1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 // There is a development effort going on to migrate loop vectorizer to the 30 // VPlan infrastructure and to introduce outer loop vectorization support (see 31 // docs/Proposal/VectorizationPlan.rst and 32 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 33 // purpose, we temporarily introduced the VPlan-native vectorization path: an 34 // alternative vectorization path that is natively implemented on top of the 35 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // The reduction-variable vectorization is based on the paper: 40 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 41 // 42 // Variable uniformity checks are inspired by: 43 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 44 // 45 // The interleaved access vectorization is based on the paper: 46 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 47 // Data for SIMD 48 // 49 // Other ideas/concepts are from: 50 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 51 // 52 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 53 // Vectorizing Compilers. 54 // 55 //===----------------------------------------------------------------------===// 56 57 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 58 #include "LoopVectorizationPlanner.h" 59 #include "VPRecipeBuilder.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseMapInfo.h" 65 #include "llvm/ADT/Hashing.h" 66 #include "llvm/ADT/MapVector.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/ADT/StringRef.h" 75 #include "llvm/ADT/Twine.h" 76 #include "llvm/ADT/iterator_range.h" 77 #include "llvm/Analysis/AssumptionCache.h" 78 #include "llvm/Analysis/BasicAliasAnalysis.h" 79 #include "llvm/Analysis/BlockFrequencyInfo.h" 80 #include "llvm/Analysis/CFG.h" 81 #include "llvm/Analysis/CodeMetrics.h" 82 #include "llvm/Analysis/DemandedBits.h" 83 #include "llvm/Analysis/GlobalsModRef.h" 84 #include "llvm/Analysis/LoopAccessAnalysis.h" 85 #include "llvm/Analysis/LoopAnalysisManager.h" 86 #include "llvm/Analysis/LoopInfo.h" 87 #include "llvm/Analysis/LoopIterator.h" 88 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 89 #include "llvm/Analysis/ScalarEvolution.h" 90 #include "llvm/Analysis/ScalarEvolutionExpander.h" 91 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 92 #include "llvm/Analysis/TargetLibraryInfo.h" 93 #include "llvm/Analysis/TargetTransformInfo.h" 94 #include "llvm/Analysis/VectorUtils.h" 95 #include "llvm/IR/Attributes.h" 96 #include "llvm/IR/BasicBlock.h" 97 #include "llvm/IR/CFG.h" 98 #include "llvm/IR/Constant.h" 99 #include "llvm/IR/Constants.h" 100 #include "llvm/IR/DataLayout.h" 101 #include "llvm/IR/DebugInfoMetadata.h" 102 #include "llvm/IR/DebugLoc.h" 103 #include "llvm/IR/DerivedTypes.h" 104 #include "llvm/IR/DiagnosticInfo.h" 105 #include "llvm/IR/Dominators.h" 106 #include "llvm/IR/Function.h" 107 #include "llvm/IR/IRBuilder.h" 108 #include "llvm/IR/InstrTypes.h" 109 #include "llvm/IR/Instruction.h" 110 #include "llvm/IR/Instructions.h" 111 #include "llvm/IR/IntrinsicInst.h" 112 #include "llvm/IR/Intrinsics.h" 113 #include "llvm/IR/LLVMContext.h" 114 #include "llvm/IR/Metadata.h" 115 #include "llvm/IR/Module.h" 116 #include "llvm/IR/Operator.h" 117 #include "llvm/IR/Type.h" 118 #include "llvm/IR/Use.h" 119 #include "llvm/IR/User.h" 120 #include "llvm/IR/Value.h" 121 #include "llvm/IR/ValueHandle.h" 122 #include "llvm/IR/Verifier.h" 123 #include "llvm/Pass.h" 124 #include "llvm/Support/Casting.h" 125 #include "llvm/Support/CommandLine.h" 126 #include "llvm/Support/Compiler.h" 127 #include "llvm/Support/Debug.h" 128 #include "llvm/Support/ErrorHandling.h" 129 #include "llvm/Support/MathExtras.h" 130 #include "llvm/Support/raw_ostream.h" 131 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 132 #include "llvm/Transforms/Utils/LoopSimplify.h" 133 #include "llvm/Transforms/Utils/LoopUtils.h" 134 #include "llvm/Transforms/Utils/LoopVersioning.h" 135 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 136 #include <algorithm> 137 #include <cassert> 138 #include <cstdint> 139 #include <cstdlib> 140 #include <functional> 141 #include <iterator> 142 #include <limits> 143 #include <memory> 144 #include <string> 145 #include <tuple> 146 #include <utility> 147 #include <vector> 148 149 using namespace llvm; 150 151 #define LV_NAME "loop-vectorize" 152 #define DEBUG_TYPE LV_NAME 153 154 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 155 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 156 157 /// Loops with a known constant trip count below this number are vectorized only 158 /// if no scalar iteration overheads are incurred. 159 static cl::opt<unsigned> TinyTripCountVectorThreshold( 160 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 161 cl::desc("Loops with a constant trip count that is smaller than this " 162 "value are vectorized only if no scalar iteration overheads " 163 "are incurred.")); 164 165 static cl::opt<bool> MaximizeBandwidth( 166 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 167 cl::desc("Maximize bandwidth when selecting vectorization factor which " 168 "will be determined by the smallest type in loop.")); 169 170 static cl::opt<bool> EnableInterleavedMemAccesses( 171 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 172 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 173 174 /// Maximum factor for an interleaved memory access. 175 static cl::opt<unsigned> MaxInterleaveGroupFactor( 176 "max-interleave-group-factor", cl::Hidden, 177 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 178 cl::init(8)); 179 180 /// We don't interleave loops with a known constant trip count below this 181 /// number. 182 static const unsigned TinyTripCountInterleaveThreshold = 128; 183 184 static cl::opt<unsigned> ForceTargetNumScalarRegs( 185 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 186 cl::desc("A flag that overrides the target's number of scalar registers.")); 187 188 static cl::opt<unsigned> ForceTargetNumVectorRegs( 189 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 190 cl::desc("A flag that overrides the target's number of vector registers.")); 191 192 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 193 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 194 cl::desc("A flag that overrides the target's max interleave factor for " 195 "scalar loops.")); 196 197 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 198 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 199 cl::desc("A flag that overrides the target's max interleave factor for " 200 "vectorized loops.")); 201 202 static cl::opt<unsigned> ForceTargetInstructionCost( 203 "force-target-instruction-cost", cl::init(0), cl::Hidden, 204 cl::desc("A flag that overrides the target's expected cost for " 205 "an instruction to a single constant value. Mostly " 206 "useful for getting consistent testing.")); 207 208 static cl::opt<unsigned> SmallLoopCost( 209 "small-loop-cost", cl::init(20), cl::Hidden, 210 cl::desc( 211 "The cost of a loop that is considered 'small' by the interleaver.")); 212 213 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 214 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 215 cl::desc("Enable the use of the block frequency analysis to access PGO " 216 "heuristics minimizing code growth in cold regions and being more " 217 "aggressive in hot regions.")); 218 219 // Runtime interleave loops for load/store throughput. 220 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 221 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 222 cl::desc( 223 "Enable runtime interleaving until load/store ports are saturated")); 224 225 /// The number of stores in a loop that are allowed to need predication. 226 static cl::opt<unsigned> NumberOfStoresToPredicate( 227 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 228 cl::desc("Max number of stores to be predicated behind an if.")); 229 230 static cl::opt<bool> EnableIndVarRegisterHeur( 231 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 232 cl::desc("Count the induction variable only once when interleaving")); 233 234 static cl::opt<bool> EnableCondStoresVectorization( 235 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 236 cl::desc("Enable if predication of stores during vectorization.")); 237 238 static cl::opt<unsigned> MaxNestedScalarReductionIC( 239 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 240 cl::desc("The maximum interleave count to use when interleaving a scalar " 241 "reduction in a nested loop.")); 242 243 static cl::opt<bool> EnableVPlanNativePath( 244 "enable-vplan-native-path", cl::init(false), cl::Hidden, 245 cl::desc("Enable VPlan-native vectorization path with " 246 "support for outer loop vectorization.")); 247 248 // This flag enables the stress testing of the VPlan H-CFG construction in the 249 // VPlan-native vectorization path. It must be used in conjuction with 250 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 251 // verification of the H-CFGs built. 252 static cl::opt<bool> VPlanBuildStressTest( 253 "vplan-build-stress-test", cl::init(false), cl::Hidden, 254 cl::desc( 255 "Build VPlan for every supported loop nest in the function and bail " 256 "out right after the build (stress test the VPlan H-CFG construction " 257 "in the VPlan-native vectorization path).")); 258 259 /// A helper function for converting Scalar types to vector types. 260 /// If the incoming type is void, we return void. If the VF is 1, we return 261 /// the scalar type. 262 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 263 if (Scalar->isVoidTy() || VF == 1) 264 return Scalar; 265 return VectorType::get(Scalar, VF); 266 } 267 268 // FIXME: The following helper functions have multiple implementations 269 // in the project. They can be effectively organized in a common Load/Store 270 // utilities unit. 271 272 /// A helper function that returns the type of loaded or stored value. 273 static Type *getMemInstValueType(Value *I) { 274 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 275 "Expected Load or Store instruction"); 276 if (auto *LI = dyn_cast<LoadInst>(I)) 277 return LI->getType(); 278 return cast<StoreInst>(I)->getValueOperand()->getType(); 279 } 280 281 /// A helper function that returns the alignment of load or store instruction. 282 static unsigned getMemInstAlignment(Value *I) { 283 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 284 "Expected Load or Store instruction"); 285 if (auto *LI = dyn_cast<LoadInst>(I)) 286 return LI->getAlignment(); 287 return cast<StoreInst>(I)->getAlignment(); 288 } 289 290 /// A helper function that returns the address space of the pointer operand of 291 /// load or store instruction. 292 static unsigned getMemInstAddressSpace(Value *I) { 293 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 294 "Expected Load or Store instruction"); 295 if (auto *LI = dyn_cast<LoadInst>(I)) 296 return LI->getPointerAddressSpace(); 297 return cast<StoreInst>(I)->getPointerAddressSpace(); 298 } 299 300 /// A helper function that returns true if the given type is irregular. The 301 /// type is irregular if its allocated size doesn't equal the store size of an 302 /// element of the corresponding vector type at the given vectorization factor. 303 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 304 // Determine if an array of VF elements of type Ty is "bitcast compatible" 305 // with a <VF x Ty> vector. 306 if (VF > 1) { 307 auto *VectorTy = VectorType::get(Ty, VF); 308 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 309 } 310 311 // If the vectorization factor is one, we just check if an array of type Ty 312 // requires padding between elements. 313 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 314 } 315 316 /// A helper function that returns the reciprocal of the block probability of 317 /// predicated blocks. If we return X, we are assuming the predicated block 318 /// will execute once for every X iterations of the loop header. 319 /// 320 /// TODO: We should use actual block probability here, if available. Currently, 321 /// we always assume predicated blocks have a 50% chance of executing. 322 static unsigned getReciprocalPredBlockProb() { return 2; } 323 324 /// A helper function that adds a 'fast' flag to floating-point operations. 325 static Value *addFastMathFlag(Value *V) { 326 if (isa<FPMathOperator>(V)) { 327 FastMathFlags Flags; 328 Flags.setFast(); 329 cast<Instruction>(V)->setFastMathFlags(Flags); 330 } 331 return V; 332 } 333 334 /// A helper function that returns an integer or floating-point constant with 335 /// value C. 336 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 337 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 338 : ConstantFP::get(Ty, C); 339 } 340 341 namespace llvm { 342 343 /// InnerLoopVectorizer vectorizes loops which contain only one basic 344 /// block to a specified vectorization factor (VF). 345 /// This class performs the widening of scalars into vectors, or multiple 346 /// scalars. This class also implements the following features: 347 /// * It inserts an epilogue loop for handling loops that don't have iteration 348 /// counts that are known to be a multiple of the vectorization factor. 349 /// * It handles the code generation for reduction variables. 350 /// * Scalarization (implementation using scalars) of un-vectorizable 351 /// instructions. 352 /// InnerLoopVectorizer does not perform any vectorization-legality 353 /// checks, and relies on the caller to check for the different legality 354 /// aspects. The InnerLoopVectorizer relies on the 355 /// LoopVectorizationLegality class to provide information about the induction 356 /// and reduction variables that were found to a given vectorization factor. 357 class InnerLoopVectorizer { 358 public: 359 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 360 LoopInfo *LI, DominatorTree *DT, 361 const TargetLibraryInfo *TLI, 362 const TargetTransformInfo *TTI, AssumptionCache *AC, 363 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 364 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 365 LoopVectorizationCostModel *CM) 366 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 367 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 368 Builder(PSE.getSE()->getContext()), 369 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 370 virtual ~InnerLoopVectorizer() = default; 371 372 /// Create a new empty loop. Unlink the old loop and connect the new one. 373 /// Return the pre-header block of the new loop. 374 BasicBlock *createVectorizedLoopSkeleton(); 375 376 /// Widen a single instruction within the innermost loop. 377 void widenInstruction(Instruction &I); 378 379 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 380 void fixVectorizedLoop(); 381 382 // Return true if any runtime check is added. 383 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 384 385 /// A type for vectorized values in the new loop. Each value from the 386 /// original loop, when vectorized, is represented by UF vector values in the 387 /// new unrolled loop, where UF is the unroll factor. 388 using VectorParts = SmallVector<Value *, 2>; 389 390 /// Vectorize a single PHINode in a block. This method handles the induction 391 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 392 /// arbitrary length vectors. 393 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 394 395 /// A helper function to scalarize a single Instruction in the innermost loop. 396 /// Generates a sequence of scalar instances for each lane between \p MinLane 397 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 398 /// inclusive.. 399 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 400 bool IfPredicateInstr); 401 402 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 403 /// is provided, the integer induction variable will first be truncated to 404 /// the corresponding type. 405 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 406 407 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 408 /// vector or scalar value on-demand if one is not yet available. When 409 /// vectorizing a loop, we visit the definition of an instruction before its 410 /// uses. When visiting the definition, we either vectorize or scalarize the 411 /// instruction, creating an entry for it in the corresponding map. (In some 412 /// cases, such as induction variables, we will create both vector and scalar 413 /// entries.) Then, as we encounter uses of the definition, we derive values 414 /// for each scalar or vector use unless such a value is already available. 415 /// For example, if we scalarize a definition and one of its uses is vector, 416 /// we build the required vector on-demand with an insertelement sequence 417 /// when visiting the use. Otherwise, if the use is scalar, we can use the 418 /// existing scalar definition. 419 /// 420 /// Return a value in the new loop corresponding to \p V from the original 421 /// loop at unroll index \p Part. If the value has already been vectorized, 422 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 423 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 424 /// a new vector value on-demand by inserting the scalar values into a vector 425 /// with an insertelement sequence. If the value has been neither vectorized 426 /// nor scalarized, it must be loop invariant, so we simply broadcast the 427 /// value into a vector. 428 Value *getOrCreateVectorValue(Value *V, unsigned Part); 429 430 /// Return a value in the new loop corresponding to \p V from the original 431 /// loop at unroll and vector indices \p Instance. If the value has been 432 /// vectorized but not scalarized, the necessary extractelement instruction 433 /// will be generated. 434 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 435 436 /// Construct the vector value of a scalarized value \p V one lane at a time. 437 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 438 439 /// Try to vectorize the interleaved access group that \p Instr belongs to. 440 void vectorizeInterleaveGroup(Instruction *Instr); 441 442 /// Vectorize Load and Store instructions, optionally masking the vector 443 /// operations if \p BlockInMask is non-null. 444 void vectorizeMemoryInstruction(Instruction *Instr, 445 VectorParts *BlockInMask = nullptr); 446 447 /// Set the debug location in the builder using the debug location in 448 /// the instruction. 449 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 450 451 protected: 452 friend class LoopVectorizationPlanner; 453 454 /// A small list of PHINodes. 455 using PhiVector = SmallVector<PHINode *, 4>; 456 457 /// A type for scalarized values in the new loop. Each value from the 458 /// original loop, when scalarized, is represented by UF x VF scalar values 459 /// in the new unrolled loop, where UF is the unroll factor and VF is the 460 /// vectorization factor. 461 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 462 463 /// Set up the values of the IVs correctly when exiting the vector loop. 464 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 465 Value *CountRoundDown, Value *EndValue, 466 BasicBlock *MiddleBlock); 467 468 /// Create a new induction variable inside L. 469 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 470 Value *Step, Instruction *DL); 471 472 /// Handle all cross-iteration phis in the header. 473 void fixCrossIterationPHIs(); 474 475 /// Fix a first-order recurrence. This is the second phase of vectorizing 476 /// this phi node. 477 void fixFirstOrderRecurrence(PHINode *Phi); 478 479 /// Fix a reduction cross-iteration phi. This is the second phase of 480 /// vectorizing this phi node. 481 void fixReduction(PHINode *Phi); 482 483 /// The Loop exit block may have single value PHI nodes with some 484 /// incoming value. While vectorizing we only handled real values 485 /// that were defined inside the loop and we should have one value for 486 /// each predecessor of its parent basic block. See PR14725. 487 void fixLCSSAPHIs(); 488 489 /// Iteratively sink the scalarized operands of a predicated instruction into 490 /// the block that was created for it. 491 void sinkScalarOperands(Instruction *PredInst); 492 493 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 494 /// represented as. 495 void truncateToMinimalBitwidths(); 496 497 /// Insert the new loop to the loop hierarchy and pass manager 498 /// and update the analysis passes. 499 void updateAnalysis(); 500 501 /// Create a broadcast instruction. This method generates a broadcast 502 /// instruction (shuffle) for loop invariant values and for the induction 503 /// value. If this is the induction variable then we extend it to N, N+1, ... 504 /// this is needed because each iteration in the loop corresponds to a SIMD 505 /// element. 506 virtual Value *getBroadcastInstrs(Value *V); 507 508 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 509 /// to each vector element of Val. The sequence starts at StartIndex. 510 /// \p Opcode is relevant for FP induction variable. 511 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 512 Instruction::BinaryOps Opcode = 513 Instruction::BinaryOpsEnd); 514 515 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 516 /// variable on which to base the steps, \p Step is the size of the step, and 517 /// \p EntryVal is the value from the original loop that maps to the steps. 518 /// Note that \p EntryVal doesn't have to be an induction variable - it 519 /// can also be a truncate instruction. 520 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 521 const InductionDescriptor &ID); 522 523 /// Create a vector induction phi node based on an existing scalar one. \p 524 /// EntryVal is the value from the original loop that maps to the vector phi 525 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 526 /// truncate instruction, instead of widening the original IV, we widen a 527 /// version of the IV truncated to \p EntryVal's type. 528 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 529 Value *Step, Instruction *EntryVal); 530 531 /// Returns true if an instruction \p I should be scalarized instead of 532 /// vectorized for the chosen vectorization factor. 533 bool shouldScalarizeInstruction(Instruction *I) const; 534 535 /// Returns true if we should generate a scalar version of \p IV. 536 bool needsScalarInduction(Instruction *IV) const; 537 538 /// If there is a cast involved in the induction variable \p ID, which should 539 /// be ignored in the vectorized loop body, this function records the 540 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 541 /// cast. We had already proved that the casted Phi is equal to the uncasted 542 /// Phi in the vectorized loop (under a runtime guard), and therefore 543 /// there is no need to vectorize the cast - the same value can be used in the 544 /// vector loop for both the Phi and the cast. 545 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 546 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 547 /// 548 /// \p EntryVal is the value from the original loop that maps to the vector 549 /// phi node and is used to distinguish what is the IV currently being 550 /// processed - original one (if \p EntryVal is a phi corresponding to the 551 /// original IV) or the "newly-created" one based on the proof mentioned above 552 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 553 /// latter case \p EntryVal is a TruncInst and we must not record anything for 554 /// that IV, but it's error-prone to expect callers of this routine to care 555 /// about that, hence this explicit parameter. 