1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 182 // that predication is preferred, and this lists all options. I.e., the 183 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 184 // and predicate the instructions accordingly. If tail-folding fails, there are 185 // different fallback strategies depending on these values: 186 namespace PreferPredicateTy { 187 enum Option { 188 ScalarEpilogue = 0, 189 PredicateElseScalarEpilogue, 190 PredicateOrDontVectorize 191 }; 192 } // namespace PreferPredicateTy 193 194 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 195 "prefer-predicate-over-epilogue", 196 cl::init(PreferPredicateTy::ScalarEpilogue), 197 cl::Hidden, 198 cl::desc("Tail-folding and predication preferences over creating a scalar " 199 "epilogue loop."), 200 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 201 "scalar-epilogue", 202 "Don't tail-predicate loops, create scalar epilogue"), 203 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 204 "predicate-else-scalar-epilogue", 205 "prefer tail-folding, create scalar epilogue if tail " 206 "folding fails."), 207 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 208 "predicate-dont-vectorize", 209 "prefers tail-folding, don't attempt vectorization if " 210 "tail-folding fails."))); 211 212 static cl::opt<bool> MaximizeBandwidth( 213 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 214 cl::desc("Maximize bandwidth when selecting vectorization factor which " 215 "will be determined by the smallest type in loop.")); 216 217 static cl::opt<bool> EnableInterleavedMemAccesses( 218 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 219 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 220 221 /// An interleave-group may need masking if it resides in a block that needs 222 /// predication, or in order to mask away gaps. 223 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 224 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 225 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 226 227 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 228 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 229 cl::desc("We don't interleave loops with a estimated constant trip count " 230 "below this number")); 231 232 static cl::opt<unsigned> ForceTargetNumScalarRegs( 233 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 234 cl::desc("A flag that overrides the target's number of scalar registers.")); 235 236 static cl::opt<unsigned> ForceTargetNumVectorRegs( 237 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 238 cl::desc("A flag that overrides the target's number of vector registers.")); 239 240 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 241 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 242 cl::desc("A flag that overrides the target's max interleave factor for " 243 "scalar loops.")); 244 245 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 246 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 247 cl::desc("A flag that overrides the target's max interleave factor for " 248 "vectorized loops.")); 249 250 static cl::opt<unsigned> ForceTargetInstructionCost( 251 "force-target-instruction-cost", cl::init(0), cl::Hidden, 252 cl::desc("A flag that overrides the target's expected cost for " 253 "an instruction to a single constant value. Mostly " 254 "useful for getting consistent testing.")); 255 256 static cl::opt<unsigned> SmallLoopCost( 257 "small-loop-cost", cl::init(20), cl::Hidden, 258 cl::desc( 259 "The cost of a loop that is considered 'small' by the interleaver.")); 260 261 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 262 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 263 cl::desc("Enable the use of the block frequency analysis to access PGO " 264 "heuristics minimizing code growth in cold regions and being more " 265 "aggressive in hot regions.")); 266 267 // Runtime interleave loops for load/store throughput. 268 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 269 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 270 cl::desc( 271 "Enable runtime interleaving until load/store ports are saturated")); 272 273 /// Interleave small loops with scalar reductions. 274 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 275 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 276 cl::desc("Enable interleaving for loops with small iteration counts that " 277 "contain scalar reductions to expose ILP.")); 278 279 /// The number of stores in a loop that are allowed to need predication. 280 static cl::opt<unsigned> NumberOfStoresToPredicate( 281 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 282 cl::desc("Max number of stores to be predicated behind an if.")); 283 284 static cl::opt<bool> EnableIndVarRegisterHeur( 285 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 286 cl::desc("Count the induction variable only once when interleaving")); 287 288 static cl::opt<bool> EnableCondStoresVectorization( 289 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 290 cl::desc("Enable if predication of stores during vectorization.")); 291 292 static cl::opt<unsigned> MaxNestedScalarReductionIC( 293 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 294 cl::desc("The maximum interleave count to use when interleaving a scalar " 295 "reduction in a nested loop.")); 296 297 static cl::opt<bool> 298 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 299 cl::Hidden, 300 cl::desc("Prefer in-loop vector reductions, " 301 "overriding the targets preference.")); 302 303 static cl::opt<bool> PreferPredicatedReductionSelect( 304 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 305 cl::desc( 306 "Prefer predicating a reduction operation over an after loop select.")); 307 308 cl::opt<bool> EnableVPlanNativePath( 309 "enable-vplan-native-path", cl::init(false), cl::Hidden, 310 cl::desc("Enable VPlan-native vectorization path with " 311 "support for outer loop vectorization.")); 312 313 // FIXME: Remove this switch once we have divergence analysis. Currently we 314 // assume divergent non-backedge branches when this switch is true. 315 cl::opt<bool> EnableVPlanPredication( 316 "enable-vplan-predication", cl::init(false), cl::Hidden, 317 cl::desc("Enable VPlan-native vectorization path predicator with " 318 "support for outer loop vectorization.")); 319 320 // This flag enables the stress testing of the VPlan H-CFG construction in the 321 // VPlan-native vectorization path. It must be used in conjuction with 322 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 323 // verification of the H-CFGs built. 324 static cl::opt<bool> VPlanBuildStressTest( 325 "vplan-build-stress-test", cl::init(false), cl::Hidden, 326 cl::desc( 327 "Build VPlan for every supported loop nest in the function and bail " 328 "out right after the build (stress test the VPlan H-CFG construction " 329 "in the VPlan-native vectorization path).")); 330 331 cl::opt<bool> llvm::EnableLoopInterleaving( 332 "interleave-loops", cl::init(true), cl::Hidden, 333 cl::desc("Enable loop interleaving in Loop vectorization passes")); 334 cl::opt<bool> llvm::EnableLoopVectorization( 335 "vectorize-loops", cl::init(true), cl::Hidden, 336 cl::desc("Run the Loop vectorization passes")); 337 338 /// A helper function that returns the type of loaded or stored value. 339 static Type *getMemInstValueType(Value *I) { 340 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 341 "Expected Load or Store instruction"); 342 if (auto *LI = dyn_cast<LoadInst>(I)) 343 return LI->getType(); 344 return cast<StoreInst>(I)->getValueOperand()->getType(); 345 } 346 347 /// A helper function that returns true if the given type is irregular. The 348 /// type is irregular if its allocated size doesn't equal the store size of an 349 /// element of the corresponding vector type at the given vectorization factor. 350 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 351 assert(!VF.isScalable() && "scalable vectors not yet supported."); 352 // Determine if an array of VF elements of type Ty is "bitcast compatible" 353 // with a <VF x Ty> vector. 354 if (VF.isVector()) { 355 auto *VectorTy = VectorType::get(Ty, VF); 356 return TypeSize::get(VF.getKnownMinValue() * 357 DL.getTypeAllocSize(Ty).getFixedValue(), 358 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 359 } 360 361 // If the vectorization factor is one, we just check if an array of type Ty 362 // requires padding between elements. 363 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 364 } 365 366 /// A helper function that returns the reciprocal of the block probability of 367 /// predicated blocks. If we return X, we are assuming the predicated block 368 /// will execute once for every X iterations of the loop header. 369 /// 370 /// TODO: We should use actual block probability here, if available. Currently, 371 /// we always assume predicated blocks have a 50% chance of executing. 372 static unsigned getReciprocalPredBlockProb() { return 2; } 373 374 /// A helper function that adds a 'fast' flag to floating-point operations. 375 static Value *addFastMathFlag(Value *V) { 376 if (isa<FPMathOperator>(V)) 377 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 378 return V; 379 } 380 381 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 382 if (isa<FPMathOperator>(V)) 383 cast<Instruction>(V)->setFastMathFlags(FMF); 384 return V; 385 } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 namespace llvm { 418 419 /// InnerLoopVectorizer vectorizes loops which contain only one basic 420 /// block to a specified vectorization factor (VF). 421 /// This class performs the widening of scalars into vectors, or multiple 422 /// scalars. This class also implements the following features: 423 /// * It inserts an epilogue loop for handling loops that don't have iteration 424 /// counts that are known to be a multiple of the vectorization factor. 425 /// * It handles the code generation for reduction variables. 426 /// * Scalarization (implementation using scalars) of un-vectorizable 427 /// instructions. 428 /// InnerLoopVectorizer does not perform any vectorization-legality 429 /// checks, and relies on the caller to check for the different legality 430 /// aspects. The InnerLoopVectorizer relies on the 431 /// LoopVectorizationLegality class to provide information about the induction 432 /// and reduction variables that were found to a given vectorization factor. 433 class InnerLoopVectorizer { 434 public: 435 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 436 LoopInfo *LI, DominatorTree *DT, 437 const TargetLibraryInfo *TLI, 438 const TargetTransformInfo *TTI, AssumptionCache *AC, 439 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 440 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 441 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 442 ProfileSummaryInfo *PSI) 443 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 444 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 445 Builder(PSE.getSE()->getContext()), 446 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 447 BFI(BFI), PSI(PSI) { 448 // Query this against the original loop and save it here because the profile 449 // of the original loop header may change as the transformation happens. 450 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 451 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 452 } 453 454 virtual ~InnerLoopVectorizer() = default; 455 456 /// Create a new empty loop that will contain vectorized instructions later 457 /// on, while the old loop will be used as the scalar remainder. Control flow 458 /// is generated around the vectorized (and scalar epilogue) loops consisting 459 /// of various checks and bypasses. Return the pre-header block of the new 460 /// loop. 461 BasicBlock *createVectorizedLoopSkeleton(); 462 463 /// Widen a single instruction within the innermost loop. 464 void widenInstruction(Instruction &I, VPUser &Operands, 465 VPTransformState &State); 466 467 /// Widen a single call instruction within the innermost loop. 468 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 469 VPTransformState &State); 470 471 /// Widen a single select instruction within the innermost loop. 472 void widenSelectInstruction(SelectInst &I, VPUser &Operands, 473 bool InvariantCond, VPTransformState &State); 474 475 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 476 void fixVectorizedLoop(); 477 478 // Return true if any runtime check is added. 479 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 480 481 /// A type for vectorized values in the new loop. Each value from the 482 /// original loop, when vectorized, is represented by UF vector values in the 483 /// new unrolled loop, where UF is the unroll factor. 484 using VectorParts = SmallVector<Value *, 2>; 485 486 /// Vectorize a single GetElementPtrInst based on information gathered and 487 /// decisions taken during planning. 488 void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF, 489 ElementCount VF, bool IsPtrLoopInvariant, 490 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 491 492 /// Vectorize a single PHINode in a block. This method handles the induction 493 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 494 /// arbitrary length vectors. 495 void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF); 496 497 /// A helper function to scalarize a single Instruction in the innermost loop. 498 /// Generates a sequence of scalar instances for each lane between \p MinLane 499 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 500 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 501 /// Instr's operands. 502 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 503 const VPIteration &Instance, bool IfPredicateInstr, 504 VPTransformState &State); 505 506 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 507 /// is provided, the integer induction variable will first be truncated to 508 /// the corresponding type. 509 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 510 511 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 512 /// vector or scalar value on-demand if one is not yet available. When 513 /// vectorizing a loop, we visit the definition of an instruction before its 514 /// uses. When visiting the definition, we either vectorize or scalarize the 515 /// instruction, creating an entry for it in the corresponding map. (In some 516 /// cases, such as induction variables, we will create both vector and scalar 517 /// entries.) Then, as we encounter uses of the definition, we derive values 518 /// for each scalar or vector use unless such a value is already available. 519 /// For example, if we scalarize a definition and one of its uses is vector, 520 /// we build the required vector on-demand with an insertelement sequence 521 /// when visiting the use. Otherwise, if the use is scalar, we can use the 522 /// existing scalar definition. 523 /// 524 /// Return a value in the new loop corresponding to \p V from the original 525 /// loop at unroll index \p Part. If the value has already been vectorized, 526 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 527 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 528 /// a new vector value on-demand by inserting the scalar values into a vector 529 /// with an insertelement sequence. If the value has been neither vectorized 530 /// nor scalarized, it must be loop invariant, so we simply broadcast the 531 /// value into a vector. 532 Value *getOrCreateVectorValue(Value *V, unsigned Part); 533 534 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 535 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 536 } 537 538 /// Return a value in the new loop corresponding to \p V from the original 539 /// loop at unroll and vector indices \p Instance. If the value has been 540 /// vectorized but not scalarized, the necessary extractelement instruction 541 /// will be generated. 542 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 543 544 /// Construct the vector value of a scalarized value \p V one lane at a time. 545 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 546 547 /// Try to vectorize interleaved access group \p Group with the base address 548 /// given in \p Addr, optionally masking the vector operations if \p 549 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 550 /// values in the vectorized loop. 551 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 552 VPTransformState &State, VPValue *Addr, 553 VPValue *BlockInMask = nullptr); 554 555 /// Vectorize Load and Store instructions with the base address given in \p 556 /// Addr, optionally masking the vector operations if \p BlockInMask is 557 /// non-null. Use \p State to translate given VPValues to IR values in the 558 /// vectorized loop. 559 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 560 VPValue *Def, VPValue *Addr, 561 VPValue *StoredValue, VPValue *BlockInMask); 562 563 /// Set the debug location in the builder using the debug location in 564 /// the instruction. 565 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 566 567 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 568 void fixNonInductionPHIs(void); 569 570 protected: 571 friend class LoopVectorizationPlanner; 572 573 /// A small list of PHINodes. 574 using PhiVector = SmallVector<PHINode *, 4>; 575 576 /// A type for scalarized values in the new loop. Each value from the 577 /// original loop, when scalarized, is represented by UF x VF scalar values 578 /// in the new unrolled loop, where UF is the unroll factor and VF is the 579 /// vectorization factor. 580 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 581 582 /// Set up the values of the IVs correctly when exiting the vector loop. 583 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 584 Value *CountRoundDown, Value *EndValue, 585 BasicBlock *MiddleBlock); 586 587 /// Create a new induction variable inside L. 588 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 589 Value *Step, Instruction *DL); 590 591 /// Handle all cross-iteration phis in the header. 592 void fixCrossIterationPHIs(); 593 594 /// Fix a first-order recurrence. This is the second phase of vectorizing 595 /// this phi node. 596 void fixFirstOrderRecurrence(PHINode *Phi); 597 598 /// Fix a reduction cross-iteration phi. This is the second phase of 599 /// vectorizing this phi node. 600 void fixReduction(PHINode *Phi); 601 602 /// Clear NSW/NUW flags from reduction instructions if necessary. 603 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 604 605 /// The Loop exit block may have single value PHI nodes with some 606 /// incoming value. While vectorizing we only handled real values 607 /// that were defined inside the loop and we should have one value for 608 /// each predecessor of its parent basic block. See PR14725. 609 void fixLCSSAPHIs(); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(); 618 619 /// Create a broadcast instruction. This method generates a broadcast 620 /// instruction (shuffle) for loop invariant values and for the induction 621 /// value. If this is the induction variable then we extend it to N, N+1, ... 622 /// this is needed because each iteration in the loop corresponds to a SIMD 623 /// element. 624 virtual Value *getBroadcastInstrs(Value *V); 625 626 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 627 /// to each vector element of Val. The sequence starts at StartIndex. 628 /// \p Opcode is relevant for FP induction variable. 629 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 630 Instruction::BinaryOps Opcode = 631 Instruction::BinaryOpsEnd); 632 633 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 634 /// variable on which to base the steps, \p Step is the size of the step, and 635 /// \p EntryVal is the value from the original loop that maps to the steps. 636 /// Note that \p EntryVal doesn't have to be an induction variable - it 637 /// can also be a truncate instruction. 638 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 639 const InductionDescriptor &ID); 640 641 /// Create a vector induction phi node based on an existing scalar one. \p 642 /// EntryVal is the value from the original loop that maps to the vector phi 643 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 644 /// truncate instruction, instead of widening the original IV, we widen a 645 /// version of the IV truncated to \p EntryVal's type. 646 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 647 Value *Step, Instruction *EntryVal); 648 649 /// Returns true if an instruction \p I should be scalarized instead of 650 /// vectorized for the chosen vectorization factor. 651 bool shouldScalarizeInstruction(Instruction *I) const; 652 653 /// Returns true if we should generate a scalar version of \p IV. 654 bool needsScalarInduction(Instruction *IV) const; 655 656 /// If there is a cast involved in the induction variable \p ID, which should 657 /// be ignored in the vectorized loop body, this function records the 658 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 659 /// cast. We had already proved that the casted Phi is equal to the uncasted 660 /// Phi in the vectorized loop (under a runtime guard), and therefore 661 /// there is no need to vectorize the cast - the same value can be used in the 662 /// vector loop for both the Phi and the cast. 663 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 664 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 665 /// 666 /// \p EntryVal is the value from the original loop that maps to the vector 667 /// phi node and is used to distinguish what is the IV currently being 668 /// processed - original one (if \p EntryVal is a phi corresponding to the 669 /// original IV) or the "newly-created" one based on the proof mentioned above 670 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 671 /// latter case \p EntryVal is a TruncInst and we must not record anything for 672 /// that IV, but it's error-prone to expect callers of this routine to care 673 /// about that, hence this explicit parameter. 674 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 675 const Instruction *EntryVal, 676 Value *VectorLoopValue, 677 unsigned Part, 678 unsigned Lane = UINT_MAX); 679 680 /// Generate a shuffle sequence that will reverse the vector Vec. 681 virtual Value *reverseVector(Value *Vec); 682 683 /// Returns (and creates if needed) the original loop trip count. 684 Value *getOrCreateTripCount(Loop *NewLoop); 685 686 /// Returns (and creates if needed) the trip count of the widened loop. 687 Value *getOrCreateVectorTripCount(Loop *NewLoop); 688 689 /// Returns a bitcasted value to the requested vector type. 690 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 691 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 692 const DataLayout &DL); 693 694 /// Emit a bypass check to see if the vector trip count is zero, including if 695 /// it overflows. 696 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 697 698 /// Emit a bypass check to see if all of the SCEV assumptions we've 699 /// had to make are correct. 700 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 701 702 /// Emit bypass checks to check any memory assumptions we may have made. 703 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 void createInductionResumeValues(Loop *L, Value *VectorTripCount); 724 725 /// Complete the loop skeleton by adding debug MDs, creating appropriate 726 /// conditional branches in the middle block, preparing the builder and 727 /// running the verifier. Take in the vector loop \p L as argument, and return 728 /// the preheader of the completed vector loop. 729 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 730 731 /// Add additional metadata to \p To that was not present on \p Orig. 732 /// 733 /// Currently this is used to add the noalias annotations based on the 734 /// inserted memchecks. Use this for instructions that are *cloned* into the 735 /// vector loop. 736 void addNewMetadata(Instruction *To, const Instruction *Orig); 737 738 /// Add metadata from one instruction to another. 739 /// 740 /// This includes both the original MDs from \p From and additional ones (\see 741 /// addNewMetadata). Use this for *newly created* instructions in the vector 742 /// loop. 743 void addMetadata(Instruction *To, Instruction *From); 744 745 /// Similar to the previous function but it adds the metadata to a 746 /// vector of instructions. 747 void addMetadata(ArrayRef<Value *> To, Instruction *From); 748 749 /// The original loop. 750 Loop *OrigLoop; 751 752 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 753 /// dynamic knowledge to simplify SCEV expressions and converts them to a 754 /// more usable form. 755 PredicatedScalarEvolution &PSE; 756 757 /// Loop Info. 758 LoopInfo *LI; 759 760 /// Dominator Tree. 761 DominatorTree *DT; 762 763 /// Alias Analysis. 764 AAResults *AA; 765 766 /// Target Library Info. 767 const TargetLibraryInfo *TLI; 768 769 /// Target Transform Info. 770 const TargetTransformInfo *TTI; 771 772 /// Assumption Cache. 773 AssumptionCache *AC; 774 775 /// Interface to emit optimization remarks. 776 OptimizationRemarkEmitter *ORE; 777 778 /// LoopVersioning. It's only set up (non-null) if memchecks were 779 /// used. 780 /// 781 /// This is currently only used to add no-alias metadata based on the 782 /// memchecks. The actually versioning is performed manually. 783 std::unique_ptr<LoopVersioning> LVer; 784 785 /// The vectorization SIMD factor to use. Each vector will have this many 786 /// vector elements. 787 ElementCount VF; 788 789 /// The vectorization unroll factor to use. Each scalar is vectorized to this 790 /// many different vector instructions. 791 unsigned UF; 792 793 /// The builder that we use 794 IRBuilder<> Builder; 795 796 // --- Vectorization state --- 797 798 /// The vector-loop preheader. 799 BasicBlock *LoopVectorPreHeader; 800 801 /// The scalar-loop preheader. 802 BasicBlock *LoopScalarPreHeader; 803 804 /// Middle Block between the vector and the scalar. 805 BasicBlock *LoopMiddleBlock; 806 807 /// The ExitBlock of the scalar loop. 808 BasicBlock *LoopExitBlock; 809 810 /// The vector loop body. 811 BasicBlock *LoopVectorBody; 812 813 /// The scalar loop body. 814 BasicBlock *LoopScalarBody; 815 816 /// A list of all bypass blocks. The first block is the entry of the loop. 817 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 818 819 /// The new Induction variable which was added to the new block. 820 PHINode *Induction = nullptr; 821 822 /// The induction variable of the old basic block. 823 PHINode *OldInduction = nullptr; 824 825 /// Maps values from the original loop to their corresponding values in the 826 /// vectorized loop. A key value can map to either vector values, scalar 827 /// values or both kinds of values, depending on whether the key was 828 /// vectorized and scalarized. 829 VectorizerValueMap VectorLoopValueMap; 830 831 /// Store instructions that were predicated. 832 SmallVector<Instruction *, 4> PredicatedInstructions; 833 834 /// Trip count of the original loop. 835 Value *TripCount = nullptr; 836 837 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 838 Value *VectorTripCount = nullptr; 839 840 /// The legality analysis. 841 LoopVectorizationLegality *Legal; 842 843 /// The profitablity analysis. 844 LoopVectorizationCostModel *Cost; 845 846 // Record whether runtime checks are added. 847 bool AddedSafetyChecks = false; 848 849 // Holds the end values for each induction variable. We save the end values 850 // so we can later fix-up the external users of the induction variables. 851 DenseMap<PHINode *, Value *> IVEndValues; 852 853 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 854 // fixed up at the end of vector code generation. 855 SmallVector<PHINode *, 8> OrigPHIsToFix; 856 857 /// BFI and PSI are used to check for profile guided size optimizations. 858 BlockFrequencyInfo *BFI; 859 ProfileSummaryInfo *PSI; 860 861 // Whether this loop should be optimized for size based on profile guided size 862 // optimizatios. 863 bool OptForSizeBasedOnProfile; 864 }; 865 866 class InnerLoopUnroller : public InnerLoopVectorizer { 867 public: 868 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 869 LoopInfo *LI, DominatorTree *DT, 870 const TargetLibraryInfo *TLI, 871 const TargetTransformInfo *TTI, AssumptionCache *AC, 872 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 873 LoopVectorizationLegality *LVL, 874 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 875 ProfileSummaryInfo *PSI) 876 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 877 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 878 BFI, PSI) {} 879 880 private: 881 Value *getBroadcastInstrs(Value *V) override; 882 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 883 Instruction::BinaryOps Opcode = 884 Instruction::BinaryOpsEnd) override; 885 Value *reverseVector(Value *Vec) override; 886 }; 887 888 } // end namespace llvm 889 890 /// Look for a meaningful debug location on the instruction or it's 891 /// operands. 892 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 893 if (!I) 894 return I; 895 896 DebugLoc Empty; 897 if (I->getDebugLoc() != Empty) 898 return I; 899 900 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 901 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 902 if (OpInst->getDebugLoc() != Empty) 903 return OpInst; 904 } 905 906 return I; 907 } 908 909 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 910 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 911 const DILocation *DIL = Inst->getDebugLoc(); 912 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 913 !isa<DbgInfoIntrinsic>(Inst)) { 914 assert(!VF.isScalable() && "scalable vectors not yet supported."); 915 auto NewDIL = 916 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 917 if (NewDIL) 918 B.SetCurrentDebugLocation(NewDIL.getValue()); 919 else 920 LLVM_DEBUG(dbgs() 921 << "Failed to create new discriminator: " 922 << DIL->getFilename() << " Line: " << DIL->getLine()); 923 } 924 else 925 B.SetCurrentDebugLocation(DIL); 926 } else 927 B.SetCurrentDebugLocation(DebugLoc()); 928 } 929 930 /// Write a record \p DebugMsg about vectorization failure to the debug 931 /// output stream. If \p I is passed, it is an instruction that prevents 932 /// vectorization. 933 #ifndef NDEBUG 934 static void debugVectorizationFailure(const StringRef DebugMsg, 935 Instruction *I) { 936 dbgs() << "LV: Not vectorizing: " << DebugMsg; 937 if (I != nullptr) 938 dbgs() << " " << *I; 939 else 940 dbgs() << '.'; 941 dbgs() << '\n'; 942 } 943 #endif 944 945 /// Create an analysis remark that explains why vectorization failed 946 /// 947 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 948 /// RemarkName is the identifier for the remark. If \p I is passed it is an 949 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 950 /// the location of the remark. \return the remark object that can be 951 /// streamed to. 952 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 953 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 954 Value *CodeRegion = TheLoop->getHeader(); 955 DebugLoc DL = TheLoop->getStartLoc(); 956 957 if (I) { 958 CodeRegion = I->getParent(); 959 // If there is no debug location attached to the instruction, revert back to 960 // using the loop's. 961 if (I->getDebugLoc()) 962 DL = I->getDebugLoc(); 963 } 964 965 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 966 R << "loop not vectorized: "; 967 return R; 968 } 969 970 namespace llvm { 971 972 void reportVectorizationFailure(const StringRef DebugMsg, 973 const StringRef OREMsg, const StringRef ORETag, 974 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 975 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 976 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 977 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 978 ORETag, TheLoop, I) << OREMsg); 979 } 980 981 } // end namespace llvm 982 983 #ifndef NDEBUG 984 /// \return string containing a file name and a line # for the given loop. 985 static std::string getDebugLocString(const Loop *L) { 986 std::string Result; 987 if (L) { 988 raw_string_ostream OS(Result); 989 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 990 LoopDbgLoc.print(OS); 991 else 992 // Just print the module name. 993 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 994 OS.flush(); 995 } 996 return Result; 997 } 998 #endif 999 1000 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1001 const Instruction *Orig) { 1002 // If the loop was versioned with memchecks, add the corresponding no-alias 1003 // metadata. 1004 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1005 LVer->annotateInstWithNoAlias(To, Orig); 1006 } 1007 1008 void InnerLoopVectorizer::addMetadata(Instruction *To, 1009 Instruction *From) { 1010 propagateMetadata(To, From); 1011 addNewMetadata(To, From); 1012 } 1013 1014 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1015 Instruction *From) { 1016 for (Value *V : To) { 1017 if (Instruction *I = dyn_cast<Instruction>(V)) 1018 addMetadata(I, From); 1019 } 1020 } 1021 1022 namespace llvm { 1023 1024 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1025 // lowered. 1026 enum ScalarEpilogueLowering { 1027 1028 // The default: allowing scalar epilogues. 1029 CM_ScalarEpilogueAllowed, 1030 1031 // Vectorization with OptForSize: don't allow epilogues. 1032 CM_ScalarEpilogueNotAllowedOptSize, 1033 1034 // A special case of vectorisation with OptForSize: loops with a very small 1035 // trip count are considered for vectorization under OptForSize, thereby 1036 // making sure the cost of their loop body is dominant, free of runtime 1037 // guards and scalar iteration overheads. 1038 CM_ScalarEpilogueNotAllowedLowTripLoop, 1039 1040 // Loop hint predicate indicating an epilogue is undesired. 1041 CM_ScalarEpilogueNotNeededUsePredicate 1042 }; 1043 1044 /// LoopVectorizationCostModel - estimates the expected speedups due to 1045 /// vectorization. 1046 /// In many cases vectorization is not profitable. This can happen because of 1047 /// a number of reasons. In this class we mainly attempt to predict the 1048 /// expected speedup/slowdowns due to the supported instruction set. We use the 1049 /// TargetTransformInfo to query the different backends for the cost of 1050 /// different operations. 1051 class LoopVectorizationCostModel { 1052 public: 1053 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1054 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1055 LoopVectorizationLegality *Legal, 1056 const TargetTransformInfo &TTI, 1057 const TargetLibraryInfo *TLI, DemandedBits *DB, 1058 AssumptionCache *AC, 1059 OptimizationRemarkEmitter *ORE, const Function *F, 1060 const LoopVectorizeHints *Hints, 1061 InterleavedAccessInfo &IAI) 1062 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1063 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1064 Hints(Hints), InterleaveInfo(IAI) {} 1065 1066 /// \return An upper bound for the vectorization factor, or None if 1067 /// vectorization and interleaving should be avoided up front. 1068 Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC); 1069 1070 /// \return True if runtime checks are required for vectorization, and false 1071 /// otherwise. 1072 bool runtimeChecksRequired(); 1073 1074 /// \return The most profitable vectorization factor and the cost of that VF. 1075 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1076 /// then this vectorization factor will be selected if vectorization is 1077 /// possible. 1078 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1079 1080 /// Setup cost-based decisions for user vectorization factor. 1081 void selectUserVectorizationFactor(ElementCount UserVF) { 1082 collectUniformsAndScalars(UserVF); 1083 collectInstsToScalarize(UserVF); 1084 } 1085 1086 /// \return The size (in bits) of the smallest and widest types in the code 1087 /// that needs to be vectorized. We ignore values that remain scalar such as 1088 /// 64 bit loop indices. 1089 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1090 1091 /// \return The desired interleave count. 1092 /// If interleave count has been specified by metadata it will be returned. 1093 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1094 /// are the selected vectorization factor and the cost of the selected VF. 1095 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1096 1097 /// Memory access instruction may be vectorized in more than one way. 1098 /// Form of instruction after vectorization depends on cost. 1099 /// This function takes cost-based decisions for Load/Store instructions 1100 /// and collects them in a map. This decisions map is used for building 1101 /// the lists of loop-uniform and loop-scalar instructions. 1102 /// The calculated cost is saved with widening decision in order to 1103 /// avoid redundant calculations. 1104 void setCostBasedWideningDecision(ElementCount VF); 1105 1106 /// A struct that represents some properties of the register usage 1107 /// of a loop. 1108 struct RegisterUsage { 1109 /// Holds the number of loop invariant values that are used in the loop. 1110 /// The key is ClassID of target-provided register class. 1111 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1112 /// Holds the maximum number of concurrent live intervals in the loop. 1113 /// The key is ClassID of target-provided register class. 1114 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1115 }; 1116 1117 /// \return Returns information about the register usages of the loop for the 1118 /// given vectorization factors. 1119 SmallVector<RegisterUsage, 8> 1120 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1121 1122 /// Collect values we want to ignore in the cost model. 1123 void collectValuesToIgnore(); 1124 1125 /// Split reductions into those that happen in the loop, and those that happen 1126 /// outside. In loop reductions are collected into InLoopReductionChains. 1127 void collectInLoopReductions(); 1128 1129 /// \returns The smallest bitwidth each instruction can be represented with. 1130 /// The vector equivalents of these instructions should be truncated to this 1131 /// type. 1132 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1133 return MinBWs; 1134 } 1135 1136 /// \returns True if it is more profitable to scalarize instruction \p I for 1137 /// vectorization factor \p VF. 1138 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1139 assert(VF.isVector() && 1140 "Profitable to scalarize relevant only for VF > 1."); 1141 1142 // Cost model is not run in the VPlan-native path - return conservative 1143 // result until this changes. 1144 if (EnableVPlanNativePath) 1145 return false; 1146 1147 auto Scalars = InstsToScalarize.find(VF); 1148 assert(Scalars != InstsToScalarize.end() && 1149 "VF not yet analyzed for scalarization profitability"); 1150 return Scalars->second.find(I) != Scalars->second.end(); 1151 } 1152 1153 /// Returns true if \p I is known to be uniform after vectorization. 1154 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1155 if (VF.isScalar()) 1156 return true; 1157 1158 // Cost model is not run in the VPlan-native path - return conservative 1159 // result until this changes. 1160 if (EnableVPlanNativePath) 1161 return false; 1162 1163 auto UniformsPerVF = Uniforms.find(VF); 1164 assert(UniformsPerVF != Uniforms.end() && 1165 "VF not yet analyzed for uniformity"); 1166 return UniformsPerVF->second.count(I); 1167 } 1168 1169 /// Returns true if \p I is known to be scalar after vectorization. 1170 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1171 if (VF.isScalar()) 1172 return true; 1173 1174 // Cost model is not run in the VPlan-native path - return conservative 1175 // result until this changes. 1176 if (EnableVPlanNativePath) 1177 return false; 1178 1179 auto ScalarsPerVF = Scalars.find(VF); 1180 assert(ScalarsPerVF != Scalars.end() && 1181 "Scalar values are not calculated for VF"); 1182 return ScalarsPerVF->second.count(I); 1183 } 1184 1185 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1186 /// for vectorization factor \p VF. 1187 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1188 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1189 !isProfitableToScalarize(I, VF) && 1190 !isScalarAfterVectorization(I, VF); 1191 } 1192 1193 /// Decision that was taken during cost calculation for memory instruction. 1194 enum InstWidening { 1195 CM_Unknown, 1196 CM_Widen, // For consecutive accesses with stride +1. 1197 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1198 CM_Interleave, 1199 CM_GatherScatter, 1200 CM_Scalarize 1201 }; 1202 1203 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1204 /// instruction \p I and vector width \p VF. 1205 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1206 unsigned Cost) { 1207 assert(VF.isVector() && "Expected VF >=2"); 1208 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1209 } 1210 1211 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1212 /// interleaving group \p Grp and vector width \p VF. 1213 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1214 ElementCount VF, InstWidening W, unsigned Cost) { 1215 assert(VF.isVector() && "Expected VF >=2"); 1216 /// Broadcast this decicion to all instructions inside the group. 1217 /// But the cost will be assigned to one instruction only. 1218 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1219 if (auto *I = Grp->getMember(i)) { 1220 if (Grp->getInsertPos() == I) 1221 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1222 else 1223 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1224 } 1225 } 1226 } 1227 1228 /// Return the cost model decision for the given instruction \p I and vector 1229 /// width \p VF. Return CM_Unknown if this instruction did not pass 1230 /// through the cost modeling. 1231 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1232 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1233 assert(VF.isVector() && "Expected VF >=2"); 1234 1235 // Cost model is not run in the VPlan-native path - return conservative 1236 // result until this changes. 1237 if (EnableVPlanNativePath) 1238 return CM_GatherScatter; 1239 1240 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1241 auto Itr = WideningDecisions.find(InstOnVF); 1242 if (Itr == WideningDecisions.end()) 1243 return CM_Unknown; 1244 return Itr->second.first; 1245 } 1246 1247 /// Return the vectorization cost for the given instruction \p I and vector 1248 /// width \p VF. 1249 unsigned getWideningCost(Instruction *I, ElementCount VF) { 1250 assert(VF.isVector() && "Expected VF >=2"); 1251 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1252 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1253 "The cost is not calculated"); 1254 return WideningDecisions[InstOnVF].second; 1255 } 1256 1257 /// Return True if instruction \p I is an optimizable truncate whose operand 1258 /// is an induction variable. Such a truncate will be removed by adding a new 1259 /// induction variable with the destination type. 1260 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1261 // If the instruction is not a truncate, return false. 