1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <memory> 150 #include <string> 151 #include <tuple> 152 #include <utility> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 #ifndef NDEBUG 160 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 161 #endif 162 163 /// @{ 164 /// Metadata attribute names 165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 166 const char LLVMLoopVectorizeFollowupVectorized[] = 167 "llvm.loop.vectorize.followup_vectorized"; 168 const char LLVMLoopVectorizeFollowupEpilogue[] = 169 "llvm.loop.vectorize.followup_epilogue"; 170 /// @} 171 172 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 175 176 static cl::opt<bool> EnableEpilogueVectorization( 177 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 178 cl::desc("Enable vectorization of epilogue loops.")); 179 180 static cl::opt<unsigned> EpilogueVectorizationForceVF( 181 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 182 cl::desc("When epilogue vectorization is enabled, and a value greater than " 183 "1 is specified, forces the given VF for all applicable epilogue " 184 "loops.")); 185 186 static cl::opt<unsigned> EpilogueVectorizationMinVF( 187 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 188 cl::desc("Only loops with vectorization factor equal to or larger than " 189 "the specified value are considered for epilogue vectorization.")); 190 191 /// Loops with a known constant trip count below this number are vectorized only 192 /// if no scalar iteration overheads are incurred. 193 static cl::opt<unsigned> TinyTripCountVectorThreshold( 194 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 195 cl::desc("Loops with a constant trip count that is smaller than this " 196 "value are vectorized only if no scalar iteration overheads " 197 "are incurred.")); 198 199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 200 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 201 cl::desc("The maximum allowed number of runtime memory checks with a " 202 "vectorize(enable) pragma.")); 203 204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 205 // that predication is preferred, and this lists all options. I.e., the 206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 207 // and predicate the instructions accordingly. If tail-folding fails, there are 208 // different fallback strategies depending on these values: 209 namespace PreferPredicateTy { 210 enum Option { 211 ScalarEpilogue = 0, 212 PredicateElseScalarEpilogue, 213 PredicateOrDontVectorize 214 }; 215 } // namespace PreferPredicateTy 216 217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 218 "prefer-predicate-over-epilogue", 219 cl::init(PreferPredicateTy::ScalarEpilogue), 220 cl::Hidden, 221 cl::desc("Tail-folding and predication preferences over creating a scalar " 222 "epilogue loop."), 223 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 224 "scalar-epilogue", 225 "Don't tail-predicate loops, create scalar epilogue"), 226 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 227 "predicate-else-scalar-epilogue", 228 "prefer tail-folding, create scalar epilogue if tail " 229 "folding fails."), 230 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 231 "predicate-dont-vectorize", 232 "prefers tail-folding, don't attempt vectorization if " 233 "tail-folding fails."))); 234 235 static cl::opt<bool> MaximizeBandwidth( 236 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 237 cl::desc("Maximize bandwidth when selecting vectorization factor which " 238 "will be determined by the smallest type in loop.")); 239 240 static cl::opt<bool> EnableInterleavedMemAccesses( 241 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 242 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 243 244 /// An interleave-group may need masking if it resides in a block that needs 245 /// predication, or in order to mask away gaps. 246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 247 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 248 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 249 250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 251 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 252 cl::desc("We don't interleave loops with a estimated constant trip count " 253 "below this number")); 254 255 static cl::opt<unsigned> ForceTargetNumScalarRegs( 256 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of scalar registers.")); 258 259 static cl::opt<unsigned> ForceTargetNumVectorRegs( 260 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's number of vector registers.")); 262 263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 264 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 265 cl::desc("A flag that overrides the target's max interleave factor for " 266 "scalar loops.")); 267 268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 269 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 270 cl::desc("A flag that overrides the target's max interleave factor for " 271 "vectorized loops.")); 272 273 static cl::opt<unsigned> ForceTargetInstructionCost( 274 "force-target-instruction-cost", cl::init(0), cl::Hidden, 275 cl::desc("A flag that overrides the target's expected cost for " 276 "an instruction to a single constant value. Mostly " 277 "useful for getting consistent testing.")); 278 279 static cl::opt<bool> ForceTargetSupportsScalableVectors( 280 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 281 cl::desc( 282 "Pretend that scalable vectors are supported, even if the target does " 283 "not support them. This flag should only be used for testing.")); 284 285 static cl::opt<unsigned> SmallLoopCost( 286 "small-loop-cost", cl::init(20), cl::Hidden, 287 cl::desc( 288 "The cost of a loop that is considered 'small' by the interleaver.")); 289 290 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 291 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 292 cl::desc("Enable the use of the block frequency analysis to access PGO " 293 "heuristics minimizing code growth in cold regions and being more " 294 "aggressive in hot regions.")); 295 296 // Runtime interleave loops for load/store throughput. 297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 298 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 299 cl::desc( 300 "Enable runtime interleaving until load/store ports are saturated")); 301 302 /// Interleave small loops with scalar reductions. 303 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 304 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 305 cl::desc("Enable interleaving for loops with small iteration counts that " 306 "contain scalar reductions to expose ILP.")); 307 308 /// The number of stores in a loop that are allowed to need predication. 309 static cl::opt<unsigned> NumberOfStoresToPredicate( 310 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 311 cl::desc("Max number of stores to be predicated behind an if.")); 312 313 static cl::opt<bool> EnableIndVarRegisterHeur( 314 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 315 cl::desc("Count the induction variable only once when interleaving")); 316 317 static cl::opt<bool> EnableCondStoresVectorization( 318 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 319 cl::desc("Enable if predication of stores during vectorization.")); 320 321 static cl::opt<unsigned> MaxNestedScalarReductionIC( 322 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 323 cl::desc("The maximum interleave count to use when interleaving a scalar " 324 "reduction in a nested loop.")); 325 326 static cl::opt<bool> 327 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 328 cl::Hidden, 329 cl::desc("Prefer in-loop vector reductions, " 330 "overriding the targets preference.")); 331 332 static cl::opt<bool> ForceOrderedReductions( 333 "force-ordered-reductions", cl::init(false), cl::Hidden, 334 cl::desc("Enable the vectorisation of loops with in-order (strict) " 335 "FP reductions")); 336 337 static cl::opt<bool> PreferPredicatedReductionSelect( 338 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 339 cl::desc( 340 "Prefer predicating a reduction operation over an after loop select.")); 341 342 cl::opt<bool> EnableVPlanNativePath( 343 "enable-vplan-native-path", cl::init(false), cl::Hidden, 344 cl::desc("Enable VPlan-native vectorization path with " 345 "support for outer loop vectorization.")); 346 347 // FIXME: Remove this switch once we have divergence analysis. Currently we 348 // assume divergent non-backedge branches when this switch is true. 349 cl::opt<bool> EnableVPlanPredication( 350 "enable-vplan-predication", cl::init(false), cl::Hidden, 351 cl::desc("Enable VPlan-native vectorization path predicator with " 352 "support for outer loop vectorization.")); 353 354 // This flag enables the stress testing of the VPlan H-CFG construction in the 355 // VPlan-native vectorization path. It must be used in conjuction with 356 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 357 // verification of the H-CFGs built. 358 static cl::opt<bool> VPlanBuildStressTest( 359 "vplan-build-stress-test", cl::init(false), cl::Hidden, 360 cl::desc( 361 "Build VPlan for every supported loop nest in the function and bail " 362 "out right after the build (stress test the VPlan H-CFG construction " 363 "in the VPlan-native vectorization path).")); 364 365 cl::opt<bool> llvm::EnableLoopInterleaving( 366 "interleave-loops", cl::init(true), cl::Hidden, 367 cl::desc("Enable loop interleaving in Loop vectorization passes")); 368 cl::opt<bool> llvm::EnableLoopVectorization( 369 "vectorize-loops", cl::init(true), cl::Hidden, 370 cl::desc("Run the Loop vectorization passes")); 371 372 cl::opt<bool> PrintVPlansInDotFormat( 373 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 374 cl::desc("Use dot format instead of plain text when dumping VPlans")); 375 376 /// A helper function that returns true if the given type is irregular. The 377 /// type is irregular if its allocated size doesn't equal the store size of an 378 /// element of the corresponding vector type. 379 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 380 // Determine if an array of N elements of type Ty is "bitcast compatible" 381 // with a <N x Ty> vector. 382 // This is only true if there is no padding between the array elements. 383 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 384 } 385 386 /// A helper function that returns the reciprocal of the block probability of 387 /// predicated blocks. If we return X, we are assuming the predicated block 388 /// will execute once for every X iterations of the loop header. 389 /// 390 /// TODO: We should use actual block probability here, if available. Currently, 391 /// we always assume predicated blocks have a 50% chance of executing. 392 static unsigned getReciprocalPredBlockProb() { return 2; } 393 394 /// A helper function that returns an integer or floating-point constant with 395 /// value C. 396 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 397 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 398 : ConstantFP::get(Ty, C); 399 } 400 401 /// Returns "best known" trip count for the specified loop \p L as defined by 402 /// the following procedure: 403 /// 1) Returns exact trip count if it is known. 404 /// 2) Returns expected trip count according to profile data if any. 405 /// 3) Returns upper bound estimate if it is known. 406 /// 4) Returns None if all of the above failed. 407 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 408 // Check if exact trip count is known. 409 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 410 return ExpectedTC; 411 412 // Check if there is an expected trip count available from profile data. 413 if (LoopVectorizeWithBlockFrequency) 414 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 415 return EstimatedTC; 416 417 // Check if upper bound estimate is known. 418 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 419 return ExpectedTC; 420 421 return None; 422 } 423 424 // Forward declare GeneratedRTChecks. 425 class GeneratedRTChecks; 426 427 namespace llvm { 428 429 AnalysisKey ShouldRunExtraVectorPasses::Key; 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop and the start value for the canonical induction, if it is != 0. The 472 /// latter is the case when vectorizing the epilogue loop. In the case of 473 /// epilogue vectorization, this function is overriden to handle the more 474 /// complex control flow around the loops. 475 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 476 477 /// Widen a single call instruction within the innermost loop. 478 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 479 VPTransformState &State); 480 481 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 482 void fixVectorizedLoop(VPTransformState &State); 483 484 // Return true if any runtime check is added. 485 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 486 487 /// A type for vectorized values in the new loop. Each value from the 488 /// original loop, when vectorized, is represented by UF vector values in the 489 /// new unrolled loop, where UF is the unroll factor. 490 using VectorParts = SmallVector<Value *, 2>; 491 492 /// Vectorize a single first-order recurrence or pointer induction PHINode in 493 /// a block. This method handles the induction variable canonicalization. It 494 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *CountRoundDown, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Introduce a conditional branch (on true, condition to be set later) at the 573 /// end of the header=latch connecting it to itself (across the backedge) and 574 /// to the exit block of \p L. 575 void createHeaderBranch(Loop *L); 576 577 /// Handle all cross-iteration phis in the header. 578 void fixCrossIterationPHIs(VPTransformState &State); 579 580 /// Create the exit value of first order recurrences in the middle block and 581 /// update their users. 582 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 583 VPTransformState &State); 584 585 /// Create code for the loop exit value of the reduction. 586 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 587 588 /// Clear NSW/NUW flags from reduction instructions if necessary. 589 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 590 VPTransformState &State); 591 592 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 593 /// means we need to add the appropriate incoming value from the middle 594 /// block as exiting edges from the scalar epilogue loop (if present) are 595 /// already in place, and we exit the vector loop exclusively to the middle 596 /// block. 597 void fixLCSSAPHIs(VPTransformState &State); 598 599 /// Iteratively sink the scalarized operands of a predicated instruction into 600 /// the block that was created for it. 601 void sinkScalarOperands(Instruction *PredInst); 602 603 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 604 /// represented as. 605 void truncateToMinimalBitwidths(VPTransformState &State); 606 607 /// Returns (and creates if needed) the original loop trip count. 608 Value *getOrCreateTripCount(Loop *NewLoop); 609 610 /// Returns (and creates if needed) the trip count of the widened loop. 611 Value *getOrCreateVectorTripCount(Loop *NewLoop); 612 613 /// Returns a bitcasted value to the requested vector type. 614 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 615 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 616 const DataLayout &DL); 617 618 /// Emit a bypass check to see if the vector trip count is zero, including if 619 /// it overflows. 620 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 621 622 /// Emit a bypass check to see if all of the SCEV assumptions we've 623 /// had to make are correct. Returns the block containing the checks or 624 /// nullptr if no checks have been added. 625 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 626 627 /// Emit bypass checks to check any memory assumptions we may have made. 628 /// Returns the block containing the checks or nullptr if no checks have been 629 /// added. 630 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 633 /// vector loop preheader, middle block and scalar preheader. Also 634 /// allocate a loop object for the new vector loop and return it. 635 Loop *createVectorLoopSkeleton(StringRef Prefix); 636 637 /// Create new phi nodes for the induction variables to resume iteration count 638 /// in the scalar epilogue, from where the vectorized loop left off. 639 /// In cases where the loop skeleton is more complicated (eg. epilogue 640 /// vectorization) and the resume values can come from an additional bypass 641 /// block, the \p AdditionalBypass pair provides information about the bypass 642 /// block and the end value on the edge from bypass to this loop. 643 void createInductionResumeValues( 644 Loop *L, 645 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 646 647 /// Complete the loop skeleton by adding debug MDs, creating appropriate 648 /// conditional branches in the middle block, preparing the builder and 649 /// running the verifier. Take in the vector loop \p L as argument, and return 650 /// the preheader of the completed vector loop. 651 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 652 653 /// Add additional metadata to \p To that was not present on \p Orig. 654 /// 655 /// Currently this is used to add the noalias annotations based on the 656 /// inserted memchecks. Use this for instructions that are *cloned* into the 657 /// vector loop. 658 void addNewMetadata(Instruction *To, const Instruction *Orig); 659 660 /// Collect poison-generating recipes that may generate a poison value that is 661 /// used after vectorization, even when their operands are not poison. Those 662 /// recipes meet the following conditions: 663 /// * Contribute to the address computation of a recipe generating a widen 664 /// memory load/store (VPWidenMemoryInstructionRecipe or 665 /// VPInterleaveRecipe). 666 /// * Such a widen memory load/store has at least one underlying Instruction 667 /// that is in a basic block that needs predication and after vectorization 668 /// the generated instruction won't be predicated. 669 void collectPoisonGeneratingRecipes(VPTransformState &State); 670 671 /// Allow subclasses to override and print debug traces before/after vplan 672 /// execution, when trace information is requested. 673 virtual void printDebugTracesAtStart(){}; 674 virtual void printDebugTracesAtEnd(){}; 675 676 /// The original loop. 677 Loop *OrigLoop; 678 679 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 680 /// dynamic knowledge to simplify SCEV expressions and converts them to a 681 /// more usable form. 682 PredicatedScalarEvolution &PSE; 683 684 /// Loop Info. 685 LoopInfo *LI; 686 687 /// Dominator Tree. 688 DominatorTree *DT; 689 690 /// Alias Analysis. 691 AAResults *AA; 692 693 /// Target Library Info. 694 const TargetLibraryInfo *TLI; 695 696 /// Target Transform Info. 697 const TargetTransformInfo *TTI; 698 699 /// Assumption Cache. 700 AssumptionCache *AC; 701 702 /// Interface to emit optimization remarks. 703 OptimizationRemarkEmitter *ORE; 704 705 /// LoopVersioning. It's only set up (non-null) if memchecks were 706 /// used. 707 /// 708 /// This is currently only used to add no-alias metadata based on the 709 /// memchecks. The actually versioning is performed manually. 710 std::unique_ptr<LoopVersioning> LVer; 711 712 /// The vectorization SIMD factor to use. Each vector will have this many 713 /// vector elements. 714 ElementCount VF; 715 716 /// The vectorization unroll factor to use. Each scalar is vectorized to this 717 /// many different vector instructions. 718 unsigned UF; 719 720 /// The builder that we use 721 IRBuilder<> Builder; 722 723 // --- Vectorization state --- 724 725 /// The vector-loop preheader. 726 BasicBlock *LoopVectorPreHeader; 727 728 /// The scalar-loop preheader. 729 BasicBlock *LoopScalarPreHeader; 730 731 /// Middle Block between the vector and the scalar. 732 BasicBlock *LoopMiddleBlock; 733 734 /// The unique ExitBlock of the scalar loop if one exists. Note that 735 /// there can be multiple exiting edges reaching this block. 736 BasicBlock *LoopExitBlock; 737 738 /// The scalar loop body. 739 BasicBlock *LoopScalarBody; 740 741 /// A list of all bypass blocks. The first block is the entry of the loop. 742 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 743 744 /// Store instructions that were predicated. 745 SmallVector<Instruction *, 4> PredicatedInstructions; 746 747 /// Trip count of the original loop. 748 Value *TripCount = nullptr; 749 750 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 751 Value *VectorTripCount = nullptr; 752 753 /// The legality analysis. 754 LoopVectorizationLegality *Legal; 755 756 /// The profitablity analysis. 757 LoopVectorizationCostModel *Cost; 758 759 // Record whether runtime checks are added. 760 bool AddedSafetyChecks = false; 761 762 // Holds the end values for each induction variable. We save the end values 763 // so we can later fix-up the external users of the induction variables. 764 DenseMap<PHINode *, Value *> IVEndValues; 765 766 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 767 // fixed up at the end of vector code generation. 768 SmallVector<PHINode *, 8> OrigPHIsToFix; 769 770 /// BFI and PSI are used to check for profile guided size optimizations. 771 BlockFrequencyInfo *BFI; 772 ProfileSummaryInfo *PSI; 773 774 // Whether this loop should be optimized for size based on profile guided size 775 // optimizatios. 776 bool OptForSizeBasedOnProfile; 777 778 /// Structure to hold information about generated runtime checks, responsible 779 /// for cleaning the checks, if vectorization turns out unprofitable. 780 GeneratedRTChecks &RTChecks; 781 782 // Holds the resume values for reductions in the loops, used to set the 783 // correct start value of reduction PHIs when vectorizing the epilogue. 784 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 785 ReductionResumeValues; 786 }; 787 788 class InnerLoopUnroller : public InnerLoopVectorizer { 789 public: 790 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 791 LoopInfo *LI, DominatorTree *DT, 792 const TargetLibraryInfo *TLI, 793 const TargetTransformInfo *TTI, AssumptionCache *AC, 794 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 795 LoopVectorizationLegality *LVL, 796 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 797 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 798 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 799 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 800 BFI, PSI, Check) {} 801 802 private: 803 Value *getBroadcastInstrs(Value *V) override; 804 }; 805 806 /// Encapsulate information regarding vectorization of a loop and its epilogue. 807 /// This information is meant to be updated and used across two stages of 808 /// epilogue vectorization. 809 struct EpilogueLoopVectorizationInfo { 810 ElementCount MainLoopVF = ElementCount::getFixed(0); 811 unsigned MainLoopUF = 0; 812 ElementCount EpilogueVF = ElementCount::getFixed(0); 813 unsigned EpilogueUF = 0; 814 BasicBlock *MainLoopIterationCountCheck = nullptr; 815 BasicBlock *EpilogueIterationCountCheck = nullptr; 816 BasicBlock *SCEVSafetyCheck = nullptr; 817 BasicBlock *MemSafetyCheck = nullptr; 818 Value *TripCount = nullptr; 819 Value *VectorTripCount = nullptr; 820 821 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 822 ElementCount EVF, unsigned EUF) 823 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 824 assert(EUF == 1 && 825 "A high UF for the epilogue loop is likely not beneficial."); 826 } 827 }; 828 829 /// An extension of the inner loop vectorizer that creates a skeleton for a 830 /// vectorized loop that has its epilogue (residual) also vectorized. 831 /// The idea is to run the vplan on a given loop twice, firstly to setup the 832 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 833 /// from the first step and vectorize the epilogue. This is achieved by 834 /// deriving two concrete strategy classes from this base class and invoking 835 /// them in succession from the loop vectorizer planner. 836 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 837 public: 838 InnerLoopAndEpilogueVectorizer( 839 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 840 DominatorTree *DT, const TargetLibraryInfo *TLI, 841 const TargetTransformInfo *TTI, AssumptionCache *AC, 842 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 843 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 844 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 845 GeneratedRTChecks &Checks) 846 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 847 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 848 Checks), 849 EPI(EPI) {} 850 851 // Override this function to handle the more complex control flow around the 852 // three loops. 853 std::pair<BasicBlock *, Value *> 854 createVectorizedLoopSkeleton() final override { 855 return createEpilogueVectorizedLoopSkeleton(); 856 } 857 858 /// The interface for creating a vectorized skeleton using one of two 859 /// different strategies, each corresponding to one execution of the vplan 860 /// as described above. 861 virtual std::pair<BasicBlock *, Value *> 862 createEpilogueVectorizedLoopSkeleton() = 0; 863 864 /// Holds and updates state information required to vectorize the main loop 865 /// and its epilogue in two separate passes. This setup helps us avoid 866 /// regenerating and recomputing runtime safety checks. It also helps us to 867 /// shorten the iteration-count-check path length for the cases where the 868 /// iteration count of the loop is so small that the main vector loop is 869 /// completely skipped. 870 EpilogueLoopVectorizationInfo &EPI; 871 }; 872 873 /// A specialized derived class of inner loop vectorizer that performs 874 /// vectorization of *main* loops in the process of vectorizing loops and their 875 /// epilogues. 876 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 877 public: 878 EpilogueVectorizerMainLoop( 879 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 880 DominatorTree *DT, const TargetLibraryInfo *TLI, 881 const TargetTransformInfo *TTI, AssumptionCache *AC, 882 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 883 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 884 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 885 GeneratedRTChecks &Check) 886 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 887 EPI, LVL, CM, BFI, PSI, Check) {} 888 /// Implements the interface for creating a vectorized skeleton using the 889 /// *main loop* strategy (ie the first pass of vplan execution). 890 std::pair<BasicBlock *, Value *> 891 createEpilogueVectorizedLoopSkeleton() final override; 892 893 protected: 894 /// Emits an iteration count bypass check once for the main loop (when \p 895 /// ForEpilogue is false) and once for the epilogue loop (when \p 896 /// ForEpilogue is true). 897 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 898 bool ForEpilogue); 899 void printDebugTracesAtStart() override; 900 void printDebugTracesAtEnd() override; 901 }; 902 903 // A specialized derived class of inner loop vectorizer that performs 904 // vectorization of *epilogue* loops in the process of vectorizing loops and 905 // their epilogues. 906 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 907 public: 908 EpilogueVectorizerEpilogueLoop( 909 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 910 DominatorTree *DT, const TargetLibraryInfo *TLI, 911 const TargetTransformInfo *TTI, AssumptionCache *AC, 912 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 913 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 914 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 915 GeneratedRTChecks &Checks) 916 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 917 EPI, LVL, CM, BFI, PSI, Checks) {} 918 /// Implements the interface for creating a vectorized skeleton using the 919 /// *epilogue loop* strategy (ie the second pass of vplan execution). 920 std::pair<BasicBlock *, Value *> 921 createEpilogueVectorizedLoopSkeleton() final override; 922 923 protected: 924 /// Emits an iteration count bypass check after the main vector loop has 925 /// finished to see if there are any iterations left to execute by either 926 /// the vector epilogue or the scalar epilogue. 927 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 928 BasicBlock *Bypass, 929 BasicBlock *Insert); 930 void printDebugTracesAtStart() override; 931 void printDebugTracesAtEnd() override; 932 }; 933 } // end namespace llvm 934 935 /// Look for a meaningful debug location on the instruction or it's 936 /// operands. 937 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 938 if (!I) 939 return I; 940 941 DebugLoc Empty; 942 if (I->getDebugLoc() != Empty) 943 return I; 944 945 for (Use &Op : I->operands()) { 946 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 947 if (OpInst->getDebugLoc() != Empty) 948 return OpInst; 949 } 950 951 return I; 952 } 953 954 void InnerLoopVectorizer::setDebugLocFromInst( 955 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 956 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 957 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 958 const DILocation *DIL = Inst->getDebugLoc(); 959 960 // When a FSDiscriminator is enabled, we don't need to add the multiply 961 // factors to the discriminators. 962 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 963 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 964 // FIXME: For scalable vectors, assume vscale=1. 965 auto NewDIL = 966 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 967 if (NewDIL) 968 B->SetCurrentDebugLocation(NewDIL.getValue()); 969 else 970 LLVM_DEBUG(dbgs() 971 << "Failed to create new discriminator: " 972 << DIL->getFilename() << " Line: " << DIL->getLine()); 973 } else 974 B->SetCurrentDebugLocation(DIL); 975 } else 976 B->SetCurrentDebugLocation(DebugLoc()); 977 } 978 979 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 980 /// is passed, the message relates to that particular instruction. 981 #ifndef NDEBUG 982 static void debugVectorizationMessage(const StringRef Prefix, 983 const StringRef DebugMsg, 984 Instruction *I) { 985 dbgs() << "LV: " << Prefix << DebugMsg; 986 if (I != nullptr) 987 dbgs() << " " << *I; 988 else 989 dbgs() << '.'; 990 dbgs() << '\n'; 991 } 992 #endif 993 994 /// Create an analysis remark that explains why vectorization failed 995 /// 996 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 997 /// RemarkName is the identifier for the remark. If \p I is passed it is an 998 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 999 /// the location of the remark. \return the remark object that can be 1000 /// streamed to. 1001 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1002 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1003 Value *CodeRegion = TheLoop->getHeader(); 1004 DebugLoc DL = TheLoop->getStartLoc(); 1005 1006 if (I) { 1007 CodeRegion = I->getParent(); 1008 // If there is no debug location attached to the instruction, revert back to 1009 // using the loop's. 1010 if (I->getDebugLoc()) 1011 DL = I->getDebugLoc(); 1012 } 1013 1014 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1015 } 1016 1017 namespace llvm { 1018 1019 /// Return a value for Step multiplied by VF. 1020 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1021 int64_t Step) { 1022 assert(Ty->isIntegerTy() && "Expected an integer step"); 1023 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1024 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1025 } 1026 1027 /// Return the runtime value for VF. 1028 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1029 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1030 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1031 } 1032 1033 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1034 ElementCount VF) { 1035 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1036 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1037 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1038 return B.CreateUIToFP(RuntimeVF, FTy); 1039 } 1040 1041 void reportVectorizationFailure(const StringRef DebugMsg, 1042 const StringRef OREMsg, const StringRef ORETag, 1043 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1044 Instruction *I) { 1045 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1046 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1047 ORE->emit( 1048 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1049 << "loop not vectorized: " << OREMsg); 1050 } 1051 1052 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1053 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1054 Instruction *I) { 1055 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1056 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1057 ORE->emit( 1058 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1059 << Msg); 1060 } 1061 1062 } // end namespace llvm 1063 1064 #ifndef NDEBUG 1065 /// \return string containing a file name and a line # for the given loop. 1066 static std::string getDebugLocString(const Loop *L) { 1067 std::string Result; 1068 if (L) { 1069 raw_string_ostream OS(Result); 1070 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1071 LoopDbgLoc.print(OS); 1072 else 1073 // Just print the module name. 1074 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1075 OS.flush(); 1076 } 1077 return Result; 1078 } 1079 #endif 1080 1081 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1082 const Instruction *Orig) { 1083 // If the loop was versioned with memchecks, add the corresponding no-alias 1084 // metadata. 1085 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1086 LVer->annotateInstWithNoAlias(To, Orig); 1087 } 1088 1089 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1090 VPTransformState &State) { 1091 1092 // Collect recipes in the backward slice of `Root` that may generate a poison 1093 // value that is used after vectorization. 1094 SmallPtrSet<VPRecipeBase *, 16> Visited; 1095 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1096 SmallVector<VPRecipeBase *, 16> Worklist; 1097 Worklist.push_back(Root); 1098 1099 // Traverse the backward slice of Root through its use-def chain. 1100 while (!Worklist.empty()) { 1101 VPRecipeBase *CurRec = Worklist.back(); 1102 Worklist.pop_back(); 1103 1104 if (!Visited.insert(CurRec).second) 1105 continue; 1106 1107 // Prune search if we find another recipe generating a widen memory 1108 // instruction. Widen memory instructions involved in address computation 1109 // will lead to gather/scatter instructions, which don't need to be 1110 // handled. 1111 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1112 isa<VPInterleaveRecipe>(CurRec) || 1113 isa<VPScalarIVStepsRecipe>(CurRec) || 1114 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1115 continue; 1116 1117 // This recipe contributes to the address computation of a widen 1118 // load/store. Collect recipe if its underlying instruction has 1119 // poison-generating flags. 1120 Instruction *Instr = CurRec->getUnderlyingInstr(); 1121 if (Instr && Instr->hasPoisonGeneratingFlags()) 1122 State.MayGeneratePoisonRecipes.insert(CurRec); 1123 1124 // Add new definitions to the worklist. 1125 for (VPValue *operand : CurRec->operands()) 1126 if (VPDef *OpDef = operand->getDef()) 1127 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1128 } 1129 }); 1130 1131 // Traverse all the recipes in the VPlan and collect the poison-generating 1132 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1133 // VPInterleaveRecipe. 1134 auto Iter = depth_first( 1135 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1136 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1137 for (VPRecipeBase &Recipe : *VPBB) { 1138 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1139 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1140 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1141 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1142 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1143 collectPoisonGeneratingInstrsInBackwardSlice( 1144 cast<VPRecipeBase>(AddrDef)); 1145 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1146 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1147 if (AddrDef) { 1148 // Check if any member of the interleave group needs predication. 1149 const InterleaveGroup<Instruction> *InterGroup = 1150 InterleaveRec->getInterleaveGroup(); 1151 bool NeedPredication = false; 1152 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1153 I < NumMembers; ++I) { 1154 Instruction *Member = InterGroup->getMember(I); 1155 if (Member) 1156 NeedPredication |= 1157 Legal->blockNeedsPredication(Member->getParent()); 1158 } 1159 1160 if (NeedPredication) 1161 collectPoisonGeneratingInstrsInBackwardSlice( 1162 cast<VPRecipeBase>(AddrDef)); 1163 } 1164 } 1165 } 1166 } 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(Instruction *To, 1170 Instruction *From) { 1171 propagateMetadata(To, From); 1172 addNewMetadata(To, From); 1173 } 1174 1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1176 Instruction *From) { 1177 for (Value *V : To) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 addMetadata(I, From); 1180 } 1181 } 1182 1183 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1184 const RecurrenceDescriptor &RdxDesc) { 1185 auto It = ReductionResumeValues.find(&RdxDesc); 1186 assert(It != ReductionResumeValues.end() && 1187 "Expected to find a resume value for the reduction."); 1188 return It->second; 1189 } 1190 1191 namespace llvm { 1192 1193 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1194 // lowered. 1195 enum ScalarEpilogueLowering { 1196 1197 // The default: allowing scalar epilogues. 1198 CM_ScalarEpilogueAllowed, 1199 1200 // Vectorization with OptForSize: don't allow epilogues. 1201 CM_ScalarEpilogueNotAllowedOptSize, 1202 1203 // A special case of vectorisation with OptForSize: loops with a very small 1204 // trip count are considered for vectorization under OptForSize, thereby 1205 // making sure the cost of their loop body is dominant, free of runtime 1206 // guards and scalar iteration overheads. 1207 CM_ScalarEpilogueNotAllowedLowTripLoop, 1208 1209 // Loop hint predicate indicating an epilogue is undesired. 1210 CM_ScalarEpilogueNotNeededUsePredicate, 1211 1212 // Directive indicating we must either tail fold or not vectorize 1213 CM_ScalarEpilogueNotAllowedUsePredicate 1214 }; 1215 1216 /// ElementCountComparator creates a total ordering for ElementCount 1217 /// for the purposes of using it in a set structure. 1218 struct ElementCountComparator { 1219 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1220 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1221 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1222 } 1223 }; 1224 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1225 1226 /// LoopVectorizationCostModel - estimates the expected speedups due to 1227 /// vectorization. 1228 /// In many cases vectorization is not profitable. This can happen because of 1229 /// a number of reasons. In this class we mainly attempt to predict the 1230 /// expected speedup/slowdowns due to the supported instruction set. We use the 1231 /// TargetTransformInfo to query the different backends for the cost of 1232 /// different operations. 1233 class LoopVectorizationCostModel { 1234 public: 1235 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1236 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1237 LoopVectorizationLegality *Legal, 1238 const TargetTransformInfo &TTI, 1239 const TargetLibraryInfo *TLI, DemandedBits *DB, 1240 AssumptionCache *AC, 1241 OptimizationRemarkEmitter *ORE, const Function *F, 1242 const LoopVectorizeHints *Hints, 1243 InterleavedAccessInfo &IAI) 1244 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1245 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1246 Hints(Hints), InterleaveInfo(IAI) {} 1247 1248 /// \return An upper bound for the vectorization factors (both fixed and 1249 /// scalable). If the factors are 0, vectorization and interleaving should be 1250 /// avoided up front. 1251 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1252 1253 /// \return True if runtime checks are required for vectorization, and false 1254 /// otherwise. 1255 bool runtimeChecksRequired(); 1256 1257 /// \return The most profitable vectorization factor and the cost of that VF. 1258 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1259 /// then this vectorization factor will be selected if vectorization is 1260 /// possible. 1261 VectorizationFactor 1262 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1263 1264 VectorizationFactor 1265 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1266 const LoopVectorizationPlanner &LVP); 1267 1268 /// Setup cost-based decisions for user vectorization factor. 1269 /// \return true if the UserVF is a feasible VF to be chosen. 1270 bool selectUserVectorizationFactor(ElementCount UserVF) { 1271 collectUniformsAndScalars(UserVF); 1272 collectInstsToScalarize(UserVF); 1273 return expectedCost(UserVF).first.isValid(); 1274 } 1275 1276 /// \return The size (in bits) of the smallest and widest types in the code 1277 /// that needs to be vectorized. We ignore values that remain scalar such as 1278 /// 64 bit loop indices. 1279 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1280 1281 /// \return The desired interleave count. 1282 /// If interleave count has been specified by metadata it will be returned. 1283 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1284 /// are the selected vectorization factor and the cost of the selected VF. 1285 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1286 1287 /// Memory access instruction may be vectorized in more than one way. 1288 /// Form of instruction after vectorization depends on cost. 1289 /// This function takes cost-based decisions for Load/Store instructions 1290 /// and collects them in a map. This decisions map is used for building 1291 /// the lists of loop-uniform and loop-scalar instructions. 1292 /// The calculated cost is saved with widening decision in order to 1293 /// avoid redundant calculations. 1294 void setCostBasedWideningDecision(ElementCount VF); 1295 1296 /// A struct that represents some properties of the register usage 1297 /// of a loop. 1298 struct RegisterUsage { 1299 /// Holds the number of loop invariant values that are used in the loop. 1300 /// The key is ClassID of target-provided register class. 1301 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1302 /// Holds the maximum number of concurrent live intervals in the loop. 1303 /// The key is ClassID of target-provided register class. 1304 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1305 }; 1306 1307 /// \return Returns information about the register usages of the loop for the 1308 /// given vectorization factors. 1309 SmallVector<RegisterUsage, 8> 1310 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1311 1312 /// Collect values we want to ignore in the cost model. 1313 void collectValuesToIgnore(); 1314 1315 /// Collect all element types in the loop for which widening is needed. 1316 void collectElementTypesForWidening(); 1317 1318 /// Split reductions into those that happen in the loop, and those that happen 1319 /// outside. In loop reductions are collected into InLoopReductionChains. 1320 void collectInLoopReductions(); 1321 1322 /// Returns true if we should use strict in-order reductions for the given 1323 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1324 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1325 /// of FP operations. 1326 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1327 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1328 } 1329 1330 /// \returns The smallest bitwidth each instruction can be represented with. 1331 /// The vector equivalents of these instructions should be truncated to this 1332 /// type. 1333 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1334 return MinBWs; 1335 } 1336 1337 /// \returns True if it is more profitable to scalarize instruction \p I for 1338 /// vectorization factor \p VF. 1339 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1340 assert(VF.isVector() && 1341 "Profitable to scalarize relevant only for VF > 1."); 1342 1343 // Cost model is not run in the VPlan-native path - return conservative 1344 // result until this changes. 1345 if (EnableVPlanNativePath) 1346 return false; 1347 1348 auto Scalars = InstsToScalarize.find(VF); 1349 assert(Scalars != InstsToScalarize.end() && 1350 "VF not yet analyzed for scalarization profitability"); 1351 return Scalars->second.find(I) != Scalars->second.end(); 1352 } 1353 1354 /// Returns true if \p I is known to be uniform after vectorization. 1355 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1356 if (VF.isScalar()) 1357 return true; 1358 1359 // Cost model is not run in the VPlan-native path - return conservative 1360 // result until this changes. 1361 if (EnableVPlanNativePath) 1362 return false; 1363 1364 auto UniformsPerVF = Uniforms.find(VF); 1365 assert(UniformsPerVF != Uniforms.end() && 1366 "VF not yet analyzed for uniformity"); 1367 return UniformsPerVF->second.count(I); 1368 } 1369 1370 /// Returns true if \p I is known to be scalar after vectorization. 1371 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1372 if (VF.isScalar()) 1373 return true; 1374 1375 // Cost model is not run in the VPlan-native path - return conservative 1376 // result until this changes. 1377 if (EnableVPlanNativePath) 1378 return false; 1379 1380 auto ScalarsPerVF = Scalars.find(VF); 1381 assert(ScalarsPerVF != Scalars.end() && 1382 "Scalar values are not calculated for VF"); 1383 return ScalarsPerVF->second.count(I); 1384 } 1385 1386 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1387 /// for vectorization factor \p VF. 1388 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1389 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1390 !isProfitableToScalarize(I, VF) && 1391 !isScalarAfterVectorization(I, VF); 1392 } 1393 1394 /// Decision that was taken during cost calculation for memory instruction. 1395 enum InstWidening { 1396 CM_Unknown, 1397 CM_Widen, // For consecutive accesses with stride +1. 1398 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1399 CM_Interleave, 1400 CM_GatherScatter, 1401 CM_Scalarize 1402 }; 1403 1404 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1405 /// instruction \p I and vector width \p VF. 1406 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1407 InstructionCost Cost) { 1408 assert(VF.isVector() && "Expected VF >=2"); 1409 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1410 } 1411 1412 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1413 /// interleaving group \p Grp and vector width \p VF. 1414 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1415 ElementCount VF, InstWidening W, 1416 InstructionCost Cost) { 1417 assert(VF.isVector() && "Expected VF >=2"); 1418 /// Broadcast this decicion to all instructions inside the group. 1419 /// But the cost will be assigned to one instruction only. 1420 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1421 if (auto *I = Grp->getMember(i)) { 1422 if (Grp->getInsertPos() == I) 1423 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1424 else 1425 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1426 } 1427 } 1428 } 1429 1430 /// Return the cost model decision for the given instruction \p I and vector 1431 /// width \p VF. Return CM_Unknown if this instruction did not pass 1432 /// through the cost modeling. 1433 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1434 assert(VF.isVector() && "Expected VF to be a vector VF"); 1435 // Cost model is not run in the VPlan-native path - return conservative 1436 // result until this changes. 1437 if (EnableVPlanNativePath) 1438 return CM_GatherScatter; 1439 1440 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1441 auto Itr = WideningDecisions.find(InstOnVF); 1442 if (Itr == WideningDecisions.end()) 1443 return CM_Unknown; 1444 return Itr->second.first; 1445 } 1446 1447 /// Return the vectorization cost for the given instruction \p I and vector 1448 /// width \p VF. 1449 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1450 assert(VF.isVector() && "Expected VF >=2"); 1451 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1452 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1453 "The cost is not calculated"); 1454 return WideningDecisions[InstOnVF].second; 1455 } 1456 1457 /// Return True if instruction \p I is an optimizable truncate whose operand 1458 /// is an induction variable. Such a truncate will be removed by adding a new 1459 /// induction variable with the destination type. 1460 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1461 // If the instruction is not a truncate, return false. 1462 auto *Trunc = dyn_cast<TruncInst>(I); 1463 if (!Trunc) 1464 return false; 1465 1466 // Get the source and destination types of the truncate. 1467 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1468 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1469 1470 // If the truncate is free for the given types, return false. Replacing a 1471 // free truncate with an induction variable would add an induction variable 1472 // update instruction to each iteration of the loop. We exclude from this 1473 // check the primary induction variable since it will need an update 1474 // instruction regardless. 1475 Value *Op = Trunc->getOperand(0); 1476 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1477 return false; 1478 1479 // If the truncated value is not an induction variable, return false. 1480 return Legal->isInductionPhi(Op); 1481 } 1482 1483 /// Collects the instructions to scalarize for each predicated instruction in 1484 /// the loop. 1485 void collectInstsToScalarize(ElementCount VF); 1486 1487 /// Collect Uniform and Scalar values for the given \p VF. 1488 /// The sets depend on CM decision for Load/Store instructions 1489 /// that may be vectorized as interleave, gather-scatter or scalarized. 1490 void collectUniformsAndScalars(ElementCount VF) { 1491 // Do the analysis once. 1492 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1493 return; 1494 setCostBasedWideningDecision(VF); 1495 collectLoopUniforms(VF); 1496 collectLoopScalars(VF); 1497 } 1498 1499 /// Returns true if the target machine supports masked store operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(DataType, Ptr) && 1503 TTI.isLegalMaskedStore(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine supports masked load operation 1507 /// for the given \p DataType and kind of access to \p Ptr. 1508 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1509 return Legal->isConsecutivePtr(DataType, Ptr) && 1510 TTI.isLegalMaskedLoad(DataType, Alignment); 1511 } 1512 1513 /// Returns true if the target machine can represent \p V as a masked gather 1514 /// or scatter operation. 1515 bool isLegalGatherOrScatter(Value *V, 1516 ElementCount VF = ElementCount::getFixed(1)) { 1517 bool LI = isa<LoadInst>(V); 1518 bool SI = isa<StoreInst>(V); 1519 if (!LI && !SI) 1520 return false; 1521 auto *Ty = getLoadStoreType(V); 1522 Align Align = getLoadStoreAlignment(V); 1523 if (VF.isVector()) 1524 Ty = VectorType::get(Ty, VF); 1525 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1526 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1527 } 1528 1529 /// Returns true if the target machine supports all of the reduction 1530 /// variables found for the given VF. 1531 bool canVectorizeReductions(ElementCount VF) const { 1532 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1533 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1534 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1535 })); 1536 } 1537 1538 /// Returns true if \p I is an instruction that will be scalarized with 1539 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1540 /// instructions include conditional stores and instructions that may divide 1541 /// by zero. 1542 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1543 1544 // Returns true if \p I is an instruction that will be predicated either 1545 // through scalar predication or masked load/store or masked gather/scatter. 1546 // \p VF is the vectorization factor that will be used to vectorize \p I. 1547 // Superset of instructions that return true for isScalarWithPredication. 1548 bool isPredicatedInst(Instruction *I, ElementCount VF, 1549 bool IsKnownUniform = false) { 1550 // When we know the load is uniform and the original scalar loop was not 1551 // predicated we don't need to mark it as a predicated instruction. Any 1552 // vectorised blocks created when tail-folding are something artificial we 1553 // have introduced and we know there is always at least one active lane. 1554 // That's why we call Legal->blockNeedsPredication here because it doesn't 1555 // query tail-folding. 1556 if (IsKnownUniform && isa<LoadInst>(I) && 1557 !Legal->blockNeedsPredication(I->getParent())) 1558 return false; 1559 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1560 return false; 1561 // Loads and stores that need some form of masked operation are predicated 1562 // instructions. 