556 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 557 const Instruction *EntryVal, 558 Value *VectorLoopValue, 559 unsigned Part, 560 unsigned Lane = UINT_MAX); 561 562 /// Generate a shuffle sequence that will reverse the vector Vec. 563 virtual Value *reverseVector(Value *Vec); 564 565 /// Returns (and creates if needed) the original loop trip count. 566 Value *getOrCreateTripCount(Loop *NewLoop); 567 568 /// Returns (and creates if needed) the trip count of the widened loop. 569 Value *getOrCreateVectorTripCount(Loop *NewLoop); 570 571 /// Returns a bitcasted value to the requested vector type. 572 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 573 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 574 const DataLayout &DL); 575 576 /// Emit a bypass check to see if the vector trip count is zero, including if 577 /// it overflows. 578 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 579 580 /// Emit a bypass check to see if all of the SCEV assumptions we've 581 /// had to make are correct. 582 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 583 584 /// Emit bypass checks to check any memory assumptions we may have made. 585 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 586 587 /// Add additional metadata to \p To that was not present on \p Orig. 588 /// 589 /// Currently this is used to add the noalias annotations based on the 590 /// inserted memchecks. Use this for instructions that are *cloned* into the 591 /// vector loop. 592 void addNewMetadata(Instruction *To, const Instruction *Orig); 593 594 /// Add metadata from one instruction to another. 595 /// 596 /// This includes both the original MDs from \p From and additional ones (\see 597 /// addNewMetadata). Use this for *newly created* instructions in the vector 598 /// loop. 599 void addMetadata(Instruction *To, Instruction *From); 600 601 /// Similar to the previous function but it adds the metadata to a 602 /// vector of instructions. 603 void addMetadata(ArrayRef<Value *> To, Instruction *From); 604 605 /// The original loop. 606 Loop *OrigLoop; 607 608 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 609 /// dynamic knowledge to simplify SCEV expressions and converts them to a 610 /// more usable form. 611 PredicatedScalarEvolution &PSE; 612 613 /// Loop Info. 614 LoopInfo *LI; 615 616 /// Dominator Tree. 617 DominatorTree *DT; 618 619 /// Alias Analysis. 620 AliasAnalysis *AA; 621 622 /// Target Library Info. 623 const TargetLibraryInfo *TLI; 624 625 /// Target Transform Info. 626 const TargetTransformInfo *TTI; 627 628 /// Assumption Cache. 629 AssumptionCache *AC; 630 631 /// Interface to emit optimization remarks. 632 OptimizationRemarkEmitter *ORE; 633 634 /// LoopVersioning. It's only set up (non-null) if memchecks were 635 /// used. 636 /// 637 /// This is currently only used to add no-alias metadata based on the 638 /// memchecks. The actually versioning is performed manually. 639 std::unique_ptr<LoopVersioning> LVer; 640 641 /// The vectorization SIMD factor to use. Each vector will have this many 642 /// vector elements. 643 unsigned VF; 644 645 /// The vectorization unroll factor to use. Each scalar is vectorized to this 646 /// many different vector instructions. 647 unsigned UF; 648 649 /// The builder that we use 650 IRBuilder<> Builder; 651 652 // --- Vectorization state --- 653 654 /// The vector-loop preheader. 655 BasicBlock *LoopVectorPreHeader; 656 657 /// The scalar-loop preheader. 658 BasicBlock *LoopScalarPreHeader; 659 660 /// Middle Block between the vector and the scalar. 661 BasicBlock *LoopMiddleBlock; 662 663 /// The ExitBlock of the scalar loop. 664 BasicBlock *LoopExitBlock; 665 666 /// The vector loop body. 667 BasicBlock *LoopVectorBody; 668 669 /// The scalar loop body. 670 BasicBlock *LoopScalarBody; 671 672 /// A list of all bypass blocks. The first block is the entry of the loop. 673 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 674 675 /// The new Induction variable which was added to the new block. 676 PHINode *Induction = nullptr; 677 678 /// The induction variable of the old basic block. 679 PHINode *OldInduction = nullptr; 680 681 /// Maps values from the original loop to their corresponding values in the 682 /// vectorized loop. A key value can map to either vector values, scalar 683 /// values or both kinds of values, depending on whether the key was 684 /// vectorized and scalarized. 685 VectorizerValueMap VectorLoopValueMap; 686 687 /// Store instructions that were predicated. 688 SmallVector<Instruction *, 4> PredicatedInstructions; 689 690 /// Trip count of the original loop. 691 Value *TripCount = nullptr; 692 693 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 694 Value *VectorTripCount = nullptr; 695 696 /// The legality analysis. 697 LoopVectorizationLegality *Legal; 698 699 /// The profitablity analysis. 700 LoopVectorizationCostModel *Cost; 701 702 // Record whether runtime checks are added. 703 bool AddedSafetyChecks = false; 704 705 // Holds the end values for each induction variable. We save the end values 706 // so we can later fix-up the external users of the induction variables. 707 DenseMap<PHINode *, Value *> IVEndValues; 708 }; 709 710 class InnerLoopUnroller : public InnerLoopVectorizer { 711 public: 712 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 713 LoopInfo *LI, DominatorTree *DT, 714 const TargetLibraryInfo *TLI, 715 const TargetTransformInfo *TTI, AssumptionCache *AC, 716 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 717 LoopVectorizationLegality *LVL, 718 LoopVectorizationCostModel *CM) 719 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 720 UnrollFactor, LVL, CM) {} 721 722 private: 723 Value *getBroadcastInstrs(Value *V) override; 724 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 725 Instruction::BinaryOps Opcode = 726 Instruction::BinaryOpsEnd) override; 727 Value *reverseVector(Value *Vec) override; 728 }; 729 730 } // end namespace llvm 731 732 /// Look for a meaningful debug location on the instruction or it's 733 /// operands. 734 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 735 if (!I) 736 return I; 737 738 DebugLoc Empty; 739 if (I->getDebugLoc() != Empty) 740 return I; 741 742 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 743 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 744 if (OpInst->getDebugLoc() != Empty) 745 return OpInst; 746 } 747 748 return I; 749 } 750 751 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 752 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 753 const DILocation *DIL = Inst->getDebugLoc(); 754 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 755 !isa<DbgInfoIntrinsic>(Inst)) 756 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 757 else 758 B.SetCurrentDebugLocation(DIL); 759 } else 760 B.SetCurrentDebugLocation(DebugLoc()); 761 } 762 763 #ifndef NDEBUG 764 /// \return string containing a file name and a line # for the given loop. 765 static std::string getDebugLocString(const Loop *L) { 766 std::string Result; 767 if (L) { 768 raw_string_ostream OS(Result); 769 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 770 LoopDbgLoc.print(OS); 771 else 772 // Just print the module name. 773 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 774 OS.flush(); 775 } 776 return Result; 777 } 778 #endif 779 780 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 781 const Instruction *Orig) { 782 // If the loop was versioned with memchecks, add the corresponding no-alias 783 // metadata. 784 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 785 LVer->annotateInstWithNoAlias(To, Orig); 786 } 787 788 void InnerLoopVectorizer::addMetadata(Instruction *To, 789 Instruction *From) { 790 propagateMetadata(To, From); 791 addNewMetadata(To, From); 792 } 793 794 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 795 Instruction *From) { 796 for (Value *V : To) { 797 if (Instruction *I = dyn_cast<Instruction>(V)) 798 addMetadata(I, From); 799 } 800 } 801 802 namespace llvm { 803 804 /// The group of interleaved loads/stores sharing the same stride and 805 /// close to each other. 806 /// 807 /// Each member in this group has an index starting from 0, and the largest 808 /// index should be less than interleaved factor, which is equal to the absolute 809 /// value of the access's stride. 810 /// 811 /// E.g. An interleaved load group of factor 4: 812 /// for (unsigned i = 0; i < 1024; i+=4) { 813 /// a = A[i]; // Member of index 0 814 /// b = A[i+1]; // Member of index 1 815 /// d = A[i+3]; // Member of index 3 816 /// ... 817 /// } 818 /// 819 /// An interleaved store group of factor 4: 820 /// for (unsigned i = 0; i < 1024; i+=4) { 821 /// ... 822 /// A[i] = a; // Member of index 0 823 /// A[i+1] = b; // Member of index 1 824 /// A[i+2] = c; // Member of index 2 825 /// A[i+3] = d; // Member of index 3 826 /// } 827 /// 828 /// Note: the interleaved load group could have gaps (missing members), but 829 /// the interleaved store group doesn't allow gaps. 830 class InterleaveGroup { 831 public: 832 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 833 : Align(Align), InsertPos(Instr) { 834 assert(Align && "The alignment should be non-zero"); 835 836 Factor = std::abs(Stride); 837 assert(Factor > 1 && "Invalid interleave factor"); 838 839 Reverse = Stride < 0; 840 Members[0] = Instr; 841 } 842 843 bool isReverse() const { return Reverse; } 844 unsigned getFactor() const { return Factor; } 845 unsigned getAlignment() const { return Align; } 846 unsigned getNumMembers() const { return Members.size(); } 847 848 /// Try to insert a new member \p Instr with index \p Index and 849 /// alignment \p NewAlign. The index is related to the leader and it could be 850 /// negative if it is the new leader. 851 /// 852 /// \returns false if the instruction doesn't belong to the group. 853 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 854 assert(NewAlign && "The new member's alignment should be non-zero"); 855 856 int Key = Index + SmallestKey; 857 858 // Skip if there is already a member with the same index. 859 if (Members.count(Key)) 860 return false; 861 862 if (Key > LargestKey) { 863 // The largest index is always less than the interleave factor. 864 if (Index >= static_cast<int>(Factor)) 865 return false; 866 867 LargestKey = Key; 868 } else if (Key < SmallestKey) { 869 // The largest index is always less than the interleave factor. 870 if (LargestKey - Key >= static_cast<int>(Factor)) 871 return false; 872 873 SmallestKey = Key; 874 } 875 876 // It's always safe to select the minimum alignment. 877 Align = std::min(Align, NewAlign); 878 Members[Key] = Instr; 879 return true; 880 } 881 882 /// Get the member with the given index \p Index 883 /// 884 /// \returns nullptr if contains no such member. 885 Instruction *getMember(unsigned Index) const { 886 int Key = SmallestKey + Index; 887 if (!Members.count(Key)) 888 return nullptr; 889 890 return Members.find(Key)->second; 891 } 892 893 /// Get the index for the given member. Unlike the key in the member 894 /// map, the index starts from 0. 895 unsigned getIndex(Instruction *Instr) const { 896 for (auto I : Members) 897 if (I.second == Instr) 898 return I.first - SmallestKey; 899 900 llvm_unreachable("InterleaveGroup contains no such member"); 901 } 902 903 Instruction *getInsertPos() const { return InsertPos; } 904 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 905 906 /// Add metadata (e.g. alias info) from the instructions in this group to \p 907 /// NewInst. 908 /// 909 /// FIXME: this function currently does not add noalias metadata a'la 910 /// addNewMedata. To do that we need to compute the intersection of the 911 /// noalias info from all members. 912 void addMetadata(Instruction *NewInst) const { 913 SmallVector<Value *, 4> VL; 914 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 915 [](std::pair<int, Instruction *> p) { return p.second; }); 916 propagateMetadata(NewInst, VL); 917 } 918 919 private: 920 unsigned Factor; // Interleave Factor. 921 bool Reverse; 922 unsigned Align; 923 DenseMap<int, Instruction *> Members; 924 int SmallestKey = 0; 925 int LargestKey = 0; 926 927 // To avoid breaking dependences, vectorized instructions of an interleave 928 // group should be inserted at either the first load or the last store in 929 // program order. 930 // 931 // E.g. %even = load i32 // Insert Position 932 // %add = add i32 %even // Use of %even 933 // %odd = load i32 934 // 935 // store i32 %even 936 // %odd = add i32 // Def of %odd 937 // store i32 %odd // Insert Position 938 Instruction *InsertPos; 939 }; 940 } // end namespace llvm 941 942 namespace { 943 944 /// Drive the analysis of interleaved memory accesses in the loop. 945 /// 946 /// Use this class to analyze interleaved accesses only when we can vectorize 947 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 948 /// on interleaved accesses is unsafe. 949 /// 950 /// The analysis collects interleave groups and records the relationships 951 /// between the member and the group in a map. 952 class InterleavedAccessInfo { 953 public: 954 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 955 DominatorTree *DT, LoopInfo *LI, 956 const LoopAccessInfo *LAI) 957 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {} 958 959 ~InterleavedAccessInfo() { 960 SmallPtrSet<InterleaveGroup *, 4> DelSet; 961 // Avoid releasing a pointer twice. 962 for (auto &I : InterleaveGroupMap) 963 DelSet.insert(I.second); 964 for (auto *Ptr : DelSet) 965 delete Ptr; 966 } 967 968 /// Analyze the interleaved accesses and collect them in interleave 969 /// groups. Substitute symbolic strides using \p Strides. 970 void analyzeInterleaving(); 971 972 /// Check if \p Instr belongs to any interleave group. 973 bool isInterleaved(Instruction *Instr) const { 974 return InterleaveGroupMap.count(Instr); 975 } 976 977 /// Get the interleave group that \p Instr belongs to. 978 /// 979 /// \returns nullptr if doesn't have such group. 980 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 981 if (InterleaveGroupMap.count(Instr)) 982 return InterleaveGroupMap.find(Instr)->second; 983 return nullptr; 984 } 985 986 /// Returns true if an interleaved group that may access memory 987 /// out-of-bounds requires a scalar epilogue iteration for correctness. 988 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 989 990 private: 991 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 992 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 993 /// The interleaved access analysis can also add new predicates (for example 994 /// by versioning strides of pointers). 995 PredicatedScalarEvolution &PSE; 996 997 Loop *TheLoop; 998 DominatorTree *DT; 999 LoopInfo *LI; 1000 const LoopAccessInfo *LAI; 1001 1002 /// True if the loop may contain non-reversed interleaved groups with 1003 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1004 /// out-of-bounds by executing at least one scalar epilogue iteration. 1005 bool RequiresScalarEpilogue = false; 1006 1007 /// Holds the relationships between the members and the interleave group. 1008 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1009 1010 /// Holds dependences among the memory accesses in the loop. It maps a source 1011 /// access to a set of dependent sink accesses. 1012 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1013 1014 /// The descriptor for a strided memory access. 1015 struct StrideDescriptor { 1016 StrideDescriptor() = default; 1017 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1018 unsigned Align) 1019 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1020 1021 // The access's stride. It is negative for a reverse access. 1022 int64_t Stride = 0; 1023 1024 // The scalar expression of this access. 1025 const SCEV *Scev = nullptr; 1026 1027 // The size of the memory object. 1028 uint64_t Size = 0; 1029 1030 // The alignment of this access. 1031 unsigned Align = 0; 1032 }; 1033 1034 /// A type for holding instructions and their stride descriptors. 1035 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1036 1037 /// Create a new interleave group with the given instruction \p Instr, 1038 /// stride \p Stride and alignment \p Align. 1039 /// 1040 /// \returns the newly created interleave group. 1041 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1042 unsigned Align) { 1043 assert(!InterleaveGroupMap.count(Instr) && 1044 "Already in an interleaved access group"); 1045 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1046 return InterleaveGroupMap[Instr]; 1047 } 1048 1049 /// Release the group and remove all the relationships. 1050 void releaseGroup(InterleaveGroup *Group) { 1051 for (unsigned i = 0; i < Group->getFactor(); i++) 1052 if (Instruction *Member = Group->getMember(i)) 1053 InterleaveGroupMap.erase(Member); 1054 1055 delete Group; 1056 } 1057 1058 /// Collect all the accesses with a constant stride in program order. 1059 void collectConstStrideAccesses( 1060 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1061 const ValueToValueMap &Strides); 1062 1063 /// Returns true if \p Stride is allowed in an interleaved group. 1064 static bool isStrided(int Stride) { 1065 unsigned Factor = std::abs(Stride); 1066 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1067 } 1068 1069 /// Returns true if \p BB is a predicated block. 1070 bool isPredicated(BasicBlock *BB) const { 1071 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1072 } 1073 1074 /// Returns true if LoopAccessInfo can be used for dependence queries. 1075 bool areDependencesValid() const { 1076 return LAI && LAI->getDepChecker().getDependences(); 1077 } 1078 1079 /// Returns true if memory accesses \p A and \p B can be reordered, if 1080 /// necessary, when constructing interleaved groups. 1081 /// 1082 /// \p A must precede \p B in program order. We return false if reordering is 1083 /// not necessary or is prevented because \p A and \p B may be dependent. 1084 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1085 StrideEntry *B) const { 1086 // Code motion for interleaved accesses can potentially hoist strided loads 1087 // and sink strided stores. The code below checks the legality of the 1088 // following two conditions: 1089 // 1090 // 1. Potentially moving a strided load (B) before any store (A) that 1091 // precedes B, or 1092 // 1093 // 2. Potentially moving a strided store (A) after any load or store (B) 1094 // that A precedes. 1095 // 1096 // It's legal to reorder A and B if we know there isn't a dependence from A 1097 // to B. Note that this determination is conservative since some 1098 // dependences could potentially be reordered safely. 1099 1100 // A is potentially the source of a dependence. 1101 auto *Src = A->first; 1102 auto SrcDes = A->second; 1103 1104 // B is potentially the sink of a dependence. 1105 auto *Sink = B->first; 1106 auto SinkDes = B->second; 1107 1108 // Code motion for interleaved accesses can't violate WAR dependences. 1109 // Thus, reordering is legal if the source isn't a write. 1110 if (!Src->mayWriteToMemory()) 1111 return true; 1112 1113 // At least one of the accesses must be strided. 1114 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1115 return true; 1116 1117 // If dependence information is not available from LoopAccessInfo, 1118 // conservatively assume the instructions can't be reordered. 1119 if (!areDependencesValid()) 1120 return false; 1121 1122 // If we know there is a dependence from source to sink, assume the 1123 // instructions can't be reordered. Otherwise, reordering is legal. 1124 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1125 } 1126 1127 /// Collect the dependences from LoopAccessInfo. 1128 /// 1129 /// We process the dependences once during the interleaved access analysis to 1130 /// enable constant-time dependence queries. 1131 void collectDependences() { 1132 if (!areDependencesValid()) 1133 return; 1134 auto *Deps = LAI->getDepChecker().getDependences(); 1135 for (auto Dep : *Deps) 1136 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1137 } 1138 }; 1139 1140 } // end anonymous namespace 1141 1142 static void emitMissedWarning(Function *F, Loop *L, 1143 const LoopVectorizeHints &LH, 1144 OptimizationRemarkEmitter *ORE) { 1145 LH.emitRemarkWithHints(); 1146 1147 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1148 if (LH.getWidth() != 1) 1149 ORE->emit(DiagnosticInfoOptimizationFailure( 1150 DEBUG_TYPE, "FailedRequestedVectorization", 1151 L->getStartLoc(), L->getHeader()) 1152 << "loop not vectorized: " 1153 << "failed explicitly specified loop vectorization"); 1154 else if (LH.getInterleave() != 1) 1155 ORE->emit(DiagnosticInfoOptimizationFailure( 1156 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1157 L->getHeader()) 1158 << "loop not interleaved: " 1159 << "failed explicitly specified loop interleaving"); 1160 } 1161 } 1162 1163 namespace llvm { 1164 1165 /// LoopVectorizationCostModel - estimates the expected speedups due to 1166 /// vectorization. 1167 /// In many cases vectorization is not profitable. This can happen because of 1168 /// a number of reasons. In this class we mainly attempt to predict the 1169 /// expected speedup/slowdowns due to the supported instruction set. We use the 1170 /// TargetTransformInfo to query the different backends for the cost of 1171 /// different operations. 1172 class LoopVectorizationCostModel { 1173 public: 1174 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1175 LoopInfo *LI, LoopVectorizationLegality *Legal, 1176 const TargetTransformInfo &TTI, 1177 const TargetLibraryInfo *TLI, DemandedBits *DB, 1178 AssumptionCache *AC, 1179 OptimizationRemarkEmitter *ORE, const Function *F, 1180 const LoopVectorizeHints *Hints, 1181 InterleavedAccessInfo &IAI) 1182 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1183 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 1184 1185 /// \return An upper bound for the vectorization factor, or None if 1186 /// vectorization should be avoided up front. 1187 Optional<unsigned> computeMaxVF(bool OptForSize); 1188 1189 /// \return The most profitable vectorization factor and the cost of that VF. 1190 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1191 /// then this vectorization factor will be selected if vectorization is 1192 /// possible. 