1262 auto *Trunc = dyn_cast<TruncInst>(I); 1263 if (!Trunc) 1264 return false; 1265 1266 // Get the source and destination types of the truncate. 1267 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1268 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1269 1270 // If the truncate is free for the given types, return false. Replacing a 1271 // free truncate with an induction variable would add an induction variable 1272 // update instruction to each iteration of the loop. We exclude from this 1273 // check the primary induction variable since it will need an update 1274 // instruction regardless. 1275 Value *Op = Trunc->getOperand(0); 1276 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1277 return false; 1278 1279 // If the truncated value is not an induction variable, return false. 1280 return Legal->isInductionPhi(Op); 1281 } 1282 1283 /// Collects the instructions to scalarize for each predicated instruction in 1284 /// the loop. 1285 void collectInstsToScalarize(ElementCount VF); 1286 1287 /// Collect Uniform and Scalar values for the given \p VF. 1288 /// The sets depend on CM decision for Load/Store instructions 1289 /// that may be vectorized as interleave, gather-scatter or scalarized. 1290 void collectUniformsAndScalars(ElementCount VF) { 1291 // Do the analysis once. 1292 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1293 return; 1294 setCostBasedWideningDecision(VF); 1295 collectLoopUniforms(VF); 1296 collectLoopScalars(VF); 1297 } 1298 1299 /// Returns true if the target machine supports masked store operation 1300 /// for the given \p DataType and kind of access to \p Ptr. 1301 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1302 return Legal->isConsecutivePtr(Ptr) && 1303 TTI.isLegalMaskedStore(DataType, Alignment); 1304 } 1305 1306 /// Returns true if the target machine supports masked load operation 1307 /// for the given \p DataType and kind of access to \p Ptr. 1308 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1309 return Legal->isConsecutivePtr(Ptr) && 1310 TTI.isLegalMaskedLoad(DataType, Alignment); 1311 } 1312 1313 /// Returns true if the target machine supports masked scatter operation 1314 /// for the given \p DataType. 1315 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1316 return TTI.isLegalMaskedScatter(DataType, Alignment); 1317 } 1318 1319 /// Returns true if the target machine supports masked gather operation 1320 /// for the given \p DataType. 1321 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1322 return TTI.isLegalMaskedGather(DataType, Alignment); 1323 } 1324 1325 /// Returns true if the target machine can represent \p V as a masked gather 1326 /// or scatter operation. 1327 bool isLegalGatherOrScatter(Value *V) { 1328 bool LI = isa<LoadInst>(V); 1329 bool SI = isa<StoreInst>(V); 1330 if (!LI && !SI) 1331 return false; 1332 auto *Ty = getMemInstValueType(V); 1333 Align Align = getLoadStoreAlignment(V); 1334 return (LI && isLegalMaskedGather(Ty, Align)) || 1335 (SI && isLegalMaskedScatter(Ty, Align)); 1336 } 1337 1338 /// Returns true if \p I is an instruction that will be scalarized with 1339 /// predication. Such instructions include conditional stores and 1340 /// instructions that may divide by zero. 1341 /// If a non-zero VF has been calculated, we check if I will be scalarized 1342 /// predication for that VF. 1343 bool isScalarWithPredication(Instruction *I, 1344 ElementCount VF = ElementCount::getFixed(1)); 1345 1346 // Returns true if \p I is an instruction that will be predicated either 1347 // through scalar predication or masked load/store or masked gather/scatter. 1348 // Superset of instructions that return true for isScalarWithPredication. 1349 bool isPredicatedInst(Instruction *I) { 1350 if (!blockNeedsPredication(I->getParent())) 1351 return false; 1352 // Loads and stores that need some form of masked operation are predicated 1353 // instructions. 1354 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1355 return Legal->isMaskRequired(I); 1356 return isScalarWithPredication(I); 1357 } 1358 1359 /// Returns true if \p I is a memory instruction with consecutive memory 1360 /// access that can be widened. 1361 bool 1362 memoryInstructionCanBeWidened(Instruction *I, 1363 ElementCount VF = ElementCount::getFixed(1)); 1364 1365 /// Returns true if \p I is a memory instruction in an interleaved-group 1366 /// of memory accesses that can be vectorized with wide vector loads/stores 1367 /// and shuffles. 1368 bool 1369 interleavedAccessCanBeWidened(Instruction *I, 1370 ElementCount VF = ElementCount::getFixed(1)); 1371 1372 /// Check if \p Instr belongs to any interleaved access group. 1373 bool isAccessInterleaved(Instruction *Instr) { 1374 return InterleaveInfo.isInterleaved(Instr); 1375 } 1376 1377 /// Get the interleaved access group that \p Instr belongs to. 1378 const InterleaveGroup<Instruction> * 1379 getInterleavedAccessGroup(Instruction *Instr) { 1380 return InterleaveInfo.getInterleaveGroup(Instr); 1381 } 1382 1383 /// Returns true if an interleaved group requires a scalar iteration 1384 /// to handle accesses with gaps, and there is nothing preventing us from 1385 /// creating a scalar epilogue. 1386 bool requiresScalarEpilogue() const { 1387 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1388 } 1389 1390 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1391 /// loop hint annotation. 1392 bool isScalarEpilogueAllowed() const { 1393 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1394 } 1395 1396 /// Returns true if all loop blocks should be masked to fold tail loop. 1397 bool foldTailByMasking() const { return FoldTailByMasking; } 1398 1399 bool blockNeedsPredication(BasicBlock *BB) { 1400 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1401 } 1402 1403 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1404 /// nodes to the chain of instructions representing the reductions. Uses a 1405 /// MapVector to ensure deterministic iteration order. 1406 using ReductionChainMap = 1407 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1408 1409 /// Return the chain of instructions representing an inloop reduction. 1410 const ReductionChainMap &getInLoopReductionChains() const { 1411 return InLoopReductionChains; 1412 } 1413 1414 /// Returns true if the Phi is part of an inloop reduction. 1415 bool isInLoopReduction(PHINode *Phi) const { 1416 return InLoopReductionChains.count(Phi); 1417 } 1418 1419 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1420 /// with factor VF. Return the cost of the instruction, including 1421 /// scalarization overhead if it's needed. 1422 unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1423 1424 /// Estimate cost of a call instruction CI if it were vectorized with factor 1425 /// VF. Return the cost of the instruction, including scalarization overhead 1426 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1427 /// scalarized - 1428 /// i.e. either vector version isn't available, or is too expensive. 1429 unsigned getVectorCallCost(CallInst *CI, ElementCount VF, 1430 bool &NeedToScalarize); 1431 1432 /// Invalidates decisions already taken by the cost model. 1433 void invalidateCostModelingDecisions() { 1434 WideningDecisions.clear(); 1435 Uniforms.clear(); 1436 Scalars.clear(); 1437 } 1438 1439 private: 1440 unsigned NumPredStores = 0; 1441 1442 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1443 /// than zero. One is returned if vectorization should best be avoided due 1444 /// to cost. 1445 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1446 1447 /// The vectorization cost is a combination of the cost itself and a boolean 1448 /// indicating whether any of the contributing operations will actually 1449 /// operate on 1450 /// vector values after type legalization in the backend. If this latter value 1451 /// is 1452 /// false, then all operations will be scalarized (i.e. no vectorization has 1453 /// actually taken place). 1454 using VectorizationCostTy = std::pair<unsigned, bool>; 1455 1456 /// Returns the expected execution cost. The unit of the cost does 1457 /// not matter because we use the 'cost' units to compare different 1458 /// vector widths. The cost that is returned is *not* normalized by 1459 /// the factor width. 1460 VectorizationCostTy expectedCost(ElementCount VF); 1461 1462 /// Returns the execution time cost of an instruction for a given vector 1463 /// width. Vector width of one means scalar. 1464 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1465 1466 /// The cost-computation logic from getInstructionCost which provides 1467 /// the vector type as an output parameter. 1468 unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy); 1469 1470 /// Calculate vectorization cost of memory instruction \p I. 1471 unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF); 1472 1473 /// The cost computation for scalarized memory instruction. 1474 unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1475 1476 /// The cost computation for interleaving group of memory instructions. 1477 unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF); 1478 1479 /// The cost computation for Gather/Scatter instruction. 1480 unsigned getGatherScatterCost(Instruction *I, ElementCount VF); 1481 1482 /// The cost computation for widening instruction \p I with consecutive 1483 /// memory access. 1484 unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1485 1486 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1487 /// Load: scalar load + broadcast. 1488 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1489 /// element) 1490 unsigned getUniformMemOpCost(Instruction *I, ElementCount VF); 1491 1492 /// Estimate the overhead of scalarizing an instruction. This is a 1493 /// convenience wrapper for the type-based getScalarizationOverhead API. 1494 unsigned getScalarizationOverhead(Instruction *I, ElementCount VF); 1495 1496 /// Returns whether the instruction is a load or store and will be a emitted 1497 /// as a vector operation. 1498 bool isConsecutiveLoadOrStore(Instruction *I); 1499 1500 /// Returns true if an artificially high cost for emulated masked memrefs 1501 /// should be used. 1502 bool useEmulatedMaskMemRefHack(Instruction *I); 1503 1504 /// Map of scalar integer values to the smallest bitwidth they can be legally 1505 /// represented as. The vector equivalents of these values should be truncated 1506 /// to this type. 1507 MapVector<Instruction *, uint64_t> MinBWs; 1508 1509 /// A type representing the costs for instructions if they were to be 1510 /// scalarized rather than vectorized. The entries are Instruction-Cost 1511 /// pairs. 1512 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1513 1514 /// A set containing all BasicBlocks that are known to present after 1515 /// vectorization as a predicated block. 1516 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1517 1518 /// Records whether it is allowed to have the original scalar loop execute at 1519 /// least once. This may be needed as a fallback loop in case runtime 1520 /// aliasing/dependence checks fail, or to handle the tail/remainder 1521 /// iterations when the trip count is unknown or doesn't divide by the VF, 1522 /// or as a peel-loop to handle gaps in interleave-groups. 1523 /// Under optsize and when the trip count is very small we don't allow any 1524 /// iterations to execute in the scalar loop. 1525 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1526 1527 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1528 bool FoldTailByMasking = false; 1529 1530 /// A map holding scalar costs for different vectorization factors. The 1531 /// presence of a cost for an instruction in the mapping indicates that the 1532 /// instruction will be scalarized when vectorizing with the associated 1533 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1534 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1535 1536 /// Holds the instructions known to be uniform after vectorization. 1537 /// The data is collected per VF. 1538 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1539 1540 /// Holds the instructions known to be scalar after vectorization. 1541 /// The data is collected per VF. 1542 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1543 1544 /// Holds the instructions (address computations) that are forced to be 1545 /// scalarized. 1546 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1547 1548 /// PHINodes of the reductions that should be expanded in-loop along with 1549 /// their associated chains of reduction operations, in program order from top 1550 /// (PHI) to bottom 1551 ReductionChainMap InLoopReductionChains; 1552 1553 /// Returns the expected difference in cost from scalarizing the expression 1554 /// feeding a predicated instruction \p PredInst. The instructions to 1555 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1556 /// non-negative return value implies the expression will be scalarized. 1557 /// Currently, only single-use chains are considered for scalarization. 1558 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1559 ElementCount VF); 1560 1561 /// Collect the instructions that are uniform after vectorization. An 1562 /// instruction is uniform if we represent it with a single scalar value in 1563 /// the vectorized loop corresponding to each vector iteration. Examples of 1564 /// uniform instructions include pointer operands of consecutive or 1565 /// interleaved memory accesses. Note that although uniformity implies an 1566 /// instruction will be scalar, the reverse is not true. In general, a 1567 /// scalarized instruction will be represented by VF scalar values in the 1568 /// vectorized loop, each corresponding to an iteration of the original 1569 /// scalar loop. 1570 void collectLoopUniforms(ElementCount VF); 1571 1572 /// Collect the instructions that are scalar after vectorization. An 1573 /// instruction is scalar if it is known to be uniform or will be scalarized 1574 /// during vectorization. Non-uniform scalarized instructions will be 1575 /// represented by VF values in the vectorized loop, each corresponding to an 1576 /// iteration of the original scalar loop. 1577 void collectLoopScalars(ElementCount VF); 1578 1579 /// Keeps cost model vectorization decision and cost for instructions. 1580 /// Right now it is used for memory instructions only. 1581 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1582 std::pair<InstWidening, unsigned>>; 1583 1584 DecisionList WideningDecisions; 1585 1586 /// Returns true if \p V is expected to be vectorized and it needs to be 1587 /// extracted. 1588 bool needsExtract(Value *V, ElementCount VF) const { 1589 Instruction *I = dyn_cast<Instruction>(V); 1590 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1591 TheLoop->isLoopInvariant(I)) 1592 return false; 1593 1594 // Assume we can vectorize V (and hence we need extraction) if the 1595 // scalars are not computed yet. This can happen, because it is called 1596 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1597 // the scalars are collected. That should be a safe assumption in most 1598 // cases, because we check if the operands have vectorizable types 1599 // beforehand in LoopVectorizationLegality. 1600 return Scalars.find(VF) == Scalars.end() || 1601 !isScalarAfterVectorization(I, VF); 1602 }; 1603 1604 /// Returns a range containing only operands needing to be extracted. 1605 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1606 ElementCount VF) { 1607 return SmallVector<Value *, 4>(make_filter_range( 1608 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1609 } 1610 1611 public: 1612 /// The loop that we evaluate. 1613 Loop *TheLoop; 1614 1615 /// Predicated scalar evolution analysis. 1616 PredicatedScalarEvolution &PSE; 1617 1618 /// Loop Info analysis. 1619 LoopInfo *LI; 1620 1621 /// Vectorization legality. 1622 LoopVectorizationLegality *Legal; 1623 1624 /// Vector target information. 1625 const TargetTransformInfo &TTI; 1626 1627 /// Target Library Info. 1628 const TargetLibraryInfo *TLI; 1629 1630 /// Demanded bits analysis. 1631 DemandedBits *DB; 1632 1633 /// Assumption cache. 1634 AssumptionCache *AC; 1635 1636 /// Interface to emit optimization remarks. 1637 OptimizationRemarkEmitter *ORE; 1638 1639 const Function *TheFunction; 1640 1641 /// Loop Vectorize Hint. 1642 const LoopVectorizeHints *Hints; 1643 1644 /// The interleave access information contains groups of interleaved accesses 1645 /// with the same stride and close to each other. 1646 InterleavedAccessInfo &InterleaveInfo; 1647 1648 /// Values to ignore in the cost model. 1649 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1650 1651 /// Values to ignore in the cost model when VF > 1. 1652 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1653 }; 1654 1655 } // end namespace llvm 1656 1657 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1658 // vectorization. The loop needs to be annotated with #pragma omp simd 1659 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1660 // vector length information is not provided, vectorization is not considered 1661 // explicit. Interleave hints are not allowed either. These limitations will be 1662 // relaxed in the future. 1663 // Please, note that we are currently forced to abuse the pragma 'clang 1664 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1665 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1666 // provides *explicit vectorization hints* (LV can bypass legal checks and 1667 // assume that vectorization is legal). However, both hints are implemented 1668 // using the same metadata (llvm.loop.vectorize, processed by 1669 // LoopVectorizeHints). This will be fixed in the future when the native IR 1670 // representation for pragma 'omp simd' is introduced. 1671 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1672 OptimizationRemarkEmitter *ORE) { 1673 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1674 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1675 1676 // Only outer loops with an explicit vectorization hint are supported. 1677 // Unannotated outer loops are ignored. 1678 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1679 return false; 1680 1681 Function *Fn = OuterLp->getHeader()->getParent(); 1682 if (!Hints.allowVectorization(Fn, OuterLp, 1683 true /*VectorizeOnlyWhenForced*/)) { 1684 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1685 return false; 1686 } 1687 1688 if (Hints.getInterleave() > 1) { 1689 // TODO: Interleave support is future work. 1690 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1691 "outer loops.\n"); 1692 Hints.emitRemarkWithHints(); 1693 return false; 1694 } 1695 1696 return true; 1697 } 1698 1699 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1700 OptimizationRemarkEmitter *ORE, 1701 SmallVectorImpl<Loop *> &V) { 1702 // Collect inner loops and outer loops without irreducible control flow. For 1703 // now, only collect outer loops that have explicit vectorization hints. If we 1704 // are stress testing the VPlan H-CFG construction, we collect the outermost 1705 // loop of every loop nest. 1706 if (L.isInnermost() || VPlanBuildStressTest || 1707 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1708 LoopBlocksRPO RPOT(&L); 1709 RPOT.perform(LI); 1710 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1711 V.push_back(&L); 1712 // TODO: Collect inner loops inside marked outer loops in case 1713 // vectorization fails for the outer loop. Do not invoke 1714 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1715 // already known to be reducible. We can use an inherited attribute for 1716 // that. 1717 return; 1718 } 1719 } 1720 for (Loop *InnerL : L) 1721 collectSupportedLoops(*InnerL, LI, ORE, V); 1722 } 1723 1724 namespace { 1725 1726 /// The LoopVectorize Pass. 1727 struct LoopVectorize : public FunctionPass { 1728 /// Pass identification, replacement for typeid 1729 static char ID; 1730 1731 LoopVectorizePass Impl; 1732 1733 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1734 bool VectorizeOnlyWhenForced = false) 1735 : FunctionPass(ID), 1736 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1737 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1738 } 1739 1740 bool runOnFunction(Function &F) override { 1741 if (skipFunction(F)) 1742 return false; 1743 1744 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1745 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1746 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1747 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1748 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1749 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1750 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1751 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1752 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1753 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1754 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1755 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1756 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1757 1758 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1759 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1760 1761 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1762 GetLAA, *ORE, PSI).MadeAnyChange; 1763 } 1764 1765 void getAnalysisUsage(AnalysisUsage &AU) const override { 1766 AU.addRequired<AssumptionCacheTracker>(); 1767 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1768 AU.addRequired<DominatorTreeWrapperPass>(); 1769 AU.addRequired<LoopInfoWrapperPass>(); 1770 AU.addRequired<ScalarEvolutionWrapperPass>(); 1771 AU.addRequired<TargetTransformInfoWrapperPass>(); 1772 AU.addRequired<AAResultsWrapperPass>(); 1773 AU.addRequired<LoopAccessLegacyAnalysis>(); 1774 AU.addRequired<DemandedBitsWrapperPass>(); 1775 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1776 AU.addRequired<InjectTLIMappingsLegacy>(); 1777 1778 // We currently do not preserve loopinfo/dominator analyses with outer loop 1779 // vectorization. Until this is addressed, mark these analyses as preserved 1780 // only for non-VPlan-native path. 1781 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1782 if (!EnableVPlanNativePath) { 1783 AU.addPreserved<LoopInfoWrapperPass>(); 1784 AU.addPreserved<DominatorTreeWrapperPass>(); 1785 } 1786 1787 AU.addPreserved<BasicAAWrapperPass>(); 1788 AU.addPreserved<GlobalsAAWrapperPass>(); 1789 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1790 } 1791 }; 1792 1793 } // end anonymous namespace 1794 1795 //===----------------------------------------------------------------------===// 1796 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1797 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1798 //===----------------------------------------------------------------------===// 1799 1800 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1801 // We need to place the broadcast of invariant variables outside the loop, 1802 // but only if it's proven safe to do so. Else, broadcast will be inside 1803 // vector loop body. 1804 Instruction *Instr = dyn_cast<Instruction>(V); 1805 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1806 (!Instr || 1807 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1808 // Place the code for broadcasting invariant variables in the new preheader. 1809 IRBuilder<>::InsertPointGuard Guard(Builder); 1810 if (SafeToHoist) 1811 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1812 1813 // Broadcast the scalar into all locations in the vector. 1814 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1815 1816 return Shuf; 1817 } 1818 1819 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1820 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1821 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1822 "Expected either an induction phi-node or a truncate of it!"); 1823 Value *Start = II.getStartValue(); 1824 1825 // Construct the initial value of the vector IV in the vector loop preheader 1826 auto CurrIP = Builder.saveIP(); 1827 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1828 if (isa<TruncInst>(EntryVal)) { 1829 assert(Start->getType()->isIntegerTy() && 1830 "Truncation requires an integer type"); 1831 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1832 Step = Builder.CreateTrunc(Step, TruncType); 1833 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1834 } 1835 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1836 Value *SteppedStart = 1837 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1838 1839 // We create vector phi nodes for both integer and floating-point induction 1840 // variables. Here, we determine the kind of arithmetic we will perform. 1841 Instruction::BinaryOps AddOp; 1842 Instruction::BinaryOps MulOp; 1843 if (Step->getType()->isIntegerTy()) { 1844 AddOp = Instruction::Add; 1845 MulOp = Instruction::Mul; 1846 } else { 1847 AddOp = II.getInductionOpcode(); 1848 MulOp = Instruction::FMul; 1849 } 1850 1851 // Multiply the vectorization factor by the step using integer or 1852 // floating-point arithmetic as appropriate. 1853 Value *ConstVF = 1854 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 1855 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1856 1857 // Create a vector splat to use in the induction update. 1858 // 1859 // FIXME: If the step is non-constant, we create the vector splat with 1860 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1861 // handle a constant vector splat. 1862 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1863 Value *SplatVF = isa<Constant>(Mul) 1864 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1865 : Builder.CreateVectorSplat(VF, Mul); 1866 Builder.restoreIP(CurrIP); 1867 1868 // We may need to add the step a number of times, depending on the unroll 1869 // factor. The last of those goes into the PHI. 1870 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1871 &*LoopVectorBody->getFirstInsertionPt()); 1872 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1873 Instruction *LastInduction = VecInd; 1874 for (unsigned Part = 0; Part < UF; ++Part) { 1875 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1876 1877 if (isa<TruncInst>(EntryVal)) 1878 addMetadata(LastInduction, EntryVal); 1879 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1880 1881 LastInduction = cast<Instruction>(addFastMathFlag( 1882 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1883 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1884 } 1885 1886 // Move the last step to the end of the latch block. This ensures consistent 1887 // placement of all induction updates. 1888 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1889 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1890 auto *ICmp = cast<Instruction>(Br->getCondition()); 1891 LastInduction->moveBefore(ICmp); 1892 LastInduction->setName("vec.ind.next"); 1893 1894 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1895 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1896 } 1897 1898 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1899 return Cost->isScalarAfterVectorization(I, VF) || 1900 Cost->isProfitableToScalarize(I, VF); 1901 } 1902 1903 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1904 if (shouldScalarizeInstruction(IV)) 1905 return true; 1906 auto isScalarInst = [&](User *U) -> bool { 1907 auto *I = cast<Instruction>(U); 1908 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1909 }; 1910 return llvm::any_of(IV->users(), isScalarInst); 1911 } 1912 1913 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1914 const InductionDescriptor &ID, const Instruction *EntryVal, 1915 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1916 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1917 "Expected either an induction phi-node or a truncate of it!"); 1918 1919 // This induction variable is not the phi from the original loop but the 1920 // newly-created IV based on the proof that casted Phi is equal to the 1921 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1922 // re-uses the same InductionDescriptor that original IV uses but we don't 1923 // have to do any recording in this case - that is done when original IV is 1924 // processed. 1925 if (isa<TruncInst>(EntryVal)) 1926 return; 1927 1928 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1929 if (Casts.empty()) 1930 return; 1931 // Only the first Cast instruction in the Casts vector is of interest. 1932 // The rest of the Casts (if exist) have no uses outside the 1933 // induction update chain itself. 1934 Instruction *CastInst = *Casts.begin(); 1935 if (Lane < UINT_MAX) 1936 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1937 else 1938 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1939 } 1940 1941 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1942 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1943 "Primary induction variable must have an integer type"); 1944 1945 auto II = Legal->getInductionVars().find(IV); 1946 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1947 1948 auto ID = II->second; 1949 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1950 1951 // The value from the original loop to which we are mapping the new induction 1952 // variable. 1953 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1954 1955 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1956 1957 // Generate code for the induction step. Note that induction steps are 1958 // required to be loop-invariant 1959 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1960 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1961 "Induction step should be loop invariant"); 1962 if (PSE.getSE()->isSCEVable(IV->getType())) { 1963 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1964 return Exp.expandCodeFor(Step, Step->getType(), 1965 LoopVectorPreHeader->getTerminator()); 1966 } 1967 return cast<SCEVUnknown>(Step)->getValue(); 1968 }; 1969 1970 // The scalar value to broadcast. This is derived from the canonical 1971 // induction variable. If a truncation type is given, truncate the canonical 1972 // induction variable and step. Otherwise, derive these values from the 1973 // induction descriptor. 1974 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1975 Value *ScalarIV = Induction; 1976 if (IV != OldInduction) { 1977 ScalarIV = IV->getType()->isIntegerTy() 1978 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1979 : Builder.CreateCast(Instruction::SIToFP, Induction, 1980 IV->getType()); 1981 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1982 ScalarIV->setName("offset.idx"); 1983 } 1984 if (Trunc) { 1985 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1986 assert(Step->getType()->isIntegerTy() && 1987 "Truncation requires an integer step"); 1988 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1989 Step = Builder.CreateTrunc(Step, TruncType); 1990 } 1991 return ScalarIV; 1992 }; 1993 1994 // Create the vector values from the scalar IV, in the absence of creating a 1995 // vector IV. 1996 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1997 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1998 for (unsigned Part = 0; Part < UF; ++Part) { 1999 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2000 Value *EntryPart = 2001 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2002 ID.getInductionOpcode()); 2003 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2004 if (Trunc) 2005 addMetadata(EntryPart, Trunc); 2006 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2007 } 2008 }; 2009 2010 // Now do the actual transformations, and start with creating the step value. 2011 Value *Step = CreateStepValue(ID.getStep()); 2012 if (VF.isZero() || VF.isScalar()) { 2013 Value *ScalarIV = CreateScalarIV(Step); 2014 CreateSplatIV(ScalarIV, Step); 2015 return; 2016 } 2017 2018 // Determine if we want a scalar version of the induction variable. This is 2019 // true if the induction variable itself is not widened, or if it has at 2020 // least one user in the loop that is not widened. 2021 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2022 if (!NeedsScalarIV) { 2023 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2024 return; 2025 } 2026 2027 // Try to create a new independent vector induction variable. If we can't 2028 // create the phi node, we will splat the scalar induction variable in each 2029 // loop iteration. 2030 if (!shouldScalarizeInstruction(EntryVal)) { 2031 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2032 Value *ScalarIV = CreateScalarIV(Step); 2033 // Create scalar steps that can be used by instructions we will later 2034 // scalarize. Note that the addition of the scalar steps will not increase 2035 // the number of instructions in the loop in the common case prior to 2036 // InstCombine. We will be trading one vector extract for each scalar step. 2037 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2038 return; 2039 } 2040 2041 // All IV users are scalar instructions, so only emit a scalar IV, not a 2042 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2043 // predicate used by the masked loads/stores. 2044 Value *ScalarIV = CreateScalarIV(Step); 2045 if (!Cost->isScalarEpilogueAllowed()) 2046 CreateSplatIV(ScalarIV, Step); 2047 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2048 } 2049 2050 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2051 Instruction::BinaryOps BinOp) { 2052 // Create and check the types. 2053 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2054 int VLen = ValVTy->getNumElements(); 2055 2056 Type *STy = Val->getType()->getScalarType(); 2057 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2058 "Induction Step must be an integer or FP"); 2059 assert(Step->getType() == STy && "Step has wrong type"); 2060 2061 SmallVector<Constant *, 8> Indices; 2062 2063 if (STy->isIntegerTy()) { 2064 // Create a vector of consecutive numbers from zero to VF. 2065 for (int i = 0; i < VLen; ++i) 2066 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2067 2068 // Add the consecutive indices to the vector value. 2069 Constant *Cv = ConstantVector::get(Indices); 2070 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2071 Step = Builder.CreateVectorSplat(VLen, Step); 2072 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2073 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2074 // which can be found from the original scalar operations. 2075 Step = Builder.CreateMul(Cv, Step); 2076 return Builder.CreateAdd(Val, Step, "induction"); 2077 } 2078 2079 // Floating point induction. 2080 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2081 "Binary Opcode should be specified for FP induction"); 2082 // Create a vector of consecutive numbers from zero to VF. 2083 for (int i = 0; i < VLen; ++i) 2084 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2085 2086 // Add the consecutive indices to the vector value. 2087 Constant *Cv = ConstantVector::get(Indices); 2088 2089 Step = Builder.CreateVectorSplat(VLen, Step); 2090 2091 // Floating point operations had to be 'fast' to enable the induction. 2092 FastMathFlags Flags; 2093 Flags.setFast(); 2094 2095 Value *MulOp = Builder.CreateFMul(Cv, Step); 2096 if (isa<Instruction>(MulOp)) 2097 // Have to check, MulOp may be a constant 2098 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2099 2100 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2101 if (isa<Instruction>(BOp)) 2102 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2103 return BOp; 2104 } 2105 2106 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2107 Instruction *EntryVal, 2108 const InductionDescriptor &ID) { 2109 // We shouldn't have to build scalar steps if we aren't vectorizing. 2110 assert(VF.isVector() && "VF should be greater than one"); 2111 assert(!VF.isScalable() && 2112 "the code below assumes a fixed number of elements at compile time"); 2113 // Get the value type and ensure it and the step have the same integer type. 2114 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2115 assert(ScalarIVTy == Step->getType() && 2116 "Val and Step should have the same type"); 2117 2118 // We build scalar steps for both integer and floating-point induction 2119 // variables. Here, we determine the kind of arithmetic we will perform. 2120 Instruction::BinaryOps AddOp; 2121 Instruction::BinaryOps MulOp; 2122 if (ScalarIVTy->isIntegerTy()) { 2123 AddOp = Instruction::Add; 2124 MulOp = Instruction::Mul; 2125 } else { 2126 AddOp = ID.getInductionOpcode(); 2127 MulOp = Instruction::FMul; 2128 } 2129 2130 // Determine the number of scalars we need to generate for each unroll 2131 // iteration. If EntryVal is uniform, we only need to generate the first 2132 // lane. Otherwise, we generate all VF values. 2133 unsigned Lanes = 2134 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2135 ? 1 2136 : VF.getKnownMinValue(); 2137 // Compute the scalar steps and save the results in VectorLoopValueMap. 2138 for (unsigned Part = 0; Part < UF; ++Part) { 2139 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2140 auto *StartIdx = getSignedIntOrFpConstant( 2141 ScalarIVTy, VF.getKnownMinValue() * Part + Lane); 2142 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2143 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2144 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2145 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2146 } 2147 } 2148 } 2149 2150 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2151 assert(V != Induction && "The new induction variable should not be used."); 2152 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2153 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2154 2155 // If we have a stride that is replaced by one, do it here. Defer this for 2156 // the VPlan-native path until we start running Legal checks in that path. 2157 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2158 V = ConstantInt::get(V->getType(), 1); 2159 2160 // If we have a vector mapped to this value, return it. 2161 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2162 return VectorLoopValueMap.getVectorValue(V, Part); 2163 2164 // If the value has not been vectorized, check if it has been scalarized 2165 // instead. If it has been scalarized, and we actually need the value in 2166 // vector form, we will construct the vector values on demand. 2167 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2168 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2169 2170 // If we've scalarized a value, that value should be an instruction. 2171 auto *I = cast<Instruction>(V); 2172 2173 // If we aren't vectorizing, we can just copy the scalar map values over to 2174 // the vector map. 2175 if (VF.isScalar()) { 2176 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2177 return ScalarValue; 2178 } 2179 2180 // Get the last scalar instruction we generated for V and Part. If the value 2181 // is known to be uniform after vectorization, this corresponds to lane zero 2182 // of the Part unroll iteration. Otherwise, the last instruction is the one 2183 // we created for the last vector lane of the Part unroll iteration. 2184 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2185 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2186 ? 0 2187 : VF.getKnownMinValue() - 1; 2188 auto *LastInst = cast<Instruction>( 2189 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2190 2191 // Set the insert point after the last scalarized instruction. This ensures 2192 // the insertelement sequence will directly follow the scalar definitions. 2193 auto OldIP = Builder.saveIP(); 2194 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2195 Builder.SetInsertPoint(&*NewIP); 2196 2197 // However, if we are vectorizing, we need to construct the vector values. 2198 // If the value is known to be uniform after vectorization, we can just 2199 // broadcast the scalar value corresponding to lane zero for each unroll 2200 // iteration. Otherwise, we construct the vector values using insertelement 2201 // instructions. Since the resulting vectors are stored in 2202 // VectorLoopValueMap, we will only generate the insertelements once. 2203 Value *VectorValue = nullptr; 2204 if (Cost->isUniformAfterVectorization(I, VF)) { 2205 VectorValue = getBroadcastInstrs(ScalarValue); 2206 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2207 } else { 2208 // Initialize packing with insertelements to start from undef. 2209 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2210 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2211 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2212 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2213 packScalarIntoVectorValue(V, {Part, Lane}); 2214 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2215 } 2216 Builder.restoreIP(OldIP); 2217 return VectorValue; 2218 } 2219 2220 // If this scalar is unknown, assume that it is a constant or that it is 2221 // loop invariant. Broadcast V and save the value for future uses. 2222 Value *B = getBroadcastInstrs(V); 2223 VectorLoopValueMap.setVectorValue(V, Part, B); 2224 return B; 2225 } 2226 2227 Value * 2228 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2229 const VPIteration &Instance) { 2230 // If the value is not an instruction contained in the loop, it should 2231 // already be scalar. 2232 if (OrigLoop->isLoopInvariant(V)) 2233 return V; 2234 2235 assert(Instance.Lane > 0 2236 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2237 : true && "Uniform values only have lane zero"); 2238 2239 // If the value from the original loop has not been vectorized, it is 2240 // represented by UF x VF scalar values in the new loop. Return the requested 2241 // scalar value. 2242 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2243 return VectorLoopValueMap.getScalarValue(V, Instance); 2244 2245 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2246 // for the given unroll part. If this entry is not a vector type (i.e., the 2247 // vectorization factor is one), there is no need to generate an 2248 // extractelement instruction. 2249 auto *U = getOrCreateVectorValue(V, Instance.Part); 2250 if (!U->getType()->isVectorTy()) { 2251 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2252 return U; 2253 } 2254 2255 // Otherwise, the value from the original loop has been vectorized and is 2256 // represented by UF vector values. Extract and return the requested scalar 2257 // value from the appropriate vector lane. 2258 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2259 } 2260 2261 void InnerLoopVectorizer::packScalarIntoVectorValue( 2262 Value *V, const VPIteration &Instance) { 2263 assert(V != Induction && "The new induction variable should not be used."); 2264 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2265 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2266 2267 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2268 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2269 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2270 Builder.getInt32(Instance.Lane)); 2271 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2272 } 2273 2274 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2275 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2276 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2277 SmallVector<int, 8> ShuffleMask; 2278 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2279 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2280 2281 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2282 } 2283 2284 // Return whether we allow using masked interleave-groups (for dealing with 2285 // strided loads/stores that reside in predicated blocks, or for dealing 2286 // with gaps). 