1563 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1564 return Legal->isMaskRequired(I); 1565 return isScalarWithPredication(I, VF); 1566 } 1567 1568 /// Returns true if \p I is a memory instruction with consecutive memory 1569 /// access that can be widened. 1570 bool 1571 memoryInstructionCanBeWidened(Instruction *I, 1572 ElementCount VF = ElementCount::getFixed(1)); 1573 1574 /// Returns true if \p I is a memory instruction in an interleaved-group 1575 /// of memory accesses that can be vectorized with wide vector loads/stores 1576 /// and shuffles. 1577 bool 1578 interleavedAccessCanBeWidened(Instruction *I, 1579 ElementCount VF = ElementCount::getFixed(1)); 1580 1581 /// Check if \p Instr belongs to any interleaved access group. 1582 bool isAccessInterleaved(Instruction *Instr) { 1583 return InterleaveInfo.isInterleaved(Instr); 1584 } 1585 1586 /// Get the interleaved access group that \p Instr belongs to. 1587 const InterleaveGroup<Instruction> * 1588 getInterleavedAccessGroup(Instruction *Instr) { 1589 return InterleaveInfo.getInterleaveGroup(Instr); 1590 } 1591 1592 /// Returns true if we're required to use a scalar epilogue for at least 1593 /// the final iteration of the original loop. 1594 bool requiresScalarEpilogue(ElementCount VF) const { 1595 if (!isScalarEpilogueAllowed()) 1596 return false; 1597 // If we might exit from anywhere but the latch, must run the exiting 1598 // iteration in scalar form. 1599 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1600 return true; 1601 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1602 } 1603 1604 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1605 /// loop hint annotation. 1606 bool isScalarEpilogueAllowed() const { 1607 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1608 } 1609 1610 /// Returns true if all loop blocks should be masked to fold tail loop. 1611 bool foldTailByMasking() const { return FoldTailByMasking; } 1612 1613 /// Returns true if the instructions in this block requires predication 1614 /// for any reason, e.g. because tail folding now requires a predicate 1615 /// or because the block in the original loop was predicated. 1616 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1617 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1618 } 1619 1620 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1621 /// nodes to the chain of instructions representing the reductions. Uses a 1622 /// MapVector to ensure deterministic iteration order. 1623 using ReductionChainMap = 1624 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1625 1626 /// Return the chain of instructions representing an inloop reduction. 1627 const ReductionChainMap &getInLoopReductionChains() const { 1628 return InLoopReductionChains; 1629 } 1630 1631 /// Returns true if the Phi is part of an inloop reduction. 1632 bool isInLoopReduction(PHINode *Phi) const { 1633 return InLoopReductionChains.count(Phi); 1634 } 1635 1636 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1637 /// with factor VF. Return the cost of the instruction, including 1638 /// scalarization overhead if it's needed. 1639 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1640 1641 /// Estimate cost of a call instruction CI if it were vectorized with factor 1642 /// VF. Return the cost of the instruction, including scalarization overhead 1643 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1644 /// scalarized - 1645 /// i.e. either vector version isn't available, or is too expensive. 1646 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1647 bool &NeedToScalarize) const; 1648 1649 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1650 /// that of B. 1651 bool isMoreProfitable(const VectorizationFactor &A, 1652 const VectorizationFactor &B) const; 1653 1654 /// Invalidates decisions already taken by the cost model. 1655 void invalidateCostModelingDecisions() { 1656 WideningDecisions.clear(); 1657 Uniforms.clear(); 1658 Scalars.clear(); 1659 } 1660 1661 private: 1662 unsigned NumPredStores = 0; 1663 1664 /// Convenience function that returns the value of vscale_range iff 1665 /// vscale_range.min == vscale_range.max or otherwise returns the value 1666 /// returned by the corresponding TLI method. 1667 Optional<unsigned> getVScaleForTuning() const; 1668 1669 /// \return An upper bound for the vectorization factors for both 1670 /// fixed and scalable vectorization, where the minimum-known number of 1671 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1672 /// disabled or unsupported, then the scalable part will be equal to 1673 /// ElementCount::getScalable(0). 1674 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1675 ElementCount UserVF, 1676 bool FoldTailByMasking); 1677 1678 /// \return the maximized element count based on the targets vector 1679 /// registers and the loop trip-count, but limited to a maximum safe VF. 1680 /// This is a helper function of computeFeasibleMaxVF. 1681 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1682 /// issue that occurred on one of the buildbots which cannot be reproduced 1683 /// without having access to the properietary compiler (see comments on 1684 /// D98509). The issue is currently under investigation and this workaround 1685 /// will be removed as soon as possible. 1686 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1687 unsigned SmallestType, 1688 unsigned WidestType, 1689 const ElementCount &MaxSafeVF, 1690 bool FoldTailByMasking); 1691 1692 /// \return the maximum legal scalable VF, based on the safe max number 1693 /// of elements. 1694 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1695 1696 /// The vectorization cost is a combination of the cost itself and a boolean 1697 /// indicating whether any of the contributing operations will actually 1698 /// operate on vector values after type legalization in the backend. If this 1699 /// latter value is false, then all operations will be scalarized (i.e. no 1700 /// vectorization has actually taken place). 1701 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1702 1703 /// Returns the expected execution cost. The unit of the cost does 1704 /// not matter because we use the 'cost' units to compare different 1705 /// vector widths. The cost that is returned is *not* normalized by 1706 /// the factor width. If \p Invalid is not nullptr, this function 1707 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1708 /// each instruction that has an Invalid cost for the given VF. 1709 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1710 VectorizationCostTy 1711 expectedCost(ElementCount VF, 1712 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1713 1714 /// Returns the execution time cost of an instruction for a given vector 1715 /// width. Vector width of one means scalar. 1716 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1717 1718 /// The cost-computation logic from getInstructionCost which provides 1719 /// the vector type as an output parameter. 1720 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1721 Type *&VectorTy); 1722 1723 /// Return the cost of instructions in an inloop reduction pattern, if I is 1724 /// part of that pattern. 1725 Optional<InstructionCost> 1726 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1727 TTI::TargetCostKind CostKind); 1728 1729 /// Calculate vectorization cost of memory instruction \p I. 1730 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1731 1732 /// The cost computation for scalarized memory instruction. 1733 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1734 1735 /// The cost computation for interleaving group of memory instructions. 1736 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1737 1738 /// The cost computation for Gather/Scatter instruction. 1739 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1740 1741 /// The cost computation for widening instruction \p I with consecutive 1742 /// memory access. 1743 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1744 1745 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1746 /// Load: scalar load + broadcast. 1747 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1748 /// element) 1749 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1750 1751 /// Estimate the overhead of scalarizing an instruction. This is a 1752 /// convenience wrapper for the type-based getScalarizationOverhead API. 1753 InstructionCost getScalarizationOverhead(Instruction *I, 1754 ElementCount VF) const; 1755 1756 /// Returns whether the instruction is a load or store and will be a emitted 1757 /// as a vector operation. 1758 bool isConsecutiveLoadOrStore(Instruction *I); 1759 1760 /// Returns true if an artificially high cost for emulated masked memrefs 1761 /// should be used. 1762 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1763 1764 /// Map of scalar integer values to the smallest bitwidth they can be legally 1765 /// represented as. The vector equivalents of these values should be truncated 1766 /// to this type. 1767 MapVector<Instruction *, uint64_t> MinBWs; 1768 1769 /// A type representing the costs for instructions if they were to be 1770 /// scalarized rather than vectorized. The entries are Instruction-Cost 1771 /// pairs. 1772 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1773 1774 /// A set containing all BasicBlocks that are known to present after 1775 /// vectorization as a predicated block. 1776 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1777 1778 /// Records whether it is allowed to have the original scalar loop execute at 1779 /// least once. This may be needed as a fallback loop in case runtime 1780 /// aliasing/dependence checks fail, or to handle the tail/remainder 1781 /// iterations when the trip count is unknown or doesn't divide by the VF, 1782 /// or as a peel-loop to handle gaps in interleave-groups. 1783 /// Under optsize and when the trip count is very small we don't allow any 1784 /// iterations to execute in the scalar loop. 1785 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1786 1787 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1788 bool FoldTailByMasking = false; 1789 1790 /// A map holding scalar costs for different vectorization factors. The 1791 /// presence of a cost for an instruction in the mapping indicates that the 1792 /// instruction will be scalarized when vectorizing with the associated 1793 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1794 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1795 1796 /// Holds the instructions known to be uniform after vectorization. 1797 /// The data is collected per VF. 1798 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1799 1800 /// Holds the instructions known to be scalar after vectorization. 1801 /// The data is collected per VF. 1802 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1803 1804 /// Holds the instructions (address computations) that are forced to be 1805 /// scalarized. 1806 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1807 1808 /// PHINodes of the reductions that should be expanded in-loop along with 1809 /// their associated chains of reduction operations, in program order from top 1810 /// (PHI) to bottom 1811 ReductionChainMap InLoopReductionChains; 1812 1813 /// A Map of inloop reduction operations and their immediate chain operand. 1814 /// FIXME: This can be removed once reductions can be costed correctly in 1815 /// vplan. This was added to allow quick lookup to the inloop operations, 1816 /// without having to loop through InLoopReductionChains. 1817 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1818 1819 /// Returns the expected difference in cost from scalarizing the expression 1820 /// feeding a predicated instruction \p PredInst. The instructions to 1821 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1822 /// non-negative return value implies the expression will be scalarized. 1823 /// Currently, only single-use chains are considered for scalarization. 1824 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1825 ElementCount VF); 1826 1827 /// Collect the instructions that are uniform after vectorization. An 1828 /// instruction is uniform if we represent it with a single scalar value in 1829 /// the vectorized loop corresponding to each vector iteration. Examples of 1830 /// uniform instructions include pointer operands of consecutive or 1831 /// interleaved memory accesses. Note that although uniformity implies an 1832 /// instruction will be scalar, the reverse is not true. In general, a 1833 /// scalarized instruction will be represented by VF scalar values in the 1834 /// vectorized loop, each corresponding to an iteration of the original 1835 /// scalar loop. 1836 void collectLoopUniforms(ElementCount VF); 1837 1838 /// Collect the instructions that are scalar after vectorization. An 1839 /// instruction is scalar if it is known to be uniform or will be scalarized 1840 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1841 /// to the list if they are used by a load/store instruction that is marked as 1842 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1843 /// VF values in the vectorized loop, each corresponding to an iteration of 1844 /// the original scalar loop. 1845 void collectLoopScalars(ElementCount VF); 1846 1847 /// Keeps cost model vectorization decision and cost for instructions. 1848 /// Right now it is used for memory instructions only. 1849 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1850 std::pair<InstWidening, InstructionCost>>; 1851 1852 DecisionList WideningDecisions; 1853 1854 /// Returns true if \p V is expected to be vectorized and it needs to be 1855 /// extracted. 1856 bool needsExtract(Value *V, ElementCount VF) const { 1857 Instruction *I = dyn_cast<Instruction>(V); 1858 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1859 TheLoop->isLoopInvariant(I)) 1860 return false; 1861 1862 // Assume we can vectorize V (and hence we need extraction) if the 1863 // scalars are not computed yet. This can happen, because it is called 1864 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1865 // the scalars are collected. That should be a safe assumption in most 1866 // cases, because we check if the operands have vectorizable types 1867 // beforehand in LoopVectorizationLegality. 1868 return Scalars.find(VF) == Scalars.end() || 1869 !isScalarAfterVectorization(I, VF); 1870 }; 1871 1872 /// Returns a range containing only operands needing to be extracted. 1873 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1874 ElementCount VF) const { 1875 return SmallVector<Value *, 4>(make_filter_range( 1876 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1877 } 1878 1879 /// Determines if we have the infrastructure to vectorize loop \p L and its 1880 /// epilogue, assuming the main loop is vectorized by \p VF. 1881 bool isCandidateForEpilogueVectorization(const Loop &L, 1882 const ElementCount VF) const; 1883 1884 /// Returns true if epilogue vectorization is considered profitable, and 1885 /// false otherwise. 1886 /// \p VF is the vectorization factor chosen for the original loop. 1887 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1888 1889 public: 1890 /// The loop that we evaluate. 1891 Loop *TheLoop; 1892 1893 /// Predicated scalar evolution analysis. 1894 PredicatedScalarEvolution &PSE; 1895 1896 /// Loop Info analysis. 1897 LoopInfo *LI; 1898 1899 /// Vectorization legality. 1900 LoopVectorizationLegality *Legal; 1901 1902 /// Vector target information. 1903 const TargetTransformInfo &TTI; 1904 1905 /// Target Library Info. 1906 const TargetLibraryInfo *TLI; 1907 1908 /// Demanded bits analysis. 1909 DemandedBits *DB; 1910 1911 /// Assumption cache. 1912 AssumptionCache *AC; 1913 1914 /// Interface to emit optimization remarks. 1915 OptimizationRemarkEmitter *ORE; 1916 1917 const Function *TheFunction; 1918 1919 /// Loop Vectorize Hint. 1920 const LoopVectorizeHints *Hints; 1921 1922 /// The interleave access information contains groups of interleaved accesses 1923 /// with the same stride and close to each other. 1924 InterleavedAccessInfo &InterleaveInfo; 1925 1926 /// Values to ignore in the cost model. 1927 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1928 1929 /// Values to ignore in the cost model when VF > 1. 1930 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1931 1932 /// All element types found in the loop. 1933 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1934 1935 /// Profitable vector factors. 1936 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1937 }; 1938 } // end namespace llvm 1939 1940 /// Helper struct to manage generating runtime checks for vectorization. 1941 /// 1942 /// The runtime checks are created up-front in temporary blocks to allow better 1943 /// estimating the cost and un-linked from the existing IR. After deciding to 1944 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1945 /// temporary blocks are completely removed. 1946 class GeneratedRTChecks { 1947 /// Basic block which contains the generated SCEV checks, if any. 1948 BasicBlock *SCEVCheckBlock = nullptr; 1949 1950 /// The value representing the result of the generated SCEV checks. If it is 1951 /// nullptr, either no SCEV checks have been generated or they have been used. 1952 Value *SCEVCheckCond = nullptr; 1953 1954 /// Basic block which contains the generated memory runtime checks, if any. 1955 BasicBlock *MemCheckBlock = nullptr; 1956 1957 /// The value representing the result of the generated memory runtime checks. 1958 /// If it is nullptr, either no memory runtime checks have been generated or 1959 /// they have been used. 1960 Value *MemRuntimeCheckCond = nullptr; 1961 1962 DominatorTree *DT; 1963 LoopInfo *LI; 1964 1965 SCEVExpander SCEVExp; 1966 SCEVExpander MemCheckExp; 1967 1968 public: 1969 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1970 const DataLayout &DL) 1971 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1972 MemCheckExp(SE, DL, "scev.check") {} 1973 1974 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1975 /// accurately estimate the cost of the runtime checks. The blocks are 1976 /// un-linked from the IR and is added back during vector code generation. If 1977 /// there is no vector code generation, the check blocks are removed 1978 /// completely. 1979 void Create(Loop *L, const LoopAccessInfo &LAI, 1980 const SCEVPredicate &Pred) { 1981 1982 BasicBlock *LoopHeader = L->getHeader(); 1983 BasicBlock *Preheader = L->getLoopPreheader(); 1984 1985 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1986 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1987 // may be used by SCEVExpander. The blocks will be un-linked from their 1988 // predecessors and removed from LI & DT at the end of the function. 1989 if (!Pred.isAlwaysTrue()) { 1990 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1991 nullptr, "vector.scevcheck"); 1992 1993 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1994 &Pred, SCEVCheckBlock->getTerminator()); 1995 } 1996 1997 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1998 if (RtPtrChecking.Need) { 1999 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2000 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2001 "vector.memcheck"); 2002 2003 MemRuntimeCheckCond = 2004 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2005 RtPtrChecking.getChecks(), MemCheckExp); 2006 assert(MemRuntimeCheckCond && 2007 "no RT checks generated although RtPtrChecking " 2008 "claimed checks are required"); 2009 } 2010 2011 if (!MemCheckBlock && !SCEVCheckBlock) 2012 return; 2013 2014 // Unhook the temporary block with the checks, update various places 2015 // accordingly. 2016 if (SCEVCheckBlock) 2017 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2018 if (MemCheckBlock) 2019 MemCheckBlock->replaceAllUsesWith(Preheader); 2020 2021 if (SCEVCheckBlock) { 2022 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2023 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2024 Preheader->getTerminator()->eraseFromParent(); 2025 } 2026 if (MemCheckBlock) { 2027 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2028 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2029 Preheader->getTerminator()->eraseFromParent(); 2030 } 2031 2032 DT->changeImmediateDominator(LoopHeader, Preheader); 2033 if (MemCheckBlock) { 2034 DT->eraseNode(MemCheckBlock); 2035 LI->removeBlock(MemCheckBlock); 2036 } 2037 if (SCEVCheckBlock) { 2038 DT->eraseNode(SCEVCheckBlock); 2039 LI->removeBlock(SCEVCheckBlock); 2040 } 2041 } 2042 2043 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2044 /// unused. 2045 ~GeneratedRTChecks() { 2046 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2047 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2048 if (!SCEVCheckCond) 2049 SCEVCleaner.markResultUsed(); 2050 2051 if (!MemRuntimeCheckCond) 2052 MemCheckCleaner.markResultUsed(); 2053 2054 if (MemRuntimeCheckCond) { 2055 auto &SE = *MemCheckExp.getSE(); 2056 // Memory runtime check generation creates compares that use expanded 2057 // values. Remove them before running the SCEVExpanderCleaners. 2058 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2059 if (MemCheckExp.isInsertedInstruction(&I)) 2060 continue; 2061 SE.forgetValue(&I); 2062 I.eraseFromParent(); 2063 } 2064 } 2065 MemCheckCleaner.cleanup(); 2066 SCEVCleaner.cleanup(); 2067 2068 if (SCEVCheckCond) 2069 SCEVCheckBlock->eraseFromParent(); 2070 if (MemRuntimeCheckCond) 2071 MemCheckBlock->eraseFromParent(); 2072 } 2073 2074 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2075 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2076 /// depending on the generated condition. 2077 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2078 BasicBlock *LoopVectorPreHeader, 2079 BasicBlock *LoopExitBlock) { 2080 if (!SCEVCheckCond) 2081 return nullptr; 2082 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2083 if (C->isZero()) 2084 return nullptr; 2085 2086 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2087 2088 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2089 // Create new preheader for vector loop. 2090 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2091 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2092 2093 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2094 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2095 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2096 SCEVCheckBlock); 2097 2098 DT->addNewBlock(SCEVCheckBlock, Pred); 2099 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2100 2101 ReplaceInstWithInst( 2102 SCEVCheckBlock->getTerminator(), 2103 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2104 // Mark the check as used, to prevent it from being removed during cleanup. 2105 SCEVCheckCond = nullptr; 2106 return SCEVCheckBlock; 2107 } 2108 2109 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2110 /// the branches to branch to the vector preheader or \p Bypass, depending on 2111 /// the generated condition. 2112 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2113 BasicBlock *LoopVectorPreHeader) { 2114 // Check if we generated code that checks in runtime if arrays overlap. 2115 if (!MemRuntimeCheckCond) 2116 return nullptr; 2117 2118 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2119 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2120 MemCheckBlock); 2121 2122 DT->addNewBlock(MemCheckBlock, Pred); 2123 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2124 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2125 2126 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2127 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2128 2129 ReplaceInstWithInst( 2130 MemCheckBlock->getTerminator(), 2131 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2132 MemCheckBlock->getTerminator()->setDebugLoc( 2133 Pred->getTerminator()->getDebugLoc()); 2134 2135 // Mark the check as used, to prevent it from being removed during cleanup. 2136 MemRuntimeCheckCond = nullptr; 2137 return MemCheckBlock; 2138 } 2139 }; 2140 2141 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2142 // vectorization. The loop needs to be annotated with #pragma omp simd 2143 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2144 // vector length information is not provided, vectorization is not considered 2145 // explicit. Interleave hints are not allowed either. These limitations will be 2146 // relaxed in the future. 2147 // Please, note that we are currently forced to abuse the pragma 'clang 2148 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2149 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2150 // provides *explicit vectorization hints* (LV can bypass legal checks and 2151 // assume that vectorization is legal). However, both hints are implemented 2152 // using the same metadata (llvm.loop.vectorize, processed by 2153 // LoopVectorizeHints). This will be fixed in the future when the native IR 2154 // representation for pragma 'omp simd' is introduced. 2155 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2156 OptimizationRemarkEmitter *ORE) { 2157 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2158 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2159 2160 // Only outer loops with an explicit vectorization hint are supported. 2161 // Unannotated outer loops are ignored. 2162 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2163 return false; 2164 2165 Function *Fn = OuterLp->getHeader()->getParent(); 2166 if (!Hints.allowVectorization(Fn, OuterLp, 2167 true /*VectorizeOnlyWhenForced*/)) { 2168 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2169 return false; 2170 } 2171 2172 if (Hints.getInterleave() > 1) { 2173 // TODO: Interleave support is future work. 2174 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2175 "outer loops.\n"); 2176 Hints.emitRemarkWithHints(); 2177 return false; 2178 } 2179 2180 return true; 2181 } 2182 2183 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2184 OptimizationRemarkEmitter *ORE, 2185 SmallVectorImpl<Loop *> &V) { 2186 // Collect inner loops and outer loops without irreducible control flow. For 2187 // now, only collect outer loops that have explicit vectorization hints. If we 2188 // are stress testing the VPlan H-CFG construction, we collect the outermost 2189 // loop of every loop nest. 2190 if (L.isInnermost() || VPlanBuildStressTest || 2191 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2192 LoopBlocksRPO RPOT(&L); 2193 RPOT.perform(LI); 2194 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2195 V.push_back(&L); 2196 // TODO: Collect inner loops inside marked outer loops in case 2197 // vectorization fails for the outer loop. Do not invoke 2198 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2199 // already known to be reducible. We can use an inherited attribute for 2200 // that. 2201 return; 2202 } 2203 } 2204 for (Loop *InnerL : L) 2205 collectSupportedLoops(*InnerL, LI, ORE, V); 2206 } 2207 2208 namespace { 2209 2210 /// The LoopVectorize Pass. 2211 struct LoopVectorize : public FunctionPass { 2212 /// Pass identification, replacement for typeid 2213 static char ID; 2214 2215 LoopVectorizePass Impl; 2216 2217 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2218 bool VectorizeOnlyWhenForced = false) 2219 : FunctionPass(ID), 2220 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2221 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2222 } 2223 2224 bool runOnFunction(Function &F) override { 2225 if (skipFunction(F)) 2226 return false; 2227 2228 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2229 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2230 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2231 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2232 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2233 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2234 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2235 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2236 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2237 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2238 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2239 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2240 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2241 2242 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2243 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2244 2245 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2246 GetLAA, *ORE, PSI).MadeAnyChange; 2247 } 2248 2249 void getAnalysisUsage(AnalysisUsage &AU) const override { 2250 AU.addRequired<AssumptionCacheTracker>(); 2251 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2252 AU.addRequired<DominatorTreeWrapperPass>(); 2253 AU.addRequired<LoopInfoWrapperPass>(); 2254 AU.addRequired<ScalarEvolutionWrapperPass>(); 2255 AU.addRequired<TargetTransformInfoWrapperPass>(); 2256 AU.addRequired<AAResultsWrapperPass>(); 2257 AU.addRequired<LoopAccessLegacyAnalysis>(); 2258 AU.addRequired<DemandedBitsWrapperPass>(); 2259 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2260 AU.addRequired<InjectTLIMappingsLegacy>(); 2261 2262 // We currently do not preserve loopinfo/dominator analyses with outer loop 2263 // vectorization. Until this is addressed, mark these analyses as preserved 2264 // only for non-VPlan-native path. 2265 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2266 if (!EnableVPlanNativePath) { 2267 AU.addPreserved<LoopInfoWrapperPass>(); 2268 AU.addPreserved<DominatorTreeWrapperPass>(); 2269 } 2270 2271 AU.addPreserved<BasicAAWrapperPass>(); 2272 AU.addPreserved<GlobalsAAWrapperPass>(); 2273 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2274 } 2275 }; 2276 2277 } // end anonymous namespace 2278 2279 //===----------------------------------------------------------------------===// 2280 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2281 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2282 //===----------------------------------------------------------------------===// 2283 2284 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2285 // We need to place the broadcast of invariant variables outside the loop, 2286 // but only if it's proven safe to do so. Else, broadcast will be inside 2287 // vector loop body. 2288 Instruction *Instr = dyn_cast<Instruction>(V); 2289 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2290 (!Instr || 2291 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2292 // Place the code for broadcasting invariant variables in the new preheader. 2293 IRBuilder<>::InsertPointGuard Guard(Builder); 2294 if (SafeToHoist) 2295 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2296 2297 // Broadcast the scalar into all locations in the vector. 2298 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2299 2300 return Shuf; 2301 } 2302 2303 /// This function adds 2304 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2305 /// to each vector element of Val. The sequence starts at StartIndex. 2306 /// \p Opcode is relevant for FP induction variable. 2307 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2308 Instruction::BinaryOps BinOp, ElementCount VF, 2309 IRBuilderBase &Builder) { 2310 assert(VF.isVector() && "only vector VFs are supported"); 2311 2312 // Create and check the types. 2313 auto *ValVTy = cast<VectorType>(Val->getType()); 2314 ElementCount VLen = ValVTy->getElementCount(); 2315 2316 Type *STy = Val->getType()->getScalarType(); 2317 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2318 "Induction Step must be an integer or FP"); 2319 assert(Step->getType() == STy && "Step has wrong type"); 2320 2321 SmallVector<Constant *, 8> Indices; 2322 2323 // Create a vector of consecutive numbers from zero to VF. 2324 VectorType *InitVecValVTy = ValVTy; 2325 if (STy->isFloatingPointTy()) { 2326 Type *InitVecValSTy = 2327 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2328 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2329 } 2330 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2331 2332 // Splat the StartIdx 2333 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2334 2335 if (STy->isIntegerTy()) { 2336 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2337 Step = Builder.CreateVectorSplat(VLen, Step); 2338 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2339 // FIXME: The newly created binary instructions should contain nsw/nuw 2340 // flags, which can be found from the original scalar operations. 2341 Step = Builder.CreateMul(InitVec, Step); 2342 return Builder.CreateAdd(Val, Step, "induction"); 2343 } 2344 2345 // Floating point induction. 2346 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2347 "Binary Opcode should be specified for FP induction"); 2348 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2349 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2350 2351 Step = Builder.CreateVectorSplat(VLen, Step); 2352 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2353 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2354 } 2355 2356 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2357 /// variable on which to base the steps, \p Step is the size of the step. 2358 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2359 const InductionDescriptor &ID, VPValue *Def, 2360 VPTransformState &State) { 2361 IRBuilderBase &Builder = State.Builder; 2362 // We shouldn't have to build scalar steps if we aren't vectorizing. 2363 assert(State.VF.isVector() && "VF should be greater than one"); 2364 // Get the value type and ensure it and the step have the same integer type. 2365 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2366 assert(ScalarIVTy == Step->getType() && 2367 "Val and Step should have the same type"); 2368 2369 // We build scalar steps for both integer and floating-point induction 2370 // variables. Here, we determine the kind of arithmetic we will perform. 2371 Instruction::BinaryOps AddOp; 2372 Instruction::BinaryOps MulOp; 2373 if (ScalarIVTy->isIntegerTy()) { 2374 AddOp = Instruction::Add; 2375 MulOp = Instruction::Mul; 2376 } else { 2377 AddOp = ID.getInductionOpcode(); 2378 MulOp = Instruction::FMul; 2379 } 2380 2381 // Determine the number of scalars we need to generate for each unroll 2382 // iteration. 2383 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2384 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2385 // Compute the scalar steps and save the results in State. 2386 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2387 ScalarIVTy->getScalarSizeInBits()); 2388 Type *VecIVTy = nullptr; 2389 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2390 if (!FirstLaneOnly && State.VF.isScalable()) { 2391 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2392 UnitStepVec = 2393 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2394 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2395 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2396 } 2397 2398 for (unsigned Part = 0; Part < State.UF; ++Part) { 2399 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2400 2401 if (!FirstLaneOnly && State.VF.isScalable()) { 2402 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2403 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2404 if (ScalarIVTy->isFloatingPointTy()) 2405 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2406 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2407 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2408 State.set(Def, Add, Part); 2409 // It's useful to record the lane values too for the known minimum number 2410 // of elements so we do those below. This improves the code quality when 2411 // trying to extract the first element, for example. 2412 } 2413 2414 if (ScalarIVTy->isFloatingPointTy()) 2415 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2416 2417 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2418 Value *StartIdx = Builder.CreateBinOp( 2419 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2420 // The step returned by `createStepForVF` is a runtime-evaluated value 2421 // when VF is scalable. Otherwise, it should be folded into a Constant. 2422 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2423 "Expected StartIdx to be folded to a constant when VF is not " 2424 "scalable"); 2425 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2426 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2427 State.set(Def, Add, VPIteration(Part, Lane)); 2428 } 2429 } 2430 } 2431 2432 // Generate code for the induction step. Note that induction steps are 2433 // required to be loop-invariant 2434 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2435 Instruction *InsertBefore, 2436 Loop *OrigLoop = nullptr) { 2437 const DataLayout &DL = SE.getDataLayout(); 2438 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2439 "Induction step should be loop invariant"); 2440 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2441 return E->getValue(); 2442 2443 SCEVExpander Exp(SE, DL, "induction"); 2444 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2445 } 2446 2447 /// Compute the transformed value of Index at offset StartValue using step 2448 /// StepValue. 2449 /// For integer induction, returns StartValue + Index * StepValue. 2450 /// For pointer induction, returns StartValue[Index * StepValue]. 2451 /// FIXME: The newly created binary instructions should contain nsw/nuw 2452 /// flags, which can be found from the original scalar operations. 2453 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2454 Value *StartValue, Value *Step, 2455 const InductionDescriptor &ID) { 2456 assert(Index->getType()->getScalarType() == Step->getType() && 2457 "Index scalar type does not match StepValue type"); 2458 2459 // Note: the IR at this point is broken. We cannot use SE to create any new 2460 // SCEV and then expand it, hoping that SCEV's simplification will give us 2461 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2462 // lead to various SCEV crashes. So all we can do is to use builder and rely 2463 // on InstCombine for future simplifications. Here we handle some trivial 2464 // cases only. 2465 auto CreateAdd = [&B](Value *X, Value *Y) { 2466 assert(X->getType() == Y->getType() && "Types don't match!"); 2467 if (auto *CX = dyn_cast<ConstantInt>(X)) 2468 if (CX->isZero()) 2469 return Y; 2470 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2471 if (CY->isZero()) 2472 return X; 2473 return B.CreateAdd(X, Y); 2474 }; 2475 2476 // We allow X to be a vector type, in which case Y will potentially be 2477 // splatted into a vector with the same element count. 2478 auto CreateMul = [&B](Value *X, Value *Y) { 2479 assert(X->getType()->getScalarType() == Y->getType() && 2480 "Types don't match!"); 2481 if (auto *CX = dyn_cast<ConstantInt>(X)) 2482 if (CX->isOne()) 2483 return Y; 2484 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2485 if (CY->isOne()) 2486 return X; 2487 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2488 if (XVTy && !isa<VectorType>(Y->getType())) 2489 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2490 return B.CreateMul(X, Y); 2491 }; 2492 2493 switch (ID.getKind()) { 2494 case InductionDescriptor::IK_IntInduction: { 2495 assert(!isa<VectorType>(Index->getType()) && 2496 "Vector indices not supported for integer inductions yet"); 2497 assert(Index->getType() == StartValue->getType() && 2498 "Index type does not match StartValue type"); 2499 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2500 return B.CreateSub(StartValue, Index); 2501 auto *Offset = CreateMul(Index, Step); 2502 return CreateAdd(StartValue, Offset); 2503 } 2504 case InductionDescriptor::IK_PtrInduction: { 2505 assert(isa<Constant>(Step) && 2506 "Expected constant step for pointer induction"); 2507 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2508 } 2509 case InductionDescriptor::IK_FpInduction: { 2510 assert(!isa<VectorType>(Index->getType()) && 2511 "Vector indices not supported for FP inductions yet"); 2512 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2513 auto InductionBinOp = ID.getInductionBinOp(); 2514 assert(InductionBinOp && 2515 (InductionBinOp->getOpcode() == Instruction::FAdd || 2516 InductionBinOp->getOpcode() == Instruction::FSub) && 2517 "Original bin op should be defined for FP induction"); 2518 2519 Value *MulExp = B.CreateFMul(Step, Index); 2520 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2521 "induction"); 2522 } 2523 case InductionDescriptor::IK_NoInduction: 2524 return nullptr; 2525 } 2526 llvm_unreachable("invalid enum"); 2527 } 2528 2529 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2530 const VPIteration &Instance, 2531 VPTransformState &State) { 2532 Value *ScalarInst = State.get(Def, Instance); 2533 Value *VectorValue = State.get(Def, Instance.Part); 2534 VectorValue = Builder.CreateInsertElement( 2535 VectorValue, ScalarInst, 2536 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2537 State.set(Def, VectorValue, Instance.Part); 2538 } 2539 2540 // Return whether we allow using masked interleave-groups (for dealing with 2541 // strided loads/stores that reside in predicated blocks, or for dealing 2542 // with gaps). 2543 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2544 // If an override option has been passed in for interleaved accesses, use it. 2545 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2546 return EnableMaskedInterleavedMemAccesses; 2547 2548 return TTI.enableMaskedInterleavedAccessVectorization(); 2549 } 2550 2551 // Try to vectorize the interleave group that \p Instr belongs to. 2552 // 2553 // E.g. Translate following interleaved load group (factor = 3): 2554 // for (i = 0; i < N; i+=3) { 2555 // R = Pic[i]; // Member of index 0 2556 // G = Pic[i+1]; // Member of index 1 2557 // B = Pic[i+2]; // Member of index 2 2558 // ... // do something to R, G, B 2559 // } 2560 // To: 2561 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2562 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2563 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2564 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2565 // 2566 // Or translate following interleaved store group (factor = 3): 2567 // for (i = 0; i < N; i+=3) { 2568 // ... do something to R, G, B 2569 // Pic[i] = R; // Member of index 0 2570 // Pic[i+1] = G; // Member of index 1 2571 // Pic[i+2] = B; // Member of index 2 2572 // } 2573 // To: 2574 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2575 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2576 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2577 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2578 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2579 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2580 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2581 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2582 VPValue *BlockInMask) { 2583 Instruction *Instr = Group->getInsertPos(); 2584 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2585 2586 // Prepare for the vector type of the interleaved load/store. 2587 Type *ScalarTy = getLoadStoreType(Instr); 2588 unsigned InterleaveFactor = Group->getFactor(); 2589 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2590 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2591 2592 // Prepare for the new pointers. 2593 SmallVector<Value *, 2> AddrParts; 2594 unsigned Index = Group->getIndex(Instr); 2595 2596 // TODO: extend the masked interleaved-group support to reversed access. 2597 assert((!BlockInMask || !Group->isReverse()) && 2598 "Reversed masked interleave-group not supported."); 2599 2600 // If the group is reverse, adjust the index to refer to the last vector lane 2601 // instead of the first. We adjust the index from the first vector lane, 2602 // rather than directly getting the pointer for lane VF - 1, because the 2603 // pointer operand of the interleaved access is supposed to be uniform. For 2604 // uniform instructions, we're only required to generate a value for the 2605 // first vector lane in each unroll iteration. 2606 if (Group->isReverse()) 2607 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2608 2609 for (unsigned Part = 0; Part < UF; Part++) { 2610 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2611 setDebugLocFromInst(AddrPart); 2612 2613 // Notice current instruction could be any index. Need to adjust the address 2614 // to the member of index 0. 2615 // 2616 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2617 // b = A[i]; // Member of index 0 2618 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2619 // 2620 // E.g. A[i+1] = a; // Member of index 1 2621 // A[i] = b; // Member of index 0 2622 // A[i+2] = c; // Member of index 2 (Current instruction) 2623 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2624 2625 bool InBounds = false; 2626 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2627 InBounds = gep->isInBounds(); 2628 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2629 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2630 2631 // Cast to the vector pointer type. 2632 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2633 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2634 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2635 } 2636 2637 setDebugLocFromInst(Instr); 2638 Value *PoisonVec = PoisonValue::get(VecTy); 2639 2640 Value *MaskForGaps = nullptr; 2641 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2642 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2643 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2644 } 2645 2646 // Vectorize the interleaved load group. 2647 if (isa<LoadInst>(Instr)) { 2648 // For each unroll part, create a wide load for the group. 2649 SmallVector<Value *, 2> NewLoads; 2650 for (unsigned Part = 0; Part < UF; Part++) { 2651 Instruction *NewLoad; 2652 if (BlockInMask || MaskForGaps) { 2653 assert(useMaskedInterleavedAccesses(*TTI) && 2654 "masked interleaved groups are not allowed."); 2655 Value *GroupMask = MaskForGaps; 2656 if (BlockInMask) { 2657 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2658 Value *ShuffledMask = Builder.CreateShuffleVector( 2659 BlockInMaskPart, 2660 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2661 "interleaved.mask"); 2662 GroupMask = MaskForGaps 2663 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2664 MaskForGaps) 2665 : ShuffledMask; 2666 } 2667 NewLoad = 2668 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2669 GroupMask, PoisonVec, "wide.masked.vec"); 2670 } 2671 else 2672 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2673 Group->getAlign(), "wide.vec"); 2674 Group->addMetadata(NewLoad); 2675 NewLoads.push_back(NewLoad); 2676 } 2677 2678 // For each member in the group, shuffle out the appropriate data from the 2679 // wide loads. 2680 unsigned J = 0; 2681 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2682 Instruction *Member = Group->getMember(I); 2683 2684 // Skip the gaps in the group. 2685 if (!Member) 2686 continue; 2687 2688 auto StrideMask = 2689 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2690 for (unsigned Part = 0; Part < UF; Part++) { 2691 Value *StridedVec = Builder.CreateShuffleVector( 2692 NewLoads[Part], StrideMask, "strided.vec"); 2693 2694 // If this member has different type, cast the result type. 2695 if (Member->getType() != ScalarTy) { 2696 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2697 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2698 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2699 } 2700 2701 if (Group->isReverse()) 2702 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2703 2704 State.set(VPDefs[J], StridedVec, Part); 2705 } 2706 ++J; 2707 } 2708 return; 2709 } 2710 2711 // The sub vector type for current instruction. 2712 auto *SubVT = VectorType::get(ScalarTy, VF); 2713 2714 // Vectorize the interleaved store group. 2715 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2716 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2717 "masked interleaved groups are not allowed."); 2718 assert((!MaskForGaps || !VF.isScalable()) && 2719 "masking gaps for scalable vectors is not yet supported."); 2720 for (unsigned Part = 0; Part < UF; Part++) { 2721 // Collect the stored vector from each member. 2722 SmallVector<Value *, 4> StoredVecs; 2723 for (unsigned i = 0; i < InterleaveFactor; i++) { 2724 assert((Group->getMember(i) || MaskForGaps) && 2725 "Fail to get a member from an interleaved store group"); 2726 Instruction *Member = Group->getMember(i); 2727 2728 // Skip the gaps in the group. 2729 if (!Member) { 2730 Value *Undef = PoisonValue::get(SubVT); 2731 StoredVecs.push_back(Undef); 2732 continue; 2733 } 2734 2735 Value *StoredVec = State.get(StoredValues[i], Part); 2736 2737 if (Group->isReverse()) 2738 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2739 2740 // If this member has different type, cast it to a unified type. 2741 2742 if (StoredVec->getType() != SubVT) 2743 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2744 2745 StoredVecs.push_back(StoredVec); 2746 } 2747 2748 // Concatenate all vectors into a wide vector. 2749 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2750 2751 // Interleave the elements in the wide vector. 2752 Value *IVec = Builder.CreateShuffleVector( 2753 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2754 "interleaved.vec"); 2755 2756 Instruction *NewStoreInstr; 2757 if (BlockInMask || MaskForGaps) { 2758 Value *GroupMask = MaskForGaps; 2759 if (BlockInMask) { 2760 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2761 Value *ShuffledMask = Builder.CreateShuffleVector( 2762 BlockInMaskPart, 2763 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2764 "interleaved.mask"); 2765 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2766 ShuffledMask, MaskForGaps) 2767 : ShuffledMask; 2768 } 2769 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2770 Group->getAlign(), GroupMask); 2771 } else 2772 NewStoreInstr = 2773 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2774 2775 Group->addMetadata(NewStoreInstr); 2776 } 2777 } 2778 2779 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2780 VPReplicateRecipe *RepRecipe, 2781 const VPIteration &Instance, 2782 bool IfPredicateInstr, 2783 VPTransformState &State) { 2784 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2785 2786 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2787 // the first lane and part. 2788 if (isa<NoAliasScopeDeclInst>(Instr)) 2789 if (!Instance.isFirstIteration()) 2790 return; 2791 2792 setDebugLocFromInst(Instr); 2793 2794 // Does this instruction return a value ? 2795 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2796 2797 Instruction *Cloned = Instr->clone(); 2798 if (!IsVoidRetTy) 2799 Cloned->setName(Instr->getName() + ".cloned"); 2800 2801 // If the scalarized instruction contributes to the address computation of a 2802 // widen masked load/store which was in a basic block that needed predication 2803 // and is not predicated after vectorization, we can't propagate 2804 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2805 // instruction could feed a poison value to the base address of the widen 2806 // load/store. 2807 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2808 Cloned->dropPoisonGeneratingFlags(); 2809 2810 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2811 Builder.GetInsertPoint()); 2812 // Replace the operands of the cloned instructions with their scalar 2813 // equivalents in the new loop. 2814 for (auto &I : enumerate(RepRecipe->operands())) { 2815 auto InputInstance = Instance; 2816 VPValue *Operand = I.value(); 2817 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2818 if (OperandR && OperandR->isUniform()) 2819 InputInstance.Lane = VPLane::getFirstLane(); 2820 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2821 } 2822 addNewMetadata(Cloned, Instr); 2823 2824 // Place the cloned scalar in the new loop. 2825 Builder.Insert(Cloned); 2826 2827 State.set(RepRecipe, Cloned, Instance); 2828 2829 // If we just cloned a new assumption, add it the assumption cache. 2830 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2831 AC->registerAssumption(II); 2832 2833 // End if-block. 2834 if (IfPredicateInstr) 2835 PredicatedInstructions.push_back(Cloned); 2836 } 2837 2838 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 2839 BasicBlock *Header = L->getHeader(); 2840 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 2841 2842 IRBuilder<> B(Header->getTerminator()); 2843 Instruction *OldInst = 2844 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 2845 setDebugLocFromInst(OldInst, &B); 2846 2847 // Connect the header to the exit and header blocks and replace the old 2848 // terminator. 2849 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 2850 2851 // Now we have two terminators. Remove the old one from the block. 2852 Header->getTerminator()->eraseFromParent(); 2853 } 2854 2855 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2856 if (TripCount) 2857 return TripCount; 2858 2859 assert(L && "Create Trip Count for null loop."); 2860 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2861 // Find the loop boundaries. 