: 8848 case Instruction::FSub: 8849 case Instruction::ICmp: 8850 case Instruction::IntToPtr: 8851 case Instruction::LShr: 8852 case Instruction::Mul: 8853 case Instruction::Or: 8854 case Instruction::PtrToInt: 8855 case Instruction::SDiv: 8856 case Instruction::Select: 8857 case Instruction::SExt: 8858 case Instruction::Shl: 8859 case Instruction::SIToFP: 8860 case Instruction::SRem: 8861 case Instruction::Sub: 8862 case Instruction::Trunc: 8863 case Instruction::UDiv: 8864 case Instruction::UIToFP: 8865 case Instruction::URem: 8866 case Instruction::Xor: 8867 case Instruction::ZExt: 8868 return true; 8869 } 8870 return false; 8871 }; 8872 8873 if (!IsVectorizableOpcode(I->getOpcode())) 8874 return nullptr; 8875 8876 // Success: widen this instruction. 8877 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8878 } 8879 8880 void VPRecipeBuilder::fixHeaderPhis() { 8881 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8882 for (VPWidenPHIRecipe *R : PhisToFix) { 8883 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8884 VPRecipeBase *IncR = 8885 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8886 R->addOperand(IncR->getVPSingleValue()); 8887 } 8888 } 8889 8890 VPBasicBlock *VPRecipeBuilder::handleReplication( 8891 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8892 VPlanPtr &Plan) { 8893 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8894 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8895 Range); 8896 8897 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8898 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8899 8900 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8901 IsUniform, IsPredicated); 8902 setRecipe(I, Recipe); 8903 Plan->addVPValue(I, Recipe); 8904 8905 // Find if I uses a predicated instruction. If so, it will use its scalar 8906 // value. Avoid hoisting the insert-element which packs the scalar value into 8907 // a vector value, as that happens iff all users use the vector value. 8908 for (VPValue *Op : Recipe->operands()) { 8909 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8910 if (!PredR) 8911 continue; 8912 auto *RepR = 8913 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8914 assert(RepR->isPredicated() && 8915 "expected Replicate recipe to be predicated"); 8916 RepR->setAlsoPack(false); 8917 } 8918 8919 // Finalize the recipe for Instr, first if it is not predicated. 8920 if (!IsPredicated) { 8921 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8922 VPBB->appendRecipe(Recipe); 8923 return VPBB; 8924 } 8925 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8926 assert(VPBB->getSuccessors().empty() && 8927 "VPBB has successors when handling predicated replication."); 8928 // Record predicated instructions for above packing optimizations. 8929 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8930 VPBlockUtils::insertBlockAfter(Region, VPBB); 8931 auto *RegSucc = new VPBasicBlock(); 8932 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8933 return RegSucc; 8934 } 8935 8936 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8937 VPRecipeBase *PredRecipe, 8938 VPlanPtr &Plan) { 8939 // Instructions marked for predication are replicated and placed under an 8940 // if-then construct to prevent side-effects. 8941 8942 // Generate recipes to compute the block mask for this region. 8943 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8944 8945 // Build the triangular if-then region. 8946 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8947 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8948 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8949 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8950 auto *PHIRecipe = Instr->getType()->isVoidTy() 8951 ? nullptr 8952 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8953 if (PHIRecipe) { 8954 Plan->removeVPValueFor(Instr); 8955 Plan->addVPValue(Instr, PHIRecipe); 8956 } 8957 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8958 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8959 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8960 8961 // Note: first set Entry as region entry and then connect successors starting 8962 // from it in order, to propagate the "parent" of each VPBasicBlock. 8963 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8964 VPBlockUtils::connectBlocks(Pred, Exit); 8965 8966 return Region; 8967 } 8968 8969 VPRecipeOrVPValueTy 8970 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8971 ArrayRef<VPValue *> Operands, 8972 VFRange &Range, VPlanPtr &Plan) { 8973 // First, check for specific widening recipes that deal with calls, memory 8974 // operations, inductions and Phi nodes. 8975 if (auto *CI = dyn_cast<CallInst>(Instr)) 8976 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8977 8978 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8979 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8980 8981 VPRecipeBase *Recipe; 8982 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8983 if (Phi->getParent() != OrigLoop->getHeader()) 8984 return tryToBlend(Phi, Operands, Plan); 8985 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8986 return toVPRecipeResult(Recipe); 8987 8988 VPWidenPHIRecipe *PhiRecipe = nullptr; 8989 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8990 VPValue *StartV = Operands[0]; 8991 if (Legal->isReductionVariable(Phi)) { 8992 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8993 assert(RdxDesc.getRecurrenceStartValue() == 8994 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8995 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8996 CM.isInLoopReduction(Phi), 8997 CM.useOrderedReductions(RdxDesc)); 8998 } else { 8999 PhiRecipe = new VPWidenPHIRecipe(Phi, *StartV); 9000 } 9001 9002 // Record the incoming value from the backedge, so we can add the incoming 9003 // value from the backedge after all recipes have been created. 9004 recordRecipeOf(cast<Instruction>( 9005 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 9006 PhisToFix.push_back(PhiRecipe); 9007 } else { 9008 // TODO: record start and backedge value for remaining pointer induction 9009 // phis. 9010 assert(Phi->getType()->isPointerTy() && 9011 "only pointer phis should be handled here"); 9012 PhiRecipe = new VPWidenPHIRecipe(Phi); 9013 } 9014 9015 return toVPRecipeResult(PhiRecipe); 9016 } 9017 9018 if (isa<TruncInst>(Instr) && 9019 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9020 Range, *Plan))) 9021 return toVPRecipeResult(Recipe); 9022 9023 if (!shouldWiden(Instr, Range)) 9024 return nullptr; 9025 9026 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9027 return toVPRecipeResult(new VPWidenGEPRecipe( 9028 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9029 9030 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9031 bool InvariantCond = 9032 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9033 return toVPRecipeResult(new VPWidenSelectRecipe( 9034 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9035 } 9036 9037 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9038 } 9039 9040 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9041 ElementCount MaxVF) { 9042 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9043 9044 // Collect instructions from the original loop that will become trivially dead 9045 // in the vectorized loop. We don't need to vectorize these instructions. For 9046 // example, original induction update instructions can become dead because we 9047 // separately emit induction "steps" when generating code for the new loop. 9048 // Similarly, we create a new latch condition when setting up the structure 9049 // of the new loop, so the old one can become dead. 9050 SmallPtrSet<Instruction *, 4> DeadInstructions; 9051 collectTriviallyDeadInstructions(DeadInstructions); 9052 9053 // Add assume instructions we need to drop to DeadInstructions, to prevent 9054 // them from being added to the VPlan. 