2287 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2288 // If an override option has been passed in for interleaved accesses, use it. 2289 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2290 return EnableMaskedInterleavedMemAccesses; 2291 2292 return TTI.enableMaskedInterleavedAccessVectorization(); 2293 } 2294 2295 // Try to vectorize the interleave group that \p Instr belongs to. 2296 // 2297 // E.g. Translate following interleaved load group (factor = 3): 2298 // for (i = 0; i < N; i+=3) { 2299 // R = Pic[i]; // Member of index 0 2300 // G = Pic[i+1]; // Member of index 1 2301 // B = Pic[i+2]; // Member of index 2 2302 // ... // do something to R, G, B 2303 // } 2304 // To: 2305 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2306 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2307 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2308 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2309 // 2310 // Or translate following interleaved store group (factor = 3): 2311 // for (i = 0; i < N; i+=3) { 2312 // ... do something to R, G, B 2313 // Pic[i] = R; // Member of index 0 2314 // Pic[i+1] = G; // Member of index 1 2315 // Pic[i+2] = B; // Member of index 2 2316 // } 2317 // To: 2318 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2319 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2320 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2321 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2322 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2323 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2324 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2325 VPValue *Addr, VPValue *BlockInMask) { 2326 Instruction *Instr = Group->getInsertPos(); 2327 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2328 2329 // Prepare for the vector type of the interleaved load/store. 2330 Type *ScalarTy = getMemInstValueType(Instr); 2331 unsigned InterleaveFactor = Group->getFactor(); 2332 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2333 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2334 2335 // Prepare for the new pointers. 2336 SmallVector<Value *, 2> AddrParts; 2337 unsigned Index = Group->getIndex(Instr); 2338 2339 // TODO: extend the masked interleaved-group support to reversed access. 2340 assert((!BlockInMask || !Group->isReverse()) && 2341 "Reversed masked interleave-group not supported."); 2342 2343 // If the group is reverse, adjust the index to refer to the last vector lane 2344 // instead of the first. We adjust the index from the first vector lane, 2345 // rather than directly getting the pointer for lane VF - 1, because the 2346 // pointer operand of the interleaved access is supposed to be uniform. For 2347 // uniform instructions, we're only required to generate a value for the 2348 // first vector lane in each unroll iteration. 2349 assert(!VF.isScalable() && 2350 "scalable vector reverse operation is not implemented"); 2351 if (Group->isReverse()) 2352 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2353 2354 for (unsigned Part = 0; Part < UF; Part++) { 2355 Value *AddrPart = State.get(Addr, {Part, 0}); 2356 setDebugLocFromInst(Builder, AddrPart); 2357 2358 // Notice current instruction could be any index. Need to adjust the address 2359 // to the member of index 0. 2360 // 2361 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2362 // b = A[i]; // Member of index 0 2363 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2364 // 2365 // E.g. A[i+1] = a; // Member of index 1 2366 // A[i] = b; // Member of index 0 2367 // A[i+2] = c; // Member of index 2 (Current instruction) 2368 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2369 2370 bool InBounds = false; 2371 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2372 InBounds = gep->isInBounds(); 2373 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2374 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2375 2376 // Cast to the vector pointer type. 2377 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2378 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2379 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2380 } 2381 2382 setDebugLocFromInst(Builder, Instr); 2383 Value *UndefVec = UndefValue::get(VecTy); 2384 2385 Value *MaskForGaps = nullptr; 2386 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2387 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2388 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2389 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2390 } 2391 2392 // Vectorize the interleaved load group. 2393 if (isa<LoadInst>(Instr)) { 2394 // For each unroll part, create a wide load for the group. 2395 SmallVector<Value *, 2> NewLoads; 2396 for (unsigned Part = 0; Part < UF; Part++) { 2397 Instruction *NewLoad; 2398 if (BlockInMask || MaskForGaps) { 2399 assert(useMaskedInterleavedAccesses(*TTI) && 2400 "masked interleaved groups are not allowed."); 2401 Value *GroupMask = MaskForGaps; 2402 if (BlockInMask) { 2403 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2404 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2405 Value *ShuffledMask = Builder.CreateShuffleVector( 2406 BlockInMaskPart, 2407 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2408 "interleaved.mask"); 2409 GroupMask = MaskForGaps 2410 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2411 MaskForGaps) 2412 : ShuffledMask; 2413 } 2414 NewLoad = 2415 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2416 GroupMask, UndefVec, "wide.masked.vec"); 2417 } 2418 else 2419 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2420 Group->getAlign(), "wide.vec"); 2421 Group->addMetadata(NewLoad); 2422 NewLoads.push_back(NewLoad); 2423 } 2424 2425 // For each member in the group, shuffle out the appropriate data from the 2426 // wide loads. 2427 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2428 Instruction *Member = Group->getMember(I); 2429 2430 // Skip the gaps in the group. 2431 if (!Member) 2432 continue; 2433 2434 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2435 auto StrideMask = 2436 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2437 for (unsigned Part = 0; Part < UF; Part++) { 2438 Value *StridedVec = Builder.CreateShuffleVector( 2439 NewLoads[Part], StrideMask, "strided.vec"); 2440 2441 // If this member has different type, cast the result type. 2442 if (Member->getType() != ScalarTy) { 2443 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2444 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2445 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2446 } 2447 2448 if (Group->isReverse()) 2449 StridedVec = reverseVector(StridedVec); 2450 2451 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2452 } 2453 } 2454 return; 2455 } 2456 2457 // The sub vector type for current instruction. 2458 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2459 auto *SubVT = VectorType::get(ScalarTy, VF); 2460 2461 // Vectorize the interleaved store group. 2462 for (unsigned Part = 0; Part < UF; Part++) { 2463 // Collect the stored vector from each member. 2464 SmallVector<Value *, 4> StoredVecs; 2465 for (unsigned i = 0; i < InterleaveFactor; i++) { 2466 // Interleaved store group doesn't allow a gap, so each index has a member 2467 Instruction *Member = Group->getMember(i); 2468 assert(Member && "Fail to get a member from an interleaved store group"); 2469 2470 Value *StoredVec = getOrCreateVectorValue( 2471 cast<StoreInst>(Member)->getValueOperand(), Part); 2472 if (Group->isReverse()) 2473 StoredVec = reverseVector(StoredVec); 2474 2475 // If this member has different type, cast it to a unified type. 2476 2477 if (StoredVec->getType() != SubVT) 2478 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2479 2480 StoredVecs.push_back(StoredVec); 2481 } 2482 2483 // Concatenate all vectors into a wide vector. 2484 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2485 2486 // Interleave the elements in the wide vector. 2487 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2488 Value *IVec = Builder.CreateShuffleVector( 2489 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2490 "interleaved.vec"); 2491 2492 Instruction *NewStoreInstr; 2493 if (BlockInMask) { 2494 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2495 Value *ShuffledMask = Builder.CreateShuffleVector( 2496 BlockInMaskPart, 2497 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2498 "interleaved.mask"); 2499 NewStoreInstr = Builder.CreateMaskedStore( 2500 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2501 } 2502 else 2503 NewStoreInstr = 2504 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2505 2506 Group->addMetadata(NewStoreInstr); 2507 } 2508 } 2509 2510 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2511 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2512 VPValue *StoredValue, VPValue *BlockInMask) { 2513 // Attempt to issue a wide load. 2514 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2515 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2516 2517 assert((LI || SI) && "Invalid Load/Store instruction"); 2518 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2519 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2520 2521 LoopVectorizationCostModel::InstWidening Decision = 2522 Cost->getWideningDecision(Instr, VF); 2523 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2524 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2525 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2526 "CM decision is not to widen the memory instruction"); 2527 2528 Type *ScalarDataTy = getMemInstValueType(Instr); 2529 2530 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2531 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2532 const Align Alignment = getLoadStoreAlignment(Instr); 2533 2534 // Determine if the pointer operand of the access is either consecutive or 2535 // reverse consecutive. 2536 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2537 bool ConsecutiveStride = 2538 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2539 bool CreateGatherScatter = 2540 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2541 2542 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2543 // gather/scatter. Otherwise Decision should have been to Scalarize. 2544 assert((ConsecutiveStride || CreateGatherScatter) && 2545 "The instruction should be scalarized"); 2546 (void)ConsecutiveStride; 2547 2548 VectorParts BlockInMaskParts(UF); 2549 bool isMaskRequired = BlockInMask; 2550 if (isMaskRequired) 2551 for (unsigned Part = 0; Part < UF; ++Part) 2552 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2553 2554 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2555 // Calculate the pointer for the specific unroll-part. 2556 GetElementPtrInst *PartPtr = nullptr; 2557 2558 bool InBounds = false; 2559 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2560 InBounds = gep->isInBounds(); 2561 2562 if (Reverse) { 2563 // If the address is consecutive but reversed, then the 2564 // wide store needs to start at the last vector element. 2565 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2566 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2567 PartPtr->setIsInBounds(InBounds); 2568 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2569 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2570 PartPtr->setIsInBounds(InBounds); 2571 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2572 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2573 } else { 2574 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2575 ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue()))); 2576 PartPtr->setIsInBounds(InBounds); 2577 } 2578 2579 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2580 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2581 }; 2582 2583 // Handle Stores: 2584 if (SI) { 2585 setDebugLocFromInst(Builder, SI); 2586 2587 for (unsigned Part = 0; Part < UF; ++Part) { 2588 Instruction *NewSI = nullptr; 2589 Value *StoredVal = State.get(StoredValue, Part); 2590 if (CreateGatherScatter) { 2591 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2592 Value *VectorGep = State.get(Addr, Part); 2593 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2594 MaskPart); 2595 } else { 2596 if (Reverse) { 2597 // If we store to reverse consecutive memory locations, then we need 2598 // to reverse the order of elements in the stored value. 2599 StoredVal = reverseVector(StoredVal); 2600 // We don't want to update the value in the map as it might be used in 2601 // another expression. So don't call resetVectorValue(StoredVal). 2602 } 2603 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2604 if (isMaskRequired) 2605 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2606 BlockInMaskParts[Part]); 2607 else 2608 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2609 } 2610 addMetadata(NewSI, SI); 2611 } 2612 return; 2613 } 2614 2615 // Handle loads. 2616 assert(LI && "Must have a load instruction"); 2617 setDebugLocFromInst(Builder, LI); 2618 for (unsigned Part = 0; Part < UF; ++Part) { 2619 Value *NewLI; 2620 if (CreateGatherScatter) { 2621 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2622 Value *VectorGep = State.get(Addr, Part); 2623 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2624 nullptr, "wide.masked.gather"); 2625 addMetadata(NewLI, LI); 2626 } else { 2627 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2628 if (isMaskRequired) 2629 NewLI = Builder.CreateMaskedLoad( 2630 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2631 "wide.masked.load"); 2632 else 2633 NewLI = 2634 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2635 2636 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2637 addMetadata(NewLI, LI); 2638 if (Reverse) 2639 NewLI = reverseVector(NewLI); 2640 } 2641 2642 State.set(Def, Instr, NewLI, Part); 2643 } 2644 } 2645 2646 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2647 const VPIteration &Instance, 2648 bool IfPredicateInstr, 2649 VPTransformState &State) { 2650 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2651 2652 setDebugLocFromInst(Builder, Instr); 2653 2654 // Does this instruction return a value ? 2655 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2656 2657 Instruction *Cloned = Instr->clone(); 2658 if (!IsVoidRetTy) 2659 Cloned->setName(Instr->getName() + ".cloned"); 2660 2661 // Replace the operands of the cloned instructions with their scalar 2662 // equivalents in the new loop. 2663 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2664 auto *NewOp = State.get(User.getOperand(op), Instance); 2665 Cloned->setOperand(op, NewOp); 2666 } 2667 addNewMetadata(Cloned, Instr); 2668 2669 // Place the cloned scalar in the new loop. 2670 Builder.Insert(Cloned); 2671 2672 // Add the cloned scalar to the scalar map entry. 2673 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2674 2675 // If we just cloned a new assumption, add it the assumption cache. 2676 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2677 if (II->getIntrinsicID() == Intrinsic::assume) 2678 AC->registerAssumption(II); 2679 2680 // End if-block. 2681 if (IfPredicateInstr) 2682 PredicatedInstructions.push_back(Cloned); 2683 } 2684 2685 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2686 Value *End, Value *Step, 2687 Instruction *DL) { 2688 BasicBlock *Header = L->getHeader(); 2689 BasicBlock *Latch = L->getLoopLatch(); 2690 // As we're just creating this loop, it's possible no latch exists 2691 // yet. If so, use the header as this will be a single block loop. 2692 if (!Latch) 2693 Latch = Header; 2694 2695 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2696 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2697 setDebugLocFromInst(Builder, OldInst); 2698 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2699 2700 Builder.SetInsertPoint(Latch->getTerminator()); 2701 setDebugLocFromInst(Builder, OldInst); 2702 2703 // Create i+1 and fill the PHINode. 2704 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2705 Induction->addIncoming(Start, L->getLoopPreheader()); 2706 Induction->addIncoming(Next, Latch); 2707 // Create the compare. 2708 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2709 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2710 2711 // Now we have two terminators. Remove the old one from the block. 2712 Latch->getTerminator()->eraseFromParent(); 2713 2714 return Induction; 2715 } 2716 2717 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2718 if (TripCount) 2719 return TripCount; 2720 2721 assert(L && "Create Trip Count for null loop."); 2722 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2723 // Find the loop boundaries. 2724 ScalarEvolution *SE = PSE.getSE(); 2725 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2726 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2727 "Invalid loop count"); 2728 2729 Type *IdxTy = Legal->getWidestInductionType(); 2730 assert(IdxTy && "No type for induction"); 2731 2732 // The exit count might have the type of i64 while the phi is i32. This can 2733 // happen if we have an induction variable that is sign extended before the 2734 // compare. The only way that we get a backedge taken count is that the 2735 // induction variable was signed and as such will not overflow. In such a case 2736 // truncation is legal. 2737 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2738 IdxTy->getPrimitiveSizeInBits()) 2739 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2740 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2741 2742 // Get the total trip count from the count by adding 1. 2743 const SCEV *ExitCount = SE->getAddExpr( 2744 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2745 2746 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2747 2748 // Expand the trip count and place the new instructions in the preheader. 2749 // Notice that the pre-header does not change, only the loop body. 2750 SCEVExpander Exp(*SE, DL, "induction"); 2751 2752 // Count holds the overall loop count (N). 2753 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2754 L->getLoopPreheader()->getTerminator()); 2755 2756 if (TripCount->getType()->isPointerTy()) 2757 TripCount = 2758 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2759 L->getLoopPreheader()->getTerminator()); 2760 2761 return TripCount; 2762 } 2763 2764 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2765 if (VectorTripCount) 2766 return VectorTripCount; 2767 2768 Value *TC = getOrCreateTripCount(L); 2769 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2770 2771 Type *Ty = TC->getType(); 2772 // This is where we can make the step a runtime constant. 2773 assert(!VF.isScalable() && "scalable vectorization is not supported yet"); 2774 Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF); 2775 2776 // If the tail is to be folded by masking, round the number of iterations N 2777 // up to a multiple of Step instead of rounding down. This is done by first 2778 // adding Step-1 and then rounding down. Note that it's ok if this addition 2779 // overflows: the vector induction variable will eventually wrap to zero given 2780 // that it starts at zero and its Step is a power of two; the loop will then 2781 // exit, with the last early-exit vector comparison also producing all-true. 2782 if (Cost->foldTailByMasking()) { 2783 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2784 "VF*UF must be a power of 2 when folding tail by masking"); 2785 TC = Builder.CreateAdd( 2786 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2787 } 2788 2789 // Now we need to generate the expression for the part of the loop that the 2790 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2791 // iterations are not required for correctness, or N - Step, otherwise. Step 2792 // is equal to the vectorization factor (number of SIMD elements) times the 2793 // unroll factor (number of SIMD instructions). 2794 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2795 2796 // If there is a non-reversed interleaved group that may speculatively access 2797 // memory out-of-bounds, we need to ensure that there will be at least one 2798 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2799 // the trip count, we set the remainder to be equal to the step. If the step 2800 // does not evenly divide the trip count, no adjustment is necessary since 2801 // there will already be scalar iterations. Note that the minimum iterations 2802 // check ensures that N >= Step. 2803 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 2804 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2805 R = Builder.CreateSelect(IsZero, Step, R); 2806 } 2807 2808 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2809 2810 return VectorTripCount; 2811 } 2812 2813 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2814 const DataLayout &DL) { 2815 // Verify that V is a vector type with same number of elements as DstVTy. 2816 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2817 unsigned VF = DstFVTy->getNumElements(); 2818 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2819 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2820 Type *SrcElemTy = SrcVecTy->getElementType(); 2821 Type *DstElemTy = DstFVTy->getElementType(); 2822 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2823 "Vector elements must have same size"); 2824 2825 // Do a direct cast if element types are castable. 2826 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2827 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2828 } 2829 // V cannot be directly casted to desired vector type. 2830 // May happen when V is a floating point vector but DstVTy is a vector of 2831 // pointers or vice-versa. Handle this using a two-step bitcast using an 2832 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2833 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2834 "Only one type should be a pointer type"); 2835 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2836 "Only one type should be a floating point type"); 2837 Type *IntTy = 2838 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2839 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2840 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2841 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2842 } 2843 2844 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2845 BasicBlock *Bypass) { 2846 Value *Count = getOrCreateTripCount(L); 2847 // Reuse existing vector loop preheader for TC checks. 2848 // Note that new preheader block is generated for vector loop. 2849 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2850 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2851 2852 // Generate code to check if the loop's trip count is less than VF * UF, or 2853 // equal to it in case a scalar epilogue is required; this implies that the 2854 // vector trip count is zero. This check also covers the case where adding one 2855 // to the backedge-taken count overflowed leading to an incorrect trip count 2856 // of zero. In this case we will also jump to the scalar loop. 2857 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2858 : ICmpInst::ICMP_ULT; 2859 2860 // If tail is to be folded, vector loop takes care of all iterations. 2861 Value *CheckMinIters = Builder.getFalse(); 2862 if (!Cost->foldTailByMasking()) { 2863 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2864 CheckMinIters = Builder.CreateICmp( 2865 P, Count, 2866 ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF), 2867 "min.iters.check"); 2868 } 2869 // Create new preheader for vector loop. 2870 LoopVectorPreHeader = 2871 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2872 "vector.ph"); 2873 2874 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2875 DT->getNode(Bypass)->getIDom()) && 2876 "TC check is expected to dominate Bypass"); 2877 2878 // Update dominator for Bypass & LoopExit. 2879 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2880 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2881 2882 ReplaceInstWithInst( 2883 TCCheckBlock->getTerminator(), 2884 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2885 LoopBypassBlocks.push_back(TCCheckBlock); 2886 } 2887 2888 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2889 // Reuse existing vector loop preheader for SCEV checks. 2890 // Note that new preheader block is generated for vector loop. 2891 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2892 2893 // Generate the code to check that the SCEV assumptions that we made. 2894 // We want the new basic block to start at the first instruction in a 2895 // sequence of instructions that form a check. 2896 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2897 "scev.check"); 2898 Value *SCEVCheck = Exp.expandCodeForPredicate( 2899 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2900 2901 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2902 if (C->isZero()) 2903 return; 2904 2905 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2906 (OptForSizeBasedOnProfile && 2907 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 2908 "Cannot SCEV check stride or overflow when optimizing for size"); 2909 2910 SCEVCheckBlock->setName("vector.scevcheck"); 2911 // Create new preheader for vector loop. 2912 LoopVectorPreHeader = 2913 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2914 nullptr, "vector.ph"); 2915 2916 // Update dominator only if this is first RT check. 2917 if (LoopBypassBlocks.empty()) { 2918 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2919 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2920 } 2921 2922 ReplaceInstWithInst( 2923 SCEVCheckBlock->getTerminator(), 2924 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2925 LoopBypassBlocks.push_back(SCEVCheckBlock); 2926 AddedSafetyChecks = true; 2927 } 2928 2929 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2930 // VPlan-native path does not do any analysis for runtime checks currently. 2931 if (EnableVPlanNativePath) 2932 return; 2933 2934 // Reuse existing vector loop preheader for runtime memory checks. 2935 // Note that new preheader block is generated for vector loop. 2936 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2937 2938 // Generate the code that checks in runtime if arrays overlap. We put the 2939 // checks into a separate block to make the more common case of few elements 2940 // faster. 2941 auto *LAI = Legal->getLAI(); 2942 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2943 if (!RtPtrChecking.Need) 2944 return; 2945 2946 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2947 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2948 "Cannot emit memory checks when optimizing for size, unless forced " 2949 "to vectorize."); 2950 ORE->emit([&]() { 2951 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2952 L->getStartLoc(), L->getHeader()) 2953 << "Code-size may be reduced by not forcing " 2954 "vectorization, or by source-code modifications " 2955 "eliminating the need for runtime checks " 2956 "(e.g., adding 'restrict')."; 2957 }); 2958 } 2959 2960 MemCheckBlock->setName("vector.memcheck"); 2961 // Create new preheader for vector loop. 2962 LoopVectorPreHeader = 2963 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2964 "vector.ph"); 2965 2966 auto *CondBranch = cast<BranchInst>( 2967 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 2968 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 2969 LoopBypassBlocks.push_back(MemCheckBlock); 2970 AddedSafetyChecks = true; 2971 2972 // Update dominator only if this is first RT check. 2973 if (LoopBypassBlocks.empty()) { 2974 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2975 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2976 } 2977 2978 Instruction *FirstCheckInst; 2979 Instruction *MemRuntimeCheck; 2980 std::tie(FirstCheckInst, MemRuntimeCheck) = 2981 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2982 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2983 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2984 "claimed checks are required"); 2985 CondBranch->setCondition(MemRuntimeCheck); 2986 2987 // We currently don't use LoopVersioning for the actual loop cloning but we 2988 // still use it to add the noalias metadata. 2989 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2990 PSE.getSE()); 2991 LVer->prepareNoAliasMetadata(); 2992 } 2993 2994 Value *InnerLoopVectorizer::emitTransformedIndex( 2995 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2996 const InductionDescriptor &ID) const { 2997 2998 SCEVExpander Exp(*SE, DL, "induction"); 2999 auto Step = ID.getStep(); 3000 auto StartValue = ID.getStartValue(); 3001 assert(Index->getType() == Step->getType() && 3002 "Index type does not match StepValue type"); 3003 3004 // Note: the IR at this point is broken. We cannot use SE to create any new 3005 // SCEV and then expand it, hoping that SCEV's simplification will give us 3006 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3007 // lead to various SCEV crashes. So all we can do is to use builder and rely 3008 // on InstCombine for future simplifications. Here we handle some trivial 3009 // cases only. 3010 auto CreateAdd = [&B](Value *X, Value *Y) { 3011 assert(X->getType() == Y->getType() && "Types don't match!"); 3012 if (auto *CX = dyn_cast<ConstantInt>(X)) 3013 if (CX->isZero()) 3014 return Y; 3015 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3016 if (CY->isZero()) 3017 return X; 3018 return B.CreateAdd(X, Y); 3019 }; 3020 3021 auto CreateMul = [&B](Value *X, Value *Y) { 3022 assert(X->getType() == Y->getType() && "Types don't match!"); 3023 if (auto *CX = dyn_cast<ConstantInt>(X)) 3024 if (CX->isOne()) 3025 return Y; 3026 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3027 if (CY->isOne()) 3028 return X; 3029 return B.CreateMul(X, Y); 3030 }; 3031 3032 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3033 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3034 // the DomTree is not kept up-to-date for additional blocks generated in the 3035 // vector loop. By using the header as insertion point, we guarantee that the 3036 // expanded instructions dominate all their uses. 3037 auto GetInsertPoint = [this, &B]() { 3038 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3039 if (InsertBB != LoopVectorBody && 3040 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3041 return LoopVectorBody->getTerminator(); 3042 return &*B.GetInsertPoint(); 3043 }; 3044 switch (ID.getKind()) { 3045 case InductionDescriptor::IK_IntInduction: { 3046 assert(Index->getType() == StartValue->getType() && 3047 "Index type does not match StartValue type"); 3048 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3049 return B.CreateSub(StartValue, Index); 3050 auto *Offset = CreateMul( 3051 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3052 return CreateAdd(StartValue, Offset); 3053 } 3054 case InductionDescriptor::IK_PtrInduction: { 3055 assert(isa<SCEVConstant>(Step) && 3056 "Expected constant step for pointer induction"); 3057 return B.CreateGEP( 3058 StartValue->getType()->getPointerElementType(), StartValue, 3059 CreateMul(Index, 3060 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3061 } 3062 case InductionDescriptor::IK_FpInduction: { 3063 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3064 auto InductionBinOp = ID.getInductionBinOp(); 3065 assert(InductionBinOp && 3066 (InductionBinOp->getOpcode() == Instruction::FAdd || 3067 InductionBinOp->getOpcode() == Instruction::FSub) && 3068 "Original bin op should be defined for FP induction"); 3069 3070 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3071 3072 // Floating point operations had to be 'fast' to enable the induction. 3073 FastMathFlags Flags; 3074 Flags.setFast(); 3075 3076 Value *MulExp = B.CreateFMul(StepValue, Index); 3077 if (isa<Instruction>(MulExp)) 3078 // We have to check, the MulExp may be a constant. 3079 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3080 3081 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3082 "induction"); 3083 if (isa<Instruction>(BOp)) 3084 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3085 3086 return BOp; 3087 } 3088 case InductionDescriptor::IK_NoInduction: 3089 return nullptr; 3090 } 3091 llvm_unreachable("invalid enum"); 3092 } 3093 3094 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3095 LoopScalarBody = OrigLoop->getHeader(); 3096 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3097 LoopExitBlock = OrigLoop->getExitBlock(); 3098 assert(LoopExitBlock && "Must have an exit block"); 3099 assert(LoopVectorPreHeader && "Invalid loop structure"); 3100 3101 LoopMiddleBlock = 3102 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3103 LI, nullptr, Twine(Prefix) + "middle.block"); 3104 LoopScalarPreHeader = 3105 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3106 nullptr, Twine(Prefix) + "scalar.ph"); 3107 // We intentionally don't let SplitBlock to update LoopInfo since 3108 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3109 // LoopVectorBody is explicitly added to the correct place few lines later. 3110 LoopVectorBody = 3111 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3112 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3113 3114 // Update dominator for loop exit. 3115 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3116 3117 // Create and register the new vector loop. 3118 Loop *Lp = LI->AllocateLoop(); 3119 Loop *ParentLoop = OrigLoop->getParentLoop(); 3120 3121 // Insert the new loop into the loop nest and register the new basic blocks 3122 // before calling any utilities such as SCEV that require valid LoopInfo. 3123 if (ParentLoop) { 3124 ParentLoop->addChildLoop(Lp); 3125 } else { 3126 LI->addTopLevelLoop(Lp); 3127 } 3128 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3129 return Lp; 3130 } 3131 3132 void InnerLoopVectorizer::createInductionResumeValues(Loop *L, 3133 Value *VectorTripCount) { 3134 assert(VectorTripCount && L && "Expected valid arguments"); 3135 // We are going to resume the execution of the scalar loop. 3136 // Go over all of the induction variables that we found and fix the 3137 // PHIs that are left in the scalar version of the loop. 3138 // The starting values of PHI nodes depend on the counter of the last 3139 // iteration in the vectorized loop. 3140 // If we come from a bypass edge then we need to start from the original 3141 // start value. 3142 for (auto &InductionEntry : Legal->getInductionVars()) { 3143 PHINode *OrigPhi = InductionEntry.first; 3144 InductionDescriptor II = InductionEntry.second; 3145 3146 // Create phi nodes to merge from the backedge-taken check block. 3147 PHINode *BCResumeVal = 3148 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3149 LoopScalarPreHeader->getTerminator()); 3150 // Copy original phi DL over to the new one. 3151 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3152 Value *&EndValue = IVEndValues[OrigPhi]; 3153 if (OrigPhi == OldInduction) { 3154 // We know what the end value is. 3155 EndValue = VectorTripCount; 3156 } else { 3157 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3158 Type *StepType = II.getStep()->getType(); 3159 Instruction::CastOps CastOp = 3160 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3161 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3162 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3163 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3164 EndValue->setName("ind.end"); 3165 } 3166 3167 // The new PHI merges the original incoming value, in case of a bypass, 3168 // or the value at the end of the vectorized loop. 3169 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3170 3171 // Fix the scalar body counter (PHI node). 3172 // The old induction's phi node in the scalar body needs the truncated 3173 // value. 3174 for (BasicBlock *BB : LoopBypassBlocks) 3175 BCResumeVal->addIncoming(II.getStartValue(), BB); 3176 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3177 } 3178 } 3179 3180 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3181 MDNode *OrigLoopID) { 3182 assert(L && "Expected valid loop."); 3183 3184 // The trip counts should be cached by now. 3185 Value *Count = getOrCreateTripCount(L); 3186 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3187 3188 // We need the OrigLoop (scalar loop part) latch terminator to help 3189 // produce correct debug info for the middle block BB instructions. 3190 // The legality check stage guarantees that the loop will have a single 3191 // latch. 3192 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3193 "Scalar loop latch terminator isn't a branch"); 3194 BranchInst *ScalarLatchBr = 3195 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3196 3197 // Add a check in the middle block to see if we have completed 3198 // all of the iterations in the first vector loop. 3199 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3200 // If tail is to be folded, we know we don't need to run the remainder. 3201 Value *CmpN = Builder.getTrue(); 3202 if (!Cost->foldTailByMasking()) { 3203 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3204 VectorTripCount, "cmp.n", 3205 LoopMiddleBlock->getTerminator()); 3206 3207 // Here we use the same DebugLoc as the scalar loop latch branch instead 3208 // of the corresponding compare because they may have ended up with 3209 // different line numbers and we want to avoid awkward line stepping while 3210 // debugging. Eg. if the compare has got a line number inside the loop. 3211 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3212 } 3213 3214 BranchInst *BrInst = 3215 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3216 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3217 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3218 3219 // Get ready to start creating new instructions into the vectorized body. 3220 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3221 "Inconsistent vector loop preheader"); 3222 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3223 3224 Optional<MDNode *> VectorizedLoopID = 3225 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3226 LLVMLoopVectorizeFollowupVectorized}); 3227 if (VectorizedLoopID.hasValue()) { 3228 L->setLoopID(VectorizedLoopID.getValue()); 3229 3230 // Do not setAlreadyVectorized if loop attributes have been defined 3231 // explicitly. 3232 return LoopVectorPreHeader; 3233 } 3234 3235 // Keep all loop hints from the original loop on the vector loop (we'll 3236 // replace the vectorizer-specific hints below). 3237 if (MDNode *LID = OrigLoop->getLoopID()) 3238 L->setLoopID(LID); 3239 3240 LoopVectorizeHints Hints(L, true, *ORE); 3241 Hints.setAlreadyVectorized(); 3242 3243 #ifdef EXPENSIVE_CHECKS 3244 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3245 LI->verify(*DT); 3246 #endif 3247 3248 return LoopVectorPreHeader; 3249 } 3250 3251 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3252 /* 3253 In this function we generate a new loop. The new loop will contain 3254 the vectorized instructions while the old loop will continue to run the 3255 scalar remainder. 3256 3257 [ ] <-- loop iteration number check. 3258 / | 3259 / v 3260 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3261 | / | 3262 | / v 3263 || [ ] <-- vector pre header. 3264 |/ | 3265 | v 3266 | [ ] \ 3267 | [ ]_| <-- vector loop. 3268 | | 3269 | v 3270 | -[ ] <--- middle-block. 3271 | / | 3272 | / v 3273 -|- >[ ] <--- new preheader. 3274 | | 3275 | v 3276 | [ ] \ 3277 | [ ]_| <-- old scalar loop to handle remainder. 3278 \ | 3279 \ v 3280 >[ ] <-- exit block. 3281 ... 3282 */ 3283 3284 // Get the metadata of the original loop before it gets modified. 3285 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3286 3287 // Create an empty vector loop, and prepare basic blocks for the runtime 3288 // checks. 3289 Loop *Lp = createVectorLoopSkeleton(""); 3290 3291 // Now, compare the new count to zero. If it is zero skip the vector loop and 3292 // jump to the scalar loop. This check also covers the case where the 3293 // backedge-taken count is uint##_max: adding one to it will overflow leading 3294 // to an incorrect trip count of zero. In this (rare) case we will also jump 3295 // to the scalar loop. 3296 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3297 3298 // Generate the code to check any assumptions that we've made for SCEV 3299 // expressions. 3300 emitSCEVChecks(Lp, LoopScalarPreHeader); 3301 3302 // Generate the code that checks in runtime if arrays overlap. We put the 3303 // checks into a separate block to make the more common case of few elements 3304 // faster. 3305 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3306 3307 // Some loops have a single integer induction variable, while other loops 3308 // don't. One example is c++ iterators that often have multiple pointer 3309 // induction variables. In the code below we also support a case where we 3310 // don't have a single induction variable. 3311 // 3312 // We try to obtain an induction variable from the original loop as hard 3313 // as possible. However if we don't find one that: 3314 // - is an integer 3315 // - counts from zero, stepping by one 3316 // - is the size of the widest induction variable type 3317 // then we create a new one. 3318 OldInduction = Legal->getPrimaryInduction(); 3319 Type *IdxTy = Legal->getWidestInductionType(); 3320 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3321 // The loop step is equal to the vectorization factor (num of SIMD elements) 3322 // times the unroll factor (num of SIMD instructions). 3323 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3324 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 3325 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3326 Induction = 3327 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3328 getDebugLocFromInstOrOperands(OldInduction)); 3329 3330 // Emit phis for the new starting index of the scalar loop. 3331 createInductionResumeValues(Lp, CountRoundDown); 3332 3333 return completeLoopSkeleton(Lp, OrigLoopID); 3334 } 3335 3336 // Fix up external users of the induction variable. At this point, we are 3337 // in LCSSA form, with all external PHIs that use the IV having one input value, 3338 // coming from the remainder loop. We need those PHIs to also have a correct 3339 // value for the IV when arriving directly from the middle block. 