2862 ScalarEvolution *SE = PSE.getSE(); 2863 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2864 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2865 "Invalid loop count"); 2866 2867 Type *IdxTy = Legal->getWidestInductionType(); 2868 assert(IdxTy && "No type for induction"); 2869 2870 // The exit count might have the type of i64 while the phi is i32. This can 2871 // happen if we have an induction variable that is sign extended before the 2872 // compare. The only way that we get a backedge taken count is that the 2873 // induction variable was signed and as such will not overflow. In such a case 2874 // truncation is legal. 2875 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2876 IdxTy->getPrimitiveSizeInBits()) 2877 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2878 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2879 2880 // Get the total trip count from the count by adding 1. 2881 const SCEV *ExitCount = SE->getAddExpr( 2882 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2883 2884 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2885 2886 // Expand the trip count and place the new instructions in the preheader. 2887 // Notice that the pre-header does not change, only the loop body. 2888 SCEVExpander Exp(*SE, DL, "induction"); 2889 2890 // Count holds the overall loop count (N). 2891 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2892 L->getLoopPreheader()->getTerminator()); 2893 2894 if (TripCount->getType()->isPointerTy()) 2895 TripCount = 2896 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2897 L->getLoopPreheader()->getTerminator()); 2898 2899 return TripCount; 2900 } 2901 2902 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2903 if (VectorTripCount) 2904 return VectorTripCount; 2905 2906 Value *TC = getOrCreateTripCount(L); 2907 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2908 2909 Type *Ty = TC->getType(); 2910 // This is where we can make the step a runtime constant. 2911 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2912 2913 // If the tail is to be folded by masking, round the number of iterations N 2914 // up to a multiple of Step instead of rounding down. This is done by first 2915 // adding Step-1 and then rounding down. Note that it's ok if this addition 2916 // overflows: the vector induction variable will eventually wrap to zero given 2917 // that it starts at zero and its Step is a power of two; the loop will then 2918 // exit, with the last early-exit vector comparison also producing all-true. 2919 if (Cost->foldTailByMasking()) { 2920 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2921 "VF*UF must be a power of 2 when folding tail by masking"); 2922 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2923 TC = Builder.CreateAdd( 2924 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2925 } 2926 2927 // Now we need to generate the expression for the part of the loop that the 2928 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2929 // iterations are not required for correctness, or N - Step, otherwise. Step 2930 // is equal to the vectorization factor (number of SIMD elements) times the 2931 // unroll factor (number of SIMD instructions). 2932 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2933 2934 // There are cases where we *must* run at least one iteration in the remainder 2935 // loop. See the cost model for when this can happen. If the step evenly 2936 // divides the trip count, we set the remainder to be equal to the step. If 2937 // the step does not evenly divide the trip count, no adjustment is necessary 2938 // since there will already be scalar iterations. Note that the minimum 2939 // iterations check ensures that N >= Step. 2940 if (Cost->requiresScalarEpilogue(VF)) { 2941 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2942 R = Builder.CreateSelect(IsZero, Step, R); 2943 } 2944 2945 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2946 2947 return VectorTripCount; 2948 } 2949 2950 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2951 const DataLayout &DL) { 2952 // Verify that V is a vector type with same number of elements as DstVTy. 2953 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2954 unsigned VF = DstFVTy->getNumElements(); 2955 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2956 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2957 Type *SrcElemTy = SrcVecTy->getElementType(); 2958 Type *DstElemTy = DstFVTy->getElementType(); 2959 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2960 "Vector elements must have same size"); 2961 2962 // Do a direct cast if element types are castable. 2963 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2964 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2965 } 2966 // V cannot be directly casted to desired vector type. 2967 // May happen when V is a floating point vector but DstVTy is a vector of 2968 // pointers or vice-versa. Handle this using a two-step bitcast using an 2969 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2970 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2971 "Only one type should be a pointer type"); 2972 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2973 "Only one type should be a floating point type"); 2974 Type *IntTy = 2975 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2976 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2977 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2978 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2979 } 2980 2981 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2982 BasicBlock *Bypass) { 2983 Value *Count = getOrCreateTripCount(L); 2984 // Reuse existing vector loop preheader for TC checks. 2985 // Note that new preheader block is generated for vector loop. 2986 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2987 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2988 2989 // Generate code to check if the loop's trip count is less than VF * UF, or 2990 // equal to it in case a scalar epilogue is required; this implies that the 2991 // vector trip count is zero. This check also covers the case where adding one 2992 // to the backedge-taken count overflowed leading to an incorrect trip count 2993 // of zero. In this case we will also jump to the scalar loop. 2994 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2995 : ICmpInst::ICMP_ULT; 2996 2997 // If tail is to be folded, vector loop takes care of all iterations. 2998 Value *CheckMinIters = Builder.getFalse(); 2999 if (!Cost->foldTailByMasking()) { 3000 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3001 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3002 } 3003 // Create new preheader for vector loop. 3004 LoopVectorPreHeader = 3005 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3006 "vector.ph"); 3007 3008 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3009 DT->getNode(Bypass)->getIDom()) && 3010 "TC check is expected to dominate Bypass"); 3011 3012 // Update dominator for Bypass & LoopExit (if needed). 3013 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3014 if (!Cost->requiresScalarEpilogue(VF)) 3015 // If there is an epilogue which must run, there's no edge from the 3016 // middle block to exit blocks and thus no need to update the immediate 3017 // dominator of the exit blocks. 3018 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3019 3020 ReplaceInstWithInst( 3021 TCCheckBlock->getTerminator(), 3022 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3023 LoopBypassBlocks.push_back(TCCheckBlock); 3024 } 3025 3026 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3027 3028 BasicBlock *const SCEVCheckBlock = 3029 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3030 if (!SCEVCheckBlock) 3031 return nullptr; 3032 3033 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3034 (OptForSizeBasedOnProfile && 3035 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3036 "Cannot SCEV check stride or overflow when optimizing for size"); 3037 3038 3039 // Update dominator only if this is first RT check. 3040 if (LoopBypassBlocks.empty()) { 3041 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3042 if (!Cost->requiresScalarEpilogue(VF)) 3043 // If there is an epilogue which must run, there's no edge from the 3044 // middle block to exit blocks and thus no need to update the immediate 3045 // dominator of the exit blocks. 3046 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3047 } 3048 3049 LoopBypassBlocks.push_back(SCEVCheckBlock); 3050 AddedSafetyChecks = true; 3051 return SCEVCheckBlock; 3052 } 3053 3054 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3055 BasicBlock *Bypass) { 3056 // VPlan-native path does not do any analysis for runtime checks currently. 3057 if (EnableVPlanNativePath) 3058 return nullptr; 3059 3060 BasicBlock *const MemCheckBlock = 3061 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3062 3063 // Check if we generated code that checks in runtime if arrays overlap. We put 3064 // the checks into a separate block to make the more common case of few 3065 // elements faster. 3066 if (!MemCheckBlock) 3067 return nullptr; 3068 3069 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3070 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3071 "Cannot emit memory checks when optimizing for size, unless forced " 3072 "to vectorize."); 3073 ORE->emit([&]() { 3074 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3075 L->getStartLoc(), L->getHeader()) 3076 << "Code-size may be reduced by not forcing " 3077 "vectorization, or by source-code modifications " 3078 "eliminating the need for runtime checks " 3079 "(e.g., adding 'restrict')."; 3080 }); 3081 } 3082 3083 LoopBypassBlocks.push_back(MemCheckBlock); 3084 3085 AddedSafetyChecks = true; 3086 3087 // We currently don't use LoopVersioning for the actual loop cloning but we 3088 // still use it to add the noalias metadata. 3089 LVer = std::make_unique<LoopVersioning>( 3090 *Legal->getLAI(), 3091 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3092 DT, PSE.getSE()); 3093 LVer->prepareNoAliasMetadata(); 3094 return MemCheckBlock; 3095 } 3096 3097 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3098 LoopScalarBody = OrigLoop->getHeader(); 3099 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3100 assert(LoopVectorPreHeader && "Invalid loop structure"); 3101 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3102 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3103 "multiple exit loop without required epilogue?"); 3104 3105 LoopMiddleBlock = 3106 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3107 LI, nullptr, Twine(Prefix) + "middle.block"); 3108 LoopScalarPreHeader = 3109 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3110 nullptr, Twine(Prefix) + "scalar.ph"); 3111 3112 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3113 3114 // Set up the middle block terminator. Two cases: 3115 // 1) If we know that we must execute the scalar epilogue, emit an 3116 // unconditional branch. 3117 // 2) Otherwise, we must have a single unique exit block (due to how we 3118 // implement the multiple exit case). In this case, set up a conditonal 3119 // branch from the middle block to the loop scalar preheader, and the 3120 // exit block. completeLoopSkeleton will update the condition to use an 3121 // iteration check, if required to decide whether to execute the remainder. 3122 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3123 BranchInst::Create(LoopScalarPreHeader) : 3124 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3125 Builder.getTrue()); 3126 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3127 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3128 3129 // We intentionally don't let SplitBlock to update LoopInfo since 3130 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3131 // LoopVectorBody is explicitly added to the correct place few lines later. 3132 BasicBlock *LoopVectorBody = 3133 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3134 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3135 3136 // Update dominator for loop exit. 3137 if (!Cost->requiresScalarEpilogue(VF)) 3138 // If there is an epilogue which must run, there's no edge from the 3139 // middle block to exit blocks and thus no need to update the immediate 3140 // dominator of the exit blocks. 3141 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3142 3143 // Create and register the new vector loop. 3144 Loop *Lp = LI->AllocateLoop(); 3145 Loop *ParentLoop = OrigLoop->getParentLoop(); 3146 3147 // Insert the new loop into the loop nest and register the new basic blocks 3148 // before calling any utilities such as SCEV that require valid LoopInfo. 3149 if (ParentLoop) { 3150 ParentLoop->addChildLoop(Lp); 3151 } else { 3152 LI->addTopLevelLoop(Lp); 3153 } 3154 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3155 return Lp; 3156 } 3157 3158 void InnerLoopVectorizer::createInductionResumeValues( 3159 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3160 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3161 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3162 "Inconsistent information about additional bypass."); 3163 3164 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3165 assert(VectorTripCount && L && "Expected valid arguments"); 3166 // We are going to resume the execution of the scalar loop. 3167 // Go over all of the induction variables that we found and fix the 3168 // PHIs that are left in the scalar version of the loop. 3169 // The starting values of PHI nodes depend on the counter of the last 3170 // iteration in the vectorized loop. 3171 // If we come from a bypass edge then we need to start from the original 3172 // start value. 3173 Instruction *OldInduction = Legal->getPrimaryInduction(); 3174 for (auto &InductionEntry : Legal->getInductionVars()) { 3175 PHINode *OrigPhi = InductionEntry.first; 3176 InductionDescriptor II = InductionEntry.second; 3177 3178 // Create phi nodes to merge from the backedge-taken check block. 3179 PHINode *BCResumeVal = 3180 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3181 LoopScalarPreHeader->getTerminator()); 3182 // Copy original phi DL over to the new one. 3183 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3184 Value *&EndValue = IVEndValues[OrigPhi]; 3185 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3186 if (OrigPhi == OldInduction) { 3187 // We know what the end value is. 3188 EndValue = VectorTripCount; 3189 } else { 3190 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3191 3192 // Fast-math-flags propagate from the original induction instruction. 3193 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3194 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3195 3196 Type *StepType = II.getStep()->getType(); 3197 Instruction::CastOps CastOp = 3198 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3199 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3200 Value *Step = 3201 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3202 EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3203 EndValue->setName("ind.end"); 3204 3205 // Compute the end value for the additional bypass (if applicable). 3206 if (AdditionalBypass.first) { 3207 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3208 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3209 StepType, true); 3210 Value *Step = 3211 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3212 CRD = 3213 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3214 EndValueFromAdditionalBypass = 3215 emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3216 EndValueFromAdditionalBypass->setName("ind.end"); 3217 } 3218 } 3219 // The new PHI merges the original incoming value, in case of a bypass, 3220 // or the value at the end of the vectorized loop. 3221 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3222 3223 // Fix the scalar body counter (PHI node). 3224 // The old induction's phi node in the scalar body needs the truncated 3225 // value. 3226 for (BasicBlock *BB : LoopBypassBlocks) 3227 BCResumeVal->addIncoming(II.getStartValue(), BB); 3228 3229 if (AdditionalBypass.first) 3230 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3231 EndValueFromAdditionalBypass); 3232 3233 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3234 } 3235 } 3236 3237 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3238 MDNode *OrigLoopID) { 3239 assert(L && "Expected valid loop."); 3240 3241 // The trip counts should be cached by now. 3242 Value *Count = getOrCreateTripCount(L); 3243 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3244 3245 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3246 3247 // Add a check in the middle block to see if we have completed 3248 // all of the iterations in the first vector loop. Three cases: 3249 // 1) If we require a scalar epilogue, there is no conditional branch as 3250 // we unconditionally branch to the scalar preheader. Do nothing. 3251 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3252 // Thus if tail is to be folded, we know we don't need to run the 3253 // remainder and we can use the previous value for the condition (true). 3254 // 3) Otherwise, construct a runtime check. 3255 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3256 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3257 Count, VectorTripCount, "cmp.n", 3258 LoopMiddleBlock->getTerminator()); 3259 3260 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3261 // of the corresponding compare because they may have ended up with 3262 // different line numbers and we want to avoid awkward line stepping while 3263 // debugging. Eg. if the compare has got a line number inside the loop. 3264 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3265 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3266 } 3267 3268 // Get ready to start creating new instructions into the vectorized body. 3269 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3270 "Inconsistent vector loop preheader"); 3271 3272 #ifdef EXPENSIVE_CHECKS 3273 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3274 LI->verify(*DT); 3275 #endif 3276 3277 return LoopVectorPreHeader; 3278 } 3279 3280 std::pair<BasicBlock *, Value *> 3281 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3282 /* 3283 In this function we generate a new loop. The new loop will contain 3284 the vectorized instructions while the old loop will continue to run the 3285 scalar remainder. 3286 3287 [ ] <-- loop iteration number check. 3288 / | 3289 / v 3290 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3291 | / | 3292 | / v 3293 || [ ] <-- vector pre header. 3294 |/ | 3295 | v 3296 | [ ] \ 3297 | [ ]_| <-- vector loop. 3298 | | 3299 | v 3300 \ -[ ] <--- middle-block. 3301 \/ | 3302 /\ v 3303 | ->[ ] <--- new preheader. 3304 | | 3305 (opt) v <-- edge from middle to exit iff epilogue is not required. 3306 | [ ] \ 3307 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3308 \ | 3309 \ v 3310 >[ ] <-- exit block(s). 3311 ... 3312 */ 3313 3314 // Get the metadata of the original loop before it gets modified. 3315 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3316 3317 // Workaround! Compute the trip count of the original loop and cache it 3318 // before we start modifying the CFG. This code has a systemic problem 3319 // wherein it tries to run analysis over partially constructed IR; this is 3320 // wrong, and not simply for SCEV. The trip count of the original loop 3321 // simply happens to be prone to hitting this in practice. In theory, we 3322 // can hit the same issue for any SCEV, or ValueTracking query done during 3323 // mutation. See PR49900. 3324 getOrCreateTripCount(OrigLoop); 3325 3326 // Create an empty vector loop, and prepare basic blocks for the runtime 3327 // checks. 3328 Loop *Lp = createVectorLoopSkeleton(""); 3329 3330 // Now, compare the new count to zero. If it is zero skip the vector loop and 3331 // jump to the scalar loop. This check also covers the case where the 3332 // backedge-taken count is uint##_max: adding one to it will overflow leading 3333 // to an incorrect trip count of zero. In this (rare) case we will also jump 3334 // to the scalar loop. 3335 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3336 3337 // Generate the code to check any assumptions that we've made for SCEV 3338 // expressions. 3339 emitSCEVChecks(LoopScalarPreHeader); 3340 3341 // Generate the code that checks in runtime if arrays overlap. We put the 3342 // checks into a separate block to make the more common case of few elements 3343 // faster. 3344 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3345 3346 createHeaderBranch(Lp); 3347 3348 // Emit phis for the new starting index of the scalar loop. 3349 createInductionResumeValues(Lp); 3350 3351 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3352 } 3353 3354 // Fix up external users of the induction variable. At this point, we are 3355 // in LCSSA form, with all external PHIs that use the IV having one input value, 3356 // coming from the remainder loop. We need those PHIs to also have a correct 3357 // value for the IV when arriving directly from the middle block. 3358 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3359 const InductionDescriptor &II, 3360 Value *CountRoundDown, Value *EndValue, 3361 BasicBlock *MiddleBlock, 3362 BasicBlock *VectorHeader) { 3363 // There are two kinds of external IV usages - those that use the value 3364 // computed in the last iteration (the PHI) and those that use the penultimate 3365 // value (the value that feeds into the phi from the loop latch). 3366 // We allow both, but they, obviously, have different values. 3367 3368 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3369 3370 DenseMap<Value *, Value *> MissingVals; 3371 3372 // An external user of the last iteration's value should see the value that 3373 // the remainder loop uses to initialize its own IV. 3374 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3375 for (User *U : PostInc->users()) { 3376 Instruction *UI = cast<Instruction>(U); 3377 if (!OrigLoop->contains(UI)) { 3378 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3379 MissingVals[UI] = EndValue; 3380 } 3381 } 3382 3383 // An external user of the penultimate value need to see EndValue - Step. 3384 // The simplest way to get this is to recompute it from the constituent SCEVs, 3385 // that is Start + (Step * (CRD - 1)). 3386 for (User *U : OrigPhi->users()) { 3387 auto *UI = cast<Instruction>(U); 3388 if (!OrigLoop->contains(UI)) { 3389 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3390 3391 IRBuilder<> B(MiddleBlock->getTerminator()); 3392 3393 // Fast-math-flags propagate from the original induction instruction. 3394 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3395 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3396 3397 Value *CountMinusOne = B.CreateSub( 3398 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3399 Value *CMO = 3400 !II.getStep()->getType()->isIntegerTy() 3401 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3402 II.getStep()->getType()) 3403 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3404 CMO->setName("cast.cmo"); 3405 3406 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3407 VectorHeader->getTerminator()); 3408 Value *Escape = 3409 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3410 Escape->setName("ind.escape"); 3411 MissingVals[UI] = Escape; 3412 } 3413 } 3414 3415 for (auto &I : MissingVals) { 3416 PHINode *PHI = cast<PHINode>(I.first); 3417 // One corner case we have to handle is two IVs "chasing" each-other, 3418 // that is %IV2 = phi [...], [ %IV1, %latch ] 3419 // In this case, if IV1 has an external use, we need to avoid adding both 3420 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3421 // don't already have an incoming value for the middle block. 3422 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3423 PHI->addIncoming(I.second, MiddleBlock); 3424 } 3425 } 3426 3427 namespace { 3428 3429 struct CSEDenseMapInfo { 3430 static bool canHandle(const Instruction *I) { 3431 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3432 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3433 } 3434 3435 static inline Instruction *getEmptyKey() { 3436 return DenseMapInfo<Instruction *>::getEmptyKey(); 3437 } 3438 3439 static inline Instruction *getTombstoneKey() { 3440 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3441 } 3442 3443 static unsigned getHashValue(const Instruction *I) { 3444 assert(canHandle(I) && "Unknown instruction!"); 3445 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3446 I->value_op_end())); 3447 } 3448 3449 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3450 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3451 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3452 return LHS == RHS; 3453 return LHS->isIdenticalTo(RHS); 3454 } 3455 }; 3456 3457 } // end anonymous namespace 3458 3459 ///Perform cse of induction variable instructions. 3460 static void cse(BasicBlock *BB) { 3461 // Perform simple cse. 3462 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3463 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3464 if (!CSEDenseMapInfo::canHandle(&In)) 3465 continue; 3466 3467 // Check if we can replace this instruction with any of the 3468 // visited instructions. 3469 if (Instruction *V = CSEMap.lookup(&In)) { 3470 In.replaceAllUsesWith(V); 3471 In.eraseFromParent(); 3472 continue; 3473 } 3474 3475 CSEMap[&In] = &In; 3476 } 3477 } 3478 3479 InstructionCost 3480 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3481 bool &NeedToScalarize) const { 3482 Function *F = CI->getCalledFunction(); 3483 Type *ScalarRetTy = CI->getType(); 3484 SmallVector<Type *, 4> Tys, ScalarTys; 3485 for (auto &ArgOp : CI->args()) 3486 ScalarTys.push_back(ArgOp->getType()); 3487 3488 // Estimate cost of scalarized vector call. The source operands are assumed 3489 // to be vectors, so we need to extract individual elements from there, 3490 // execute VF scalar calls, and then gather the result into the vector return 3491 // value. 3492 InstructionCost ScalarCallCost = 3493 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3494 if (VF.isScalar()) 3495 return ScalarCallCost; 3496 3497 // Compute corresponding vector type for return value and arguments. 3498 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3499 for (Type *ScalarTy : ScalarTys) 3500 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3501 3502 // Compute costs of unpacking argument values for the scalar calls and 3503 // packing the return values to a vector. 3504 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3505 3506 InstructionCost Cost = 3507 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3508 3509 // If we can't emit a vector call for this function, then the currently found 3510 // cost is the cost we need to return. 3511 NeedToScalarize = true; 3512 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3513 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3514 3515 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3516 return Cost; 3517 3518 // If the corresponding vector cost is cheaper, return its cost. 3519 InstructionCost VectorCallCost = 3520 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3521 if (VectorCallCost < Cost) { 3522 NeedToScalarize = false; 3523 Cost = VectorCallCost; 3524 } 3525 return Cost; 3526 } 3527 3528 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3529 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3530 return Elt; 3531 return VectorType::get(Elt, VF); 3532 } 3533 3534 InstructionCost 3535 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3536 ElementCount VF) const { 3537 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3538 assert(ID && "Expected intrinsic call!"); 3539 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3540 FastMathFlags FMF; 3541 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3542 FMF = FPMO->getFastMathFlags(); 3543 3544 SmallVector<const Value *> Arguments(CI->args()); 3545 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3546 SmallVector<Type *> ParamTys; 3547 std::transform(FTy->param_begin(), FTy->param_end(), 3548 std::back_inserter(ParamTys), 3549 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3550 3551 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3552 dyn_cast<IntrinsicInst>(CI)); 3553 return TTI.getIntrinsicInstrCost(CostAttrs, 3554 TargetTransformInfo::TCK_RecipThroughput); 3555 } 3556 3557 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3558 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3559 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3560 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3561 } 3562 3563 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3564 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3565 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3566 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3567 } 3568 3569 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3570 // For every instruction `I` in MinBWs, truncate the operands, create a 3571 // truncated version of `I` and reextend its result. InstCombine runs 3572 // later and will remove any ext/trunc pairs. 3573 SmallPtrSet<Value *, 4> Erased; 3574 for (const auto &KV : Cost->getMinimalBitwidths()) { 3575 // If the value wasn't vectorized, we must maintain the original scalar 3576 // type. The absence of the value from State indicates that it 3577 // wasn't vectorized. 3578 // FIXME: Should not rely on getVPValue at this point. 3579 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3580 if (!State.hasAnyVectorValue(Def)) 3581 continue; 3582 for (unsigned Part = 0; Part < UF; ++Part) { 3583 Value *I = State.get(Def, Part); 3584 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3585 continue; 3586 Type *OriginalTy = I->getType(); 3587 Type *ScalarTruncatedTy = 3588 IntegerType::get(OriginalTy->getContext(), KV.second); 3589 auto *TruncatedTy = VectorType::get( 3590 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3591 if (TruncatedTy == OriginalTy) 3592 continue; 3593 3594 IRBuilder<> B(cast<Instruction>(I)); 3595 auto ShrinkOperand = [&](Value *V) -> Value * { 3596 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3597 if (ZI->getSrcTy() == TruncatedTy) 3598 return ZI->getOperand(0); 3599 return B.CreateZExtOrTrunc(V, TruncatedTy); 3600 }; 3601 3602 // The actual instruction modification depends on the instruction type, 3603 // unfortunately. 3604 Value *NewI = nullptr; 3605 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3606 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3607 ShrinkOperand(BO->getOperand(1))); 3608 3609 // Any wrapping introduced by shrinking this operation shouldn't be 3610 // considered undefined behavior. So, we can't unconditionally copy 3611 // arithmetic wrapping flags to NewI. 3612 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3613 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3614 NewI = 3615 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3616 ShrinkOperand(CI->getOperand(1))); 3617 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3618 NewI = B.CreateSelect(SI->getCondition(), 3619 ShrinkOperand(SI->getTrueValue()), 3620 ShrinkOperand(SI->getFalseValue())); 3621 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3622 switch (CI->getOpcode()) { 3623 default: 3624 llvm_unreachable("Unhandled cast!"); 3625 case Instruction::Trunc: 3626 NewI = ShrinkOperand(CI->getOperand(0)); 3627 break; 3628 case Instruction::SExt: 3629 NewI = B.CreateSExtOrTrunc( 3630 CI->getOperand(0), 3631 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3632 break; 3633 case Instruction::ZExt: 3634 NewI = B.CreateZExtOrTrunc( 3635 CI->getOperand(0), 3636 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3637 break; 3638 } 3639 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3640 auto Elements0 = 3641 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3642 auto *O0 = B.CreateZExtOrTrunc( 3643 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3644 auto Elements1 = 3645 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3646 auto *O1 = B.CreateZExtOrTrunc( 3647 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3648 3649 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3650 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3651 // Don't do anything with the operands, just extend the result. 3652 continue; 3653 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3654 auto Elements = 3655 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3656 auto *O0 = B.CreateZExtOrTrunc( 3657 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3658 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3659 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3660 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3661 auto Elements = 3662 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3663 auto *O0 = B.CreateZExtOrTrunc( 3664 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3665 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3666 } else { 3667 // If we don't know what to do, be conservative and don't do anything. 3668 continue; 3669 } 3670 3671 // Lastly, extend the result. 3672 NewI->takeName(cast<Instruction>(I)); 3673 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3674 I->replaceAllUsesWith(Res); 3675 cast<Instruction>(I)->eraseFromParent(); 3676 Erased.insert(I); 3677 State.reset(Def, Res, Part); 3678 } 3679 } 3680 3681 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3682 for (const auto &KV : Cost->getMinimalBitwidths()) { 3683 // If the value wasn't vectorized, we must maintain the original scalar 3684 // type. The absence of the value from State indicates that it 3685 // wasn't vectorized. 3686 // FIXME: Should not rely on getVPValue at this point. 3687 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3688 if (!State.hasAnyVectorValue(Def)) 3689 continue; 3690 for (unsigned Part = 0; Part < UF; ++Part) { 3691 Value *I = State.get(Def, Part); 3692 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3693 if (Inst && Inst->use_empty()) { 3694 Value *NewI = Inst->getOperand(0); 3695 Inst->eraseFromParent(); 3696 State.reset(Def, NewI, Part); 3697 } 3698 } 3699 } 3700 } 3701 3702 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3703 // Insert truncates and extends for any truncated instructions as hints to 3704 // InstCombine. 3705 if (VF.isVector()) 3706 truncateToMinimalBitwidths(State); 3707 3708 // Fix widened non-induction PHIs by setting up the PHI operands. 3709 if (OrigPHIsToFix.size()) { 3710 assert(EnableVPlanNativePath && 3711 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3712 fixNonInductionPHIs(State); 3713 } 3714 3715 // At this point every instruction in the original loop is widened to a 3716 // vector form. Now we need to fix the recurrences in the loop. These PHI 3717 // nodes are currently empty because we did not want to introduce cycles. 3718 // This is the second stage of vectorizing recurrences. 3719 fixCrossIterationPHIs(State); 3720 3721 // Forget the original basic block. 3722 PSE.getSE()->forgetLoop(OrigLoop); 3723 3724 Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB); 3725 // If we inserted an edge from the middle block to the unique exit block, 3726 // update uses outside the loop (phis) to account for the newly inserted 3727 // edge. 3728 if (!Cost->requiresScalarEpilogue(VF)) { 3729 // Fix-up external users of the induction variables. 3730 for (auto &Entry : Legal->getInductionVars()) 3731 fixupIVUsers( 3732 Entry.first, Entry.second, getOrCreateVectorTripCount(VectorLoop), 3733 IVEndValues[Entry.first], LoopMiddleBlock, VectorLoop->getHeader()); 3734 3735 fixLCSSAPHIs(State); 3736 } 3737 3738 for (Instruction *PI : PredicatedInstructions) 3739 sinkScalarOperands(&*PI); 3740 3741 // Remove redundant induction instructions. 3742 cse(VectorLoop->getHeader()); 3743 3744 // Set/update profile weights for the vector and remainder loops as original 3745 // loop iterations are now distributed among them. Note that original loop 3746 // represented by LoopScalarBody becomes remainder loop after vectorization. 3747 // 3748 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3749 // end up getting slightly roughened result but that should be OK since 3750 // profile is not inherently precise anyway. Note also possible bypass of 3751 // vector code caused by legality checks is ignored, assigning all the weight 3752 // to the vector loop, optimistically. 3753 // 3754 // For scalable vectorization we can't know at compile time how many iterations 3755 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3756 // vscale of '1'. 3757 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3758 LI->getLoopFor(LoopScalarBody), 3759 VF.getKnownMinValue() * UF); 3760 } 3761 3762 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3763 // In order to support recurrences we need to be able to vectorize Phi nodes. 3764 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3765 // stage #2: We now need to fix the recurrences by adding incoming edges to 3766 // the currently empty PHI nodes. At this point every instruction in the 3767 // original loop is widened to a vector form so we can use them to construct 3768 // the incoming edges. 3769 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3770 for (VPRecipeBase &R : Header->phis()) { 3771 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3772 fixReduction(ReductionPhi, State); 3773 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3774 fixFirstOrderRecurrence(FOR, State); 3775 } 3776 } 3777 3778 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3779 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3780 // This is the second phase of vectorizing first-order recurrences. An 3781 // overview of the transformation is described below. Suppose we have the 3782 // following loop. 3783 // 3784 // for (int i = 0; i < n; ++i) 3785 // b[i] = a[i] - a[i - 1]; 3786 // 3787 // There is a first-order recurrence on "a". For this loop, the shorthand 3788 // scalar IR looks like: 3789 // 3790 // scalar.ph: 3791 // s_init = a[-1] 3792 // br scalar.body 3793 // 3794 // scalar.body: 3795 // i = phi [0, scalar.ph], [i+1, scalar.body] 3796 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3797 // s2 = a[i] 3798 // b[i] = s2 - s1 3799 // br cond, scalar.body, ... 3800 // 3801 // In this example, s1 is a recurrence because it's value depends on the 3802 // previous iteration. In the first phase of vectorization, we created a 3803 // vector phi v1 for s1. We now complete the vectorization and produce the 3804 // shorthand vector IR shown below (for VF = 4, UF = 1). 3805 // 3806 // vector.ph: 3807 // v_init = vector(..., ..., ..., a[-1]) 3808 // br vector.body 3809 // 3810 // vector.body 3811 // i = phi [0, vector.ph], [i+4, vector.body] 3812 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3813 // v2 = a[i, i+1, i+2, i+3]; 3814 // v3 = vector(v1(3), v2(0, 1, 2)) 3815 // b[i, i+1, i+2, i+3] = v2 - v3 3816 // br cond, vector.body, middle.block 3817 // 3818 // middle.block: 3819 // x = v2(3) 3820 // br scalar.ph 3821 // 3822 // scalar.ph: 3823 // s_init = phi [x, middle.block], [a[-1], otherwise] 3824 // br scalar.body 3825 // 3826 // After execution completes the vector loop, we extract the next value of 3827 // the recurrence (x) to use as the initial value in the scalar loop. 3828 3829 // Extract the last vector element in the middle block. This will be the 3830 // initial value for the recurrence when jumping to the scalar loop. 3831 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3832 Value *Incoming = State.get(PreviousDef, UF - 1); 3833 auto *ExtractForScalar = Incoming; 3834 auto *IdxTy = Builder.getInt32Ty(); 3835 if (VF.isVector()) { 3836 auto *One = ConstantInt::get(IdxTy, 1); 3837 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3838 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3839 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3840 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3841 "vector.recur.extract"); 3842 } 3843 // Extract the second last element in the middle block if the 3844 // Phi is used outside the loop. We need to extract the phi itself 3845 // and not the last element (the phi update in the current iteration). This 3846 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3847 // when the scalar loop is not run at all. 3848 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3849 if (VF.isVector()) { 3850 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3851 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3852 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3853 Incoming, Idx, "vector.recur.extract.for.phi"); 3854 } else if (UF > 1) 3855 // When loop is unrolled without vectorizing, initialize 3856 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3857 // of `Incoming`. This is analogous to the vectorized case above: extracting 3858 // the second last element when VF > 1. 3859 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3860 3861 // Fix the initial value of the original recurrence in the scalar loop. 3862 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3863 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3864 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3865 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3866 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3867 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3868 Start->addIncoming(Incoming, BB); 3869 } 3870 3871 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3872 Phi->setName("scalar.recur"); 3873 3874 // Finally, fix users of the recurrence outside the loop. The users will need 3875 // either the last value of the scalar recurrence or the last value of the 3876 // vector recurrence we extracted in the middle block. Since the loop is in 3877 // LCSSA form, we just need to find all the phi nodes for the original scalar 3878 // recurrence in the exit block, and then add an edge for the middle block. 3879 // Note that LCSSA does not imply single entry when the original scalar loop 3880 // had multiple exiting edges (as we always run the last iteration in the 3881 // scalar epilogue); in that case, there is no edge from middle to exit and 3882 // and thus no phis which needed updated. 3883 if (!Cost->requiresScalarEpilogue(VF)) 3884 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3885 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3886 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3887 } 3888 3889 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3890 VPTransformState &State) { 3891 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3892 // Get it's reduction variable descriptor. 3893 assert(Legal->isReductionVariable(OrigPhi) && 3894 "Unable to find the reduction variable"); 3895 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3896 3897 RecurKind RK = RdxDesc.getRecurrenceKind(); 3898 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3899 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3900 setDebugLocFromInst(ReductionStartValue); 3901 3902 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3903 // This is the vector-clone of the value that leaves the loop. 3904 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3905 3906 // Wrap flags are in general invalid after vectorization, clear them. 3907 clearReductionWrapFlags(RdxDesc, State); 3908 3909 // Before each round, move the insertion point right between 3910 // the PHIs and the values we are going to write. 3911 // This allows us to write both PHINodes and the extractelement 3912 // instructions. 3913 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3914 3915 setDebugLocFromInst(LoopExitInst); 3916 3917 Type *PhiTy = OrigPhi->getType(); 3918 BasicBlock *VectorLoopLatch = 3919 LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 3920 // If tail is folded by masking, the vector value to leave the loop should be 3921 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3922 // instead of the former. For an inloop reduction the reduction will already 3923 // be predicated, and does not need to be handled here. 3924 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3925 for (unsigned Part = 0; Part < UF; ++Part) { 3926 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3927 Value *Sel = nullptr; 3928 for (User *U : VecLoopExitInst->users()) { 3929 if (isa<SelectInst>(U)) { 3930 assert(!Sel && "Reduction exit feeding two selects"); 3931 Sel = U; 3932 } else 3933 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3934 } 3935 assert(Sel && "Reduction exit feeds no select"); 3936 State.reset(LoopExitInstDef, Sel, Part); 3937 3938 // If the target can create a predicated operator for the reduction at no 3939 // extra cost in the loop (for example a predicated vadd), it can be 3940 // cheaper for the select to remain in the loop than be sunk out of it, 3941 // and so use the select value for the phi instead of the old 3942 // LoopExitValue. 3943 if (PreferPredicatedReductionSelect || 3944 TTI->preferPredicatedReductionSelect( 3945 RdxDesc.getOpcode(), PhiTy, 3946 TargetTransformInfo::ReductionFlags())) { 3947 auto *VecRdxPhi = 3948 cast<PHINode>(State.get(PhiR, Part)); 3949 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3950 } 3951 } 3952 } 3953 3954 // If the vector reduction can be performed in a smaller type, we truncate 3955 // then extend the loop exit value to enable InstCombine to evaluate the 3956 // entire expression in the smaller type. 3957 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3958 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3959 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3960 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3961 VectorParts RdxParts(UF); 3962 for (unsigned Part = 0; Part < UF; ++Part) { 3963 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3964 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3965 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3966 : Builder.CreateZExt(Trunc, VecTy); 3967 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3968 if (U != Trunc) { 3969 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3970 RdxParts[Part] = Extnd; 3971 } 3972 } 3973 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3974 for (unsigned Part = 0; Part < UF; ++Part) { 3975 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3976 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3977 } 3978 } 3979 3980 // Reduce all of the unrolled parts into a single vector. 3981 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3982 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3983 3984 // The middle block terminator has already been assigned a DebugLoc here (the 3985 // OrigLoop's single latch terminator). We want the whole middle block to 3986 // appear to execute on this line because: (a) it is all compiler generated, 3987 // (b) these instructions are always executed after evaluating the latch 3988 // conditional branch, and (c) other passes may add new predecessors which 3989 // terminate on this line. This is the easiest way to ensure we don't 3990 // accidentally cause an extra step back into the loop while debugging. 3991 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3992 if (PhiR->isOrdered()) 3993 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3994 else { 3995 // Floating-point operations should have some FMF to enable the reduction. 3996 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3997 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3998 for (unsigned Part = 1; Part < UF; ++Part) { 3999 Value *RdxPart = State.get(LoopExitInstDef, Part); 4000 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4001 ReducedPartRdx = Builder.CreateBinOp( 4002 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4003 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4004 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4005 ReducedPartRdx, RdxPart); 4006 else 4007 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4008 } 4009 } 4010 4011 // Create the reduction after the loop. Note that inloop reductions create the 4012 // target reduction in the loop using a Reduction recipe. 4013 if (VF.isVector() && !PhiR->isInLoop()) { 4014 ReducedPartRdx = 4015 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4016 // If the reduction can be performed in a smaller type, we need to extend 4017 // the reduction to the wider type before we branch to the original loop. 4018 if (PhiTy != RdxDesc.getRecurrenceType()) 4019 ReducedPartRdx = RdxDesc.isSigned() 4020 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4021 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4022 } 4023 4024 PHINode *ResumePhi = 4025 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4026 4027 // Create a phi node that merges control-flow from the backedge-taken check 4028 // block and the middle block. 4029 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4030 LoopScalarPreHeader->getTerminator()); 4031 4032 // If we are fixing reductions in the epilogue loop then we should already 4033 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4034 // we carry over the incoming values correctly. 4035 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4036 if (Incoming == LoopMiddleBlock) 4037 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4038 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4039 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4040 Incoming); 4041 else 4042 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4043 } 4044 4045 // Set the resume value for this reduction 4046 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4047 4048 // Now, we need to fix the users of the reduction variable 4049 // inside and outside of the scalar remainder loop. 4050 4051 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4052 // in the exit blocks. See comment on analogous loop in 4053 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4054 if (!Cost->requiresScalarEpilogue(VF)) 4055 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4056 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4057 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4058 4059 // Fix the scalar loop reduction variable with the incoming reduction sum 4060 // from the vector body and from the backedge value. 4061 int IncomingEdgeBlockIdx = 4062 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4063 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4064 // Pick the other block. 4065 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4066 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4067 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4068 } 4069 4070 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4071 VPTransformState &State) { 4072 RecurKind RK = RdxDesc.getRecurrenceKind(); 4073 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4074 return; 4075 4076 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4077 assert(LoopExitInstr && "null loop exit instruction"); 4078 SmallVector<Instruction *, 8> Worklist; 4079 SmallPtrSet<Instruction *, 8> Visited; 4080 Worklist.push_back(LoopExitInstr); 4081 Visited.insert(LoopExitInstr); 4082 4083 while (!Worklist.empty()) { 4084 Instruction *Cur = Worklist.pop_back_val(); 4085 if (isa<OverflowingBinaryOperator>(Cur)) 4086 for (unsigned Part = 0; Part < UF; ++Part) { 4087 // FIXME: Should not rely on getVPValue at this point. 4088 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4089 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4090 } 4091 4092 for (User *U : Cur->users()) { 4093 Instruction *UI = cast<Instruction>(U); 4094 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4095 Visited.insert(UI).second) 4096 Worklist.push_back(UI); 4097 } 4098 } 4099 } 4100 4101 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4102 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4103 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4104 // Some phis were already hand updated by the reduction and recurrence 4105 // code above, leave them alone. 4106 continue; 4107 4108 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4109 // Non-instruction incoming values will have only one value. 4110 4111 VPLane Lane = VPLane::getFirstLane(); 4112 if (isa<Instruction>(IncomingValue) && 4113 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4114 VF)) 4115 Lane = VPLane::getLastLaneForVF(VF); 4116 4117 // Can be a loop invariant incoming value or the last scalar value to be 4118 // extracted from the vectorized loop. 4119 // FIXME: Should not rely on getVPValue at this point. 4120 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4121 Value *lastIncomingValue = 4122 OrigLoop->isLoopInvariant(IncomingValue) 4123 ? IncomingValue 4124 : State.get(State.Plan->getVPValue(IncomingValue, true), 4125 VPIteration(UF - 1, Lane)); 4126 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4127 } 4128 } 4129 4130 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4131 // The basic block and loop containing the predicated instruction. 