9055 // TODO: We only need to drop assumes in blocks that get flattend. If the 9056 // control flow is preserved, we should keep them. 9057 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9058 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9059 9060 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9061 // Dead instructions do not need sinking. Remove them from SinkAfter. 9062 for (Instruction *I : DeadInstructions) 9063 SinkAfter.erase(I); 9064 9065 // Cannot sink instructions after dead instructions (there won't be any 9066 // recipes for them). Instead, find the first non-dead previous instruction. 9067 for (auto &P : Legal->getSinkAfter()) { 9068 Instruction *SinkTarget = P.second; 9069 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9070 (void)FirstInst; 9071 while (DeadInstructions.contains(SinkTarget)) { 9072 assert( 9073 SinkTarget != FirstInst && 9074 "Must find a live instruction (at least the one feeding the " 9075 "first-order recurrence PHI) before reaching beginning of the block"); 9076 SinkTarget = SinkTarget->getPrevNode(); 9077 assert(SinkTarget != P.first && 9078 "sink source equals target, no sinking required"); 9079 } 9080 P.second = SinkTarget; 9081 } 9082 9083 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9084 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9085 VFRange SubRange = {VF, MaxVFPlusOne}; 9086 VPlans.push_back( 9087 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9088 VF = SubRange.End; 9089 } 9090 } 9091 9092 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9093 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9094 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9095 9096 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9097 9098 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9099 9100 // --------------------------------------------------------------------------- 9101 // Pre-construction: record ingredients whose recipes we'll need to further 9102 // process after constructing the initial VPlan. 9103 // --------------------------------------------------------------------------- 9104 9105 // Mark instructions we'll need to sink later and their targets as 9106 // ingredients whose recipe we'll need to record. 9107 for (auto &Entry : SinkAfter) { 9108 RecipeBuilder.recordRecipeOf(Entry.first); 9109 RecipeBuilder.recordRecipeOf(Entry.second); 9110 } 9111 for (auto &Reduction : CM.getInLoopReductionChains()) { 9112 PHINode *Phi = Reduction.first; 9113 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9114 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9115 9116 RecipeBuilder.recordRecipeOf(Phi); 9117 for (auto &R : ReductionOperations) { 9118 RecipeBuilder.recordRecipeOf(R); 9119 // For min/max reducitons, where we have a pair of icmp/select, we also 9120 // need to record the ICmp recipe, so it can be removed later. 9121 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9122 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9123 } 9124 } 9125 9126 // For each interleave group which is relevant for this (possibly trimmed) 9127 // Range, add it to the set of groups to be later applied to the VPlan and add 9128 // placeholders for its members' Recipes which we'll be replacing with a 9129 // single VPInterleaveRecipe. 9130 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9131 auto applyIG = [IG, this](ElementCount VF) -> bool { 9132 return (VF.isVector() && // Query is illegal for VF == 1 9133 CM.getWideningDecision(IG->getInsertPos(), VF) == 9134 LoopVectorizationCostModel::CM_Interleave); 9135 }; 9136 if (!getDecisionAndClampRange(applyIG, Range)) 9137 continue; 9138 InterleaveGroups.insert(IG); 9139 for (unsigned i = 0; i < IG->getFactor(); i++) 9140 if (Instruction *Member = IG->getMember(i)) 9141 RecipeBuilder.recordRecipeOf(Member); 9142 }; 9143 9144 // --------------------------------------------------------------------------- 9145 // Build initial VPlan: Scan the body of the loop in a topological order to 9146 // visit each basic block after having visited its predecessor basic blocks. 9147 // --------------------------------------------------------------------------- 9148 9149 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9150 auto Plan = std::make_unique<VPlan>(); 9151 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9152 Plan->setEntry(VPBB); 9153 9154 // Scan the body of the loop in a topological order to visit each basic block 9155 // after having visited its predecessor basic blocks. 9156 LoopBlocksDFS DFS(OrigLoop); 9157 DFS.perform(LI); 9158 9159 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9160 // Relevant instructions from basic block BB will be grouped into VPRecipe 9161 // ingredients and fill a new VPBasicBlock. 9162 unsigned VPBBsForBB = 0; 9163 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9164 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9165 VPBB = FirstVPBBForBB; 9166 Builder.setInsertPoint(VPBB); 9167 9168 // Introduce each ingredient into VPlan. 9169 // TODO: Model and preserve debug instrinsics in VPlan. 9170 for (Instruction &I : BB->instructionsWithoutDebug()) { 9171 Instruction *Instr = &I; 9172 9173 // First filter out irrelevant instructions, to ensure no recipes are 9174 // built for them. 9175 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9176 continue; 9177 9178 SmallVector<VPValue *, 4> Operands; 9179 auto *Phi = dyn_cast<PHINode>(Instr); 9180 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9181 Operands.push_back(Plan->getOrAddVPValue( 9182 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9183 } else { 9184 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9185 Operands = {OpRange.begin(), OpRange.end()}; 9186 } 9187 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9188 Instr, Operands, Range, Plan)) { 9189 // If Instr can be simplified to an existing VPValue, use it. 9190 if (RecipeOrValue.is<VPValue *>()) { 9191 auto *VPV = RecipeOrValue.get<VPValue *>(); 9192 Plan->addVPValue(Instr, VPV); 9193 // If the re-used value is a recipe, register the recipe for the 9194 // instruction, in case the recipe for Instr needs to be recorded. 9195 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9196 RecipeBuilder.setRecipe(Instr, R); 9197 continue; 9198 } 9199 // Otherwise, add the new recipe. 9200 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9201 for (auto *Def : Recipe->definedValues()) { 9202 auto *UV = Def->getUnderlyingValue(); 9203 Plan->addVPValue(UV, Def); 9204 } 9205 9206 RecipeBuilder.setRecipe(Instr, Recipe); 9207 VPBB->appendRecipe(Recipe); 9208 continue; 9209 } 9210 9211 // Otherwise, if all widening options failed, Instruction is to be 9212 // replicated. This may create a successor for VPBB. 9213 VPBasicBlock *NextVPBB = 9214 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9215 if (NextVPBB != VPBB) { 9216 VPBB = NextVPBB; 9217 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9218 : ""); 9219 } 9220 } 9221 } 9222 9223 RecipeBuilder.fixHeaderPhis(); 9224 9225 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9226 // may also be empty, such as the last one VPBB, reflecting original 9227 // basic-blocks with no recipes. 9228 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9229 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9230 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9231 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9232 delete PreEntry; 9233 9234 // --------------------------------------------------------------------------- 9235 // Transform initial VPlan: Apply previously taken decisions, in order, to 9236 // bring the VPlan to its final state. 9237 // --------------------------------------------------------------------------- 9238 9239 // Apply Sink-After legal constraints. 