3340 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3341 const InductionDescriptor &II, 3342 Value *CountRoundDown, Value *EndValue, 3343 BasicBlock *MiddleBlock) { 3344 // There are two kinds of external IV usages - those that use the value 3345 // computed in the last iteration (the PHI) and those that use the penultimate 3346 // value (the value that feeds into the phi from the loop latch). 3347 // We allow both, but they, obviously, have different values. 3348 3349 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3350 3351 DenseMap<Value *, Value *> MissingVals; 3352 3353 // An external user of the last iteration's value should see the value that 3354 // the remainder loop uses to initialize its own IV. 3355 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3356 for (User *U : PostInc->users()) { 3357 Instruction *UI = cast<Instruction>(U); 3358 if (!OrigLoop->contains(UI)) { 3359 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3360 MissingVals[UI] = EndValue; 3361 } 3362 } 3363 3364 // An external user of the penultimate value need to see EndValue - Step. 3365 // The simplest way to get this is to recompute it from the constituent SCEVs, 3366 // that is Start + (Step * (CRD - 1)). 3367 for (User *U : OrigPhi->users()) { 3368 auto *UI = cast<Instruction>(U); 3369 if (!OrigLoop->contains(UI)) { 3370 const DataLayout &DL = 3371 OrigLoop->getHeader()->getModule()->getDataLayout(); 3372 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3373 3374 IRBuilder<> B(MiddleBlock->getTerminator()); 3375 Value *CountMinusOne = B.CreateSub( 3376 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3377 Value *CMO = 3378 !II.getStep()->getType()->isIntegerTy() 3379 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3380 II.getStep()->getType()) 3381 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3382 CMO->setName("cast.cmo"); 3383 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3384 Escape->setName("ind.escape"); 3385 MissingVals[UI] = Escape; 3386 } 3387 } 3388 3389 for (auto &I : MissingVals) { 3390 PHINode *PHI = cast<PHINode>(I.first); 3391 // One corner case we have to handle is two IVs "chasing" each-other, 3392 // that is %IV2 = phi [...], [ %IV1, %latch ] 3393 // In this case, if IV1 has an external use, we need to avoid adding both 3394 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3395 // don't already have an incoming value for the middle block. 3396 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3397 PHI->addIncoming(I.second, MiddleBlock); 3398 } 3399 } 3400 3401 namespace { 3402 3403 struct CSEDenseMapInfo { 3404 static bool canHandle(const Instruction *I) { 3405 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3406 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3407 } 3408 3409 static inline Instruction *getEmptyKey() { 3410 return DenseMapInfo<Instruction *>::getEmptyKey(); 3411 } 3412 3413 static inline Instruction *getTombstoneKey() { 3414 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3415 } 3416 3417 static unsigned getHashValue(const Instruction *I) { 3418 assert(canHandle(I) && "Unknown instruction!"); 3419 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3420 I->value_op_end())); 3421 } 3422 3423 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3424 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3425 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3426 return LHS == RHS; 3427 return LHS->isIdenticalTo(RHS); 3428 } 3429 }; 3430 3431 } // end anonymous namespace 3432 3433 ///Perform cse of induction variable instructions. 3434 static void cse(BasicBlock *BB) { 3435 // Perform simple cse. 3436 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3437 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3438 Instruction *In = &*I++; 3439 3440 if (!CSEDenseMapInfo::canHandle(In)) 3441 continue; 3442 3443 // Check if we can replace this instruction with any of the 3444 // visited instructions. 3445 if (Instruction *V = CSEMap.lookup(In)) { 3446 In->replaceAllUsesWith(V); 3447 In->eraseFromParent(); 3448 continue; 3449 } 3450 3451 CSEMap[In] = In; 3452 } 3453 } 3454 3455 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3456 ElementCount VF, 3457 bool &NeedToScalarize) { 3458 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3459 Function *F = CI->getCalledFunction(); 3460 Type *ScalarRetTy = CI->getType(); 3461 SmallVector<Type *, 4> Tys, ScalarTys; 3462 for (auto &ArgOp : CI->arg_operands()) 3463 ScalarTys.push_back(ArgOp->getType()); 3464 3465 // Estimate cost of scalarized vector call. The source operands are assumed 3466 // to be vectors, so we need to extract individual elements from there, 3467 // execute VF scalar calls, and then gather the result into the vector return 3468 // value. 3469 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3470 TTI::TCK_RecipThroughput); 3471 if (VF.isScalar()) 3472 return ScalarCallCost; 3473 3474 // Compute corresponding vector type for return value and arguments. 3475 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3476 for (Type *ScalarTy : ScalarTys) 3477 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3478 3479 // Compute costs of unpacking argument values for the scalar calls and 3480 // packing the return values to a vector. 3481 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3482 3483 unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3484 3485 // If we can't emit a vector call for this function, then the currently found 3486 // cost is the cost we need to return. 3487 NeedToScalarize = true; 3488 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3489 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3490 3491 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3492 return Cost; 3493 3494 // If the corresponding vector cost is cheaper, return its cost. 3495 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3496 TTI::TCK_RecipThroughput); 3497 if (VectorCallCost < Cost) { 3498 NeedToScalarize = false; 3499 return VectorCallCost; 3500 } 3501 return Cost; 3502 } 3503 3504 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3505 ElementCount VF) { 3506 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3507 assert(ID && "Expected intrinsic call!"); 3508 3509 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3510 return TTI.getIntrinsicInstrCost(CostAttrs, 3511 TargetTransformInfo::TCK_RecipThroughput); 3512 } 3513 3514 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3515 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3516 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3517 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3518 } 3519 3520 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3521 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3522 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3523 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3524 } 3525 3526 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3527 // For every instruction `I` in MinBWs, truncate the operands, create a 3528 // truncated version of `I` and reextend its result. InstCombine runs 3529 // later and will remove any ext/trunc pairs. 3530 SmallPtrSet<Value *, 4> Erased; 3531 for (const auto &KV : Cost->getMinimalBitwidths()) { 3532 // If the value wasn't vectorized, we must maintain the original scalar 3533 // type. The absence of the value from VectorLoopValueMap indicates that it 3534 // wasn't vectorized. 3535 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3536 continue; 3537 for (unsigned Part = 0; Part < UF; ++Part) { 3538 Value *I = getOrCreateVectorValue(KV.first, Part); 3539 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3540 continue; 3541 Type *OriginalTy = I->getType(); 3542 Type *ScalarTruncatedTy = 3543 IntegerType::get(OriginalTy->getContext(), KV.second); 3544 auto *TruncatedTy = FixedVectorType::get( 3545 ScalarTruncatedTy, 3546 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3547 if (TruncatedTy == OriginalTy) 3548 continue; 3549 3550 IRBuilder<> B(cast<Instruction>(I)); 3551 auto ShrinkOperand = [&](Value *V) -> Value * { 3552 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3553 if (ZI->getSrcTy() == TruncatedTy) 3554 return ZI->getOperand(0); 3555 return B.CreateZExtOrTrunc(V, TruncatedTy); 3556 }; 3557 3558 // The actual instruction modification depends on the instruction type, 3559 // unfortunately. 3560 Value *NewI = nullptr; 3561 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3562 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3563 ShrinkOperand(BO->getOperand(1))); 3564 3565 // Any wrapping introduced by shrinking this operation shouldn't be 3566 // considered undefined behavior. So, we can't unconditionally copy 3567 // arithmetic wrapping flags to NewI. 3568 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3569 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3570 NewI = 3571 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3572 ShrinkOperand(CI->getOperand(1))); 3573 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3574 NewI = B.CreateSelect(SI->getCondition(), 3575 ShrinkOperand(SI->getTrueValue()), 3576 ShrinkOperand(SI->getFalseValue())); 3577 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3578 switch (CI->getOpcode()) { 3579 default: 3580 llvm_unreachable("Unhandled cast!"); 3581 case Instruction::Trunc: 3582 NewI = ShrinkOperand(CI->getOperand(0)); 3583 break; 3584 case Instruction::SExt: 3585 NewI = B.CreateSExtOrTrunc( 3586 CI->getOperand(0), 3587 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3588 break; 3589 case Instruction::ZExt: 3590 NewI = B.CreateZExtOrTrunc( 3591 CI->getOperand(0), 3592 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3593 break; 3594 } 3595 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3596 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3597 ->getNumElements(); 3598 auto *O0 = B.CreateZExtOrTrunc( 3599 SI->getOperand(0), 3600 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3601 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3602 ->getNumElements(); 3603 auto *O1 = B.CreateZExtOrTrunc( 3604 SI->getOperand(1), 3605 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3606 3607 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3608 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3609 // Don't do anything with the operands, just extend the result. 3610 continue; 3611 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3612 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3613 ->getNumElements(); 3614 auto *O0 = B.CreateZExtOrTrunc( 3615 IE->getOperand(0), 3616 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3617 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3618 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3619 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3620 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3621 ->getNumElements(); 3622 auto *O0 = B.CreateZExtOrTrunc( 3623 EE->getOperand(0), 3624 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3625 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3626 } else { 3627 // If we don't know what to do, be conservative and don't do anything. 3628 continue; 3629 } 3630 3631 // Lastly, extend the result. 3632 NewI->takeName(cast<Instruction>(I)); 3633 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3634 I->replaceAllUsesWith(Res); 3635 cast<Instruction>(I)->eraseFromParent(); 3636 Erased.insert(I); 3637 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3638 } 3639 } 3640 3641 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3642 for (const auto &KV : Cost->getMinimalBitwidths()) { 3643 // If the value wasn't vectorized, we must maintain the original scalar 3644 // type. The absence of the value from VectorLoopValueMap indicates that it 3645 // wasn't vectorized. 3646 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3647 continue; 3648 for (unsigned Part = 0; Part < UF; ++Part) { 3649 Value *I = getOrCreateVectorValue(KV.first, Part); 3650 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3651 if (Inst && Inst->use_empty()) { 3652 Value *NewI = Inst->getOperand(0); 3653 Inst->eraseFromParent(); 3654 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3655 } 3656 } 3657 } 3658 } 3659 3660 void InnerLoopVectorizer::fixVectorizedLoop() { 3661 // Insert truncates and extends for any truncated instructions as hints to 3662 // InstCombine. 3663 if (VF.isVector()) 3664 truncateToMinimalBitwidths(); 3665 3666 // Fix widened non-induction PHIs by setting up the PHI operands. 3667 if (OrigPHIsToFix.size()) { 3668 assert(EnableVPlanNativePath && 3669 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3670 fixNonInductionPHIs(); 3671 } 3672 3673 // At this point every instruction in the original loop is widened to a 3674 // vector form. Now we need to fix the recurrences in the loop. These PHI 3675 // nodes are currently empty because we did not want to introduce cycles. 3676 // This is the second stage of vectorizing recurrences. 3677 fixCrossIterationPHIs(); 3678 3679 // Forget the original basic block. 3680 PSE.getSE()->forgetLoop(OrigLoop); 3681 3682 // Fix-up external users of the induction variables. 3683 for (auto &Entry : Legal->getInductionVars()) 3684 fixupIVUsers(Entry.first, Entry.second, 3685 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3686 IVEndValues[Entry.first], LoopMiddleBlock); 3687 3688 fixLCSSAPHIs(); 3689 for (Instruction *PI : PredicatedInstructions) 3690 sinkScalarOperands(&*PI); 3691 3692 // Remove redundant induction instructions. 3693 cse(LoopVectorBody); 3694 3695 // Set/update profile weights for the vector and remainder loops as original 3696 // loop iterations are now distributed among them. Note that original loop 3697 // represented by LoopScalarBody becomes remainder loop after vectorization. 3698 // 3699 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3700 // end up getting slightly roughened result but that should be OK since 3701 // profile is not inherently precise anyway. Note also possible bypass of 3702 // vector code caused by legality checks is ignored, assigning all the weight 3703 // to the vector loop, optimistically. 3704 assert(!VF.isScalable() && 3705 "cannot use scalable ElementCount to determine unroll factor"); 3706 setProfileInfoAfterUnrolling( 3707 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3708 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3709 } 3710 3711 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3712 // In order to support recurrences we need to be able to vectorize Phi nodes. 3713 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3714 // stage #2: We now need to fix the recurrences by adding incoming edges to 3715 // the currently empty PHI nodes. At this point every instruction in the 3716 // original loop is widened to a vector form so we can use them to construct 3717 // the incoming edges. 3718 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3719 // Handle first-order recurrences and reductions that need to be fixed. 3720 if (Legal->isFirstOrderRecurrence(&Phi)) 3721 fixFirstOrderRecurrence(&Phi); 3722 else if (Legal->isReductionVariable(&Phi)) 3723 fixReduction(&Phi); 3724 } 3725 } 3726 3727 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3728 // This is the second phase of vectorizing first-order recurrences. An 3729 // overview of the transformation is described below. Suppose we have the 3730 // following loop. 3731 // 3732 // for (int i = 0; i < n; ++i) 3733 // b[i] = a[i] - a[i - 1]; 3734 // 3735 // There is a first-order recurrence on "a". For this loop, the shorthand 3736 // scalar IR looks like: 3737 // 3738 // scalar.ph: 3739 // s_init = a[-1] 3740 // br scalar.body 3741 // 3742 // scalar.body: 3743 // i = phi [0, scalar.ph], [i+1, scalar.body] 3744 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3745 // s2 = a[i] 3746 // b[i] = s2 - s1 3747 // br cond, scalar.body, ... 3748 // 3749 // In this example, s1 is a recurrence because it's value depends on the 3750 // previous iteration. In the first phase of vectorization, we created a 3751 // temporary value for s1. We now complete the vectorization and produce the 3752 // shorthand vector IR shown below (for VF = 4, UF = 1). 3753 // 3754 // vector.ph: 3755 // v_init = vector(..., ..., ..., a[-1]) 3756 // br vector.body 3757 // 3758 // vector.body 3759 // i = phi [0, vector.ph], [i+4, vector.body] 3760 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3761 // v2 = a[i, i+1, i+2, i+3]; 3762 // v3 = vector(v1(3), v2(0, 1, 2)) 3763 // b[i, i+1, i+2, i+3] = v2 - v3 3764 // br cond, vector.body, middle.block 3765 // 3766 // middle.block: 3767 // x = v2(3) 3768 // br scalar.ph 3769 // 3770 // scalar.ph: 3771 // s_init = phi [x, middle.block], [a[-1], otherwise] 3772 // br scalar.body 3773 // 3774 // After execution completes the vector loop, we extract the next value of 3775 // the recurrence (x) to use as the initial value in the scalar loop. 3776 3777 // Get the original loop preheader and single loop latch. 3778 auto *Preheader = OrigLoop->getLoopPreheader(); 3779 auto *Latch = OrigLoop->getLoopLatch(); 3780 3781 // Get the initial and previous values of the scalar recurrence. 3782 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3783 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3784 3785 // Create a vector from the initial value. 3786 auto *VectorInit = ScalarInit; 3787 if (VF.isVector()) { 3788 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3789 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 3790 VectorInit = Builder.CreateInsertElement( 3791 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3792 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 3793 } 3794 3795 // We constructed a temporary phi node in the first phase of vectorization. 3796 // This phi node will eventually be deleted. 3797 Builder.SetInsertPoint( 3798 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3799 3800 // Create a phi node for the new recurrence. The current value will either be 3801 // the initial value inserted into a vector or loop-varying vector value. 3802 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3803 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3804 3805 // Get the vectorized previous value of the last part UF - 1. It appears last 3806 // among all unrolled iterations, due to the order of their construction. 3807 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3808 3809 // Find and set the insertion point after the previous value if it is an 3810 // instruction. 3811 BasicBlock::iterator InsertPt; 3812 // Note that the previous value may have been constant-folded so it is not 3813 // guaranteed to be an instruction in the vector loop. 3814 // FIXME: Loop invariant values do not form recurrences. We should deal with 3815 // them earlier. 3816 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3817 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3818 else { 3819 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3820 if (isa<PHINode>(PreviousLastPart)) 3821 // If the previous value is a phi node, we should insert after all the phi 3822 // nodes in the block containing the PHI to avoid breaking basic block 3823 // verification. Note that the basic block may be different to 3824 // LoopVectorBody, in case we predicate the loop. 3825 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3826 else 3827 InsertPt = ++PreviousInst->getIterator(); 3828 } 3829 Builder.SetInsertPoint(&*InsertPt); 3830 3831 // We will construct a vector for the recurrence by combining the values for 3832 // the current and previous iterations. This is the required shuffle mask. 3833 assert(!VF.isScalable()); 3834 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 3835 ShuffleMask[0] = VF.getKnownMinValue() - 1; 3836 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 3837 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 3838 3839 // The vector from which to take the initial value for the current iteration 3840 // (actual or unrolled). Initially, this is the vector phi node. 3841 Value *Incoming = VecPhi; 3842 3843 // Shuffle the current and previous vector and update the vector parts. 3844 for (unsigned Part = 0; Part < UF; ++Part) { 3845 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3846 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3847 auto *Shuffle = 3848 VF.isVector() 3849 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 3850 : Incoming; 3851 PhiPart->replaceAllUsesWith(Shuffle); 3852 cast<Instruction>(PhiPart)->eraseFromParent(); 3853 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3854 Incoming = PreviousPart; 3855 } 3856 3857 // Fix the latch value of the new recurrence in the vector loop. 3858 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3859 3860 // Extract the last vector element in the middle block. This will be the 3861 // initial value for the recurrence when jumping to the scalar loop. 3862 auto *ExtractForScalar = Incoming; 3863 if (VF.isVector()) { 3864 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3865 ExtractForScalar = Builder.CreateExtractElement( 3866 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 3867 "vector.recur.extract"); 3868 } 3869 // Extract the second last element in the middle block if the 3870 // Phi is used outside the loop. We need to extract the phi itself 3871 // and not the last element (the phi update in the current iteration). This 3872 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3873 // when the scalar loop is not run at all. 3874 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3875 if (VF.isVector()) 3876 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3877 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 3878 "vector.recur.extract.for.phi"); 3879 // When loop is unrolled without vectorizing, initialize 3880 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3881 // `Incoming`. This is analogous to the vectorized case above: extracting the 3882 // second last element when VF > 1. 3883 else if (UF > 1) 3884 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3885 3886 // Fix the initial value of the original recurrence in the scalar loop. 3887 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3888 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3889 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3890 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3891 Start->addIncoming(Incoming, BB); 3892 } 3893 3894 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3895 Phi->setName("scalar.recur"); 3896 3897 // Finally, fix users of the recurrence outside the loop. The users will need 3898 // either the last value of the scalar recurrence or the last value of the 3899 // vector recurrence we extracted in the middle block. Since the loop is in 3900 // LCSSA form, we just need to find all the phi nodes for the original scalar 3901 // recurrence in the exit block, and then add an edge for the middle block. 3902 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3903 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3904 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3905 } 3906 } 3907 } 3908 3909 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3910 Constant *Zero = Builder.getInt32(0); 3911 3912 // Get it's reduction variable descriptor. 3913 assert(Legal->isReductionVariable(Phi) && 3914 "Unable to find the reduction variable"); 3915 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3916 3917 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3918 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3919 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3920 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3921 RdxDesc.getMinMaxRecurrenceKind(); 3922 setDebugLocFromInst(Builder, ReductionStartValue); 3923 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 3924 3925 // We need to generate a reduction vector from the incoming scalar. 3926 // To do so, we need to generate the 'identity' vector and override 3927 // one of the elements with the incoming scalar reduction. We need 3928 // to do it in the vector-loop preheader. 3929 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3930 3931 // This is the vector-clone of the value that leaves the loop. 3932 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3933 3934 // Find the reduction identity variable. Zero for addition, or, xor, 3935 // one for multiplication, -1 for And. 3936 Value *Identity; 3937 Value *VectorStart; 3938 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3939 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3940 // MinMax reduction have the start value as their identify. 3941 if (VF.isScalar() || IsInLoopReductionPhi) { 3942 VectorStart = Identity = ReductionStartValue; 3943 } else { 3944 VectorStart = Identity = 3945 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3946 } 3947 } else { 3948 // Handle other reduction kinds: 3949 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3950 RK, MinMaxKind, VecTy->getScalarType()); 3951 if (VF.isScalar() || IsInLoopReductionPhi) { 3952 Identity = Iden; 3953 // This vector is the Identity vector where the first element is the 3954 // incoming scalar reduction. 3955 VectorStart = ReductionStartValue; 3956 } else { 3957 Identity = ConstantVector::getSplat(VF, Iden); 3958 3959 // This vector is the Identity vector where the first element is the 3960 // incoming scalar reduction. 3961 VectorStart = 3962 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3963 } 3964 } 3965 3966 // Wrap flags are in general invalid after vectorization, clear them. 3967 clearReductionWrapFlags(RdxDesc); 3968 3969 // Fix the vector-loop phi. 3970 3971 // Reductions do not have to start at zero. They can start with 3972 // any loop invariant values. 3973 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3974 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3975 3976 for (unsigned Part = 0; Part < UF; ++Part) { 3977 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3978 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3979 // Make sure to add the reduction start value only to the 3980 // first unroll part. 3981 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3982 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3983 cast<PHINode>(VecRdxPhi) 3984 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3985 } 3986 3987 // Before each round, move the insertion point right between 3988 // the PHIs and the values we are going to write. 3989 // This allows us to write both PHINodes and the extractelement 3990 // instructions. 3991 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3992 3993 setDebugLocFromInst(Builder, LoopExitInst); 3994 3995 // If tail is folded by masking, the vector value to leave the loop should be 3996 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3997 // instead of the former. For an inloop reduction the reduction will already 3998 // be predicated, and does not need to be handled here. 3999 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4000 for (unsigned Part = 0; Part < UF; ++Part) { 4001 Value *VecLoopExitInst = 4002 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4003 Value *Sel = nullptr; 4004 for (User *U : VecLoopExitInst->users()) { 4005 if (isa<SelectInst>(U)) { 4006 assert(!Sel && "Reduction exit feeding two selects"); 4007 Sel = U; 4008 } else 4009 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4010 } 4011 assert(Sel && "Reduction exit feeds no select"); 4012 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4013 4014 // If the target can create a predicated operator for the reduction at no 4015 // extra cost in the loop (for example a predicated vadd), it can be 4016 // cheaper for the select to remain in the loop than be sunk out of it, 4017 // and so use the select value for the phi instead of the old 4018 // LoopExitValue. 4019 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4020 if (PreferPredicatedReductionSelect || 4021 TTI->preferPredicatedReductionSelect( 4022 RdxDesc.getRecurrenceBinOp(RdxDesc.getRecurrenceKind()), 4023 Phi->getType(), TargetTransformInfo::ReductionFlags())) { 4024 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4025 VecRdxPhi->setIncomingValueForBlock( 4026 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4027 } 4028 } 4029 } 4030 4031 // If the vector reduction can be performed in a smaller type, we truncate 4032 // then extend the loop exit value to enable InstCombine to evaluate the 4033 // entire expression in the smaller type. 4034 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4035 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4036 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4037 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4038 Builder.SetInsertPoint( 4039 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4040 VectorParts RdxParts(UF); 4041 for (unsigned Part = 0; Part < UF; ++Part) { 4042 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4043 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4044 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4045 : Builder.CreateZExt(Trunc, VecTy); 4046 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4047 UI != RdxParts[Part]->user_end();) 4048 if (*UI != Trunc) { 4049 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4050 RdxParts[Part] = Extnd; 4051 } else { 4052 ++UI; 4053 } 4054 } 4055 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4056 for (unsigned Part = 0; Part < UF; ++Part) { 4057 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4058 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4059 } 4060 } 4061 4062 // Reduce all of the unrolled parts into a single vector. 4063 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4064 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4065 4066 // The middle block terminator has already been assigned a DebugLoc here (the 4067 // OrigLoop's single latch terminator). We want the whole middle block to 4068 // appear to execute on this line because: (a) it is all compiler generated, 4069 // (b) these instructions are always executed after evaluating the latch 4070 // conditional branch, and (c) other passes may add new predecessors which 4071 // terminate on this line. This is the easiest way to ensure we don't 4072 // accidentally cause an extra step back into the loop while debugging. 4073 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4074 for (unsigned Part = 1; Part < UF; ++Part) { 4075 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4076 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4077 // Floating point operations had to be 'fast' to enable the reduction. 4078 ReducedPartRdx = addFastMathFlag( 4079 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4080 ReducedPartRdx, "bin.rdx"), 4081 RdxDesc.getFastMathFlags()); 4082 else 4083 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 4084 RdxPart); 4085 } 4086 4087 // Create the reduction after the loop. Note that inloop reductions create the 4088 // target reduction in the loop using a Reduction recipe. 4089 if (VF.isVector() && !IsInLoopReductionPhi) { 4090 bool NoNaN = Legal->hasFunNoNaNAttr(); 4091 ReducedPartRdx = 4092 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4093 // If the reduction can be performed in a smaller type, we need to extend 4094 // the reduction to the wider type before we branch to the original loop. 4095 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4096 ReducedPartRdx = 4097 RdxDesc.isSigned() 4098 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4099 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4100 } 4101 4102 // Create a phi node that merges control-flow from the backedge-taken check 4103 // block and the middle block. 4104 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4105 LoopScalarPreHeader->getTerminator()); 4106 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4107 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4108 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4109 4110 // Now, we need to fix the users of the reduction variable 4111 // inside and outside of the scalar remainder loop. 4112 // We know that the loop is in LCSSA form. We need to update the 4113 // PHI nodes in the exit blocks. 4114 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4115 // All PHINodes need to have a single entry edge, or two if 4116 // we already fixed them. 4117 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4118 4119 // We found a reduction value exit-PHI. Update it with the 4120 // incoming bypass edge. 4121 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4122 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4123 } // end of the LCSSA phi scan. 4124 4125 // Fix the scalar loop reduction variable with the incoming reduction sum 4126 // from the vector body and from the backedge value. 4127 int IncomingEdgeBlockIdx = 4128 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4129 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4130 // Pick the other block. 4131 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4132 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4133 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4134 } 4135 4136 void InnerLoopVectorizer::clearReductionWrapFlags( 4137 RecurrenceDescriptor &RdxDesc) { 4138 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4139 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 4140 RK != RecurrenceDescriptor::RK_IntegerMult) 4141 return; 4142 4143 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4144 assert(LoopExitInstr && "null loop exit instruction"); 4145 SmallVector<Instruction *, 8> Worklist; 4146 SmallPtrSet<Instruction *, 8> Visited; 4147 Worklist.push_back(LoopExitInstr); 4148 Visited.insert(LoopExitInstr); 4149 4150 while (!Worklist.empty()) { 4151 Instruction *Cur = Worklist.pop_back_val(); 4152 if (isa<OverflowingBinaryOperator>(Cur)) 4153 for (unsigned Part = 0; Part < UF; ++Part) { 4154 Value *V = getOrCreateVectorValue(Cur, Part); 4155 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4156 } 4157 4158 for (User *U : Cur->users()) { 4159 Instruction *UI = cast<Instruction>(U); 4160 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4161 Visited.insert(UI).second) 4162 Worklist.push_back(UI); 4163 } 4164 } 4165 } 4166 4167 void InnerLoopVectorizer::fixLCSSAPHIs() { 4168 assert(!VF.isScalable() && "the code below assumes fixed width vectors"); 4169 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4170 if (LCSSAPhi.getNumIncomingValues() == 1) { 4171 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4172 // Non-instruction incoming values will have only one value. 4173 unsigned LastLane = 0; 4174 if (isa<Instruction>(IncomingValue)) 4175 LastLane = Cost->isUniformAfterVectorization( 4176 cast<Instruction>(IncomingValue), VF) 4177 ? 0 4178 : VF.getKnownMinValue() - 1; 4179 // Can be a loop invariant incoming value or the last scalar value to be 4180 // extracted from the vectorized loop. 4181 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4182 Value *lastIncomingValue = 4183 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4184 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4185 } 4186 } 4187 } 4188 4189 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4190 // The basic block and loop containing the predicated instruction. 4191 auto *PredBB = PredInst->getParent(); 4192 auto *VectorLoop = LI->getLoopFor(PredBB); 4193 4194 // Initialize a worklist with the operands of the predicated instruction. 4195 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4196 4197 // Holds instructions that we need to analyze again. An instruction may be 4198 // reanalyzed if we don't yet know if we can sink it or not. 4199 SmallVector<Instruction *, 8> InstsToReanalyze; 4200 4201 // Returns true if a given use occurs in the predicated block. Phi nodes use 4202 // their operands in their corresponding predecessor blocks. 4203 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4204 auto *I = cast<Instruction>(U.getUser()); 4205 BasicBlock *BB = I->getParent(); 4206 if (auto *Phi = dyn_cast<PHINode>(I)) 4207 BB = Phi->getIncomingBlock( 4208 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4209 return BB == PredBB; 4210 }; 4211 4212 // Iteratively sink the scalarized operands of the predicated instruction 4213 // into the block we created for it. When an instruction is sunk, it's 4214 // operands are then added to the worklist. The algorithm ends after one pass 4215 // through the worklist doesn't sink a single instruction. 4216 bool Changed; 4217 do { 4218 // Add the instructions that need to be reanalyzed to the worklist, and 4219 // reset the changed indicator. 4220 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4221 InstsToReanalyze.clear(); 4222 Changed = false; 4223 4224 while (!Worklist.empty()) { 4225 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4226 4227 // We can't sink an instruction if it is a phi node, is already in the 4228 // predicated block, is not in the loop, or may have side effects. 4229 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4230 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4231 continue; 4232 4233 // It's legal to sink the instruction if all its uses occur in the 4234 // predicated block. Otherwise, there's nothing to do yet, and we may 4235 // need to reanalyze the instruction. 4236 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4237 InstsToReanalyze.push_back(I); 4238 continue; 4239 } 4240 4241 // Move the instruction to the beginning of the predicated block, and add 4242 // it's operands to the worklist. 4243 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4244 Worklist.insert(I->op_begin(), I->op_end()); 4245 4246 // The sinking may have enabled other instructions to be sunk, so we will 4247 // need to iterate. 4248 Changed = true; 4249 } 4250 } while (Changed); 4251 } 4252 4253 void InnerLoopVectorizer::fixNonInductionPHIs() { 4254 for (PHINode *OrigPhi : OrigPHIsToFix) { 4255 PHINode *NewPhi = 4256 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4257 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4258 4259 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4260 predecessors(OrigPhi->getParent())); 4261 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4262 predecessors(NewPhi->getParent())); 4263 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4264 "Scalar and Vector BB should have the same number of predecessors"); 4265 4266 // The insertion point in Builder may be invalidated by the time we get 4267 // here. Force the Builder insertion point to something valid so that we do 4268 // not run into issues during insertion point restore in 4269 // getOrCreateVectorValue calls below. 4270 Builder.SetInsertPoint(NewPhi); 4271 4272 // The predecessor order is preserved and we can rely on mapping between 4273 // scalar and vector block predecessors. 4274 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4275 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4276 4277 // When looking up the new scalar/vector values to fix up, use incoming 4278 // values from original phi. 4279 Value *ScIncV = 4280 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4281 4282 // Scalar incoming value may need a broadcast 4283 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4284 NewPhi->addIncoming(NewIncV, NewPredBB); 4285 } 4286 } 4287 } 4288 4289 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands, 4290 unsigned UF, ElementCount VF, 4291 bool IsPtrLoopInvariant, 4292 SmallBitVector &IsIndexLoopInvariant, 4293 VPTransformState &State) { 4294 // Construct a vector GEP by widening the operands of the scalar GEP as 4295 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4296 // results in a vector of pointers when at least one operand of the GEP 4297 // is vector-typed. Thus, to keep the representation compact, we only use 4298 // vector-typed operands for loop-varying values. 4299 4300 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4301 // If we are vectorizing, but the GEP has only loop-invariant operands, 4302 // the GEP we build (by only using vector-typed operands for 4303 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4304 // produce a vector of pointers, we need to either arbitrarily pick an 4305 // operand to broadcast, or broadcast a clone of the original GEP. 4306 // Here, we broadcast a clone of the original. 4307 // 4308 // TODO: If at some point we decide to scalarize instructions having 4309 // loop-invariant operands, this special case will no longer be 4310 // required. We would add the scalarization decision to 4311 // collectLoopScalars() and teach getVectorValue() to broadcast 4312 // the lane-zero scalar value. 4313 auto *Clone = Builder.Insert(GEP->clone()); 4314 for (unsigned Part = 0; Part < UF; ++Part) { 4315 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4316 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4317 addMetadata(EntryPart, GEP); 4318 } 4319 } else { 4320 // If the GEP has at least one loop-varying operand, we are sure to 4321 // produce a vector of pointers. But if we are only unrolling, we want 4322 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4323 // produce with the code below will be scalar (if VF == 1) or vector 4324 // (otherwise). Note that for the unroll-only case, we still maintain 4325 // values in the vector mapping with initVector, as we do for other 4326 // instructions. 4327 for (unsigned Part = 0; Part < UF; ++Part) { 4328 // The pointer operand of the new GEP. If it's loop-invariant, we 4329 // won't broadcast it. 4330 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4331 : State.get(Operands.getOperand(0), Part); 4332 4333 // Collect all the indices for the new GEP. If any index is 4334 // loop-invariant, we won't broadcast it. 4335 SmallVector<Value *, 4> Indices; 4336 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4337 VPValue *Operand = Operands.getOperand(I); 4338 if (IsIndexLoopInvariant[I - 1]) 4339 Indices.push_back(State.get(Operand, {0, 0})); 4340 else 4341 Indices.push_back(State.get(Operand, Part)); 4342 } 4343 4344 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4345 // but it should be a vector, otherwise. 4346 auto *NewGEP = 4347 GEP->isInBounds() 4348 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4349 Indices) 4350 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4351 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4352 "NewGEP is not a pointer vector"); 4353 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4354 addMetadata(NewGEP, GEP); 4355 } 4356 } 4357 } 4358 4359 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4360 ElementCount VF) { 4361 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4362 PHINode *P = cast<PHINode>(PN); 4363 if (EnableVPlanNativePath) { 4364 // Currently we enter here in the VPlan-native path for non-induction 4365 // PHIs where all control flow is uniform. We simply widen these PHIs. 4366 // Create a vector phi with no operands - the vector phi operands will be 4367 // set at the end of vector code generation. 