4132 auto *PredBB = PredInst->getParent(); 4133 auto *VectorLoop = LI->getLoopFor(PredBB); 4134 4135 // Initialize a worklist with the operands of the predicated instruction. 4136 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4137 4138 // Holds instructions that we need to analyze again. An instruction may be 4139 // reanalyzed if we don't yet know if we can sink it or not. 4140 SmallVector<Instruction *, 8> InstsToReanalyze; 4141 4142 // Returns true if a given use occurs in the predicated block. Phi nodes use 4143 // their operands in their corresponding predecessor blocks. 4144 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4145 auto *I = cast<Instruction>(U.getUser()); 4146 BasicBlock *BB = I->getParent(); 4147 if (auto *Phi = dyn_cast<PHINode>(I)) 4148 BB = Phi->getIncomingBlock( 4149 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4150 return BB == PredBB; 4151 }; 4152 4153 // Iteratively sink the scalarized operands of the predicated instruction 4154 // into the block we created for it. When an instruction is sunk, it's 4155 // operands are then added to the worklist. The algorithm ends after one pass 4156 // through the worklist doesn't sink a single instruction. 4157 bool Changed; 4158 do { 4159 // Add the instructions that need to be reanalyzed to the worklist, and 4160 // reset the changed indicator. 4161 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4162 InstsToReanalyze.clear(); 4163 Changed = false; 4164 4165 while (!Worklist.empty()) { 4166 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4167 4168 // We can't sink an instruction if it is a phi node, is not in the loop, 4169 // or may have side effects. 4170 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4171 I->mayHaveSideEffects()) 4172 continue; 4173 4174 // If the instruction is already in PredBB, check if we can sink its 4175 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4176 // sinking the scalar instruction I, hence it appears in PredBB; but it 4177 // may have failed to sink I's operands (recursively), which we try 4178 // (again) here. 4179 if (I->getParent() == PredBB) { 4180 Worklist.insert(I->op_begin(), I->op_end()); 4181 continue; 4182 } 4183 4184 // It's legal to sink the instruction if all its uses occur in the 4185 // predicated block. Otherwise, there's nothing to do yet, and we may 4186 // need to reanalyze the instruction. 4187 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4188 InstsToReanalyze.push_back(I); 4189 continue; 4190 } 4191 4192 // Move the instruction to the beginning of the predicated block, and add 4193 // it's operands to the worklist. 4194 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4195 Worklist.insert(I->op_begin(), I->op_end()); 4196 4197 // The sinking may have enabled other instructions to be sunk, so we will 4198 // need to iterate. 4199 Changed = true; 4200 } 4201 } while (Changed); 4202 } 4203 4204 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4205 for (PHINode *OrigPhi : OrigPHIsToFix) { 4206 VPWidenPHIRecipe *VPPhi = 4207 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4208 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4209 // Make sure the builder has a valid insert point. 4210 Builder.SetInsertPoint(NewPhi); 4211 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4212 VPValue *Inc = VPPhi->getIncomingValue(i); 4213 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4214 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4215 } 4216 } 4217 } 4218 4219 bool InnerLoopVectorizer::useOrderedReductions( 4220 const RecurrenceDescriptor &RdxDesc) { 4221 return Cost->useOrderedReductions(RdxDesc); 4222 } 4223 4224 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4225 VPWidenPHIRecipe *PhiR, 4226 VPTransformState &State) { 4227 PHINode *P = cast<PHINode>(PN); 4228 if (EnableVPlanNativePath) { 4229 // Currently we enter here in the VPlan-native path for non-induction 4230 // PHIs where all control flow is uniform. We simply widen these PHIs. 4231 // Create a vector phi with no operands - the vector phi operands will be 4232 // set at the end of vector code generation. 4233 Type *VecTy = (State.VF.isScalar()) 4234 ? PN->getType() 4235 : VectorType::get(PN->getType(), State.VF); 4236 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4237 State.set(PhiR, VecPhi, 0); 4238 OrigPHIsToFix.push_back(P); 4239 4240 return; 4241 } 4242 4243 assert(PN->getParent() == OrigLoop->getHeader() && 4244 "Non-header phis should have been handled elsewhere"); 4245 4246 // In order to support recurrences we need to be able to vectorize Phi nodes. 4247 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4248 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4249 // this value when we vectorize all of the instructions that use the PHI. 4250 4251 assert(!Legal->isReductionVariable(P) && 4252 "reductions should be handled elsewhere"); 4253 4254 setDebugLocFromInst(P); 4255 4256 // This PHINode must be an induction variable. 4257 // Make sure that we know about it. 4258 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4259 4260 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4261 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4262 4263 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4264 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4265 4266 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4267 // which can be found from the original scalar operations. 4268 switch (II.getKind()) { 4269 case InductionDescriptor::IK_NoInduction: 4270 llvm_unreachable("Unknown induction"); 4271 case InductionDescriptor::IK_IntInduction: 4272 case InductionDescriptor::IK_FpInduction: 4273 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4274 case InductionDescriptor::IK_PtrInduction: { 4275 // Handle the pointer induction variable case. 4276 assert(P->getType()->isPointerTy() && "Unexpected type."); 4277 4278 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4279 // This is the normalized GEP that starts counting at zero. 4280 Value *PtrInd = 4281 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4282 // Determine the number of scalars we need to generate for each unroll 4283 // iteration. If the instruction is uniform, we only need to generate the 4284 // first lane. Otherwise, we generate all VF values. 4285 bool IsUniform = vputils::onlyFirstLaneUsed(PhiR); 4286 assert((IsUniform || !State.VF.isScalable()) && 4287 "Cannot scalarize a scalable VF"); 4288 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4289 4290 for (unsigned Part = 0; Part < UF; ++Part) { 4291 Value *PartStart = 4292 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4293 4294 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4295 Value *Idx = Builder.CreateAdd( 4296 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4297 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4298 4299 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 4300 State.CFG.PrevBB->getTerminator()); 4301 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, 4302 II.getStartValue(), Step, II); 4303 SclrGep->setName("next.gep"); 4304 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4305 } 4306 } 4307 return; 4308 } 4309 assert(isa<SCEVConstant>(II.getStep()) && 4310 "Induction step not a SCEV constant!"); 4311 Type *PhiType = II.getStep()->getType(); 4312 4313 // Build a pointer phi 4314 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4315 Type *ScStValueType = ScalarStartValue->getType(); 4316 PHINode *NewPointerPhi = 4317 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4318 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4319 4320 // A pointer induction, performed by using a gep 4321 BasicBlock *LoopLatch = LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 4322 Instruction *InductionLoc = LoopLatch->getTerminator(); 4323 const SCEV *ScalarStep = II.getStep(); 4324 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4325 Value *ScalarStepValue = 4326 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4327 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4328 Value *NumUnrolledElems = 4329 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4330 Value *InductionGEP = GetElementPtrInst::Create( 4331 II.getElementType(), NewPointerPhi, 4332 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4333 InductionLoc); 4334 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4335 4336 // Create UF many actual address geps that use the pointer 4337 // phi as base and a vectorized version of the step value 4338 // (<step*0, ..., step*N>) as offset. 4339 for (unsigned Part = 0; Part < State.UF; ++Part) { 4340 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4341 Value *StartOffsetScalar = 4342 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4343 Value *StartOffset = 4344 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4345 // Create a vector of consecutive numbers from zero to VF. 4346 StartOffset = 4347 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4348 4349 Value *GEP = Builder.CreateGEP( 4350 II.getElementType(), NewPointerPhi, 4351 Builder.CreateMul( 4352 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4353 "vector.gep")); 4354 State.set(PhiR, GEP, Part); 4355 } 4356 } 4357 } 4358 } 4359 4360 /// A helper function for checking whether an integer division-related 4361 /// instruction may divide by zero (in which case it must be predicated if 4362 /// executed conditionally in the scalar code). 4363 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4364 /// Non-zero divisors that are non compile-time constants will not be 4365 /// converted into multiplication, so we will still end up scalarizing 4366 /// the division, but can do so w/o predication. 4367 static bool mayDivideByZero(Instruction &I) { 4368 assert((I.getOpcode() == Instruction::UDiv || 4369 I.getOpcode() == Instruction::SDiv || 4370 I.getOpcode() == Instruction::URem || 4371 I.getOpcode() == Instruction::SRem) && 4372 "Unexpected instruction"); 4373 Value *Divisor = I.getOperand(1); 4374 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4375 return !CInt || CInt->isZero(); 4376 } 4377 4378 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4379 VPUser &ArgOperands, 4380 VPTransformState &State) { 4381 assert(!isa<DbgInfoIntrinsic>(I) && 4382 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4383 setDebugLocFromInst(&I); 4384 4385 Module *M = I.getParent()->getParent()->getParent(); 4386 auto *CI = cast<CallInst>(&I); 4387 4388 SmallVector<Type *, 4> Tys; 4389 for (Value *ArgOperand : CI->args()) 4390 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4391 4392 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4393 4394 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4395 // version of the instruction. 4396 // Is it beneficial to perform intrinsic call compared to lib call? 4397 bool NeedToScalarize = false; 4398 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4399 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4400 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4401 assert((UseVectorIntrinsic || !NeedToScalarize) && 4402 "Instruction should be scalarized elsewhere."); 4403 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4404 "Either the intrinsic cost or vector call cost must be valid"); 4405 4406 for (unsigned Part = 0; Part < UF; ++Part) { 4407 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4408 SmallVector<Value *, 4> Args; 4409 for (auto &I : enumerate(ArgOperands.operands())) { 4410 // Some intrinsics have a scalar argument - don't replace it with a 4411 // vector. 4412 Value *Arg; 4413 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4414 Arg = State.get(I.value(), Part); 4415 else { 4416 Arg = State.get(I.value(), VPIteration(0, 0)); 4417 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4418 TysForDecl.push_back(Arg->getType()); 4419 } 4420 Args.push_back(Arg); 4421 } 4422 4423 Function *VectorF; 4424 if (UseVectorIntrinsic) { 4425 // Use vector version of the intrinsic. 4426 if (VF.isVector()) 4427 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4428 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4429 assert(VectorF && "Can't retrieve vector intrinsic."); 4430 } else { 4431 // Use vector version of the function call. 4432 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4433 #ifndef NDEBUG 4434 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4435 "Can't create vector function."); 4436 #endif 4437 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4438 } 4439 SmallVector<OperandBundleDef, 1> OpBundles; 4440 CI->getOperandBundlesAsDefs(OpBundles); 4441 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4442 4443 if (isa<FPMathOperator>(V)) 4444 V->copyFastMathFlags(CI); 4445 4446 State.set(Def, V, Part); 4447 addMetadata(V, &I); 4448 } 4449 } 4450 4451 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4452 // We should not collect Scalars more than once per VF. Right now, this 4453 // function is called from collectUniformsAndScalars(), which already does 4454 // this check. Collecting Scalars for VF=1 does not make any sense. 4455 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4456 "This function should not be visited twice for the same VF"); 4457 4458 // This avoids any chances of creating a REPLICATE recipe during planning 4459 // since that would result in generation of scalarized code during execution, 4460 // which is not supported for scalable vectors. 4461 if (VF.isScalable()) { 4462 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4463 return; 4464 } 4465 4466 SmallSetVector<Instruction *, 8> Worklist; 4467 4468 // These sets are used to seed the analysis with pointers used by memory 4469 // accesses that will remain scalar. 4470 SmallSetVector<Instruction *, 8> ScalarPtrs; 4471 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4472 auto *Latch = TheLoop->getLoopLatch(); 4473 4474 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4475 // The pointer operands of loads and stores will be scalar as long as the 4476 // memory access is not a gather or scatter operation. The value operand of a 4477 // store will remain scalar if the store is scalarized. 4478 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4479 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4480 assert(WideningDecision != CM_Unknown && 4481 "Widening decision should be ready at this moment"); 4482 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4483 if (Ptr == Store->getValueOperand()) 4484 return WideningDecision == CM_Scalarize; 4485 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4486 "Ptr is neither a value or pointer operand"); 4487 return WideningDecision != CM_GatherScatter; 4488 }; 4489 4490 // A helper that returns true if the given value is a bitcast or 4491 // getelementptr instruction contained in the loop. 4492 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4493 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4494 isa<GetElementPtrInst>(V)) && 4495 !TheLoop->isLoopInvariant(V); 4496 }; 4497 4498 // A helper that evaluates a memory access's use of a pointer. If the use will 4499 // be a scalar use and the pointer is only used by memory accesses, we place 4500 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4501 // PossibleNonScalarPtrs. 4502 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4503 // We only care about bitcast and getelementptr instructions contained in 4504 // the loop. 4505 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4506 return; 4507 4508 // If the pointer has already been identified as scalar (e.g., if it was 4509 // also identified as uniform), there's nothing to do. 4510 auto *I = cast<Instruction>(Ptr); 4511 if (Worklist.count(I)) 4512 return; 4513 4514 // If the use of the pointer will be a scalar use, and all users of the 4515 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4516 // place the pointer in PossibleNonScalarPtrs. 4517 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4518 return isa<LoadInst>(U) || isa<StoreInst>(U); 4519 })) 4520 ScalarPtrs.insert(I); 4521 else 4522 PossibleNonScalarPtrs.insert(I); 4523 }; 4524 4525 // We seed the scalars analysis with three classes of instructions: (1) 4526 // instructions marked uniform-after-vectorization and (2) bitcast, 4527 // getelementptr and (pointer) phi instructions used by memory accesses 4528 // requiring a scalar use. 4529 // 4530 // (1) Add to the worklist all instructions that have been identified as 4531 // uniform-after-vectorization. 4532 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4533 4534 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4535 // memory accesses requiring a scalar use. The pointer operands of loads and 4536 // stores will be scalar as long as the memory accesses is not a gather or 4537 // scatter operation. The value operand of a store will remain scalar if the 4538 // store is scalarized. 4539 for (auto *BB : TheLoop->blocks()) 4540 for (auto &I : *BB) { 4541 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4542 evaluatePtrUse(Load, Load->getPointerOperand()); 4543 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4544 evaluatePtrUse(Store, Store->getPointerOperand()); 4545 evaluatePtrUse(Store, Store->getValueOperand()); 4546 } 4547 } 4548 for (auto *I : ScalarPtrs) 4549 if (!PossibleNonScalarPtrs.count(I)) { 4550 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4551 Worklist.insert(I); 4552 } 4553 4554 // Insert the forced scalars. 4555 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4556 // induction variable when the PHI user is scalarized. 4557 auto ForcedScalar = ForcedScalars.find(VF); 4558 if (ForcedScalar != ForcedScalars.end()) 4559 for (auto *I : ForcedScalar->second) 4560 Worklist.insert(I); 4561 4562 // Expand the worklist by looking through any bitcasts and getelementptr 4563 // instructions we've already identified as scalar. This is similar to the 4564 // expansion step in collectLoopUniforms(); however, here we're only 4565 // expanding to include additional bitcasts and getelementptr instructions. 4566 unsigned Idx = 0; 4567 while (Idx != Worklist.size()) { 4568 Instruction *Dst = Worklist[Idx++]; 4569 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4570 continue; 4571 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4572 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4573 auto *J = cast<Instruction>(U); 4574 return !TheLoop->contains(J) || Worklist.count(J) || 4575 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4576 isScalarUse(J, Src)); 4577 })) { 4578 Worklist.insert(Src); 4579 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4580 } 4581 } 4582 4583 // An induction variable will remain scalar if all users of the induction 4584 // variable and induction variable update remain scalar. 4585 for (auto &Induction : Legal->getInductionVars()) { 4586 auto *Ind = Induction.first; 4587 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4588 4589 // If tail-folding is applied, the primary induction variable will be used 4590 // to feed a vector compare. 4591 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4592 continue; 4593 4594 // Returns true if \p Indvar is a pointer induction that is used directly by 4595 // load/store instruction \p I. 4596 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4597 Instruction *I) { 4598 return Induction.second.getKind() == 4599 InductionDescriptor::IK_PtrInduction && 4600 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4601 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4602 }; 4603 4604 // Determine if all users of the induction variable are scalar after 4605 // vectorization. 4606 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4607 auto *I = cast<Instruction>(U); 4608 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4609 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4610 }); 4611 if (!ScalarInd) 4612 continue; 4613 4614 // Determine if all users of the induction variable update instruction are 4615 // scalar after vectorization. 4616 auto ScalarIndUpdate = 4617 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4618 auto *I = cast<Instruction>(U); 4619 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4620 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4621 }); 4622 if (!ScalarIndUpdate) 4623 continue; 4624 4625 // The induction variable and its update instruction will remain scalar. 4626 Worklist.insert(Ind); 4627 Worklist.insert(IndUpdate); 4628 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4629 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4630 << "\n"); 4631 } 4632 4633 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4634 } 4635 4636 bool LoopVectorizationCostModel::isScalarWithPredication( 4637 Instruction *I, ElementCount VF) const { 4638 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4639 return false; 4640 switch(I->getOpcode()) { 4641 default: 4642 break; 4643 case Instruction::Load: 4644 case Instruction::Store: { 4645 if (!Legal->isMaskRequired(I)) 4646 return false; 4647 auto *Ptr = getLoadStorePointerOperand(I); 4648 auto *Ty = getLoadStoreType(I); 4649 Type *VTy = Ty; 4650 if (VF.isVector()) 4651 VTy = VectorType::get(Ty, VF); 4652 const Align Alignment = getLoadStoreAlignment(I); 4653 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4654 TTI.isLegalMaskedGather(VTy, Alignment)) 4655 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4656 TTI.isLegalMaskedScatter(VTy, Alignment)); 4657 } 4658 case Instruction::UDiv: 4659 case Instruction::SDiv: 4660 case Instruction::SRem: 4661 case Instruction::URem: 4662 return mayDivideByZero(*I); 4663 } 4664 return false; 4665 } 4666 4667 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4668 Instruction *I, ElementCount VF) { 4669 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4670 assert(getWideningDecision(I, VF) == CM_Unknown && 4671 "Decision should not be set yet."); 4672 auto *Group = getInterleavedAccessGroup(I); 4673 assert(Group && "Must have a group."); 4674 4675 // If the instruction's allocated size doesn't equal it's type size, it 4676 // requires padding and will be scalarized. 4677 auto &DL = I->getModule()->getDataLayout(); 4678 auto *ScalarTy = getLoadStoreType(I); 4679 if (hasIrregularType(ScalarTy, DL)) 4680 return false; 4681 4682 // Check if masking is required. 4683 // A Group may need masking for one of two reasons: it resides in a block that 4684 // needs predication, or it was decided to use masking to deal with gaps 4685 // (either a gap at the end of a load-access that may result in a speculative 4686 // load, or any gaps in a store-access). 4687 bool PredicatedAccessRequiresMasking = 4688 blockNeedsPredicationForAnyReason(I->getParent()) && 4689 Legal->isMaskRequired(I); 4690 bool LoadAccessWithGapsRequiresEpilogMasking = 4691 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4692 !isScalarEpilogueAllowed(); 4693 bool StoreAccessWithGapsRequiresMasking = 4694 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4695 if (!PredicatedAccessRequiresMasking && 4696 !LoadAccessWithGapsRequiresEpilogMasking && 4697 !StoreAccessWithGapsRequiresMasking) 4698 return true; 4699 4700 // If masked interleaving is required, we expect that the user/target had 4701 // enabled it, because otherwise it either wouldn't have been created or 4702 // it should have been invalidated by the CostModel. 4703 assert(useMaskedInterleavedAccesses(TTI) && 4704 "Masked interleave-groups for predicated accesses are not enabled."); 4705 4706 if (Group->isReverse()) 4707 return false; 4708 4709 auto *Ty = getLoadStoreType(I); 4710 const Align Alignment = getLoadStoreAlignment(I); 4711 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4712 : TTI.isLegalMaskedStore(Ty, Alignment); 4713 } 4714 4715 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4716 Instruction *I, ElementCount VF) { 4717 // Get and ensure we have a valid memory instruction. 4718 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4719 4720 auto *Ptr = getLoadStorePointerOperand(I); 4721 auto *ScalarTy = getLoadStoreType(I); 4722 4723 // In order to be widened, the pointer should be consecutive, first of all. 4724 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4725 return false; 4726 4727 // If the instruction is a store located in a predicated block, it will be 4728 // scalarized. 4729 if (isScalarWithPredication(I, VF)) 4730 return false; 4731 4732 // If the instruction's allocated size doesn't equal it's type size, it 4733 // requires padding and will be scalarized. 4734 auto &DL = I->getModule()->getDataLayout(); 4735 if (hasIrregularType(ScalarTy, DL)) 4736 return false; 4737 4738 return true; 4739 } 4740 4741 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4742 // We should not collect Uniforms more than once per VF. Right now, 4743 // this function is called from collectUniformsAndScalars(), which 4744 // already does this check. Collecting Uniforms for VF=1 does not make any 4745 // sense. 4746 4747 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4748 "This function should not be visited twice for the same VF"); 4749 4750 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4751 // not analyze again. Uniforms.count(VF) will return 1. 4752 Uniforms[VF].clear(); 4753 4754 // We now know that the loop is vectorizable! 4755 // Collect instructions inside the loop that will remain uniform after 4756 // vectorization. 4757 4758 // Global values, params and instructions outside of current loop are out of 4759 // scope. 4760 auto isOutOfScope = [&](Value *V) -> bool { 4761 Instruction *I = dyn_cast<Instruction>(V); 4762 return (!I || !TheLoop->contains(I)); 4763 }; 4764 4765 // Worklist containing uniform instructions demanding lane 0. 4766 SetVector<Instruction *> Worklist; 4767 BasicBlock *Latch = TheLoop->getLoopLatch(); 4768 4769 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4770 // that are scalar with predication must not be considered uniform after 4771 // vectorization, because that would create an erroneous replicating region 4772 // where only a single instance out of VF should be formed. 4773 // TODO: optimize such seldom cases if found important, see PR40816. 4774 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4775 if (isOutOfScope(I)) { 4776 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4777 << *I << "\n"); 4778 return; 4779 } 4780 if (isScalarWithPredication(I, VF)) { 4781 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4782 << *I << "\n"); 4783 return; 4784 } 4785 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4786 Worklist.insert(I); 4787 }; 4788 4789 // Start with the conditional branch. If the branch condition is an 4790 // instruction contained in the loop that is only used by the branch, it is 4791 // uniform. 4792 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4793 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4794 addToWorklistIfAllowed(Cmp); 4795 4796 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4797 InstWidening WideningDecision = getWideningDecision(I, VF); 4798 assert(WideningDecision != CM_Unknown && 4799 "Widening decision should be ready at this moment"); 4800 4801 // A uniform memory op is itself uniform. We exclude uniform stores 4802 // here as they demand the last lane, not the first one. 4803 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4804 assert(WideningDecision == CM_Scalarize); 4805 return true; 4806 } 4807 4808 return (WideningDecision == CM_Widen || 4809 WideningDecision == CM_Widen_Reverse || 4810 WideningDecision == CM_Interleave); 4811 }; 4812 4813 4814 // Returns true if Ptr is the pointer operand of a memory access instruction 4815 // I, and I is known to not require scalarization. 4816 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4817 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4818 }; 4819 4820 // Holds a list of values which are known to have at least one uniform use. 4821 // Note that there may be other uses which aren't uniform. A "uniform use" 4822 // here is something which only demands lane 0 of the unrolled iterations; 4823 // it does not imply that all lanes produce the same value (e.g. this is not 4824 // the usual meaning of uniform) 4825 SetVector<Value *> HasUniformUse; 4826 4827 // Scan the loop for instructions which are either a) known to have only 4828 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4829 for (auto *BB : TheLoop->blocks()) 4830 for (auto &I : *BB) { 4831 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4832 switch (II->getIntrinsicID()) { 4833 case Intrinsic::sideeffect: 4834 case Intrinsic::experimental_noalias_scope_decl: 4835 case Intrinsic::assume: 4836 case Intrinsic::lifetime_start: 4837 case Intrinsic::lifetime_end: 4838 if (TheLoop->hasLoopInvariantOperands(&I)) 4839 addToWorklistIfAllowed(&I); 4840 break; 4841 default: 4842 break; 4843 } 4844 } 4845 4846 // ExtractValue instructions must be uniform, because the operands are 4847 // known to be loop-invariant. 4848 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4849 assert(isOutOfScope(EVI->getAggregateOperand()) && 4850 "Expected aggregate value to be loop invariant"); 4851 addToWorklistIfAllowed(EVI); 4852 continue; 4853 } 4854 4855 // If there's no pointer operand, there's nothing to do. 4856 auto *Ptr = getLoadStorePointerOperand(&I); 4857 if (!Ptr) 4858 continue; 4859 4860 // A uniform memory op is itself uniform. We exclude uniform stores 4861 // here as they demand the last lane, not the first one. 4862 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4863 addToWorklistIfAllowed(&I); 4864 4865 if (isUniformDecision(&I, VF)) { 4866 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4867 HasUniformUse.insert(Ptr); 4868 } 4869 } 4870 4871 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4872 // demanding) users. Since loops are assumed to be in LCSSA form, this 4873 // disallows uses outside the loop as well. 4874 for (auto *V : HasUniformUse) { 4875 if (isOutOfScope(V)) 4876 continue; 4877 auto *I = cast<Instruction>(V); 4878 auto UsersAreMemAccesses = 4879 llvm::all_of(I->users(), [&](User *U) -> bool { 4880 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4881 }); 4882 if (UsersAreMemAccesses) 4883 addToWorklistIfAllowed(I); 4884 } 4885 4886 // Expand Worklist in topological order: whenever a new instruction 4887 // is added , its users should be already inside Worklist. It ensures 4888 // a uniform instruction will only be used by uniform instructions. 4889 unsigned idx = 0; 4890 while (idx != Worklist.size()) { 4891 Instruction *I = Worklist[idx++]; 4892 4893 for (auto OV : I->operand_values()) { 4894 // isOutOfScope operands cannot be uniform instructions. 4895 if (isOutOfScope(OV)) 4896 continue; 4897 // First order recurrence Phi's should typically be considered 4898 // non-uniform. 4899 auto *OP = dyn_cast<PHINode>(OV); 4900 if (OP && Legal->isFirstOrderRecurrence(OP)) 4901 continue; 4902 // If all the users of the operand are uniform, then add the 4903 // operand into the uniform worklist. 4904 auto *OI = cast<Instruction>(OV); 4905 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4906 auto *J = cast<Instruction>(U); 4907 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4908 })) 4909 addToWorklistIfAllowed(OI); 4910 } 4911 } 4912 4913 // For an instruction to be added into Worklist above, all its users inside 4914 // the loop should also be in Worklist. However, this condition cannot be 4915 // true for phi nodes that form a cyclic dependence. We must process phi 4916 // nodes separately. An induction variable will remain uniform if all users 4917 // of the induction variable and induction variable update remain uniform. 4918 // The code below handles both pointer and non-pointer induction variables. 4919 for (auto &Induction : Legal->getInductionVars()) { 4920 auto *Ind = Induction.first; 4921 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4922 4923 // Determine if all users of the induction variable are uniform after 4924 // vectorization. 4925 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4926 auto *I = cast<Instruction>(U); 4927 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4928 isVectorizedMemAccessUse(I, Ind); 4929 }); 4930 if (!UniformInd) 4931 continue; 4932 4933 // Determine if all users of the induction variable update instruction are 4934 // uniform after vectorization. 4935 auto UniformIndUpdate = 4936 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4937 auto *I = cast<Instruction>(U); 4938 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4939 isVectorizedMemAccessUse(I, IndUpdate); 4940 }); 4941 if (!UniformIndUpdate) 4942 continue; 4943 4944 // The induction variable and its update instruction will remain uniform. 4945 addToWorklistIfAllowed(Ind); 4946 addToWorklistIfAllowed(IndUpdate); 4947 } 4948 4949 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4950 } 4951 4952 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4953 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4954 4955 if (Legal->getRuntimePointerChecking()->Need) { 4956 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4957 "runtime pointer checks needed. Enable vectorization of this " 4958 "loop with '#pragma clang loop vectorize(enable)' when " 4959 "compiling with -Os/-Oz", 4960 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4961 return true; 4962 } 4963 4964 if (!PSE.getPredicate().isAlwaysTrue()) { 4965 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4966 "runtime SCEV checks needed. Enable vectorization of this " 4967 "loop with '#pragma clang loop vectorize(enable)' when " 4968 "compiling with -Os/-Oz", 4969 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4970 return true; 4971 } 4972 4973 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4974 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4975 reportVectorizationFailure("Runtime stride check for small trip count", 4976 "runtime stride == 1 checks needed. Enable vectorization of " 4977 "this loop without such check by compiling with -Os/-Oz", 4978 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4979 return true; 4980 } 4981 4982 return false; 4983 } 4984 4985 ElementCount 4986 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4987 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4988 return ElementCount::getScalable(0); 4989 4990 if (Hints->isScalableVectorizationDisabled()) { 4991 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4992 "ScalableVectorizationDisabled", ORE, TheLoop); 4993 return ElementCount::getScalable(0); 4994 } 4995 4996 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4997 4998 auto MaxScalableVF = ElementCount::getScalable( 4999 std::numeric_limits<ElementCount::ScalarTy>::max()); 5000 5001 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5002 // FIXME: While for scalable vectors this is currently sufficient, this should 5003 // be replaced by a more detailed mechanism that filters out specific VFs, 5004 // instead of invalidating vectorization for a whole set of VFs based on the 5005 // MaxVF. 5006 5007 // Disable scalable vectorization if the loop contains unsupported reductions. 5008 if (!canVectorizeReductions(MaxScalableVF)) { 5009 reportVectorizationInfo( 5010 "Scalable vectorization not supported for the reduction " 5011 "operations found in this loop.", 5012 "ScalableVFUnfeasible", ORE, TheLoop); 5013 return ElementCount::getScalable(0); 5014 } 5015 5016 // Disable scalable vectorization if the loop contains any instructions 5017 // with element types not supported for scalable vectors. 5018 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5019 return !Ty->isVoidTy() && 5020 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5021 })) { 5022 reportVectorizationInfo("Scalable vectorization is not supported " 5023 "for all element types found in this loop.", 5024 "ScalableVFUnfeasible", ORE, TheLoop); 5025 return ElementCount::getScalable(0); 5026 } 5027 5028 if (Legal->isSafeForAnyVectorWidth()) 5029 return MaxScalableVF; 5030 5031 // Limit MaxScalableVF by the maximum safe dependence distance. 5032 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5033 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5034 MaxVScale = 5035 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5036 MaxScalableVF = ElementCount::getScalable( 5037 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5038 if (!MaxScalableVF) 5039 reportVectorizationInfo( 5040 "Max legal vector width too small, scalable vectorization " 5041 "unfeasible.", 5042 "ScalableVFUnfeasible", ORE, TheLoop); 5043 5044 return MaxScalableVF; 5045 } 5046 5047 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5048 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5049 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5050 unsigned SmallestType, WidestType; 5051 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5052 5053 // Get the maximum safe dependence distance in bits computed by LAA. 5054 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5055 // the memory accesses that is most restrictive (involved in the smallest 5056 // dependence distance). 5057 unsigned MaxSafeElements = 5058 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5059 5060 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5061 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5062 5063 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5064 << ".\n"); 5065 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5066 << ".\n"); 5067 5068 // First analyze the UserVF, fall back if the UserVF should be ignored. 5069 if (UserVF) { 5070 auto MaxSafeUserVF = 5071 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5072 5073 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5074 // If `VF=vscale x N` is safe, then so is `VF=N` 5075 if (UserVF.isScalable()) 5076 return FixedScalableVFPair( 5077 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5078 else 5079 return UserVF; 5080 } 5081 5082 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5083 5084 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5085 // is better to ignore the hint and let the compiler choose a suitable VF. 5086 if (!UserVF.isScalable()) { 5087 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5088 << " is unsafe, clamping to max safe VF=" 5089 << MaxSafeFixedVF << ".\n"); 5090 ORE->emit([&]() { 5091 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5092 TheLoop->getStartLoc(), 5093 TheLoop->getHeader()) 5094 << "User-specified vectorization factor " 5095 << ore::NV("UserVectorizationFactor", UserVF) 5096 << " is unsafe, clamping to maximum safe vectorization factor " 5097 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5098 }); 5099 return MaxSafeFixedVF; 5100 } 5101 5102 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5103 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5104 << " is ignored because scalable vectors are not " 5105 "available.\n"); 5106 ORE->emit([&]() { 5107 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5108 TheLoop->getStartLoc(), 5109 TheLoop->getHeader()) 5110 << "User-specified vectorization factor " 5111 << ore::NV("UserVectorizationFactor", UserVF) 5112 << " is ignored because the target does not support scalable " 5113 "vectors. The compiler will pick a more suitable value."; 5114 }); 5115 } else { 5116 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5117 << " is unsafe. Ignoring scalable UserVF.\n"); 5118 ORE->emit([&]() { 5119 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5120 TheLoop->getStartLoc(), 5121 TheLoop->getHeader()) 5122 << "User-specified vectorization factor " 5123 << ore::NV("UserVectorizationFactor", UserVF) 5124 << " is unsafe. Ignoring the hint to let the compiler pick a " 5125 "more suitable value."; 5126 }); 5127 } 5128 } 5129 5130 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5131 << " / " << WidestType << " bits.\n"); 5132 5133 FixedScalableVFPair Result(ElementCount::getFixed(1), 5134 ElementCount::getScalable(0)); 5135 if (auto MaxVF = 5136 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5137 MaxSafeFixedVF, FoldTailByMasking)) 5138 Result.FixedVF = MaxVF; 5139 5140 if (auto MaxVF = 5141 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5142 MaxSafeScalableVF, FoldTailByMasking)) 5143 if (MaxVF.isScalable()) { 5144 Result.ScalableVF = MaxVF; 5145 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5146 << "\n"); 5147 } 5148 5149 return Result; 5150 } 5151 5152 FixedScalableVFPair 5153 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5154 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5155 // TODO: It may by useful to do since it's still likely to be dynamically 5156 // uniform if the target can skip. 5157 reportVectorizationFailure( 5158 "Not inserting runtime ptr check for divergent target", 5159 "runtime pointer checks needed. Not enabled for divergent target", 5160 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5161 return FixedScalableVFPair::getNone(); 5162 } 5163 5164 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5165 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5166 if (TC == 1) { 5167 reportVectorizationFailure("Single iteration (non) loop", 5168 "loop trip count is one, irrelevant for vectorization", 5169 "SingleIterationLoop", ORE, TheLoop); 5170 return FixedScalableVFPair::getNone(); 5171 } 5172 5173 switch (ScalarEpilogueStatus) { 5174 case CM_ScalarEpilogueAllowed: 5175 return computeFeasibleMaxVF(TC, UserVF, false); 5176 case CM_ScalarEpilogueNotAllowedUsePredicate: 5177 LLVM_FALLTHROUGH; 5178 case CM_ScalarEpilogueNotNeededUsePredicate: 5179 LLVM_DEBUG( 5180 dbgs() << "LV: vector predicate hint/switch found.\n" 5181 << "LV: Not allowing scalar epilogue, creating predicated " 5182 << "vector loop.\n"); 5183 break; 5184 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5185 // fallthrough as a special case of OptForSize 5186 case CM_ScalarEpilogueNotAllowedOptSize: 5187 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5188 LLVM_DEBUG( 5189 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5190 else 5191 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5192 << "count.\n"); 5193 5194 // Bail if runtime checks are required, which are not good when optimising 5195 // for size. 5196 if (runtimeChecksRequired()) 5197 return FixedScalableVFPair::getNone(); 5198 5199 break; 5200 } 5201 5202 // The only loops we can vectorize without a scalar epilogue, are loops with 5203 // a bottom-test and a single exiting block. We'd have to handle the fact 5204 // that not every instruction executes on the last iteration. This will 5205 // require a lane mask which varies through the vector loop body. (TODO) 5206 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5207 // If there was a tail-folding hint/switch, but we can't fold the tail by 5208 // masking, fallback to a vectorization with a scalar epilogue. 5209 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5210 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5211 "scalar epilogue instead.\n"); 5212 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5213 return computeFeasibleMaxVF(TC, UserVF, false); 5214 } 5215 return FixedScalableVFPair::getNone(); 5216 } 5217 5218 // Now try the tail folding 5219 5220 // Invalidate interleave groups that require an epilogue if we can't mask 5221 // the interleave-group. 5222 if (!useMaskedInterleavedAccesses(TTI)) { 5223 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5224 "No decisions should have been taken at this point"); 5225 // Note: There is no need to invalidate any cost modeling decisions here, as 5226 // non where taken so far. 5227 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5228 } 5229 5230 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5231 // Avoid tail folding if the trip count is known to be a multiple of any VF 5232 // we chose. 5233 // FIXME: The condition below pessimises the case for fixed-width vectors, 5234 // when scalable VFs are also candidates for vectorization. 5235 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5236 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5237 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5238 "MaxFixedVF must be a power of 2"); 5239 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5240 : MaxFixedVF.getFixedValue(); 5241 ScalarEvolution *SE = PSE.getSE(); 5242 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5243 const SCEV *ExitCount = SE->getAddExpr( 5244 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5245 const SCEV *Rem = SE->getURemExpr( 5246 SE->applyLoopGuards(ExitCount, TheLoop), 5247 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5248 if (Rem->isZero()) { 5249 // Accept MaxFixedVF if we do not have a tail. 5250 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5251 return MaxFactors; 5252 } 5253 } 5254 5255 // For scalable vectors don't use tail folding for low trip counts or 5256 // optimizing for code size. We only permit this if the user has explicitly 5257 // requested it. 5258 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5259 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5260 MaxFactors.ScalableVF.isVector()) 5261 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5262 5263 // If we don't know the precise trip count, or if the trip count that we 5264 // found modulo the vectorization factor is not zero, try to fold the tail 5265 // by masking. 5266 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5267 if (Legal->prepareToFoldTailByMasking()) { 5268 FoldTailByMasking = true; 5269 return MaxFactors; 5270 } 5271 5272 // If there was a tail-folding hint/switch, but we can't fold the tail by 5273 // masking, fallback to a vectorization with a scalar epilogue. 5274 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5275 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5276 "scalar epilogue instead.\n"); 5277 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5278 return MaxFactors; 5279 } 5280 5281 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5282 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5283 return FixedScalableVFPair::getNone(); 5284 } 5285 5286 if (TC == 0) { 5287 reportVectorizationFailure( 5288 "Unable to calculate the loop count due to complex control flow", 5289 "unable to calculate the loop count due to complex control flow", 5290 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5291 return FixedScalableVFPair::getNone(); 5292 } 5293 5294 reportVectorizationFailure( 5295 "Cannot optimize for size and vectorize at the same time.", 5296 "cannot optimize for size and vectorize at the same time. " 5297 "Enable vectorization of this loop with '#pragma clang loop " 5298 "vectorize(enable)' when compiling with -Os/-Oz", 5299 "NoTailLoopWithOptForSize", ORE, TheLoop); 5300 return FixedScalableVFPair::getNone(); 5301 } 5302 5303 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5304 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5305 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5306 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5307 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5308 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5309 : TargetTransformInfo::RGK_FixedWidthVector); 5310 5311 // Convenience function to return the minimum of two ElementCounts. 5312 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5313 assert((LHS.isScalable() == RHS.isScalable()) && 5314 "Scalable flags must match"); 5315 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5316 }; 5317 5318 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5319 // Note that both WidestRegister and WidestType may not be a powers of 2. 5320 auto MaxVectorElementCount = ElementCount::get( 5321 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5322 ComputeScalableMaxVF); 5323 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5324 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5325 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5326 5327 if (!MaxVectorElementCount) { 5328 LLVM_DEBUG(dbgs() << "LV: The target has no " 5329 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5330 << " vector registers.\n"); 5331 return ElementCount::getFixed(1); 5332 } 5333 5334 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5335 if (ConstTripCount && 5336 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5337 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5338 // If loop trip count (TC) is known at compile time there is no point in 5339 // choosing VF greater than TC (as done in the loop below). Select maximum 5340 // power of two which doesn't exceed TC. 5341 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5342 // when the TC is less than or equal to the known number of lanes. 5343 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5344 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5345 "exceeding the constant trip count: " 5346 << ClampedConstTripCount << "\n"); 5347 return ElementCount::getFixed(ClampedConstTripCount); 5348 } 5349 5350 ElementCount MaxVF = MaxVectorElementCount; 5351 if (TTI.shouldMaximizeVectorBandwidth() || 5352 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5353 auto MaxVectorElementCountMaxBW = ElementCount::get( 5354 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5355 ComputeScalableMaxVF); 5356 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5357 5358 // Collect all viable vectorization factors larger than the default MaxVF 5359 // (i.e. MaxVectorElementCount). 5360 SmallVector<ElementCount, 8> VFs; 5361 for (ElementCount VS = MaxVectorElementCount * 2; 5362 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5363 VFs.push_back(VS); 5364 5365 // For each VF calculate its register usage. 5366 auto RUs = calculateRegisterUsage(VFs); 5367 5368 // Select the largest VF which doesn't require more registers than existing 5369 // ones. 5370 for (int i = RUs.size() - 1; i >= 0; --i) { 5371 bool Selected = true; 5372 for (auto &pair : RUs[i].MaxLocalUsers) { 5373 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5374 if (pair.second > TargetNumRegisters) 5375 Selected = false; 5376 } 5377 if (Selected) { 5378 MaxVF = VFs[i]; 5379 break; 5380 } 5381 } 5382 if (ElementCount MinVF = 5383 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5384 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5385 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5386 << ") with target's minimum: " << MinVF << '\n'); 5387 MaxVF = MinVF; 5388 } 5389 } 5390 } 5391 return MaxVF; 5392 } 5393 5394 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5395 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5396 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5397 auto Min = Attr.getVScaleRangeMin(); 5398 auto Max = Attr.getVScaleRangeMax(); 5399 if (Max && Min == Max) 5400 return Max; 5401 } 5402 5403 return TTI.getVScaleForTuning(); 5404 } 5405 5406 bool LoopVectorizationCostModel::isMoreProfitable( 5407 const VectorizationFactor &A, const VectorizationFactor &B) const { 5408 InstructionCost CostA = A.Cost; 5409 InstructionCost CostB = B.Cost; 5410 5411 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5412 5413 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5414 MaxTripCount) { 5415 // If we are folding the tail and the trip count is a known (possibly small) 5416 // constant, the trip count will be rounded up to an integer number of 5417 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5418 // which we compare directly. When not folding the tail, the total cost will 5419 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5420 // approximated with the per-lane cost below instead of using the tripcount 5421 // as here. 5422 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5423 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5424 return RTCostA < RTCostB; 5425 } 5426 5427 // Improve estimate for the vector width if it is scalable. 5428 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5429 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5430 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5431 if (A.Width.isScalable()) 5432 EstimatedWidthA *= VScale.getValue(); 5433 if (B.Width.isScalable()) 5434 EstimatedWidthB *= VScale.getValue(); 5435 } 5436 5437 // Assume vscale may be larger than 1 (or the value being tuned for), 5438 // so that scalable vectorization is slightly favorable over fixed-width 5439 // vectorization. 5440 if (A.Width.isScalable() && !B.Width.isScalable()) 5441 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5442 5443 // To avoid the need for FP division: 5444 // (CostA / A.Width) < (CostB / B.Width) 5445 // <=> (CostA * B.Width) < (CostB * A.Width) 5446 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5447 } 5448 5449 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5450 const ElementCountSet &VFCandidates) { 5451 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5452 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5453 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5454 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5455 "Expected Scalar VF to be a candidate"); 5456 5457 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5458 VectorizationFactor ChosenFactor = ScalarCost; 5459 5460 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5461 if (ForceVectorization && VFCandidates.size() > 1) { 5462 // Ignore scalar width, because the user explicitly wants vectorization. 