9240 for (auto &Entry : SinkAfter) { 9241 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9242 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9243 9244 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9245 auto *Region = 9246 dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9247 if (Region && Region->isReplicator()) { 9248 assert(Region->getNumSuccessors() == 1 && 9249 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9250 assert(R->getParent()->size() == 1 && 9251 "A recipe in an original replicator region must be the only " 9252 "recipe in its block"); 9253 return Region; 9254 } 9255 return nullptr; 9256 }; 9257 auto *TargetRegion = GetReplicateRegion(Target); 9258 auto *SinkRegion = GetReplicateRegion(Sink); 9259 if (!SinkRegion) { 9260 // If the sink source is not a replicate region, sink the recipe directly. 9261 if (TargetRegion) { 9262 // The target is in a replication region, make sure to move Sink to 9263 // the block after it, not into the replication region itself. 9264 VPBasicBlock *NextBlock = 9265 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9266 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9267 } else 9268 Sink->moveAfter(Target); 9269 continue; 9270 } 9271 9272 // The sink source is in a replicate region. Unhook the region from the CFG. 9273 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9274 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9275 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9276 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9277 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9278 9279 if (TargetRegion) { 9280 // The target recipe is also in a replicate region, move the sink region 9281 // after the target region. 9282 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9283 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9284 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9285 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9286 } else { 9287 // The sink source is in a replicate region, we need to move the whole 9288 // replicate region, which should only contain a single recipe in the main 9289 // block. 9290 auto *SplitBlock = 9291 Target->getParent()->splitAt(std::next(Target->getIterator())); 9292 9293 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9294 9295 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9296 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9297 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9298 if (VPBB == SplitPred) 9299 VPBB = SplitBlock; 9300 } 9301 } 9302 9303 // Interleave memory: for each Interleave Group we marked earlier as relevant 9304 // for this VPlan, replace the Recipes widening its memory instructions with a 9305 // single VPInterleaveRecipe at its insertion point. 9306 for (auto IG : InterleaveGroups) { 9307 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9308 RecipeBuilder.getRecipe(IG->getInsertPos())); 9309 SmallVector<VPValue *, 4> StoredValues; 9310 for (unsigned i = 0; i < IG->getFactor(); ++i) 9311 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 9312 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 9313 9314 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9315 Recipe->getMask()); 9316 VPIG->insertBefore(Recipe); 9317 unsigned J = 0; 9318 for (unsigned i = 0; i < IG->getFactor(); ++i) 9319 if (Instruction *Member = IG->getMember(i)) { 9320 if (!Member->getType()->isVoidTy()) { 9321 VPValue *OriginalV = Plan->getVPValue(Member); 9322 Plan->removeVPValueFor(Member); 9323 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9324 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9325 J++; 9326 } 9327 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9328 } 9329 } 9330 9331 // Adjust the recipes for any inloop reductions. 9332 adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start); 9333 9334 // Finally, if tail is folded by masking, introduce selects between the phi 9335 // and the live-out instruction of each reduction, at the end of the latch. 9336 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9337 Builder.setInsertPoint(VPBB); 9338 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9339 for (auto &Reduction : Legal->getReductionVars()) { 9340 if (CM.isInLoopReduction(Reduction.first)) 9341 continue; 9342 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9343 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9344 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9345 } 9346 } 9347 9348 VPlanTransforms::sinkScalarOperands(*Plan); 9349 VPlanTransforms::mergeReplicateRegions(*Plan); 9350 9351 std::string PlanName; 9352 raw_string_ostream RSO(PlanName); 9353 ElementCount VF = Range.Start; 9354 Plan->addVF(VF); 9355 RSO << "Initial VPlan for VF={" << VF; 9356 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9357 Plan->addVF(VF); 9358 RSO << "," << VF; 9359 } 9360 RSO << "},UF>=1"; 9361 RSO.flush(); 9362 Plan->setName(PlanName); 9363 9364 return Plan; 9365 } 9366 9367 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9368 // Outer loop handling: They may require CFG and instruction level 9369 // transformations before even evaluating whether vectorization is profitable. 9370 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9371 // the vectorization pipeline. 9372 assert(!OrigLoop->isInnermost()); 9373 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9374 9375 // Create new empty VPlan 9376 auto Plan = std::make_unique<VPlan>(); 9377 9378 // Build hierarchical CFG 9379 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9380 HCFGBuilder.buildHierarchicalCFG(); 9381 9382 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9383 VF *= 2) 9384 Plan->addVF(VF); 9385 9386 if (EnableVPlanPredication) { 9387 VPlanPredicator VPP(*Plan); 9388 VPP.predicate(); 9389 9390 // Avoid running transformation to recipes until masked code generation in 9391 // VPlan-native path is in place. 9392 return Plan; 9393 } 9394 9395 SmallPtrSet<Instruction *, 1> DeadInstructions; 9396 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9397 Legal->getInductionVars(), 9398 DeadInstructions, *PSE.getSE()); 9399 return Plan; 9400 } 9401 9402 // Adjust the recipes for any inloop reductions. The chain of instructions 9403 // leading from the loop exit instr to the phi need to be converted to 9404 // reductions, with one operand being vector and the other being the scalar 9405 // reduction chain. 9406 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9407 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) { 9408 for (auto &Reduction : CM.getInLoopReductionChains()) { 9409 PHINode *Phi = Reduction.first; 9410 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9411 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9412 9413 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9414 continue; 9415 9416 // ReductionOperations are orders top-down from the phi's use to the 9417 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9418 // which of the two operands will remain scalar and which will be reduced. 9419 // For minmax the chain will be the select instructions. 