1193 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1194 1195 /// Setup cost-based decisions for user vectorization factor. 1196 void selectUserVectorizationFactor(unsigned UserVF) { 1197 collectUniformsAndScalars(UserVF); 1198 collectInstsToScalarize(UserVF); 1199 } 1200 1201 /// \return The size (in bits) of the smallest and widest types in the code 1202 /// that needs to be vectorized. We ignore values that remain scalar such as 1203 /// 64 bit loop indices. 1204 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1205 1206 /// \return The desired interleave count. 1207 /// If interleave count has been specified by metadata it will be returned. 1208 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1209 /// are the selected vectorization factor and the cost of the selected VF. 1210 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1211 unsigned LoopCost); 1212 1213 /// Memory access instruction may be vectorized in more than one way. 1214 /// Form of instruction after vectorization depends on cost. 1215 /// This function takes cost-based decisions for Load/Store instructions 1216 /// and collects them in a map. This decisions map is used for building 1217 /// the lists of loop-uniform and loop-scalar instructions. 1218 /// The calculated cost is saved with widening decision in order to 1219 /// avoid redundant calculations. 1220 void setCostBasedWideningDecision(unsigned VF); 1221 1222 /// A struct that represents some properties of the register usage 1223 /// of a loop. 1224 struct RegisterUsage { 1225 /// Holds the number of loop invariant values that are used in the loop. 1226 unsigned LoopInvariantRegs; 1227 1228 /// Holds the maximum number of concurrent live intervals in the loop. 1229 unsigned MaxLocalUsers; 1230 }; 1231 1232 /// \return Returns information about the register usages of the loop for the 1233 /// given vectorization factors. 1234 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1235 1236 /// Collect values we want to ignore in the cost model. 1237 void collectValuesToIgnore(); 1238 1239 /// \returns The smallest bitwidth each instruction can be represented with. 1240 /// The vector equivalents of these instructions should be truncated to this 1241 /// type. 1242 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1243 return MinBWs; 1244 } 1245 1246 /// \returns True if it is more profitable to scalarize instruction \p I for 1247 /// vectorization factor \p VF. 1248 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1249 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1250 auto Scalars = InstsToScalarize.find(VF); 1251 assert(Scalars != InstsToScalarize.end() && 1252 "VF not yet analyzed for scalarization profitability"); 1253 return Scalars->second.count(I); 1254 } 1255 1256 /// Returns true if \p I is known to be uniform after vectorization. 1257 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1258 if (VF == 1) 1259 return true; 1260 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1261 auto UniformsPerVF = Uniforms.find(VF); 1262 return UniformsPerVF->second.count(I); 1263 } 1264 1265 /// Returns true if \p I is known to be scalar after vectorization. 1266 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1267 if (VF == 1) 1268 return true; 1269 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1270 auto ScalarsPerVF = Scalars.find(VF); 1271 return ScalarsPerVF->second.count(I); 1272 } 1273 1274 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1275 /// for vectorization factor \p VF. 1276 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1277 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1278 !isScalarAfterVectorization(I, VF); 1279 } 1280 1281 /// Decision that was taken during cost calculation for memory instruction. 1282 enum InstWidening { 1283 CM_Unknown, 1284 CM_Widen, // For consecutive accesses with stride +1. 1285 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1286 CM_Interleave, 1287 CM_GatherScatter, 1288 CM_Scalarize 1289 }; 1290 1291 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1292 /// instruction \p I and vector width \p VF. 1293 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1294 unsigned Cost) { 1295 assert(VF >= 2 && "Expected VF >=2"); 1296 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1297 } 1298 1299 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1300 /// interleaving group \p Grp and vector width \p VF. 1301 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1302 InstWidening W, unsigned Cost) { 1303 assert(VF >= 2 && "Expected VF >=2"); 1304 /// Broadcast this decicion to all instructions inside the group. 1305 /// But the cost will be assigned to one instruction only. 1306 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1307 if (auto *I = Grp->getMember(i)) { 1308 if (Grp->getInsertPos() == I) 1309 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1310 else 1311 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1312 } 1313 } 1314 } 1315 1316 /// Return the cost model decision for the given instruction \p I and vector 1317 /// width \p VF. Return CM_Unknown if this instruction did not pass 1318 /// through the cost modeling. 1319 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1320 assert(VF >= 2 && "Expected VF >=2"); 1321 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1322 auto Itr = WideningDecisions.find(InstOnVF); 1323 if (Itr == WideningDecisions.end()) 1324 return CM_Unknown; 1325 return Itr->second.first; 1326 } 1327 1328 /// Return the vectorization cost for the given instruction \p I and vector 1329 /// width \p VF. 1330 unsigned getWideningCost(Instruction *I, unsigned VF) { 1331 assert(VF >= 2 && "Expected VF >=2"); 1332 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1333 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1334 return WideningDecisions[InstOnVF].second; 1335 } 1336 1337 /// Return True if instruction \p I is an optimizable truncate whose operand 1338 /// is an induction variable. Such a truncate will be removed by adding a new 1339 /// induction variable with the destination type. 1340 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1341 // If the instruction is not a truncate, return false. 1342 auto *Trunc = dyn_cast<TruncInst>(I); 1343 if (!Trunc) 1344 return false; 1345 1346 // Get the source and destination types of the truncate. 1347 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1348 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1349 1350 // If the truncate is free for the given types, return false. Replacing a 1351 // free truncate with an induction variable would add an induction variable 1352 // update instruction to each iteration of the loop. We exclude from this 1353 // check the primary induction variable since it will need an update 1354 // instruction regardless. 1355 Value *Op = Trunc->getOperand(0); 1356 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1357 return false; 1358 1359 // If the truncated value is not an induction variable, return false. 1360 return Legal->isInductionPhi(Op); 1361 } 1362 1363 /// Collects the instructions to scalarize for each predicated instruction in 1364 /// the loop. 1365 void collectInstsToScalarize(unsigned VF); 1366 1367 /// Collect Uniform and Scalar values for the given \p VF. 1368 /// The sets depend on CM decision for Load/Store instructions 1369 /// that may be vectorized as interleave, gather-scatter or scalarized. 1370 void collectUniformsAndScalars(unsigned VF) { 1371 // Do the analysis once. 1372 if (VF == 1 || Uniforms.count(VF)) 1373 return; 1374 setCostBasedWideningDecision(VF); 1375 collectLoopUniforms(VF); 1376 collectLoopScalars(VF); 1377 } 1378 1379 /// Returns true if the target machine supports masked store operation 1380 /// for the given \p DataType and kind of access to \p Ptr. 1381 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1382 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1383 } 1384 1385 /// Returns true if the target machine supports masked load operation 1386 /// for the given \p DataType and kind of access to \p Ptr. 1387 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1388 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1389 } 1390 1391 /// Returns true if the target machine supports masked scatter operation 1392 /// for the given \p DataType. 1393 bool isLegalMaskedScatter(Type *DataType) { 1394 return TTI.isLegalMaskedScatter(DataType); 1395 } 1396 1397 /// Returns true if the target machine supports masked gather operation 1398 /// for the given \p DataType. 1399 bool isLegalMaskedGather(Type *DataType) { 1400 return TTI.isLegalMaskedGather(DataType); 1401 } 1402 1403 /// Returns true if the target machine can represent \p V as a masked gather 1404 /// or scatter operation. 1405 bool isLegalGatherOrScatter(Value *V) { 1406 bool LI = isa<LoadInst>(V); 1407 bool SI = isa<StoreInst>(V); 1408 if (!LI && !SI) 1409 return false; 1410 auto *Ty = getMemInstValueType(V); 1411 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1412 } 1413 1414 /// Returns true if \p I is an instruction that will be scalarized with 1415 /// predication. Such instructions include conditional stores and 1416 /// instructions that may divide by zero. 1417 bool isScalarWithPredication(Instruction *I); 1418 1419 /// Returns true if \p I is a memory instruction with consecutive memory 1420 /// access that can be widened. 1421 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1422 1423 /// Check if \p Instr belongs to any interleaved access group. 1424 bool isAccessInterleaved(Instruction *Instr) { 1425 return InterleaveInfo.isInterleaved(Instr); 1426 } 1427 1428 /// Get the interleaved access group that \p Instr belongs to. 1429 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1430 return InterleaveInfo.getInterleaveGroup(Instr); 1431 } 1432 1433 /// Returns true if an interleaved group requires a scalar iteration 1434 /// to handle accesses with gaps. 1435 bool requiresScalarEpilogue() const { 1436 return InterleaveInfo.requiresScalarEpilogue(); 1437 } 1438 1439 private: 1440 unsigned NumPredStores = 0; 1441 1442 /// \return An upper bound for the vectorization factor, larger than zero. 1443 /// One is returned if vectorization should best be avoided due to cost. 1444 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1445 1446 /// The vectorization cost is a combination of the cost itself and a boolean 1447 /// indicating whether any of the contributing operations will actually 1448 /// operate on 1449 /// vector values after type legalization in the backend. If this latter value 1450 /// is 1451 /// false, then all operations will be scalarized (i.e. no vectorization has 1452 /// actually taken place). 1453 using VectorizationCostTy = std::pair<unsigned, bool>; 1454 1455 /// Returns the expected execution cost. The unit of the cost does 1456 /// not matter because we use the 'cost' units to compare different 1457 /// vector widths. The cost that is returned is *not* normalized by 1458 /// the factor width. 1459 VectorizationCostTy expectedCost(unsigned VF); 1460 1461 /// Returns the execution time cost of an instruction for a given vector 1462 /// width. Vector width of one means scalar. 1463 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1464 1465 /// The cost-computation logic from getInstructionCost which provides 1466 /// the vector type as an output parameter. 1467 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1468 1469 /// Calculate vectorization cost of memory instruction \p I. 1470 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1471 1472 /// The cost computation for scalarized memory instruction. 1473 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1474 1475 /// The cost computation for interleaving group of memory instructions. 1476 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1477 1478 /// The cost computation for Gather/Scatter instruction. 1479 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1480 1481 /// The cost computation for widening instruction \p I with consecutive 1482 /// memory access. 1483 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1484 1485 /// The cost calculation for Load instruction \p I with uniform pointer - 1486 /// scalar load + broadcast. 1487 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1488 1489 /// Returns whether the instruction is a load or store and will be a emitted 1490 /// as a vector operation. 1491 bool isConsecutiveLoadOrStore(Instruction *I); 1492 1493 /// Returns true if an artificially high cost for emulated masked memrefs 1494 /// should be used. 1495 bool useEmulatedMaskMemRefHack(Instruction *I); 1496 1497 /// Create an analysis remark that explains why vectorization failed 1498 /// 1499 /// \p RemarkName is the identifier for the remark. \return the remark object 1500 /// that can be streamed to. 1501 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1502 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1503 RemarkName, TheLoop); 1504 } 1505 1506 /// Map of scalar integer values to the smallest bitwidth they can be legally 1507 /// represented as. The vector equivalents of these values should be truncated 1508 /// to this type. 1509 MapVector<Instruction *, uint64_t> MinBWs; 1510 1511 /// A type representing the costs for instructions if they were to be 1512 /// scalarized rather than vectorized. The entries are Instruction-Cost 1513 /// pairs. 1514 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1515 1516 /// A set containing all BasicBlocks that are known to present after 1517 /// vectorization as a predicated block. 1518 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1519 1520 /// A map holding scalar costs for different vectorization factors. The 1521 /// presence of a cost for an instruction in the mapping indicates that the 1522 /// instruction will be scalarized when vectorizing with the associated 1523 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1524 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1525 1526 /// Holds the instructions known to be uniform after vectorization. 1527 /// The data is collected per VF. 1528 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1529 1530 /// Holds the instructions known to be scalar after vectorization. 1531 /// The data is collected per VF. 1532 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1533 1534 /// Holds the instructions (address computations) that are forced to be 1535 /// scalarized. 1536 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1537 1538 /// Returns the expected difference in cost from scalarizing the expression 1539 /// feeding a predicated instruction \p PredInst. The instructions to 1540 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1541 /// non-negative return value implies the expression will be scalarized. 1542 /// Currently, only single-use chains are considered for scalarization. 1543 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1544 unsigned VF); 1545 1546 /// Collect the instructions that are uniform after vectorization. An 1547 /// instruction is uniform if we represent it with a single scalar value in 1548 /// the vectorized loop corresponding to each vector iteration. Examples of 1549 /// uniform instructions include pointer operands of consecutive or 1550 /// interleaved memory accesses. Note that although uniformity implies an 1551 /// instruction will be scalar, the reverse is not true. In general, a 1552 /// scalarized instruction will be represented by VF scalar values in the 1553 /// vectorized loop, each corresponding to an iteration of the original 1554 /// scalar loop. 1555 void collectLoopUniforms(unsigned VF); 1556 1557 /// Collect the instructions that are scalar after vectorization. An 1558 /// instruction is scalar if it is known to be uniform or will be scalarized 1559 /// during vectorization. Non-uniform scalarized instructions will be 1560 /// represented by VF values in the vectorized loop, each corresponding to an 1561 /// iteration of the original scalar loop. 1562 void collectLoopScalars(unsigned VF); 1563 1564 /// Keeps cost model vectorization decision and cost for instructions. 1565 /// Right now it is used for memory instructions only. 1566 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1567 std::pair<InstWidening, unsigned>>; 1568 1569 DecisionList WideningDecisions; 1570 1571 public: 1572 /// The loop that we evaluate. 1573 Loop *TheLoop; 1574 1575 /// Predicated scalar evolution analysis. 1576 PredicatedScalarEvolution &PSE; 1577 1578 /// Loop Info analysis. 1579 LoopInfo *LI; 1580 1581 /// Vectorization legality. 1582 LoopVectorizationLegality *Legal; 1583 1584 /// Vector target information. 1585 const TargetTransformInfo &TTI; 1586 1587 /// Target Library Info. 1588 const TargetLibraryInfo *TLI; 1589 1590 /// Demanded bits analysis. 1591 DemandedBits *DB; 1592 1593 /// Assumption cache. 1594 AssumptionCache *AC; 1595 1596 /// Interface to emit optimization remarks. 1597 OptimizationRemarkEmitter *ORE; 1598 1599 const Function *TheFunction; 1600 1601 /// Loop Vectorize Hint. 1602 const LoopVectorizeHints *Hints; 1603 1604 /// The interleave access information contains groups of interleaved accesses 1605 /// with the same stride and close to each other. 1606 InterleavedAccessInfo &InterleaveInfo; 1607 1608 /// Values to ignore in the cost model. 1609 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1610 1611 /// Values to ignore in the cost model when VF > 1. 1612 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1613 }; 1614 1615 } // end namespace llvm 1616 1617 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1618 // vectorization. The loop needs to be annotated with #pragma omp simd 1619 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1620 // vector length information is not provided, vectorization is not considered 1621 // explicit. Interleave hints are not allowed either. These limitations will be 1622 // relaxed in the future. 1623 // Please, note that we are currently forced to abuse the pragma 'clang 1624 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1625 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1626 // provides *explicit vectorization hints* (LV can bypass legal checks and 1627 // assume that vectorization is legal). However, both hints are implemented 1628 // using the same metadata (llvm.loop.vectorize, processed by 1629 // LoopVectorizeHints). This will be fixed in the future when the native IR 1630 // representation for pragma 'omp simd' is introduced. 1631 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1632 OptimizationRemarkEmitter *ORE) { 1633 assert(!OuterLp->empty() && "This is not an outer loop"); 1634 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1635 1636 // Only outer loops with an explicit vectorization hint are supported. 1637 // Unannotated outer loops are ignored. 1638 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1639 return false; 1640 1641 Function *Fn = OuterLp->getHeader()->getParent(); 1642 if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) { 1643 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1644 return false; 1645 } 1646 1647 if (!Hints.getWidth()) { 1648 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1649 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1650 return false; 1651 } 1652 1653 if (Hints.getInterleave() > 1) { 1654 // TODO: Interleave support is future work. 1655 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1656 "outer loops.\n"); 1657 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1658 return false; 1659 } 1660 1661 return true; 1662 } 1663 1664 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1665 OptimizationRemarkEmitter *ORE, 1666 SmallVectorImpl<Loop *> &V) { 1667 // Collect inner loops and outer loops without irreducible control flow. For 1668 // now, only collect outer loops that have explicit vectorization hints. If we 1669 // are stress testing the VPlan H-CFG construction, we collect the outermost 1670 // loop of every loop nest. 1671 if (L.empty() || VPlanBuildStressTest || 1672 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1673 LoopBlocksRPO RPOT(&L); 1674 RPOT.perform(LI); 1675 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1676 V.push_back(&L); 1677 // TODO: Collect inner loops inside marked outer loops in case 1678 // vectorization fails for the outer loop. Do not invoke 1679 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1680 // already known to be reducible. We can use an inherited attribute for 1681 // that. 1682 return; 1683 } 1684 } 1685 for (Loop *InnerL : L) 1686 collectSupportedLoops(*InnerL, LI, ORE, V); 1687 } 1688 1689 namespace { 1690 1691 /// The LoopVectorize Pass. 1692 struct LoopVectorize : public FunctionPass { 1693 /// Pass identification, replacement for typeid 1694 static char ID; 1695 1696 LoopVectorizePass Impl; 1697 1698 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1699 : FunctionPass(ID) { 1700 Impl.DisableUnrolling = NoUnrolling; 1701 Impl.AlwaysVectorize = AlwaysVectorize; 1702 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1703 } 1704 1705 bool runOnFunction(Function &F) override { 1706 if (skipFunction(F)) 1707 return false; 1708 1709 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1710 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1711 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1712 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1713 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1714 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1715 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1716 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1717 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1718 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1719 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1720 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1721 1722 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1723 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1724 1725 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1726 GetLAA, *ORE); 1727 } 1728 1729 void getAnalysisUsage(AnalysisUsage &AU) const override { 1730 AU.addRequired<AssumptionCacheTracker>(); 1731 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1732 AU.addRequired<DominatorTreeWrapperPass>(); 1733 AU.addRequired<LoopInfoWrapperPass>(); 1734 AU.addRequired<ScalarEvolutionWrapperPass>(); 1735 AU.addRequired<TargetTransformInfoWrapperPass>(); 1736 AU.addRequired<AAResultsWrapperPass>(); 1737 AU.addRequired<LoopAccessLegacyAnalysis>(); 1738 AU.addRequired<DemandedBitsWrapperPass>(); 1739 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1740 AU.addPreserved<LoopInfoWrapperPass>(); 1741 AU.addPreserved<DominatorTreeWrapperPass>(); 1742 AU.addPreserved<BasicAAWrapperPass>(); 1743 AU.addPreserved<GlobalsAAWrapperPass>(); 1744 } 1745 }; 1746 1747 } // end anonymous namespace 1748 1749 //===----------------------------------------------------------------------===// 1750 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1751 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1752 //===----------------------------------------------------------------------===// 1753 1754 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1755 // We need to place the broadcast of invariant variables outside the loop, 1756 // but only if it's proven safe to do so. Else, broadcast will be inside 1757 // vector loop body. 1758 Instruction *Instr = dyn_cast<Instruction>(V); 1759 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1760 (!Instr || 1761 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1762 // Place the code for broadcasting invariant variables in the new preheader. 