4368 Type *VecTy = 4369 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4370 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4371 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4372 OrigPHIsToFix.push_back(P); 4373 4374 return; 4375 } 4376 4377 assert(PN->getParent() == OrigLoop->getHeader() && 4378 "Non-header phis should have been handled elsewhere"); 4379 4380 // In order to support recurrences we need to be able to vectorize Phi nodes. 4381 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4382 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4383 // this value when we vectorize all of the instructions that use the PHI. 4384 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4385 for (unsigned Part = 0; Part < UF; ++Part) { 4386 // This is phase one of vectorizing PHIs. 4387 bool ScalarPHI = 4388 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4389 Type *VecTy = 4390 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4391 Value *EntryPart = PHINode::Create( 4392 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4393 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4394 } 4395 return; 4396 } 4397 4398 setDebugLocFromInst(Builder, P); 4399 4400 // This PHINode must be an induction variable. 4401 // Make sure that we know about it. 4402 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4403 4404 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4405 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4406 4407 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4408 // which can be found from the original scalar operations. 4409 switch (II.getKind()) { 4410 case InductionDescriptor::IK_NoInduction: 4411 llvm_unreachable("Unknown induction"); 4412 case InductionDescriptor::IK_IntInduction: 4413 case InductionDescriptor::IK_FpInduction: 4414 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4415 case InductionDescriptor::IK_PtrInduction: { 4416 // Handle the pointer induction variable case. 4417 assert(P->getType()->isPointerTy() && "Unexpected type."); 4418 4419 if (Cost->isScalarAfterVectorization(P, VF)) { 4420 // This is the normalized GEP that starts counting at zero. 4421 Value *PtrInd = 4422 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4423 // Determine the number of scalars we need to generate for each unroll 4424 // iteration. If the instruction is uniform, we only need to generate the 4425 // first lane. Otherwise, we generate all VF values. 4426 unsigned Lanes = 4427 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4428 for (unsigned Part = 0; Part < UF; ++Part) { 4429 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4430 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4431 Lane + Part * VF.getKnownMinValue()); 4432 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4433 Value *SclrGep = 4434 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4435 SclrGep->setName("next.gep"); 4436 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4437 } 4438 } 4439 return; 4440 } 4441 assert(isa<SCEVConstant>(II.getStep()) && 4442 "Induction step not a SCEV constant!"); 4443 Type *PhiType = II.getStep()->getType(); 4444 4445 // Build a pointer phi 4446 Value *ScalarStartValue = II.getStartValue(); 4447 Type *ScStValueType = ScalarStartValue->getType(); 4448 PHINode *NewPointerPhi = 4449 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4450 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4451 4452 // A pointer induction, performed by using a gep 4453 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4454 Instruction *InductionLoc = LoopLatch->getTerminator(); 4455 const SCEV *ScalarStep = II.getStep(); 4456 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4457 Value *ScalarStepValue = 4458 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4459 Value *InductionGEP = GetElementPtrInst::Create( 4460 ScStValueType->getPointerElementType(), NewPointerPhi, 4461 Builder.CreateMul( 4462 ScalarStepValue, 4463 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4464 "ptr.ind", InductionLoc); 4465 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4466 4467 // Create UF many actual address geps that use the pointer 4468 // phi as base and a vectorized version of the step value 4469 // (<step*0, ..., step*N>) as offset. 4470 for (unsigned Part = 0; Part < UF; ++Part) { 4471 SmallVector<Constant *, 8> Indices; 4472 // Create a vector of consecutive numbers from zero to VF. 4473 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4474 Indices.push_back( 4475 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4476 Constant *StartOffset = ConstantVector::get(Indices); 4477 4478 Value *GEP = Builder.CreateGEP( 4479 ScStValueType->getPointerElementType(), NewPointerPhi, 4480 Builder.CreateMul( 4481 StartOffset, 4482 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4483 "vector.gep")); 4484 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4485 } 4486 } 4487 } 4488 } 4489 4490 /// A helper function for checking whether an integer division-related 4491 /// instruction may divide by zero (in which case it must be predicated if 4492 /// executed conditionally in the scalar code). 4493 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4494 /// Non-zero divisors that are non compile-time constants will not be 4495 /// converted into multiplication, so we will still end up scalarizing 4496 /// the division, but can do so w/o predication. 4497 static bool mayDivideByZero(Instruction &I) { 4498 assert((I.getOpcode() == Instruction::UDiv || 4499 I.getOpcode() == Instruction::SDiv || 4500 I.getOpcode() == Instruction::URem || 4501 I.getOpcode() == Instruction::SRem) && 4502 "Unexpected instruction"); 4503 Value *Divisor = I.getOperand(1); 4504 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4505 return !CInt || CInt->isZero(); 4506 } 4507 4508 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4509 VPTransformState &State) { 4510 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4511 switch (I.getOpcode()) { 4512 case Instruction::Call: 4513 case Instruction::Br: 4514 case Instruction::PHI: 4515 case Instruction::GetElementPtr: 4516 case Instruction::Select: 4517 llvm_unreachable("This instruction is handled by a different recipe."); 4518 case Instruction::UDiv: 4519 case Instruction::SDiv: 4520 case Instruction::SRem: 4521 case Instruction::URem: 4522 case Instruction::Add: 4523 case Instruction::FAdd: 4524 case Instruction::Sub: 4525 case Instruction::FSub: 4526 case Instruction::FNeg: 4527 case Instruction::Mul: 4528 case Instruction::FMul: 4529 case Instruction::FDiv: 4530 case Instruction::FRem: 4531 case Instruction::Shl: 4532 case Instruction::LShr: 4533 case Instruction::AShr: 4534 case Instruction::And: 4535 case Instruction::Or: 4536 case Instruction::Xor: { 4537 // Just widen unops and binops. 4538 setDebugLocFromInst(Builder, &I); 4539 4540 for (unsigned Part = 0; Part < UF; ++Part) { 4541 SmallVector<Value *, 2> Ops; 4542 for (VPValue *VPOp : User.operands()) 4543 Ops.push_back(State.get(VPOp, Part)); 4544 4545 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4546 4547 if (auto *VecOp = dyn_cast<Instruction>(V)) 4548 VecOp->copyIRFlags(&I); 4549 4550 // Use this vector value for all users of the original instruction. 4551 VectorLoopValueMap.setVectorValue(&I, Part, V); 4552 addMetadata(V, &I); 4553 } 4554 4555 break; 4556 } 4557 case Instruction::ICmp: 4558 case Instruction::FCmp: { 4559 // Widen compares. Generate vector compares. 4560 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4561 auto *Cmp = cast<CmpInst>(&I); 4562 setDebugLocFromInst(Builder, Cmp); 4563 for (unsigned Part = 0; Part < UF; ++Part) { 4564 Value *A = State.get(User.getOperand(0), Part); 4565 Value *B = State.get(User.getOperand(1), Part); 4566 Value *C = nullptr; 4567 if (FCmp) { 4568 // Propagate fast math flags. 4569 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4570 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4571 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4572 } else { 4573 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4574 } 4575 VectorLoopValueMap.setVectorValue(&I, Part, C); 4576 addMetadata(C, &I); 4577 } 4578 4579 break; 4580 } 4581 4582 case Instruction::ZExt: 4583 case Instruction::SExt: 4584 case Instruction::FPToUI: 4585 case Instruction::FPToSI: 4586 case Instruction::FPExt: 4587 case Instruction::PtrToInt: 4588 case Instruction::IntToPtr: 4589 case Instruction::SIToFP: 4590 case Instruction::UIToFP: 4591 case Instruction::Trunc: 4592 case Instruction::FPTrunc: 4593 case Instruction::BitCast: { 4594 auto *CI = cast<CastInst>(&I); 4595 setDebugLocFromInst(Builder, CI); 4596 4597 /// Vectorize casts. 4598 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4599 Type *DestTy = 4600 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4601 4602 for (unsigned Part = 0; Part < UF; ++Part) { 4603 Value *A = State.get(User.getOperand(0), Part); 4604 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4605 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4606 addMetadata(Cast, &I); 4607 } 4608 break; 4609 } 4610 default: 4611 // This instruction is not vectorized by simple widening. 4612 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4613 llvm_unreachable("Unhandled instruction!"); 4614 } // end of switch. 4615 } 4616 4617 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4618 VPTransformState &State) { 4619 assert(!isa<DbgInfoIntrinsic>(I) && 4620 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4621 setDebugLocFromInst(Builder, &I); 4622 4623 Module *M = I.getParent()->getParent()->getParent(); 4624 auto *CI = cast<CallInst>(&I); 4625 4626 SmallVector<Type *, 4> Tys; 4627 for (Value *ArgOperand : CI->arg_operands()) 4628 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4629 4630 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4631 4632 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4633 // version of the instruction. 4634 // Is it beneficial to perform intrinsic call compared to lib call? 4635 bool NeedToScalarize = false; 4636 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4637 bool UseVectorIntrinsic = 4638 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4639 assert((UseVectorIntrinsic || !NeedToScalarize) && 4640 "Instruction should be scalarized elsewhere."); 4641 4642 for (unsigned Part = 0; Part < UF; ++Part) { 4643 SmallVector<Value *, 4> Args; 4644 for (auto &I : enumerate(ArgOperands.operands())) { 4645 // Some intrinsics have a scalar argument - don't replace it with a 4646 // vector. 4647 Value *Arg; 4648 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4649 Arg = State.get(I.value(), Part); 4650 else 4651 Arg = State.get(I.value(), {0, 0}); 4652 Args.push_back(Arg); 4653 } 4654 4655 Function *VectorF; 4656 if (UseVectorIntrinsic) { 4657 // Use vector version of the intrinsic. 4658 Type *TysForDecl[] = {CI->getType()}; 4659 if (VF.isVector()) { 4660 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4661 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4662 } 4663 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4664 assert(VectorF && "Can't retrieve vector intrinsic."); 4665 } else { 4666 // Use vector version of the function call. 4667 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4668 #ifndef NDEBUG 4669 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4670 "Can't create vector function."); 4671 #endif 4672 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4673 } 4674 SmallVector<OperandBundleDef, 1> OpBundles; 4675 CI->getOperandBundlesAsDefs(OpBundles); 4676 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4677 4678 if (isa<FPMathOperator>(V)) 4679 V->copyFastMathFlags(CI); 4680 4681 VectorLoopValueMap.setVectorValue(&I, Part, V); 4682 addMetadata(V, &I); 4683 } 4684 } 4685 4686 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4687 VPUser &Operands, 4688 bool InvariantCond, 4689 VPTransformState &State) { 4690 setDebugLocFromInst(Builder, &I); 4691 4692 // The condition can be loop invariant but still defined inside the 4693 // loop. This means that we can't just use the original 'cond' value. 4694 // We have to take the 'vectorized' value and pick the first lane. 4695 // Instcombine will make this a no-op. 4696 auto *InvarCond = 4697 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4698 4699 for (unsigned Part = 0; Part < UF; ++Part) { 4700 Value *Cond = 4701 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4702 Value *Op0 = State.get(Operands.getOperand(1), Part); 4703 Value *Op1 = State.get(Operands.getOperand(2), Part); 4704 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4705 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4706 addMetadata(Sel, &I); 4707 } 4708 } 4709 4710 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4711 // We should not collect Scalars more than once per VF. Right now, this 4712 // function is called from collectUniformsAndScalars(), which already does 4713 // this check. Collecting Scalars for VF=1 does not make any sense. 4714 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4715 "This function should not be visited twice for the same VF"); 4716 4717 SmallSetVector<Instruction *, 8> Worklist; 4718 4719 // These sets are used to seed the analysis with pointers used by memory 4720 // accesses that will remain scalar. 4721 SmallSetVector<Instruction *, 8> ScalarPtrs; 4722 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4723 auto *Latch = TheLoop->getLoopLatch(); 4724 4725 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4726 // The pointer operands of loads and stores will be scalar as long as the 4727 // memory access is not a gather or scatter operation. The value operand of a 4728 // store will remain scalar if the store is scalarized. 4729 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4730 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4731 assert(WideningDecision != CM_Unknown && 4732 "Widening decision should be ready at this moment"); 4733 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4734 if (Ptr == Store->getValueOperand()) 4735 return WideningDecision == CM_Scalarize; 4736 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4737 "Ptr is neither a value or pointer operand"); 4738 return WideningDecision != CM_GatherScatter; 4739 }; 4740 4741 // A helper that returns true if the given value is a bitcast or 4742 // getelementptr instruction contained in the loop. 4743 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4744 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4745 isa<GetElementPtrInst>(V)) && 4746 !TheLoop->isLoopInvariant(V); 4747 }; 4748 4749 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4750 if (!isa<PHINode>(Ptr) || 4751 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4752 return false; 4753 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4754 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4755 return false; 4756 return isScalarUse(MemAccess, Ptr); 4757 }; 4758 4759 // A helper that evaluates a memory access's use of a pointer. If the 4760 // pointer is actually the pointer induction of a loop, it is being 4761 // inserted into Worklist. If the use will be a scalar use, and the 4762 // pointer is only used by memory accesses, we place the pointer in 4763 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4764 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4765 if (isScalarPtrInduction(MemAccess, Ptr)) { 4766 Worklist.insert(cast<Instruction>(Ptr)); 4767 Instruction *Update = cast<Instruction>( 4768 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4769 Worklist.insert(Update); 4770 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4771 << "\n"); 4772 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4773 << "\n"); 4774 return; 4775 } 4776 // We only care about bitcast and getelementptr instructions contained in 4777 // the loop. 4778 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4779 return; 4780 4781 // If the pointer has already been identified as scalar (e.g., if it was 4782 // also identified as uniform), there's nothing to do. 4783 auto *I = cast<Instruction>(Ptr); 4784 if (Worklist.count(I)) 4785 return; 4786 4787 // If the use of the pointer will be a scalar use, and all users of the 4788 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4789 // place the pointer in PossibleNonScalarPtrs. 4790 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4791 return isa<LoadInst>(U) || isa<StoreInst>(U); 4792 })) 4793 ScalarPtrs.insert(I); 4794 else 4795 PossibleNonScalarPtrs.insert(I); 4796 }; 4797 4798 // We seed the scalars analysis with three classes of instructions: (1) 4799 // instructions marked uniform-after-vectorization and (2) bitcast, 4800 // getelementptr and (pointer) phi instructions used by memory accesses 4801 // requiring a scalar use. 4802 // 4803 // (1) Add to the worklist all instructions that have been identified as 4804 // uniform-after-vectorization. 4805 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4806 4807 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4808 // memory accesses requiring a scalar use. The pointer operands of loads and 4809 // stores will be scalar as long as the memory accesses is not a gather or 4810 // scatter operation. The value operand of a store will remain scalar if the 4811 // store is scalarized. 4812 for (auto *BB : TheLoop->blocks()) 4813 for (auto &I : *BB) { 4814 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4815 evaluatePtrUse(Load, Load->getPointerOperand()); 4816 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4817 evaluatePtrUse(Store, Store->getPointerOperand()); 4818 evaluatePtrUse(Store, Store->getValueOperand()); 4819 } 4820 } 4821 for (auto *I : ScalarPtrs) 4822 if (!PossibleNonScalarPtrs.count(I)) { 4823 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4824 Worklist.insert(I); 4825 } 4826 4827 // Insert the forced scalars. 4828 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4829 // induction variable when the PHI user is scalarized. 4830 auto ForcedScalar = ForcedScalars.find(VF); 4831 if (ForcedScalar != ForcedScalars.end()) 4832 for (auto *I : ForcedScalar->second) 4833 Worklist.insert(I); 4834 4835 // Expand the worklist by looking through any bitcasts and getelementptr 4836 // instructions we've already identified as scalar. This is similar to the 4837 // expansion step in collectLoopUniforms(); however, here we're only 4838 // expanding to include additional bitcasts and getelementptr instructions. 4839 unsigned Idx = 0; 4840 while (Idx != Worklist.size()) { 4841 Instruction *Dst = Worklist[Idx++]; 4842 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4843 continue; 4844 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4845 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4846 auto *J = cast<Instruction>(U); 4847 return !TheLoop->contains(J) || Worklist.count(J) || 4848 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4849 isScalarUse(J, Src)); 4850 })) { 4851 Worklist.insert(Src); 4852 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4853 } 4854 } 4855 4856 // An induction variable will remain scalar if all users of the induction 4857 // variable and induction variable update remain scalar. 4858 for (auto &Induction : Legal->getInductionVars()) { 4859 auto *Ind = Induction.first; 4860 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4861 4862 // If tail-folding is applied, the primary induction variable will be used 4863 // to feed a vector compare. 4864 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4865 continue; 4866 4867 // Determine if all users of the induction variable are scalar after 4868 // vectorization. 4869 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4870 auto *I = cast<Instruction>(U); 4871 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4872 }); 4873 if (!ScalarInd) 4874 continue; 4875 4876 // Determine if all users of the induction variable update instruction are 4877 // scalar after vectorization. 4878 auto ScalarIndUpdate = 4879 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4880 auto *I = cast<Instruction>(U); 4881 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4882 }); 4883 if (!ScalarIndUpdate) 4884 continue; 4885 4886 // The induction variable and its update instruction will remain scalar. 4887 Worklist.insert(Ind); 4888 Worklist.insert(IndUpdate); 4889 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4890 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4891 << "\n"); 4892 } 4893 4894 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4895 } 4896 4897 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 4898 ElementCount VF) { 4899 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4900 if (!blockNeedsPredication(I->getParent())) 4901 return false; 4902 switch(I->getOpcode()) { 4903 default: 4904 break; 4905 case Instruction::Load: 4906 case Instruction::Store: { 4907 if (!Legal->isMaskRequired(I)) 4908 return false; 4909 auto *Ptr = getLoadStorePointerOperand(I); 4910 auto *Ty = getMemInstValueType(I); 4911 // We have already decided how to vectorize this instruction, get that 4912 // result. 4913 if (VF.isVector()) { 4914 InstWidening WideningDecision = getWideningDecision(I, VF); 4915 assert(WideningDecision != CM_Unknown && 4916 "Widening decision should be ready at this moment"); 4917 return WideningDecision == CM_Scalarize; 4918 } 4919 const Align Alignment = getLoadStoreAlignment(I); 4920 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4921 isLegalMaskedGather(Ty, Alignment)) 4922 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4923 isLegalMaskedScatter(Ty, Alignment)); 4924 } 4925 case Instruction::UDiv: 4926 case Instruction::SDiv: 4927 case Instruction::SRem: 4928 case Instruction::URem: 4929 return mayDivideByZero(*I); 4930 } 4931 return false; 4932 } 4933 4934 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4935 Instruction *I, ElementCount VF) { 4936 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4937 assert(getWideningDecision(I, VF) == CM_Unknown && 4938 "Decision should not be set yet."); 4939 auto *Group = getInterleavedAccessGroup(I); 4940 assert(Group && "Must have a group."); 4941 4942 // If the instruction's allocated size doesn't equal it's type size, it 4943 // requires padding and will be scalarized. 4944 auto &DL = I->getModule()->getDataLayout(); 4945 auto *ScalarTy = getMemInstValueType(I); 4946 if (hasIrregularType(ScalarTy, DL, VF)) 4947 return false; 4948 4949 // Check if masking is required. 4950 // A Group may need masking for one of two reasons: it resides in a block that 4951 // needs predication, or it was decided to use masking to deal with gaps. 4952 bool PredicatedAccessRequiresMasking = 4953 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4954 bool AccessWithGapsRequiresMasking = 4955 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4956 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4957 return true; 4958 4959 // If masked interleaving is required, we expect that the user/target had 4960 // enabled it, because otherwise it either wouldn't have been created or 4961 // it should have been invalidated by the CostModel. 4962 assert(useMaskedInterleavedAccesses(TTI) && 4963 "Masked interleave-groups for predicated accesses are not enabled."); 4964 4965 auto *Ty = getMemInstValueType(I); 4966 const Align Alignment = getLoadStoreAlignment(I); 4967 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4968 : TTI.isLegalMaskedStore(Ty, Alignment); 4969 } 4970 4971 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4972 Instruction *I, ElementCount VF) { 4973 // Get and ensure we have a valid memory instruction. 4974 LoadInst *LI = dyn_cast<LoadInst>(I); 4975 StoreInst *SI = dyn_cast<StoreInst>(I); 4976 assert((LI || SI) && "Invalid memory instruction"); 4977 4978 auto *Ptr = getLoadStorePointerOperand(I); 4979 4980 // In order to be widened, the pointer should be consecutive, first of all. 4981 if (!Legal->isConsecutivePtr(Ptr)) 4982 return false; 4983 4984 // If the instruction is a store located in a predicated block, it will be 4985 // scalarized. 4986 if (isScalarWithPredication(I)) 4987 return false; 4988 4989 // If the instruction's allocated size doesn't equal it's type size, it 4990 // requires padding and will be scalarized. 4991 auto &DL = I->getModule()->getDataLayout(); 4992 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4993 if (hasIrregularType(ScalarTy, DL, VF)) 4994 return false; 4995 4996 return true; 4997 } 4998 4999 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5000 // We should not collect Uniforms more than once per VF. Right now, 5001 // this function is called from collectUniformsAndScalars(), which 5002 // already does this check. Collecting Uniforms for VF=1 does not make any 5003 // sense. 5004 5005 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5006 "This function should not be visited twice for the same VF"); 5007 5008 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5009 // not analyze again. Uniforms.count(VF) will return 1. 5010 Uniforms[VF].clear(); 5011 5012 // We now know that the loop is vectorizable! 5013 // Collect instructions inside the loop that will remain uniform after 5014 // vectorization. 5015 5016 // Global values, params and instructions outside of current loop are out of 5017 // scope. 5018 auto isOutOfScope = [&](Value *V) -> bool { 5019 Instruction *I = dyn_cast<Instruction>(V); 5020 return (!I || !TheLoop->contains(I)); 5021 }; 5022 5023 SetVector<Instruction *> Worklist; 5024 BasicBlock *Latch = TheLoop->getLoopLatch(); 5025 5026 // Instructions that are scalar with predication must not be considered 5027 // uniform after vectorization, because that would create an erroneous 5028 // replicating region where only a single instance out of VF should be formed. 5029 // TODO: optimize such seldom cases if found important, see PR40816. 5030 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5031 if (isScalarWithPredication(I, VF)) { 5032 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5033 << *I << "\n"); 5034 return; 5035 } 5036 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5037 Worklist.insert(I); 5038 }; 5039 5040 // Start with the conditional branch. If the branch condition is an 5041 // instruction contained in the loop that is only used by the branch, it is 5042 // uniform. 5043 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5044 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5045 addToWorklistIfAllowed(Cmp); 5046 5047 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5048 // are pointers that are treated like consecutive pointers during 5049 // vectorization. The pointer operands of interleaved accesses are an 5050 // example. 5051 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5052 5053 // Holds pointer operands of instructions that are possibly non-uniform. 5054 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5055 5056 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5057 InstWidening WideningDecision = getWideningDecision(I, VF); 5058 assert(WideningDecision != CM_Unknown && 5059 "Widening decision should be ready at this moment"); 5060 5061 return (WideningDecision == CM_Widen || 5062 WideningDecision == CM_Widen_Reverse || 5063 WideningDecision == CM_Interleave); 5064 }; 5065 // Iterate over the instructions in the loop, and collect all 5066 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5067 // that a consecutive-like pointer operand will be scalarized, we collect it 5068 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5069 // getelementptr instruction can be used by both vectorized and scalarized 5070 // memory instructions. For example, if a loop loads and stores from the same 5071 // location, but the store is conditional, the store will be scalarized, and 5072 // the getelementptr won't remain uniform. 5073 for (auto *BB : TheLoop->blocks()) 5074 for (auto &I : *BB) { 5075 // If there's no pointer operand, there's nothing to do. 5076 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5077 if (!Ptr) 5078 continue; 5079 5080 // True if all users of Ptr are memory accesses that have Ptr as their 5081 // pointer operand. 5082 auto UsersAreMemAccesses = 5083 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5084 return getLoadStorePointerOperand(U) == Ptr; 5085 }); 5086 5087 // Ensure the memory instruction will not be scalarized or used by 5088 // gather/scatter, making its pointer operand non-uniform. If the pointer 5089 // operand is used by any instruction other than a memory access, we 5090 // conservatively assume the pointer operand may be non-uniform. 5091 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5092 PossibleNonUniformPtrs.insert(Ptr); 5093 5094 // If the memory instruction will be vectorized and its pointer operand 5095 // is consecutive-like, or interleaving - the pointer operand should 5096 // remain uniform. 5097 else 5098 ConsecutiveLikePtrs.insert(Ptr); 5099 } 5100 5101 // Add to the Worklist all consecutive and consecutive-like pointers that 5102 // aren't also identified as possibly non-uniform. 5103 for (auto *V : ConsecutiveLikePtrs) 5104 if (!PossibleNonUniformPtrs.count(V)) 5105 addToWorklistIfAllowed(V); 5106 5107 // Expand Worklist in topological order: whenever a new instruction 5108 // is added , its users should be already inside Worklist. It ensures 5109 // a uniform instruction will only be used by uniform instructions. 5110 unsigned idx = 0; 5111 while (idx != Worklist.size()) { 5112 Instruction *I = Worklist[idx++]; 5113 5114 for (auto OV : I->operand_values()) { 5115 // isOutOfScope operands cannot be uniform instructions. 5116 if (isOutOfScope(OV)) 5117 continue; 5118 // First order recurrence Phi's should typically be considered 5119 // non-uniform. 5120 auto *OP = dyn_cast<PHINode>(OV); 5121 if (OP && Legal->isFirstOrderRecurrence(OP)) 5122 continue; 5123 // If all the users of the operand are uniform, then add the 5124 // operand into the uniform worklist. 5125 auto *OI = cast<Instruction>(OV); 5126 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5127 auto *J = cast<Instruction>(U); 5128 return Worklist.count(J) || 5129 (OI == getLoadStorePointerOperand(J) && 5130 isUniformDecision(J, VF)); 5131 })) 5132 addToWorklistIfAllowed(OI); 5133 } 5134 } 5135 5136 // Returns true if Ptr is the pointer operand of a memory access instruction 5137 // I, and I is known to not require scalarization. 5138 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5139 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5140 }; 5141 5142 // For an instruction to be added into Worklist above, all its users inside 5143 // the loop should also be in Worklist. However, this condition cannot be 5144 // true for phi nodes that form a cyclic dependence. We must process phi 5145 // nodes separately. An induction variable will remain uniform if all users 5146 // of the induction variable and induction variable update remain uniform. 5147 // The code below handles both pointer and non-pointer induction variables. 5148 for (auto &Induction : Legal->getInductionVars()) { 5149 auto *Ind = Induction.first; 5150 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5151 5152 // Determine if all users of the induction variable are uniform after 5153 // vectorization. 5154 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5155 auto *I = cast<Instruction>(U); 5156 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5157 isVectorizedMemAccessUse(I, Ind); 5158 }); 5159 if (!UniformInd) 5160 continue; 5161 5162 // Determine if all users of the induction variable update instruction are 5163 // uniform after vectorization. 5164 auto UniformIndUpdate = 5165 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5166 auto *I = cast<Instruction>(U); 5167 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5168 isVectorizedMemAccessUse(I, IndUpdate); 5169 }); 5170 if (!UniformIndUpdate) 5171 continue; 5172 5173 // The induction variable and its update instruction will remain uniform. 5174 addToWorklistIfAllowed(Ind); 5175 addToWorklistIfAllowed(IndUpdate); 5176 } 5177 5178 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5179 } 5180 5181 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5182 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5183 5184 if (Legal->getRuntimePointerChecking()->Need) { 5185 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5186 "runtime pointer checks needed. Enable vectorization of this " 5187 "loop with '#pragma clang loop vectorize(enable)' when " 5188 "compiling with -Os/-Oz", 5189 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5190 return true; 5191 } 5192 5193 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5194 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5195 "runtime SCEV checks needed. Enable vectorization of this " 5196 "loop with '#pragma clang loop vectorize(enable)' when " 5197 "compiling with -Os/-Oz", 5198 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5199 return true; 5200 } 5201 5202 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5203 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5204 reportVectorizationFailure("Runtime stride check for small trip count", 5205 "runtime stride == 1 checks needed. Enable vectorization of " 5206 "this loop without such check by compiling with -Os/-Oz", 5207 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5208 return true; 5209 } 5210 5211 return false; 5212 } 5213 5214 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF, 5215 unsigned UserIC) { 5216 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5217 // TODO: It may by useful to do since it's still likely to be dynamically 5218 // uniform if the target can skip. 5219 reportVectorizationFailure( 5220 "Not inserting runtime ptr check for divergent target", 5221 "runtime pointer checks needed. Not enabled for divergent target", 5222 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5223 return None; 5224 } 5225 5226 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5227 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5228 if (TC == 1) { 5229 reportVectorizationFailure("Single iteration (non) loop", 5230 "loop trip count is one, irrelevant for vectorization", 5231 "SingleIterationLoop", ORE, TheLoop); 5232 return None; 5233 } 5234 5235 switch (ScalarEpilogueStatus) { 5236 case CM_ScalarEpilogueAllowed: 5237 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 5238 case CM_ScalarEpilogueNotNeededUsePredicate: 5239 LLVM_DEBUG( 5240 dbgs() << "LV: vector predicate hint/switch found.\n" 5241 << "LV: Not allowing scalar epilogue, creating predicated " 5242 << "vector loop.\n"); 5243 break; 5244 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5245 // fallthrough as a special case of OptForSize 5246 case CM_ScalarEpilogueNotAllowedOptSize: 5247 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5248 LLVM_DEBUG( 5249 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5250 else 5251 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5252 << "count.\n"); 5253 5254 // Bail if runtime checks are required, which are not good when optimising 5255 // for size. 5256 if (runtimeChecksRequired()) 5257 return None; 5258 break; 5259 } 5260 5261 // Now try the tail folding 5262 5263 // Invalidate interleave groups that require an epilogue if we can't mask 5264 // the interleave-group. 5265 if (!useMaskedInterleavedAccesses(TTI)) { 5266 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5267 "No decisions should have been taken at this point"); 5268 // Note: There is no need to invalidate any cost modeling decisions here, as 5269 // non where taken so far. 5270 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5271 } 5272 5273 unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5274 assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2"); 5275 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF; 5276 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5277 // Accept MaxVF if we do not have a tail. 5278 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5279 return MaxVF; 5280 } 5281 5282 // If we don't know the precise trip count, or if the trip count that we 5283 // found modulo the vectorization factor is not zero, try to fold the tail 5284 // by masking. 5285 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5286 if (Legal->prepareToFoldTailByMasking()) { 5287 FoldTailByMasking = true; 5288 return MaxVF; 5289 } 5290 5291 // If there was a tail-folding hint/switch, but we can't fold the tail by 5292 // masking, fallback to a vectorization with a scalar epilogue. 5293 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5294 if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) { 5295 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5296 return None; 5297 } 5298 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5299 "scalar epilogue instead.\n"); 5300 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5301 return MaxVF; 5302 } 5303 5304 if (TC == 0) { 5305 reportVectorizationFailure( 5306 "Unable to calculate the loop count due to complex control flow", 5307 "unable to calculate the loop count due to complex control flow", 5308 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5309 return None; 5310 } 5311 5312 reportVectorizationFailure( 5313 "Cannot optimize for size and vectorize at the same time.", 5314 "cannot optimize for size and vectorize at the same time. " 5315 "Enable vectorization of this loop with '#pragma clang loop " 5316 "vectorize(enable)' when compiling with -Os/-Oz", 5317 "NoTailLoopWithOptForSize", ORE, TheLoop); 5318 return None; 5319 } 5320 5321 unsigned 5322 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5323 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5324 unsigned SmallestType, WidestType; 5325 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5326 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5327 5328 // Get the maximum safe dependence distance in bits computed by LAA. 5329 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5330 // the memory accesses that is most restrictive (involved in the smallest 5331 // dependence distance). 5332 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5333 5334 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5335 5336 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5337 // Note that both WidestRegister and WidestType may not be a powers of 2. 5338 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5339 5340 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5341 << " / " << WidestType << " bits.\n"); 5342 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5343 << WidestRegister << " bits.\n"); 5344 5345 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5346 " into one vector!"); 5347 if (MaxVectorSize == 0) { 5348 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5349 MaxVectorSize = 1; 5350 return MaxVectorSize; 5351 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5352 isPowerOf2_32(ConstTripCount)) { 5353 // We need to clamp the VF to be the ConstTripCount. There is no point in 5354 // choosing a higher viable VF as done in the loop below. 5355 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5356 << ConstTripCount << "\n"); 5357 MaxVectorSize = ConstTripCount; 5358 return MaxVectorSize; 5359 } 5360 5361 unsigned MaxVF = MaxVectorSize; 5362 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5363 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5364 // Collect all viable vectorization factors larger than the default MaxVF 5365 // (i.e. MaxVectorSize). 5366 SmallVector<ElementCount, 8> VFs; 5367 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5368 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5369 VFs.push_back(ElementCount::getFixed(VS)); 5370 5371 // For each VF calculate its register usage. 5372 auto RUs = calculateRegisterUsage(VFs); 5373 5374 // Select the largest VF which doesn't require more registers than existing 5375 // ones. 5376 for (int i = RUs.size() - 1; i >= 0; --i) { 5377 bool Selected = true; 5378 for (auto& pair : RUs[i].MaxLocalUsers) { 5379 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5380 if (pair.second > TargetNumRegisters) 5381 Selected = false; 5382 } 5383 if (Selected) { 5384 MaxVF = VFs[i].getKnownMinValue(); 5385 break; 5386 } 5387 } 5388 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5389 if (MaxVF < MinVF) { 5390 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5391 << ") with target's minimum: " << MinVF << '\n'); 5392 MaxVF = MinVF; 5393 } 5394 } 5395 } 5396 return MaxVF; 5397 } 5398 5399 VectorizationFactor 5400 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5401 float Cost = expectedCost(ElementCount::getFixed(1)).first; 5402 const float ScalarCost = Cost; 5403 unsigned Width = 1; 5404 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5405 5406 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5407 if (ForceVectorization && MaxVF > 1) { 5408 // Ignore scalar width, because the user explicitly wants vectorization. 5409 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5410 // evaluation. 5411 Cost = std::numeric_limits<float>::max(); 5412 } 5413 5414 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5415 // Notice that the vector loop needs to be executed less times, so 5416 // we need to divide the cost of the vector loops by the width of 5417 // the vector elements. 5418 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5419 float VectorCost = C.first / (float)i; 5420 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5421 << " costs: " << (int)VectorCost << ".\n"); 5422 if (!C.second && !ForceVectorization) { 5423 LLVM_DEBUG( 5424 dbgs() << "LV: Not considering vector loop of width " << i 5425 << " because it will not generate any vector instructions.\n"); 5426 continue; 5427 } 5428 if (VectorCost < Cost) { 5429 Cost = VectorCost; 5430 Width = i; 5431 } 5432 } 5433 5434 if (!EnableCondStoresVectorization && NumPredStores) { 5435 reportVectorizationFailure("There are conditional stores.", 5436 "store that is conditionally executed prevents vectorization", 5437 "ConditionalStore", ORE, TheLoop); 5438 Width = 1; 5439 Cost = ScalarCost; 5440 } 5441 5442 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5443 << "LV: Vectorization seems to be not beneficial, " 5444 << "but was forced by a user.