9420 Instruction *Chain = Phi; 9421 for (Instruction *R : ReductionOperations) { 9422 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9423 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9424 9425 VPValue *ChainOp = Plan->getVPValue(Chain); 9426 unsigned FirstOpId; 9427 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9428 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9429 "Expected to replace a VPWidenSelectSC"); 9430 FirstOpId = 1; 9431 } else { 9432 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9433 "Expected to replace a VPWidenSC"); 9434 FirstOpId = 0; 9435 } 9436 unsigned VecOpId = 9437 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9438 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9439 9440 auto *CondOp = CM.foldTailByMasking() 9441 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9442 : nullptr; 9443 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9444 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9445 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9446 Plan->removeVPValueFor(R); 9447 Plan->addVPValue(R, RedRecipe); 9448 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9449 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9450 WidenRecipe->eraseFromParent(); 9451 9452 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9453 VPRecipeBase *CompareRecipe = 9454 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9455 assert(isa<VPWidenRecipe>(CompareRecipe) && 9456 "Expected to replace a VPWidenSC"); 9457 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9458 "Expected no remaining users"); 9459 CompareRecipe->eraseFromParent(); 9460 } 9461 Chain = R; 9462 } 9463 } 9464 } 9465 9466 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9467 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9468 VPSlotTracker &SlotTracker) const { 9469 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9470 IG->getInsertPos()->printAsOperand(O, false); 9471 O << ", "; 9472 getAddr()->printAsOperand(O, SlotTracker); 9473 VPValue *Mask = getMask(); 9474 if (Mask) { 9475 O << ", "; 9476 Mask->printAsOperand(O, SlotTracker); 9477 } 9478 for (unsigned i = 0; i < IG->getFactor(); ++i) 9479 if (Instruction *I = IG->getMember(i)) 9480 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9481 } 9482 #endif 9483 9484 void VPWidenCallRecipe::execute(VPTransformState &State) { 9485 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9486 *this, State); 9487 } 9488 9489 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9490 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9491 this, *this, InvariantCond, State); 9492 } 9493 9494 void VPWidenRecipe::execute(VPTransformState &State) { 9495 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9496 } 9497 9498 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9499 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9500 *this, State.UF, State.VF, IsPtrLoopInvariant, 9501 IsIndexLoopInvariant, State); 9502 } 9503 9504 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9505 assert(!State.Instance && "Int or FP induction being replicated."); 9506 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9507 getTruncInst(), getVPValue(0), 9508 getCastValue(), State); 9509 } 9510 9511 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9512 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9513 State); 9514 } 9515 9516 void VPBlendRecipe::execute(VPTransformState &State) { 9517 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9518 // We know that all PHIs in non-header blocks are converted into 9519 // selects, so we don't have to worry about the insertion order and we 9520 // can just use the builder. 9521 // At this point we generate the predication tree. There may be 9522 // duplications since this is a simple recursive scan, but future 9523 // optimizations will clean it up. 9524 9525 unsigned NumIncoming = getNumIncomingValues(); 9526 9527 // Generate a sequence of selects of the form: 9528 // SELECT(Mask3, In3, 9529 // SELECT(Mask2, In2, 9530 // SELECT(Mask1, In1, 9531 // In0))) 9532 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9533 // are essentially undef are taken from In0. 9534 InnerLoopVectorizer::VectorParts Entry(State.UF); 9535 for (unsigned In = 0; In < NumIncoming; ++In) { 9536 for (unsigned Part = 0; Part < State.UF; ++Part) { 9537 // We might have single edge PHIs (blocks) - use an identity 9538 // 'select' for the first PHI operand. 9539 Value *In0 = State.get(getIncomingValue(In), Part); 9540 if (In == 0) 9541 Entry[Part] = In0; // Initialize with the first incoming value. 9542 else { 9543 // Select between the current value and the previous incoming edge 9544 // based on the incoming mask. 9545 Value *Cond = State.get(getMask(In), Part); 9546 Entry[Part] = 9547 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9548 } 9549 } 9550 } 9551 for (unsigned Part = 0; Part < State.UF; ++Part) 9552 State.set(this, Entry[Part], Part); 9553 } 9554 9555 void VPInterleaveRecipe::execute(VPTransformState &State) { 9556 assert(!State.Instance && "Interleave group being replicated."); 9557 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9558 getStoredValues(), getMask()); 9559 } 9560 9561 void VPReductionRecipe::execute(VPTransformState &State) { 9562 assert(!State.Instance && "Reduction being replicated."); 9563 Value *PrevInChain = State.get(getChainOp(), 0); 9564 for (unsigned Part = 0; Part < State.UF; ++Part) { 9565 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9566 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9567 Value *NewVecOp = State.get(getVecOp(), Part); 9568 if (VPValue *Cond = getCondOp()) { 9569 Value *NewCond = State.get(Cond, Part); 9570 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9571 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9572 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9573 Constant *IdenVec = 9574 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9575 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9576 NewVecOp = Select; 9577 } 9578 Value *NewRed; 9579 Value *NextInChain; 9580 if (IsOrdered) { 9581 if (State.VF.isVector()) 9582 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9583 PrevInChain); 9584 else 9585 NewRed = State.Builder.CreateBinOp( 9586 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9587 PrevInChain, NewVecOp); 9588 PrevInChain = NewRed; 9589 } else { 9590 PrevInChain = State.get(getChainOp(), Part); 9591 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9592 } 9593 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9594 NextInChain = 9595 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9596 NewRed, PrevInChain); 9597 } else if (IsOrdered) 9598 NextInChain = NewRed; 9599 else { 9600 NextInChain = State.Builder.CreateBinOp( 9601 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9602 PrevInChain); 9603 } 9604 State.set(this, NextInChain, Part); 9605 } 9606 } 9607 9608 void VPReplicateRecipe::execute(VPTransformState &State) { 9609 if (State.Instance) { // Generate a single instance. 9610 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9611 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9612 *State.Instance, IsPredicated, State); 9613 // Insert scalar instance packing it into a vector. 9614 if (AlsoPack && State.VF.isVector()) { 9615 // If we're constructing lane 0, initialize to start from poison. 9616 if (State.Instance->Lane.isFirstLane()) { 9617 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9618 Value *Poison = PoisonValue::get( 9619 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9620 State.set(this, Poison, State.Instance->Part); 9621 } 9622 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9623 } 9624 return; 9625 } 9626 9627 // Generate scalar instances for all VF lanes of all UF parts, unless the 9628 // instruction is uniform inwhich case generate only the first lane for each 9629 // of the UF parts. 