5463 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5464 // evaluation. 5465 ChosenFactor.Cost = InstructionCost::getMax(); 5466 } 5467 5468 SmallVector<InstructionVFPair> InvalidCosts; 5469 for (const auto &i : VFCandidates) { 5470 // The cost for scalar VF=1 is already calculated, so ignore it. 5471 if (i.isScalar()) 5472 continue; 5473 5474 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5475 VectorizationFactor Candidate(i, C.first); 5476 5477 #ifndef NDEBUG 5478 unsigned AssumedMinimumVscale = 1; 5479 if (Optional<unsigned> VScale = getVScaleForTuning()) 5480 AssumedMinimumVscale = VScale.getValue(); 5481 unsigned Width = 5482 Candidate.Width.isScalable() 5483 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5484 : Candidate.Width.getFixedValue(); 5485 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5486 << " costs: " << (Candidate.Cost / Width)); 5487 if (i.isScalable()) 5488 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5489 << AssumedMinimumVscale << ")"); 5490 LLVM_DEBUG(dbgs() << ".\n"); 5491 #endif 5492 5493 if (!C.second && !ForceVectorization) { 5494 LLVM_DEBUG( 5495 dbgs() << "LV: Not considering vector loop of width " << i 5496 << " because it will not generate any vector instructions.\n"); 5497 continue; 5498 } 5499 5500 // If profitable add it to ProfitableVF list. 5501 if (isMoreProfitable(Candidate, ScalarCost)) 5502 ProfitableVFs.push_back(Candidate); 5503 5504 if (isMoreProfitable(Candidate, ChosenFactor)) 5505 ChosenFactor = Candidate; 5506 } 5507 5508 // Emit a report of VFs with invalid costs in the loop. 5509 if (!InvalidCosts.empty()) { 5510 // Group the remarks per instruction, keeping the instruction order from 5511 // InvalidCosts. 5512 std::map<Instruction *, unsigned> Numbering; 5513 unsigned I = 0; 5514 for (auto &Pair : InvalidCosts) 5515 if (!Numbering.count(Pair.first)) 5516 Numbering[Pair.first] = I++; 5517 5518 // Sort the list, first on instruction(number) then on VF. 5519 llvm::sort(InvalidCosts, 5520 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5521 if (Numbering[A.first] != Numbering[B.first]) 5522 return Numbering[A.first] < Numbering[B.first]; 5523 ElementCountComparator ECC; 5524 return ECC(A.second, B.second); 5525 }); 5526 5527 // For a list of ordered instruction-vf pairs: 5528 // [(load, vf1), (load, vf2), (store, vf1)] 5529 // Group the instructions together to emit separate remarks for: 5530 // load (vf1, vf2) 5531 // store (vf1) 5532 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5533 auto Subset = ArrayRef<InstructionVFPair>(); 5534 do { 5535 if (Subset.empty()) 5536 Subset = Tail.take_front(1); 5537 5538 Instruction *I = Subset.front().first; 5539 5540 // If the next instruction is different, or if there are no other pairs, 5541 // emit a remark for the collated subset. e.g. 5542 // [(load, vf1), (load, vf2))] 5543 // to emit: 5544 // remark: invalid costs for 'load' at VF=(vf, vf2) 5545 if (Subset == Tail || Tail[Subset.size()].first != I) { 5546 std::string OutString; 5547 raw_string_ostream OS(OutString); 5548 assert(!Subset.empty() && "Unexpected empty range"); 5549 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5550 for (auto &Pair : Subset) 5551 OS << (Pair.second == Subset.front().second ? "" : ", ") 5552 << Pair.second; 5553 OS << "):"; 5554 if (auto *CI = dyn_cast<CallInst>(I)) 5555 OS << " call to " << CI->getCalledFunction()->getName(); 5556 else 5557 OS << " " << I->getOpcodeName(); 5558 OS.flush(); 5559 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5560 Tail = Tail.drop_front(Subset.size()); 5561 Subset = {}; 5562 } else 5563 // Grow the subset by one element 5564 Subset = Tail.take_front(Subset.size() + 1); 5565 } while (!Tail.empty()); 5566 } 5567 5568 if (!EnableCondStoresVectorization && NumPredStores) { 5569 reportVectorizationFailure("There are conditional stores.", 5570 "store that is conditionally executed prevents vectorization", 5571 "ConditionalStore", ORE, TheLoop); 5572 ChosenFactor = ScalarCost; 5573 } 5574 5575 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5576 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5577 << "LV: Vectorization seems to be not beneficial, " 5578 << "but was forced by a user.\n"); 5579 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5580 return ChosenFactor; 5581 } 5582 5583 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5584 const Loop &L, ElementCount VF) const { 5585 // Cross iteration phis such as reductions need special handling and are 5586 // currently unsupported. 5587 if (any_of(L.getHeader()->phis(), 5588 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5589 return false; 5590 5591 // Phis with uses outside of the loop require special handling and are 5592 // currently unsupported. 5593 for (auto &Entry : Legal->getInductionVars()) { 5594 // Look for uses of the value of the induction at the last iteration. 5595 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5596 for (User *U : PostInc->users()) 5597 if (!L.contains(cast<Instruction>(U))) 5598 return false; 5599 // Look for uses of penultimate value of the induction. 5600 for (User *U : Entry.first->users()) 5601 if (!L.contains(cast<Instruction>(U))) 5602 return false; 5603 } 5604 5605 // Induction variables that are widened require special handling that is 5606 // currently not supported. 5607 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5608 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5609 this->isProfitableToScalarize(Entry.first, VF)); 5610 })) 5611 return false; 5612 5613 // Epilogue vectorization code has not been auditted to ensure it handles 5614 // non-latch exits properly. It may be fine, but it needs auditted and 5615 // tested. 5616 if (L.getExitingBlock() != L.getLoopLatch()) 5617 return false; 5618 5619 return true; 5620 } 5621 5622 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5623 const ElementCount VF) const { 5624 // FIXME: We need a much better cost-model to take different parameters such 5625 // as register pressure, code size increase and cost of extra branches into 5626 // account. For now we apply a very crude heuristic and only consider loops 5627 // with vectorization factors larger than a certain value. 5628 // We also consider epilogue vectorization unprofitable for targets that don't 5629 // consider interleaving beneficial (eg. MVE). 5630 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5631 return false; 5632 // FIXME: We should consider changing the threshold for scalable 5633 // vectors to take VScaleForTuning into account. 5634 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5635 return true; 5636 return false; 5637 } 5638 5639 VectorizationFactor 5640 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5641 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5642 VectorizationFactor Result = VectorizationFactor::Disabled(); 5643 if (!EnableEpilogueVectorization) { 5644 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5645 return Result; 5646 } 5647 5648 if (!isScalarEpilogueAllowed()) { 5649 LLVM_DEBUG( 5650 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5651 "allowed.\n";); 5652 return Result; 5653 } 5654 5655 // Not really a cost consideration, but check for unsupported cases here to 5656 // simplify the logic. 5657 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5658 LLVM_DEBUG( 5659 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5660 "not a supported candidate.\n";); 5661 return Result; 5662 } 5663 5664 if (EpilogueVectorizationForceVF > 1) { 5665 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5666 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5667 if (LVP.hasPlanWithVF(ForcedEC)) 5668 return {ForcedEC, 0}; 5669 else { 5670 LLVM_DEBUG( 5671 dbgs() 5672 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5673 return Result; 5674 } 5675 } 5676 5677 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5678 TheLoop->getHeader()->getParent()->hasMinSize()) { 5679 LLVM_DEBUG( 5680 dbgs() 5681 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5682 return Result; 5683 } 5684 5685 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5686 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5687 "this loop\n"); 5688 return Result; 5689 } 5690 5691 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5692 // the main loop handles 8 lanes per iteration. We could still benefit from 5693 // vectorizing the epilogue loop with VF=4. 5694 ElementCount EstimatedRuntimeVF = MainLoopVF; 5695 if (MainLoopVF.isScalable()) { 5696 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5697 if (Optional<unsigned> VScale = getVScaleForTuning()) 5698 EstimatedRuntimeVF *= VScale.getValue(); 5699 } 5700 5701 for (auto &NextVF : ProfitableVFs) 5702 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5703 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5704 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5705 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5706 LVP.hasPlanWithVF(NextVF.Width)) 5707 Result = NextVF; 5708 5709 if (Result != VectorizationFactor::Disabled()) 5710 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5711 << Result.Width << "\n";); 5712 return Result; 5713 } 5714 5715 std::pair<unsigned, unsigned> 5716 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5717 unsigned MinWidth = -1U; 5718 unsigned MaxWidth = 8; 5719 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5720 // For in-loop reductions, no element types are added to ElementTypesInLoop 5721 // if there are no loads/stores in the loop. In this case, check through the 5722 // reduction variables to determine the maximum width. 5723 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5724 // Reset MaxWidth so that we can find the smallest type used by recurrences 5725 // in the loop. 5726 MaxWidth = -1U; 5727 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5728 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5729 // When finding the min width used by the recurrence we need to account 5730 // for casts on the input operands of the recurrence. 5731 MaxWidth = std::min<unsigned>( 5732 MaxWidth, std::min<unsigned>( 5733 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5734 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5735 } 5736 } else { 5737 for (Type *T : ElementTypesInLoop) { 5738 MinWidth = std::min<unsigned>( 5739 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5740 MaxWidth = std::max<unsigned>( 5741 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5742 } 5743 } 5744 return {MinWidth, MaxWidth}; 5745 } 5746 5747 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5748 ElementTypesInLoop.clear(); 5749 // For each block. 5750 for (BasicBlock *BB : TheLoop->blocks()) { 5751 // For each instruction in the loop. 5752 for (Instruction &I : BB->instructionsWithoutDebug()) { 5753 Type *T = I.getType(); 5754 5755 // Skip ignored values. 5756 if (ValuesToIgnore.count(&I)) 5757 continue; 5758 5759 // Only examine Loads, Stores and PHINodes. 5760 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5761 continue; 5762 5763 // Examine PHI nodes that are reduction variables. Update the type to 5764 // account for the recurrence type. 5765 if (auto *PN = dyn_cast<PHINode>(&I)) { 5766 if (!Legal->isReductionVariable(PN)) 5767 continue; 5768 const RecurrenceDescriptor &RdxDesc = 5769 Legal->getReductionVars().find(PN)->second; 5770 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5771 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5772 RdxDesc.getRecurrenceType(), 5773 TargetTransformInfo::ReductionFlags())) 5774 continue; 5775 T = RdxDesc.getRecurrenceType(); 5776 } 5777 5778 // Examine the stored values. 5779 if (auto *ST = dyn_cast<StoreInst>(&I)) 5780 T = ST->getValueOperand()->getType(); 5781 5782 assert(T->isSized() && 5783 "Expected the load/store/recurrence type to be sized"); 5784 5785 ElementTypesInLoop.insert(T); 5786 } 5787 } 5788 } 5789 5790 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5791 unsigned LoopCost) { 5792 // -- The interleave heuristics -- 5793 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5794 // There are many micro-architectural considerations that we can't predict 5795 // at this level. For example, frontend pressure (on decode or fetch) due to 5796 // code size, or the number and capabilities of the execution ports. 5797 // 5798 // We use the following heuristics to select the interleave count: 5799 // 1. If the code has reductions, then we interleave to break the cross 5800 // iteration dependency. 5801 // 2. If the loop is really small, then we interleave to reduce the loop 5802 // overhead. 5803 // 3. We don't interleave if we think that we will spill registers to memory 5804 // due to the increased register pressure. 5805 5806 if (!isScalarEpilogueAllowed()) 5807 return 1; 5808 5809 // We used the distance for the interleave count. 5810 if (Legal->getMaxSafeDepDistBytes() != -1U) 5811 return 1; 5812 5813 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5814 const bool HasReductions = !Legal->getReductionVars().empty(); 5815 // Do not interleave loops with a relatively small known or estimated trip 5816 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5817 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5818 // because with the above conditions interleaving can expose ILP and break 5819 // cross iteration dependences for reductions. 5820 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5821 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5822 return 1; 5823 5824 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5825 // We divide by these constants so assume that we have at least one 5826 // instruction that uses at least one register. 5827 for (auto& pair : R.MaxLocalUsers) { 5828 pair.second = std::max(pair.second, 1U); 5829 } 5830 5831 // We calculate the interleave count using the following formula. 5832 // Subtract the number of loop invariants from the number of available 5833 // registers. These registers are used by all of the interleaved instances. 5834 // Next, divide the remaining registers by the number of registers that is 5835 // required by the loop, in order to estimate how many parallel instances 5836 // fit without causing spills. All of this is rounded down if necessary to be 5837 // a power of two. We want power of two interleave count to simplify any 5838 // addressing operations or alignment considerations. 5839 // We also want power of two interleave counts to ensure that the induction 5840 // variable of the vector loop wraps to zero, when tail is folded by masking; 5841 // this currently happens when OptForSize, in which case IC is set to 1 above. 5842 unsigned IC = UINT_MAX; 5843 5844 for (auto& pair : R.MaxLocalUsers) { 5845 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5846 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5847 << " registers of " 5848 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5849 if (VF.isScalar()) { 5850 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5851 TargetNumRegisters = ForceTargetNumScalarRegs; 5852 } else { 5853 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5854 TargetNumRegisters = ForceTargetNumVectorRegs; 5855 } 5856 unsigned MaxLocalUsers = pair.second; 5857 unsigned LoopInvariantRegs = 0; 5858 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5859 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5860 5861 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5862 // Don't count the induction variable as interleaved. 5863 if (EnableIndVarRegisterHeur) { 5864 TmpIC = 5865 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5866 std::max(1U, (MaxLocalUsers - 1))); 5867 } 5868 5869 IC = std::min(IC, TmpIC); 5870 } 5871 5872 // Clamp the interleave ranges to reasonable counts. 5873 unsigned MaxInterleaveCount = 5874 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5875 5876 // Check if the user has overridden the max. 5877 if (VF.isScalar()) { 5878 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5879 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5880 } else { 5881 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5882 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5883 } 5884 5885 // If trip count is known or estimated compile time constant, limit the 5886 // interleave count to be less than the trip count divided by VF, provided it 5887 // is at least 1. 5888 // 5889 // For scalable vectors we can't know if interleaving is beneficial. It may 5890 // not be beneficial for small loops if none of the lanes in the second vector 5891 // iterations is enabled. However, for larger loops, there is likely to be a 5892 // similar benefit as for fixed-width vectors. For now, we choose to leave 5893 // the InterleaveCount as if vscale is '1', although if some information about 5894 // the vector is known (e.g. min vector size), we can make a better decision. 5895 if (BestKnownTC) { 5896 MaxInterleaveCount = 5897 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5898 // Make sure MaxInterleaveCount is greater than 0. 5899 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5900 } 5901 5902 assert(MaxInterleaveCount > 0 && 5903 "Maximum interleave count must be greater than 0"); 5904 5905 // Clamp the calculated IC to be between the 1 and the max interleave count 5906 // that the target and trip count allows. 5907 if (IC > MaxInterleaveCount) 5908 IC = MaxInterleaveCount; 5909 else 5910 // Make sure IC is greater than 0. 5911 IC = std::max(1u, IC); 5912 5913 assert(IC > 0 && "Interleave count must be greater than 0."); 5914 5915 // If we did not calculate the cost for VF (because the user selected the VF) 5916 // then we calculate the cost of VF here. 5917 if (LoopCost == 0) { 5918 InstructionCost C = expectedCost(VF).first; 5919 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5920 LoopCost = *C.getValue(); 5921 } 5922 5923 assert(LoopCost && "Non-zero loop cost expected"); 5924 5925 // Interleave if we vectorized this loop and there is a reduction that could 5926 // benefit from interleaving. 5927 if (VF.isVector() && HasReductions) { 5928 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5929 return IC; 5930 } 5931 5932 // For any scalar loop that either requires runtime checks or predication we 5933 // are better off leaving this to the unroller. Note that if we've already 5934 // vectorized the loop we will have done the runtime check and so interleaving 5935 // won't require further checks. 5936 bool ScalarInterleavingRequiresPredication = 5937 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5938 return Legal->blockNeedsPredication(BB); 5939 })); 5940 bool ScalarInterleavingRequiresRuntimePointerCheck = 5941 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5942 5943 // We want to interleave small loops in order to reduce the loop overhead and 5944 // potentially expose ILP opportunities. 5945 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5946 << "LV: IC is " << IC << '\n' 5947 << "LV: VF is " << VF << '\n'); 5948 const bool AggressivelyInterleaveReductions = 5949 TTI.enableAggressiveInterleaving(HasReductions); 5950 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5951 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5952 // We assume that the cost overhead is 1 and we use the cost model 5953 // to estimate the cost of the loop and interleave until the cost of the 5954 // loop overhead is about 5% of the cost of the loop. 5955 unsigned SmallIC = 5956 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5957 5958 // Interleave until store/load ports (estimated by max interleave count) are 5959 // saturated. 5960 unsigned NumStores = Legal->getNumStores(); 5961 unsigned NumLoads = Legal->getNumLoads(); 5962 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5963 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5964 5965 // There is little point in interleaving for reductions containing selects 5966 // and compares when VF=1 since it may just create more overhead than it's 5967 // worth for loops with small trip counts. This is because we still have to 5968 // do the final reduction after the loop. 5969 bool HasSelectCmpReductions = 5970 HasReductions && 5971 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5972 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5973 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5974 RdxDesc.getRecurrenceKind()); 5975 }); 5976 if (HasSelectCmpReductions) { 5977 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5978 return 1; 5979 } 5980 5981 // If we have a scalar reduction (vector reductions are already dealt with 5982 // by this point), we can increase the critical path length if the loop 5983 // we're interleaving is inside another loop. For tree-wise reductions 5984 // set the limit to 2, and for ordered reductions it's best to disable 5985 // interleaving entirely. 5986 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5987 bool HasOrderedReductions = 5988 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5989 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5990 return RdxDesc.isOrdered(); 5991 }); 5992 if (HasOrderedReductions) { 5993 LLVM_DEBUG( 5994 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5995 return 1; 5996 } 5997 5998 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5999 SmallIC = std::min(SmallIC, F); 6000 StoresIC = std::min(StoresIC, F); 6001 LoadsIC = std::min(LoadsIC, F); 6002 } 6003 6004 if (EnableLoadStoreRuntimeInterleave && 6005 std::max(StoresIC, LoadsIC) > SmallIC) { 6006 LLVM_DEBUG( 6007 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6008 return std::max(StoresIC, LoadsIC); 6009 } 6010 6011 // If there are scalar reductions and TTI has enabled aggressive 6012 // interleaving for reductions, we will interleave to expose ILP. 6013 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6014 AggressivelyInterleaveReductions) { 6015 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6016 // Interleave no less than SmallIC but not as aggressive as the normal IC 6017 // to satisfy the rare situation when resources are too limited. 6018 return std::max(IC / 2, SmallIC); 6019 } else { 6020 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6021 return SmallIC; 6022 } 6023 } 6024 6025 // Interleave if this is a large loop (small loops are already dealt with by 6026 // this point) that could benefit from interleaving. 6027 if (AggressivelyInterleaveReductions) { 6028 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6029 return IC; 6030 } 6031 6032 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6033 return 1; 6034 } 6035 6036 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6037 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6038 // This function calculates the register usage by measuring the highest number 6039 // of values that are alive at a single location. Obviously, this is a very 6040 // rough estimation. We scan the loop in a topological order in order and 6041 // assign a number to each instruction. We use RPO to ensure that defs are 6042 // met before their users. We assume that each instruction that has in-loop 6043 // users starts an interval. We record every time that an in-loop value is 6044 // used, so we have a list of the first and last occurrences of each 6045 // instruction. Next, we transpose this data structure into a multi map that 6046 // holds the list of intervals that *end* at a specific location. This multi 6047 // map allows us to perform a linear search. We scan the instructions linearly 6048 // and record each time that a new interval starts, by placing it in a set. 6049 // If we find this value in the multi-map then we remove it from the set. 6050 // The max register usage is the maximum size of the set. 6051 // We also search for instructions that are defined outside the loop, but are 6052 // used inside the loop. We need this number separately from the max-interval 6053 // usage number because when we unroll, loop-invariant values do not take 6054 // more register. 6055 LoopBlocksDFS DFS(TheLoop); 6056 DFS.perform(LI); 6057 6058 RegisterUsage RU; 6059 6060 // Each 'key' in the map opens a new interval. The values 6061 // of the map are the index of the 'last seen' usage of the 6062 // instruction that is the key. 6063 using IntervalMap = DenseMap<Instruction *, unsigned>; 6064 6065 // Maps instruction to its index. 6066 SmallVector<Instruction *, 64> IdxToInstr; 6067 // Marks the end of each interval. 6068 IntervalMap EndPoint; 6069 // Saves the list of instruction indices that are used in the loop. 6070 SmallPtrSet<Instruction *, 8> Ends; 6071 // Saves the list of values that are used in the loop but are 6072 // defined outside the loop, such as arguments and constants. 6073 SmallPtrSet<Value *, 8> LoopInvariants; 6074 6075 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6076 for (Instruction &I : BB->instructionsWithoutDebug()) { 6077 IdxToInstr.push_back(&I); 6078 6079 // Save the end location of each USE. 6080 for (Value *U : I.operands()) { 6081 auto *Instr = dyn_cast<Instruction>(U); 6082 6083 // Ignore non-instruction values such as arguments, constants, etc. 6084 if (!Instr) 6085 continue; 6086 6087 // If this instruction is outside the loop then record it and continue. 6088 if (!TheLoop->contains(Instr)) { 6089 LoopInvariants.insert(Instr); 6090 continue; 6091 } 6092 6093 // Overwrite previous end points. 6094 EndPoint[Instr] = IdxToInstr.size(); 6095 Ends.insert(Instr); 6096 } 6097 } 6098 } 6099 6100 // Saves the list of intervals that end with the index in 'key'. 6101 using InstrList = SmallVector<Instruction *, 2>; 6102 DenseMap<unsigned, InstrList> TransposeEnds; 6103 6104 // Transpose the EndPoints to a list of values that end at each index. 6105 for (auto &Interval : EndPoint) 6106 TransposeEnds[Interval.second].push_back(Interval.first); 6107 6108 SmallPtrSet<Instruction *, 8> OpenIntervals; 6109 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6110 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6111 6112 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6113 6114 // A lambda that gets the register usage for the given type and VF. 6115 const auto &TTICapture = TTI; 6116 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6117 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6118 return 0; 6119 InstructionCost::CostType RegUsage = 6120 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6121 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6122 "Nonsensical values for register usage."); 6123 return RegUsage; 6124 }; 6125 6126 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6127 Instruction *I = IdxToInstr[i]; 6128 6129 // Remove all of the instructions that end at this location. 6130 InstrList &List = TransposeEnds[i]; 6131 for (Instruction *ToRemove : List) 6132 OpenIntervals.erase(ToRemove); 6133 6134 // Ignore instructions that are never used within the loop. 6135 if (!Ends.count(I)) 6136 continue; 6137 6138 // Skip ignored values. 6139 if (ValuesToIgnore.count(I)) 6140 continue; 6141 6142 // For each VF find the maximum usage of registers. 6143 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6144 // Count the number of live intervals. 6145 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6146 6147 if (VFs[j].isScalar()) { 6148 for (auto Inst : OpenIntervals) { 6149 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6150 if (RegUsage.find(ClassID) == RegUsage.end()) 6151 RegUsage[ClassID] = 1; 6152 else 6153 RegUsage[ClassID] += 1; 6154 } 6155 } else { 6156 collectUniformsAndScalars(VFs[j]); 6157 for (auto Inst : OpenIntervals) { 6158 // Skip ignored values for VF > 1. 6159 if (VecValuesToIgnore.count(Inst)) 6160 continue; 6161 if (isScalarAfterVectorization(Inst, VFs[j])) { 6162 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6163 if (RegUsage.find(ClassID) == RegUsage.end()) 6164 RegUsage[ClassID] = 1; 6165 else 6166 RegUsage[ClassID] += 1; 6167 } else { 6168 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6169 if (RegUsage.find(ClassID) == RegUsage.end()) 6170 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6171 else 6172 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6173 } 6174 } 6175 } 6176 6177 for (auto& pair : RegUsage) { 6178 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6179 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6180 else 6181 MaxUsages[j][pair.first] = pair.second; 6182 } 6183 } 6184 6185 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6186 << OpenIntervals.size() << '\n'); 6187 6188 // Add the current instruction to the list of open intervals. 6189 OpenIntervals.insert(I); 6190 } 6191 6192 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6193 SmallMapVector<unsigned, unsigned, 4> Invariant; 6194 6195 for (auto Inst : LoopInvariants) { 6196 unsigned Usage = 6197 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6198 unsigned ClassID = 6199 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6200 if (Invariant.find(ClassID) == Invariant.end()) 6201 Invariant[ClassID] = Usage; 6202 else 6203 Invariant[ClassID] += Usage; 6204 } 6205 6206 LLVM_DEBUG({ 6207 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6208 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6209 << " item\n"; 6210 for (const auto &pair : MaxUsages[i]) { 6211 dbgs() << "LV(REG): RegisterClass: " 6212 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6213 << " registers\n"; 6214 } 6215 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6216 << " item\n"; 6217 for (const auto &pair : Invariant) { 6218 dbgs() << "LV(REG): RegisterClass: " 6219 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6220 << " registers\n"; 6221 } 6222 }); 6223 6224 RU.LoopInvariantRegs = Invariant; 6225 RU.MaxLocalUsers = MaxUsages[i]; 6226 RUs[i] = RU; 6227 } 6228 6229 return RUs; 6230 } 6231 6232 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6233 ElementCount VF) { 6234 // TODO: Cost model for emulated masked load/store is completely 6235 // broken. This hack guides the cost model to use an artificially 6236 // high enough value to practically disable vectorization with such 6237 // operations, except where previously deployed legality hack allowed 6238 // using very low cost values. This is to avoid regressions coming simply 6239 // from moving "masked load/store" check from legality to cost model. 6240 // Masked Load/Gather emulation was previously never allowed. 6241 // Limited number of Masked Store/Scatter emulation was allowed. 6242 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6243 return isa<LoadInst>(I) || 6244 (isa<StoreInst>(I) && 6245 NumPredStores > NumberOfStoresToPredicate); 6246 } 6247 6248 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6249 // If we aren't vectorizing the loop, or if we've already collected the 6250 // instructions to scalarize, there's nothing to do. Collection may already 6251 // have occurred if we have a user-selected VF and are now computing the 6252 // expected cost for interleaving. 6253 if (VF.isScalar() || VF.isZero() || 6254 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6255 return; 6256 6257 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6258 // not profitable to scalarize any instructions, the presence of VF in the 6259 // map will indicate that we've analyzed it already. 6260 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6261 6262 // Find all the instructions that are scalar with predication in the loop and 6263 // determine if it would be better to not if-convert the blocks they are in. 6264 // If so, we also record the instructions to scalarize. 6265 for (BasicBlock *BB : TheLoop->blocks()) { 6266 if (!blockNeedsPredicationForAnyReason(BB)) 6267 continue; 6268 for (Instruction &I : *BB) 6269 if (isScalarWithPredication(&I, VF)) { 6270 ScalarCostsTy ScalarCosts; 6271 // Do not apply discount if scalable, because that would lead to 6272 // invalid scalarization costs. 6273 // Do not apply discount logic if hacked cost is needed 6274 // for emulated masked memrefs. 6275 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6276 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6277 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6278 // Remember that BB will remain after vectorization. 6279 PredicatedBBsAfterVectorization.insert(BB); 6280 } 6281 } 6282 } 6283 6284 int LoopVectorizationCostModel::computePredInstDiscount( 6285 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6286 assert(!isUniformAfterVectorization(PredInst, VF) && 6287 "Instruction marked uniform-after-vectorization will be predicated"); 6288 6289 // Initialize the discount to zero, meaning that the scalar version and the 6290 // vector version cost the same. 6291 InstructionCost Discount = 0; 6292 6293 // Holds instructions to analyze. The instructions we visit are mapped in 6294 // ScalarCosts. Those instructions are the ones that would be scalarized if 6295 // we find that the scalar version costs less. 6296 SmallVector<Instruction *, 8> Worklist; 6297 6298 // Returns true if the given instruction can be scalarized. 6299 auto canBeScalarized = [&](Instruction *I) -> bool { 6300 // We only attempt to scalarize instructions forming a single-use chain 6301 // from the original predicated block that would otherwise be vectorized. 6302 // Although not strictly necessary, we give up on instructions we know will 6303 // already be scalar to avoid traversing chains that are unlikely to be 6304 // beneficial. 6305 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6306 isScalarAfterVectorization(I, VF)) 6307 return false; 6308 6309 // If the instruction is scalar with predication, it will be analyzed 6310 // separately. We ignore it within the context of PredInst. 6311 if (isScalarWithPredication(I, VF)) 6312 return false; 6313 6314 // If any of the instruction's operands are uniform after vectorization, 6315 // the instruction cannot be scalarized. This prevents, for example, a 6316 // masked load from being scalarized. 6317 // 6318 // We assume we will only emit a value for lane zero of an instruction 6319 // marked uniform after vectorization, rather than VF identical values. 6320 // Thus, if we scalarize an instruction that uses a uniform, we would 6321 // create uses of values corresponding to the lanes we aren't emitting code 6322 // for. This behavior can be changed by allowing getScalarValue to clone 6323 // the lane zero values for uniforms rather than asserting. 6324 for (Use &U : I->operands()) 6325 if (auto *J = dyn_cast<Instruction>(U.get())) 6326 if (isUniformAfterVectorization(J, VF)) 6327 return false; 6328 6329 // Otherwise, we can scalarize the instruction. 6330 return true; 6331 }; 6332 6333 // Compute the expected cost discount from scalarizing the entire expression 6334 // feeding the predicated instruction. We currently only consider expressions 6335 // that are single-use instruction chains. 6336 Worklist.push_back(PredInst); 6337 while (!Worklist.empty()) { 6338 Instruction *I = Worklist.pop_back_val(); 6339 6340 // If we've already analyzed the instruction, there's nothing to do. 6341 if (ScalarCosts.find(I) != ScalarCosts.end()) 6342 continue; 6343 6344 // Compute the cost of the vector instruction. Note that this cost already 6345 // includes the scalarization overhead of the predicated instruction. 6346 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6347 6348 // Compute the cost of the scalarized instruction. This cost is the cost of 6349 // the instruction as if it wasn't if-converted and instead remained in the 6350 // predicated block. We will scale this cost by block probability after 6351 // computing the scalarization overhead. 6352 InstructionCost ScalarCost = 6353 VF.getFixedValue() * 6354 getInstructionCost(I, ElementCount::getFixed(1)).first; 6355 6356 // Compute the scalarization overhead of needed insertelement instructions 6357 // and phi nodes. 6358 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6359 ScalarCost += TTI.getScalarizationOverhead( 6360 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6361 APInt::getAllOnes(VF.getFixedValue()), true, false); 6362 ScalarCost += 6363 VF.getFixedValue() * 6364 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6365 } 6366 6367 // Compute the scalarization overhead of needed extractelement 6368 // instructions. For each of the instruction's operands, if the operand can 6369 // be scalarized, add it to the worklist; otherwise, account for the 6370 // overhead. 6371 for (Use &U : I->operands()) 6372 if (auto *J = dyn_cast<Instruction>(U.get())) { 6373 assert(VectorType::isValidElementType(J->getType()) && 6374 "Instruction has non-scalar type"); 6375 if (canBeScalarized(J)) 6376 Worklist.push_back(J); 6377 else if (needsExtract(J, VF)) { 6378 ScalarCost += TTI.getScalarizationOverhead( 6379 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6380 APInt::getAllOnes(VF.getFixedValue()), false, true); 6381 } 6382 } 6383 6384 // Scale the total scalar cost by block probability. 6385 ScalarCost /= getReciprocalPredBlockProb(); 6386 6387 // Compute the discount. A non-negative discount means the vector version 6388 // of the instruction costs more, and scalarizing would be beneficial. 6389 Discount += VectorCost - ScalarCost; 6390 ScalarCosts[I] = ScalarCost; 6391 } 6392 6393 return *Discount.getValue(); 6394 } 6395 6396 LoopVectorizationCostModel::VectorizationCostTy 6397 LoopVectorizationCostModel::expectedCost( 6398 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6399 VectorizationCostTy Cost; 6400 6401 // For each block. 6402 for (BasicBlock *BB : TheLoop->blocks()) { 6403 VectorizationCostTy BlockCost; 6404 6405 // For each instruction in the old loop. 6406 for (Instruction &I : BB->instructionsWithoutDebug()) { 6407 // Skip ignored values. 6408 if (ValuesToIgnore.count(&I) || 6409 (VF.isVector() && VecValuesToIgnore.count(&I))) 6410 continue; 6411 6412 VectorizationCostTy C = getInstructionCost(&I, VF); 6413 6414 // Check if we should override the cost. 6415 if (C.first.isValid() && 6416 ForceTargetInstructionCost.getNumOccurrences() > 0) 6417 C.first = InstructionCost(ForceTargetInstructionCost); 6418 6419 // Keep a list of instructions with invalid costs. 6420 if (Invalid && !C.first.isValid()) 6421 Invalid->emplace_back(&I, VF); 6422 6423 BlockCost.first += C.first; 6424 BlockCost.second |= C.second; 6425 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6426 << " for VF " << VF << " For instruction: " << I 6427 << '\n'); 6428 } 6429 6430 // If we are vectorizing a predicated block, it will have been 6431 // if-converted. This means that the block's instructions (aside from 6432 // stores and instructions that may divide by zero) will now be 6433 // unconditionally executed. For the scalar case, we may not always execute 6434 // the predicated block, if it is an if-else block. Thus, scale the block's 6435 // cost by the probability of executing it. blockNeedsPredication from 6436 // Legal is used so as to not include all blocks in tail folded loops. 6437 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6438 BlockCost.first /= getReciprocalPredBlockProb(); 6439 6440 Cost.first += BlockCost.first; 6441 Cost.second |= BlockCost.second; 6442 } 6443 6444 return Cost; 6445 } 6446 6447 /// Gets Address Access SCEV after verifying that the access pattern 6448 /// is loop invariant except the induction variable dependence. 6449 /// 6450 /// This SCEV can be sent to the Target in order to estimate the address 6451 /// calculation cost. 6452 static const SCEV *getAddressAccessSCEV( 6453 Value *Ptr, 6454 LoopVectorizationLegality *Legal, 6455 PredicatedScalarEvolution &PSE, 6456 const Loop *TheLoop) { 6457 6458 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6459 if (!Gep) 6460 return nullptr; 6461 6462 // We are looking for a gep with all loop invariant indices except for one 6463 // which should be an induction variable. 6464 auto SE = PSE.getSE(); 6465 unsigned NumOperands = Gep->getNumOperands(); 6466 for (unsigned i = 1; i < NumOperands; ++i) { 6467 Value *Opd = Gep->getOperand(i); 6468 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6469 !Legal->isInductionVariable(Opd)) 6470 return nullptr; 6471 } 6472 6473 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6474 return PSE.getSCEV(Ptr); 6475 } 6476 6477 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6478 return Legal->hasStride(I->getOperand(0)) || 6479 Legal->hasStride(I->getOperand(1)); 6480 } 6481 6482 InstructionCost 6483 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6484 ElementCount VF) { 6485 assert(VF.isVector() && 6486 "Scalarization cost of instruction implies vectorization."); 6487 if (VF.isScalable()) 6488 return InstructionCost::getInvalid(); 6489 6490 Type *ValTy = getLoadStoreType(I); 6491 auto SE = PSE.getSE(); 6492 6493 unsigned AS = getLoadStoreAddressSpace(I); 6494 Value *Ptr = getLoadStorePointerOperand(I); 6495 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6496 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6497 // that it is being called from this specific place. 6498 6499 // Figure out whether the access is strided and get the stride value 6500 // if it's known in compile time 6501 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6502 6503 // Get the cost of the scalar memory instruction and address computation. 6504 InstructionCost Cost = 6505 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6506 6507 // Don't pass *I here, since it is scalar but will actually be part of a 6508 // vectorized loop where the user of it is a vectorized instruction. 6509 const Align Alignment = getLoadStoreAlignment(I); 6510 Cost += VF.getKnownMinValue() * 6511 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6512 AS, TTI::TCK_RecipThroughput); 6513 6514 // Get the overhead of the extractelement and insertelement instructions 6515 // we might create due to scalarization. 6516 Cost += getScalarizationOverhead(I, VF); 6517 6518 // If we have a predicated load/store, it will need extra i1 extracts and 6519 // conditional branches, but may not be executed for each vector lane. Scale 6520 // the cost by the probability of executing the predicated block. 6521 if (isPredicatedInst(I, VF)) { 6522 Cost /= getReciprocalPredBlockProb(); 6523 6524 // Add the cost of an i1 extract and a branch 6525 auto *Vec_i1Ty = 6526 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6527 Cost += TTI.getScalarizationOverhead( 6528 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6529 /*Insert=*/false, /*Extract=*/true); 6530 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6531 6532 if (useEmulatedMaskMemRefHack(I, VF)) 6533 // Artificially setting to a high enough value to practically disable 6534 // vectorization with such operations. 6535 Cost = 3000000; 6536 } 6537 6538 return Cost; 6539 } 6540 6541 InstructionCost 6542 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6543 ElementCount VF) { 6544 Type *ValTy = getLoadStoreType(I); 6545 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6546 Value *Ptr = getLoadStorePointerOperand(I); 6547 unsigned AS = getLoadStoreAddressSpace(I); 6548 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6549 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6550 6551 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6552 "Stride should be 1 or -1 for consecutive memory access"); 6553 const Align Alignment = getLoadStoreAlignment(I); 6554 InstructionCost Cost = 0; 6555 if (Legal->isMaskRequired(I)) 6556 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6557 CostKind); 6558 else 6559 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6560 CostKind, I); 6561 6562 bool Reverse = ConsecutiveStride < 0; 6563 if (Reverse) 6564 Cost += 6565 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6566 return Cost; 6567 } 6568 6569 InstructionCost 6570 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6571 ElementCount VF) { 6572 assert(Legal->isUniformMemOp(*I)); 6573 6574 Type *ValTy = getLoadStoreType(I); 6575 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6576 const Align Alignment = getLoadStoreAlignment(I); 6577 unsigned AS = getLoadStoreAddressSpace(I); 6578 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6579 if (isa<LoadInst>(I)) { 6580 return TTI.getAddressComputationCost(ValTy) + 6581 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6582 CostKind) + 6583 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6584 } 6585 StoreInst *SI = cast<StoreInst>(I); 6586 6587 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6588 return TTI.getAddressComputationCost(ValTy) + 6589 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6590 CostKind) + 6591 (isLoopInvariantStoreValue 6592 ? 0 6593 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6594 VF.getKnownMinValue() - 1)); 6595 } 6596 6597 InstructionCost 6598 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6599 ElementCount VF) { 6600 Type *ValTy = getLoadStoreType(I); 6601 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6602 const Align Alignment = getLoadStoreAlignment(I); 6603 const Value *Ptr = getLoadStorePointerOperand(I); 6604 6605 return TTI.getAddressComputationCost(VectorTy) + 6606 TTI.getGatherScatterOpCost( 6607 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6608 TargetTransformInfo::TCK_RecipThroughput, I); 6609 } 6610 6611 InstructionCost 6612 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6613 ElementCount VF) { 6614 // TODO: Once we have support for interleaving with scalable vectors 6615 // we can calculate the cost properly here. 6616 if (VF.isScalable()) 6617 return InstructionCost::getInvalid(); 6618 6619 Type *ValTy = getLoadStoreType(I); 6620 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6621 unsigned AS = getLoadStoreAddressSpace(I); 6622 6623 auto Group = getInterleavedAccessGroup(I); 6624 assert(Group && "Fail to get an interleaved access group."); 6625 6626 unsigned InterleaveFactor = Group->getFactor(); 6627 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6628 6629 // Holds the indices of existing members in the interleaved group. 6630 SmallVector<unsigned, 4> Indices; 6631 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6632 if (Group->getMember(IF)) 6633 Indices.push_back(IF); 6634 6635 // Calculate the cost of the whole interleaved group. 6636 bool UseMaskForGaps = 6637 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6638 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6639 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6640 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6641 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6642 6643 if (Group->isReverse()) { 6644 // TODO: Add support for reversed masked interleaved access. 6645 assert(!Legal->isMaskRequired(I) && 6646 "Reverse masked interleaved access not supported."); 6647 Cost += 6648 Group->getNumMembers() * 6649 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6650 } 6651 return Cost; 6652 } 6653 6654 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6655 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6656 using namespace llvm::PatternMatch; 6657 // Early exit for no inloop reductions 6658 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6659 return None; 6660 auto *VectorTy = cast<VectorType>(Ty); 6661 6662 // We are looking for a pattern of, and finding the minimal acceptable cost: 6663 // reduce(mul(ext(A), ext(B))) or 6664 // reduce(mul(A, B)) or 6665 // reduce(ext(A)) or 6666 // reduce(A). 6667 // The basic idea is that we walk down the tree to do that, finding the root 6668 // reduction instruction in InLoopReductionImmediateChains. From there we find 6669 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6670 // of the components. If the reduction cost is lower then we return it for the 6671 // reduction instruction and 0 for the other instructions in the pattern. If 6672 // it is not we return an invalid cost specifying the orignal cost method 6673 // should be used. 6674 Instruction *RetI = I; 6675 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6676 if (!RetI->hasOneUser()) 6677 return None; 6678 RetI = RetI->user_back(); 6679 } 6680 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6681 RetI->user_back()->getOpcode() == Instruction::Add) { 6682 if (!RetI->hasOneUser()) 6683 return None; 6684 RetI = RetI->user_back(); 6685 } 6686 6687 // Test if the found instruction is a reduction, and if not return an invalid 6688 // cost specifying the parent to use the original cost modelling. 6689 if (!InLoopReductionImmediateChains.count(RetI)) 6690 return None; 6691 6692 // Find the reduction this chain is a part of and calculate the basic cost of 6693 // the reduction on its own. 6694 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6695 Instruction *ReductionPhi = LastChain; 6696 while (!isa<PHINode>(ReductionPhi)) 6697 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6698 6699 const RecurrenceDescriptor &RdxDesc = 6700 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6701 6702 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6703 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6704 6705 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6706 // normal fmul instruction to the cost of the fadd reduction. 6707 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6708 BaseCost += 6709 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6710 6711 // If we're using ordered reductions then we can just return the base cost 6712 // here, since getArithmeticReductionCost calculates the full ordered 6713 // reduction cost when FP reassociation is not allowed. 6714 if (useOrderedReductions(RdxDesc)) 6715 return BaseCost; 6716 6717 // Get the operand that was not the reduction chain and match it to one of the 6718 // patterns, returning the better cost if it is found. 6719 Instruction *RedOp = RetI->getOperand(1) == LastChain 6720 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6721 : dyn_cast<Instruction>(RetI->getOperand(1)); 6722 6723 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6724 6725 Instruction *Op0, *Op1; 6726 if (RedOp && 6727 match(RedOp, 6728 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6729 match(Op0, m_ZExtOrSExt(m_Value())) && 6730 Op0->getOpcode() == Op1->getOpcode() && 6731 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6732 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6733 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6734 6735 // Matched reduce(ext(mul(ext(A), ext(B))) 6736 // Note that the extend opcodes need to all match, or if A==B they will have 6737 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6738 // which is equally fine. 6739 bool IsUnsigned = isa<ZExtInst>(Op0); 6740 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6741 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6742 6743 InstructionCost ExtCost = 6744 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6745 TTI::CastContextHint::None, CostKind, Op0); 6746 InstructionCost MulCost = 6747 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6748 InstructionCost Ext2Cost = 6749 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6750 TTI::CastContextHint::None, CostKind, RedOp); 6751 6752 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6753 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6754 CostKind); 6755 6756 if (RedCost.isValid() && 6757 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6758 return I == RetI ? RedCost : 0; 6759 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6760 !TheLoop->isLoopInvariant(RedOp)) { 6761 // Matched reduce(ext(A)) 6762 bool IsUnsigned = isa<ZExtInst>(RedOp); 6763 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6764 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6765 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6766 CostKind); 6767 6768 InstructionCost ExtCost = 6769 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6770 TTI::CastContextHint::None, CostKind, RedOp); 6771 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6772 return I == RetI ? RedCost : 0; 6773 } else if (RedOp && 6774 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6775 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6776 Op0->getOpcode() == Op1->getOpcode() && 6777 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6778 bool IsUnsigned = isa<ZExtInst>(Op0); 6779 Type *Op0Ty = Op0->getOperand(0)->getType(); 6780 Type *Op1Ty = Op1->getOperand(0)->getType(); 6781 Type *LargestOpTy = 6782 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6783 : Op0Ty; 6784 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6785 6786 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6787 // different sizes. We take the largest type as the ext to reduce, and add 6788 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6789 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6790 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6791 TTI::CastContextHint::None, CostKind, Op0); 6792 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6793 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6794 TTI::CastContextHint::None, CostKind, Op1); 6795 InstructionCost MulCost = 6796 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6797 6798 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6799 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6800 CostKind); 6801 InstructionCost ExtraExtCost = 0; 6802 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6803 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6804 ExtraExtCost = TTI.getCastInstrCost( 6805 ExtraExtOp->getOpcode(), ExtType, 6806 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6807 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6808 } 6809 6810 if (RedCost.isValid() && 6811 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6812 return I == RetI ? RedCost : 0; 6813 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6814 // Matched reduce(mul()) 6815 InstructionCost MulCost = 6816 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6817 6818 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6819 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6820 CostKind); 6821 6822 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6823 return I == RetI ? RedCost : 0; 6824 } 6825 } 6826 6827 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6828 } 6829 6830 InstructionCost 6831 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6832 ElementCount VF) { 6833 // Calculate scalar cost only. Vectorization cost should be ready at this 6834 // moment. 