1763 IRBuilder<>::InsertPointGuard Guard(Builder); 1764 if (SafeToHoist) 1765 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1766 1767 // Broadcast the scalar into all locations in the vector. 1768 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1769 1770 return Shuf; 1771 } 1772 1773 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1774 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1775 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1776 "Expected either an induction phi-node or a truncate of it!"); 1777 Value *Start = II.getStartValue(); 1778 1779 // Construct the initial value of the vector IV in the vector loop preheader 1780 auto CurrIP = Builder.saveIP(); 1781 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1782 if (isa<TruncInst>(EntryVal)) { 1783 assert(Start->getType()->isIntegerTy() && 1784 "Truncation requires an integer type"); 1785 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1786 Step = Builder.CreateTrunc(Step, TruncType); 1787 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1788 } 1789 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1790 Value *SteppedStart = 1791 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1792 1793 // We create vector phi nodes for both integer and floating-point induction 1794 // variables. Here, we determine the kind of arithmetic we will perform. 1795 Instruction::BinaryOps AddOp; 1796 Instruction::BinaryOps MulOp; 1797 if (Step->getType()->isIntegerTy()) { 1798 AddOp = Instruction::Add; 1799 MulOp = Instruction::Mul; 1800 } else { 1801 AddOp = II.getInductionOpcode(); 1802 MulOp = Instruction::FMul; 1803 } 1804 1805 // Multiply the vectorization factor by the step using integer or 1806 // floating-point arithmetic as appropriate. 1807 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1808 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1809 1810 // Create a vector splat to use in the induction update. 1811 // 1812 // FIXME: If the step is non-constant, we create the vector splat with 1813 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1814 // handle a constant vector splat. 1815 Value *SplatVF = isa<Constant>(Mul) 1816 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1817 : Builder.CreateVectorSplat(VF, Mul); 1818 Builder.restoreIP(CurrIP); 1819 1820 // We may need to add the step a number of times, depending on the unroll 1821 // factor. The last of those goes into the PHI. 1822 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1823 &*LoopVectorBody->getFirstInsertionPt()); 1824 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1825 Instruction *LastInduction = VecInd; 1826 for (unsigned Part = 0; Part < UF; ++Part) { 1827 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1828 1829 if (isa<TruncInst>(EntryVal)) 1830 addMetadata(LastInduction, EntryVal); 1831 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1832 1833 LastInduction = cast<Instruction>(addFastMathFlag( 1834 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1835 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1836 } 1837 1838 // Move the last step to the end of the latch block. This ensures consistent 1839 // placement of all induction updates. 1840 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1841 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1842 auto *ICmp = cast<Instruction>(Br->getCondition()); 1843 LastInduction->moveBefore(ICmp); 1844 LastInduction->setName("vec.ind.next"); 1845 1846 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1847 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1848 } 1849 1850 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1851 return Cost->isScalarAfterVectorization(I, VF) || 1852 Cost->isProfitableToScalarize(I, VF); 1853 } 1854 1855 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1856 if (shouldScalarizeInstruction(IV)) 1857 return true; 1858 auto isScalarInst = [&](User *U) -> bool { 1859 auto *I = cast<Instruction>(U); 1860 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1861 }; 1862 return llvm::any_of(IV->users(), isScalarInst); 1863 } 1864 1865 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1866 const InductionDescriptor &ID, const Instruction *EntryVal, 1867 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1868 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1869 "Expected either an induction phi-node or a truncate of it!"); 1870 1871 // This induction variable is not the phi from the original loop but the 1872 // newly-created IV based on the proof that casted Phi is equal to the 1873 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1874 // re-uses the same InductionDescriptor that original IV uses but we don't 1875 // have to do any recording in this case - that is done when original IV is 1876 // processed. 1877 if (isa<TruncInst>(EntryVal)) 1878 return; 1879 1880 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1881 if (Casts.empty()) 1882 return; 1883 // Only the first Cast instruction in the Casts vector is of interest. 1884 // The rest of the Casts (if exist) have no uses outside the 1885 // induction update chain itself. 1886 Instruction *CastInst = *Casts.begin(); 1887 if (Lane < UINT_MAX) 1888 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1889 else 1890 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1891 } 1892 1893 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1894 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1895 "Primary induction variable must have an integer type"); 1896 1897 auto II = Legal->getInductionVars()->find(IV); 1898 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1899 1900 auto ID = II->second; 1901 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1902 1903 // The scalar value to broadcast. This will be derived from the canonical 1904 // induction variable. 1905 Value *ScalarIV = nullptr; 1906 1907 // The value from the original loop to which we are mapping the new induction 1908 // variable. 1909 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1910 1911 // True if we have vectorized the induction variable. 1912 auto VectorizedIV = false; 1913 1914 // Determine if we want a scalar version of the induction variable. This is 1915 // true if the induction variable itself is not widened, or if it has at 1916 // least one user in the loop that is not widened. 1917 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1918 1919 // Generate code for the induction step. Note that induction steps are 1920 // required to be loop-invariant 1921 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1922 "Induction step should be loop invariant"); 1923 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1924 Value *Step = nullptr; 1925 if (PSE.getSE()->isSCEVable(IV->getType())) { 1926 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1927 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1928 LoopVectorPreHeader->getTerminator()); 1929 } else { 1930 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1931 } 1932 1933 // Try to create a new independent vector induction variable. If we can't 1934 // create the phi node, we will splat the scalar induction variable in each 1935 // loop iteration. 1936 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1937 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1938 VectorizedIV = true; 1939 } 1940 1941 // If we haven't yet vectorized the induction variable, or if we will create 1942 // a scalar one, we need to define the scalar induction variable and step 1943 // values. If we were given a truncation type, truncate the canonical 1944 // induction variable and step. Otherwise, derive these values from the 1945 // induction descriptor. 1946 if (!VectorizedIV || NeedsScalarIV) { 1947 ScalarIV = Induction; 1948 if (IV != OldInduction) { 1949 ScalarIV = IV->getType()->isIntegerTy() 1950 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1951 : Builder.CreateCast(Instruction::SIToFP, Induction, 1952 IV->getType()); 1953 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 1954 ScalarIV->setName("offset.idx"); 1955 } 1956 if (Trunc) { 1957 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1958 assert(Step->getType()->isIntegerTy() && 1959 "Truncation requires an integer step"); 1960 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1961 Step = Builder.CreateTrunc(Step, TruncType); 1962 } 1963 } 1964 1965 // If we haven't yet vectorized the induction variable, splat the scalar 1966 // induction variable, and build the necessary step vectors. 1967 // TODO: Don't do it unless the vectorized IV is really required. 1968 if (!VectorizedIV) { 1969 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1970 for (unsigned Part = 0; Part < UF; ++Part) { 1971 Value *EntryPart = 1972 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1973 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1974 if (Trunc) 1975 addMetadata(EntryPart, Trunc); 1976 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1977 } 1978 } 1979 1980 // If an induction variable is only used for counting loop iterations or 1981 // calculating addresses, it doesn't need to be widened. Create scalar steps 1982 // that can be used by instructions we will later scalarize. Note that the 1983 // addition of the scalar steps will not increase the number of instructions 1984 // in the loop in the common case prior to InstCombine. We will be trading 1985 // one vector extract for each scalar step. 1986 if (NeedsScalarIV) 1987 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1988 } 1989 1990 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1991 Instruction::BinaryOps BinOp) { 1992 // Create and check the types. 1993 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1994 int VLen = Val->getType()->getVectorNumElements(); 1995 1996 Type *STy = Val->getType()->getScalarType(); 1997 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1998 "Induction Step must be an integer or FP"); 1999 assert(Step->getType() == STy && "Step has wrong type"); 2000 2001 SmallVector<Constant *, 8> Indices; 2002 2003 if (STy->isIntegerTy()) { 2004 // Create a vector of consecutive numbers from zero to VF. 2005 for (int i = 0; i < VLen; ++i) 2006 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2007 2008 // Add the consecutive indices to the vector value. 2009 Constant *Cv = ConstantVector::get(Indices); 2010 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2011 Step = Builder.CreateVectorSplat(VLen, Step); 2012 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2013 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2014 // which can be found from the original scalar operations. 2015 Step = Builder.CreateMul(Cv, Step); 2016 return Builder.CreateAdd(Val, Step, "induction"); 2017 } 2018 2019 // Floating point induction. 2020 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2021 "Binary Opcode should be specified for FP induction"); 2022 // Create a vector of consecutive numbers from zero to VF. 2023 for (int i = 0; i < VLen; ++i) 2024 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2025 2026 // Add the consecutive indices to the vector value. 2027 Constant *Cv = ConstantVector::get(Indices); 2028 2029 Step = Builder.CreateVectorSplat(VLen, Step); 2030 2031 // Floating point operations had to be 'fast' to enable the induction. 2032 FastMathFlags Flags; 2033 Flags.setFast(); 2034 2035 Value *MulOp = Builder.CreateFMul(Cv, Step); 2036 if (isa<Instruction>(MulOp)) 2037 // Have to check, MulOp may be a constant 2038 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2039 2040 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2041 if (isa<Instruction>(BOp)) 2042 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2043 return BOp; 2044 } 2045 2046 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2047 Instruction *EntryVal, 2048 const InductionDescriptor &ID) { 2049 // We shouldn't have to build scalar steps if we aren't vectorizing. 2050 assert(VF > 1 && "VF should be greater than one"); 2051 2052 // Get the value type and ensure it and the step have the same integer type. 2053 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2054 assert(ScalarIVTy == Step->getType() && 2055 "Val and Step should have the same type"); 2056 2057 // We build scalar steps for both integer and floating-point induction 2058 // variables. Here, we determine the kind of arithmetic we will perform. 2059 Instruction::BinaryOps AddOp; 2060 Instruction::BinaryOps MulOp; 2061 if (ScalarIVTy->isIntegerTy()) { 2062 AddOp = Instruction::Add; 2063 MulOp = Instruction::Mul; 2064 } else { 2065 AddOp = ID.getInductionOpcode(); 2066 MulOp = Instruction::FMul; 2067 } 2068 2069 // Determine the number of scalars we need to generate for each unroll 2070 // iteration. If EntryVal is uniform, we only need to generate the first 2071 // lane. Otherwise, we generate all VF values. 2072 unsigned Lanes = 2073 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2074 : VF; 2075 // Compute the scalar steps and save the results in VectorLoopValueMap. 2076 for (unsigned Part = 0; Part < UF; ++Part) { 2077 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2078 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2079 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2080 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2081 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2082 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2083 } 2084 } 2085 } 2086 2087 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2088 assert(V != Induction && "The new induction variable should not be used."); 2089 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2090 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2091 2092 // If we have a stride that is replaced by one, do it here. 2093 if (Legal->hasStride(V)) 2094 V = ConstantInt::get(V->getType(), 1); 2095 2096 // If we have a vector mapped to this value, return it. 2097 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2098 return VectorLoopValueMap.getVectorValue(V, Part); 2099 2100 // If the value has not been vectorized, check if it has been scalarized 2101 // instead. If it has been scalarized, and we actually need the value in 2102 // vector form, we will construct the vector values on demand. 2103 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2104 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2105 2106 // If we've scalarized a value, that value should be an instruction. 2107 auto *I = cast<Instruction>(V); 2108 2109 // If we aren't vectorizing, we can just copy the scalar map values over to 2110 // the vector map. 2111 if (VF == 1) { 2112 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2113 return ScalarValue; 2114 } 2115 2116 // Get the last scalar instruction we generated for V and Part. If the value 2117 // is known to be uniform after vectorization, this corresponds to lane zero 2118 // of the Part unroll iteration. Otherwise, the last instruction is the one 2119 // we created for the last vector lane of the Part unroll iteration. 2120 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2121 auto *LastInst = cast<Instruction>( 2122 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2123 2124 // Set the insert point after the last scalarized instruction. This ensures 2125 // the insertelement sequence will directly follow the scalar definitions. 2126 auto OldIP = Builder.saveIP(); 2127 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2128 Builder.SetInsertPoint(&*NewIP); 2129 2130 // However, if we are vectorizing, we need to construct the vector values. 2131 // If the value is known to be uniform after vectorization, we can just 2132 // broadcast the scalar value corresponding to lane zero for each unroll 2133 // iteration. Otherwise, we construct the vector values using insertelement 2134 // instructions. Since the resulting vectors are stored in 2135 // VectorLoopValueMap, we will only generate the insertelements once. 2136 Value *VectorValue = nullptr; 2137 if (Cost->isUniformAfterVectorization(I, VF)) { 2138 VectorValue = getBroadcastInstrs(ScalarValue); 2139 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2140 } else { 2141 // Initialize packing with insertelements to start from undef. 2142 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2143 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2144 for (unsigned Lane = 0; Lane < VF; ++Lane) 2145 packScalarIntoVectorValue(V, {Part, Lane}); 2146 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2147 } 2148 Builder.restoreIP(OldIP); 2149 return VectorValue; 2150 } 2151 2152 // If this scalar is unknown, assume that it is a constant or that it is 2153 // loop invariant. Broadcast V and save the value for future uses. 2154 Value *B = getBroadcastInstrs(V); 2155 VectorLoopValueMap.setVectorValue(V, Part, B); 2156 return B; 2157 } 2158 2159 Value * 2160 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2161 const VPIteration &Instance) { 2162 // If the value is not an instruction contained in the loop, it should 2163 // already be scalar. 2164 if (OrigLoop->isLoopInvariant(V)) 2165 return V; 2166 2167 assert(Instance.Lane > 0 2168 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2169 : true && "Uniform values only have lane zero"); 2170 2171 // If the value from the original loop has not been vectorized, it is 2172 // represented by UF x VF scalar values in the new loop. Return the requested 2173 // scalar value. 2174 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2175 return VectorLoopValueMap.getScalarValue(V, Instance); 2176 2177 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2178 // for the given unroll part. If this entry is not a vector type (i.e., the 2179 // vectorization factor is one), there is no need to generate an 2180 // extractelement instruction. 2181 auto *U = getOrCreateVectorValue(V, Instance.Part); 2182 if (!U->getType()->isVectorTy()) { 2183 assert(VF == 1 && "Value not scalarized has non-vector type"); 2184 return U; 2185 } 2186 2187 // Otherwise, the value from the original loop has been vectorized and is 2188 // represented by UF vector values. Extract and return the requested scalar 2189 // value from the appropriate vector lane. 2190 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2191 } 2192 2193 void InnerLoopVectorizer::packScalarIntoVectorValue( 2194 Value *V, const VPIteration &Instance) { 2195 assert(V != Induction && "The new induction variable should not be used."); 2196 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2197 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2198 2199 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2200 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2201 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2202 Builder.getInt32(Instance.Lane)); 2203 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2204 } 2205 2206 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2207 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2208 SmallVector<Constant *, 8> ShuffleMask; 2209 for (unsigned i = 0; i < VF; ++i) 2210 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2211 2212 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2213 ConstantVector::get(ShuffleMask), 2214 "reverse"); 2215 } 2216 2217 // Try to vectorize the interleave group that \p Instr belongs to. 2218 // 2219 // E.g. Translate following interleaved load group (factor = 3): 2220 // for (i = 0; i < N; i+=3) { 2221 // R = Pic[i]; // Member of index 0 2222 // G = Pic[i+1]; // Member of index 1 2223 // B = Pic[i+2]; // Member of index 2 2224 // ... // do something to R, G, B 2225 // } 2226 // To: 2227 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2228 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2229 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2230 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2231 // 2232 // Or translate following interleaved store group (factor = 3): 2233 // for (i = 0; i < N; i+=3) { 2234 // ... do something to R, G, B 2235 // Pic[i] = R; // Member of index 0 2236 // Pic[i+1] = G; // Member of index 1 2237 // Pic[i+2] = B; // Member of index 2 2238 // } 2239 // To: 2240 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2241 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2242 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2243 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2244 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2245 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2246 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr); 2247 assert(Group && "Fail to get an interleaved access group."); 2248 2249 // Skip if current instruction is not the insert position. 2250 if (Instr != Group->getInsertPos()) 2251 return; 2252 2253 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2254 Value *Ptr = getLoadStorePointerOperand(Instr); 2255 2256 // Prepare for the vector type of the interleaved load/store. 2257 Type *ScalarTy = getMemInstValueType(Instr); 2258 unsigned InterleaveFactor = Group->getFactor(); 2259 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2260 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2261 2262 // Prepare for the new pointers. 2263 setDebugLocFromInst(Builder, Ptr); 2264 SmallVector<Value *, 2> NewPtrs; 2265 unsigned Index = Group->getIndex(Instr); 2266 2267 // If the group is reverse, adjust the index to refer to the last vector lane 2268 // instead of the first. We adjust the index from the first vector lane, 2269 // rather than directly getting the pointer for lane VF - 1, because the 2270 // pointer operand of the interleaved access is supposed to be uniform. For 2271 // uniform instructions, we're only required to generate a value for the 2272 // first vector lane in each unroll iteration. 2273 if (Group->isReverse()) 2274 Index += (VF - 1) * Group->getFactor(); 2275 2276 bool InBounds = false; 2277 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2278 InBounds = gep->isInBounds(); 2279 2280 for (unsigned Part = 0; Part < UF; Part++) { 2281 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2282 2283 // Notice current instruction could be any index. Need to adjust the address 2284 // to the member of index 0. 