9630 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9631 assert((!State.VF.isScalable() || IsUniform) && 9632 "Can't scalarize a scalable vector"); 9633 for (unsigned Part = 0; Part < State.UF; ++Part) 9634 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9635 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9636 VPIteration(Part, Lane), IsPredicated, 9637 State); 9638 } 9639 9640 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9641 assert(State.Instance && "Branch on Mask works only on single instance."); 9642 9643 unsigned Part = State.Instance->Part; 9644 unsigned Lane = State.Instance->Lane.getKnownLane(); 9645 9646 Value *ConditionBit = nullptr; 9647 VPValue *BlockInMask = getMask(); 9648 if (BlockInMask) { 9649 ConditionBit = State.get(BlockInMask, Part); 9650 if (ConditionBit->getType()->isVectorTy()) 9651 ConditionBit = State.Builder.CreateExtractElement( 9652 ConditionBit, State.Builder.getInt32(Lane)); 9653 } else // Block in mask is all-one. 9654 ConditionBit = State.Builder.getTrue(); 9655 9656 // Replace the temporary unreachable terminator with a new conditional branch, 9657 // whose two destinations will be set later when they are created. 9658 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9659 assert(isa<UnreachableInst>(CurrentTerminator) && 9660 "Expected to replace unreachable terminator with conditional branch."); 9661 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9662 CondBr->setSuccessor(0, nullptr); 9663 ReplaceInstWithInst(CurrentTerminator, CondBr); 9664 } 9665 9666 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9667 assert(State.Instance && "Predicated instruction PHI works per instance."); 9668 Instruction *ScalarPredInst = 9669 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9670 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9671 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9672 assert(PredicatingBB && "Predicated block has no single predecessor."); 9673 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9674 "operand must be VPReplicateRecipe"); 9675 9676 // By current pack/unpack logic we need to generate only a single phi node: if 9677 // a vector value for the predicated instruction exists at this point it means 9678 // the instruction has vector users only, and a phi for the vector value is 9679 // needed. In this case the recipe of the predicated instruction is marked to 9680 // also do that packing, thereby "hoisting" the insert-element sequence. 9681 // Otherwise, a phi node for the scalar value is needed. 9682 unsigned Part = State.Instance->Part; 9683 if (State.hasVectorValue(getOperand(0), Part)) { 9684 Value *VectorValue = State.get(getOperand(0), Part); 9685 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9686 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9687 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9688 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9689 if (State.hasVectorValue(this, Part)) 9690 State.reset(this, VPhi, Part); 9691 else 9692 State.set(this, VPhi, Part); 9693 // NOTE: Currently we need to update the value of the operand, so the next 9694 // predicated iteration inserts its generated value in the correct vector. 9695 State.reset(getOperand(0), VPhi, Part); 9696 } else { 9697 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9698 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9699 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9700 PredicatingBB); 9701 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9702 if (State.hasScalarValue(this, *State.Instance)) 9703 State.reset(this, Phi, *State.Instance); 9704 else 9705 State.set(this, Phi, *State.Instance); 9706 // NOTE: Currently we need to update the value of the operand, so the next 9707 // predicated iteration inserts its generated value in the correct vector. 9708 State.reset(getOperand(0), Phi, *State.Instance); 9709 } 9710 } 9711 9712 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9713 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9714 State.ILV->vectorizeMemoryInstruction( 9715 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9716 StoredValue, getMask()); 9717 } 9718 9719 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9720 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9721 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9722 // for predication. 9723 static ScalarEpilogueLowering getScalarEpilogueLowering( 9724 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9725 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9726 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9727 LoopVectorizationLegality &LVL) { 9728 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9729 // don't look at hints or options, and don't request a scalar epilogue. 9730 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9731 // LoopAccessInfo (due to code dependency and not being able to reliably get 9732 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9733 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9734 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9735 // back to the old way and vectorize with versioning when forced. See D81345.) 9736 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9737 PGSOQueryType::IRPass) && 9738 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9739 return CM_ScalarEpilogueNotAllowedOptSize; 9740 9741 // 2) If set, obey the directives 9742 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9743 switch (PreferPredicateOverEpilogue) { 9744 case PreferPredicateTy::ScalarEpilogue: 9745 return CM_ScalarEpilogueAllowed; 9746 case PreferPredicateTy::PredicateElseScalarEpilogue: 9747 return CM_ScalarEpilogueNotNeededUsePredicate; 9748 case PreferPredicateTy::PredicateOrDontVectorize: 9749 return CM_ScalarEpilogueNotAllowedUsePredicate; 9750 }; 9751 } 9752 9753 // 3) If set, obey the hints 9754 switch (Hints.getPredicate()) { 9755 case LoopVectorizeHints::FK_Enabled: 9756 return CM_ScalarEpilogueNotNeededUsePredicate; 9757 case LoopVectorizeHints::FK_Disabled: 9758 return CM_ScalarEpilogueAllowed; 9759 }; 9760 9761 // 4) if the TTI hook indicates this is profitable, request predication. 9762 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9763 LVL.getLAI())) 9764 return CM_ScalarEpilogueNotNeededUsePredicate; 9765 9766 return CM_ScalarEpilogueAllowed; 9767 } 9768 9769 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9770 // If Values have been set for this Def return the one relevant for \p Part. 9771 if (hasVectorValue(Def, Part)) 9772 return Data.PerPartOutput[Def][Part]; 9773 9774 if (!hasScalarValue(Def, {Part, 0})) { 9775 Value *IRV = Def->getLiveInIRValue(); 9776 Value *B = ILV->getBroadcastInstrs(IRV); 9777 set(Def, B, Part); 9778 return B; 9779 } 9780 9781 Value *ScalarValue = get(Def, {Part, 0}); 9782 // If we aren't vectorizing, we can just copy the scalar map values over 9783 // to the vector map. 9784 if (VF.isScalar()) { 9785 set(Def, ScalarValue, Part); 9786 return ScalarValue; 9787 } 9788 9789 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9790 bool IsUniform = RepR && RepR->isUniform(); 9791 9792 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9793 // Check if there is a scalar value for the selected lane. 9794 if (!hasScalarValue(Def, {Part, LastLane})) { 9795 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9796 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9797 "unexpected recipe found to be invariant"); 9798 IsUniform = true; 9799 LastLane = 0; 9800 } 9801 9802 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9803 // Set the insert point after the last scalarized instruction or after the 9804 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9805 // will directly follow the scalar definitions. 9806 auto OldIP = Builder.saveIP(); 9807 auto NewIP = 9808 isa<PHINode>(LastInst) 9809 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9810 : std::next(BasicBlock::iterator(LastInst)); 9811 Builder.SetInsertPoint(&*NewIP); 9812 9813 // However, if we are vectorizing, we need to construct the vector values. 9814 // If the value is known to be uniform after vectorization, we can just 9815 // broadcast the scalar value corresponding to lane zero for each unroll 9816 // iteration. Otherwise, we construct the vector values using 9817 // insertelement instructions. Since the resulting vectors are stored in 9818 // State, we will only generate the insertelements once. 9819 Value *VectorValue = nullptr; 9820 if (IsUniform) { 9821 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9822 set(Def, VectorValue, Part); 9823 } else { 9824 // Initialize packing with insertelements to start from undef. 