\n"); 5445 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5446 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5447 (unsigned)(Width * Cost)}; 5448 return Factor; 5449 } 5450 5451 std::pair<unsigned, unsigned> 5452 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5453 unsigned MinWidth = -1U; 5454 unsigned MaxWidth = 8; 5455 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5456 5457 // For each block. 5458 for (BasicBlock *BB : TheLoop->blocks()) { 5459 // For each instruction in the loop. 5460 for (Instruction &I : BB->instructionsWithoutDebug()) { 5461 Type *T = I.getType(); 5462 5463 // Skip ignored values. 5464 if (ValuesToIgnore.count(&I)) 5465 continue; 5466 5467 // Only examine Loads, Stores and PHINodes. 5468 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5469 continue; 5470 5471 // Examine PHI nodes that are reduction variables. Update the type to 5472 // account for the recurrence type. 5473 if (auto *PN = dyn_cast<PHINode>(&I)) { 5474 if (!Legal->isReductionVariable(PN)) 5475 continue; 5476 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5477 T = RdxDesc.getRecurrenceType(); 5478 } 5479 5480 // Examine the stored values. 5481 if (auto *ST = dyn_cast<StoreInst>(&I)) 5482 T = ST->getValueOperand()->getType(); 5483 5484 // Ignore loaded pointer types and stored pointer types that are not 5485 // vectorizable. 5486 // 5487 // FIXME: The check here attempts to predict whether a load or store will 5488 // be vectorized. We only know this for certain after a VF has 5489 // been selected. Here, we assume that if an access can be 5490 // vectorized, it will be. We should also look at extending this 5491 // optimization to non-pointer types. 5492 // 5493 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5494 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5495 continue; 5496 5497 MinWidth = std::min(MinWidth, 5498 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5499 MaxWidth = std::max(MaxWidth, 5500 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5501 } 5502 } 5503 5504 return {MinWidth, MaxWidth}; 5505 } 5506 5507 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5508 unsigned LoopCost) { 5509 // -- The interleave heuristics -- 5510 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5511 // There are many micro-architectural considerations that we can't predict 5512 // at this level. For example, frontend pressure (on decode or fetch) due to 5513 // code size, or the number and capabilities of the execution ports. 5514 // 5515 // We use the following heuristics to select the interleave count: 5516 // 1. If the code has reductions, then we interleave to break the cross 5517 // iteration dependency. 5518 // 2. If the loop is really small, then we interleave to reduce the loop 5519 // overhead. 5520 // 3. We don't interleave if we think that we will spill registers to memory 5521 // due to the increased register pressure. 5522 5523 if (!isScalarEpilogueAllowed()) 5524 return 1; 5525 5526 // We used the distance for the interleave count. 5527 if (Legal->getMaxSafeDepDistBytes() != -1U) 5528 return 1; 5529 5530 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5531 const bool HasReductions = !Legal->getReductionVars().empty(); 5532 // Do not interleave loops with a relatively small known or estimated trip 5533 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5534 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5535 // because with the above conditions interleaving can expose ILP and break 5536 // cross iteration dependences for reductions. 5537 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5538 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5539 return 1; 5540 5541 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5542 // We divide by these constants so assume that we have at least one 5543 // instruction that uses at least one register. 5544 for (auto& pair : R.MaxLocalUsers) { 5545 pair.second = std::max(pair.second, 1U); 5546 } 5547 5548 // We calculate the interleave count using the following formula. 5549 // Subtract the number of loop invariants from the number of available 5550 // registers. These registers are used by all of the interleaved instances. 5551 // Next, divide the remaining registers by the number of registers that is 5552 // required by the loop, in order to estimate how many parallel instances 5553 // fit without causing spills. All of this is rounded down if necessary to be 5554 // a power of two. We want power of two interleave count to simplify any 5555 // addressing operations or alignment considerations. 5556 // We also want power of two interleave counts to ensure that the induction 5557 // variable of the vector loop wraps to zero, when tail is folded by masking; 5558 // this currently happens when OptForSize, in which case IC is set to 1 above. 5559 unsigned IC = UINT_MAX; 5560 5561 for (auto& pair : R.MaxLocalUsers) { 5562 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5563 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5564 << " registers of " 5565 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5566 if (VF.isScalar()) { 5567 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5568 TargetNumRegisters = ForceTargetNumScalarRegs; 5569 } else { 5570 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5571 TargetNumRegisters = ForceTargetNumVectorRegs; 5572 } 5573 unsigned MaxLocalUsers = pair.second; 5574 unsigned LoopInvariantRegs = 0; 5575 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5576 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5577 5578 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5579 // Don't count the induction variable as interleaved. 5580 if (EnableIndVarRegisterHeur) { 5581 TmpIC = 5582 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5583 std::max(1U, (MaxLocalUsers - 1))); 5584 } 5585 5586 IC = std::min(IC, TmpIC); 5587 } 5588 5589 // Clamp the interleave ranges to reasonable counts. 5590 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5591 unsigned MaxInterleaveCount = 5592 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5593 5594 // Check if the user has overridden the max. 5595 if (VF.isScalar()) { 5596 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5597 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5598 } else { 5599 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5600 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5601 } 5602 5603 // If trip count is known or estimated compile time constant, limit the 5604 // interleave count to be less than the trip count divided by VF. 5605 if (BestKnownTC) { 5606 MaxInterleaveCount = 5607 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5608 } 5609 5610 // If we did not calculate the cost for VF (because the user selected the VF) 5611 // then we calculate the cost of VF here. 5612 if (LoopCost == 0) 5613 LoopCost = expectedCost(VF).first; 5614 5615 assert(LoopCost && "Non-zero loop cost expected"); 5616 5617 // Clamp the calculated IC to be between the 1 and the max interleave count 5618 // that the target and trip count allows. 5619 if (IC > MaxInterleaveCount) 5620 IC = MaxInterleaveCount; 5621 else if (IC < 1) 5622 IC = 1; 5623 5624 // Interleave if we vectorized this loop and there is a reduction that could 5625 // benefit from interleaving. 5626 if (VF.isVector() && HasReductions) { 5627 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5628 return IC; 5629 } 5630 5631 // Note that if we've already vectorized the loop we will have done the 5632 // runtime check and so interleaving won't require further checks. 5633 bool InterleavingRequiresRuntimePointerCheck = 5634 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5635 5636 // We want to interleave small loops in order to reduce the loop overhead and 5637 // potentially expose ILP opportunities. 5638 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5639 << "LV: IC is " << IC << '\n' 5640 << "LV: VF is " << VF.getKnownMinValue() << '\n'); 5641 const bool AggressivelyInterleaveReductions = 5642 TTI.enableAggressiveInterleaving(HasReductions); 5643 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5644 // We assume that the cost overhead is 1 and we use the cost model 5645 // to estimate the cost of the loop and interleave until the cost of the 5646 // loop overhead is about 5% of the cost of the loop. 5647 unsigned SmallIC = 5648 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5649 5650 // Interleave until store/load ports (estimated by max interleave count) are 5651 // saturated. 5652 unsigned NumStores = Legal->getNumStores(); 5653 unsigned NumLoads = Legal->getNumLoads(); 5654 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5655 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5656 5657 // If we have a scalar reduction (vector reductions are already dealt with 5658 // by this point), we can increase the critical path length if the loop 5659 // we're interleaving is inside another loop. Limit, by default to 2, so the 5660 // critical path only gets increased by one reduction operation. 5661 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5662 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5663 SmallIC = std::min(SmallIC, F); 5664 StoresIC = std::min(StoresIC, F); 5665 LoadsIC = std::min(LoadsIC, F); 5666 } 5667 5668 if (EnableLoadStoreRuntimeInterleave && 5669 std::max(StoresIC, LoadsIC) > SmallIC) { 5670 LLVM_DEBUG( 5671 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5672 return std::max(StoresIC, LoadsIC); 5673 } 5674 5675 // If there are scalar reductions and TTI has enabled aggressive 5676 // interleaving for reductions, we will interleave to expose ILP. 5677 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5678 AggressivelyInterleaveReductions) { 5679 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5680 // Interleave no less than SmallIC but not as aggressive as the normal IC 5681 // to satisfy the rare situation when resources are too limited. 5682 return std::max(IC / 2, SmallIC); 5683 } else { 5684 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5685 return SmallIC; 5686 } 5687 } 5688 5689 // Interleave if this is a large loop (small loops are already dealt with by 5690 // this point) that could benefit from interleaving. 5691 if (AggressivelyInterleaveReductions) { 5692 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5693 return IC; 5694 } 5695 5696 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5697 return 1; 5698 } 5699 5700 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5701 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5702 // This function calculates the register usage by measuring the highest number 5703 // of values that are alive at a single location. Obviously, this is a very 5704 // rough estimation. We scan the loop in a topological order in order and 5705 // assign a number to each instruction. We use RPO to ensure that defs are 5706 // met before their users. We assume that each instruction that has in-loop 5707 // users starts an interval. We record every time that an in-loop value is 5708 // used, so we have a list of the first and last occurrences of each 5709 // instruction. Next, we transpose this data structure into a multi map that 5710 // holds the list of intervals that *end* at a specific location. This multi 5711 // map allows us to perform a linear search. We scan the instructions linearly 5712 // and record each time that a new interval starts, by placing it in a set. 5713 // If we find this value in the multi-map then we remove it from the set. 5714 // The max register usage is the maximum size of the set. 5715 // We also search for instructions that are defined outside the loop, but are 5716 // used inside the loop. We need this number separately from the max-interval 5717 // usage number because when we unroll, loop-invariant values do not take 5718 // more register. 5719 LoopBlocksDFS DFS(TheLoop); 5720 DFS.perform(LI); 5721 5722 RegisterUsage RU; 5723 5724 // Each 'key' in the map opens a new interval. The values 5725 // of the map are the index of the 'last seen' usage of the 5726 // instruction that is the key. 5727 using IntervalMap = DenseMap<Instruction *, unsigned>; 5728 5729 // Maps instruction to its index. 5730 SmallVector<Instruction *, 64> IdxToInstr; 5731 // Marks the end of each interval. 5732 IntervalMap EndPoint; 5733 // Saves the list of instruction indices that are used in the loop. 5734 SmallPtrSet<Instruction *, 8> Ends; 5735 // Saves the list of values that are used in the loop but are 5736 // defined outside the loop, such as arguments and constants. 5737 SmallPtrSet<Value *, 8> LoopInvariants; 5738 5739 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5740 for (Instruction &I : BB->instructionsWithoutDebug()) { 5741 IdxToInstr.push_back(&I); 5742 5743 // Save the end location of each USE. 5744 for (Value *U : I.operands()) { 5745 auto *Instr = dyn_cast<Instruction>(U); 5746 5747 // Ignore non-instruction values such as arguments, constants, etc. 5748 if (!Instr) 5749 continue; 5750 5751 // If this instruction is outside the loop then record it and continue. 5752 if (!TheLoop->contains(Instr)) { 5753 LoopInvariants.insert(Instr); 5754 continue; 5755 } 5756 5757 // Overwrite previous end points. 5758 EndPoint[Instr] = IdxToInstr.size(); 5759 Ends.insert(Instr); 5760 } 5761 } 5762 } 5763 5764 // Saves the list of intervals that end with the index in 'key'. 5765 using InstrList = SmallVector<Instruction *, 2>; 5766 DenseMap<unsigned, InstrList> TransposeEnds; 5767 5768 // Transpose the EndPoints to a list of values that end at each index. 5769 for (auto &Interval : EndPoint) 5770 TransposeEnds[Interval.second].push_back(Interval.first); 5771 5772 SmallPtrSet<Instruction *, 8> OpenIntervals; 5773 5774 // Get the size of the widest register. 5775 unsigned MaxSafeDepDist = -1U; 5776 if (Legal->getMaxSafeDepDistBytes() != -1U) 5777 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5778 unsigned WidestRegister = 5779 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5780 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5781 5782 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5783 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5784 5785 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5786 5787 // A lambda that gets the register usage for the given type and VF. 5788 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, ElementCount VF) { 5789 if (Ty->isTokenTy()) 5790 return 0U; 5791 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5792 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5793 return std::max<unsigned>(1, VF.getKnownMinValue() * TypeSize / 5794 WidestRegister); 5795 }; 5796 5797 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5798 Instruction *I = IdxToInstr[i]; 5799 5800 // Remove all of the instructions that end at this location. 5801 InstrList &List = TransposeEnds[i]; 5802 for (Instruction *ToRemove : List) 5803 OpenIntervals.erase(ToRemove); 5804 5805 // Ignore instructions that are never used within the loop. 5806 if (!Ends.count(I)) 5807 continue; 5808 5809 // Skip ignored values. 5810 if (ValuesToIgnore.count(I)) 5811 continue; 5812 5813 // For each VF find the maximum usage of registers. 5814 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5815 // Count the number of live intervals. 5816 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5817 5818 if (VFs[j].isScalar()) { 5819 for (auto Inst : OpenIntervals) { 5820 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5821 if (RegUsage.find(ClassID) == RegUsage.end()) 5822 RegUsage[ClassID] = 1; 5823 else 5824 RegUsage[ClassID] += 1; 5825 } 5826 } else { 5827 collectUniformsAndScalars(VFs[j]); 5828 for (auto Inst : OpenIntervals) { 5829 // Skip ignored values for VF > 1. 5830 if (VecValuesToIgnore.count(Inst)) 5831 continue; 5832 if (isScalarAfterVectorization(Inst, VFs[j])) { 5833 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5834 if (RegUsage.find(ClassID) == RegUsage.end()) 5835 RegUsage[ClassID] = 1; 5836 else 5837 RegUsage[ClassID] += 1; 5838 } else { 5839 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5840 if (RegUsage.find(ClassID) == RegUsage.end()) 5841 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5842 else 5843 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5844 } 5845 } 5846 } 5847 5848 for (auto& pair : RegUsage) { 5849 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5850 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5851 else 5852 MaxUsages[j][pair.first] = pair.second; 5853 } 5854 } 5855 5856 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5857 << OpenIntervals.size() << '\n'); 5858 5859 // Add the current instruction to the list of open intervals. 5860 OpenIntervals.insert(I); 5861 } 5862 5863 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5864 SmallMapVector<unsigned, unsigned, 4> Invariant; 5865 5866 for (auto Inst : LoopInvariants) { 5867 unsigned Usage = 5868 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5869 unsigned ClassID = 5870 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 5871 if (Invariant.find(ClassID) == Invariant.end()) 5872 Invariant[ClassID] = Usage; 5873 else 5874 Invariant[ClassID] += Usage; 5875 } 5876 5877 LLVM_DEBUG({ 5878 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5879 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5880 << " item\n"; 5881 for (const auto &pair : MaxUsages[i]) { 5882 dbgs() << "LV(REG): RegisterClass: " 5883 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5884 << " registers\n"; 5885 } 5886 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5887 << " item\n"; 5888 for (const auto &pair : Invariant) { 5889 dbgs() << "LV(REG): RegisterClass: " 5890 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5891 << " registers\n"; 5892 } 5893 }); 5894 5895 RU.LoopInvariantRegs = Invariant; 5896 RU.MaxLocalUsers = MaxUsages[i]; 5897 RUs[i] = RU; 5898 } 5899 5900 return RUs; 5901 } 5902 5903 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5904 // TODO: Cost model for emulated masked load/store is completely 5905 // broken. This hack guides the cost model to use an artificially 5906 // high enough value to practically disable vectorization with such 5907 // operations, except where previously deployed legality hack allowed 5908 // using very low cost values. This is to avoid regressions coming simply 5909 // from moving "masked load/store" check from legality to cost model. 5910 // Masked Load/Gather emulation was previously never allowed. 5911 // Limited number of Masked Store/Scatter emulation was allowed. 5912 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5913 return isa<LoadInst>(I) || 5914 (isa<StoreInst>(I) && 5915 NumPredStores > NumberOfStoresToPredicate); 5916 } 5917 5918 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 5919 // If we aren't vectorizing the loop, or if we've already collected the 5920 // instructions to scalarize, there's nothing to do. Collection may already 5921 // have occurred if we have a user-selected VF and are now computing the 5922 // expected cost for interleaving. 5923 if (VF.isScalar() || VF.isZero() || 5924 InstsToScalarize.find(VF) != InstsToScalarize.end()) 5925 return; 5926 5927 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5928 // not profitable to scalarize any instructions, the presence of VF in the 5929 // map will indicate that we've analyzed it already. 5930 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5931 5932 // Find all the instructions that are scalar with predication in the loop and 5933 // determine if it would be better to not if-convert the blocks they are in. 5934 // If so, we also record the instructions to scalarize. 5935 for (BasicBlock *BB : TheLoop->blocks()) { 5936 if (!blockNeedsPredication(BB)) 5937 continue; 5938 for (Instruction &I : *BB) 5939 if (isScalarWithPredication(&I)) { 5940 ScalarCostsTy ScalarCosts; 5941 // Do not apply discount logic if hacked cost is needed 5942 // for emulated masked memrefs. 5943 if (!useEmulatedMaskMemRefHack(&I) && 5944 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5945 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5946 // Remember that BB will remain after vectorization. 5947 PredicatedBBsAfterVectorization.insert(BB); 5948 } 5949 } 5950 } 5951 5952 int LoopVectorizationCostModel::computePredInstDiscount( 5953 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5954 ElementCount VF) { 5955 assert(!isUniformAfterVectorization(PredInst, VF) && 5956 "Instruction marked uniform-after-vectorization will be predicated"); 5957 5958 // Initialize the discount to zero, meaning that the scalar version and the 5959 // vector version cost the same. 5960 int Discount = 0; 5961 5962 // Holds instructions to analyze. The instructions we visit are mapped in 5963 // ScalarCosts. Those instructions are the ones that would be scalarized if 5964 // we find that the scalar version costs less. 5965 SmallVector<Instruction *, 8> Worklist; 5966 5967 // Returns true if the given instruction can be scalarized. 5968 auto canBeScalarized = [&](Instruction *I) -> bool { 5969 // We only attempt to scalarize instructions forming a single-use chain 5970 // from the original predicated block that would otherwise be vectorized. 5971 // Although not strictly necessary, we give up on instructions we know will 5972 // already be scalar to avoid traversing chains that are unlikely to be 5973 // beneficial. 5974 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5975 isScalarAfterVectorization(I, VF)) 5976 return false; 5977 5978 // If the instruction is scalar with predication, it will be analyzed 5979 // separately. We ignore it within the context of PredInst. 5980 if (isScalarWithPredication(I)) 5981 return false; 5982 5983 // If any of the instruction's operands are uniform after vectorization, 5984 // the instruction cannot be scalarized. This prevents, for example, a 5985 // masked load from being scalarized. 5986 // 5987 // We assume we will only emit a value for lane zero of an instruction 5988 // marked uniform after vectorization, rather than VF identical values. 5989 // Thus, if we scalarize an instruction that uses a uniform, we would 5990 // create uses of values corresponding to the lanes we aren't emitting code 5991 // for. This behavior can be changed by allowing getScalarValue to clone 5992 // the lane zero values for uniforms rather than asserting. 5993 for (Use &U : I->operands()) 5994 if (auto *J = dyn_cast<Instruction>(U.get())) 5995 if (isUniformAfterVectorization(J, VF)) 5996 return false; 5997 5998 // Otherwise, we can scalarize the instruction. 5999 return true; 6000 }; 6001 6002 // Compute the expected cost discount from scalarizing the entire expression 6003 // feeding the predicated instruction. We currently only consider expressions 6004 // that are single-use instruction chains. 6005 Worklist.push_back(PredInst); 6006 while (!Worklist.empty()) { 6007 Instruction *I = Worklist.pop_back_val(); 6008 6009 // If we've already analyzed the instruction, there's nothing to do. 6010 if (ScalarCosts.find(I) != ScalarCosts.end()) 6011 continue; 6012 6013 // Compute the cost of the vector instruction. Note that this cost already 6014 // includes the scalarization overhead of the predicated instruction. 6015 unsigned VectorCost = getInstructionCost(I, VF).first; 6016 6017 // Compute the cost of the scalarized instruction. This cost is the cost of 6018 // the instruction as if it wasn't if-converted and instead remained in the 6019 // predicated block. We will scale this cost by block probability after 6020 // computing the scalarization overhead. 6021 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6022 unsigned ScalarCost = 6023 VF.getKnownMinValue() * 6024 getInstructionCost(I, ElementCount::getFixed(1)).first; 6025 6026 // Compute the scalarization overhead of needed insertelement instructions 6027 // and phi nodes. 6028 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6029 ScalarCost += TTI.getScalarizationOverhead( 6030 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6031 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6032 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6033 ScalarCost += 6034 VF.getKnownMinValue() * 6035 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6036 } 6037 6038 // Compute the scalarization overhead of needed extractelement 6039 // instructions. For each of the instruction's operands, if the operand can 6040 // be scalarized, add it to the worklist; otherwise, account for the 6041 // overhead. 6042 for (Use &U : I->operands()) 6043 if (auto *J = dyn_cast<Instruction>(U.get())) { 6044 assert(VectorType::isValidElementType(J->getType()) && 6045 "Instruction has non-scalar type"); 6046 if (canBeScalarized(J)) 6047 Worklist.push_back(J); 6048 else if (needsExtract(J, VF)) { 6049 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6050 ScalarCost += TTI.getScalarizationOverhead( 6051 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6052 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6053 } 6054 } 6055 6056 // Scale the total scalar cost by block probability. 6057 ScalarCost /= getReciprocalPredBlockProb(); 6058 6059 // Compute the discount. A non-negative discount means the vector version 6060 // of the instruction costs more, and scalarizing would be beneficial. 6061 Discount += VectorCost - ScalarCost; 6062 ScalarCosts[I] = ScalarCost; 6063 } 6064 6065 return Discount; 6066 } 6067 6068 LoopVectorizationCostModel::VectorizationCostTy 6069 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6070 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6071 VectorizationCostTy Cost; 6072 6073 // For each block. 6074 for (BasicBlock *BB : TheLoop->blocks()) { 6075 VectorizationCostTy BlockCost; 6076 6077 // For each instruction in the old loop. 6078 for (Instruction &I : BB->instructionsWithoutDebug()) { 6079 // Skip ignored values. 6080 if (ValuesToIgnore.count(&I) || 6081 (VF.isVector() && VecValuesToIgnore.count(&I))) 6082 continue; 6083 6084 VectorizationCostTy C = getInstructionCost(&I, VF); 6085 6086 // Check if we should override the cost. 6087 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6088 C.first = ForceTargetInstructionCost; 6089 6090 BlockCost.first += C.first; 6091 BlockCost.second |= C.second; 6092 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6093 << " for VF " << VF << " For instruction: " << I 6094 << '\n'); 6095 } 6096 6097 // If we are vectorizing a predicated block, it will have been 6098 // if-converted. This means that the block's instructions (aside from 6099 // stores and instructions that may divide by zero) will now be 6100 // unconditionally executed. For the scalar case, we may not always execute 6101 // the predicated block. Thus, scale the block's cost by the probability of 6102 // executing it. 6103 if (VF.isScalar() && blockNeedsPredication(BB)) 6104 BlockCost.first /= getReciprocalPredBlockProb(); 6105 6106 Cost.first += BlockCost.first; 6107 Cost.second |= BlockCost.second; 6108 } 6109 6110 return Cost; 6111 } 6112 6113 /// Gets Address Access SCEV after verifying that the access pattern 6114 /// is loop invariant except the induction variable dependence. 6115 /// 6116 /// This SCEV can be sent to the Target in order to estimate the address 6117 /// calculation cost. 6118 static const SCEV *getAddressAccessSCEV( 6119 Value *Ptr, 6120 LoopVectorizationLegality *Legal, 6121 PredicatedScalarEvolution &PSE, 6122 const Loop *TheLoop) { 6123 6124 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6125 if (!Gep) 6126 return nullptr; 6127 6128 // We are looking for a gep with all loop invariant indices except for one 6129 // which should be an induction variable. 6130 auto SE = PSE.getSE(); 6131 unsigned NumOperands = Gep->getNumOperands(); 6132 for (unsigned i = 1; i < NumOperands; ++i) { 6133 Value *Opd = Gep->getOperand(i); 6134 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6135 !Legal->isInductionVariable(Opd)) 6136 return nullptr; 6137 } 6138 6139 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6140 return PSE.getSCEV(Ptr); 6141 } 6142 6143 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6144 return Legal->hasStride(I->getOperand(0)) || 6145 Legal->hasStride(I->getOperand(1)); 6146 } 6147 6148 unsigned 6149 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6150 ElementCount VF) { 6151 assert(VF.isVector() && 6152 "Scalarization cost of instruction implies vectorization."); 6153 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6154 Type *ValTy = getMemInstValueType(I); 6155 auto SE = PSE.getSE(); 6156 6157 unsigned AS = getLoadStoreAddressSpace(I); 6158 Value *Ptr = getLoadStorePointerOperand(I); 6159 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6160 6161 // Figure out whether the access is strided and get the stride value 6162 // if it's known in compile time 6163 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6164 6165 // Get the cost of the scalar memory instruction and address computation. 6166 unsigned Cost = 6167 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6168 6169 // Don't pass *I here, since it is scalar but will actually be part of a 6170 // vectorized loop where the user of it is a vectorized instruction. 6171 const Align Alignment = getLoadStoreAlignment(I); 6172 Cost += VF.getKnownMinValue() * 6173 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6174 AS, TTI::TCK_RecipThroughput); 6175 6176 // Get the overhead of the extractelement and insertelement instructions 6177 // we might create due to scalarization. 6178 Cost += getScalarizationOverhead(I, VF); 6179 6180 // If we have a predicated store, it may not be executed for each vector 6181 // lane. Scale the cost by the probability of executing the predicated 6182 // block. 6183 if (isPredicatedInst(I)) { 6184 Cost /= getReciprocalPredBlockProb(); 6185 6186 if (useEmulatedMaskMemRefHack(I)) 6187 // Artificially setting to a high enough value to practically disable 6188 // vectorization with such operations. 6189 Cost = 3000000; 6190 } 6191 6192 return Cost; 6193 } 6194 6195 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6196 ElementCount VF) { 6197 Type *ValTy = getMemInstValueType(I); 6198 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6199 Value *Ptr = getLoadStorePointerOperand(I); 6200 unsigned AS = getLoadStoreAddressSpace(I); 6201 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6202 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6203 6204 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6205 "Stride should be 1 or -1 for consecutive memory access"); 6206 const Align Alignment = getLoadStoreAlignment(I); 6207 unsigned Cost = 0; 6208 if (Legal->isMaskRequired(I)) 6209 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6210 CostKind); 6211 else 6212 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6213 CostKind, I); 6214 6215 bool Reverse = ConsecutiveStride < 0; 6216 if (Reverse) 6217 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6218 return Cost; 6219 } 6220 6221 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6222 ElementCount VF) { 6223 Type *ValTy = getMemInstValueType(I); 6224 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6225 const Align Alignment = getLoadStoreAlignment(I); 6226 unsigned AS = getLoadStoreAddressSpace(I); 6227 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6228 if (isa<LoadInst>(I)) { 6229 return TTI.getAddressComputationCost(ValTy) + 6230 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6231 CostKind) + 6232 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6233 } 6234 StoreInst *SI = cast<StoreInst>(I); 6235 6236 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6237 return TTI.getAddressComputationCost(ValTy) + 6238 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6239 CostKind) + 6240 (isLoopInvariantStoreValue 6241 ? 0 6242 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6243 VF.getKnownMinValue() - 1)); 6244 } 6245 6246 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6247 ElementCount VF) { 6248 Type *ValTy = getMemInstValueType(I); 6249 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6250 const Align Alignment = getLoadStoreAlignment(I); 6251 const Value *Ptr = getLoadStorePointerOperand(I); 6252 6253 return TTI.getAddressComputationCost(VectorTy) + 6254 TTI.getGatherScatterOpCost( 6255 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6256 TargetTransformInfo::TCK_RecipThroughput, I); 6257 } 6258 6259 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6260 ElementCount VF) { 6261 Type *ValTy = getMemInstValueType(I); 6262 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6263 unsigned AS = getLoadStoreAddressSpace(I); 6264 6265 auto Group = getInterleavedAccessGroup(I); 6266 assert(Group && "Fail to get an interleaved access group."); 6267 6268 unsigned InterleaveFactor = Group->getFactor(); 6269 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6270 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6271 6272 // Holds the indices of existing members in an interleaved load group. 6273 // An interleaved store group doesn't need this as it doesn't allow gaps. 6274 SmallVector<unsigned, 4> Indices; 6275 if (isa<LoadInst>(I)) { 6276 for (unsigned i = 0; i < InterleaveFactor; i++) 6277 if (Group->getMember(i)) 6278 Indices.push_back(i); 6279 } 6280 6281 // Calculate the cost of the whole interleaved group. 6282 bool UseMaskForGaps = 6283 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6284 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6285 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6286 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6287 6288 if (Group->isReverse()) { 6289 // TODO: Add support for reversed masked interleaved access. 6290 assert(!Legal->isMaskRequired(I) && 6291 "Reverse masked interleaved access not supported."); 6292 Cost += Group->getNumMembers() * 6293 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6294 } 6295 return Cost; 6296 } 6297 6298 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6299 ElementCount VF) { 6300 // Calculate scalar cost only. Vectorization cost should be ready at this 6301 // moment. 6302 if (VF.isScalar()) { 6303 Type *ValTy = getMemInstValueType(I); 6304 const Align Alignment = getLoadStoreAlignment(I); 6305 unsigned AS = getLoadStoreAddressSpace(I); 6306 6307 return TTI.getAddressComputationCost(ValTy) + 6308 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6309 TTI::TCK_RecipThroughput, I); 6310 } 6311 return getWideningCost(I, VF); 6312 } 6313 6314 LoopVectorizationCostModel::VectorizationCostTy 6315 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6316 ElementCount VF) { 6317 assert(!VF.isScalable() && 6318 "the cost model is not yet implemented for scalable vectorization"); 6319 // If we know that this instruction will remain uniform, check the cost of 6320 // the scalar version. 6321 if (isUniformAfterVectorization(I, VF)) 6322 VF = ElementCount::getFixed(1); 6323 6324 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6325 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6326 6327 // Forced scalars do not have any scalarization overhead. 6328 auto ForcedScalar = ForcedScalars.find(VF); 6329 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6330 auto InstSet = ForcedScalar->second; 6331 if (InstSet.count(I)) 6332 return VectorizationCostTy( 6333 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6334 VF.getKnownMinValue()), 6335 false); 6336 } 6337 6338 Type *VectorTy; 6339 unsigned C = getInstructionCost(I, VF, VectorTy); 6340 6341 bool TypeNotScalarized = 6342 VF.isVector() && VectorTy->isVectorTy() && 6343 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6344 return VectorizationCostTy(C, TypeNotScalarized); 6345 } 6346 6347 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6348 ElementCount VF) { 6349 6350 assert(!VF.isScalable() && 6351 "cannot compute scalarization overhead for scalable vectorization"); 6352 if (VF.isScalar()) 6353 return 0; 6354 6355 unsigned Cost = 0; 6356 Type *RetTy = ToVectorTy(I->getType(), VF); 6357 if (!RetTy->isVoidTy() && 6358 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6359 Cost += TTI.getScalarizationOverhead( 6360 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6361 true, false); 6362 6363 // Some targets keep addresses scalar. 6364 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6365 return Cost; 6366 6367 // Some targets support efficient element stores. 6368 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6369 return Cost; 6370 6371 // Collect operands to consider. 6372 CallInst *CI = dyn_cast<CallInst>(I); 6373 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6374 6375 // Skip operands that do not require extraction/scalarization and do not incur 6376 // any overhead. 6377 return Cost + TTI.getOperandsScalarizationOverhead( 6378 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6379 } 6380 6381 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6382 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6383 if (VF.isScalar()) 6384 return; 6385 NumPredStores = 0; 6386 for (BasicBlock *BB : TheLoop->blocks()) { 6387 // For each instruction in the old loop. 6388 for (Instruction &I : *BB) { 6389 Value *Ptr = getLoadStorePointerOperand(&I); 6390 if (!Ptr) 6391 continue; 6392 6393 // TODO: We should generate better code and update the cost model for 6394 // predicated uniform stores. Today they are treated as any other 6395 // predicated store (see added test cases in 6396 // invariant-store-vectorization.ll). 6397 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6398 NumPredStores++; 6399 6400 if (Legal->isUniform(Ptr) && 6401 // Conditional loads and stores should be scalarized and predicated. 6402 // isScalarWithPredication cannot be used here since masked 6403 // gather/scatters are not considered scalar with predication. 6404 !Legal->blockNeedsPredication(I.getParent())) { 6405 // TODO: Avoid replicating loads and stores instead of 6406 // relying on instcombine to remove them. 6407 // Load: Scalar load + broadcast 6408 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6409 unsigned Cost = getUniformMemOpCost(&I, VF); 6410 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6411 continue; 6412 } 6413 6414 // We assume that widening is the best solution when possible. 6415 if (memoryInstructionCanBeWidened(&I, VF)) { 6416 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6417 int ConsecutiveStride = 6418 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6419 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6420 "Expected consecutive stride."); 6421 InstWidening Decision = 6422 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6423 setWideningDecision(&I, VF, Decision, Cost); 6424 continue; 6425 } 6426 6427 // Choose between Interleaving, Gather/Scatter or Scalarization. 6428 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6429 unsigned NumAccesses = 1; 6430 if (isAccessInterleaved(&I)) { 6431 auto Group = getInterleavedAccessGroup(&I); 6432 assert(Group && "Fail to get an interleaved access group."); 6433 6434 // Make one decision for the whole group. 6435 if (getWideningDecision(&I, VF) != CM_Unknown) 6436 continue; 6437 6438 NumAccesses = Group->getNumMembers(); 6439 if (interleavedAccessCanBeWidened(&I, VF)) 6440 InterleaveCost = getInterleaveGroupCost(&I, VF); 6441 } 6442 6443 unsigned GatherScatterCost = 6444 isLegalGatherOrScatter(&I) 6445 ? getGatherScatterCost(&I, VF) * NumAccesses 6446 : std::numeric_limits<unsigned>::max(); 6447 6448 unsigned ScalarizationCost = 6449 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6450 6451 // Choose better solution for the current VF, 6452 // write down this decision and use it during vectorization. 6453 unsigned Cost; 6454 InstWidening Decision; 6455 if (InterleaveCost <= GatherScatterCost && 6456 InterleaveCost < ScalarizationCost) { 6457 Decision = CM_Interleave; 6458 Cost = InterleaveCost; 6459 } else if (GatherScatterCost < ScalarizationCost) { 6460 Decision = CM_GatherScatter; 6461 Cost = GatherScatterCost; 6462 } else { 6463 Decision = CM_Scalarize; 6464 Cost = ScalarizationCost; 6465 } 6466 // If the instructions belongs to an interleave group, the whole group 6467 // receives the same decision. The whole group receives the cost, but 6468 // the cost will actually be assigned to one instruction. 6469 if (auto Group = getInterleavedAccessGroup(&I)) 6470 setWideningDecision(Group, VF, Decision, Cost); 6471 else 6472 setWideningDecision(&I, VF, Decision, Cost); 6473 } 6474 } 6475 6476 // Make sure that any load of address and any other address computation 6477 // remains scalar unless there is gather/scatter support. This avoids 6478 // inevitable extracts into address registers, and also has the benefit of 6479 // activating LSR more, since that pass can't optimize vectorized 6480 // addresses. 6481 if (TTI.prefersVectorizedAddressing()) 6482 return; 6483 6484 // Start with all scalar pointer uses. 6485 SmallPtrSet<Instruction *, 8> AddrDefs; 6486 for (BasicBlock *BB : TheLoop->blocks()) 6487 for (Instruction &I : *BB) { 6488 Instruction *PtrDef = 6489 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6490 if (PtrDef && TheLoop->contains(PtrDef) && 6491 getWideningDecision(&I, VF) != CM_GatherScatter) 6492 AddrDefs.insert(PtrDef); 6493 } 6494 6495 // Add all instructions used to generate the addresses. 6496 SmallVector<Instruction *, 4> Worklist; 6497 for (auto *I : AddrDefs) 6498 Worklist.push_back(I); 6499 while (!Worklist.empty()) { 6500 Instruction *I = Worklist.pop_back_val(); 6501 for (auto &Op : I->operands()) 6502 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6503 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6504 AddrDefs.insert(InstOp).second) 6505 Worklist.push_back(InstOp); 6506 } 6507 6508 for (auto *I : AddrDefs) { 6509 if (isa<LoadInst>(I)) { 6510 // Setting the desired widening decision should ideally be handled in 6511 // by cost functions, but since this involves the task of finding out 6512 // if the loaded register is involved in an address computation, it is 6513 // instead changed here when we know this is the case. 6514 InstWidening Decision = getWideningDecision(I, VF); 6515 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6516 // Scalarize a widened load of address. 6517 setWideningDecision( 6518 I, VF, CM_Scalarize, 6519 (VF.getKnownMinValue() * 6520 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6521 else if (auto Group = getInterleavedAccessGroup(I)) { 6522 // Scalarize an interleave group of address loads. 6523 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6524 if (Instruction *Member = Group->getMember(I)) 6525 setWideningDecision( 6526 Member, VF, CM_Scalarize, 6527 (VF.getKnownMinValue() * 6528 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6529 } 6530 } 6531 } else 6532 // Make sure I gets scalarized and a cost estimate without 6533 // scalarization overhead. 