2285 // 2286 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2287 // b = A[i]; // Member of index 0 2288 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2289 // 2290 // E.g. A[i+1] = a; // Member of index 1 2291 // A[i] = b; // Member of index 0 2292 // A[i+2] = c; // Member of index 2 (Current instruction) 2293 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2294 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2295 if (InBounds) 2296 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2297 2298 // Cast to the vector pointer type. 2299 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2300 } 2301 2302 setDebugLocFromInst(Builder, Instr); 2303 Value *UndefVec = UndefValue::get(VecTy); 2304 2305 // Vectorize the interleaved load group. 2306 if (isa<LoadInst>(Instr)) { 2307 // For each unroll part, create a wide load for the group. 2308 SmallVector<Value *, 2> NewLoads; 2309 for (unsigned Part = 0; Part < UF; Part++) { 2310 auto *NewLoad = Builder.CreateAlignedLoad( 2311 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2312 Group->addMetadata(NewLoad); 2313 NewLoads.push_back(NewLoad); 2314 } 2315 2316 // For each member in the group, shuffle out the appropriate data from the 2317 // wide loads. 2318 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2319 Instruction *Member = Group->getMember(I); 2320 2321 // Skip the gaps in the group. 2322 if (!Member) 2323 continue; 2324 2325 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2326 for (unsigned Part = 0; Part < UF; Part++) { 2327 Value *StridedVec = Builder.CreateShuffleVector( 2328 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2329 2330 // If this member has different type, cast the result type. 2331 if (Member->getType() != ScalarTy) { 2332 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2333 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2334 } 2335 2336 if (Group->isReverse()) 2337 StridedVec = reverseVector(StridedVec); 2338 2339 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2340 } 2341 } 2342 return; 2343 } 2344 2345 // The sub vector type for current instruction. 2346 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2347 2348 // Vectorize the interleaved store group. 2349 for (unsigned Part = 0; Part < UF; Part++) { 2350 // Collect the stored vector from each member. 2351 SmallVector<Value *, 4> StoredVecs; 2352 for (unsigned i = 0; i < InterleaveFactor; i++) { 2353 // Interleaved store group doesn't allow a gap, so each index has a member 2354 Instruction *Member = Group->getMember(i); 2355 assert(Member && "Fail to get a member from an interleaved store group"); 2356 2357 Value *StoredVec = getOrCreateVectorValue( 2358 cast<StoreInst>(Member)->getValueOperand(), Part); 2359 if (Group->isReverse()) 2360 StoredVec = reverseVector(StoredVec); 2361 2362 // If this member has different type, cast it to a unified type. 2363 2364 if (StoredVec->getType() != SubVT) 2365 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2366 2367 StoredVecs.push_back(StoredVec); 2368 } 2369 2370 // Concatenate all vectors into a wide vector. 2371 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2372 2373 // Interleave the elements in the wide vector. 2374 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2375 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2376 "interleaved.vec"); 2377 2378 Instruction *NewStoreInstr = 2379 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2380 2381 Group->addMetadata(NewStoreInstr); 2382 } 2383 } 2384 2385 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2386 VectorParts *BlockInMask) { 2387 // Attempt to issue a wide load. 2388 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2389 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2390 2391 assert((LI || SI) && "Invalid Load/Store instruction"); 2392 2393 LoopVectorizationCostModel::InstWidening Decision = 2394 Cost->getWideningDecision(Instr, VF); 2395 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2396 "CM decision should be taken at this point"); 2397 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2398 return vectorizeInterleaveGroup(Instr); 2399 2400 Type *ScalarDataTy = getMemInstValueType(Instr); 2401 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2402 Value *Ptr = getLoadStorePointerOperand(Instr); 2403 unsigned Alignment = getMemInstAlignment(Instr); 2404 // An alignment of 0 means target abi alignment. We need to use the scalar's 2405 // target abi alignment in such a case. 2406 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2407 if (!Alignment) 2408 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2409 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2410 2411 // Determine if the pointer operand of the access is either consecutive or 2412 // reverse consecutive. 2413 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2414 bool ConsecutiveStride = 2415 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2416 bool CreateGatherScatter = 2417 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2418 2419 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2420 // gather/scatter. Otherwise Decision should have been to Scalarize. 2421 assert((ConsecutiveStride || CreateGatherScatter) && 2422 "The instruction should be scalarized"); 2423 2424 // Handle consecutive loads/stores. 2425 if (ConsecutiveStride) 2426 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2427 2428 VectorParts Mask; 2429 bool isMaskRequired = BlockInMask; 2430 if (isMaskRequired) 2431 Mask = *BlockInMask; 2432 2433 bool InBounds = false; 2434 if (auto *gep = dyn_cast<GetElementPtrInst>( 2435 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2436 InBounds = gep->isInBounds(); 2437 2438 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2439 // Calculate the pointer for the specific unroll-part. 2440 GetElementPtrInst *PartPtr = nullptr; 2441 2442 if (Reverse) { 2443 // If the address is consecutive but reversed, then the 2444 // wide store needs to start at the last vector element. 2445 PartPtr = cast<GetElementPtrInst>( 2446 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF))); 2447 PartPtr->setIsInBounds(InBounds); 2448 PartPtr = cast<GetElementPtrInst>( 2449 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF))); 2450 PartPtr->setIsInBounds(InBounds); 2451 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2452 Mask[Part] = reverseVector(Mask[Part]); 2453 } else { 2454 PartPtr = cast<GetElementPtrInst>( 2455 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF))); 2456 PartPtr->setIsInBounds(InBounds); 2457 } 2458 2459 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2460 }; 2461 2462 // Handle Stores: 2463 if (SI) { 2464 setDebugLocFromInst(Builder, SI); 2465 2466 for (unsigned Part = 0; Part < UF; ++Part) { 2467 Instruction *NewSI = nullptr; 2468 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2469 if (CreateGatherScatter) { 2470 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2471 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2472 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2473 MaskPart); 2474 } else { 2475 if (Reverse) { 2476 // If we store to reverse consecutive memory locations, then we need 2477 // to reverse the order of elements in the stored value. 2478 StoredVal = reverseVector(StoredVal); 2479 // We don't want to update the value in the map as it might be used in 2480 // another expression. So don't call resetVectorValue(StoredVal). 2481 } 2482 auto *VecPtr = CreateVecPtr(Part, Ptr); 2483 if (isMaskRequired) 2484 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2485 Mask[Part]); 2486 else 2487 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2488 } 2489 addMetadata(NewSI, SI); 2490 } 2491 return; 2492 } 2493 2494 // Handle loads. 2495 assert(LI && "Must have a load instruction"); 2496 setDebugLocFromInst(Builder, LI); 2497 for (unsigned Part = 0; Part < UF; ++Part) { 2498 Value *NewLI; 2499 if (CreateGatherScatter) { 2500 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2501 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2502 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2503 nullptr, "wide.masked.gather"); 2504 addMetadata(NewLI, LI); 2505 } else { 2506 auto *VecPtr = CreateVecPtr(Part, Ptr); 2507 if (isMaskRequired) 2508 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2509 UndefValue::get(DataTy), 2510 "wide.masked.load"); 2511 else 2512 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2513 2514 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2515 addMetadata(NewLI, LI); 2516 if (Reverse) 2517 NewLI = reverseVector(NewLI); 2518 } 2519 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2520 } 2521 } 2522 2523 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2524 const VPIteration &Instance, 2525 bool IfPredicateInstr) { 2526 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2527 2528 setDebugLocFromInst(Builder, Instr); 2529 2530 // Does this instruction return a value ? 2531 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2532 2533 Instruction *Cloned = Instr->clone(); 2534 if (!IsVoidRetTy) 2535 Cloned->setName(Instr->getName() + ".cloned"); 2536 2537 // Replace the operands of the cloned instructions with their scalar 2538 // equivalents in the new loop. 2539 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2540 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2541 Cloned->setOperand(op, NewOp); 2542 } 2543 addNewMetadata(Cloned, Instr); 2544 2545 // Place the cloned scalar in the new loop. 2546 Builder.Insert(Cloned); 2547 2548 // Add the cloned scalar to the scalar map entry. 2549 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2550 2551 // If we just cloned a new assumption, add it the assumption cache. 2552 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2553 if (II->getIntrinsicID() == Intrinsic::assume) 2554 AC->registerAssumption(II); 2555 2556 // End if-block. 2557 if (IfPredicateInstr) 2558 PredicatedInstructions.push_back(Cloned); 2559 } 2560 2561 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2562 Value *End, Value *Step, 2563 Instruction *DL) { 2564 BasicBlock *Header = L->getHeader(); 2565 BasicBlock *Latch = L->getLoopLatch(); 2566 // As we're just creating this loop, it's possible no latch exists 2567 // yet. If so, use the header as this will be a single block loop. 2568 if (!Latch) 2569 Latch = Header; 2570 2571 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2572 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2573 setDebugLocFromInst(Builder, OldInst); 2574 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2575 2576 Builder.SetInsertPoint(Latch->getTerminator()); 2577 setDebugLocFromInst(Builder, OldInst); 2578 2579 // Create i+1 and fill the PHINode. 2580 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2581 Induction->addIncoming(Start, L->getLoopPreheader()); 2582 Induction->addIncoming(Next, Latch); 2583 // Create the compare. 2584 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2585 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2586 2587 // Now we have two terminators. Remove the old one from the block. 2588 Latch->getTerminator()->eraseFromParent(); 2589 2590 return Induction; 2591 } 2592 2593 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2594 if (TripCount) 2595 return TripCount; 2596 2597 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2598 // Find the loop boundaries. 2599 ScalarEvolution *SE = PSE.getSE(); 2600 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2601 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2602 "Invalid loop count"); 2603 2604 Type *IdxTy = Legal->getWidestInductionType(); 2605 2606 // The exit count might have the type of i64 while the phi is i32. This can 2607 // happen if we have an induction variable that is sign extended before the 2608 // compare. The only way that we get a backedge taken count is that the 2609 // induction variable was signed and as such will not overflow. In such a case 2610 // truncation is legal. 2611 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2612 IdxTy->getPrimitiveSizeInBits()) 2613 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2614 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2615 2616 // Get the total trip count from the count by adding 1. 2617 const SCEV *ExitCount = SE->getAddExpr( 2618 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2619 2620 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2621 2622 // Expand the trip count and place the new instructions in the preheader. 2623 // Notice that the pre-header does not change, only the loop body. 2624 SCEVExpander Exp(*SE, DL, "induction"); 2625 2626 // Count holds the overall loop count (N). 2627 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2628 L->getLoopPreheader()->getTerminator()); 2629 2630 if (TripCount->getType()->isPointerTy()) 2631 TripCount = 2632 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2633 L->getLoopPreheader()->getTerminator()); 2634 2635 return TripCount; 2636 } 2637 2638 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2639 if (VectorTripCount) 2640 return VectorTripCount; 2641 2642 Value *TC = getOrCreateTripCount(L); 2643 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2644 2645 // Now we need to generate the expression for the part of the loop that the 2646 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2647 // iterations are not required for correctness, or N - Step, otherwise. Step 2648 // is equal to the vectorization factor (number of SIMD elements) times the 2649 // unroll factor (number of SIMD instructions). 2650 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2651 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2652 2653 // If there is a non-reversed interleaved group that may speculatively access 2654 // memory out-of-bounds, we need to ensure that there will be at least one 2655 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2656 // the trip count, we set the remainder to be equal to the step. If the step 2657 // does not evenly divide the trip count, no adjustment is necessary since 2658 // there will already be scalar iterations. Note that the minimum iterations 2659 // check ensures that N >= Step. 2660 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2661 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2662 R = Builder.CreateSelect(IsZero, Step, R); 2663 } 2664 2665 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2666 2667 return VectorTripCount; 2668 } 2669 2670 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2671 const DataLayout &DL) { 2672 // Verify that V is a vector type with same number of elements as DstVTy. 2673 unsigned VF = DstVTy->getNumElements(); 2674 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2675 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2676 Type *SrcElemTy = SrcVecTy->getElementType(); 2677 Type *DstElemTy = DstVTy->getElementType(); 2678 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2679 "Vector elements must have same size"); 2680 2681 // Do a direct cast if element types are castable. 2682 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2683 return Builder.CreateBitOrPointerCast(V, DstVTy); 2684 } 2685 // V cannot be directly casted to desired vector type. 2686 // May happen when V is a floating point vector but DstVTy is a vector of 2687 // pointers or vice-versa. Handle this using a two-step bitcast using an 2688 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2689 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2690 "Only one type should be a pointer type"); 2691 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2692 "Only one type should be a floating point type"); 2693 Type *IntTy = 2694 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2695 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2696 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2697 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2698 } 2699 2700 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2701 BasicBlock *Bypass) { 2702 Value *Count = getOrCreateTripCount(L); 2703 BasicBlock *BB = L->getLoopPreheader(); 2704 IRBuilder<> Builder(BB->getTerminator()); 2705 2706 // Generate code to check if the loop's trip count is less than VF * UF, or 2707 // equal to it in case a scalar epilogue is required; this implies that the 2708 // vector trip count is zero. This check also covers the case where adding one 2709 // to the backedge-taken count overflowed leading to an incorrect trip count 2710 // of zero. In this case we will also jump to the scalar loop. 2711 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2712 : ICmpInst::ICMP_ULT; 2713 Value *CheckMinIters = Builder.CreateICmp( 2714 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2715 2716 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2717 // Update dominator tree immediately if the generated block is a 2718 // LoopBypassBlock because SCEV expansions to generate loop bypass 2719 // checks may query it before the current function is finished. 2720 DT->addNewBlock(NewBB, BB); 2721 if (L->getParentLoop()) 2722 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2723 ReplaceInstWithInst(BB->getTerminator(), 2724 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2725 LoopBypassBlocks.push_back(BB); 2726 } 2727 2728 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2729 BasicBlock *BB = L->getLoopPreheader(); 2730 2731 // Generate the code to check that the SCEV assumptions that we made. 2732 // We want the new basic block to start at the first instruction in a 2733 // sequence of instructions that form a check. 2734 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2735 "scev.check"); 2736 Value *SCEVCheck = 2737 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2738 2739 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2740 if (C->isZero()) 2741 return; 2742 2743 // Create a new block containing the stride check. 2744 BB->setName("vector.scevcheck"); 2745 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2746 // Update dominator tree immediately if the generated block is a 2747 // LoopBypassBlock because SCEV expansions to generate loop bypass 2748 // checks may query it before the current function is finished. 2749 DT->addNewBlock(NewBB, BB); 2750 if (L->getParentLoop()) 2751 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2752 ReplaceInstWithInst(BB->getTerminator(), 2753 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2754 LoopBypassBlocks.push_back(BB); 2755 AddedSafetyChecks = true; 2756 } 2757 2758 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2759 BasicBlock *BB = L->getLoopPreheader(); 2760 2761 // Generate the code that checks in runtime if arrays overlap. We put the 2762 // checks into a separate block to make the more common case of few elements 2763 // faster. 2764 Instruction *FirstCheckInst; 2765 Instruction *MemRuntimeCheck; 2766 std::tie(FirstCheckInst, MemRuntimeCheck) = 2767 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2768 if (!MemRuntimeCheck) 2769 return; 2770 2771 // Create a new block containing the memory check. 2772 BB->setName("vector.memcheck"); 2773 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2774 // Update dominator tree immediately if the generated block is a 2775 // LoopBypassBlock because SCEV expansions to generate loop bypass 2776 // checks may query it before the current function is finished. 2777 DT->addNewBlock(NewBB, BB); 2778 if (L->getParentLoop()) 2779 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2780 ReplaceInstWithInst(BB->getTerminator(), 2781 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2782 LoopBypassBlocks.push_back(BB); 2783 AddedSafetyChecks = true; 2784 2785 // We currently don't use LoopVersioning for the actual loop cloning but we 2786 // still use it to add the noalias metadata. 2787 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2788 PSE.getSE()); 2789 LVer->prepareNoAliasMetadata(); 2790 } 2791 2792 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2793 /* 2794 In this function we generate a new loop. The new loop will contain 2795 the vectorized instructions while the old loop will continue to run the 2796 scalar remainder. 2797 2798 [ ] <-- loop iteration number check. 2799 / | 2800 / v 2801 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2802 | / | 2803 | / v 2804 || [ ] <-- vector pre header. 2805 |/ | 2806 | v 2807 | [ ] \ 2808 | [ ]_| <-- vector loop. 2809 | | 2810 | v 2811 | -[ ] <--- middle-block. 2812 | / | 2813 | / v 2814 -|- >[ ] <--- new preheader. 2815 | | 2816 | v 2817 | [ ] \ 2818 | [ ]_| <-- old scalar loop to handle remainder. 2819 \ | 2820 \ v 2821 >[ ] <-- exit block. 2822 ... 2823 */ 2824 2825 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2826 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2827 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2828 assert(VectorPH && "Invalid loop structure"); 2829 assert(ExitBlock && "Must have an exit block"); 2830 2831 // Some loops have a single integer induction variable, while other loops 2832 // don't. One example is c++ iterators that often have multiple pointer 2833 // induction variables. In the code below we also support a case where we 2834 // don't have a single induction variable. 2835 // 2836 // We try to obtain an induction variable from the original loop as hard 2837 // as possible. However if we don't find one that: 2838 // - is an integer 2839 // - counts from zero, stepping by one 2840 // - is the size of the widest induction variable type 2841 // then we create a new one. 2842 OldInduction = Legal->getPrimaryInduction(); 2843 Type *IdxTy = Legal->getWidestInductionType(); 2844 2845 // Split the single block loop into the two loop structure described above. 2846 BasicBlock *VecBody = 2847 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2848 BasicBlock *MiddleBlock = 2849 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2850 BasicBlock *ScalarPH = 2851 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2852 2853 // Create and register the new vector loop. 2854 Loop *Lp = LI->AllocateLoop(); 2855 Loop *ParentLoop = OrigLoop->getParentLoop(); 2856 2857 // Insert the new loop into the loop nest and register the new basic blocks 2858 // before calling any utilities such as SCEV that require valid LoopInfo. 2859 if (ParentLoop) { 2860 ParentLoop->addChildLoop(Lp); 2861 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2862 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2863 } else { 2864 LI->addTopLevelLoop(Lp); 2865 } 2866 Lp->addBasicBlockToLoop(VecBody, *LI); 2867 2868 // Find the loop boundaries. 