9825 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9826 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9827 set(Def, Undef, Part); 9828 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9829 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9830 VectorValue = get(Def, Part); 9831 } 9832 Builder.restoreIP(OldIP); 9833 return VectorValue; 9834 } 9835 9836 // Process the loop in the VPlan-native vectorization path. This path builds 9837 // VPlan upfront in the vectorization pipeline, which allows to apply 9838 // VPlan-to-VPlan transformations from the very beginning without modifying the 9839 // input LLVM IR. 9840 static bool processLoopInVPlanNativePath( 9841 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9842 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9843 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9844 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9845 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9846 LoopVectorizationRequirements &Requirements) { 9847 9848 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9849 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9850 return false; 9851 } 9852 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9853 Function *F = L->getHeader()->getParent(); 9854 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9855 9856 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9857 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9858 9859 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9860 &Hints, IAI); 9861 // Use the planner for outer loop vectorization. 9862 // TODO: CM is not used at this point inside the planner. Turn CM into an 9863 // optional argument if we don't need it in the future. 9864 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9865 Requirements, ORE); 9866 9867 // Get user vectorization factor. 9868 ElementCount UserVF = Hints.getWidth(); 9869 9870 CM.collectElementTypesForWidening(); 9871 9872 // Plan how to best vectorize, return the best VF and its cost. 9873 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9874 9875 // If we are stress testing VPlan builds, do not attempt to generate vector 9876 // code. Masked vector code generation support will follow soon. 9877 // Also, do not attempt to vectorize if no vector code will be produced. 9878 if (VPlanBuildStressTest || EnableVPlanPredication || 9879 VectorizationFactor::Disabled() == VF) 9880 return false; 9881 9882 LVP.setBestPlan(VF.Width, 1); 9883 9884 { 9885 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9886 F->getParent()->getDataLayout()); 9887 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9888 &CM, BFI, PSI, Checks); 9889 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9890 << L->getHeader()->getParent()->getName() << "\"\n"); 9891 LVP.executePlan(LB, DT); 9892 } 9893 9894 // Mark the loop as already vectorized to avoid vectorizing again. 9895 Hints.setAlreadyVectorized(); 9896 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9897 return true; 9898 } 9899 9900 // Emit a remark if there are stores to floats that required a floating point 9901 // extension. If the vectorized loop was generated with floating point there 9902 // will be a performance penalty from the conversion overhead and the change in 9903 // the vector width. 9904 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9905 SmallVector<Instruction *, 4> Worklist; 9906 for (BasicBlock *BB : L->getBlocks()) { 9907 for (Instruction &Inst : *BB) { 9908 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9909 if (S->getValueOperand()->getType()->isFloatTy()) 9910 Worklist.push_back(S); 9911 } 9912 } 9913 } 9914 9915 // Traverse the floating point stores upwards searching, for floating point 9916 // conversions. 9917 SmallPtrSet<const Instruction *, 4> Visited; 9918 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9919 while (!Worklist.empty()) { 9920 auto *I = Worklist.pop_back_val(); 9921 if (!L->contains(I)) 9922 continue; 9923 if (!Visited.insert(I).second) 9924 continue; 9925 9926 // Emit a remark if the floating point store required a floating 9927 // point conversion. 9928 // TODO: More work could be done to identify the root cause such as a 9929 // constant or a function return type and point the user to it. 9930 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9931 ORE->emit([&]() { 9932 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9933 I->getDebugLoc(), L->getHeader()) 9934 << "floating point conversion changes vector width. " 9935 << "Mixed floating point precision requires an up/down " 9936 << "cast that will negatively impact performance."; 9937 }); 9938 9939 for (Use &Op : I->operands()) 9940 if (auto *OpI = dyn_cast<Instruction>(Op)) 9941 Worklist.push_back(OpI); 9942 } 9943 } 9944 9945 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9946 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9947 !EnableLoopInterleaving), 9948 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9949 !EnableLoopVectorization) {} 9950 9951 bool LoopVectorizePass::processLoop(Loop *L) { 9952 assert((EnableVPlanNativePath || L->isInnermost()) && 9953 "VPlan-native path is not enabled. Only process inner loops."); 9954 9955 #ifndef NDEBUG 9956 const std::string DebugLocStr = getDebugLocString(L); 9957 #endif /* NDEBUG */ 9958 9959 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9960 << L->getHeader()->getParent()->getName() << "\" from " 9961 << DebugLocStr << "\n"); 9962 9963 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9964 9965 LLVM_DEBUG( 9966 dbgs() << "LV: Loop hints:" 9967 << " force=" 9968 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9969 ? "disabled" 9970 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9971 ? "enabled" 9972 : "?")) 9973 << " width=" << Hints.getWidth() 9974 << " interleave=" << Hints.getInterleave() << "\n"); 9975 9976 // Function containing loop 9977 Function *F = L->getHeader()->getParent(); 9978 9979 // Looking at the diagnostic output is the only way to determine if a loop 9980 // was vectorized (other than looking at the IR or machine code), so it 9981 // is important to generate an optimization remark for each loop. Most of 9982 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9983 // generated as OptimizationRemark and OptimizationRemarkMissed are 9984 // less verbose reporting vectorized loops and unvectorized loops that may 9985 // benefit from vectorization, respectively. 9986 9987 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9988 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9989 return false; 9990 } 9991 9992 PredicatedScalarEvolution PSE(*SE, *L); 9993 9994 // Check if it is legal to vectorize the loop. 9995 LoopVectorizationRequirements Requirements; 9996 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9997 &Requirements, &Hints, DB, AC, BFI, PSI); 9998 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9999 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10000 Hints.emitRemarkWithHints(); 10001 return false; 10002 } 10003 10004 // Check the function attributes and profiles to find out if this function 10005 // should be optimized for size. 10006 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10007 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10008 10009 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10010 // here. They may require CFG and instruction level transformations before 10011 // even evaluating whether vectorization is profitable. Since we cannot modify 10012 // the incoming IR, we need to build VPlan upfront in the vectorization 10013 // pipeline. 