6534 ForcedScalars[VF].insert(I); 6535 } 6536 } 6537 6538 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6539 ElementCount VF, 6540 Type *&VectorTy) { 6541 Type *RetTy = I->getType(); 6542 if (canTruncateToMinimalBitwidth(I, VF)) 6543 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6544 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6545 auto SE = PSE.getSE(); 6546 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6547 6548 // TODO: We need to estimate the cost of intrinsic calls. 6549 switch (I->getOpcode()) { 6550 case Instruction::GetElementPtr: 6551 // We mark this instruction as zero-cost because the cost of GEPs in 6552 // vectorized code depends on whether the corresponding memory instruction 6553 // is scalarized or not. Therefore, we handle GEPs with the memory 6554 // instruction cost. 6555 return 0; 6556 case Instruction::Br: { 6557 // In cases of scalarized and predicated instructions, there will be VF 6558 // predicated blocks in the vectorized loop. Each branch around these 6559 // blocks requires also an extract of its vector compare i1 element. 6560 bool ScalarPredicatedBB = false; 6561 BranchInst *BI = cast<BranchInst>(I); 6562 if (VF.isVector() && BI->isConditional() && 6563 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6564 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6565 ScalarPredicatedBB = true; 6566 6567 if (ScalarPredicatedBB) { 6568 // Return cost for branches around scalarized and predicated blocks. 6569 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6570 auto *Vec_i1Ty = 6571 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6572 return (TTI.getScalarizationOverhead( 6573 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6574 false, true) + 6575 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 6576 VF.getKnownMinValue())); 6577 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6578 // The back-edge branch will remain, as will all scalar branches. 6579 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6580 else 6581 // This branch will be eliminated by if-conversion. 6582 return 0; 6583 // Note: We currently assume zero cost for an unconditional branch inside 6584 // a predicated block since it will become a fall-through, although we 6585 // may decide in the future to call TTI for all branches. 6586 } 6587 case Instruction::PHI: { 6588 auto *Phi = cast<PHINode>(I); 6589 6590 // First-order recurrences are replaced by vector shuffles inside the loop. 6591 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6592 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 6593 return TTI.getShuffleCost( 6594 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 6595 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 6596 6597 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6598 // converted into select instructions. We require N - 1 selects per phi 6599 // node, where N is the number of incoming values. 6600 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 6601 return (Phi->getNumIncomingValues() - 1) * 6602 TTI.getCmpSelInstrCost( 6603 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6604 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6605 CostKind); 6606 6607 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6608 } 6609 case Instruction::UDiv: 6610 case Instruction::SDiv: 6611 case Instruction::URem: 6612 case Instruction::SRem: 6613 // If we have a predicated instruction, it may not be executed for each 6614 // vector lane. Get the scalarization cost and scale this amount by the 6615 // probability of executing the predicated block. If the instruction is not 6616 // predicated, we fall through to the next case. 6617 if (VF.isVector() && isScalarWithPredication(I)) { 6618 unsigned Cost = 0; 6619 6620 // These instructions have a non-void type, so account for the phi nodes 6621 // that we will create. This cost is likely to be zero. The phi node 6622 // cost, if any, should be scaled by the block probability because it 6623 // models a copy at the end of each predicated block. 6624 Cost += VF.getKnownMinValue() * 6625 TTI.getCFInstrCost(Instruction::PHI, CostKind); 6626 6627 // The cost of the non-predicated instruction. 6628 Cost += VF.getKnownMinValue() * 6629 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6630 6631 // The cost of insertelement and extractelement instructions needed for 6632 // scalarization. 6633 Cost += getScalarizationOverhead(I, VF); 6634 6635 // Scale the cost by the probability of executing the predicated blocks. 6636 // This assumes the predicated block for each vector lane is equally 6637 // likely. 6638 return Cost / getReciprocalPredBlockProb(); 6639 } 6640 LLVM_FALLTHROUGH; 6641 case Instruction::Add: 6642 case Instruction::FAdd: 6643 case Instruction::Sub: 6644 case Instruction::FSub: 6645 case Instruction::Mul: 6646 case Instruction::FMul: 6647 case Instruction::FDiv: 6648 case Instruction::FRem: 6649 case Instruction::Shl: 6650 case Instruction::LShr: 6651 case Instruction::AShr: 6652 case Instruction::And: 6653 case Instruction::Or: 6654 case Instruction::Xor: { 6655 // Since we will replace the stride by 1 the multiplication should go away. 6656 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6657 return 0; 6658 // Certain instructions can be cheaper to vectorize if they have a constant 6659 // second vector operand. One example of this are shifts on x86. 6660 Value *Op2 = I->getOperand(1); 6661 TargetTransformInfo::OperandValueProperties Op2VP; 6662 TargetTransformInfo::OperandValueKind Op2VK = 6663 TTI.getOperandInfo(Op2, Op2VP); 6664 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6665 Op2VK = TargetTransformInfo::OK_UniformValue; 6666 6667 SmallVector<const Value *, 4> Operands(I->operand_values()); 6668 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6669 return N * TTI.getArithmeticInstrCost( 6670 I->getOpcode(), VectorTy, CostKind, 6671 TargetTransformInfo::OK_AnyValue, 6672 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6673 } 6674 case Instruction::FNeg: { 6675 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6676 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6677 return N * TTI.getArithmeticInstrCost( 6678 I->getOpcode(), VectorTy, CostKind, 6679 TargetTransformInfo::OK_AnyValue, 6680 TargetTransformInfo::OK_AnyValue, 6681 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6682 I->getOperand(0), I); 6683 } 6684 case Instruction::Select: { 6685 SelectInst *SI = cast<SelectInst>(I); 6686 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6687 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6688 Type *CondTy = SI->getCondition()->getType(); 6689 if (!ScalarCond) { 6690 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6691 CondTy = VectorType::get(CondTy, VF); 6692 } 6693 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6694 CostKind, I); 6695 } 6696 case Instruction::ICmp: 6697 case Instruction::FCmp: { 6698 Type *ValTy = I->getOperand(0)->getType(); 6699 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6700 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6701 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6702 VectorTy = ToVectorTy(ValTy, VF); 6703 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6704 I); 6705 } 6706 case Instruction::Store: 6707 case Instruction::Load: { 6708 ElementCount Width = VF; 6709 if (Width.isVector()) { 6710 InstWidening Decision = getWideningDecision(I, Width); 6711 assert(Decision != CM_Unknown && 6712 "CM decision should be taken at this point"); 6713 if (Decision == CM_Scalarize) 6714 Width = ElementCount::getFixed(1); 6715 } 6716 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6717 return getMemoryInstructionCost(I, VF); 6718 } 6719 case Instruction::ZExt: 6720 case Instruction::SExt: 6721 case Instruction::FPToUI: 6722 case Instruction::FPToSI: 6723 case Instruction::FPExt: 6724 case Instruction::PtrToInt: 6725 case Instruction::IntToPtr: 6726 case Instruction::SIToFP: 6727 case Instruction::UIToFP: 6728 case Instruction::Trunc: 6729 case Instruction::FPTrunc: 6730 case Instruction::BitCast: { 6731 // Computes the CastContextHint from a Load/Store instruction. 6732 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 6733 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6734 "Expected a load or a store!"); 6735 6736 if (VF.isScalar() || !TheLoop->contains(I)) 6737 return TTI::CastContextHint::Normal; 6738 6739 switch (getWideningDecision(I, VF)) { 6740 case LoopVectorizationCostModel::CM_GatherScatter: 6741 return TTI::CastContextHint::GatherScatter; 6742 case LoopVectorizationCostModel::CM_Interleave: 6743 return TTI::CastContextHint::Interleave; 6744 case LoopVectorizationCostModel::CM_Scalarize: 6745 case LoopVectorizationCostModel::CM_Widen: 6746 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 6747 : TTI::CastContextHint::Normal; 6748 case LoopVectorizationCostModel::CM_Widen_Reverse: 6749 return TTI::CastContextHint::Reversed; 6750 case LoopVectorizationCostModel::CM_Unknown: 6751 llvm_unreachable("Instr did not go through cost modelling?"); 6752 } 6753 6754 llvm_unreachable("Unhandled case!"); 6755 }; 6756 6757 unsigned Opcode = I->getOpcode(); 6758 TTI::CastContextHint CCH = TTI::CastContextHint::None; 6759 // For Trunc, the context is the only user, which must be a StoreInst. 6760 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 6761 if (I->hasOneUse()) 6762 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 6763 CCH = ComputeCCH(Store); 6764 } 6765 // For Z/Sext, the context is the operand, which must be a LoadInst. 6766 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 6767 Opcode == Instruction::FPExt) { 6768 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 6769 CCH = ComputeCCH(Load); 6770 } 6771 6772 // We optimize the truncation of induction variables having constant 6773 // integer steps. The cost of these truncations is the same as the scalar 6774 // operation. 6775 if (isOptimizableIVTruncate(I, VF)) { 6776 auto *Trunc = cast<TruncInst>(I); 6777 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6778 Trunc->getSrcTy(), CCH, CostKind, Trunc); 6779 } 6780 6781 Type *SrcScalarTy = I->getOperand(0)->getType(); 6782 Type *SrcVecTy = 6783 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6784 if (canTruncateToMinimalBitwidth(I, VF)) { 6785 // This cast is going to be shrunk. This may remove the cast or it might 6786 // turn it into slightly different cast. For example, if MinBW == 16, 6787 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6788 // 6789 // Calculate the modified src and dest types. 6790 Type *MinVecTy = VectorTy; 6791 if (Opcode == Instruction::Trunc) { 6792 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6793 VectorTy = 6794 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6795 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 6796 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6797 VectorTy = 6798 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6799 } 6800 } 6801 6802 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 6803 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6804 return N * 6805 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 6806 } 6807 case Instruction::Call: { 6808 bool NeedToScalarize; 6809 CallInst *CI = cast<CallInst>(I); 6810 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6811 if (getVectorIntrinsicIDForCall(CI, TLI)) 6812 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6813 return CallCost; 6814 } 6815 default: 6816 // The cost of executing VF copies of the scalar instruction. This opcode 6817 // is unknown. Assume that it is the same as 'mul'. 6818 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 6819 Instruction::Mul, VectorTy, CostKind) + 6820 getScalarizationOverhead(I, VF); 6821 } // end of switch. 6822 } 6823 6824 char LoopVectorize::ID = 0; 6825 6826 static const char lv_name[] = "Loop Vectorization"; 6827 6828 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6829 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6830 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6831 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6832 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6833 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6834 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6835 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6836 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6837 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6838 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6839 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6840 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6841 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6842 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6843 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6844 6845 namespace llvm { 6846 6847 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6848 6849 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6850 bool VectorizeOnlyWhenForced) { 6851 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6852 } 6853 6854 } // end namespace llvm 6855 6856 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6857 // Check if the pointer operand of a load or store instruction is 6858 // consecutive. 6859 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6860 return Legal->isConsecutivePtr(Ptr); 6861 return false; 6862 } 6863 6864 void LoopVectorizationCostModel::collectValuesToIgnore() { 6865 // Ignore ephemeral values. 6866 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6867 6868 // Ignore type-promoting instructions we identified during reduction 6869 // detection. 6870 for (auto &Reduction : Legal->getReductionVars()) { 6871 RecurrenceDescriptor &RedDes = Reduction.second; 6872 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6873 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6874 } 6875 // Ignore type-casting instructions we identified during induction 6876 // detection. 6877 for (auto &Induction : Legal->getInductionVars()) { 6878 InductionDescriptor &IndDes = Induction.second; 6879 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6880 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6881 } 6882 } 6883 6884 void LoopVectorizationCostModel::collectInLoopReductions() { 6885 for (auto &Reduction : Legal->getReductionVars()) { 6886 PHINode *Phi = Reduction.first; 6887 RecurrenceDescriptor &RdxDesc = Reduction.second; 6888 6889 // We don't collect reductions that are type promoted (yet). 6890 if (RdxDesc.getRecurrenceType() != Phi->getType()) 6891 continue; 6892 6893 // If the target would prefer this reduction to happen "in-loop", then we 6894 // want to record it as such. 6895 unsigned Opcode = RdxDesc.getRecurrenceBinOp(RdxDesc.getRecurrenceKind()); 6896 if (!PreferInLoopReductions && 6897 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 6898 TargetTransformInfo::ReductionFlags())) 6899 continue; 6900 6901 // Check that we can correctly put the reductions into the loop, by 6902 // finding the chain of operations that leads from the phi to the loop 6903 // exit value. 6904 SmallVector<Instruction *, 4> ReductionOperations = 6905 RdxDesc.getReductionOpChain(Phi, TheLoop); 6906 bool InLoop = !ReductionOperations.empty(); 6907 if (InLoop) 6908 InLoopReductionChains[Phi] = ReductionOperations; 6909 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 6910 << " reduction for phi: " << *Phi << "\n"); 6911 } 6912 } 6913 6914 // TODO: we could return a pair of values that specify the max VF and 6915 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6916 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6917 // doesn't have a cost model that can choose which plan to execute if 6918 // more than one is generated. 6919 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6920 LoopVectorizationCostModel &CM) { 6921 unsigned WidestType; 6922 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6923 return WidestVectorRegBits / WidestType; 6924 } 6925 6926 VectorizationFactor 6927 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 6928 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 6929 ElementCount VF = UserVF; 6930 // Outer loop handling: They may require CFG and instruction level 6931 // transformations before even evaluating whether vectorization is profitable. 6932 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6933 // the vectorization pipeline. 6934 if (!OrigLoop->isInnermost()) { 6935 // If the user doesn't provide a vectorization factor, determine a 6936 // reasonable one. 6937 if (UserVF.isZero()) { 6938 VF = ElementCount::getFixed( 6939 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 6940 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6941 6942 // Make sure we have a VF > 1 for stress testing. 6943 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 6944 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6945 << "overriding computed VF.\n"); 6946 VF = ElementCount::getFixed(4); 6947 } 6948 } 6949 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6950 assert(isPowerOf2_32(VF.getKnownMinValue()) && 6951 "VF needs to be a power of two"); 6952 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 6953 << "VF " << VF << " to build VPlans.\n"); 6954 buildVPlans(VF.getKnownMinValue(), VF.getKnownMinValue()); 6955 6956 // For VPlan build stress testing, we bail out after VPlan construction. 6957 if (VPlanBuildStressTest) 6958 return VectorizationFactor::Disabled(); 6959 6960 return {VF, 0 /*Cost*/}; 6961 } 6962 6963 LLVM_DEBUG( 6964 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6965 "VPlan-native path.\n"); 6966 return VectorizationFactor::Disabled(); 6967 } 6968 6969 Optional<VectorizationFactor> 6970 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 6971 assert(!UserVF.isScalable() && "scalable vectorization not yet handled"); 6972 assert(OrigLoop->isInnermost() && "Inner loop expected."); 6973 Optional<unsigned> MaybeMaxVF = 6974 CM.computeMaxVF(UserVF.getKnownMinValue(), UserIC); 6975 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6976 return None; 6977 6978 // Invalidate interleave groups if all blocks of loop will be predicated. 6979 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6980 !useMaskedInterleavedAccesses(*TTI)) { 6981 LLVM_DEBUG( 6982 dbgs() 6983 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6984 "which requires masked-interleaved support.\n"); 6985 if (CM.InterleaveInfo.invalidateGroups()) 6986 // Invalidating interleave groups also requires invalidating all decisions 6987 // based on them, which includes widening decisions and uniform and scalar 6988 // values. 6989 CM.invalidateCostModelingDecisions(); 6990 } 6991 6992 if (!UserVF.isZero()) { 6993 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6994 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 6995 "VF needs to be a power of two"); 6996 // Collect the instructions (and their associated costs) that will be more 6997 // profitable to scalarize. 6998 CM.selectUserVectorizationFactor(UserVF); 6999 CM.collectInLoopReductions(); 7000 buildVPlansWithVPRecipes(UserVF.getKnownMinValue(), 7001 UserVF.getKnownMinValue()); 7002 LLVM_DEBUG(printPlans(dbgs())); 7003 return {{UserVF, 0}}; 7004 } 7005 7006 unsigned MaxVF = MaybeMaxVF.getValue(); 7007 assert(MaxVF != 0 && "MaxVF is zero."); 7008 7009 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7010 // Collect Uniform and Scalar instructions after vectorization with VF. 7011 CM.collectUniformsAndScalars(ElementCount::getFixed(VF)); 7012 7013 // Collect the instructions (and their associated costs) that will be more 7014 // profitable to scalarize. 7015 if (VF > 1) 7016 CM.collectInstsToScalarize(ElementCount::getFixed(VF)); 7017 } 7018 7019 CM.collectInLoopReductions(); 7020 7021 buildVPlansWithVPRecipes(1, MaxVF); 7022 LLVM_DEBUG(printPlans(dbgs())); 7023 if (MaxVF == 1) 7024 return VectorizationFactor::Disabled(); 7025 7026 // Select the optimal vectorization factor. 7027 return CM.selectVectorizationFactor(MaxVF); 7028 } 7029 7030 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7031 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7032 << '\n'); 7033 BestVF = VF; 7034 BestUF = UF; 7035 7036 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7037 return !Plan->hasVF(VF); 7038 }); 7039 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7040 } 7041 7042 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7043 DominatorTree *DT) { 7044 // Perform the actual loop transformation. 7045 7046 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7047 VPCallbackILV CallbackILV(ILV); 7048 7049 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7050 7051 VPTransformState State{*BestVF, BestUF, LI, 7052 DT, ILV.Builder, ILV.VectorLoopValueMap, 7053 &ILV, CallbackILV}; 7054 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7055 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7056 State.CanonicalIV = ILV.Induction; 7057 7058 //===------------------------------------------------===// 7059 // 7060 // Notice: any optimization or new instruction that go 7061 // into the code below should also be implemented in 7062 // the cost-model. 7063 // 7064 //===------------------------------------------------===// 7065 7066 // 2. Copy and widen instructions from the old loop into the new loop. 7067 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7068 VPlans.front()->execute(&State); 7069 7070 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7071 // predication, updating analyses. 7072 ILV.fixVectorizedLoop(); 7073 } 7074 7075 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7076 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7077 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7078 7079 // We create new control-flow for the vectorized loop, so the original 7080 // condition will be dead after vectorization if it's only used by the 7081 // branch. 7082 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7083 if (Cmp && Cmp->hasOneUse()) { 7084 DeadInstructions.insert(Cmp); 7085 7086 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7087 for (Value *Op : Cmp->operands()) { 7088 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7089 DeadInstructions.insert(cast<Instruction>(Op)); 7090 } 7091 } 7092 7093 // We create new "steps" for induction variable updates to which the original 7094 // induction variables map. An original update instruction will be dead if 7095 // all its users except the induction variable are dead. 7096 for (auto &Induction : Legal->getInductionVars()) { 7097 PHINode *Ind = Induction.first; 7098 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7099 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7100 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7101 })) 7102 DeadInstructions.insert(IndUpdate); 7103 7104 // We record as "Dead" also the type-casting instructions we had identified 7105 // during induction analysis. We don't need any handling for them in the 7106 // vectorized loop because we have proven that, under a proper runtime 7107 // test guarding the vectorized loop, the value of the phi, and the casted 7108 // value of the phi, are the same. The last instruction in this casting chain 7109 // will get its scalar/vector/widened def from the scalar/vector/widened def 7110 // of the respective phi node. Any other casts in the induction def-use chain 7111 // have no other uses outside the phi update chain, and will be ignored. 7112 InductionDescriptor &IndDes = Induction.second; 7113 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7114 DeadInstructions.insert(Casts.begin(), Casts.end()); 7115 } 7116 } 7117 7118 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7119 7120 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7121 7122 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7123 Instruction::BinaryOps BinOp) { 7124 // When unrolling and the VF is 1, we only need to add a simple scalar. 7125 Type *Ty = Val->getType(); 7126 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7127 7128 if (Ty->isFloatingPointTy()) { 7129 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7130 7131 // Floating point operations had to be 'fast' to enable the unrolling. 7132 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7133 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7134 } 7135 Constant *C = ConstantInt::get(Ty, StartIdx); 7136 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7137 } 7138 7139 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7140 SmallVector<Metadata *, 4> MDs; 7141 // Reserve first location for self reference to the LoopID metadata node. 7142 MDs.push_back(nullptr); 7143 bool IsUnrollMetadata = false; 7144 MDNode *LoopID = L->getLoopID(); 7145 if (LoopID) { 7146 // First find existing loop unrolling disable metadata. 7147 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7148 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7149 if (MD) { 7150 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7151 IsUnrollMetadata = 7152 S && S->getString().startswith("llvm.loop.unroll.disable"); 7153 } 7154 MDs.push_back(LoopID->getOperand(i)); 7155 } 7156 } 7157 7158 if (!IsUnrollMetadata) { 7159 // Add runtime unroll disable metadata. 7160 LLVMContext &Context = L->getHeader()->getContext(); 7161 SmallVector<Metadata *, 1> DisableOperands; 7162 DisableOperands.push_back( 7163 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7164 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7165 MDs.push_back(DisableNode); 7166 MDNode *NewLoopID = MDNode::get(Context, MDs); 7167 // Set operand 0 to refer to the loop id itself. 7168 NewLoopID->replaceOperandWith(0, NewLoopID); 7169 L->setLoopID(NewLoopID); 7170 } 7171 } 7172 7173 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7174 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7175 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7176 bool PredicateAtRangeStart = Predicate(ElementCount::getFixed(Range.Start)); 7177 7178 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7179 if (Predicate(ElementCount::getFixed(TmpVF)) != PredicateAtRangeStart) { 7180 Range.End = TmpVF; 7181 break; 7182 } 7183 7184 return PredicateAtRangeStart; 7185 } 7186 7187 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7188 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7189 /// of VF's starting at a given VF and extending it as much as possible. Each 7190 /// vectorization decision can potentially shorten this sub-range during 7191 /// buildVPlan(). 7192 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7193 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7194 VFRange SubRange = {VF, MaxVF + 1}; 7195 VPlans.push_back(buildVPlan(SubRange)); 7196 VF = SubRange.End; 7197 } 7198 } 7199 7200 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7201 VPlanPtr &Plan) { 7202 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7203 7204 // Look for cached value. 7205 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7206 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7207 if (ECEntryIt != EdgeMaskCache.end()) 7208 return ECEntryIt->second; 7209 7210 VPValue *SrcMask = createBlockInMask(Src, Plan); 7211 7212 // The terminator has to be a branch inst! 7213 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7214 assert(BI && "Unexpected terminator found"); 7215 7216 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7217 return EdgeMaskCache[Edge] = SrcMask; 7218 7219 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7220 assert(EdgeMask && "No Edge Mask found for condition"); 7221 7222 if (BI->getSuccessor(0) != Dst) 7223 EdgeMask = Builder.createNot(EdgeMask); 7224 7225 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7226 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7227 7228 return EdgeMaskCache[Edge] = EdgeMask; 7229 } 7230 7231 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 7232 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7233 7234 // Look for cached value. 7235 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7236 if (BCEntryIt != BlockMaskCache.end()) 7237 return BCEntryIt->second; 7238 7239 // All-one mask is modelled as no-mask following the convention for masked 7240 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7241 VPValue *BlockMask = nullptr; 7242 7243 if (OrigLoop->getHeader() == BB) { 7244 if (!CM.blockNeedsPredication(BB)) 7245 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 7246 7247 // Create the block in mask as the first non-phi instruction in the block. 7248 VPBuilder::InsertPointGuard Guard(Builder); 7249 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 7250 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 7251 7252 // Introduce the early-exit compare IV <= BTC to form header block mask. 7253 // This is used instead of IV < TC because TC may wrap, unlike BTC. 7254 // Start by constructing the desired canonical IV. 7255 VPValue *IV = nullptr; 7256 if (Legal->getPrimaryInduction()) 7257 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 7258 else { 7259 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 7260 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 7261 IV = IVRecipe->getVPValue(); 7262 } 7263 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 7264 bool TailFolded = !CM.isScalarEpilogueAllowed(); 7265 7266 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 7267 // While ActiveLaneMask is a binary op that consumes the loop tripcount 7268 // as a second argument, we only pass the IV here and extract the 7269 // tripcount from the transform state where codegen of the VP instructions 7270 // happen. 7271 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 7272 } else { 7273 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 7274 } 7275 return BlockMaskCache[BB] = BlockMask; 7276 } 7277 7278 // This is the block mask. We OR all incoming edges. 7279 for (auto *Predecessor : predecessors(BB)) { 7280 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7281 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7282 return BlockMaskCache[BB] = EdgeMask; 7283 7284 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7285 BlockMask = EdgeMask; 7286 continue; 7287 } 7288 7289 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7290 } 7291 7292 return BlockMaskCache[BB] = BlockMask; 7293 } 7294 7295 VPWidenMemoryInstructionRecipe * 7296 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 7297 VPlanPtr &Plan) { 7298 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7299 "Must be called with either a load or store"); 7300 7301 auto willWiden = [&](ElementCount VF) -> bool { 7302 assert(!VF.isScalable() && "unexpected scalable ElementCount"); 7303 if (VF.isScalar()) 7304 return false; 7305 LoopVectorizationCostModel::InstWidening Decision = 7306 CM.getWideningDecision(I, VF); 7307 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7308 "CM decision should be taken at this point."); 7309 if (Decision == LoopVectorizationCostModel::CM_Interleave) 7310 return true; 7311 if (CM.isScalarAfterVectorization(I, VF) || 7312 CM.isProfitableToScalarize(I, VF)) 7313 return false; 7314 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7315 }; 7316 7317 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7318 return nullptr; 7319 7320 VPValue *Mask = nullptr; 7321 if (Legal->isMaskRequired(I)) 7322 Mask = createBlockInMask(I->getParent(), Plan); 7323 7324 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 7325 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 7326 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 7327 7328 StoreInst *Store = cast<StoreInst>(I); 7329 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 7330 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 7331 } 7332 7333 VPWidenIntOrFpInductionRecipe * 7334 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 7335 // Check if this is an integer or fp induction. If so, build the recipe that 7336 // produces its scalar and vector values. 7337 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 7338 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7339 II.getKind() == InductionDescriptor::IK_FpInduction) 7340 return new VPWidenIntOrFpInductionRecipe(Phi); 7341 7342 return nullptr; 7343 } 7344 7345 VPWidenIntOrFpInductionRecipe * 7346 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 7347 VFRange &Range) const { 7348 // Optimize the special case where the source is a constant integer 7349 // induction variable. Notice that we can only optimize the 'trunc' case 7350 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7351 // (c) other casts depend on pointer size. 7352 7353 // Determine whether \p K is a truncation based on an induction variable that 7354 // can be optimized. 7355 auto isOptimizableIVTruncate = 7356 [&](Instruction *K) -> std::function<bool(ElementCount)> { 7357 return [=](ElementCount VF) -> bool { 7358 return CM.isOptimizableIVTruncate(K, VF); 7359 }; 7360 }; 7361 7362 if (LoopVectorizationPlanner::getDecisionAndClampRange( 7363 isOptimizableIVTruncate(I), Range)) 7364 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7365 I); 7366 return nullptr; 7367 } 7368 7369 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 7370 // We know that all PHIs in non-header blocks are converted into selects, so 7371 // we don't have to worry about the insertion order and we can just use the 7372 // builder. At this point we generate the predication tree. There may be 7373 // duplications since this is a simple recursive scan, but future 7374 // optimizations will clean it up. 7375 7376 SmallVector<VPValue *, 2> Operands; 7377 unsigned NumIncoming = Phi->getNumIncomingValues(); 7378 for (unsigned In = 0; In < NumIncoming; In++) { 7379 VPValue *EdgeMask = 7380 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7381 assert((EdgeMask || NumIncoming == 1) && 7382 "Multiple predecessors with one having a full mask"); 7383 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 7384 if (EdgeMask) 7385 Operands.push_back(EdgeMask); 7386 } 7387 return new VPBlendRecipe(Phi, Operands); 7388 } 7389 7390 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7391 VPlan &Plan) const { 7392 7393 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7394 [this, CI](ElementCount VF) { 7395 return CM.isScalarWithPredication(CI, VF); 7396 }, 7397 Range); 7398 7399 if (IsPredicated) 7400 return nullptr; 7401 7402 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7403 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7404 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7405 return nullptr; 7406 7407 auto willWiden = [&](ElementCount VF) -> bool { 7408 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7409 // The following case may be scalarized depending on the VF. 7410 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7411 // version of the instruction. 7412 // Is it beneficial to perform intrinsic call compared to lib call? 7413 bool NeedToScalarize = false; 7414 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7415 bool UseVectorIntrinsic = 7416 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7417 return UseVectorIntrinsic || !NeedToScalarize; 7418 }; 7419 7420 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7421 return nullptr; 7422 7423 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7424 } 7425 7426 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7427 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7428 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7429 // Instruction should be widened, unless it is scalar after vectorization, 7430 // scalarization is profitable or it is predicated. 7431 auto WillScalarize = [this, I](ElementCount VF) -> bool { 7432 return CM.isScalarAfterVectorization(I, VF) || 7433 CM.isProfitableToScalarize(I, VF) || 7434 CM.isScalarWithPredication(I, VF); 7435 }; 7436 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7437 Range); 7438 } 7439 7440 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7441 auto IsVectorizableOpcode = [](unsigned Opcode) { 7442 switch (Opcode) { 7443 case Instruction::Add: 7444 case Instruction::And: 7445 case Instruction::AShr: 7446 case Instruction::BitCast: 7447 case Instruction::FAdd: 7448 case Instruction::FCmp: 7449 case Instruction::FDiv: 7450 case Instruction::FMul: 7451 case Instruction::FNeg: 7452 case Instruction::FPExt: 7453 case Instruction::FPToSI: 7454 case Instruction::FPToUI: 7455 case Instruction::FPTrunc: 7456 case Instruction::FRem: 7457 case Instruction::FSub: 7458 case Instruction::ICmp: 7459 case Instruction::IntToPtr: 7460 case Instruction::LShr: 7461 case Instruction::Mul: 7462 case Instruction::Or: 7463 case Instruction::PtrToInt: 7464 case Instruction::SDiv: 7465 case Instruction::Select: 7466 case Instruction::SExt: 7467 case Instruction::Shl: 7468 case Instruction::SIToFP: 7469 case Instruction::SRem: 7470 case Instruction::Sub: 7471 case Instruction::Trunc: 7472 case Instruction::UDiv: 7473 case Instruction::UIToFP: 7474 case Instruction::URem: 7475 case Instruction::Xor: 7476 case Instruction::ZExt: 7477 return true; 7478 } 7479 return false; 7480 }; 7481 7482 if (!IsVectorizableOpcode(I->getOpcode())) 7483 return nullptr; 7484 7485 // Success: widen this instruction. 7486 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7487 } 7488 7489 VPBasicBlock *VPRecipeBuilder::handleReplication( 7490 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7491 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7492 VPlanPtr &Plan) { 7493 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7494 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 7495 Range); 7496 7497 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7498 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 7499 Range); 7500 7501 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7502 IsUniform, IsPredicated); 7503 setRecipe(I, Recipe); 7504 7505 // Find if I uses a predicated instruction. If so, it will use its scalar 7506 // value. Avoid hoisting the insert-element which packs the scalar value into 7507 // a vector value, as that happens iff all users use the vector value. 7508 for (auto &Op : I->operands()) 7509 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7510 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7511 PredInst2Recipe[PredInst]->setAlsoPack(false); 7512 7513 // Finalize the recipe for Instr, first if it is not predicated. 7514 if (!IsPredicated) { 7515 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7516 VPBB->appendRecipe(Recipe); 7517 return VPBB; 7518 } 7519 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7520 assert(VPBB->getSuccessors().empty() && 7521 "VPBB has successors when handling predicated replication."); 7522 // Record predicated instructions for above packing optimizations. 7523 PredInst2Recipe[I] = Recipe; 7524 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7525 VPBlockUtils::insertBlockAfter(Region, VPBB); 7526 auto *RegSucc = new VPBasicBlock(); 7527 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7528 return RegSucc; 7529 } 7530 7531 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7532 VPRecipeBase *PredRecipe, 7533 VPlanPtr &Plan) { 7534 // Instructions marked for predication are replicated and placed under an 7535 // if-then construct to prevent side-effects. 7536 7537 // Generate recipes to compute the block mask for this region. 7538 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7539 7540 // Build the triangular if-then region. 7541 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7542 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7543 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7544 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7545 auto *PHIRecipe = 7546 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7547 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7548 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7549 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7550 7551 // Note: first set Entry as region entry and then connect successors starting 7552 // from it in order, to propagate the "parent" of each VPBasicBlock. 7553 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7554 VPBlockUtils::connectBlocks(Pred, Exit); 7555 7556 return Region; 7557 } 7558 7559 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7560 VFRange &Range, 7561 VPlanPtr &Plan) { 7562 // First, check for specific widening recipes that deal with calls, memory 7563 // operations, inductions and Phi nodes. 7564 if (auto *CI = dyn_cast<CallInst>(Instr)) 7565 return tryToWidenCall(CI, Range, *Plan); 7566 7567 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7568 return tryToWidenMemory(Instr, Range, Plan); 7569 7570 VPRecipeBase *Recipe; 7571 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7572 if (Phi->getParent() != OrigLoop->getHeader()) 7573 return tryToBlend(Phi, Plan); 7574 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7575 return Recipe; 7576 return new VPWidenPHIRecipe(Phi); 7577 } 7578 7579 if (isa<TruncInst>(Instr) && 7580 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7581 return Recipe; 7582 7583 if (!shouldWiden(Instr, Range)) 7584 return nullptr; 7585 7586 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7587 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7588 OrigLoop); 7589 7590 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7591 bool InvariantCond = 7592 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7593 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7594 InvariantCond); 7595 } 7596 7597 return tryToWiden(Instr, *Plan); 7598 } 7599 7600 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7601 unsigned MaxVF) { 7602 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7603 7604 // Collect conditions feeding internal conditional branches; they need to be 7605 // represented in VPlan for it to model masking. 7606 SmallPtrSet<Value *, 1> NeedDef; 7607 7608 auto *Latch = OrigLoop->getLoopLatch(); 7609 for (BasicBlock *BB : OrigLoop->blocks()) { 7610 if (BB == Latch) 7611 continue; 7612 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7613 if (Branch && Branch->isConditional()) 7614 NeedDef.insert(Branch->getCondition()); 7615 } 7616 7617 // If the tail is to be folded by masking, the primary induction variable, if 7618 // exists needs to be represented in VPlan for it to model early-exit masking. 7619 // Also, both the Phi and the live-out instruction of each reduction are 7620 // required in order to introduce a select between them in VPlan. 7621 if (CM.foldTailByMasking()) { 7622 if (Legal->getPrimaryInduction()) 7623 NeedDef.insert(Legal->getPrimaryInduction()); 7624 for (auto &Reduction : Legal->getReductionVars()) { 7625 NeedDef.insert(Reduction.first); 7626 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7627 } 7628 } 7629 7630 // Collect instructions from the original loop that will become trivially dead 7631 // in the vectorized loop. We don't need to vectorize these instructions. For 7632 // example, original induction update instructions can become dead because we 7633 // separately emit induction "steps" when generating code for the new loop. 7634 // Similarly, we create a new latch condition when setting up the structure 7635 // of the new loop, so the old one can become dead. 7636 SmallPtrSet<Instruction *, 4> DeadInstructions; 7637 collectTriviallyDeadInstructions(DeadInstructions); 7638 7639 // Add assume instructions we need to drop to DeadInstructions, to prevent 7640 // them from being added to the VPlan. 