2869 Value *Count = getOrCreateTripCount(Lp); 2870 2871 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2872 2873 // Now, compare the new count to zero. If it is zero skip the vector loop and 2874 // jump to the scalar loop. This check also covers the case where the 2875 // backedge-taken count is uint##_max: adding one to it will overflow leading 2876 // to an incorrect trip count of zero. In this (rare) case we will also jump 2877 // to the scalar loop. 2878 emitMinimumIterationCountCheck(Lp, ScalarPH); 2879 2880 // Generate the code to check any assumptions that we've made for SCEV 2881 // expressions. 2882 emitSCEVChecks(Lp, ScalarPH); 2883 2884 // Generate the code that checks in runtime if arrays overlap. We put the 2885 // checks into a separate block to make the more common case of few elements 2886 // faster. 2887 emitMemRuntimeChecks(Lp, ScalarPH); 2888 2889 // Generate the induction variable. 2890 // The loop step is equal to the vectorization factor (num of SIMD elements) 2891 // times the unroll factor (num of SIMD instructions). 2892 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2893 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2894 Induction = 2895 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2896 getDebugLocFromInstOrOperands(OldInduction)); 2897 2898 // We are going to resume the execution of the scalar loop. 2899 // Go over all of the induction variables that we found and fix the 2900 // PHIs that are left in the scalar version of the loop. 2901 // The starting values of PHI nodes depend on the counter of the last 2902 // iteration in the vectorized loop. 2903 // If we come from a bypass edge then we need to start from the original 2904 // start value. 2905 2906 // This variable saves the new starting index for the scalar loop. It is used 2907 // to test if there are any tail iterations left once the vector loop has 2908 // completed. 2909 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2910 for (auto &InductionEntry : *List) { 2911 PHINode *OrigPhi = InductionEntry.first; 2912 InductionDescriptor II = InductionEntry.second; 2913 2914 // Create phi nodes to merge from the backedge-taken check block. 2915 PHINode *BCResumeVal = PHINode::Create( 2916 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2917 // Copy original phi DL over to the new one. 2918 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2919 Value *&EndValue = IVEndValues[OrigPhi]; 2920 if (OrigPhi == OldInduction) { 2921 // We know what the end value is. 2922 EndValue = CountRoundDown; 2923 } else { 2924 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2925 Type *StepType = II.getStep()->getType(); 2926 Instruction::CastOps CastOp = 2927 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2928 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2929 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2930 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 2931 EndValue->setName("ind.end"); 2932 } 2933 2934 // The new PHI merges the original incoming value, in case of a bypass, 2935 // or the value at the end of the vectorized loop. 2936 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2937 2938 // Fix the scalar body counter (PHI node). 2939 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2940 2941 // The old induction's phi node in the scalar body needs the truncated 2942 // value. 2943 for (BasicBlock *BB : LoopBypassBlocks) 2944 BCResumeVal->addIncoming(II.getStartValue(), BB); 2945 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2946 } 2947 2948 // Add a check in the middle block to see if we have completed 2949 // all of the iterations in the first vector loop. 2950 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2951 Value *CmpN = 2952 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2953 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2954 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2955 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2956 2957 // Get ready to start creating new instructions into the vectorized body. 2958 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2959 2960 // Save the state. 2961 LoopVectorPreHeader = Lp->getLoopPreheader(); 2962 LoopScalarPreHeader = ScalarPH; 2963 LoopMiddleBlock = MiddleBlock; 2964 LoopExitBlock = ExitBlock; 2965 LoopVectorBody = VecBody; 2966 LoopScalarBody = OldBasicBlock; 2967 2968 // Keep all loop hints from the original loop on the vector loop (we'll 2969 // replace the vectorizer-specific hints below). 2970 if (MDNode *LID = OrigLoop->getLoopID()) 2971 Lp->setLoopID(LID); 2972 2973 LoopVectorizeHints Hints(Lp, true, *ORE); 2974 Hints.setAlreadyVectorized(); 2975 2976 return LoopVectorPreHeader; 2977 } 2978 2979 // Fix up external users of the induction variable. At this point, we are 2980 // in LCSSA form, with all external PHIs that use the IV having one input value, 2981 // coming from the remainder loop. We need those PHIs to also have a correct 2982 // value for the IV when arriving directly from the middle block. 2983 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2984 const InductionDescriptor &II, 2985 Value *CountRoundDown, Value *EndValue, 2986 BasicBlock *MiddleBlock) { 2987 // There are two kinds of external IV usages - those that use the value 2988 // computed in the last iteration (the PHI) and those that use the penultimate 2989 // value (the value that feeds into the phi from the loop latch). 2990 // We allow both, but they, obviously, have different values. 2991 2992 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2993 2994 DenseMap<Value *, Value *> MissingVals; 2995 2996 // An external user of the last iteration's value should see the value that 2997 // the remainder loop uses to initialize its own IV. 2998 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2999 for (User *U : PostInc->users()) { 3000 Instruction *UI = cast<Instruction>(U); 3001 if (!OrigLoop->contains(UI)) { 3002 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3003 MissingVals[UI] = EndValue; 3004 } 3005 } 3006 3007 // An external user of the penultimate value need to see EndValue - Step. 3008 // The simplest way to get this is to recompute it from the constituent SCEVs, 3009 // that is Start + (Step * (CRD - 1)). 3010 for (User *U : OrigPhi->users()) { 3011 auto *UI = cast<Instruction>(U); 3012 if (!OrigLoop->contains(UI)) { 3013 const DataLayout &DL = 3014 OrigLoop->getHeader()->getModule()->getDataLayout(); 3015 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3016 3017 IRBuilder<> B(MiddleBlock->getTerminator()); 3018 Value *CountMinusOne = B.CreateSub( 3019 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3020 Value *CMO = 3021 !II.getStep()->getType()->isIntegerTy() 3022 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3023 II.getStep()->getType()) 3024 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3025 CMO->setName("cast.cmo"); 3026 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3027 Escape->setName("ind.escape"); 3028 MissingVals[UI] = Escape; 3029 } 3030 } 3031 3032 for (auto &I : MissingVals) { 3033 PHINode *PHI = cast<PHINode>(I.first); 3034 // One corner case we have to handle is two IVs "chasing" each-other, 3035 // that is %IV2 = phi [...], [ %IV1, %latch ] 3036 // In this case, if IV1 has an external use, we need to avoid adding both 3037 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3038 // don't already have an incoming value for the middle block. 3039 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3040 PHI->addIncoming(I.second, MiddleBlock); 3041 } 3042 } 3043 3044 namespace { 3045 3046 struct CSEDenseMapInfo { 3047 static bool canHandle(const Instruction *I) { 3048 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3049 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3050 } 3051 3052 static inline Instruction *getEmptyKey() { 3053 return DenseMapInfo<Instruction *>::getEmptyKey(); 3054 } 3055 3056 static inline Instruction *getTombstoneKey() { 3057 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3058 } 3059 3060 static unsigned getHashValue(const Instruction *I) { 3061 assert(canHandle(I) && "Unknown instruction!"); 3062 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3063 I->value_op_end())); 3064 } 3065 3066 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3067 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3068 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3069 return LHS == RHS; 3070 return LHS->isIdenticalTo(RHS); 3071 } 3072 }; 3073 3074 } // end anonymous namespace 3075 3076 ///Perform cse of induction variable instructions. 3077 static void cse(BasicBlock *BB) { 3078 // Perform simple cse. 3079 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3080 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3081 Instruction *In = &*I++; 3082 3083 if (!CSEDenseMapInfo::canHandle(In)) 3084 continue; 3085 3086 // Check if we can replace this instruction with any of the 3087 // visited instructions. 3088 if (Instruction *V = CSEMap.lookup(In)) { 3089 In->replaceAllUsesWith(V); 3090 In->eraseFromParent(); 3091 continue; 3092 } 3093 3094 CSEMap[In] = In; 3095 } 3096 } 3097 3098 /// Estimate the overhead of scalarizing an instruction. This is a 3099 /// convenience wrapper for the type-based getScalarizationOverhead API. 3100 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3101 const TargetTransformInfo &TTI) { 3102 if (VF == 1) 3103 return 0; 3104 3105 unsigned Cost = 0; 3106 Type *RetTy = ToVectorTy(I->getType(), VF); 3107 if (!RetTy->isVoidTy() && 3108 (!isa<LoadInst>(I) || 3109 !TTI.supportsEfficientVectorElementLoadStore())) 3110 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3111 3112 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3113 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3114 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3115 } 3116 else if (!isa<StoreInst>(I) || 3117 !TTI.supportsEfficientVectorElementLoadStore()) { 3118 SmallVector<const Value *, 4> Operands(I->operand_values()); 3119 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3120 } 3121 3122 return Cost; 3123 } 3124 3125 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3126 // Return the cost of the instruction, including scalarization overhead if it's 3127 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3128 // i.e. either vector version isn't available, or is too expensive. 3129 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3130 const TargetTransformInfo &TTI, 3131 const TargetLibraryInfo *TLI, 3132 bool &NeedToScalarize) { 3133 Function *F = CI->getCalledFunction(); 3134 StringRef FnName = CI->getCalledFunction()->getName(); 3135 Type *ScalarRetTy = CI->getType(); 3136 SmallVector<Type *, 4> Tys, ScalarTys; 3137 for (auto &ArgOp : CI->arg_operands()) 3138 ScalarTys.push_back(ArgOp->getType()); 3139 3140 // Estimate cost of scalarized vector call. The source operands are assumed 3141 // to be vectors, so we need to extract individual elements from there, 3142 // execute VF scalar calls, and then gather the result into the vector return 3143 // value. 3144 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3145 if (VF == 1) 3146 return ScalarCallCost; 3147 3148 // Compute corresponding vector type for return value and arguments. 3149 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3150 for (Type *ScalarTy : ScalarTys) 3151 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3152 3153 // Compute costs of unpacking argument values for the scalar calls and 3154 // packing the return values to a vector. 3155 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3156 3157 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3158 3159 // If we can't emit a vector call for this function, then the currently found 3160 // cost is the cost we need to return. 3161 NeedToScalarize = true; 3162 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3163 return Cost; 3164 3165 // If the corresponding vector cost is cheaper, return its cost. 3166 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3167 if (VectorCallCost < Cost) { 3168 NeedToScalarize = false; 3169 return VectorCallCost; 3170 } 3171 return Cost; 3172 } 3173 3174 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3175 // factor VF. Return the cost of the instruction, including scalarization 3176 // overhead if it's needed. 3177 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3178 const TargetTransformInfo &TTI, 3179 const TargetLibraryInfo *TLI) { 3180 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3181 assert(ID && "Expected intrinsic call!"); 3182 3183 FastMathFlags FMF; 3184 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3185 FMF = FPMO->getFastMathFlags(); 3186 3187 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3188 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3189 } 3190 3191 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3192 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3193 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3194 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3195 } 3196 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3197 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3198 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3199 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3200 } 3201 3202 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3203 // For every instruction `I` in MinBWs, truncate the operands, create a 3204 // truncated version of `I` and reextend its result. InstCombine runs 3205 // later and will remove any ext/trunc pairs. 3206 SmallPtrSet<Value *, 4> Erased; 3207 for (const auto &KV : Cost->getMinimalBitwidths()) { 3208 // If the value wasn't vectorized, we must maintain the original scalar 3209 // type. The absence of the value from VectorLoopValueMap indicates that it 3210 // wasn't vectorized. 3211 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3212 continue; 3213 for (unsigned Part = 0; Part < UF; ++Part) { 3214 Value *I = getOrCreateVectorValue(KV.first, Part); 3215 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3216 continue; 3217 Type *OriginalTy = I->getType(); 3218 Type *ScalarTruncatedTy = 3219 IntegerType::get(OriginalTy->getContext(), KV.second); 3220 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3221 OriginalTy->getVectorNumElements()); 3222 if (TruncatedTy == OriginalTy) 3223 continue; 3224 3225 IRBuilder<> B(cast<Instruction>(I)); 3226 auto ShrinkOperand = [&](Value *V) -> Value * { 3227 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3228 if (ZI->getSrcTy() == TruncatedTy) 3229 return ZI->getOperand(0); 3230 return B.CreateZExtOrTrunc(V, TruncatedTy); 3231 }; 3232 3233 // The actual instruction modification depends on the instruction type, 3234 // unfortunately. 3235 Value *NewI = nullptr; 3236 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3237 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3238 ShrinkOperand(BO->getOperand(1))); 3239 3240 // Any wrapping introduced by shrinking this operation shouldn't be 3241 // considered undefined behavior. So, we can't unconditionally copy 3242 // arithmetic wrapping flags to NewI. 3243 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3244 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3245 NewI = 3246 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3247 ShrinkOperand(CI->getOperand(1))); 3248 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3249 NewI = B.CreateSelect(SI->getCondition(), 3250 ShrinkOperand(SI->getTrueValue()), 3251 ShrinkOperand(SI->getFalseValue())); 3252 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3253 switch (CI->getOpcode()) { 3254 default: 3255 llvm_unreachable("Unhandled cast!"); 3256 case Instruction::Trunc: 3257 NewI = ShrinkOperand(CI->getOperand(0)); 3258 break; 3259 case Instruction::SExt: 3260 NewI = B.CreateSExtOrTrunc( 3261 CI->getOperand(0), 3262 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3263 break; 3264 case Instruction::ZExt: 3265 NewI = B.CreateZExtOrTrunc( 3266 CI->getOperand(0), 3267 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3268 break; 3269 } 3270 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3271 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3272 auto *O0 = B.CreateZExtOrTrunc( 3273 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3274 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3275 auto *O1 = B.CreateZExtOrTrunc( 3276 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3277 3278 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3279 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3280 // Don't do anything with the operands, just extend the result. 3281 continue; 3282 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3283 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3284 auto *O0 = B.CreateZExtOrTrunc( 3285 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3286 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3287 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3288 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3289 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3290 auto *O0 = B.CreateZExtOrTrunc( 3291 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3292 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3293 } else { 3294 // If we don't know what to do, be conservative and don't do anything. 3295 continue; 3296 } 3297 3298 // Lastly, extend the result. 3299 NewI->takeName(cast<Instruction>(I)); 3300 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3301 I->replaceAllUsesWith(Res); 3302 cast<Instruction>(I)->eraseFromParent(); 3303 Erased.insert(I); 3304 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3305 } 3306 } 3307 3308 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3309 for (const auto &KV : Cost->getMinimalBitwidths()) { 3310 // If the value wasn't vectorized, we must maintain the original scalar 3311 // type. The absence of the value from VectorLoopValueMap indicates that it 3312 // wasn't vectorized. 3313 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3314 continue; 3315 for (unsigned Part = 0; Part < UF; ++Part) { 3316 Value *I = getOrCreateVectorValue(KV.first, Part); 3317 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3318 if (Inst && Inst->use_empty()) { 3319 Value *NewI = Inst->getOperand(0); 3320 Inst->eraseFromParent(); 3321 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3322 } 3323 } 3324 } 3325 } 3326 3327 void InnerLoopVectorizer::fixVectorizedLoop() { 3328 // Insert truncates and extends for any truncated instructions as hints to 3329 // InstCombine. 3330 if (VF > 1) 3331 truncateToMinimalBitwidths(); 3332 3333 // At this point every instruction in the original loop is widened to a 3334 // vector form. Now we need to fix the recurrences in the loop. These PHI 3335 // nodes are currently empty because we did not want to introduce cycles. 3336 // This is the second stage of vectorizing recurrences. 3337 fixCrossIterationPHIs(); 3338 3339 // Update the dominator tree. 3340 // 3341 // FIXME: After creating the structure of the new loop, the dominator tree is 3342 // no longer up-to-date, and it remains that way until we update it 3343 // here. An out-of-date dominator tree is problematic for SCEV, 3344 // because SCEVExpander uses it to guide code generation. The 3345 // vectorizer use SCEVExpanders in several places. Instead, we should 3346 // keep the dominator tree up-to-date as we go. 3347 updateAnalysis(); 3348 3349 // Fix-up external users of the induction variables. 3350 for (auto &Entry : *Legal->getInductionVars()) 3351 fixupIVUsers(Entry.first, Entry.second, 3352 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3353 IVEndValues[Entry.first], LoopMiddleBlock); 3354 3355 fixLCSSAPHIs(); 3356 for (Instruction *PI : PredicatedInstructions) 3357 sinkScalarOperands(&*PI); 3358 3359 // Remove redundant induction instructions. 3360 cse(LoopVectorBody); 3361 } 3362 3363 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3364 // In order to support recurrences we need to be able to vectorize Phi nodes. 3365 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3366 // stage #2: We now need to fix the recurrences by adding incoming edges to 3367 // the currently empty PHI nodes. At this point every instruction in the 3368 // original loop is widened to a vector form so we can use them to construct 3369 // the incoming edges. 3370 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3371 // Handle first-order recurrences and reductions that need to be fixed. 3372 if (Legal->isFirstOrderRecurrence(&Phi)) 3373 fixFirstOrderRecurrence(&Phi); 3374 else if (Legal->isReductionVariable(&Phi)) 3375 fixReduction(&Phi); 3376 } 3377 } 3378 3379 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3380 // This is the second phase of vectorizing first-order recurrences. An 3381 // overview of the transformation is described below. Suppose we have the 3382 // following loop. 3383 // 3384 // for (int i = 0; i < n; ++i) 3385 // b[i] = a[i] - a[i - 1]; 3386 // 3387 // There is a first-order recurrence on "a". For this loop, the shorthand 3388 // scalar IR looks like: 3389 // 3390 // scalar.ph: 3391 // s_init = a[-1] 3392 // br scalar.body 3393 // 3394 // scalar.body: 3395 // i = phi [0, scalar.ph], [i+1, scalar.body] 3396 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3397 // s2 = a[i] 3398 // b[i] = s2 - s1 3399 // br cond, scalar.body, ... 3400 // 3401 // In this example, s1 is a recurrence because it's value depends on the 3402 // previous iteration. In the first phase of vectorization, we created a 3403 // temporary value for s1. We now complete the vectorization and produce the 3404 // shorthand vector IR shown below (for VF = 4, UF = 1). 3405 // 3406 // vector.ph: 3407 // v_init = vector(..., ..., ..., a[-1]) 3408 // br vector.body 3409 // 3410 // vector.body 3411 // i = phi [0, vector.ph], [i+4, vector.body] 3412 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3413 // v2 = a[i, i+1, i+2, i+3]; 3414 // v3 = vector(v1(3), v2(0, 1, 2)) 3415 // b[i, i+1, i+2, i+3] = v2 - v3 3416 // br cond, vector.body, middle.block 3417 // 3418 // middle.block: 3419 // x = v2(3) 3420 // br scalar.ph 3421 // 3422 // scalar.ph: 3423 // s_init = phi [x, middle.block], [a[-1], otherwise] 3424 // br scalar.body 3425 // 3426 // After execution completes the vector loop, we extract the next value of 3427 // the recurrence (x) to use as the initial value in the scalar loop. 3428 3429 // Get the original loop preheader and single loop latch. 3430 auto *Preheader = OrigLoop->getLoopPreheader(); 3431 auto *Latch = OrigLoop->getLoopLatch(); 3432 3433 // Get the initial and previous values of the scalar recurrence. 3434 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3435 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3436 3437 // Create a vector from the initial value. 3438 auto *VectorInit = ScalarInit; 3439 if (VF > 1) { 3440 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3441 VectorInit = Builder.CreateInsertElement( 3442 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3443 Builder.getInt32(VF - 1), "vector.recur.init"); 3444 } 3445 3446 // We constructed a temporary phi node in the first phase of vectorization. 