10014 if (!L->isInnermost()) 10015 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10016 ORE, BFI, PSI, Hints, Requirements); 10017 10018 assert(L->isInnermost() && "Inner loop expected."); 10019 10020 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10021 // count by optimizing for size, to minimize overheads. 10022 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10023 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10024 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10025 << "This loop is worth vectorizing only if no scalar " 10026 << "iteration overheads are incurred."); 10027 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10028 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10029 else { 10030 LLVM_DEBUG(dbgs() << "\n"); 10031 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10032 } 10033 } 10034 10035 // Check the function attributes to see if implicit floats are allowed. 10036 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10037 // an integer loop and the vector instructions selected are purely integer 10038 // vector instructions? 10039 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10040 reportVectorizationFailure( 10041 "Can't vectorize when the NoImplicitFloat attribute is used", 10042 "loop not vectorized due to NoImplicitFloat attribute", 10043 "NoImplicitFloat", ORE, L); 10044 Hints.emitRemarkWithHints(); 10045 return false; 10046 } 10047 10048 // Check if the target supports potentially unsafe FP vectorization. 10049 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10050 // for the target we're vectorizing for, to make sure none of the 10051 // additional fp-math flags can help. 10052 if (Hints.isPotentiallyUnsafe() && 10053 TTI->isFPVectorizationPotentiallyUnsafe()) { 10054 reportVectorizationFailure( 10055 "Potentially unsafe FP op prevents vectorization", 10056 "loop not vectorized due to unsafe FP support.", 10057 "UnsafeFP", ORE, L); 10058 Hints.emitRemarkWithHints(); 10059 return false; 10060 } 10061 10062 if (!LVL.canVectorizeFPMath(EnableStrictReductions)) { 10063 ORE->emit([&]() { 10064 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10065 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10066 ExactFPMathInst->getDebugLoc(), 10067 ExactFPMathInst->getParent()) 10068 << "loop not vectorized: cannot prove it is safe to reorder " 10069 "floating-point operations"; 10070 }); 10071 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10072 "reorder floating-point operations\n"); 10073 Hints.emitRemarkWithHints(); 10074 return false; 10075 } 10076 10077 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10078 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10079 10080 // If an override option has been passed in for interleaved accesses, use it. 10081 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10082 UseInterleaved = EnableInterleavedMemAccesses; 10083 10084 // Analyze interleaved memory accesses. 10085 if (UseInterleaved) { 10086 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10087 } 10088 10089 // Use the cost model. 10090 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10091 F, &Hints, IAI); 10092 CM.collectValuesToIgnore(); 10093 CM.collectElementTypesForWidening(); 10094 10095 // Use the planner for vectorization. 10096 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10097 Requirements, ORE); 10098 10099 // Get user vectorization factor and interleave count. 10100 ElementCount UserVF = Hints.getWidth(); 10101 unsigned UserIC = Hints.getInterleave(); 10102 10103 // Plan how to best vectorize, return the best VF and its cost. 10104 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10105 10106 VectorizationFactor VF = VectorizationFactor::Disabled(); 10107 unsigned IC = 1; 10108 10109 if (MaybeVF) { 10110 VF = *MaybeVF; 10111 // Select the interleave count. 10112 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10113 } 10114 10115 // Identify the diagnostic messages that should be produced. 10116 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10117 bool VectorizeLoop = true, InterleaveLoop = true; 10118 if (VF.Width.isScalar()) { 10119 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10120 VecDiagMsg = std::make_pair( 10121 "VectorizationNotBeneficial", 10122 "the cost-model indicates that vectorization is not beneficial"); 10123 VectorizeLoop = false; 10124 } 10125 10126 if (!MaybeVF && UserIC > 1) { 10127 // Tell the user interleaving was avoided up-front, despite being explicitly 10128 // requested. 10129 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10130 "interleaving should be avoided up front\n"); 10131 IntDiagMsg = std::make_pair( 10132 "InterleavingAvoided", 10133 "Ignoring UserIC, because interleaving was avoided up front"); 10134 InterleaveLoop = false; 10135 } else if (IC == 1 && UserIC <= 1) { 10136 // Tell the user interleaving is not beneficial. 10137 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10138 IntDiagMsg = std::make_pair( 10139 "InterleavingNotBeneficial", 10140 "the cost-model indicates that interleaving is not beneficial"); 10141 InterleaveLoop = false; 10142 if (UserIC == 1) { 10143 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10144 IntDiagMsg.second += 10145 " and is explicitly disabled or interleave count is set to 1"; 10146 } 10147 } else if (IC > 1 && UserIC == 1) { 10148 // Tell the user interleaving is beneficial, but it explicitly disabled. 10149 LLVM_DEBUG( 10150 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10151 IntDiagMsg = std::make_pair( 10152 "InterleavingBeneficialButDisabled", 10153 "the cost-model indicates that interleaving is beneficial " 10154 "but is explicitly disabled or interleave count is set to 1"); 10155 InterleaveLoop = false; 10156 } 10157 10158 // Override IC if user provided an interleave count. 10159 IC = UserIC > 0 ? UserIC : IC; 10160 10161 // Emit diagnostic messages, if any. 10162 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10163 if (!VectorizeLoop && !InterleaveLoop) { 10164 // Do not vectorize or interleaving the loop. 10165 ORE->emit([&]() { 10166 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10167 L->getStartLoc(), L->getHeader()) 10168 << VecDiagMsg.second; 10169 }); 10170 ORE->emit([&]() { 10171 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10172 L->getStartLoc(), L->getHeader()) 10173 << IntDiagMsg.second; 10174 }); 10175 return false; 10176 } else if (!VectorizeLoop && InterleaveLoop) { 10177 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10178 ORE->emit([&]() { 10179 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10180 L->getStartLoc(), L->getHeader()) 10181 << VecDiagMsg.second; 10182 }); 10183 } else if (VectorizeLoop && !InterleaveLoop) { 10184 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10185 << ") in " << DebugLocStr << '\n'); 10186 ORE->emit([&]() { 10187 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10188 L->getStartLoc(), L->getHeader()) 10189 << IntDiagMsg.second; 10190 }); 10191 } else if (VectorizeLoop && InterleaveLoop) { 10192 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10193 << ") in " << DebugLocStr << '\n'); 10194 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10195 } 10196 10197 bool DisableRuntimeUnroll = false; 10198 MDNode *OrigLoopID = L->getLoopID(); 10199 { 10200 // Optimistically generate runtime checks. Drop them if they turn out to not 10201 // be profitable. Limit the scope of Checks, so the cleanup happens 10202 // immediately after vector codegeneration is done. 10203 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10204 F->getParent()->getDataLayout()); 10205 if (!VF.Width.isScalar() || IC > 1) 10206 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10207 LVP.setBestPlan(VF.Width, IC); 10208 10209 using namespace ore; 10210 if (!VectorizeLoop) { 10211 assert(IC > 1 && "interleave count should not be 1 or 0"); 10212 // If we decided that it is not legal to vectorize the loop, then 10213 // interleave it. 10214 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10215 &CM, BFI, PSI, Checks); 10216 LVP.executePlan(Unroller, DT); 10217 10218 ORE->emit([&]() { 10219 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10220 L->getHeader()) 10221 << "interleaved loop (interleaved count: " 10222 << NV("InterleaveCount", IC) << ")"; 10223 }); 10224 } else { 10225 // If we decided that it is *legal* to vectorize the loop, then do it. 10226 10227 // Consider vectorizing the epilogue too if it's profitable. 