7641 // TODO: We only need to drop assumes in blocks that get flattend. If the 7642 // control flow is preserved, we should keep them. 7643 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7644 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7645 7646 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7647 // Dead instructions do not need sinking. Remove them from SinkAfter. 7648 for (Instruction *I : DeadInstructions) 7649 SinkAfter.erase(I); 7650 7651 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7652 VFRange SubRange = {VF, MaxVF + 1}; 7653 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7654 DeadInstructions, SinkAfter)); 7655 VF = SubRange.End; 7656 } 7657 } 7658 7659 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7660 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7661 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7662 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7663 7664 // Hold a mapping from predicated instructions to their recipes, in order to 7665 // fix their AlsoPack behavior if a user is determined to replicate and use a 7666 // scalar instead of vector value. 7667 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7668 7669 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7670 7671 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7672 7673 // --------------------------------------------------------------------------- 7674 // Pre-construction: record ingredients whose recipes we'll need to further 7675 // process after constructing the initial VPlan. 7676 // --------------------------------------------------------------------------- 7677 7678 // Mark instructions we'll need to sink later and their targets as 7679 // ingredients whose recipe we'll need to record. 7680 for (auto &Entry : SinkAfter) { 7681 RecipeBuilder.recordRecipeOf(Entry.first); 7682 RecipeBuilder.recordRecipeOf(Entry.second); 7683 } 7684 for (auto &Reduction : CM.getInLoopReductionChains()) { 7685 PHINode *Phi = Reduction.first; 7686 RecurrenceDescriptor::RecurrenceKind Kind = 7687 Legal->getReductionVars()[Phi].getRecurrenceKind(); 7688 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7689 7690 RecipeBuilder.recordRecipeOf(Phi); 7691 for (auto &R : ReductionOperations) { 7692 RecipeBuilder.recordRecipeOf(R); 7693 // For min/max reducitons, where we have a pair of icmp/select, we also 7694 // need to record the ICmp recipe, so it can be removed later. 7695 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7696 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7697 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 7698 } 7699 } 7700 } 7701 7702 // For each interleave group which is relevant for this (possibly trimmed) 7703 // Range, add it to the set of groups to be later applied to the VPlan and add 7704 // placeholders for its members' Recipes which we'll be replacing with a 7705 // single VPInterleaveRecipe. 7706 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7707 auto applyIG = [IG, this](ElementCount VF) -> bool { 7708 return (VF.isVector() && // Query is illegal for VF == 1 7709 CM.getWideningDecision(IG->getInsertPos(), VF) == 7710 LoopVectorizationCostModel::CM_Interleave); 7711 }; 7712 if (!getDecisionAndClampRange(applyIG, Range)) 7713 continue; 7714 InterleaveGroups.insert(IG); 7715 for (unsigned i = 0; i < IG->getFactor(); i++) 7716 if (Instruction *Member = IG->getMember(i)) 7717 RecipeBuilder.recordRecipeOf(Member); 7718 }; 7719 7720 // --------------------------------------------------------------------------- 7721 // Build initial VPlan: Scan the body of the loop in a topological order to 7722 // visit each basic block after having visited its predecessor basic blocks. 7723 // --------------------------------------------------------------------------- 7724 7725 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7726 auto Plan = std::make_unique<VPlan>(); 7727 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7728 Plan->setEntry(VPBB); 7729 7730 // Represent values that will have defs inside VPlan. 7731 for (Value *V : NeedDef) 7732 Plan->addVPValue(V); 7733 7734 // Scan the body of the loop in a topological order to visit each basic block 7735 // after having visited its predecessor basic blocks. 7736 LoopBlocksDFS DFS(OrigLoop); 7737 DFS.perform(LI); 7738 7739 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7740 // Relevant instructions from basic block BB will be grouped into VPRecipe 7741 // ingredients and fill a new VPBasicBlock. 7742 unsigned VPBBsForBB = 0; 7743 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7744 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7745 VPBB = FirstVPBBForBB; 7746 Builder.setInsertPoint(VPBB); 7747 7748 // Introduce each ingredient into VPlan. 7749 // TODO: Model and preserve debug instrinsics in VPlan. 7750 for (Instruction &I : BB->instructionsWithoutDebug()) { 7751 Instruction *Instr = &I; 7752 7753 // First filter out irrelevant instructions, to ensure no recipes are 7754 // built for them. 7755 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7756 continue; 7757 7758 if (auto Recipe = 7759 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7760 // Check if the recipe can be converted to a VPValue. We need the extra 7761 // down-casting step until VPRecipeBase inherits from VPValue. 7762 VPValue *MaybeVPValue = Recipe->toVPValue(); 7763 if (!Instr->getType()->isVoidTy() && MaybeVPValue) { 7764 if (NeedDef.contains(Instr)) 7765 Plan->addOrReplaceVPValue(Instr, MaybeVPValue); 7766 else 7767 Plan->addVPValue(Instr, MaybeVPValue); 7768 } 7769 7770 RecipeBuilder.setRecipe(Instr, Recipe); 7771 VPBB->appendRecipe(Recipe); 7772 continue; 7773 } 7774 7775 // Otherwise, if all widening options failed, Instruction is to be 7776 // replicated. This may create a successor for VPBB. 7777 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7778 Instr, Range, VPBB, PredInst2Recipe, Plan); 7779 if (NextVPBB != VPBB) { 7780 VPBB = NextVPBB; 7781 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7782 : ""); 7783 } 7784 } 7785 } 7786 7787 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7788 // may also be empty, such as the last one VPBB, reflecting original 7789 // basic-blocks with no recipes. 7790 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7791 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7792 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7793 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7794 delete PreEntry; 7795 7796 // --------------------------------------------------------------------------- 7797 // Transform initial VPlan: Apply previously taken decisions, in order, to 7798 // bring the VPlan to its final state. 7799 // --------------------------------------------------------------------------- 7800 7801 // Apply Sink-After legal constraints. 7802 for (auto &Entry : SinkAfter) { 7803 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7804 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7805 Sink->moveAfter(Target); 7806 } 7807 7808 // Interleave memory: for each Interleave Group we marked earlier as relevant 7809 // for this VPlan, replace the Recipes widening its memory instructions with a 7810 // single VPInterleaveRecipe at its insertion point. 7811 for (auto IG : InterleaveGroups) { 7812 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7813 RecipeBuilder.getRecipe(IG->getInsertPos())); 7814 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7815 ->insertBefore(Recipe); 7816 7817 for (unsigned i = 0; i < IG->getFactor(); ++i) 7818 if (Instruction *Member = IG->getMember(i)) { 7819 VPValue *NewVPV = nullptr; 7820 if (!Member->getType()->isVoidTy()) { 7821 NewVPV = new VPValue(Member); 7822 Plan->getVPValue(Member)->replaceAllUsesWith(NewVPV); 7823 } 7824 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7825 if (NewVPV) 7826 Plan->addVPValue(Member, NewVPV); 7827 } 7828 } 7829 7830 // Adjust the recipes for any inloop reductions. 7831 if (Range.Start > 1) 7832 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 7833 7834 // Finally, if tail is folded by masking, introduce selects between the phi 7835 // and the live-out instruction of each reduction, at the end of the latch. 7836 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 7837 Builder.setInsertPoint(VPBB); 7838 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7839 for (auto &Reduction : Legal->getReductionVars()) { 7840 if (CM.isInLoopReduction(Reduction.first)) 7841 continue; 7842 VPValue *Phi = Plan->getVPValue(Reduction.first); 7843 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7844 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7845 } 7846 } 7847 7848 std::string PlanName; 7849 raw_string_ostream RSO(PlanName); 7850 ElementCount VF = ElementCount::getFixed(Range.Start); 7851 Plan->addVF(VF); 7852 RSO << "Initial VPlan for VF={" << VF; 7853 for (VF *= 2; VF.getKnownMinValue() < Range.End; VF *= 2) { 7854 Plan->addVF(VF); 7855 RSO << "," << VF; 7856 } 7857 RSO << "},UF>=1"; 7858 RSO.flush(); 7859 Plan->setName(PlanName); 7860 7861 return Plan; 7862 } 7863 7864 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7865 // Outer loop handling: They may require CFG and instruction level 7866 // transformations before even evaluating whether vectorization is profitable. 7867 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7868 // the vectorization pipeline. 7869 assert(!OrigLoop->isInnermost()); 7870 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7871 7872 // Create new empty VPlan 7873 auto Plan = std::make_unique<VPlan>(); 7874 7875 // Build hierarchical CFG 7876 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7877 HCFGBuilder.buildHierarchicalCFG(); 7878 7879 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7880 Plan->addVF(ElementCount::getFixed(VF)); 7881 7882 if (EnableVPlanPredication) { 7883 VPlanPredicator VPP(*Plan); 7884 VPP.predicate(); 7885 7886 // Avoid running transformation to recipes until masked code generation in 7887 // VPlan-native path is in place. 7888 return Plan; 7889 } 7890 7891 SmallPtrSet<Instruction *, 1> DeadInstructions; 7892 VPlanTransforms::VPInstructionsToVPRecipes( 7893 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7894 return Plan; 7895 } 7896 7897 // Adjust the recipes for any inloop reductions. The chain of instructions 7898 // leading from the loop exit instr to the phi need to be converted to 7899 // reductions, with one operand being vector and the other being the scalar 7900 // reduction chain. 7901 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 7902 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 7903 for (auto &Reduction : CM.getInLoopReductionChains()) { 7904 PHINode *Phi = Reduction.first; 7905 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 7906 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7907 7908 // ReductionOperations are orders top-down from the phi's use to the 7909 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 7910 // which of the two operands will remain scalar and which will be reduced. 7911 // For minmax the chain will be the select instructions. 7912 Instruction *Chain = Phi; 7913 for (Instruction *R : ReductionOperations) { 7914 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 7915 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind(); 7916 7917 VPValue *ChainOp = Plan->getVPValue(Chain); 7918 unsigned FirstOpId; 7919 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7920 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7921 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 7922 "Expected to replace a VPWidenSelectSC"); 7923 FirstOpId = 1; 7924 } else { 7925 assert(isa<VPWidenRecipe>(WidenRecipe) && 7926 "Expected to replace a VPWidenSC"); 7927 FirstOpId = 0; 7928 } 7929 unsigned VecOpId = 7930 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 7931 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 7932 7933 auto *CondOp = CM.foldTailByMasking() 7934 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 7935 : nullptr; 7936 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 7937 &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI); 7938 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 7939 WidenRecipe->eraseFromParent(); 7940 7941 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7942 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7943 VPRecipeBase *CompareRecipe = 7944 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 7945 assert(isa<VPWidenRecipe>(CompareRecipe) && 7946 "Expected to replace a VPWidenSC"); 7947 CompareRecipe->eraseFromParent(); 7948 } 7949 Chain = R; 7950 } 7951 } 7952 } 7953 7954 Value* LoopVectorizationPlanner::VPCallbackILV:: 7955 getOrCreateVectorValues(Value *V, unsigned Part) { 7956 return ILV.getOrCreateVectorValue(V, Part); 7957 } 7958 7959 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7960 Value *V, const VPIteration &Instance) { 7961 return ILV.getOrCreateScalarValue(V, Instance); 7962 } 7963 7964 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7965 VPSlotTracker &SlotTracker) const { 7966 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7967 IG->getInsertPos()->printAsOperand(O, false); 7968 O << ", "; 7969 getAddr()->printAsOperand(O, SlotTracker); 7970 VPValue *Mask = getMask(); 7971 if (Mask) { 7972 O << ", "; 7973 Mask->printAsOperand(O, SlotTracker); 7974 } 7975 for (unsigned i = 0; i < IG->getFactor(); ++i) 7976 if (Instruction *I = IG->getMember(i)) 7977 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7978 } 7979 7980 void VPWidenCallRecipe::execute(VPTransformState &State) { 7981 State.ILV->widenCallInstruction(Ingredient, *this, State); 7982 } 7983 7984 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7985 State.ILV->widenSelectInstruction(Ingredient, *this, InvariantCond, State); 7986 } 7987 7988 void VPWidenRecipe::execute(VPTransformState &State) { 7989 State.ILV->widenInstruction(Ingredient, *this, State); 7990 } 7991 7992 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7993 State.ILV->widenGEP(GEP, *this, State.UF, State.VF, IsPtrLoopInvariant, 7994 IsIndexLoopInvariant, State); 7995 } 7996 7997 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7998 assert(!State.Instance && "Int or FP induction being replicated."); 7999 State.ILV->widenIntOrFpInduction(IV, Trunc); 8000 } 8001 8002 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8003 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8004 } 8005 8006 void VPBlendRecipe::execute(VPTransformState &State) { 8007 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8008 // We know that all PHIs in non-header blocks are converted into 8009 // selects, so we don't have to worry about the insertion order and we 8010 // can just use the builder. 8011 // At this point we generate the predication tree. There may be 8012 // duplications since this is a simple recursive scan, but future 8013 // optimizations will clean it up. 8014 8015 unsigned NumIncoming = getNumIncomingValues(); 8016 8017 // Generate a sequence of selects of the form: 8018 // SELECT(Mask3, In3, 8019 // SELECT(Mask2, In2, 8020 // SELECT(Mask1, In1, 8021 // In0))) 8022 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8023 // are essentially undef are taken from In0. 8024 InnerLoopVectorizer::VectorParts Entry(State.UF); 8025 for (unsigned In = 0; In < NumIncoming; ++In) { 8026 for (unsigned Part = 0; Part < State.UF; ++Part) { 8027 // We might have single edge PHIs (blocks) - use an identity 8028 // 'select' for the first PHI operand. 8029 Value *In0 = State.get(getIncomingValue(In), Part); 8030 if (In == 0) 8031 Entry[Part] = In0; // Initialize with the first incoming value. 8032 else { 8033 // Select between the current value and the previous incoming edge 8034 // based on the incoming mask. 8035 Value *Cond = State.get(getMask(In), Part); 8036 Entry[Part] = 8037 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8038 } 8039 } 8040 } 8041 for (unsigned Part = 0; Part < State.UF; ++Part) 8042 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8043 } 8044 8045 void VPInterleaveRecipe::execute(VPTransformState &State) { 8046 assert(!State.Instance && "Interleave group being replicated."); 8047 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 8048 } 8049 8050 void VPReductionRecipe::execute(VPTransformState &State) { 8051 assert(!State.Instance && "Reduction being replicated."); 8052 for (unsigned Part = 0; Part < State.UF; ++Part) { 8053 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind(); 8054 Value *NewVecOp = State.get(VecOp, Part); 8055 if (CondOp) { 8056 Value *NewCond = State.get(CondOp, Part); 8057 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8058 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8059 Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType()); 8060 Constant *IdenVec = 8061 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8062 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8063 NewVecOp = Select; 8064 } 8065 Value *NewRed = 8066 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN); 8067 Value *PrevInChain = State.get(ChainOp, Part); 8068 Value *NextInChain; 8069 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8070 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8071 NextInChain = 8072 createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(), 8073 NewRed, PrevInChain); 8074 } else { 8075 NextInChain = State.Builder.CreateBinOp( 8076 (Instruction::BinaryOps)I->getOpcode(), NewRed, PrevInChain); 8077 } 8078 State.ValueMap.setVectorValue(I, Part, NextInChain); 8079 } 8080 } 8081 8082 void VPReplicateRecipe::execute(VPTransformState &State) { 8083 if (State.Instance) { // Generate a single instance. 8084 State.ILV->scalarizeInstruction(Ingredient, *this, *State.Instance, 8085 IsPredicated, State); 8086 // Insert scalar instance packing it into a vector. 8087 if (AlsoPack && State.VF.isVector()) { 8088 // If we're constructing lane 0, initialize to start from undef. 8089 if (State.Instance->Lane == 0) { 8090 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8091 Value *Undef = 8092 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8093 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8094 } 8095 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8096 } 8097 return; 8098 } 8099 8100 // Generate scalar instances for all VF lanes of all UF parts, unless the 8101 // instruction is uniform inwhich case generate only the first lane for each 8102 // of the UF parts. 8103 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8104 for (unsigned Part = 0; Part < State.UF; ++Part) 8105 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8106 State.ILV->scalarizeInstruction(Ingredient, *this, {Part, Lane}, 8107 IsPredicated, State); 8108 } 8109 8110 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8111 assert(State.Instance && "Branch on Mask works only on single instance."); 8112 8113 unsigned Part = State.Instance->Part; 8114 unsigned Lane = State.Instance->Lane; 8115 8116 Value *ConditionBit = nullptr; 8117 VPValue *BlockInMask = getMask(); 8118 if (BlockInMask) { 8119 ConditionBit = State.get(BlockInMask, Part); 8120 if (ConditionBit->getType()->isVectorTy()) 8121 ConditionBit = State.Builder.CreateExtractElement( 8122 ConditionBit, State.Builder.getInt32(Lane)); 8123 } else // Block in mask is all-one. 8124 ConditionBit = State.Builder.getTrue(); 8125 8126 // Replace the temporary unreachable terminator with a new conditional branch, 8127 // whose two destinations will be set later when they are created. 8128 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8129 assert(isa<UnreachableInst>(CurrentTerminator) && 8130 "Expected to replace unreachable terminator with conditional branch."); 8131 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8132 CondBr->setSuccessor(0, nullptr); 8133 ReplaceInstWithInst(CurrentTerminator, CondBr); 8134 } 8135 8136 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8137 assert(State.Instance && "Predicated instruction PHI works per instance."); 8138 Instruction *ScalarPredInst = cast<Instruction>( 8139 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8140 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8141 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8142 assert(PredicatingBB && "Predicated block has no single predecessor."); 8143 8144 // By current pack/unpack logic we need to generate only a single phi node: if 8145 // a vector value for the predicated instruction exists at this point it means 8146 // the instruction has vector users only, and a phi for the vector value is 8147 // needed. In this case the recipe of the predicated instruction is marked to 8148 // also do that packing, thereby "hoisting" the insert-element sequence. 8149 // Otherwise, a phi node for the scalar value is needed. 8150 unsigned Part = State.Instance->Part; 8151 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8152 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8153 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8154 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8155 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8156 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8157 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8158 } else { 8159 Type *PredInstType = PredInst->getType(); 8160 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8161 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8162 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8163 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8164 } 8165 } 8166 8167 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8168 Instruction *Instr = getUnderlyingInstr(); 8169 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 8170 State.ILV->vectorizeMemoryInstruction(Instr, State, 8171 StoredValue ? nullptr : this, getAddr(), 8172 StoredValue, getMask()); 8173 } 8174 8175 // Determine how to lower the scalar epilogue, which depends on 1) optimising 8176 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 8177 // predication, and 4) a TTI hook that analyses whether the loop is suitable 8178 // for predication. 8179 static ScalarEpilogueLowering getScalarEpilogueLowering( 8180 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 8181 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 8182 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 8183 LoopVectorizationLegality &LVL) { 8184 // 1) OptSize takes precedence over all other options, i.e. if this is set, 8185 // don't look at hints or options, and don't request a scalar epilogue. 8186 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 8187 // LoopAccessInfo (due to code dependency and not being able to reliably get 8188 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 8189 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 8190 // versioning when the vectorization is forced, unlike hasOptSize. So revert 8191 // back to the old way and vectorize with versioning when forced. See D81345.) 8192 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 8193 PGSOQueryType::IRPass) && 8194 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 8195 return CM_ScalarEpilogueNotAllowedOptSize; 8196 8197 bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() && 8198 !PreferPredicateOverEpilogue; 8199 8200 // 2) Next, if disabling predication is requested on the command line, honour 8201 // this and request a scalar epilogue. 8202 if (PredicateOptDisabled) 8203 return CM_ScalarEpilogueAllowed; 8204 8205 // 3) and 4) look if enabling predication is requested on the command line, 8206 // with a loop hint, or if the TTI hook indicates this is profitable, request 8207 // predication. 8208 if (PreferPredicateOverEpilogue || 8209 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 8210 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 8211 LVL.getLAI()) && 8212 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 8213 return CM_ScalarEpilogueNotNeededUsePredicate; 8214 8215 return CM_ScalarEpilogueAllowed; 8216 } 8217 8218 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 8219 unsigned Part) { 8220 set(Def, V, Part); 8221 ILV->setVectorValue(IRDef, Part, V); 8222 } 8223 8224 // Process the loop in the VPlan-native vectorization path. This path builds 8225 // VPlan upfront in the vectorization pipeline, which allows to apply 8226 // VPlan-to-VPlan transformations from the very beginning without modifying the 8227 // input LLVM IR. 8228 static bool processLoopInVPlanNativePath( 8229 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 8230 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 8231 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 8232 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 8233 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 8234 8235 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 8236 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 8237 return false; 8238 } 8239 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 8240 Function *F = L->getHeader()->getParent(); 8241 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 8242 8243 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8244 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 8245 8246 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 8247 &Hints, IAI); 8248 // Use the planner for outer loop vectorization. 8249 // TODO: CM is not used at this point inside the planner. Turn CM into an 8250 // optional argument if we don't need it in the future. 8251 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 8252 8253 // Get user vectorization factor. 8254 const unsigned UserVF = Hints.getWidth(); 8255 8256 // Plan how to best vectorize, return the best VF and its cost. 8257 const VectorizationFactor VF = 8258 LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF)); 8259 8260 // If we are stress testing VPlan builds, do not attempt to generate vector 8261 // code. Masked vector code generation support will follow soon. 8262 // Also, do not attempt to vectorize if no vector code will be produced. 8263 if (VPlanBuildStressTest || EnableVPlanPredication || 8264 VectorizationFactor::Disabled() == VF) 8265 return false; 8266 8267 LVP.setBestPlan(VF.Width, 1); 8268 8269 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 8270 &CM, BFI, PSI); 8271 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 8272 << L->getHeader()->getParent()->getName() << "\"\n"); 8273 LVP.executePlan(LB, DT); 8274 8275 // Mark the loop as already vectorized to avoid vectorizing again. 8276 Hints.setAlreadyVectorized(); 8277 8278 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8279 return true; 8280 } 8281 8282 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 8283 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 8284 !EnableLoopInterleaving), 8285 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 8286 !EnableLoopVectorization) {} 8287 8288 bool LoopVectorizePass::processLoop(Loop *L) { 8289 assert((EnableVPlanNativePath || L->isInnermost()) && 8290 "VPlan-native path is not enabled. Only process inner loops."); 8291 8292 #ifndef NDEBUG 8293 const std::string DebugLocStr = getDebugLocString(L); 8294 #endif /* NDEBUG */ 8295 8296 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8297 << L->getHeader()->getParent()->getName() << "\" from " 8298 << DebugLocStr << "\n"); 8299 8300 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 8301 8302 LLVM_DEBUG( 8303 dbgs() << "LV: Loop hints:" 8304 << " force=" 8305 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8306 ? "disabled" 8307 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8308 ? "enabled" 8309 : "?")) 8310 << " width=" << Hints.getWidth() 8311 << " unroll=" << Hints.getInterleave() << "\n"); 8312 8313 // Function containing loop 8314 Function *F = L->getHeader()->getParent(); 8315 8316 // Looking at the diagnostic output is the only way to determine if a loop 8317 // was vectorized (other than looking at the IR or machine code), so it 8318 // is important to generate an optimization remark for each loop. Most of 8319 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8320 // generated as OptimizationRemark and OptimizationRemarkMissed are 8321 // less verbose reporting vectorized loops and unvectorized loops that may 8322 // benefit from vectorization, respectively. 8323 8324 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 8325 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8326 return false; 8327 } 8328 8329 PredicatedScalarEvolution PSE(*SE, *L); 8330 8331 // Check if it is legal to vectorize the loop. 8332 LoopVectorizationRequirements Requirements(*ORE); 8333 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 8334 &Requirements, &Hints, DB, AC, BFI, PSI); 8335 if (!LVL.canVectorize(EnableVPlanNativePath)) { 8336 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8337 Hints.emitRemarkWithHints(); 8338 return false; 8339 } 8340 8341 // Check the function attributes and profiles to find out if this function 8342 // should be optimized for size. 8343 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8344 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 8345 8346 // Entrance to the VPlan-native vectorization path. Outer loops are processed 8347 // here. They may require CFG and instruction level transformations before 8348 // even evaluating whether vectorization is profitable. Since we cannot modify 8349 // the incoming IR, we need to build VPlan upfront in the vectorization 8350 // pipeline. 8351 if (!L->isInnermost()) 8352 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 8353 ORE, BFI, PSI, Hints); 8354 8355 assert(L->isInnermost() && "Inner loop expected."); 8356 8357 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8358 // count by optimizing for size, to minimize overheads. 8359 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 8360 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 8361 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8362 << "This loop is worth vectorizing only if no scalar " 8363 << "iteration overheads are incurred."); 8364 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8365 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8366 else { 8367 LLVM_DEBUG(dbgs() << "\n"); 8368 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 8369 } 8370 } 8371 8372 // Check the function attributes to see if implicit floats are allowed. 8373 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8374 // an integer loop and the vector instructions selected are purely integer 8375 // vector instructions? 8376 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8377 reportVectorizationFailure( 8378 "Can't vectorize when the NoImplicitFloat attribute is used", 8379 "loop not vectorized due to NoImplicitFloat attribute", 8380 "NoImplicitFloat", ORE, L); 8381 Hints.emitRemarkWithHints(); 8382 return false; 8383 } 8384 8385 // Check if the target supports potentially unsafe FP vectorization. 8386 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8387 // for the target we're vectorizing for, to make sure none of the 8388 // additional fp-math flags can help. 8389 if (Hints.isPotentiallyUnsafe() && 8390 TTI->isFPVectorizationPotentiallyUnsafe()) { 8391 reportVectorizationFailure( 8392 "Potentially unsafe FP op prevents vectorization", 8393 "loop not vectorized due to unsafe FP support.", 8394 "UnsafeFP", ORE, L); 8395 Hints.emitRemarkWithHints(); 8396 return false; 8397 } 8398 8399 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 8400 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 8401 8402 // If an override option has been passed in for interleaved accesses, use it. 8403 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 8404 UseInterleaved = EnableInterleavedMemAccesses; 8405 8406 // Analyze interleaved memory accesses. 8407 if (UseInterleaved) { 8408 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 8409 } 8410 8411 // Use the cost model. 8412 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 8413 F, &Hints, IAI); 8414 CM.collectValuesToIgnore(); 8415 8416 // Use the planner for vectorization. 8417 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 8418 8419 // Get user vectorization factor and interleave count. 8420 unsigned UserVF = Hints.getWidth(); 8421 unsigned UserIC = Hints.getInterleave(); 8422 8423 // Plan how to best vectorize, return the best VF and its cost. 8424 Optional<VectorizationFactor> MaybeVF = 8425 LVP.plan(ElementCount::getFixed(UserVF), UserIC); 8426 8427 VectorizationFactor VF = VectorizationFactor::Disabled(); 8428 unsigned IC = 1; 8429 8430 if (MaybeVF) { 8431 VF = *MaybeVF; 8432 // Select the interleave count. 8433 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 8434 } 8435 8436 // Identify the diagnostic messages that should be produced. 8437 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8438 bool VectorizeLoop = true, InterleaveLoop = true; 8439 if (Requirements.doesNotMeet(F, L, Hints)) { 8440 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8441 "requirements.\n"); 8442 Hints.emitRemarkWithHints(); 8443 return false; 8444 } 8445 8446 if (VF.Width.isScalar()) { 8447 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8448 VecDiagMsg = std::make_pair( 8449 "VectorizationNotBeneficial", 8450 "the cost-model indicates that vectorization is not beneficial"); 8451 VectorizeLoop = false; 8452 } 8453 8454 if (!MaybeVF && UserIC > 1) { 8455 // Tell the user interleaving was avoided up-front, despite being explicitly 8456 // requested. 8457 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 8458 "interleaving should be avoided up front\n"); 8459 IntDiagMsg = std::make_pair( 8460 "InterleavingAvoided", 8461 "Ignoring UserIC, because interleaving was avoided up front"); 8462 InterleaveLoop = false; 8463 } else if (IC == 1 && UserIC <= 1) { 8464 // Tell the user interleaving is not beneficial. 8465 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8466 IntDiagMsg = std::make_pair( 8467 "InterleavingNotBeneficial", 8468 "the cost-model indicates that interleaving is not beneficial"); 8469 InterleaveLoop = false; 8470 if (UserIC == 1) { 8471 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8472 IntDiagMsg.second += 8473 " and is explicitly disabled or interleave count is set to 1"; 8474 } 8475 } else if (IC > 1 && UserIC == 1) { 8476 // Tell the user interleaving is beneficial, but it explicitly disabled. 8477 LLVM_DEBUG( 8478 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 8479 IntDiagMsg = std::make_pair( 8480 "InterleavingBeneficialButDisabled", 8481 "the cost-model indicates that interleaving is beneficial " 8482 "but is explicitly disabled or interleave count is set to 1"); 8483 InterleaveLoop = false; 8484 } 8485 8486 // Override IC if user provided an interleave count. 8487 IC = UserIC > 0 ? UserIC : IC; 8488 8489 // Emit diagnostic messages, if any. 8490 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8491 if (!VectorizeLoop && !InterleaveLoop) { 8492 // Do not vectorize or interleaving the loop. 8493 ORE->emit([&]() { 8494 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8495 L->getStartLoc(), L->getHeader()) 8496 << VecDiagMsg.second; 8497 }); 8498 ORE->emit([&]() { 8499 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8500 L->getStartLoc(), L->getHeader()) 8501 << IntDiagMsg.second; 8502 }); 8503 return false; 8504 } else if (!VectorizeLoop && InterleaveLoop) { 8505 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8506 ORE->emit([&]() { 8507 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8508 L->getStartLoc(), L->getHeader()) 8509 << VecDiagMsg.second; 8510 }); 8511 } else if (VectorizeLoop && !InterleaveLoop) { 8512 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8513 << ") in " << DebugLocStr << '\n'); 8514 ORE->emit([&]() { 8515 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8516 L->getStartLoc(), L->getHeader()) 8517 << IntDiagMsg.second; 8518 }); 8519 } else if (VectorizeLoop && InterleaveLoop) { 8520 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8521 << ") in " << DebugLocStr << '\n'); 8522 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8523 } 8524 8525 LVP.setBestPlan(VF.Width, IC); 8526 8527 using namespace ore; 8528 bool DisableRuntimeUnroll = false; 8529 MDNode *OrigLoopID = L->getLoopID(); 8530 8531 if (!VectorizeLoop) { 8532 assert(IC > 1 && "interleave count should not be 1 or 0"); 8533 // If we decided that it is not legal to vectorize the loop, then 8534 // interleave it. 8535 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 8536 BFI, PSI); 8537 LVP.executePlan(Unroller, DT); 8538 8539 ORE->emit([&]() { 8540 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8541 L->getHeader()) 8542 << "interleaved loop (interleaved count: " 8543 << NV("InterleaveCount", IC) << ")"; 8544 }); 8545 } else { 8546 // If we decided that it is *legal* to vectorize the loop, then do it. 8547 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8548 &LVL, &CM, BFI, PSI); 8549 LVP.executePlan(LB, DT); 8550 ++LoopsVectorized; 8551 8552 // Add metadata to disable runtime unrolling a scalar loop when there are 8553 // no runtime checks about strides and memory. A scalar loop that is 8554 // rarely used is not worth unrolling. 8555 if (!LB.areSafetyChecksAdded()) 8556 DisableRuntimeUnroll = true; 8557 8558 // Report the vectorization decision. 8559 ORE->emit([&]() { 8560 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8561 L->getHeader()) 8562 << "vectorized loop (vectorization width: " 8563 << NV("VectorizationFactor", VF.Width) 8564 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8565 }); 8566 } 8567 8568 Optional<MDNode *> RemainderLoopID = 8569 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8570 LLVMLoopVectorizeFollowupEpilogue}); 8571 if (RemainderLoopID.hasValue()) { 8572 L->setLoopID(RemainderLoopID.getValue()); 8573 } else { 8574 if (DisableRuntimeUnroll) 8575 AddRuntimeUnrollDisableMetaData(L); 8576 8577 // Mark the loop as already vectorized to avoid vectorizing again. 8578 Hints.setAlreadyVectorized(); 8579 } 8580 8581 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8582 return true; 8583 } 8584 8585 LoopVectorizeResult LoopVectorizePass::runImpl( 8586 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8587 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8588 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8589 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8590 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8591 SE = &SE_; 8592 LI = &LI_; 8593 TTI = &TTI_; 8594 DT = &DT_; 8595 BFI = &BFI_; 8596 TLI = TLI_; 8597 AA = &AA_; 8598 AC = &AC_; 8599 GetLAA = &GetLAA_; 8600 DB = &DB_; 8601 ORE = &ORE_; 8602 PSI = PSI_; 8603 8604 // Don't attempt if 8605 // 1. the target claims to have no vector registers, and 8606 // 2. interleaving won't help ILP. 8607 // 8608 // The second condition is necessary because, even if the target has no 8609 // vector registers, loop vectorization may still enable scalar 8610 // interleaving. 8611 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8612 TTI->getMaxInterleaveFactor(1) < 2) 8613 return LoopVectorizeResult(false, false); 8614 8615 bool Changed = false, CFGChanged = false; 8616 8617 // The vectorizer requires loops to be in simplified form. 8618 // Since simplification may add new inner loops, it has to run before the 8619 // legality and profitability checks. This means running the loop vectorizer 8620 // will simplify all loops, regardless of whether anything end up being 8621 // vectorized. 8622 for (auto &L : *LI) 8623 Changed |= CFGChanged |= 8624 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8625 8626 // Build up a worklist of inner-loops to vectorize. This is necessary as 8627 // the act of vectorizing or partially unrolling a loop creates new loops 8628 // and can invalidate iterators across the loops. 8629 SmallVector<Loop *, 8> Worklist; 8630 8631 for (Loop *L : *LI) 8632 collectSupportedLoops(*L, LI, ORE, Worklist); 8633 8634 LoopsAnalyzed += Worklist.size(); 8635 8636 // Now walk the identified inner loops. 8637 while (!Worklist.empty()) { 8638 Loop *L = Worklist.pop_back_val(); 8639 8640 // For the inner loops we actually process, form LCSSA to simplify the 8641 // transform. 8642 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8643 8644 Changed |= CFGChanged |= processLoop(L); 8645 } 8646 8647 // Process each loop nest in the function. 8648 return LoopVectorizeResult(Changed, CFGChanged); 8649 } 8650 8651 PreservedAnalyses LoopVectorizePass::run(Function &F, 8652 FunctionAnalysisManager &AM) { 8653 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8654 auto &LI = AM.getResult<LoopAnalysis>(F); 8655 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8656 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8657 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8658 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8659 auto &AA = AM.getResult<AAManager>(F); 8660 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8661 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8662 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8663 MemorySSA *MSSA = EnableMSSALoopDependency 8664 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8665 : nullptr; 8666 8667 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8668 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8669 [&](Loop &L) -> const LoopAccessInfo & { 8670 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 8671 TLI, TTI, nullptr, MSSA}; 8672 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8673 }; 8674 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8675 ProfileSummaryInfo *PSI = 8676 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8677 LoopVectorizeResult Result = 8678 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8679 if (!Result.MadeAnyChange) 8680 return PreservedAnalyses::all(); 8681 PreservedAnalyses PA; 8682 8683 // We currently do not preserve loopinfo/dominator analyses with outer loop 8684 // vectorization. Until this is addressed, mark these analyses as preserved 8685 // only for non-VPlan-native path. 8686 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8687 if (!EnableVPlanNativePath) { 8688 PA.preserve<LoopAnalysis>(); 8689 PA.preserve<DominatorTreeAnalysis>(); 8690 } 8691 PA.preserve<BasicAA>(); 8692 PA.preserve<GlobalsAA>(); 8693 if (!Result.MadeCFGChange) 8694 PA.preserveSet<CFGAnalyses>(); 8695 return PA; 8696 } 8697