6835 if (VF.isScalar()) { 6836 Type *ValTy = getLoadStoreType(I); 6837 const Align Alignment = getLoadStoreAlignment(I); 6838 unsigned AS = getLoadStoreAddressSpace(I); 6839 6840 return TTI.getAddressComputationCost(ValTy) + 6841 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6842 TTI::TCK_RecipThroughput, I); 6843 } 6844 return getWideningCost(I, VF); 6845 } 6846 6847 LoopVectorizationCostModel::VectorizationCostTy 6848 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6849 ElementCount VF) { 6850 // If we know that this instruction will remain uniform, check the cost of 6851 // the scalar version. 6852 if (isUniformAfterVectorization(I, VF)) 6853 VF = ElementCount::getFixed(1); 6854 6855 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6856 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6857 6858 // Forced scalars do not have any scalarization overhead. 6859 auto ForcedScalar = ForcedScalars.find(VF); 6860 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6861 auto InstSet = ForcedScalar->second; 6862 if (InstSet.count(I)) 6863 return VectorizationCostTy( 6864 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6865 VF.getKnownMinValue()), 6866 false); 6867 } 6868 6869 Type *VectorTy; 6870 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6871 6872 bool TypeNotScalarized = false; 6873 if (VF.isVector() && VectorTy->isVectorTy()) { 6874 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6875 if (NumParts) 6876 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6877 else 6878 C = InstructionCost::getInvalid(); 6879 } 6880 return VectorizationCostTy(C, TypeNotScalarized); 6881 } 6882 6883 InstructionCost 6884 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6885 ElementCount VF) const { 6886 6887 // There is no mechanism yet to create a scalable scalarization loop, 6888 // so this is currently Invalid. 6889 if (VF.isScalable()) 6890 return InstructionCost::getInvalid(); 6891 6892 if (VF.isScalar()) 6893 return 0; 6894 6895 InstructionCost Cost = 0; 6896 Type *RetTy = ToVectorTy(I->getType(), VF); 6897 if (!RetTy->isVoidTy() && 6898 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6899 Cost += TTI.getScalarizationOverhead( 6900 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6901 false); 6902 6903 // Some targets keep addresses scalar. 6904 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6905 return Cost; 6906 6907 // Some targets support efficient element stores. 6908 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6909 return Cost; 6910 6911 // Collect operands to consider. 6912 CallInst *CI = dyn_cast<CallInst>(I); 6913 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6914 6915 // Skip operands that do not require extraction/scalarization and do not incur 6916 // any overhead. 6917 SmallVector<Type *> Tys; 6918 for (auto *V : filterExtractingOperands(Ops, VF)) 6919 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6920 return Cost + TTI.getOperandsScalarizationOverhead( 6921 filterExtractingOperands(Ops, VF), Tys); 6922 } 6923 6924 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6925 if (VF.isScalar()) 6926 return; 6927 NumPredStores = 0; 6928 for (BasicBlock *BB : TheLoop->blocks()) { 6929 // For each instruction in the old loop. 6930 for (Instruction &I : *BB) { 6931 Value *Ptr = getLoadStorePointerOperand(&I); 6932 if (!Ptr) 6933 continue; 6934 6935 // TODO: We should generate better code and update the cost model for 6936 // predicated uniform stores. Today they are treated as any other 6937 // predicated store (see added test cases in 6938 // invariant-store-vectorization.ll). 6939 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6940 NumPredStores++; 6941 6942 if (Legal->isUniformMemOp(I)) { 6943 // TODO: Avoid replicating loads and stores instead of 6944 // relying on instcombine to remove them. 6945 // Load: Scalar load + broadcast 6946 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6947 InstructionCost Cost; 6948 if (isa<StoreInst>(&I) && VF.isScalable() && 6949 isLegalGatherOrScatter(&I, VF)) { 6950 Cost = getGatherScatterCost(&I, VF); 6951 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6952 } else { 6953 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6954 "Cannot yet scalarize uniform stores"); 6955 Cost = getUniformMemOpCost(&I, VF); 6956 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6957 } 6958 continue; 6959 } 6960 6961 // We assume that widening is the best solution when possible. 6962 if (memoryInstructionCanBeWidened(&I, VF)) { 6963 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6964 int ConsecutiveStride = Legal->isConsecutivePtr( 6965 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6966 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6967 "Expected consecutive stride."); 6968 InstWidening Decision = 6969 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6970 setWideningDecision(&I, VF, Decision, Cost); 6971 continue; 6972 } 6973 6974 // Choose between Interleaving, Gather/Scatter or Scalarization. 6975 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6976 unsigned NumAccesses = 1; 6977 if (isAccessInterleaved(&I)) { 6978 auto Group = getInterleavedAccessGroup(&I); 6979 assert(Group && "Fail to get an interleaved access group."); 6980 6981 // Make one decision for the whole group. 6982 if (getWideningDecision(&I, VF) != CM_Unknown) 6983 continue; 6984 6985 NumAccesses = Group->getNumMembers(); 6986 if (interleavedAccessCanBeWidened(&I, VF)) 6987 InterleaveCost = getInterleaveGroupCost(&I, VF); 6988 } 6989 6990 InstructionCost GatherScatterCost = 6991 isLegalGatherOrScatter(&I, VF) 6992 ? getGatherScatterCost(&I, VF) * NumAccesses 6993 : InstructionCost::getInvalid(); 6994 6995 InstructionCost ScalarizationCost = 6996 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6997 6998 // Choose better solution for the current VF, 6999 // write down this decision and use it during vectorization. 7000 InstructionCost Cost; 7001 InstWidening Decision; 7002 if (InterleaveCost <= GatherScatterCost && 7003 InterleaveCost < ScalarizationCost) { 7004 Decision = CM_Interleave; 7005 Cost = InterleaveCost; 7006 } else if (GatherScatterCost < ScalarizationCost) { 7007 Decision = CM_GatherScatter; 7008 Cost = GatherScatterCost; 7009 } else { 7010 Decision = CM_Scalarize; 7011 Cost = ScalarizationCost; 7012 } 7013 // If the instructions belongs to an interleave group, the whole group 7014 // receives the same decision. The whole group receives the cost, but 7015 // the cost will actually be assigned to one instruction. 7016 if (auto Group = getInterleavedAccessGroup(&I)) 7017 setWideningDecision(Group, VF, Decision, Cost); 7018 else 7019 setWideningDecision(&I, VF, Decision, Cost); 7020 } 7021 } 7022 7023 // Make sure that any load of address and any other address computation 7024 // remains scalar unless there is gather/scatter support. This avoids 7025 // inevitable extracts into address registers, and also has the benefit of 7026 // activating LSR more, since that pass can't optimize vectorized 7027 // addresses. 7028 if (TTI.prefersVectorizedAddressing()) 7029 return; 7030 7031 // Start with all scalar pointer uses. 7032 SmallPtrSet<Instruction *, 8> AddrDefs; 7033 for (BasicBlock *BB : TheLoop->blocks()) 7034 for (Instruction &I : *BB) { 7035 Instruction *PtrDef = 7036 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7037 if (PtrDef && TheLoop->contains(PtrDef) && 7038 getWideningDecision(&I, VF) != CM_GatherScatter) 7039 AddrDefs.insert(PtrDef); 7040 } 7041 7042 // Add all instructions used to generate the addresses. 7043 SmallVector<Instruction *, 4> Worklist; 7044 append_range(Worklist, AddrDefs); 7045 while (!Worklist.empty()) { 7046 Instruction *I = Worklist.pop_back_val(); 7047 for (auto &Op : I->operands()) 7048 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7049 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7050 AddrDefs.insert(InstOp).second) 7051 Worklist.push_back(InstOp); 7052 } 7053 7054 for (auto *I : AddrDefs) { 7055 if (isa<LoadInst>(I)) { 7056 // Setting the desired widening decision should ideally be handled in 7057 // by cost functions, but since this involves the task of finding out 7058 // if the loaded register is involved in an address computation, it is 7059 // instead changed here when we know this is the case. 7060 InstWidening Decision = getWideningDecision(I, VF); 7061 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7062 // Scalarize a widened load of address. 7063 setWideningDecision( 7064 I, VF, CM_Scalarize, 7065 (VF.getKnownMinValue() * 7066 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7067 else if (auto Group = getInterleavedAccessGroup(I)) { 7068 // Scalarize an interleave group of address loads. 7069 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7070 if (Instruction *Member = Group->getMember(I)) 7071 setWideningDecision( 7072 Member, VF, CM_Scalarize, 7073 (VF.getKnownMinValue() * 7074 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7075 } 7076 } 7077 } else 7078 // Make sure I gets scalarized and a cost estimate without 7079 // scalarization overhead. 7080 ForcedScalars[VF].insert(I); 7081 } 7082 } 7083 7084 InstructionCost 7085 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7086 Type *&VectorTy) { 7087 Type *RetTy = I->getType(); 7088 if (canTruncateToMinimalBitwidth(I, VF)) 7089 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7090 auto SE = PSE.getSE(); 7091 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7092 7093 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7094 ElementCount VF) -> bool { 7095 if (VF.isScalar()) 7096 return true; 7097 7098 auto Scalarized = InstsToScalarize.find(VF); 7099 assert(Scalarized != InstsToScalarize.end() && 7100 "VF not yet analyzed for scalarization profitability"); 7101 return !Scalarized->second.count(I) && 7102 llvm::all_of(I->users(), [&](User *U) { 7103 auto *UI = cast<Instruction>(U); 7104 return !Scalarized->second.count(UI); 7105 }); 7106 }; 7107 (void) hasSingleCopyAfterVectorization; 7108 7109 if (isScalarAfterVectorization(I, VF)) { 7110 // With the exception of GEPs and PHIs, after scalarization there should 7111 // only be one copy of the instruction generated in the loop. This is 7112 // because the VF is either 1, or any instructions that need scalarizing 7113 // have already been dealt with by the the time we get here. As a result, 7114 // it means we don't have to multiply the instruction cost by VF. 7115 assert(I->getOpcode() == Instruction::GetElementPtr || 7116 I->getOpcode() == Instruction::PHI || 7117 (I->getOpcode() == Instruction::BitCast && 7118 I->getType()->isPointerTy()) || 7119 hasSingleCopyAfterVectorization(I, VF)); 7120 VectorTy = RetTy; 7121 } else 7122 VectorTy = ToVectorTy(RetTy, VF); 7123 7124 // TODO: We need to estimate the cost of intrinsic calls. 7125 switch (I->getOpcode()) { 7126 case Instruction::GetElementPtr: 7127 // We mark this instruction as zero-cost because the cost of GEPs in 7128 // vectorized code depends on whether the corresponding memory instruction 7129 // is scalarized or not. Therefore, we handle GEPs with the memory 7130 // instruction cost. 7131 return 0; 7132 case Instruction::Br: { 7133 // In cases of scalarized and predicated instructions, there will be VF 7134 // predicated blocks in the vectorized loop. Each branch around these 7135 // blocks requires also an extract of its vector compare i1 element. 7136 bool ScalarPredicatedBB = false; 7137 BranchInst *BI = cast<BranchInst>(I); 7138 if (VF.isVector() && BI->isConditional() && 7139 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7140 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7141 ScalarPredicatedBB = true; 7142 7143 if (ScalarPredicatedBB) { 7144 // Not possible to scalarize scalable vector with predicated instructions. 7145 if (VF.isScalable()) 7146 return InstructionCost::getInvalid(); 7147 // Return cost for branches around scalarized and predicated blocks. 7148 auto *Vec_i1Ty = 7149 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7150 return ( 7151 TTI.getScalarizationOverhead( 7152 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7153 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7154 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7155 // The back-edge branch will remain, as will all scalar branches. 7156 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7157 else 7158 // This branch will be eliminated by if-conversion. 7159 return 0; 7160 // Note: We currently assume zero cost for an unconditional branch inside 7161 // a predicated block since it will become a fall-through, although we 7162 // may decide in the future to call TTI for all branches. 7163 } 7164 case Instruction::PHI: { 7165 auto *Phi = cast<PHINode>(I); 7166 7167 // First-order recurrences are replaced by vector shuffles inside the loop. 7168 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7169 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7170 return TTI.getShuffleCost( 7171 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7172 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7173 7174 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7175 // converted into select instructions. We require N - 1 selects per phi 7176 // node, where N is the number of incoming values. 7177 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7178 return (Phi->getNumIncomingValues() - 1) * 7179 TTI.getCmpSelInstrCost( 7180 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7181 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7182 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7183 7184 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7185 } 7186 case Instruction::UDiv: 7187 case Instruction::SDiv: 7188 case Instruction::URem: 7189 case Instruction::SRem: 7190 // If we have a predicated instruction, it may not be executed for each 7191 // vector lane. Get the scalarization cost and scale this amount by the 7192 // probability of executing the predicated block. If the instruction is not 7193 // predicated, we fall through to the next case. 7194 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7195 InstructionCost Cost = 0; 7196 7197 // These instructions have a non-void type, so account for the phi nodes 7198 // that we will create. This cost is likely to be zero. The phi node 7199 // cost, if any, should be scaled by the block probability because it 7200 // models a copy at the end of each predicated block. 7201 Cost += VF.getKnownMinValue() * 7202 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7203 7204 // The cost of the non-predicated instruction. 7205 Cost += VF.getKnownMinValue() * 7206 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7207 7208 // The cost of insertelement and extractelement instructions needed for 7209 // scalarization. 7210 Cost += getScalarizationOverhead(I, VF); 7211 7212 // Scale the cost by the probability of executing the predicated blocks. 7213 // This assumes the predicated block for each vector lane is equally 7214 // likely. 7215 return Cost / getReciprocalPredBlockProb(); 7216 } 7217 LLVM_FALLTHROUGH; 7218 case Instruction::Add: 7219 case Instruction::FAdd: 7220 case Instruction::Sub: 7221 case Instruction::FSub: 7222 case Instruction::Mul: 7223 case Instruction::FMul: 7224 case Instruction::FDiv: 7225 case Instruction::FRem: 7226 case Instruction::Shl: 7227 case Instruction::LShr: 7228 case Instruction::AShr: 7229 case Instruction::And: 7230 case Instruction::Or: 7231 case Instruction::Xor: { 7232 // Since we will replace the stride by 1 the multiplication should go away. 7233 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7234 return 0; 7235 7236 // Detect reduction patterns 7237 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7238 return *RedCost; 7239 7240 // Certain instructions can be cheaper to vectorize if they have a constant 7241 // second vector operand. One example of this are shifts on x86. 7242 Value *Op2 = I->getOperand(1); 7243 TargetTransformInfo::OperandValueProperties Op2VP; 7244 TargetTransformInfo::OperandValueKind Op2VK = 7245 TTI.getOperandInfo(Op2, Op2VP); 7246 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7247 Op2VK = TargetTransformInfo::OK_UniformValue; 7248 7249 SmallVector<const Value *, 4> Operands(I->operand_values()); 7250 return TTI.getArithmeticInstrCost( 7251 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7252 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7253 } 7254 case Instruction::FNeg: { 7255 return TTI.getArithmeticInstrCost( 7256 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7257 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7258 TargetTransformInfo::OP_None, I->getOperand(0), I); 7259 } 7260 case Instruction::Select: { 7261 SelectInst *SI = cast<SelectInst>(I); 7262 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7263 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7264 7265 const Value *Op0, *Op1; 7266 using namespace llvm::PatternMatch; 7267 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7268 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7269 // select x, y, false --> x & y 7270 // select x, true, y --> x | y 7271 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7272 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7273 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7274 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7275 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7276 Op1->getType()->getScalarSizeInBits() == 1); 7277 7278 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7279 return TTI.getArithmeticInstrCost( 7280 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7281 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7282 } 7283 7284 Type *CondTy = SI->getCondition()->getType(); 7285 if (!ScalarCond) 7286 CondTy = VectorType::get(CondTy, VF); 7287 7288 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7289 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7290 Pred = Cmp->getPredicate(); 7291 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7292 CostKind, I); 7293 } 7294 case Instruction::ICmp: 7295 case Instruction::FCmp: { 7296 Type *ValTy = I->getOperand(0)->getType(); 7297 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7298 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7299 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7300 VectorTy = ToVectorTy(ValTy, VF); 7301 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7302 cast<CmpInst>(I)->getPredicate(), CostKind, 7303 I); 7304 } 7305 case Instruction::Store: 7306 case Instruction::Load: { 7307 ElementCount Width = VF; 7308 if (Width.isVector()) { 7309 InstWidening Decision = getWideningDecision(I, Width); 7310 assert(Decision != CM_Unknown && 7311 "CM decision should be taken at this point"); 7312 if (Decision == CM_Scalarize) 7313 Width = ElementCount::getFixed(1); 7314 } 7315 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7316 return getMemoryInstructionCost(I, VF); 7317 } 7318 case Instruction::BitCast: 7319 if (I->getType()->isPointerTy()) 7320 return 0; 7321 LLVM_FALLTHROUGH; 7322 case Instruction::ZExt: 7323 case Instruction::SExt: 7324 case Instruction::FPToUI: 7325 case Instruction::FPToSI: 7326 case Instruction::FPExt: 7327 case Instruction::PtrToInt: 7328 case Instruction::IntToPtr: 7329 case Instruction::SIToFP: 7330 case Instruction::UIToFP: 7331 case Instruction::Trunc: 7332 case Instruction::FPTrunc: { 7333 // Computes the CastContextHint from a Load/Store instruction. 7334 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7335 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7336 "Expected a load or a store!"); 7337 7338 if (VF.isScalar() || !TheLoop->contains(I)) 7339 return TTI::CastContextHint::Normal; 7340 7341 switch (getWideningDecision(I, VF)) { 7342 case LoopVectorizationCostModel::CM_GatherScatter: 7343 return TTI::CastContextHint::GatherScatter; 7344 case LoopVectorizationCostModel::CM_Interleave: 7345 return TTI::CastContextHint::Interleave; 7346 case LoopVectorizationCostModel::CM_Scalarize: 7347 case LoopVectorizationCostModel::CM_Widen: 7348 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7349 : TTI::CastContextHint::Normal; 7350 case LoopVectorizationCostModel::CM_Widen_Reverse: 7351 return TTI::CastContextHint::Reversed; 7352 case LoopVectorizationCostModel::CM_Unknown: 7353 llvm_unreachable("Instr did not go through cost modelling?"); 7354 } 7355 7356 llvm_unreachable("Unhandled case!"); 7357 }; 7358 7359 unsigned Opcode = I->getOpcode(); 7360 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7361 // For Trunc, the context is the only user, which must be a StoreInst. 7362 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7363 if (I->hasOneUse()) 7364 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7365 CCH = ComputeCCH(Store); 7366 } 7367 // For Z/Sext, the context is the operand, which must be a LoadInst. 7368 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7369 Opcode == Instruction::FPExt) { 7370 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7371 CCH = ComputeCCH(Load); 7372 } 7373 7374 // We optimize the truncation of induction variables having constant 7375 // integer steps. The cost of these truncations is the same as the scalar 7376 // operation. 7377 if (isOptimizableIVTruncate(I, VF)) { 7378 auto *Trunc = cast<TruncInst>(I); 7379 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7380 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7381 } 7382 7383 // Detect reduction patterns 7384 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7385 return *RedCost; 7386 7387 Type *SrcScalarTy = I->getOperand(0)->getType(); 7388 Type *SrcVecTy = 7389 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7390 if (canTruncateToMinimalBitwidth(I, VF)) { 7391 // This cast is going to be shrunk. This may remove the cast or it might 7392 // turn it into slightly different cast. For example, if MinBW == 16, 7393 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7394 // 7395 // Calculate the modified src and dest types. 7396 Type *MinVecTy = VectorTy; 7397 if (Opcode == Instruction::Trunc) { 7398 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7399 VectorTy = 7400 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7401 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7402 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7403 VectorTy = 7404 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7405 } 7406 } 7407 7408 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7409 } 7410 case Instruction::Call: { 7411 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7412 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7413 return *RedCost; 7414 bool NeedToScalarize; 7415 CallInst *CI = cast<CallInst>(I); 7416 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7417 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7418 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7419 return std::min(CallCost, IntrinsicCost); 7420 } 7421 return CallCost; 7422 } 7423 case Instruction::ExtractValue: 7424 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7425 case Instruction::Alloca: 7426 // We cannot easily widen alloca to a scalable alloca, as 7427 // the result would need to be a vector of pointers. 7428 if (VF.isScalable()) 7429 return InstructionCost::getInvalid(); 7430 LLVM_FALLTHROUGH; 7431 default: 7432 // This opcode is unknown. Assume that it is the same as 'mul'. 7433 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7434 } // end of switch. 7435 } 7436 7437 char LoopVectorize::ID = 0; 7438 7439 static const char lv_name[] = "Loop Vectorization"; 7440 7441 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7442 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7443 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7444 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7445 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7446 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7447 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7448 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7449 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7450 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7451 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7452 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7453 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7454 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7455 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7456 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7457 7458 namespace llvm { 7459 7460 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7461 7462 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7463 bool VectorizeOnlyWhenForced) { 7464 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7465 } 7466 7467 } // end namespace llvm 7468 7469 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7470 // Check if the pointer operand of a load or store instruction is 7471 // consecutive. 7472 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7473 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7474 return false; 7475 } 7476 7477 void LoopVectorizationCostModel::collectValuesToIgnore() { 7478 // Ignore ephemeral values. 7479 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7480 7481 // Ignore type-promoting instructions we identified during reduction 7482 // detection. 7483 for (auto &Reduction : Legal->getReductionVars()) { 7484 const RecurrenceDescriptor &RedDes = Reduction.second; 7485 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7486 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7487 } 7488 // Ignore type-casting instructions we identified during induction 7489 // detection. 7490 for (auto &Induction : Legal->getInductionVars()) { 7491 const InductionDescriptor &IndDes = Induction.second; 7492 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7493 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7494 } 7495 } 7496 7497 void LoopVectorizationCostModel::collectInLoopReductions() { 7498 for (auto &Reduction : Legal->getReductionVars()) { 7499 PHINode *Phi = Reduction.first; 7500 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7501 7502 // We don't collect reductions that are type promoted (yet). 7503 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7504 continue; 7505 7506 // If the target would prefer this reduction to happen "in-loop", then we 7507 // want to record it as such. 7508 unsigned Opcode = RdxDesc.getOpcode(); 7509 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7510 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7511 TargetTransformInfo::ReductionFlags())) 7512 continue; 7513 7514 // Check that we can correctly put the reductions into the loop, by 7515 // finding the chain of operations that leads from the phi to the loop 7516 // exit value. 7517 SmallVector<Instruction *, 4> ReductionOperations = 7518 RdxDesc.getReductionOpChain(Phi, TheLoop); 7519 bool InLoop = !ReductionOperations.empty(); 7520 if (InLoop) { 7521 InLoopReductionChains[Phi] = ReductionOperations; 7522 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7523 Instruction *LastChain = Phi; 7524 for (auto *I : ReductionOperations) { 7525 InLoopReductionImmediateChains[I] = LastChain; 7526 LastChain = I; 7527 } 7528 } 7529 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7530 << " reduction for phi: " << *Phi << "\n"); 7531 } 7532 } 7533 7534 // TODO: we could return a pair of values that specify the max VF and 7535 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7536 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7537 // doesn't have a cost model that can choose which plan to execute if 7538 // more than one is generated. 7539 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7540 LoopVectorizationCostModel &CM) { 7541 unsigned WidestType; 7542 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7543 return WidestVectorRegBits / WidestType; 7544 } 7545 7546 VectorizationFactor 7547 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7548 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7549 ElementCount VF = UserVF; 7550 // Outer loop handling: They may require CFG and instruction level 7551 // transformations before even evaluating whether vectorization is profitable. 7552 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7553 // the vectorization pipeline. 7554 if (!OrigLoop->isInnermost()) { 7555 // If the user doesn't provide a vectorization factor, determine a 7556 // reasonable one. 7557 if (UserVF.isZero()) { 7558 VF = ElementCount::getFixed(determineVPlanVF( 7559 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7560 .getFixedSize(), 7561 CM)); 7562 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7563 7564 // Make sure we have a VF > 1 for stress testing. 7565 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7566 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7567 << "overriding computed VF.\n"); 7568 VF = ElementCount::getFixed(4); 7569 } 7570 } 7571 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7572 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7573 "VF needs to be a power of two"); 7574 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7575 << "VF " << VF << " to build VPlans.\n"); 7576 buildVPlans(VF, VF); 7577 7578 // For VPlan build stress testing, we bail out after VPlan construction. 7579 if (VPlanBuildStressTest) 7580 return VectorizationFactor::Disabled(); 7581 7582 return {VF, 0 /*Cost*/}; 7583 } 7584 7585 LLVM_DEBUG( 7586 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7587 "VPlan-native path.\n"); 7588 return VectorizationFactor::Disabled(); 7589 } 7590 7591 Optional<VectorizationFactor> 7592 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7593 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7594 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7595 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7596 return None; 7597 7598 // Invalidate interleave groups if all blocks of loop will be predicated. 7599 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7600 !useMaskedInterleavedAccesses(*TTI)) { 7601 LLVM_DEBUG( 7602 dbgs() 7603 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7604 "which requires masked-interleaved support.\n"); 7605 if (CM.InterleaveInfo.invalidateGroups()) 7606 // Invalidating interleave groups also requires invalidating all decisions 7607 // based on them, which includes widening decisions and uniform and scalar 7608 // values. 7609 CM.invalidateCostModelingDecisions(); 7610 } 7611 7612 ElementCount MaxUserVF = 7613 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7614 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7615 if (!UserVF.isZero() && UserVFIsLegal) { 7616 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7617 "VF needs to be a power of two"); 7618 // Collect the instructions (and their associated costs) that will be more 7619 // profitable to scalarize. 7620 if (CM.selectUserVectorizationFactor(UserVF)) { 7621 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7622 CM.collectInLoopReductions(); 7623 buildVPlansWithVPRecipes(UserVF, UserVF); 7624 LLVM_DEBUG(printPlans(dbgs())); 7625 return {{UserVF, 0}}; 7626 } else 7627 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7628 "InvalidCost", ORE, OrigLoop); 7629 } 7630 7631 // Populate the set of Vectorization Factor Candidates. 7632 ElementCountSet VFCandidates; 7633 for (auto VF = ElementCount::getFixed(1); 7634 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7635 VFCandidates.insert(VF); 7636 for (auto VF = ElementCount::getScalable(1); 7637 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7638 VFCandidates.insert(VF); 7639 7640 for (const auto &VF : VFCandidates) { 7641 // Collect Uniform and Scalar instructions after vectorization with VF. 7642 CM.collectUniformsAndScalars(VF); 7643 7644 // Collect the instructions (and their associated costs) that will be more 7645 // profitable to scalarize. 7646 if (VF.isVector()) 7647 CM.collectInstsToScalarize(VF); 7648 } 7649 7650 CM.collectInLoopReductions(); 7651 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7652 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7653 7654 LLVM_DEBUG(printPlans(dbgs())); 7655 if (!MaxFactors.hasVector()) 7656 return VectorizationFactor::Disabled(); 7657 7658 // Select the optimal vectorization factor. 7659 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7660 7661 // Check if it is profitable to vectorize with runtime checks. 7662 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7663 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7664 bool PragmaThresholdReached = 7665 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7666 bool ThresholdReached = 7667 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7668 if ((ThresholdReached && !Hints.allowReordering()) || 7669 PragmaThresholdReached) { 7670 ORE->emit([&]() { 7671 return OptimizationRemarkAnalysisAliasing( 7672 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7673 OrigLoop->getHeader()) 7674 << "loop not vectorized: cannot prove it is safe to reorder " 7675 "memory operations"; 7676 }); 7677 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7678 Hints.emitRemarkWithHints(); 7679 return VectorizationFactor::Disabled(); 7680 } 7681 } 7682 return SelectedVF; 7683 } 7684 7685 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7686 assert(count_if(VPlans, 7687 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7688 1 && 7689 "Best VF has not a single VPlan."); 7690 7691 for (const VPlanPtr &Plan : VPlans) { 7692 if (Plan->hasVF(VF)) 7693 return *Plan.get(); 7694 } 7695 llvm_unreachable("No plan found!"); 7696 } 7697 7698 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7699 SmallVector<Metadata *, 4> MDs; 7700 // Reserve first location for self reference to the LoopID metadata node. 7701 MDs.push_back(nullptr); 7702 bool IsUnrollMetadata = false; 7703 MDNode *LoopID = L->getLoopID(); 7704 if (LoopID) { 7705 // First find existing loop unrolling disable metadata. 7706 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7707 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7708 if (MD) { 7709 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7710 IsUnrollMetadata = 7711 S && S->getString().startswith("llvm.loop.unroll.disable"); 7712 } 7713 MDs.push_back(LoopID->getOperand(i)); 7714 } 7715 } 7716 7717 if (!IsUnrollMetadata) { 7718 // Add runtime unroll disable metadata. 7719 LLVMContext &Context = L->getHeader()->getContext(); 7720 SmallVector<Metadata *, 1> DisableOperands; 7721 DisableOperands.push_back( 7722 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7723 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7724 MDs.push_back(DisableNode); 7725 MDNode *NewLoopID = MDNode::get(Context, MDs); 7726 // Set operand 0 to refer to the loop id itself. 7727 NewLoopID->replaceOperandWith(0, NewLoopID); 7728 L->setLoopID(NewLoopID); 7729 } 7730 } 7731 7732 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7733 VPlan &BestVPlan, 7734 InnerLoopVectorizer &ILV, 7735 DominatorTree *DT) { 7736 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7737 << '\n'); 7738 7739 // Perform the actual loop transformation. 7740 7741 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7742 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7743 Value *CanonicalIVStartValue; 7744 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7745 ILV.createVectorizedLoopSkeleton(); 7746 ILV.collectPoisonGeneratingRecipes(State); 7747 7748 ILV.printDebugTracesAtStart(); 7749 7750 //===------------------------------------------------===// 7751 // 7752 // Notice: any optimization or new instruction that go 7753 // into the code below should also be implemented in 7754 // the cost-model. 7755 // 7756 //===------------------------------------------------===// 7757 7758 // 2. Copy and widen instructions from the old loop into the new loop. 7759 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7760 ILV.getOrCreateVectorTripCount(nullptr), 7761 CanonicalIVStartValue, State); 7762 BestVPlan.execute(&State); 7763 7764 // Keep all loop hints from the original loop on the vector loop (we'll 7765 // replace the vectorizer-specific hints below). 7766 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7767 7768 Optional<MDNode *> VectorizedLoopID = 7769 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7770 LLVMLoopVectorizeFollowupVectorized}); 7771 7772 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7773 if (VectorizedLoopID.hasValue()) 7774 L->setLoopID(VectorizedLoopID.getValue()); 7775 else { 7776 // Keep all loop hints from the original loop on the vector loop (we'll 7777 // replace the vectorizer-specific hints below). 7778 if (MDNode *LID = OrigLoop->getLoopID()) 7779 L->setLoopID(LID); 7780 7781 LoopVectorizeHints Hints(L, true, *ORE); 7782 Hints.setAlreadyVectorized(); 7783 } 7784 // Disable runtime unrolling when vectorizing the epilogue loop. 7785 if (CanonicalIVStartValue) 7786 AddRuntimeUnrollDisableMetaData(L); 7787 7788 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7789 // predication, updating analyses. 7790 ILV.fixVectorizedLoop(State); 7791 7792 ILV.printDebugTracesAtEnd(); 7793 } 7794 7795 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7796 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7797 for (const auto &Plan : VPlans) 7798 if (PrintVPlansInDotFormat) 7799 Plan->printDOT(O); 7800 else 7801 Plan->print(O); 7802 } 7803 #endif 7804 7805 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7806 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7807 7808 // We create new control-flow for the vectorized loop, so the original exit 7809 // conditions will be dead after vectorization if it's only used by the 7810 // terminator 7811 SmallVector<BasicBlock*> ExitingBlocks; 7812 OrigLoop->getExitingBlocks(ExitingBlocks); 7813 for (auto *BB : ExitingBlocks) { 7814 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7815 if (!Cmp || !Cmp->hasOneUse()) 7816 continue; 7817 7818 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7819 if (!DeadInstructions.insert(Cmp).second) 7820 continue; 7821 7822 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7823 // TODO: can recurse through operands in general 7824 for (Value *Op : Cmp->operands()) { 7825 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7826 DeadInstructions.insert(cast<Instruction>(Op)); 7827 } 7828 } 7829 7830 // We create new "steps" for induction variable updates to which the original 7831 // induction variables map. An original update instruction will be dead if 7832 // all its users except the induction variable are dead. 7833 auto *Latch = OrigLoop->getLoopLatch(); 7834 for (auto &Induction : Legal->getInductionVars()) { 7835 PHINode *Ind = Induction.first; 7836 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7837 7838 // If the tail is to be folded by masking, the primary induction variable, 7839 // if exists, isn't dead: it will be used for masking. Don't kill it. 7840 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7841 continue; 7842 7843 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7844 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7845 })) 7846 DeadInstructions.insert(IndUpdate); 7847 } 7848 } 7849 7850 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7851 7852 //===--------------------------------------------------------------------===// 7853 // EpilogueVectorizerMainLoop 7854 //===--------------------------------------------------------------------===// 7855 7856 /// This function is partially responsible for generating the control flow 7857 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7858 std::pair<BasicBlock *, Value *> 7859 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7860 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7861 Loop *Lp = createVectorLoopSkeleton(""); 7862 7863 // Generate the code to check the minimum iteration count of the vector 7864 // epilogue (see below). 7865 EPI.EpilogueIterationCountCheck = 7866 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7867 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7868 7869 // Generate the code to check any assumptions that we've made for SCEV 7870 // expressions. 7871 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7872 7873 // Generate the code that checks at runtime if arrays overlap. We put the 7874 // checks into a separate block to make the more common case of few elements 7875 // faster. 7876 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7877 7878 // Generate the iteration count check for the main loop, *after* the check 7879 // for the epilogue loop, so that the path-length is shorter for the case 7880 // that goes directly through the vector epilogue. The longer-path length for 7881 // the main loop is compensated for, by the gain from vectorizing the larger 7882 // trip count. Note: the branch will get updated later on when we vectorize 7883 // the epilogue. 7884 EPI.MainLoopIterationCountCheck = 7885 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7886 7887 // Generate the induction variable. 7888 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7889 EPI.VectorTripCount = CountRoundDown; 7890 createHeaderBranch(Lp); 7891 7892 // Skip induction resume value creation here because they will be created in 7893 // the second pass. If we created them here, they wouldn't be used anyway, 7894 // because the vplan in the second pass still contains the inductions from the 7895 // original loop. 7896 7897 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 7898 } 7899 7900 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7901 LLVM_DEBUG({ 7902 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7903 << "Main Loop VF:" << EPI.MainLoopVF 7904 << ", Main Loop UF:" << EPI.MainLoopUF 7905 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7906 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7907 }); 7908 } 7909 7910 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7911 DEBUG_WITH_TYPE(VerboseDebug, { 7912 dbgs() << "intermediate fn:\n" 7913 << *OrigLoop->getHeader()->getParent() << "\n"; 7914 }); 7915 } 7916 7917 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 7918 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 7919 assert(L && "Expected valid Loop."); 7920 assert(Bypass && "Expected valid bypass basic block."); 7921 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7922 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7923 Value *Count = getOrCreateTripCount(L); 7924 // Reuse existing vector loop preheader for TC checks. 7925 // Note that new preheader block is generated for vector loop. 7926 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7927 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7928 7929 // Generate code to check if the loop's trip count is less than VF * UF of the 7930 // main vector loop. 7931 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7932 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7933 7934 Value *CheckMinIters = Builder.CreateICmp( 7935 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7936 "min.iters.check"); 7937 7938 if (!ForEpilogue) 7939 TCCheckBlock->setName("vector.main.loop.iter.check"); 7940 7941 // Create new preheader for vector loop. 7942 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7943 DT, LI, nullptr, "vector.ph"); 7944 7945 if (ForEpilogue) { 7946 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7947 DT->getNode(Bypass)->getIDom()) && 7948 "TC check is expected to dominate Bypass"); 7949 7950 // Update dominator for Bypass & LoopExit. 7951 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7952 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7953 // For loops with multiple exits, there's no edge from the middle block 7954 // to exit blocks (as the epilogue must run) and thus no need to update 7955 // the immediate dominator of the exit blocks. 7956 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7957 7958 LoopBypassBlocks.push_back(TCCheckBlock); 7959 7960 // Save the trip count so we don't have to regenerate it in the 7961 // vec.epilog.iter.check. This is safe to do because the trip count 7962 // generated here dominates the vector epilog iter check. 7963 EPI.TripCount = Count; 7964 } 7965 7966 ReplaceInstWithInst( 7967 TCCheckBlock->getTerminator(), 7968 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7969 7970 return TCCheckBlock; 7971 } 7972 7973 //===--------------------------------------------------------------------===// 7974 // EpilogueVectorizerEpilogueLoop 7975 //===--------------------------------------------------------------------===// 7976 7977 /// This function is partially responsible for generating the control flow 7978 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7979 std::pair<BasicBlock *, Value *> 7980 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7981 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7982 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 7983 7984 // Now, compare the remaining count and if there aren't enough iterations to 7985 // execute the vectorized epilogue skip to the scalar part. 7986 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7987 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7988 LoopVectorPreHeader = 7989 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7990 LI, nullptr, "vec.epilog.ph"); 7991 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7992 VecEpilogueIterationCountCheck); 7993 7994 // Adjust the control flow taking the state info from the main loop 7995 // vectorization into account. 7996 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7997 "expected this to be saved from the previous pass."); 7998 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7999 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8000 8001 DT->changeImmediateDominator(LoopVectorPreHeader, 8002 EPI.MainLoopIterationCountCheck); 8003 8004 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8005 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8006 8007 if (EPI.SCEVSafetyCheck) 8008 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8009 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8010 if (EPI.MemSafetyCheck) 8011 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8012 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8013 8014 DT->changeImmediateDominator( 8015 VecEpilogueIterationCountCheck, 8016 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8017 8018 DT->changeImmediateDominator(LoopScalarPreHeader, 8019 EPI.EpilogueIterationCountCheck); 8020 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8021 // If there is an epilogue which must run, there's no edge from the 8022 // middle block to exit blocks and thus no need to update the immediate 8023 // dominator of the exit blocks. 8024 DT->changeImmediateDominator(LoopExitBlock, 8025 EPI.EpilogueIterationCountCheck); 8026 8027 // Keep track of bypass blocks, as they feed start values to the induction 8028 // phis in the scalar loop preheader. 8029 if (EPI.SCEVSafetyCheck) 8030 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8031 if (EPI.MemSafetyCheck) 8032 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8033 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8034 8035 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8036 // merge control-flow from the latch block and the middle block. Update the 8037 // incoming values here and move the Phi into the preheader. 8038 SmallVector<PHINode *, 4> PhisInBlock; 8039 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8040 PhisInBlock.push_back(&Phi); 8041 8042 for (PHINode *Phi : PhisInBlock) { 8043 Phi->replaceIncomingBlockWith( 8044 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8045 VecEpilogueIterationCountCheck); 8046 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8047 if (EPI.SCEVSafetyCheck) 8048 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8049 if (EPI.MemSafetyCheck) 8050 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8051 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8052 } 8053 8054 // Generate a resume induction for the vector epilogue and put it in the 8055 // vector epilogue preheader 8056 Type *IdxTy = Legal->getWidestInductionType(); 8057 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8058 LoopVectorPreHeader->getFirstNonPHI()); 8059 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8060 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8061 EPI.MainLoopIterationCountCheck); 8062 8063 // Generate the induction variable. 8064 createHeaderBranch(Lp); 8065 8066 // Generate induction resume values. These variables save the new starting 8067 // indexes for the scalar loop. They are used to test if there are any tail 8068 // iterations left once the vector loop has completed. 8069 // Note that when the vectorized epilogue is skipped due to iteration count 8070 // check, then the resume value for the induction variable comes from 8071 // the trip count of the main vector loop, hence passing the AdditionalBypass 8072 // argument. 8073 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8074 EPI.VectorTripCount} /* AdditionalBypass */); 8075 8076 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8077 } 8078 8079 BasicBlock * 8080 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8081 BasicBlock *Bypass, BasicBlock *Insert) { 8082 8083 assert(EPI.TripCount && 8084 "Expected trip count to have been safed in the first pass."); 8085 assert( 8086 (!isa<Instruction>(EPI.TripCount) || 8087 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8088 "saved trip count does not dominate insertion point."); 8089 Value *TC = EPI.TripCount; 8090 IRBuilder<> Builder(Insert->getTerminator()); 8091 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8092 8093 // Generate code to check if the loop's trip count is less than VF * UF of the 8094 // vector epilogue loop. 8095 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8096 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8097 8098 Value *CheckMinIters = 8099 Builder.CreateICmp(P, Count, 8100 createStepForVF(Builder, Count->getType(), 8101 EPI.EpilogueVF, EPI.EpilogueUF), 8102 "min.epilog.iters.check"); 8103 8104 ReplaceInstWithInst( 8105 Insert->getTerminator(), 8106 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8107 8108 LoopBypassBlocks.push_back(Insert); 8109 return Insert; 8110 } 8111 8112 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8113 LLVM_DEBUG({ 8114 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8115 << "Epilogue Loop VF:" << EPI.EpilogueVF 8116 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8117 }); 8118 } 8119 8120 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8121 DEBUG_WITH_TYPE(VerboseDebug, { 8122 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8123 }); 8124 } 8125 8126 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8127 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8128 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8129 bool PredicateAtRangeStart = Predicate(Range.Start); 8130 8131 for (ElementCount TmpVF = Range.Start * 2; 8132 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8133 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8134 Range.End = TmpVF; 8135 break; 8136 } 8137 8138 return PredicateAtRangeStart; 8139 } 8140 8141 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8142 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8143 /// of VF's starting at a given VF and extending it as much as possible. Each 8144 /// vectorization decision can potentially shorten this sub-range during 8145 /// buildVPlan(). 