10228 VectorizationFactor EpilogueVF = 10229 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10230 if (EpilogueVF.Width.isVector()) { 10231 10232 // The first pass vectorizes the main loop and creates a scalar epilogue 10233 // to be vectorized by executing the plan (potentially with a different 10234 // factor) again shortly afterwards. 10235 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10236 EpilogueVF.Width.getKnownMinValue(), 10237 1); 10238 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10239 EPI, &LVL, &CM, BFI, PSI, Checks); 10240 10241 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10242 LVP.executePlan(MainILV, DT); 10243 ++LoopsVectorized; 10244 10245 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10246 formLCSSARecursively(*L, *DT, LI, SE); 10247 10248 // Second pass vectorizes the epilogue and adjusts the control flow 10249 // edges from the first pass. 10250 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10251 EPI.MainLoopVF = EPI.EpilogueVF; 10252 EPI.MainLoopUF = EPI.EpilogueUF; 10253 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10254 ORE, EPI, &LVL, &CM, BFI, PSI, 10255 Checks); 10256 LVP.executePlan(EpilogILV, DT); 10257 ++LoopsEpilogueVectorized; 10258 10259 if (!MainILV.areSafetyChecksAdded()) 10260 DisableRuntimeUnroll = true; 10261 } else { 10262 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10263 &LVL, &CM, BFI, PSI, Checks); 10264 LVP.executePlan(LB, DT); 10265 ++LoopsVectorized; 10266 10267 // Add metadata to disable runtime unrolling a scalar loop when there 10268 // are no runtime checks about strides and memory. A scalar loop that is 10269 // rarely used is not worth unrolling. 10270 if (!LB.areSafetyChecksAdded()) 10271 DisableRuntimeUnroll = true; 10272 } 10273 // Report the vectorization decision. 10274 ORE->emit([&]() { 10275 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10276 L->getHeader()) 10277 << "vectorized loop (vectorization width: " 10278 << NV("VectorizationFactor", VF.Width) 10279 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10280 }); 10281 } 10282 10283 if (ORE->allowExtraAnalysis(LV_NAME)) 10284 checkMixedPrecision(L, ORE); 10285 } 10286 10287 Optional<MDNode *> RemainderLoopID = 10288 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10289 LLVMLoopVectorizeFollowupEpilogue}); 10290 if (RemainderLoopID.hasValue()) { 10291 L->setLoopID(RemainderLoopID.getValue()); 10292 } else { 10293 if (DisableRuntimeUnroll) 10294 AddRuntimeUnrollDisableMetaData(L); 10295 10296 // Mark the loop as already vectorized to avoid vectorizing again. 10297 Hints.setAlreadyVectorized(); 10298 } 10299 10300 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10301 return true; 10302 } 10303 10304 LoopVectorizeResult LoopVectorizePass::runImpl( 10305 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10306 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10307 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10308 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10309 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10310 SE = &SE_; 10311 LI = &LI_; 10312 TTI = &TTI_; 10313 DT = &DT_; 10314 BFI = &BFI_; 10315 TLI = TLI_; 10316 AA = &AA_; 10317 AC = &AC_; 10318 GetLAA = &GetLAA_; 10319 DB = &DB_; 10320 ORE = &ORE_; 10321 PSI = PSI_; 10322 10323 // Don't attempt if 10324 // 1. the target claims to have no vector registers, and 10325 // 2. interleaving won't help ILP. 10326 // 10327 // The second condition is necessary because, even if the target has no 10328 // vector registers, loop vectorization may still enable scalar 10329 // interleaving. 10330 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10331 TTI->getMaxInterleaveFactor(1) < 2) 10332 return LoopVectorizeResult(false, false); 10333 10334 bool Changed = false, CFGChanged = false; 10335 10336 // The vectorizer requires loops to be in simplified form. 10337 // Since simplification may add new inner loops, it has to run before the 10338 // legality and profitability checks. This means running the loop vectorizer 10339 // will simplify all loops, regardless of whether anything end up being 10340 // vectorized. 10341 for (auto &L : *LI) 10342 Changed |= CFGChanged |= 10343 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10344 10345 // Build up a worklist of inner-loops to vectorize. This is necessary as 10346 // the act of vectorizing or partially unrolling a loop creates new loops 10347 // and can invalidate iterators across the loops. 10348 SmallVector<Loop *, 8> Worklist; 10349 10350 for (Loop *L : *LI) 10351 collectSupportedLoops(*L, LI, ORE, Worklist); 10352 10353 LoopsAnalyzed += Worklist.size(); 10354 10355 // Now walk the identified inner loops. 10356 while (!Worklist.empty()) { 10357 Loop *L = Worklist.pop_back_val(); 10358 10359 // For the inner loops we actually process, form LCSSA to simplify the 10360 // transform. 10361 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10362 10363 Changed |= CFGChanged |= processLoop(L); 10364 } 10365 10366 // Process each loop nest in the function. 10367 return LoopVectorizeResult(Changed, CFGChanged); 10368 } 10369 10370 PreservedAnalyses LoopVectorizePass::run(Function &F, 10371 FunctionAnalysisManager &AM) { 10372 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10373 auto &LI = AM.getResult<LoopAnalysis>(F); 10374 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10375 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10376 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10377 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10378 auto &AA = AM.getResult<AAManager>(F); 10379 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10380 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10381 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10382 MemorySSA *MSSA = EnableMSSALoopDependency 10383 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10384 : nullptr; 10385 10386 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10387 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10388 [&](Loop &L) -> const LoopAccessInfo & { 10389 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10390 TLI, TTI, nullptr, MSSA}; 10391 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10392 }; 10393 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10394 ProfileSummaryInfo *PSI = 10395 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10396 LoopVectorizeResult Result = 10397 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10398 if (!Result.MadeAnyChange) 10399 return PreservedAnalyses::all(); 10400 PreservedAnalyses PA; 10401 10402 // We currently do not preserve loopinfo/dominator analyses with outer loop 10403 // vectorization. Until this is addressed, mark these analyses as preserved 10404 // only for non-VPlan-native path. 10405 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10406 if (!EnableVPlanNativePath) { 10407 PA.preserve<LoopAnalysis>(); 10408 PA.preserve<DominatorTreeAnalysis>(); 10409 } 10410 if (!Result.MadeCFGChange) 10411 PA.preserveSet<CFGAnalyses>(); 10412 return PA; 10413 } 10414