3447 // This phi node will eventually be deleted. 3448 Builder.SetInsertPoint( 3449 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3450 3451 // Create a phi node for the new recurrence. The current value will either be 3452 // the initial value inserted into a vector or loop-varying vector value. 3453 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3454 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3455 3456 // Get the vectorized previous value of the last part UF - 1. It appears last 3457 // among all unrolled iterations, due to the order of their construction. 3458 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3459 3460 // Set the insertion point after the previous value if it is an instruction. 3461 // Note that the previous value may have been constant-folded so it is not 3462 // guaranteed to be an instruction in the vector loop. Also, if the previous 3463 // value is a phi node, we should insert after all the phi nodes to avoid 3464 // breaking basic block verification. 3465 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3466 isa<PHINode>(PreviousLastPart)) 3467 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3468 else 3469 Builder.SetInsertPoint( 3470 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3471 3472 // We will construct a vector for the recurrence by combining the values for 3473 // the current and previous iterations. This is the required shuffle mask. 3474 SmallVector<Constant *, 8> ShuffleMask(VF); 3475 ShuffleMask[0] = Builder.getInt32(VF - 1); 3476 for (unsigned I = 1; I < VF; ++I) 3477 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3478 3479 // The vector from which to take the initial value for the current iteration 3480 // (actual or unrolled). Initially, this is the vector phi node. 3481 Value *Incoming = VecPhi; 3482 3483 // Shuffle the current and previous vector and update the vector parts. 3484 for (unsigned Part = 0; Part < UF; ++Part) { 3485 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3486 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3487 auto *Shuffle = 3488 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3489 ConstantVector::get(ShuffleMask)) 3490 : Incoming; 3491 PhiPart->replaceAllUsesWith(Shuffle); 3492 cast<Instruction>(PhiPart)->eraseFromParent(); 3493 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3494 Incoming = PreviousPart; 3495 } 3496 3497 // Fix the latch value of the new recurrence in the vector loop. 3498 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3499 3500 // Extract the last vector element in the middle block. This will be the 3501 // initial value for the recurrence when jumping to the scalar loop. 3502 auto *ExtractForScalar = Incoming; 3503 if (VF > 1) { 3504 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3505 ExtractForScalar = Builder.CreateExtractElement( 3506 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3507 } 3508 // Extract the second last element in the middle block if the 3509 // Phi is used outside the loop. We need to extract the phi itself 3510 // and not the last element (the phi update in the current iteration). This 3511 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3512 // when the scalar loop is not run at all. 3513 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3514 if (VF > 1) 3515 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3516 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3517 // When loop is unrolled without vectorizing, initialize 3518 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3519 // `Incoming`. This is analogous to the vectorized case above: extracting the 3520 // second last element when VF > 1. 3521 else if (UF > 1) 3522 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3523 3524 // Fix the initial value of the original recurrence in the scalar loop. 3525 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3526 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3527 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3528 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3529 Start->addIncoming(Incoming, BB); 3530 } 3531 3532 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3533 Phi->setName("scalar.recur"); 3534 3535 // Finally, fix users of the recurrence outside the loop. The users will need 3536 // either the last value of the scalar recurrence or the last value of the 3537 // vector recurrence we extracted in the middle block. Since the loop is in 3538 // LCSSA form, we just need to find all the phi nodes for the original scalar 3539 // recurrence in the exit block, and then add an edge for the middle block. 3540 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3541 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3542 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3543 } 3544 } 3545 } 3546 3547 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3548 Constant *Zero = Builder.getInt32(0); 3549 3550 // Get it's reduction variable descriptor. 3551 assert(Legal->isReductionVariable(Phi) && 3552 "Unable to find the reduction variable"); 3553 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3554 3555 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3556 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3557 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3558 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3559 RdxDesc.getMinMaxRecurrenceKind(); 3560 setDebugLocFromInst(Builder, ReductionStartValue); 3561 3562 // We need to generate a reduction vector from the incoming scalar. 3563 // To do so, we need to generate the 'identity' vector and override 3564 // one of the elements with the incoming scalar reduction. We need 3565 // to do it in the vector-loop preheader. 3566 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3567 3568 // This is the vector-clone of the value that leaves the loop. 3569 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3570 3571 // Find the reduction identity variable. Zero for addition, or, xor, 3572 // one for multiplication, -1 for And. 3573 Value *Identity; 3574 Value *VectorStart; 3575 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3576 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3577 // MinMax reduction have the start value as their identify. 3578 if (VF == 1) { 3579 VectorStart = Identity = ReductionStartValue; 3580 } else { 3581 VectorStart = Identity = 3582 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3583 } 3584 } else { 3585 // Handle other reduction kinds: 3586 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3587 RK, VecTy->getScalarType()); 3588 if (VF == 1) { 3589 Identity = Iden; 3590 // This vector is the Identity vector where the first element is the 3591 // incoming scalar reduction. 3592 VectorStart = ReductionStartValue; 3593 } else { 3594 Identity = ConstantVector::getSplat(VF, Iden); 3595 3596 // This vector is the Identity vector where the first element is the 3597 // incoming scalar reduction. 3598 VectorStart = 3599 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3600 } 3601 } 3602 3603 // Fix the vector-loop phi. 3604 3605 // Reductions do not have to start at zero. They can start with 3606 // any loop invariant values. 3607 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3608 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3609 for (unsigned Part = 0; Part < UF; ++Part) { 3610 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3611 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3612 // Make sure to add the reduction stat value only to the 3613 // first unroll part. 3614 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3615 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3616 cast<PHINode>(VecRdxPhi) 3617 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3618 } 3619 3620 // Before each round, move the insertion point right between 3621 // the PHIs and the values we are going to write. 3622 // This allows us to write both PHINodes and the extractelement 3623 // instructions. 3624 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3625 3626 setDebugLocFromInst(Builder, LoopExitInst); 3627 3628 // If the vector reduction can be performed in a smaller type, we truncate 3629 // then extend the loop exit value to enable InstCombine to evaluate the 3630 // entire expression in the smaller type. 3631 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3632 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3633 Builder.SetInsertPoint( 3634 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3635 VectorParts RdxParts(UF); 3636 for (unsigned Part = 0; Part < UF; ++Part) { 3637 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3638 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3639 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3640 : Builder.CreateZExt(Trunc, VecTy); 3641 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3642 UI != RdxParts[Part]->user_end();) 3643 if (*UI != Trunc) { 3644 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3645 RdxParts[Part] = Extnd; 3646 } else { 3647 ++UI; 3648 } 3649 } 3650 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3651 for (unsigned Part = 0; Part < UF; ++Part) { 3652 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3653 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3654 } 3655 } 3656 3657 // Reduce all of the unrolled parts into a single vector. 3658 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3659 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3660 setDebugLocFromInst(Builder, ReducedPartRdx); 3661 for (unsigned Part = 1; Part < UF; ++Part) { 3662 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3663 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3664 // Floating point operations had to be 'fast' to enable the reduction. 3665 ReducedPartRdx = addFastMathFlag( 3666 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3667 ReducedPartRdx, "bin.rdx")); 3668 else 3669 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3670 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 3671 } 3672 3673 if (VF > 1) { 3674 bool NoNaN = Legal->hasFunNoNaNAttr(); 3675 ReducedPartRdx = 3676 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3677 // If the reduction can be performed in a smaller type, we need to extend 3678 // the reduction to the wider type before we branch to the original loop. 3679 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3680 ReducedPartRdx = 3681 RdxDesc.isSigned() 3682 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3683 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3684 } 3685 3686 // Create a phi node that merges control-flow from the backedge-taken check 3687 // block and the middle block. 3688 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3689 LoopScalarPreHeader->getTerminator()); 3690 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3691 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3692 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3693 3694 // Now, we need to fix the users of the reduction variable 3695 // inside and outside of the scalar remainder loop. 3696 // We know that the loop is in LCSSA form. We need to update the 3697 // PHI nodes in the exit blocks. 3698 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3699 // All PHINodes need to have a single entry edge, or two if 3700 // we already fixed them. 3701 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3702 3703 // We found a reduction value exit-PHI. Update it with the 3704 // incoming bypass edge. 3705 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3706 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3707 } // end of the LCSSA phi scan. 3708 3709 // Fix the scalar loop reduction variable with the incoming reduction sum 3710 // from the vector body and from the backedge value. 3711 int IncomingEdgeBlockIdx = 3712 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3713 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3714 // Pick the other block. 3715 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3716 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3717 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3718 } 3719 3720 void InnerLoopVectorizer::fixLCSSAPHIs() { 3721 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3722 if (LCSSAPhi.getNumIncomingValues() == 1) { 3723 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3724 // Non-instruction incoming values will have only one value. 3725 unsigned LastLane = 0; 3726 if (isa<Instruction>(IncomingValue)) 3727 LastLane = Cost->isUniformAfterVectorization( 3728 cast<Instruction>(IncomingValue), VF) 3729 ? 0 3730 : VF - 1; 3731 // Can be a loop invariant incoming value or the last scalar value to be 3732 // extracted from the vectorized loop. 3733 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3734 Value *lastIncomingValue = 3735 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3736 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3737 } 3738 } 3739 } 3740 3741 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3742 // The basic block and loop containing the predicated instruction. 3743 auto *PredBB = PredInst->getParent(); 3744 auto *VectorLoop = LI->getLoopFor(PredBB); 3745 3746 // Initialize a worklist with the operands of the predicated instruction. 3747 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3748 3749 // Holds instructions that we need to analyze again. An instruction may be 3750 // reanalyzed if we don't yet know if we can sink it or not. 3751 SmallVector<Instruction *, 8> InstsToReanalyze; 3752 3753 // Returns true if a given use occurs in the predicated block. Phi nodes use 3754 // their operands in their corresponding predecessor blocks. 3755 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3756 auto *I = cast<Instruction>(U.getUser()); 3757 BasicBlock *BB = I->getParent(); 3758 if (auto *Phi = dyn_cast<PHINode>(I)) 3759 BB = Phi->getIncomingBlock( 3760 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3761 return BB == PredBB; 3762 }; 3763 3764 // Iteratively sink the scalarized operands of the predicated instruction 3765 // into the block we created for it. When an instruction is sunk, it's 3766 // operands are then added to the worklist. The algorithm ends after one pass 3767 // through the worklist doesn't sink a single instruction. 3768 bool Changed; 3769 do { 3770 // Add the instructions that need to be reanalyzed to the worklist, and 3771 // reset the changed indicator. 3772 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3773 InstsToReanalyze.clear(); 3774 Changed = false; 3775 3776 while (!Worklist.empty()) { 3777 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3778 3779 // We can't sink an instruction if it is a phi node, is already in the 3780 // predicated block, is not in the loop, or may have side effects. 3781 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3782 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3783 continue; 3784 3785 // It's legal to sink the instruction if all its uses occur in the 3786 // predicated block. Otherwise, there's nothing to do yet, and we may 3787 // need to reanalyze the instruction. 3788 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3789 InstsToReanalyze.push_back(I); 3790 continue; 3791 } 3792 3793 // Move the instruction to the beginning of the predicated block, and add 3794 // it's operands to the worklist. 3795 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3796 Worklist.insert(I->op_begin(), I->op_end()); 3797 3798 // The sinking may have enabled other instructions to be sunk, so we will 3799 // need to iterate. 3800 Changed = true; 3801 } 3802 } while (Changed); 3803 } 3804 3805 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3806 unsigned VF) { 3807 assert(PN->getParent() == OrigLoop->getHeader() && 3808 "Non-header phis should have been handled elsewhere"); 3809 3810 PHINode *P = cast<PHINode>(PN); 3811 // In order to support recurrences we need to be able to vectorize Phi nodes. 3812 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3813 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3814 // this value when we vectorize all of the instructions that use the PHI. 3815 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3816 for (unsigned Part = 0; Part < UF; ++Part) { 3817 // This is phase one of vectorizing PHIs. 3818 Type *VecTy = 3819 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3820 Value *EntryPart = PHINode::Create( 3821 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3822 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3823 } 3824 return; 3825 } 3826 3827 setDebugLocFromInst(Builder, P); 3828 3829 // This PHINode must be an induction variable. 3830 // Make sure that we know about it. 3831 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3832 3833 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3834 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3835 3836 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3837 // which can be found from the original scalar operations. 3838 switch (II.getKind()) { 3839 case InductionDescriptor::IK_NoInduction: 3840 llvm_unreachable("Unknown induction"); 3841 case InductionDescriptor::IK_IntInduction: 3842 case InductionDescriptor::IK_FpInduction: 3843 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3844 case InductionDescriptor::IK_PtrInduction: { 3845 // Handle the pointer induction variable case. 3846 assert(P->getType()->isPointerTy() && "Unexpected type."); 3847 // This is the normalized GEP that starts counting at zero. 3848 Value *PtrInd = Induction; 3849 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3850 // Determine the number of scalars we need to generate for each unroll 3851 // iteration. If the instruction is uniform, we only need to generate the 3852 // first lane. Otherwise, we generate all VF values. 3853 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3854 // These are the scalar results. Notice that we don't generate vector GEPs 3855 // because scalar GEPs result in better code. 3856 for (unsigned Part = 0; Part < UF; ++Part) { 3857 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3858 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3859 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3860 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 3861 SclrGep->setName("next.gep"); 3862 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3863 } 3864 } 3865 return; 3866 } 3867 } 3868 } 3869 3870 /// A helper function for checking whether an integer division-related 3871 /// instruction may divide by zero (in which case it must be predicated if 3872 /// executed conditionally in the scalar code). 3873 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3874 /// Non-zero divisors that are non compile-time constants will not be 3875 /// converted into multiplication, so we will still end up scalarizing 3876 /// the division, but can do so w/o predication. 3877 static bool mayDivideByZero(Instruction &I) { 3878 assert((I.getOpcode() == Instruction::UDiv || 3879 I.getOpcode() == Instruction::SDiv || 3880 I.getOpcode() == Instruction::URem || 3881 I.getOpcode() == Instruction::SRem) && 3882 "Unexpected instruction"); 3883 Value *Divisor = I.getOperand(1); 3884 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3885 return !CInt || CInt->isZero(); 3886 } 3887 3888 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3889 switch (I.getOpcode()) { 3890 case Instruction::Br: 3891 case Instruction::PHI: 3892 llvm_unreachable("This instruction is handled by a different recipe."); 3893 case Instruction::GetElementPtr: { 3894 // Construct a vector GEP by widening the operands of the scalar GEP as 3895 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3896 // results in a vector of pointers when at least one operand of the GEP 3897 // is vector-typed. Thus, to keep the representation compact, we only use 3898 // vector-typed operands for loop-varying values. 3899 auto *GEP = cast<GetElementPtrInst>(&I); 3900 3901 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3902 // If we are vectorizing, but the GEP has only loop-invariant operands, 3903 // the GEP we build (by only using vector-typed operands for 3904 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3905 // produce a vector of pointers, we need to either arbitrarily pick an 3906 // operand to broadcast, or broadcast a clone of the original GEP. 3907 // Here, we broadcast a clone of the original. 3908 // 3909 // TODO: If at some point we decide to scalarize instructions having 3910 // loop-invariant operands, this special case will no longer be 3911 // required. We would add the scalarization decision to 3912 // collectLoopScalars() and teach getVectorValue() to broadcast 3913 // the lane-zero scalar value. 3914 auto *Clone = Builder.Insert(GEP->clone()); 3915 for (unsigned Part = 0; Part < UF; ++Part) { 3916 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3917 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3918 addMetadata(EntryPart, GEP); 3919 } 3920 } else { 3921 // If the GEP has at least one loop-varying operand, we are sure to 3922 // produce a vector of pointers. But if we are only unrolling, we want 3923 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3924 // produce with the code below will be scalar (if VF == 1) or vector 3925 // (otherwise). Note that for the unroll-only case, we still maintain 3926 // values in the vector mapping with initVector, as we do for other 3927 // instructions. 3928 for (unsigned Part = 0; Part < UF; ++Part) { 3929 // The pointer operand of the new GEP. If it's loop-invariant, we 3930 // won't broadcast it. 3931 auto *Ptr = 3932 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3933 ? GEP->getPointerOperand() 3934 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3935 3936 // Collect all the indices for the new GEP. If any index is 3937 // loop-invariant, we won't broadcast it. 3938 SmallVector<Value *, 4> Indices; 3939 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3940 if (OrigLoop->isLoopInvariant(U.get())) 3941 Indices.push_back(U.get()); 3942 else 3943 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3944 } 3945 3946 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3947 // but it should be a vector, otherwise. 3948 auto *NewGEP = GEP->isInBounds() 3949 ? Builder.CreateInBoundsGEP(Ptr, Indices) 3950 : Builder.CreateGEP(Ptr, Indices); 3951 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3952 "NewGEP is not a pointer vector"); 3953 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3954 addMetadata(NewGEP, GEP); 3955 } 3956 } 3957 3958 break; 3959 } 3960 case Instruction::UDiv: 3961 case Instruction::SDiv: 3962 case Instruction::SRem: 3963 case Instruction::URem: 3964 case Instruction::Add: 3965 case Instruction::FAdd: 3966 case Instruction::Sub: 3967 case Instruction::FSub: 3968 case Instruction::Mul: 3969 case Instruction::FMul: 3970 case Instruction::FDiv: 3971 case Instruction::FRem: 3972 case Instruction::Shl: 3973 case Instruction::LShr: 3974 case Instruction::AShr: 3975 case Instruction::And: 3976 case Instruction::Or: 3977 case Instruction::Xor: { 3978 // Just widen binops. 