8146 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8147 ElementCount MaxVF) { 8148 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8149 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8150 VFRange SubRange = {VF, MaxVFPlusOne}; 8151 VPlans.push_back(buildVPlan(SubRange)); 8152 VF = SubRange.End; 8153 } 8154 } 8155 8156 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8157 VPlanPtr &Plan) { 8158 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8159 8160 // Look for cached value. 8161 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8162 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8163 if (ECEntryIt != EdgeMaskCache.end()) 8164 return ECEntryIt->second; 8165 8166 VPValue *SrcMask = createBlockInMask(Src, Plan); 8167 8168 // The terminator has to be a branch inst! 8169 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8170 assert(BI && "Unexpected terminator found"); 8171 8172 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8173 return EdgeMaskCache[Edge] = SrcMask; 8174 8175 // If source is an exiting block, we know the exit edge is dynamically dead 8176 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8177 // adding uses of an otherwise potentially dead instruction. 8178 if (OrigLoop->isLoopExiting(Src)) 8179 return EdgeMaskCache[Edge] = SrcMask; 8180 8181 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8182 assert(EdgeMask && "No Edge Mask found for condition"); 8183 8184 if (BI->getSuccessor(0) != Dst) 8185 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8186 8187 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8188 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8189 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8190 // The select version does not introduce new UB if SrcMask is false and 8191 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8192 VPValue *False = Plan->getOrAddVPValue( 8193 ConstantInt::getFalse(BI->getCondition()->getType())); 8194 EdgeMask = 8195 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8196 } 8197 8198 return EdgeMaskCache[Edge] = EdgeMask; 8199 } 8200 8201 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8202 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8203 8204 // Look for cached value. 8205 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8206 if (BCEntryIt != BlockMaskCache.end()) 8207 return BCEntryIt->second; 8208 8209 // All-one mask is modelled as no-mask following the convention for masked 8210 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8211 VPValue *BlockMask = nullptr; 8212 8213 if (OrigLoop->getHeader() == BB) { 8214 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8215 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8216 8217 // Introduce the early-exit compare IV <= BTC to form header block mask. 8218 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8219 // constructing the desired canonical IV in the header block as its first 8220 // non-phi instructions. 8221 assert(CM.foldTailByMasking() && "must fold the tail"); 8222 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8223 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8224 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8225 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8226 8227 VPBuilder::InsertPointGuard Guard(Builder); 8228 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8229 if (CM.TTI.emitGetActiveLaneMask()) { 8230 VPValue *TC = Plan->getOrCreateTripCount(); 8231 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8232 } else { 8233 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8234 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8235 } 8236 return BlockMaskCache[BB] = BlockMask; 8237 } 8238 8239 // This is the block mask. We OR all incoming edges. 8240 for (auto *Predecessor : predecessors(BB)) { 8241 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8242 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8243 return BlockMaskCache[BB] = EdgeMask; 8244 8245 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8246 BlockMask = EdgeMask; 8247 continue; 8248 } 8249 8250 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8251 } 8252 8253 return BlockMaskCache[BB] = BlockMask; 8254 } 8255 8256 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8257 ArrayRef<VPValue *> Operands, 8258 VFRange &Range, 8259 VPlanPtr &Plan) { 8260 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8261 "Must be called with either a load or store"); 8262 8263 auto willWiden = [&](ElementCount VF) -> bool { 8264 if (VF.isScalar()) 8265 return false; 8266 LoopVectorizationCostModel::InstWidening Decision = 8267 CM.getWideningDecision(I, VF); 8268 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8269 "CM decision should be taken at this point."); 8270 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8271 return true; 8272 if (CM.isScalarAfterVectorization(I, VF) || 8273 CM.isProfitableToScalarize(I, VF)) 8274 return false; 8275 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8276 }; 8277 8278 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8279 return nullptr; 8280 8281 VPValue *Mask = nullptr; 8282 if (Legal->isMaskRequired(I)) 8283 Mask = createBlockInMask(I->getParent(), Plan); 8284 8285 // Determine if the pointer operand of the access is either consecutive or 8286 // reverse consecutive. 8287 LoopVectorizationCostModel::InstWidening Decision = 8288 CM.getWideningDecision(I, Range.Start); 8289 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8290 bool Consecutive = 8291 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8292 8293 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8294 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8295 Consecutive, Reverse); 8296 8297 StoreInst *Store = cast<StoreInst>(I); 8298 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8299 Mask, Consecutive, Reverse); 8300 } 8301 8302 static VPWidenIntOrFpInductionRecipe * 8303 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8304 VPValue *Start, const InductionDescriptor &IndDesc, 8305 LoopVectorizationCostModel &CM, ScalarEvolution &SE, 8306 Loop &OrigLoop, VFRange &Range) { 8307 // Returns true if an instruction \p I should be scalarized instead of 8308 // vectorized for the chosen vectorization factor. 8309 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8310 return CM.isScalarAfterVectorization(I, VF) || 8311 CM.isProfitableToScalarize(I, VF); 8312 }; 8313 8314 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8315 [&](ElementCount VF) { 8316 // Returns true if we should generate a scalar version of \p IV. 8317 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8318 return true; 8319 auto isScalarInst = [&](User *U) -> bool { 8320 auto *I = cast<Instruction>(U); 8321 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8322 }; 8323 return any_of(PhiOrTrunc->users(), isScalarInst); 8324 }, 8325 Range); 8326 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8327 [&](ElementCount VF) { 8328 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8329 }, 8330 Range); 8331 assert(IndDesc.getStartValue() == 8332 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8333 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8334 "step must be loop invariant"); 8335 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8336 return new VPWidenIntOrFpInductionRecipe( 8337 Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE); 8338 } 8339 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8340 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8341 !NeedsScalarIVOnly, SE); 8342 } 8343 8344 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8345 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8346 8347 // Check if this is an integer or fp induction. If so, build the recipe that 8348 // produces its scalar and vector values. 8349 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8350 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, 8351 *PSE.getSE(), *OrigLoop, Range); 8352 8353 return nullptr; 8354 } 8355 8356 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8357 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8358 VPlan &Plan) const { 8359 // Optimize the special case where the source is a constant integer 8360 // induction variable. Notice that we can only optimize the 'trunc' case 8361 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8362 // (c) other casts depend on pointer size. 8363 8364 // Determine whether \p K is a truncation based on an induction variable that 8365 // can be optimized. 8366 auto isOptimizableIVTruncate = 8367 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8368 return [=](ElementCount VF) -> bool { 8369 return CM.isOptimizableIVTruncate(K, VF); 8370 }; 8371 }; 8372 8373 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8374 isOptimizableIVTruncate(I), Range)) { 8375 8376 auto *Phi = cast<PHINode>(I->getOperand(0)); 8377 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8378 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8379 return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(), 8380 *OrigLoop, Range); 8381 } 8382 return nullptr; 8383 } 8384 8385 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8386 ArrayRef<VPValue *> Operands, 8387 VPlanPtr &Plan) { 8388 // If all incoming values are equal, the incoming VPValue can be used directly 8389 // instead of creating a new VPBlendRecipe. 8390 VPValue *FirstIncoming = Operands[0]; 8391 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8392 return FirstIncoming == Inc; 8393 })) { 8394 return Operands[0]; 8395 } 8396 8397 unsigned NumIncoming = Phi->getNumIncomingValues(); 8398 // For in-loop reductions, we do not need to create an additional select. 8399 VPValue *InLoopVal = nullptr; 8400 for (unsigned In = 0; In < NumIncoming; In++) { 8401 PHINode *PhiOp = 8402 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8403 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8404 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8405 InLoopVal = Operands[In]; 8406 } 8407 } 8408 8409 assert((!InLoopVal || NumIncoming == 2) && 8410 "Found an in-loop reduction for PHI with unexpected number of " 8411 "incoming values"); 8412 if (InLoopVal) 8413 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8414 8415 // We know that all PHIs in non-header blocks are converted into selects, so 8416 // we don't have to worry about the insertion order and we can just use the 8417 // builder. At this point we generate the predication tree. There may be 8418 // duplications since this is a simple recursive scan, but future 8419 // optimizations will clean it up. 8420 SmallVector<VPValue *, 2> OperandsWithMask; 8421 8422 for (unsigned In = 0; In < NumIncoming; In++) { 8423 VPValue *EdgeMask = 8424 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8425 assert((EdgeMask || NumIncoming == 1) && 8426 "Multiple predecessors with one having a full mask"); 8427 OperandsWithMask.push_back(Operands[In]); 8428 if (EdgeMask) 8429 OperandsWithMask.push_back(EdgeMask); 8430 } 8431 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8432 } 8433 8434 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8435 ArrayRef<VPValue *> Operands, 8436 VFRange &Range) const { 8437 8438 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8439 [this, CI](ElementCount VF) { 8440 return CM.isScalarWithPredication(CI, VF); 8441 }, 8442 Range); 8443 8444 if (IsPredicated) 8445 return nullptr; 8446 8447 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8448 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8449 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8450 ID == Intrinsic::pseudoprobe || 8451 ID == Intrinsic::experimental_noalias_scope_decl)) 8452 return nullptr; 8453 8454 auto willWiden = [&](ElementCount VF) -> bool { 8455 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8456 // The following case may be scalarized depending on the VF. 8457 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8458 // version of the instruction. 8459 // Is it beneficial to perform intrinsic call compared to lib call? 8460 bool NeedToScalarize = false; 8461 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8462 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8463 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8464 return UseVectorIntrinsic || !NeedToScalarize; 8465 }; 8466 8467 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8468 return nullptr; 8469 8470 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8471 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8472 } 8473 8474 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8475 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8476 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8477 // Instruction should be widened, unless it is scalar after vectorization, 8478 // scalarization is profitable or it is predicated. 8479 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8480 return CM.isScalarAfterVectorization(I, VF) || 8481 CM.isProfitableToScalarize(I, VF) || 8482 CM.isScalarWithPredication(I, VF); 8483 }; 8484 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8485 Range); 8486 } 8487 8488 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8489 ArrayRef<VPValue *> Operands) const { 8490 auto IsVectorizableOpcode = [](unsigned Opcode) { 8491 switch (Opcode) { 8492 case Instruction::Add: 8493 case Instruction::And: 8494 case Instruction::AShr: 8495 case Instruction::BitCast: 8496 case Instruction::FAdd: 8497 case Instruction::FCmp: 8498 case Instruction::FDiv: 8499 case Instruction::FMul: 8500 case Instruction::FNeg: 8501 case Instruction::FPExt: 8502 case Instruction::FPToSI: 8503 case Instruction::FPToUI: 8504 case Instruction::FPTrunc: 8505 case Instruction::FRem: 8506 case Instruction::FSub: 8507 case Instruction::ICmp: 8508 case Instruction::IntToPtr: 8509 case Instruction::LShr: 8510 case Instruction::Mul: 8511 case Instruction::Or: 8512 case Instruction::PtrToInt: 8513 case Instruction::SDiv: 8514 case Instruction::Select: 8515 case Instruction::SExt: 8516 case Instruction::Shl: 8517 case Instruction::SIToFP: 8518 case Instruction::SRem: 8519 case Instruction::Sub: 8520 case Instruction::Trunc: 8521 case Instruction::UDiv: 8522 case Instruction::UIToFP: 8523 case Instruction::URem: 8524 case Instruction::Xor: 8525 case Instruction::ZExt: 8526 return true; 8527 } 8528 return false; 8529 }; 8530 8531 if (!IsVectorizableOpcode(I->getOpcode())) 8532 return nullptr; 8533 8534 // Success: widen this instruction. 8535 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8536 } 8537 8538 void VPRecipeBuilder::fixHeaderPhis() { 8539 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8540 for (VPHeaderPHIRecipe *R : PhisToFix) { 8541 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8542 VPRecipeBase *IncR = 8543 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8544 R->addOperand(IncR->getVPSingleValue()); 8545 } 8546 } 8547 8548 VPBasicBlock *VPRecipeBuilder::handleReplication( 8549 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8550 VPlanPtr &Plan) { 8551 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8552 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8553 Range); 8554 8555 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8556 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8557 Range); 8558 8559 // Even if the instruction is not marked as uniform, there are certain 8560 // intrinsic calls that can be effectively treated as such, so we check for 8561 // them here. Conservatively, we only do this for scalable vectors, since 8562 // for fixed-width VFs we can always fall back on full scalarization. 8563 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8564 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8565 case Intrinsic::assume: 8566 case Intrinsic::lifetime_start: 8567 case Intrinsic::lifetime_end: 8568 // For scalable vectors if one of the operands is variant then we still 8569 // want to mark as uniform, which will generate one instruction for just 8570 // the first lane of the vector. We can't scalarize the call in the same 8571 // way as for fixed-width vectors because we don't know how many lanes 8572 // there are. 8573 // 8574 // The reasons for doing it this way for scalable vectors are: 8575 // 1. For the assume intrinsic generating the instruction for the first 8576 // lane is still be better than not generating any at all. For 8577 // example, the input may be a splat across all lanes. 8578 // 2. For the lifetime start/end intrinsics the pointer operand only 8579 // does anything useful when the input comes from a stack object, 8580 // which suggests it should always be uniform. For non-stack objects 8581 // the effect is to poison the object, which still allows us to 8582 // remove the call. 8583 IsUniform = true; 8584 break; 8585 default: 8586 break; 8587 } 8588 } 8589 8590 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8591 IsUniform, IsPredicated); 8592 setRecipe(I, Recipe); 8593 Plan->addVPValue(I, Recipe); 8594 8595 // Find if I uses a predicated instruction. If so, it will use its scalar 8596 // value. Avoid hoisting the insert-element which packs the scalar value into 8597 // a vector value, as that happens iff all users use the vector value. 8598 for (VPValue *Op : Recipe->operands()) { 8599 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8600 if (!PredR) 8601 continue; 8602 auto *RepR = 8603 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8604 assert(RepR->isPredicated() && 8605 "expected Replicate recipe to be predicated"); 8606 RepR->setAlsoPack(false); 8607 } 8608 8609 // Finalize the recipe for Instr, first if it is not predicated. 8610 if (!IsPredicated) { 8611 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8612 VPBB->appendRecipe(Recipe); 8613 return VPBB; 8614 } 8615 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8616 8617 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8618 assert(SingleSucc && "VPBB must have a single successor when handling " 8619 "predicated replication."); 8620 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8621 // Record predicated instructions for above packing optimizations. 8622 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8623 VPBlockUtils::insertBlockAfter(Region, VPBB); 8624 auto *RegSucc = new VPBasicBlock(); 8625 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8626 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8627 return RegSucc; 8628 } 8629 8630 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8631 VPRecipeBase *PredRecipe, 8632 VPlanPtr &Plan) { 8633 // Instructions marked for predication are replicated and placed under an 8634 // if-then construct to prevent side-effects. 8635 8636 // Generate recipes to compute the block mask for this region. 8637 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8638 8639 // Build the triangular if-then region. 8640 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8641 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8642 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8643 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8644 auto *PHIRecipe = Instr->getType()->isVoidTy() 8645 ? nullptr 8646 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8647 if (PHIRecipe) { 8648 Plan->removeVPValueFor(Instr); 8649 Plan->addVPValue(Instr, PHIRecipe); 8650 } 8651 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8652 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8653 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8654 8655 // Note: first set Entry as region entry and then connect successors starting 8656 // from it in order, to propagate the "parent" of each VPBasicBlock. 8657 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8658 VPBlockUtils::connectBlocks(Pred, Exit); 8659 8660 return Region; 8661 } 8662 8663 VPRecipeOrVPValueTy 8664 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8665 ArrayRef<VPValue *> Operands, 8666 VFRange &Range, VPlanPtr &Plan) { 8667 // First, check for specific widening recipes that deal with calls, memory 8668 // operations, inductions and Phi nodes. 8669 if (auto *CI = dyn_cast<CallInst>(Instr)) 8670 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8671 8672 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8673 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8674 8675 VPRecipeBase *Recipe; 8676 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8677 if (Phi->getParent() != OrigLoop->getHeader()) 8678 return tryToBlend(Phi, Operands, Plan); 8679 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8680 return toVPRecipeResult(Recipe); 8681 8682 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8683 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8684 VPValue *StartV = Operands[0]; 8685 if (Legal->isReductionVariable(Phi)) { 8686 const RecurrenceDescriptor &RdxDesc = 8687 Legal->getReductionVars().find(Phi)->second; 8688 assert(RdxDesc.getRecurrenceStartValue() == 8689 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8690 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8691 CM.isInLoopReduction(Phi), 8692 CM.useOrderedReductions(RdxDesc)); 8693 } else { 8694 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8695 } 8696 8697 // Record the incoming value from the backedge, so we can add the incoming 8698 // value from the backedge after all recipes have been created. 8699 recordRecipeOf(cast<Instruction>( 8700 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8701 PhisToFix.push_back(PhiRecipe); 8702 } else { 8703 // TODO: record backedge value for remaining pointer induction phis. 8704 assert(Phi->getType()->isPointerTy() && 8705 "only pointer phis should be handled here"); 8706 assert(Legal->getInductionVars().count(Phi) && 8707 "Not an induction variable"); 8708 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8709 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8710 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8711 } 8712 8713 return toVPRecipeResult(PhiRecipe); 8714 } 8715 8716 if (isa<TruncInst>(Instr) && 8717 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8718 Range, *Plan))) 8719 return toVPRecipeResult(Recipe); 8720 8721 if (!shouldWiden(Instr, Range)) 8722 return nullptr; 8723 8724 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8725 return toVPRecipeResult(new VPWidenGEPRecipe( 8726 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8727 8728 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8729 bool InvariantCond = 8730 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8731 return toVPRecipeResult(new VPWidenSelectRecipe( 8732 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8733 } 8734 8735 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8736 } 8737 8738 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8739 ElementCount MaxVF) { 8740 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8741 8742 // Collect instructions from the original loop that will become trivially dead 8743 // in the vectorized loop. We don't need to vectorize these instructions. For 8744 // example, original induction update instructions can become dead because we 8745 // separately emit induction "steps" when generating code for the new loop. 8746 // Similarly, we create a new latch condition when setting up the structure 8747 // of the new loop, so the old one can become dead. 8748 SmallPtrSet<Instruction *, 4> DeadInstructions; 8749 collectTriviallyDeadInstructions(DeadInstructions); 8750 8751 // Add assume instructions we need to drop to DeadInstructions, to prevent 8752 // them from being added to the VPlan. 8753 // TODO: We only need to drop assumes in blocks that get flattend. If the 8754 // control flow is preserved, we should keep them. 8755 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8756 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8757 8758 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8759 // Dead instructions do not need sinking. Remove them from SinkAfter. 8760 for (Instruction *I : DeadInstructions) 8761 SinkAfter.erase(I); 8762 8763 // Cannot sink instructions after dead instructions (there won't be any 8764 // recipes for them). Instead, find the first non-dead previous instruction. 8765 for (auto &P : Legal->getSinkAfter()) { 8766 Instruction *SinkTarget = P.second; 8767 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8768 (void)FirstInst; 8769 while (DeadInstructions.contains(SinkTarget)) { 8770 assert( 8771 SinkTarget != FirstInst && 8772 "Must find a live instruction (at least the one feeding the " 8773 "first-order recurrence PHI) before reaching beginning of the block"); 8774 SinkTarget = SinkTarget->getPrevNode(); 8775 assert(SinkTarget != P.first && 8776 "sink source equals target, no sinking required"); 8777 } 8778 P.second = SinkTarget; 8779 } 8780 8781 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8782 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8783 VFRange SubRange = {VF, MaxVFPlusOne}; 8784 VPlans.push_back( 8785 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8786 VF = SubRange.End; 8787 } 8788 } 8789 8790 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8791 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8792 // BranchOnCount VPInstruction to the latch. 8793 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8794 bool HasNUW, bool IsVPlanNative) { 8795 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8796 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8797 8798 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8799 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8800 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8801 if (IsVPlanNative) 8802 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8803 Header->insert(CanonicalIVPHI, Header->begin()); 8804 8805 auto *CanonicalIVIncrement = 8806 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8807 : VPInstruction::CanonicalIVIncrement, 8808 {CanonicalIVPHI}, DL); 8809 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8810 8811 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8812 if (IsVPlanNative) { 8813 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8814 EB->setCondBit(nullptr); 8815 } 8816 EB->appendRecipe(CanonicalIVIncrement); 8817 8818 auto *BranchOnCount = 8819 new VPInstruction(VPInstruction::BranchOnCount, 8820 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8821 EB->appendRecipe(BranchOnCount); 8822 } 8823 8824 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8825 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8826 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8827 8828 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8829 8830 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8831 8832 // --------------------------------------------------------------------------- 8833 // Pre-construction: record ingredients whose recipes we'll need to further 8834 // process after constructing the initial VPlan. 8835 // --------------------------------------------------------------------------- 8836 8837 // Mark instructions we'll need to sink later and their targets as 8838 // ingredients whose recipe we'll need to record. 8839 for (auto &Entry : SinkAfter) { 8840 RecipeBuilder.recordRecipeOf(Entry.first); 8841 RecipeBuilder.recordRecipeOf(Entry.second); 8842 } 8843 for (auto &Reduction : CM.getInLoopReductionChains()) { 8844 PHINode *Phi = Reduction.first; 8845 RecurKind Kind = 8846 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8847 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8848 8849 RecipeBuilder.recordRecipeOf(Phi); 8850 for (auto &R : ReductionOperations) { 8851 RecipeBuilder.recordRecipeOf(R); 8852 // For min/max reducitons, where we have a pair of icmp/select, we also 8853 // need to record the ICmp recipe, so it can be removed later. 8854 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8855 "Only min/max recurrences allowed for inloop reductions"); 8856 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8857 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8858 } 8859 } 8860 8861 // For each interleave group which is relevant for this (possibly trimmed) 8862 // Range, add it to the set of groups to be later applied to the VPlan and add 8863 // placeholders for its members' Recipes which we'll be replacing with a 8864 // single VPInterleaveRecipe. 8865 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8866 auto applyIG = [IG, this](ElementCount VF) -> bool { 8867 return (VF.isVector() && // Query is illegal for VF == 1 8868 CM.getWideningDecision(IG->getInsertPos(), VF) == 8869 LoopVectorizationCostModel::CM_Interleave); 8870 }; 8871 if (!getDecisionAndClampRange(applyIG, Range)) 8872 continue; 8873 InterleaveGroups.insert(IG); 8874 for (unsigned i = 0; i < IG->getFactor(); i++) 8875 if (Instruction *Member = IG->getMember(i)) 8876 RecipeBuilder.recordRecipeOf(Member); 8877 }; 8878 8879 // --------------------------------------------------------------------------- 8880 // Build initial VPlan: Scan the body of the loop in a topological order to 8881 // visit each basic block after having visited its predecessor basic blocks. 8882 // --------------------------------------------------------------------------- 8883 8884 // Create initial VPlan skeleton, with separate header and latch blocks. 8885 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 8886 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8887 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8888 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8889 auto Plan = std::make_unique<VPlan>(TopRegion); 8890 8891 Instruction *DLInst = 8892 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8893 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8894 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8895 !CM.foldTailByMasking(), false); 8896 8897 // Scan the body of the loop in a topological order to visit each basic block 8898 // after having visited its predecessor basic blocks. 8899 LoopBlocksDFS DFS(OrigLoop); 8900 DFS.perform(LI); 8901 8902 VPBasicBlock *VPBB = HeaderVPBB; 8903 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8904 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8905 // Relevant instructions from basic block BB will be grouped into VPRecipe 8906 // ingredients and fill a new VPBasicBlock. 8907 unsigned VPBBsForBB = 0; 8908 VPBB->setName(BB->getName()); 8909 Builder.setInsertPoint(VPBB); 8910 8911 // Introduce each ingredient into VPlan. 8912 // TODO: Model and preserve debug instrinsics in VPlan. 8913 for (Instruction &I : BB->instructionsWithoutDebug()) { 8914 Instruction *Instr = &I; 8915 8916 // First filter out irrelevant instructions, to ensure no recipes are 8917 // built for them. 8918 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8919 continue; 8920 8921 SmallVector<VPValue *, 4> Operands; 8922 auto *Phi = dyn_cast<PHINode>(Instr); 8923 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8924 Operands.push_back(Plan->getOrAddVPValue( 8925 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8926 } else { 8927 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8928 Operands = {OpRange.begin(), OpRange.end()}; 8929 } 8930 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8931 Instr, Operands, Range, Plan)) { 8932 // If Instr can be simplified to an existing VPValue, use it. 8933 if (RecipeOrValue.is<VPValue *>()) { 8934 auto *VPV = RecipeOrValue.get<VPValue *>(); 8935 Plan->addVPValue(Instr, VPV); 8936 // If the re-used value is a recipe, register the recipe for the 8937 // instruction, in case the recipe for Instr needs to be recorded. 8938 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8939 RecipeBuilder.setRecipe(Instr, R); 8940 continue; 8941 } 8942 // Otherwise, add the new recipe. 8943 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8944 for (auto *Def : Recipe->definedValues()) { 8945 auto *UV = Def->getUnderlyingValue(); 8946 Plan->addVPValue(UV, Def); 8947 } 8948 8949 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8950 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8951 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8952 // of the header block. That can happen for truncates of induction 8953 // variables. Those recipes are moved to the phi section of the header 8954 // block after applying SinkAfter, which relies on the original 8955 // position of the trunc. 8956 assert(isa<TruncInst>(Instr)); 8957 InductionsToMove.push_back( 8958 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8959 } 8960 RecipeBuilder.setRecipe(Instr, Recipe); 8961 VPBB->appendRecipe(Recipe); 8962 continue; 8963 } 8964 8965 // Otherwise, if all widening options failed, Instruction is to be 8966 // replicated. This may create a successor for VPBB. 8967 VPBasicBlock *NextVPBB = 8968 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8969 if (NextVPBB != VPBB) { 8970 VPBB = NextVPBB; 8971 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8972 : ""); 8973 } 8974 } 8975 8976 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8977 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8978 } 8979 8980 // Fold the last, empty block into its predecessor. 8981 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8982 assert(VPBB && "expected to fold last (empty) block"); 8983 // After here, VPBB should not be used. 8984 VPBB = nullptr; 8985 8986 assert(isa<VPRegionBlock>(Plan->getEntry()) && 8987 !Plan->getEntry()->getEntryBasicBlock()->empty() && 8988 "entry block must be set to a VPRegionBlock having a non-empty entry " 8989 "VPBasicBlock"); 8990 RecipeBuilder.fixHeaderPhis(); 8991 8992 // --------------------------------------------------------------------------- 8993 // Transform initial VPlan: Apply previously taken decisions, in order, to 8994 // bring the VPlan to its final state. 8995 // --------------------------------------------------------------------------- 8996 8997 // Apply Sink-After legal constraints. 8998 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8999 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9000 if (Region && Region->isReplicator()) { 9001 assert(Region->getNumSuccessors() == 1 && 9002 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9003 assert(R->getParent()->size() == 1 && 9004 "A recipe in an original replicator region must be the only " 9005 "recipe in its block"); 9006 return Region; 9007 } 9008 return nullptr; 9009 }; 9010 for (auto &Entry : SinkAfter) { 9011 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9012 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9013 9014 auto *TargetRegion = GetReplicateRegion(Target); 9015 auto *SinkRegion = GetReplicateRegion(Sink); 9016 if (!SinkRegion) { 9017 // If the sink source is not a replicate region, sink the recipe directly. 9018 if (TargetRegion) { 9019 // The target is in a replication region, make sure to move Sink to 9020 // the block after it, not into the replication region itself. 9021 VPBasicBlock *NextBlock = 9022 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9023 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9024 } else 9025 Sink->moveAfter(Target); 9026 continue; 9027 } 9028 9029 // The sink source is in a replicate region. Unhook the region from the CFG. 9030 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9031 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9032 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9033 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9034 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9035 9036 if (TargetRegion) { 9037 // The target recipe is also in a replicate region, move the sink region 9038 // after the target region. 9039 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9040 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9041 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9042 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9043 } else { 9044 // The sink source is in a replicate region, we need to move the whole 9045 // replicate region, which should only contain a single recipe in the 9046 // main block. 9047 auto *SplitBlock = 9048 Target->getParent()->splitAt(std::next(Target->getIterator())); 9049 9050 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9051 9052 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9053 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9054 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9055 } 9056 } 9057 9058 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9059 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9060 9061 // Now that sink-after is done, move induction recipes for optimized truncates 9062 // to the phi section of the header block. 9063 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9064 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9065 9066 // Adjust the recipes for any inloop reductions. 9067 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9068 RecipeBuilder, Range.Start); 9069 9070 // Introduce a recipe to combine the incoming and previous values of a 9071 // first-order recurrence. 9072 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9073 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9074 if (!RecurPhi) 9075 continue; 9076 9077 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9078 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9079 auto *Region = GetReplicateRegion(PrevRecipe); 9080 if (Region) 9081 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9082 if (Region || PrevRecipe->isPhi()) 9083 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9084 else 9085 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9086 9087 auto *RecurSplice = cast<VPInstruction>( 9088 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9089 {RecurPhi, RecurPhi->getBackedgeValue()})); 9090 9091 RecurPhi->replaceAllUsesWith(RecurSplice); 9092 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9093 // all users. 9094 RecurSplice->setOperand(0, RecurPhi); 9095 } 9096 9097 // Interleave memory: for each Interleave Group we marked earlier as relevant 9098 // for this VPlan, replace the Recipes widening its memory instructions with a 9099 // single VPInterleaveRecipe at its insertion point. 9100 for (auto IG : InterleaveGroups) { 9101 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9102 RecipeBuilder.getRecipe(IG->getInsertPos())); 9103 SmallVector<VPValue *, 4> StoredValues; 9104 for (unsigned i = 0; i < IG->getFactor(); ++i) 9105 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9106 auto *StoreR = 9107 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9108 StoredValues.push_back(StoreR->getStoredValue()); 9109 } 9110 9111 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9112 Recipe->getMask()); 9113 VPIG->insertBefore(Recipe); 9114 unsigned J = 0; 9115 for (unsigned i = 0; i < IG->getFactor(); ++i) 9116 if (Instruction *Member = IG->getMember(i)) { 9117 if (!Member->getType()->isVoidTy()) { 9118 VPValue *OriginalV = Plan->getVPValue(Member); 9119 Plan->removeVPValueFor(Member); 9120 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9121 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9122 J++; 9123 } 9124 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9125 } 9126 } 9127 9128 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9129 // in ways that accessing values using original IR values is incorrect. 9130 Plan->disableValue2VPValue(); 9131 9132 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9133 VPlanTransforms::sinkScalarOperands(*Plan); 9134 VPlanTransforms::mergeReplicateRegions(*Plan); 9135 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9136 9137 std::string PlanName; 9138 raw_string_ostream RSO(PlanName); 9139 ElementCount VF = Range.Start; 9140 Plan->addVF(VF); 9141 RSO << "Initial VPlan for VF={" << VF; 9142 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9143 Plan->addVF(VF); 9144 RSO << "," << VF; 9145 } 9146 RSO << "},UF>=1"; 9147 RSO.flush(); 9148 Plan->setName(PlanName); 9149 9150 // Fold Exit block into its predecessor if possible. 9151 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9152 // VPBasicBlock as exit. 9153 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9154 9155 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9156 return Plan; 9157 } 9158 9159 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9160 // Outer loop handling: They may require CFG and instruction level 9161 // transformations before even evaluating whether vectorization is profitable. 9162 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9163 // the vectorization pipeline. 9164 assert(!OrigLoop->isInnermost()); 9165 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9166 9167 // Create new empty VPlan 9168 auto Plan = std::make_unique<VPlan>(); 9169 9170 // Build hierarchical CFG 9171 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9172 HCFGBuilder.buildHierarchicalCFG(); 9173 9174 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9175 VF *= 2) 9176 Plan->addVF(VF); 9177 9178 if (EnableVPlanPredication) { 9179 VPlanPredicator VPP(*Plan); 9180 VPP.predicate(); 9181 9182 // Avoid running transformation to recipes until masked code generation in 9183 // VPlan-native path is in place. 9184 return Plan; 9185 } 9186 9187 SmallPtrSet<Instruction *, 1> DeadInstructions; 9188 VPlanTransforms::VPInstructionsToVPRecipes( 9189 OrigLoop, Plan, 9190 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9191 DeadInstructions, *PSE.getSE()); 9192 9193 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9194 true, true); 9195 return Plan; 9196 } 9197 9198 // Adjust the recipes for reductions. For in-loop reductions the chain of 9199 // instructions leading from the loop exit instr to the phi need to be converted 9200 // to reductions, with one operand being vector and the other being the scalar 9201 // reduction chain. For other reductions, a select is introduced between the phi 9202 // and live-out recipes when folding the tail. 9203 void LoopVectorizationPlanner::adjustRecipesForReductions( 9204 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9205 ElementCount MinVF) { 9206 for (auto &Reduction : CM.getInLoopReductionChains()) { 9207 PHINode *Phi = Reduction.first; 9208 const RecurrenceDescriptor &RdxDesc = 9209 Legal->getReductionVars().find(Phi)->second; 9210 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9211 9212 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9213 continue; 9214 9215 // ReductionOperations are orders top-down from the phi's use to the 9216 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9217 // which of the two operands will remain scalar and which will be reduced. 9218 // For minmax the chain will be the select instructions. 9219 Instruction *Chain = Phi; 9220 for (Instruction *R : ReductionOperations) { 9221 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9222 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9223 9224 VPValue *ChainOp = Plan->getVPValue(Chain); 9225 unsigned FirstOpId; 9226 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9227 "Only min/max recurrences allowed for inloop reductions"); 9228 // Recognize a call to the llvm.fmuladd intrinsic. 9229 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9230 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9231 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9232 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9233 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9234 "Expected to replace a VPWidenSelectSC"); 9235 FirstOpId = 1; 9236 } else { 9237 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9238 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9239 "Expected to replace a VPWidenSC"); 9240 FirstOpId = 0; 9241 } 9242 unsigned VecOpId = 9243 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9244 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9245 9246 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9247 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9248 : nullptr; 9249 9250 if (IsFMulAdd) { 9251 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9252 // need to create an fmul recipe to use as the vector operand for the 9253 // fadd reduction. 9254 VPInstruction *FMulRecipe = new VPInstruction( 9255 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9256 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9257 WidenRecipe->getParent()->insert(FMulRecipe, 9258 WidenRecipe->getIterator()); 9259 VecOp = FMulRecipe; 9260 } 9261 VPReductionRecipe *RedRecipe = 9262 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9263 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9264 Plan->removeVPValueFor(R); 9265 Plan->addVPValue(R, RedRecipe); 9266 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9267 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9268 WidenRecipe->eraseFromParent(); 9269 9270 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9271 VPRecipeBase *CompareRecipe = 9272 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9273 assert(isa<VPWidenRecipe>(CompareRecipe) && 9274 "Expected to replace a VPWidenSC"); 9275 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9276 "Expected no remaining users"); 9277 CompareRecipe->eraseFromParent(); 9278 } 9279 Chain = R; 9280 } 9281 } 9282 9283 // If tail is folded by masking, introduce selects between the phi 9284 // and the live-out instruction of each reduction, at the beginning of the 9285 // dedicated latch block. 9286 if (CM.foldTailByMasking()) { 9287 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9288 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9289 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9290 if (!PhiR || PhiR->isInLoop()) 9291 continue; 9292 VPValue *Cond = 9293 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9294 VPValue *Red = PhiR->getBackedgeValue(); 9295 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9296 "reduction recipe must be defined before latch"); 9297 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9298 } 9299 } 9300 } 9301 9302 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9303 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9304 VPSlotTracker &SlotTracker) const { 9305 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9306 IG->getInsertPos()->printAsOperand(O, false); 9307 O << ", "; 9308 getAddr()->printAsOperand(O, SlotTracker); 9309 VPValue *Mask = getMask(); 9310 if (Mask) { 9311 O << ", "; 9312 Mask->printAsOperand(O, SlotTracker); 9313 } 9314 9315 unsigned OpIdx = 0; 9316 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9317 if (!IG->getMember(i)) 9318 continue; 9319 if (getNumStoreOperands() > 0) { 9320 O << "\n" << Indent << " store "; 9321 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9322 O << " to index " << i; 9323 } else { 9324 O << "\n" << Indent << " "; 9325 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9326 O << " = load from index " << i; 9327 } 9328 ++OpIdx; 9329 } 9330 } 9331 #endif 9332 9333 void VPWidenCallRecipe::execute(VPTransformState &State) { 9334 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9335 *this, State); 9336 } 9337 9338 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9339 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9340 State.ILV->setDebugLocFromInst(&I); 9341 9342 // The condition can be loop invariant but still defined inside the 9343 // loop. This means that we can't just use the original 'cond' value. 9344 // We have to take the 'vectorized' value and pick the first lane. 9345 // Instcombine will make this a no-op. 9346 auto *InvarCond = 9347 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9348 9349 for (unsigned Part = 0; Part < State.UF; ++Part) { 9350 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9351 Value *Op0 = State.get(getOperand(1), Part); 9352 Value *Op1 = State.get(getOperand(2), Part); 9353 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9354 State.set(this, Sel, Part); 9355 State.ILV->addMetadata(Sel, &I); 9356 } 9357 } 9358 9359 void VPWidenRecipe::execute(VPTransformState &State) { 9360 auto &I = *cast<Instruction>(getUnderlyingValue()); 9361 auto &Builder = State.Builder; 9362 switch (I.getOpcode()) { 9363 case Instruction::Call: 9364 case Instruction::Br: 9365 case Instruction::PHI: 9366 case Instruction::GetElementPtr: 9367 case Instruction::Select: 9368 llvm_unreachable("This instruction is handled by a different recipe."); 9369 case Instruction::UDiv: 9370 case Instruction::SDiv: 9371 case Instruction::SRem: 9372 case Instruction::URem: 9373 case Instruction::Add: 9374 case Instruction::FAdd: 9375 case Instruction::Sub: 9376 case Instruction::FSub: 9377 case Instruction::FNeg: 9378 case Instruction::Mul: 9379 case Instruction::FMul: 9380 case Instruction::FDiv: 9381 case Instruction::FRem: 9382 case Instruction::Shl: 9383 case Instruction::LShr: 9384 case Instruction::AShr: 9385 case Instruction::And: 9386 case Instruction::Or: 9387 case Instruction::Xor: { 9388 // Just widen unops and binops. 9389 State.ILV->setDebugLocFromInst(&I); 9390 9391 for (unsigned Part = 0; Part < State.UF; ++Part) { 9392 SmallVector<Value *, 2> Ops; 9393 for (VPValue *VPOp : operands()) 9394 Ops.push_back(State.get(VPOp, Part)); 9395 9396 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9397 9398 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9399 VecOp->copyIRFlags(&I); 9400 9401 // If the instruction is vectorized and was in a basic block that needed 9402 // predication, we can't propagate poison-generating flags (nuw/nsw, 9403 // exact, etc.). The control flow has been linearized and the 9404 // instruction is no longer guarded by the predicate, which could make 9405 // the flag properties to no longer hold. 9406 if (State.MayGeneratePoisonRecipes.contains(this)) 9407 VecOp->dropPoisonGeneratingFlags(); 9408 } 9409 9410 // Use this vector value for all users of the original instruction. 9411 State.set(this, V, Part); 9412 State.ILV->addMetadata(V, &I); 9413 } 9414 9415 break; 9416 } 9417 case Instruction::ICmp: 9418 case Instruction::FCmp: { 9419 // Widen compares. Generate vector compares. 9420 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9421 auto *Cmp = cast<CmpInst>(&I); 9422 State.ILV->setDebugLocFromInst(Cmp); 9423 for (unsigned Part = 0; Part < State.UF; ++Part) { 9424 Value *A = State.get(getOperand(0), Part); 9425 Value *B = State.get(getOperand(1), Part); 9426 Value *C = nullptr; 9427 if (FCmp) { 9428 // Propagate fast math flags. 9429 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9430 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9431 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9432 } else { 9433 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9434 } 9435 State.set(this, C, Part); 9436 State.ILV->addMetadata(C, &I); 9437 } 9438 9439 break; 9440 } 9441 9442 case Instruction::ZExt: 9443 case Instruction::SExt: 9444 case Instruction::FPToUI: 9445 case Instruction::FPToSI: 9446 case Instruction::FPExt: 9447 case Instruction::PtrToInt: 9448 case Instruction::IntToPtr: 9449 case Instruction::SIToFP: 9450 case Instruction::UIToFP: 9451 case Instruction::Trunc: 9452 case Instruction::FPTrunc: 9453 case Instruction::BitCast: { 9454 auto *CI = cast<CastInst>(&I); 9455 State.ILV->setDebugLocFromInst(CI); 9456 9457 /// Vectorize casts. 9458 Type *DestTy = (State.VF.isScalar()) 9459 ? CI->getType() 9460 : VectorType::get(CI->getType(), State.VF); 9461 9462 for (unsigned Part = 0; Part < State.UF; ++Part) { 9463 Value *A = State.get(getOperand(0), Part); 9464 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9465 State.set(this, Cast, Part); 9466 State.ILV->addMetadata(Cast, &I); 9467 } 9468 break; 9469 } 9470 default: 9471 // This instruction is not vectorized by simple widening. 9472 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9473 llvm_unreachable("Unhandled instruction!"); 9474 } // end of switch. 9475 } 9476 9477 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9478 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9479 // Construct a vector GEP by widening the operands of the scalar GEP as 9480 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9481 // results in a vector of pointers when at least one operand of the GEP 9482 // is vector-typed. Thus, to keep the representation compact, we only use 9483 // vector-typed operands for loop-varying values. 9484 9485 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9486 // If we are vectorizing, but the GEP has only loop-invariant operands, 9487 // the GEP we build (by only using vector-typed operands for 9488 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9489 // produce a vector of pointers, we need to either arbitrarily pick an 9490 // operand to broadcast, or broadcast a clone of the original GEP. 9491 // Here, we broadcast a clone of the original. 9492 // 9493 // TODO: If at some point we decide to scalarize instructions having 9494 // loop-invariant operands, this special case will no longer be 9495 // required. We would add the scalarization decision to 9496 // collectLoopScalars() and teach getVectorValue() to broadcast 9497 // the lane-zero scalar value. 9498 auto *Clone = State.Builder.Insert(GEP->clone()); 9499 for (unsigned Part = 0; Part < State.UF; ++Part) { 9500 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9501 State.set(this, EntryPart, Part); 9502 State.ILV->addMetadata(EntryPart, GEP); 9503 } 9504 } else { 9505 // If the GEP has at least one loop-varying operand, we are sure to 9506 // produce a vector of pointers. But if we are only unrolling, we want 9507 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9508 // produce with the code below will be scalar (if VF == 1) or vector 9509 // (otherwise). Note that for the unroll-only case, we still maintain 9510 // values in the vector mapping with initVector, as we do for other 9511 // instructions. 9512 for (unsigned Part = 0; Part < State.UF; ++Part) { 9513 // The pointer operand of the new GEP. If it's loop-invariant, we 9514 // won't broadcast it. 9515 auto *Ptr = IsPtrLoopInvariant 9516 ? State.get(getOperand(0), VPIteration(0, 0)) 9517 : State.get(getOperand(0), Part); 9518 9519 // Collect all the indices for the new GEP. If any index is 9520 // loop-invariant, we won't broadcast it. 9521 SmallVector<Value *, 4> Indices; 9522 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9523 VPValue *Operand = getOperand(I); 9524 if (IsIndexLoopInvariant[I - 1]) 9525 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9526 else 9527 Indices.push_back(State.get(Operand, Part)); 9528 } 9529 9530 // If the GEP instruction is vectorized and was in a basic block that 9531 // needed predication, we can't propagate the poison-generating 'inbounds' 9532 // flag. The control flow has been linearized and the GEP is no longer 9533 // guarded by the predicate, which could make the 'inbounds' properties to 9534 // no longer hold. 9535 bool IsInBounds = 9536 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9537 9538 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9539 // but it should be a vector, otherwise. 9540 auto *NewGEP = IsInBounds 9541 ? State.Builder.CreateInBoundsGEP( 9542 GEP->getSourceElementType(), Ptr, Indices) 9543 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9544 Ptr, Indices); 9545 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9546 "NewGEP is not a pointer vector"); 9547 State.set(this, NewGEP, Part); 9548 State.ILV->addMetadata(NewGEP, GEP); 9549 } 9550 } 9551 } 9552 9553 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9554 assert(!State.Instance && "Int or FP induction being replicated."); 9555 9556 Value *Start = getStartValue()->getLiveInIRValue(); 9557 const InductionDescriptor &ID = getInductionDescriptor(); 9558 TruncInst *Trunc = getTruncInst(); 9559 IRBuilderBase &Builder = State.Builder; 9560 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9561 assert(State.VF.isVector() && "must have vector VF"); 9562 9563 // The value from the original loop to which we are mapping the new induction 9564 // variable. 9565 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9566 9567 auto &DL = EntryVal->getModule()->getDataLayout(); 9568 9569 // Generate code for the induction step. Note that induction steps are 9570 // required to be loop-invariant 9571 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 9572 if (SE.isSCEVable(IV->getType())) { 9573 SCEVExpander Exp(SE, DL, "induction"); 9574 return Exp.expandCodeFor(Step, Step->getType(), 9575 State.CFG.VectorPreHeader->getTerminator()); 9576 } 9577 return cast<SCEVUnknown>(Step)->getValue(); 9578 }; 9579 9580 // Fast-math-flags propagate from the original induction instruction. 9581 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9582 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9583 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9584 9585 // Now do the actual transformations, and start with creating the step value. 9586 Value *Step = CreateStepValue(ID.getStep()); 9587 9588 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9589 "Expected either an induction phi-node or a truncate of it!"); 9590 9591 // Construct the initial value of the vector IV in the vector loop preheader 9592 auto CurrIP = Builder.saveIP(); 9593 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 9594 if (isa<TruncInst>(EntryVal)) { 9595 assert(Start->getType()->isIntegerTy() && 9596 "Truncation requires an integer type"); 9597 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9598 Step = Builder.CreateTrunc(Step, TruncType); 9599 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9600 } 9601 9602 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9603 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9604 Value *SteppedStart = getStepVector( 9605 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9606 9607 // We create vector phi nodes for both integer and floating-point induction 9608 // variables. Here, we determine the kind of arithmetic we will perform. 9609 Instruction::BinaryOps AddOp; 9610 Instruction::BinaryOps MulOp; 9611 if (Step->getType()->isIntegerTy()) { 9612 AddOp = Instruction::Add; 9613 MulOp = Instruction::Mul; 9614 } else { 9615 AddOp = ID.getInductionOpcode(); 9616 MulOp = Instruction::FMul; 9617 } 9618 9619 // Multiply the vectorization factor by the step using integer or 9620 // floating-point arithmetic as appropriate. 9621 Type *StepType = Step->getType(); 9622 Value *RuntimeVF; 9623 if (Step->getType()->isFloatingPointTy()) 9624 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9625 else 9626 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9627 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9628 9629 // Create a vector splat to use in the induction update. 9630 // 9631 // FIXME: If the step is non-constant, we create the vector splat with 9632 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9633 // handle a constant vector splat. 9634 Value *SplatVF = isa<Constant>(Mul) 9635 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9636 : Builder.CreateVectorSplat(State.VF, Mul); 9637 Builder.restoreIP(CurrIP); 9638 9639 // We may need to add the step a number of times, depending on the unroll 9640 // factor. The last of those goes into the PHI. 9641 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9642 &*State.CFG.PrevBB->getFirstInsertionPt()); 9643 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9644 Instruction *LastInduction = VecInd; 9645 for (unsigned Part = 0; Part < State.UF; ++Part) { 9646 State.set(this, LastInduction, Part); 9647 9648 if (isa<TruncInst>(EntryVal)) 9649 State.ILV->addMetadata(LastInduction, EntryVal); 9650 9651 LastInduction = cast<Instruction>( 9652 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9653 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9654 } 9655 9656 // Move the last step to the end of the latch block. This ensures consistent 9657 // placement of all induction updates. 9658 auto *LoopVectorLatch = 9659 State.LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 9660 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 9661 LastInduction->moveBefore(Br); 9662 LastInduction->setName("vec.ind.next"); 9663 9664 VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader); 9665 VecInd->addIncoming(LastInduction, LoopVectorLatch); 9666 } 9667 9668 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9669 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9670 9671 // Fast-math-flags propagate from the original induction instruction. 9672 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9673 if (IndDesc.getInductionBinOp() && 9674 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9675 State.Builder.setFastMathFlags( 9676 IndDesc.getInductionBinOp()->getFastMathFlags()); 9677 9678 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9679 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9680 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9681 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9682 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9683 ScalarIV = 9684 Ty->isIntegerTy() 9685 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9686 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9687 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9688 getStartValue()->getLiveInIRValue(), Step, 9689 IndDesc); 9690 ScalarIV->setName("offset.idx"); 9691 } 9692 if (TruncToTy) { 9693 assert(Step->getType()->isIntegerTy() && 9694 "Truncation requires an integer step"); 9695 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9696 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9697 } 9698 return ScalarIV; 9699 }; 9700 9701 Value *ScalarIV = CreateScalarIV(Step); 9702 if (State.VF.isVector()) { 9703 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9704 return; 9705 } 9706 9707 for (unsigned Part = 0; Part < State.UF; ++Part) { 9708 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9709 Value *EntryPart; 9710 if (Step->getType()->isFloatingPointTy()) { 9711 Value *StartIdx = 9712 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9713 // Floating-point operations inherit FMF via the builder's flags. 9714 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9715 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9716 ScalarIV, MulOp); 9717 } else { 9718 Value *StartIdx = 9719 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9720 EntryPart = State.Builder.CreateAdd( 9721 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9722 } 9723 State.set(this, EntryPart, Part); 9724 } 9725 } 9726 9727 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9728 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9729 State); 9730 } 9731 9732 void VPBlendRecipe::execute(VPTransformState &State) { 9733 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9734 // We know that all PHIs in non-header blocks are converted into 9735 // selects, so we don't have to worry about the insertion order and we 9736 // can just use the builder. 9737 // At this point we generate the predication tree. There may be 9738 // duplications since this is a simple recursive scan, but future 9739 // optimizations will clean it up. 9740 9741 unsigned NumIncoming = getNumIncomingValues(); 9742 9743 // Generate a sequence of selects of the form: 9744 // SELECT(Mask3, In3, 9745 // SELECT(Mask2, In2, 9746 // SELECT(Mask1, In1, 9747 // In0))) 9748 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9749 // are essentially undef are taken from In0. 9750 InnerLoopVectorizer::VectorParts Entry(State.UF); 9751 for (unsigned In = 0; In < NumIncoming; ++In) { 9752 for (unsigned Part = 0; Part < State.UF; ++Part) { 9753 // We might have single edge PHIs (blocks) - use an identity 9754 // 'select' for the first PHI operand. 9755 Value *In0 = State.get(getIncomingValue(In), Part); 9756 if (In == 0) 9757 Entry[Part] = In0; // Initialize with the first incoming value. 9758 else { 9759 // Select between the current value and the previous incoming edge 9760 // based on the incoming mask. 9761 Value *Cond = State.get(getMask(In), Part); 9762 Entry[Part] = 9763 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9764 } 9765 } 9766 } 9767 for (unsigned Part = 0; Part < State.UF; ++Part) 9768 State.set(this, Entry[Part], Part); 9769 } 9770 9771 void VPInterleaveRecipe::execute(VPTransformState &State) { 9772 assert(!State.Instance && "Interleave group being replicated."); 9773 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9774 getStoredValues(), getMask()); 9775 } 9776 9777 void VPReductionRecipe::execute(VPTransformState &State) { 9778 assert(!State.Instance && "Reduction being replicated."); 9779 Value *PrevInChain = State.get(getChainOp(), 0); 9780 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9781 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9782 // Propagate the fast-math flags carried by the underlying instruction. 9783 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9784 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9785 for (unsigned Part = 0; Part < State.UF; ++Part) { 9786 Value *NewVecOp = State.get(getVecOp(), Part); 9787 if (VPValue *Cond = getCondOp()) { 9788 Value *NewCond = State.get(Cond, Part); 9789 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9790 Value *Iden = RdxDesc->getRecurrenceIdentity( 9791 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9792 Value *IdenVec = 9793 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9794 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9795 NewVecOp = Select; 9796 } 9797 Value *NewRed; 9798 Value *NextInChain; 9799 if (IsOrdered) { 9800 if (State.VF.isVector()) 9801 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9802 PrevInChain); 9803 else 9804 NewRed = State.Builder.CreateBinOp( 9805 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9806 NewVecOp); 9807 PrevInChain = NewRed; 9808 } else { 9809 PrevInChain = State.get(getChainOp(), Part); 9810 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9811 } 9812 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9813 NextInChain = 9814 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9815 NewRed, PrevInChain); 9816 } else if (IsOrdered) 9817 NextInChain = NewRed; 9818 else 9819 NextInChain = State.Builder.CreateBinOp( 9820 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9821 PrevInChain); 9822 State.set(this, NextInChain, Part); 9823 } 9824 } 9825 9826 void VPReplicateRecipe::execute(VPTransformState &State) { 9827 if (State.Instance) { // Generate a single instance. 9828 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9829 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9830 IsPredicated, State); 9831 // Insert scalar instance packing it into a vector. 9832 if (AlsoPack && State.VF.isVector()) { 9833 // If we're constructing lane 0, initialize to start from poison. 9834 if (State.Instance->Lane.isFirstLane()) { 9835 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9836 Value *Poison = PoisonValue::get( 9837 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9838 State.set(this, Poison, State.Instance->Part); 9839 } 9840 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9841 } 9842 return; 9843 } 9844 9845 // Generate scalar instances for all VF lanes of all UF parts, unless the 9846 // instruction is uniform inwhich case generate only the first lane for each 9847 // of the UF parts. 9848 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9849 assert((!State.VF.isScalable() || IsUniform) && 9850 "Can't scalarize a scalable vector"); 9851 for (unsigned Part = 0; Part < State.UF; ++Part) 9852 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9853 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9854 VPIteration(Part, Lane), IsPredicated, 9855 State); 9856 } 9857 9858 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9859 assert(State.Instance && "Branch on Mask works only on single instance."); 9860 9861 unsigned Part = State.Instance->Part; 9862 unsigned Lane = State.Instance->Lane.getKnownLane(); 9863 9864 Value *ConditionBit = nullptr; 9865 VPValue *BlockInMask = getMask(); 9866 if (BlockInMask) { 9867 ConditionBit = State.get(BlockInMask, Part); 9868 if (ConditionBit->getType()->isVectorTy()) 9869 ConditionBit = State.Builder.CreateExtractElement( 9870 ConditionBit, State.Builder.getInt32(Lane)); 9871 } else // Block in mask is all-one. 9872 ConditionBit = State.Builder.getTrue(); 9873 9874 // Replace the temporary unreachable terminator with a new conditional branch, 9875 // whose two destinations will be set later when they are created. 9876 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9877 assert(isa<UnreachableInst>(CurrentTerminator) && 9878 "Expected to replace unreachable terminator with conditional branch."); 9879 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9880 CondBr->setSuccessor(0, nullptr); 9881 ReplaceInstWithInst(CurrentTerminator, CondBr); 9882 } 9883 9884 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9885 assert(State.Instance && "Predicated instruction PHI works per instance."); 9886 Instruction *ScalarPredInst = 9887 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9888 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9889 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9890 assert(PredicatingBB && "Predicated block has no single predecessor."); 9891 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9892 "operand must be VPReplicateRecipe"); 9893 9894 // By current pack/unpack logic we need to generate only a single phi node: if 9895 // a vector value for the predicated instruction exists at this point it means 9896 // the instruction has vector users only, and a phi for the vector value is 9897 // needed. In this case the recipe of the predicated instruction is marked to 9898 // also do that packing, thereby "hoisting" the insert-element sequence. 9899 // Otherwise, a phi node for the scalar value is needed. 9900 unsigned Part = State.Instance->Part; 9901 if (State.hasVectorValue(getOperand(0), Part)) { 9902 Value *VectorValue = State.get(getOperand(0), Part); 9903 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9904 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9905 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9906 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9907 if (State.hasVectorValue(this, Part)) 9908 State.reset(this, VPhi, Part); 9909 else 9910 State.set(this, VPhi, Part); 9911 // NOTE: Currently we need to update the value of the operand, so the next 9912 // predicated iteration inserts its generated value in the correct vector. 9913 State.reset(getOperand(0), VPhi, Part); 9914 } else { 9915 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9916 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9917 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9918 PredicatingBB); 9919 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9920 if (State.hasScalarValue(this, *State.Instance)) 9921 State.reset(this, Phi, *State.Instance); 9922 else 9923 State.set(this, Phi, *State.Instance); 9924 // NOTE: Currently we need to update the value of the operand, so the next 9925 // predicated iteration inserts its generated value in the correct vector. 9926 State.reset(getOperand(0), Phi, *State.Instance); 9927 } 9928 } 9929 9930 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9931 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9932 9933 // Attempt to issue a wide load. 9934 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9935 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9936 9937 assert((LI || SI) && "Invalid Load/Store instruction"); 9938 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9939 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9940 9941 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9942 9943 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9944 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9945 bool CreateGatherScatter = !Consecutive; 9946 9947 auto &Builder = State.Builder; 9948 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9949 bool isMaskRequired = getMask(); 9950 if (isMaskRequired) 9951 for (unsigned Part = 0; Part < State.UF; ++Part) 9952 BlockInMaskParts[Part] = State.get(getMask(), Part); 9953 9954 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9955 // Calculate the pointer for the specific unroll-part. 9956 GetElementPtrInst *PartPtr = nullptr; 9957 9958 bool InBounds = false; 9959 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9960 InBounds = gep->isInBounds(); 9961 if (Reverse) { 9962 // If the address is consecutive but reversed, then the 9963 // wide store needs to start at the last vector element. 9964 // RunTimeVF = VScale * VF.getKnownMinValue() 9965 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9966 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9967 // NumElt = -Part * RunTimeVF 9968 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9969 // LastLane = 1 - RunTimeVF 9970 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9971 PartPtr = 9972 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9973 PartPtr->setIsInBounds(InBounds); 9974 PartPtr = cast<GetElementPtrInst>( 9975 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9976 PartPtr->setIsInBounds(InBounds); 9977 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9978 BlockInMaskParts[Part] = 9979 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9980 } else { 9981 Value *Increment = 9982 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9983 PartPtr = cast<GetElementPtrInst>( 9984 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9985 PartPtr->setIsInBounds(InBounds); 9986 } 9987 9988 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9989 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9990 }; 9991 9992 // Handle Stores: 9993 if (SI) { 9994 State.ILV->setDebugLocFromInst(SI); 9995 9996 for (unsigned Part = 0; Part < State.UF; ++Part) { 9997 Instruction *NewSI = nullptr; 9998 Value *StoredVal = State.get(StoredValue, Part); 9999 if (CreateGatherScatter) { 10000 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10001 Value *VectorGep = State.get(getAddr(), Part); 10002 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10003 MaskPart); 10004 } else { 10005 if (Reverse) { 10006 // If we store to reverse consecutive memory locations, then we need 10007 // to reverse the order of elements in the stored value. 10008 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10009 // We don't want to update the value in the map as it might be used in 10010 // another expression. So don't call resetVectorValue(StoredVal). 10011 } 10012 auto *VecPtr = 10013 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10014 if (isMaskRequired) 10015 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10016 BlockInMaskParts[Part]); 10017 else 10018 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10019 } 10020 State.ILV->addMetadata(NewSI, SI); 10021 } 10022 return; 10023 } 10024 10025 // Handle loads. 10026 assert(LI && "Must have a load instruction"); 10027 State.ILV->setDebugLocFromInst(LI); 10028 for (unsigned Part = 0; Part < State.UF; ++Part) { 10029 Value *NewLI; 10030 if (CreateGatherScatter) { 10031 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10032 Value *VectorGep = State.get(getAddr(), Part); 10033 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10034 nullptr, "wide.masked.gather"); 10035 State.ILV->addMetadata(NewLI, LI); 10036 } else { 10037 auto *VecPtr = 10038 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10039 if (isMaskRequired) 10040 NewLI = Builder.CreateMaskedLoad( 10041 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10042 PoisonValue::get(DataTy), "wide.masked.load"); 10043 else 10044 NewLI = 10045 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10046 10047 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10048 State.ILV->addMetadata(NewLI, LI); 10049 if (Reverse) 10050 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10051 } 10052 10053 State.set(this, NewLI, Part); 10054 } 10055 } 10056 10057 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10058 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10059 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10060 // for predication. 10061 static ScalarEpilogueLowering getScalarEpilogueLowering( 10062 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10063 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10064 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10065 LoopVectorizationLegality &LVL) { 10066 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10067 // don't look at hints or options, and don't request a scalar epilogue. 10068 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10069 // LoopAccessInfo (due to code dependency and not being able to reliably get 10070 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10071 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10072 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10073 // back to the old way and vectorize with versioning when forced. See D81345.) 10074 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10075 PGSOQueryType::IRPass) && 10076 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10077 return CM_ScalarEpilogueNotAllowedOptSize; 10078 10079 // 2) If set, obey the directives 10080 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10081 switch (PreferPredicateOverEpilogue) { 10082 case PreferPredicateTy::ScalarEpilogue: 10083 return CM_ScalarEpilogueAllowed; 10084 case PreferPredicateTy::PredicateElseScalarEpilogue: 10085 return CM_ScalarEpilogueNotNeededUsePredicate; 10086 case PreferPredicateTy::PredicateOrDontVectorize: 10087 return CM_ScalarEpilogueNotAllowedUsePredicate; 10088 }; 10089 } 10090 10091 // 3) If set, obey the hints 10092 switch (Hints.getPredicate()) { 10093 case LoopVectorizeHints::FK_Enabled: 10094 return CM_ScalarEpilogueNotNeededUsePredicate; 10095 case LoopVectorizeHints::FK_Disabled: 10096 return CM_ScalarEpilogueAllowed; 10097 }; 10098 10099 // 4) if the TTI hook indicates this is profitable, request predication. 10100 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10101 LVL.getLAI())) 10102 return CM_ScalarEpilogueNotNeededUsePredicate; 10103 10104 return CM_ScalarEpilogueAllowed; 10105 } 10106 10107 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10108 // If Values have been set for this Def return the one relevant for \p Part. 10109 if (hasVectorValue(Def, Part)) 10110 return Data.PerPartOutput[Def][Part]; 10111 10112 if (!hasScalarValue(Def, {Part, 0})) { 10113 Value *IRV = Def->getLiveInIRValue(); 10114 Value *B = ILV->getBroadcastInstrs(IRV); 10115 set(Def, B, Part); 10116 return B; 10117 } 10118 10119 Value *ScalarValue = get(Def, {Part, 0}); 10120 // If we aren't vectorizing, we can just copy the scalar map values over 10121 // to the vector map. 10122 if (VF.isScalar()) { 10123 set(Def, ScalarValue, Part); 10124 return ScalarValue; 10125 } 10126 10127 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10128 bool IsUniform = RepR && RepR->isUniform(); 10129 10130 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10131 // Check if there is a scalar value for the selected lane. 10132 if (!hasScalarValue(Def, {Part, LastLane})) { 10133 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10134 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10135 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10136 "unexpected recipe found to be invariant"); 10137 IsUniform = true; 10138 LastLane = 0; 10139 } 10140 10141 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10142 // Set the insert point after the last scalarized instruction or after the 10143 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10144 // will directly follow the scalar definitions. 10145 auto OldIP = Builder.saveIP(); 10146 auto NewIP = 10147 isa<PHINode>(LastInst) 10148 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10149 : std::next(BasicBlock::iterator(LastInst)); 10150 Builder.SetInsertPoint(&*NewIP); 10151 10152 // However, if we are vectorizing, we need to construct the vector values. 10153 // If the value is known to be uniform after vectorization, we can just 10154 // broadcast the scalar value corresponding to lane zero for each unroll 10155 // iteration. Otherwise, we construct the vector values using 10156 // insertelement instructions. Since the resulting vectors are stored in 10157 // State, we will only generate the insertelements once. 10158 Value *VectorValue = nullptr; 10159 if (IsUniform) { 10160 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10161 set(Def, VectorValue, Part); 10162 } else { 10163 // Initialize packing with insertelements to start from undef. 10164 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10165 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10166 set(Def, Undef, Part); 10167 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10168 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10169 VectorValue = get(Def, Part); 10170 } 10171 Builder.restoreIP(OldIP); 10172 return VectorValue; 10173 } 10174 10175 // Process the loop in the VPlan-native vectorization path. This path builds 10176 // VPlan upfront in the vectorization pipeline, which allows to apply 10177 // VPlan-to-VPlan transformations from the very beginning without modifying the 10178 // input LLVM IR. 10179 static bool processLoopInVPlanNativePath( 10180 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10181 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10182 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10183 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10184 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10185 LoopVectorizationRequirements &Requirements) { 10186 10187 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10188 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10189 return false; 10190 } 10191 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10192 Function *F = L->getHeader()->getParent(); 10193 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10194 10195 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10196 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10197 10198 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10199 &Hints, IAI); 10200 // Use the planner for outer loop vectorization. 10201 // TODO: CM is not used at this point inside the planner. Turn CM into an 10202 // optional argument if we don't need it in the future. 10203 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10204 Requirements, ORE); 10205 10206 // Get user vectorization factor. 10207 ElementCount UserVF = Hints.getWidth(); 10208 10209 CM.collectElementTypesForWidening(); 10210 10211 // Plan how to best vectorize, return the best VF and its cost. 10212 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10213 10214 // If we are stress testing VPlan builds, do not attempt to generate vector 10215 // code. Masked vector code generation support will follow soon. 10216 // Also, do not attempt to vectorize if no vector code will be produced. 10217 if (VPlanBuildStressTest || EnableVPlanPredication || 10218 VectorizationFactor::Disabled() == VF) 10219 return false; 10220 10221 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10222 10223 { 10224 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10225 F->getParent()->getDataLayout()); 10226 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10227 &CM, BFI, PSI, Checks); 10228 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10229 << L->getHeader()->getParent()->getName() << "\"\n"); 10230 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10231 } 10232 10233 // Mark the loop as already vectorized to avoid vectorizing again. 10234 Hints.setAlreadyVectorized(); 10235 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10236 return true; 10237 } 10238 10239 // Emit a remark if there are stores to floats that required a floating point 10240 // extension. If the vectorized loop was generated with floating point there 10241 // will be a performance penalty from the conversion overhead and the change in 10242 // the vector width. 10243 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10244 SmallVector<Instruction *, 4> Worklist; 10245 for (BasicBlock *BB : L->getBlocks()) { 10246 for (Instruction &Inst : *BB) { 10247 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10248 if (S->getValueOperand()->getType()->isFloatTy()) 10249 Worklist.push_back(S); 10250 } 10251 } 10252 } 10253 10254 // Traverse the floating point stores upwards searching, for floating point 10255 // conversions. 10256 SmallPtrSet<const Instruction *, 4> Visited; 10257 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10258 while (!Worklist.empty()) { 10259 auto *I = Worklist.pop_back_val(); 10260 if (!L->contains(I)) 10261 continue; 10262 if (!Visited.insert(I).second) 10263 continue; 10264 10265 // Emit a remark if the floating point store required a floating 10266 // point conversion. 10267 // TODO: More work could be done to identify the root cause such as a 10268 // constant or a function return type and point the user to it. 10269 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10270 ORE->emit([&]() { 10271 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10272 I->getDebugLoc(), L->getHeader()) 10273 << "floating point conversion changes vector width. " 10274 << "Mixed floating point precision requires an up/down " 10275 << "cast that will negatively impact performance."; 10276 }); 10277 10278 for (Use &Op : I->operands()) 10279 if (auto *OpI = dyn_cast<Instruction>(Op)) 10280 Worklist.push_back(OpI); 10281 } 10282 } 10283 10284 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10285 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10286 !EnableLoopInterleaving), 10287 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10288 !EnableLoopVectorization) {} 10289 10290 bool LoopVectorizePass::processLoop(Loop *L) { 10291 assert((EnableVPlanNativePath || L->isInnermost()) && 10292 "VPlan-native path is not enabled. Only process inner loops."); 10293 10294 #ifndef NDEBUG 10295 const std::string DebugLocStr = getDebugLocString(L); 10296 #endif /* NDEBUG */ 10297 10298 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10299 << L->getHeader()->getParent()->getName() << "' from " 10300 << DebugLocStr << "\n"); 10301 10302 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10303 10304 LLVM_DEBUG( 10305 dbgs() << "LV: Loop hints:" 10306 << " force=" 10307 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10308 ? "disabled" 10309 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10310 ? "enabled" 10311 : "?")) 10312 << " width=" << Hints.getWidth() 10313 << " interleave=" << Hints.getInterleave() << "\n"); 10314 10315 // Function containing loop 10316 Function *F = L->getHeader()->getParent(); 10317 10318 // Looking at the diagnostic output is the only way to determine if a loop 10319 // was vectorized (other than looking at the IR or machine code), so it 10320 // is important to generate an optimization remark for each loop. Most of 10321 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10322 // generated as OptimizationRemark and OptimizationRemarkMissed are 10323 // less verbose reporting vectorized loops and unvectorized loops that may 10324 // benefit from vectorization, respectively. 10325 10326 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10327 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10328 return false; 10329 } 10330 10331 PredicatedScalarEvolution PSE(*SE, *L); 10332 10333 // Check if it is legal to vectorize the loop. 10334 LoopVectorizationRequirements Requirements; 10335 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10336 &Requirements, &Hints, DB, AC, BFI, PSI); 10337 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10338 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10339 Hints.emitRemarkWithHints(); 10340 return false; 10341 } 10342 10343 // Check the function attributes and profiles to find out if this function 10344 // should be optimized for size. 10345 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10346 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10347 10348 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10349 // here. They may require CFG and instruction level transformations before 10350 // even evaluating whether vectorization is profitable. Since we cannot modify 10351 // the incoming IR, we need to build VPlan upfront in the vectorization 10352 // pipeline. 10353 if (!L->isInnermost()) 10354 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10355 ORE, BFI, PSI, Hints, Requirements); 10356 10357 assert(L->isInnermost() && "Inner loop expected."); 10358 10359 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10360 // count by optimizing for size, to minimize overheads. 10361 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10362 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10363 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10364 << "This loop is worth vectorizing only if no scalar " 10365 << "iteration overheads are incurred."); 10366 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10367 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10368 else { 10369 LLVM_DEBUG(dbgs() << "\n"); 10370 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10371 } 10372 } 10373 10374 // Check the function attributes to see if implicit floats are allowed. 10375 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10376 // an integer loop and the vector instructions selected are purely integer 10377 // vector instructions? 10378 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10379 reportVectorizationFailure( 10380 "Can't vectorize when the NoImplicitFloat attribute is used", 10381 "loop not vectorized due to NoImplicitFloat attribute", 10382 "NoImplicitFloat", ORE, L); 10383 Hints.emitRemarkWithHints(); 10384 return false; 10385 } 10386 10387 // Check if the target supports potentially unsafe FP vectorization. 10388 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10389 // for the target we're vectorizing for, to make sure none of the 10390 // additional fp-math flags can help. 10391 if (Hints.isPotentiallyUnsafe() && 10392 TTI->isFPVectorizationPotentiallyUnsafe()) { 10393 reportVectorizationFailure( 10394 "Potentially unsafe FP op prevents vectorization", 10395 "loop not vectorized due to unsafe FP support.", 10396 "UnsafeFP", ORE, L); 10397 Hints.emitRemarkWithHints(); 10398 return false; 10399 } 10400 10401 bool AllowOrderedReductions; 10402 // If the flag is set, use that instead and override the TTI behaviour. 10403 if (ForceOrderedReductions.getNumOccurrences() > 0) 10404 AllowOrderedReductions = ForceOrderedReductions; 10405 else 10406 AllowOrderedReductions = TTI->enableOrderedReductions(); 10407 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10408 ORE->emit([&]() { 10409 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10410 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10411 ExactFPMathInst->getDebugLoc(), 10412 ExactFPMathInst->getParent()) 10413 << "loop not vectorized: cannot prove it is safe to reorder " 10414 "floating-point operations"; 10415 }); 10416 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10417 "reorder floating-point operations\n"); 10418 Hints.emitRemarkWithHints(); 10419 return false; 10420 } 10421 10422 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10423 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10424 10425 // If an override option has been passed in for interleaved accesses, use it. 10426 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10427 UseInterleaved = EnableInterleavedMemAccesses; 10428 10429 // Analyze interleaved memory accesses. 10430 if (UseInterleaved) { 10431 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10432 } 10433 10434 // Use the cost model. 10435 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10436 F, &Hints, IAI); 10437 CM.collectValuesToIgnore(); 10438 CM.collectElementTypesForWidening(); 10439 10440 // Use the planner for vectorization. 10441 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10442 Requirements, ORE); 10443 10444 // Get user vectorization factor and interleave count. 10445 ElementCount UserVF = Hints.getWidth(); 10446 unsigned UserIC = Hints.getInterleave(); 10447 10448 // Plan how to best vectorize, return the best VF and its cost. 10449 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10450 10451 VectorizationFactor VF = VectorizationFactor::Disabled(); 10452 unsigned IC = 1; 10453 10454 if (MaybeVF) { 10455 VF = *MaybeVF; 10456 // Select the interleave count. 10457 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10458 } 10459 10460 // Identify the diagnostic messages that should be produced. 10461 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10462 bool VectorizeLoop = true, InterleaveLoop = true; 10463 if (VF.Width.isScalar()) { 10464 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10465 VecDiagMsg = std::make_pair( 10466 "VectorizationNotBeneficial", 10467 "the cost-model indicates that vectorization is not beneficial"); 10468 VectorizeLoop = false; 10469 } 10470 10471 if (!MaybeVF && UserIC > 1) { 10472 // Tell the user interleaving was avoided up-front, despite being explicitly 10473 // requested. 10474 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10475 "interleaving should be avoided up front\n"); 10476 IntDiagMsg = std::make_pair( 10477 "InterleavingAvoided", 10478 "Ignoring UserIC, because interleaving was avoided up front"); 10479 InterleaveLoop = false; 10480 } else if (IC == 1 && UserIC <= 1) { 10481 // Tell the user interleaving is not beneficial. 10482 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10483 IntDiagMsg = std::make_pair( 10484 "InterleavingNotBeneficial", 10485 "the cost-model indicates that interleaving is not beneficial"); 10486 InterleaveLoop = false; 10487 if (UserIC == 1) { 10488 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10489 IntDiagMsg.second += 10490 " and is explicitly disabled or interleave count is set to 1"; 10491 } 10492 } else if (IC > 1 && UserIC == 1) { 10493 // Tell the user interleaving is beneficial, but it explicitly disabled. 10494 LLVM_DEBUG( 10495 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10496 IntDiagMsg = std::make_pair( 10497 "InterleavingBeneficialButDisabled", 10498 "the cost-model indicates that interleaving is beneficial " 10499 "but is explicitly disabled or interleave count is set to 1"); 10500 InterleaveLoop = false; 10501 } 10502 10503 // Override IC if user provided an interleave count. 10504 IC = UserIC > 0 ? UserIC : IC; 10505 10506 // Emit diagnostic messages, if any. 10507 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10508 if (!VectorizeLoop && !InterleaveLoop) { 10509 // Do not vectorize or interleaving the loop. 10510 ORE->emit([&]() { 10511 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10512 L->getStartLoc(), L->getHeader()) 10513 << VecDiagMsg.second; 10514 }); 10515 ORE->emit([&]() { 10516 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10517 L->getStartLoc(), L->getHeader()) 10518 << IntDiagMsg.second; 10519 }); 10520 return false; 10521 } else if (!VectorizeLoop && InterleaveLoop) { 10522 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10523 ORE->emit([&]() { 10524 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10525 L->getStartLoc(), L->getHeader()) 10526 << VecDiagMsg.second; 10527 }); 10528 } else if (VectorizeLoop && !InterleaveLoop) { 10529 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10530 << ") in " << DebugLocStr << '\n'); 10531 ORE->emit([&]() { 10532 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10533 L->getStartLoc(), L->getHeader()) 10534 << IntDiagMsg.second; 10535 }); 10536 } else if (VectorizeLoop && InterleaveLoop) { 10537 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10538 << ") in " << DebugLocStr << '\n'); 10539 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10540 } 10541 10542 bool DisableRuntimeUnroll = false; 10543 MDNode *OrigLoopID = L->getLoopID(); 10544 { 10545 // Optimistically generate runtime checks. Drop them if they turn out to not 10546 // be profitable. Limit the scope of Checks, so the cleanup happens 10547 // immediately after vector codegeneration is done. 10548 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10549 F->getParent()->getDataLayout()); 10550 if (!VF.Width.isScalar() || IC > 1) 10551 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate()); 10552 10553 using namespace ore; 10554 if (!VectorizeLoop) { 10555 assert(IC > 1 && "interleave count should not be 1 or 0"); 10556 // If we decided that it is not legal to vectorize the loop, then 10557 // interleave it. 10558 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10559 &CM, BFI, PSI, Checks); 10560 10561 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10562 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10563 10564 ORE->emit([&]() { 10565 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10566 L->getHeader()) 10567 << "interleaved loop (interleaved count: " 10568 << NV("InterleaveCount", IC) << ")"; 10569 }); 10570 } else { 10571 // If we decided that it is *legal* to vectorize the loop, then do it. 10572 10573 // Consider vectorizing the epilogue too if it's profitable. 10574 VectorizationFactor EpilogueVF = 10575 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10576 if (EpilogueVF.Width.isVector()) { 10577 10578 // The first pass vectorizes the main loop and creates a scalar epilogue 10579 // to be vectorized by executing the plan (potentially with a different 10580 // factor) again shortly afterwards. 10581 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10582 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10583 EPI, &LVL, &CM, BFI, PSI, Checks); 10584 10585 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10586 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10587 DT); 10588 ++LoopsVectorized; 10589 10590 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10591 formLCSSARecursively(*L, *DT, LI, SE); 10592 10593 // Second pass vectorizes the epilogue and adjusts the control flow 10594 // edges from the first pass. 10595 EPI.MainLoopVF = EPI.EpilogueVF; 10596 EPI.MainLoopUF = EPI.EpilogueUF; 10597 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10598 ORE, EPI, &LVL, &CM, BFI, PSI, 10599 Checks); 10600 10601 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10602 10603 // Ensure that the start values for any VPReductionPHIRecipes are 10604 // updated before vectorising the epilogue loop. 10605 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10606 for (VPRecipeBase &R : Header->phis()) { 10607 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10608 if (auto *Resume = MainILV.getReductionResumeValue( 10609 ReductionPhi->getRecurrenceDescriptor())) { 10610 VPValue *StartVal = new VPValue(Resume); 10611 BestEpiPlan.addExternalDef(StartVal); 10612 ReductionPhi->setOperand(0, StartVal); 10613 } 10614 } 10615 } 10616 10617 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10618 DT); 10619 ++LoopsEpilogueVectorized; 10620 10621 if (!MainILV.areSafetyChecksAdded()) 10622 DisableRuntimeUnroll = true; 10623 } else { 10624 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10625 &LVL, &CM, BFI, PSI, Checks); 10626 10627 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10628 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10629 ++LoopsVectorized; 10630 10631 // Add metadata to disable runtime unrolling a scalar loop when there 10632 // are no runtime checks about strides and memory. A scalar loop that is 10633 // rarely used is not worth unrolling. 10634 if (!LB.areSafetyChecksAdded()) 10635 DisableRuntimeUnroll = true; 10636 } 10637 // Report the vectorization decision. 10638 ORE->emit([&]() { 10639 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10640 L->getHeader()) 10641 << "vectorized loop (vectorization width: " 10642 << NV("VectorizationFactor", VF.Width) 10643 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10644 }); 10645 } 10646 10647 if (ORE->allowExtraAnalysis(LV_NAME)) 10648 checkMixedPrecision(L, ORE); 10649 } 10650 10651 Optional<MDNode *> RemainderLoopID = 10652 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10653 LLVMLoopVectorizeFollowupEpilogue}); 10654 if (RemainderLoopID.hasValue()) { 10655 L->setLoopID(RemainderLoopID.getValue()); 10656 } else { 10657 if (DisableRuntimeUnroll) 10658 AddRuntimeUnrollDisableMetaData(L); 10659 10660 // Mark the loop as already vectorized to avoid vectorizing again. 10661 Hints.setAlreadyVectorized(); 10662 } 10663 10664 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10665 return true; 10666 } 10667 10668 LoopVectorizeResult LoopVectorizePass::runImpl( 10669 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10670 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10671 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10672 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10673 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10674 SE = &SE_; 10675 LI = &LI_; 10676 TTI = &TTI_; 10677 DT = &DT_; 10678 BFI = &BFI_; 10679 TLI = TLI_; 10680 AA = &AA_; 10681 AC = &AC_; 10682 GetLAA = &GetLAA_; 10683 DB = &DB_; 10684 ORE = &ORE_; 10685 PSI = PSI_; 10686 10687 // Don't attempt if 10688 // 1. the target claims to have no vector registers, and 10689 // 2. interleaving won't help ILP. 10690 // 10691 // The second condition is necessary because, even if the target has no 10692 // vector registers, loop vectorization may still enable scalar 10693 // interleaving. 10694 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10695 TTI->getMaxInterleaveFactor(1) < 2) 10696 return LoopVectorizeResult(false, false); 10697 10698 bool Changed = false, CFGChanged = false; 10699 10700 // The vectorizer requires loops to be in simplified form. 10701 // Since simplification may add new inner loops, it has to run before the 10702 // legality and profitability checks. This means running the loop vectorizer 10703 // will simplify all loops, regardless of whether anything end up being 10704 // vectorized. 10705 for (auto &L : *LI) 10706 Changed |= CFGChanged |= 10707 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10708 10709 // Build up a worklist of inner-loops to vectorize. This is necessary as 10710 // the act of vectorizing or partially unrolling a loop creates new loops 10711 // and can invalidate iterators across the loops. 10712 SmallVector<Loop *, 8> Worklist; 10713 10714 for (Loop *L : *LI) 10715 collectSupportedLoops(*L, LI, ORE, Worklist); 10716 10717 LoopsAnalyzed += Worklist.size(); 10718 10719 // Now walk the identified inner loops. 10720 while (!Worklist.empty()) { 10721 Loop *L = Worklist.pop_back_val(); 10722 10723 // For the inner loops we actually process, form LCSSA to simplify the 10724 // transform. 10725 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10726 10727 Changed |= CFGChanged |= processLoop(L); 10728 } 10729 10730 // Process each loop nest in the function. 10731 return LoopVectorizeResult(Changed, CFGChanged); 10732 } 10733 10734 PreservedAnalyses LoopVectorizePass::run(Function &F, 10735 FunctionAnalysisManager &AM) { 10736 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10737 auto &LI = AM.getResult<LoopAnalysis>(F); 10738 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10739 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10740 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10741 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10742 auto &AA = AM.getResult<AAManager>(F); 10743 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10744 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10745 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10746 10747 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10748 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10749 [&](Loop &L) -> const LoopAccessInfo & { 10750 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10751 TLI, TTI, nullptr, nullptr, nullptr}; 10752 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10753 }; 10754 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10755 ProfileSummaryInfo *PSI = 10756 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10757 LoopVectorizeResult Result = 10758 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10759 if (!Result.MadeAnyChange) 10760 return PreservedAnalyses::all(); 10761 PreservedAnalyses PA; 10762 10763 // We currently do not preserve loopinfo/dominator analyses with outer loop 10764 // vectorization. Until this is addressed, mark these analyses as preserved 10765 // only for non-VPlan-native path. 10766 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10767 if (!EnableVPlanNativePath) { 10768 PA.preserve<LoopAnalysis>(); 10769 PA.preserve<DominatorTreeAnalysis>(); 10770 } 10771 10772 if (Result.MadeCFGChange) { 10773 // Making CFG changes likely means a loop got vectorized. Indicate that 10774 // extra simplification passes should be run. 10775 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10776 // be run if runtime checks have been added. 10777 AM.getResult<ShouldRunExtraVectorPasses>(F); 10778 PA.preserve<ShouldRunExtraVectorPasses>(); 10779 } else { 10780 PA.preserveSet<CFGAnalyses>(); 10781 } 10782 return PA; 10783 } 10784 10785 void LoopVectorizePass::printPipeline( 10786 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10787 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10788 OS, MapClassName2PassName); 10789 10790 OS << "<"; 10791 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10792 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10793 OS << ">"; 10794 } 10795