3979 auto *BinOp = cast<BinaryOperator>(&I); 3980 setDebugLocFromInst(Builder, BinOp); 3981 3982 for (unsigned Part = 0; Part < UF; ++Part) { 3983 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3984 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3985 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3986 3987 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3988 VecOp->copyIRFlags(BinOp); 3989 3990 // Use this vector value for all users of the original instruction. 3991 VectorLoopValueMap.setVectorValue(&I, Part, V); 3992 addMetadata(V, BinOp); 3993 } 3994 3995 break; 3996 } 3997 case Instruction::Select: { 3998 // Widen selects. 3999 // If the selector is loop invariant we can create a select 4000 // instruction with a scalar condition. Otherwise, use vector-select. 4001 auto *SE = PSE.getSE(); 4002 bool InvariantCond = 4003 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4004 setDebugLocFromInst(Builder, &I); 4005 4006 // The condition can be loop invariant but still defined inside the 4007 // loop. This means that we can't just use the original 'cond' value. 4008 // We have to take the 'vectorized' value and pick the first lane. 4009 // Instcombine will make this a no-op. 4010 4011 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4012 4013 for (unsigned Part = 0; Part < UF; ++Part) { 4014 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4015 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4016 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4017 Value *Sel = 4018 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4019 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4020 addMetadata(Sel, &I); 4021 } 4022 4023 break; 4024 } 4025 4026 case Instruction::ICmp: 4027 case Instruction::FCmp: { 4028 // Widen compares. Generate vector compares. 4029 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4030 auto *Cmp = dyn_cast<CmpInst>(&I); 4031 setDebugLocFromInst(Builder, Cmp); 4032 for (unsigned Part = 0; Part < UF; ++Part) { 4033 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4034 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4035 Value *C = nullptr; 4036 if (FCmp) { 4037 // Propagate fast math flags. 4038 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4039 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4040 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4041 } else { 4042 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4043 } 4044 VectorLoopValueMap.setVectorValue(&I, Part, C); 4045 addMetadata(C, &I); 4046 } 4047 4048 break; 4049 } 4050 4051 case Instruction::ZExt: 4052 case Instruction::SExt: 4053 case Instruction::FPToUI: 4054 case Instruction::FPToSI: 4055 case Instruction::FPExt: 4056 case Instruction::PtrToInt: 4057 case Instruction::IntToPtr: 4058 case Instruction::SIToFP: 4059 case Instruction::UIToFP: 4060 case Instruction::Trunc: 4061 case Instruction::FPTrunc: 4062 case Instruction::BitCast: { 4063 auto *CI = dyn_cast<CastInst>(&I); 4064 setDebugLocFromInst(Builder, CI); 4065 4066 /// Vectorize casts. 4067 Type *DestTy = 4068 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4069 4070 for (unsigned Part = 0; Part < UF; ++Part) { 4071 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4072 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4073 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4074 addMetadata(Cast, &I); 4075 } 4076 break; 4077 } 4078 4079 case Instruction::Call: { 4080 // Ignore dbg intrinsics. 4081 if (isa<DbgInfoIntrinsic>(I)) 4082 break; 4083 setDebugLocFromInst(Builder, &I); 4084 4085 Module *M = I.getParent()->getParent()->getParent(); 4086 auto *CI = cast<CallInst>(&I); 4087 4088 StringRef FnName = CI->getCalledFunction()->getName(); 4089 Function *F = CI->getCalledFunction(); 4090 Type *RetTy = ToVectorTy(CI->getType(), VF); 4091 SmallVector<Type *, 4> Tys; 4092 for (Value *ArgOperand : CI->arg_operands()) 4093 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4094 4095 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4096 4097 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4098 // version of the instruction. 4099 // Is it beneficial to perform intrinsic call compared to lib call? 4100 bool NeedToScalarize; 4101 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4102 bool UseVectorIntrinsic = 4103 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4104 assert((UseVectorIntrinsic || !NeedToScalarize) && 4105 "Instruction should be scalarized elsewhere."); 4106 4107 for (unsigned Part = 0; Part < UF; ++Part) { 4108 SmallVector<Value *, 4> Args; 4109 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4110 Value *Arg = CI->getArgOperand(i); 4111 // Some intrinsics have a scalar argument - don't replace it with a 4112 // vector. 4113 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4114 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4115 Args.push_back(Arg); 4116 } 4117 4118 Function *VectorF; 4119 if (UseVectorIntrinsic) { 4120 // Use vector version of the intrinsic. 4121 Type *TysForDecl[] = {CI->getType()}; 4122 if (VF > 1) 4123 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4124 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4125 } else { 4126 // Use vector version of the library call. 4127 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4128 assert(!VFnName.empty() && "Vector function name is empty."); 4129 VectorF = M->getFunction(VFnName); 4130 if (!VectorF) { 4131 // Generate a declaration 4132 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4133 VectorF = 4134 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4135 VectorF->copyAttributesFrom(F); 4136 } 4137 } 4138 assert(VectorF && "Can't create vector function."); 4139 4140 SmallVector<OperandBundleDef, 1> OpBundles; 4141 CI->getOperandBundlesAsDefs(OpBundles); 4142 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4143 4144 if (isa<FPMathOperator>(V)) 4145 V->copyFastMathFlags(CI); 4146 4147 VectorLoopValueMap.setVectorValue(&I, Part, V); 4148 addMetadata(V, &I); 4149 } 4150 4151 break; 4152 } 4153 4154 default: 4155 // This instruction is not vectorized by simple widening. 4156 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4157 llvm_unreachable("Unhandled instruction!"); 4158 } // end of switch. 4159 } 4160 4161 void InnerLoopVectorizer::updateAnalysis() { 4162 // Forget the original basic block. 4163 PSE.getSE()->forgetLoop(OrigLoop); 4164 4165 // Update the dominator tree information. 4166 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4167 "Entry does not dominate exit."); 4168 4169 DT->addNewBlock(LoopMiddleBlock, 4170 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4171 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4172 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4173 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4174 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4175 } 4176 4177 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4178 // We should not collect Scalars more than once per VF. Right now, this 4179 // function is called from collectUniformsAndScalars(), which already does 4180 // this check. Collecting Scalars for VF=1 does not make any sense. 4181 assert(VF >= 2 && !Scalars.count(VF) && 4182 "This function should not be visited twice for the same VF"); 4183 4184 SmallSetVector<Instruction *, 8> Worklist; 4185 4186 // These sets are used to seed the analysis with pointers used by memory 4187 // accesses that will remain scalar. 4188 SmallSetVector<Instruction *, 8> ScalarPtrs; 4189 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4190 4191 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4192 // The pointer operands of loads and stores will be scalar as long as the 4193 // memory access is not a gather or scatter operation. The value operand of a 4194 // store will remain scalar if the store is scalarized. 4195 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4196 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4197 assert(WideningDecision != CM_Unknown && 4198 "Widening decision should be ready at this moment"); 4199 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4200 if (Ptr == Store->getValueOperand()) 4201 return WideningDecision == CM_Scalarize; 4202 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4203 "Ptr is neither a value or pointer operand"); 4204 return WideningDecision != CM_GatherScatter; 4205 }; 4206 4207 // A helper that returns true if the given value is a bitcast or 4208 // getelementptr instruction contained in the loop. 4209 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4210 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4211 isa<GetElementPtrInst>(V)) && 4212 !TheLoop->isLoopInvariant(V); 4213 }; 4214 4215 // A helper that evaluates a memory access's use of a pointer. If the use 4216 // will be a scalar use, and the pointer is only used by memory accesses, we 4217 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4218 // PossibleNonScalarPtrs. 4219 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4220 // We only care about bitcast and getelementptr instructions contained in 4221 // the loop. 4222 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4223 return; 4224 4225 // If the pointer has already been identified as scalar (e.g., if it was 4226 // also identified as uniform), there's nothing to do. 4227 auto *I = cast<Instruction>(Ptr); 4228 if (Worklist.count(I)) 4229 return; 4230 4231 // If the use of the pointer will be a scalar use, and all users of the 4232 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4233 // place the pointer in PossibleNonScalarPtrs. 4234 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4235 return isa<LoadInst>(U) || isa<StoreInst>(U); 4236 })) 4237 ScalarPtrs.insert(I); 4238 else 4239 PossibleNonScalarPtrs.insert(I); 4240 }; 4241 4242 // We seed the scalars analysis with three classes of instructions: (1) 4243 // instructions marked uniform-after-vectorization, (2) bitcast and 4244 // getelementptr instructions used by memory accesses requiring a scalar use, 4245 // and (3) pointer induction variables and their update instructions (we 4246 // currently only scalarize these). 4247 // 4248 // (1) Add to the worklist all instructions that have been identified as 4249 // uniform-after-vectorization. 4250 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4251 4252 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4253 // memory accesses requiring a scalar use. The pointer operands of loads and 4254 // stores will be scalar as long as the memory accesses is not a gather or 4255 // scatter operation. The value operand of a store will remain scalar if the 4256 // store is scalarized. 4257 for (auto *BB : TheLoop->blocks()) 4258 for (auto &I : *BB) { 4259 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4260 evaluatePtrUse(Load, Load->getPointerOperand()); 4261 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4262 evaluatePtrUse(Store, Store->getPointerOperand()); 4263 evaluatePtrUse(Store, Store->getValueOperand()); 4264 } 4265 } 4266 for (auto *I : ScalarPtrs) 4267 if (!PossibleNonScalarPtrs.count(I)) { 4268 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4269 Worklist.insert(I); 4270 } 4271 4272 // (3) Add to the worklist all pointer induction variables and their update 4273 // instructions. 4274 // 4275 // TODO: Once we are able to vectorize pointer induction variables we should 4276 // no longer insert them into the worklist here. 4277 auto *Latch = TheLoop->getLoopLatch(); 4278 for (auto &Induction : *Legal->getInductionVars()) { 4279 auto *Ind = Induction.first; 4280 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4281 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4282 continue; 4283 Worklist.insert(Ind); 4284 Worklist.insert(IndUpdate); 4285 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4286 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4287 << "\n"); 4288 } 4289 4290 // Insert the forced scalars. 4291 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4292 // induction variable when the PHI user is scalarized. 4293 if (ForcedScalars.count(VF)) 4294 for (auto *I : ForcedScalars.find(VF)->second) 4295 Worklist.insert(I); 4296 4297 // Expand the worklist by looking through any bitcasts and getelementptr 4298 // instructions we've already identified as scalar. This is similar to the 4299 // expansion step in collectLoopUniforms(); however, here we're only 4300 // expanding to include additional bitcasts and getelementptr instructions. 4301 unsigned Idx = 0; 4302 while (Idx != Worklist.size()) { 4303 Instruction *Dst = Worklist[Idx++]; 4304 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4305 continue; 4306 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4307 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4308 auto *J = cast<Instruction>(U); 4309 return !TheLoop->contains(J) || Worklist.count(J) || 4310 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4311 isScalarUse(J, Src)); 4312 })) { 4313 Worklist.insert(Src); 4314 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4315 } 4316 } 4317 4318 // An induction variable will remain scalar if all users of the induction 4319 // variable and induction variable update remain scalar. 4320 for (auto &Induction : *Legal->getInductionVars()) { 4321 auto *Ind = Induction.first; 4322 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4323 4324 // We already considered pointer induction variables, so there's no reason 4325 // to look at their users again. 4326 // 4327 // TODO: Once we are able to vectorize pointer induction variables we 4328 // should no longer skip over them here. 4329 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4330 continue; 4331 4332 // Determine if all users of the induction variable are scalar after 4333 // vectorization. 4334 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4335 auto *I = cast<Instruction>(U); 4336 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4337 }); 4338 if (!ScalarInd) 4339 continue; 4340 4341 // Determine if all users of the induction variable update instruction are 4342 // scalar after vectorization. 4343 auto ScalarIndUpdate = 4344 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4345 auto *I = cast<Instruction>(U); 4346 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4347 }); 4348 if (!ScalarIndUpdate) 4349 continue; 4350 4351 // The induction variable and its update instruction will remain scalar. 4352 Worklist.insert(Ind); 4353 Worklist.insert(IndUpdate); 4354 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4355 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4356 << "\n"); 4357 } 4358 4359 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4360 } 4361 4362 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) { 4363 if (!Legal->blockNeedsPredication(I->getParent())) 4364 return false; 4365 switch(I->getOpcode()) { 4366 default: 4367 break; 4368 case Instruction::Load: 4369 case Instruction::Store: { 4370 if (!Legal->isMaskRequired(I)) 4371 return false; 4372 auto *Ptr = getLoadStorePointerOperand(I); 4373 auto *Ty = getMemInstValueType(I); 4374 return isa<LoadInst>(I) ? 4375 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4376 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4377 } 4378 case Instruction::UDiv: 4379 case Instruction::SDiv: 4380 case Instruction::SRem: 4381 case Instruction::URem: 4382 return mayDivideByZero(*I); 4383 } 4384 return false; 4385 } 4386 4387 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4388 unsigned VF) { 4389 // Get and ensure we have a valid memory instruction. 4390 LoadInst *LI = dyn_cast<LoadInst>(I); 4391 StoreInst *SI = dyn_cast<StoreInst>(I); 4392 assert((LI || SI) && "Invalid memory instruction"); 4393 4394 auto *Ptr = getLoadStorePointerOperand(I); 4395 4396 // In order to be widened, the pointer should be consecutive, first of all. 4397 if (!Legal->isConsecutivePtr(Ptr)) 4398 return false; 4399 4400 // If the instruction is a store located in a predicated block, it will be 4401 // scalarized. 4402 if (isScalarWithPredication(I)) 4403 return false; 4404 4405 // If the instruction's allocated size doesn't equal it's type size, it 4406 // requires padding and will be scalarized. 4407 auto &DL = I->getModule()->getDataLayout(); 4408 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4409 if (hasIrregularType(ScalarTy, DL, VF)) 4410 return false; 4411 4412 return true; 4413 } 4414 4415 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4416 // We should not collect Uniforms more than once per VF. Right now, 4417 // this function is called from collectUniformsAndScalars(), which 4418 // already does this check. Collecting Uniforms for VF=1 does not make any 4419 // sense. 4420 4421 assert(VF >= 2 && !Uniforms.count(VF) && 4422 "This function should not be visited twice for the same VF"); 4423 4424 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4425 // not analyze again. Uniforms.count(VF) will return 1. 4426 Uniforms[VF].clear(); 4427 4428 // We now know that the loop is vectorizable! 4429 // Collect instructions inside the loop that will remain uniform after 4430 // vectorization. 4431 4432 // Global values, params and instructions outside of current loop are out of 4433 // scope. 4434 auto isOutOfScope = [&](Value *V) -> bool { 4435 Instruction *I = dyn_cast<Instruction>(V); 4436 return (!I || !TheLoop->contains(I)); 4437 }; 4438 4439 SetVector<Instruction *> Worklist; 4440 BasicBlock *Latch = TheLoop->getLoopLatch(); 4441 4442 // Start with the conditional branch. If the branch condition is an 4443 // instruction contained in the loop that is only used by the branch, it is 4444 // uniform. 4445 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4446 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4447 Worklist.insert(Cmp); 4448 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4449 } 4450 4451 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4452 // are pointers that are treated like consecutive pointers during 4453 // vectorization. The pointer operands of interleaved accesses are an 4454 // example. 4455 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4456 4457 // Holds pointer operands of instructions that are possibly non-uniform. 4458 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4459 4460 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4461 InstWidening WideningDecision = getWideningDecision(I, VF); 4462 assert(WideningDecision != CM_Unknown && 4463 "Widening decision should be ready at this moment"); 4464 4465 return (WideningDecision == CM_Widen || 4466 WideningDecision == CM_Widen_Reverse || 4467 WideningDecision == CM_Interleave); 4468 }; 4469 // Iterate over the instructions in the loop, and collect all 4470 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4471 // that a consecutive-like pointer operand will be scalarized, we collect it 4472 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4473 // getelementptr instruction can be used by both vectorized and scalarized 4474 // memory instructions. For example, if a loop loads and stores from the same 4475 // location, but the store is conditional, the store will be scalarized, and 4476 // the getelementptr won't remain uniform. 4477 for (auto *BB : TheLoop->blocks()) 4478 for (auto &I : *BB) { 4479 // If there's no pointer operand, there's nothing to do. 4480 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4481 if (!Ptr) 4482 continue; 4483 4484 // True if all users of Ptr are memory accesses that have Ptr as their 4485 // pointer operand. 4486 auto UsersAreMemAccesses = 4487 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4488 return getLoadStorePointerOperand(U) == Ptr; 4489 }); 4490 4491 // Ensure the memory instruction will not be scalarized or used by 4492 // gather/scatter, making its pointer operand non-uniform. If the pointer 4493 // operand is used by any instruction other than a memory access, we 4494 // conservatively assume the pointer operand may be non-uniform. 4495 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4496 PossibleNonUniformPtrs.insert(Ptr); 4497 4498 // If the memory instruction will be vectorized and its pointer operand 4499 // is consecutive-like, or interleaving - the pointer operand should 4500 // remain uniform. 4501 else 4502 ConsecutiveLikePtrs.insert(Ptr); 4503 } 4504 4505 // Add to the Worklist all consecutive and consecutive-like pointers that 4506 // aren't also identified as possibly non-uniform. 4507 for (auto *V : ConsecutiveLikePtrs) 4508 if (!PossibleNonUniformPtrs.count(V)) { 4509 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4510 Worklist.insert(V); 4511 } 4512 4513 // Expand Worklist in topological order: whenever a new instruction 4514 // is added , its users should be already inside Worklist. It ensures 4515 // a uniform instruction will only be used by uniform instructions. 4516 unsigned idx = 0; 4517 while (idx != Worklist.size()) { 4518 Instruction *I = Worklist[idx++]; 4519 4520 for (auto OV : I->operand_values()) { 4521 // isOutOfScope operands cannot be uniform instructions. 4522 if (isOutOfScope(OV)) 4523 continue; 4524 // If all the users of the operand are uniform, then add the 4525 // operand into the uniform worklist. 4526 auto *OI = cast<Instruction>(OV); 4527 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4528 auto *J = cast<Instruction>(U); 4529 return Worklist.count(J) || 4530 (OI == getLoadStorePointerOperand(J) && 4531 isUniformDecision(J, VF)); 4532 })) { 4533 Worklist.insert(OI); 4534 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4535 } 4536 } 4537 } 4538 4539 // Returns true if Ptr is the pointer operand of a memory access instruction 4540 // I, and I is known to not require scalarization. 4541 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4542 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4543 }; 4544 4545 // For an instruction to be added into Worklist above, all its users inside 4546 // the loop should also be in Worklist. However, this condition cannot be 4547 // true for phi nodes that form a cyclic dependence. We must process phi 4548 // nodes separately. An induction variable will remain uniform if all users 4549 // of the induction variable and induction variable update remain uniform. 4550 // The code below handles both pointer and non-pointer induction variables. 4551 for (auto &Induction : *Legal->getInductionVars()) { 4552 auto *Ind = Induction.first; 4553 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4554 4555 // Determine if all users of the induction variable are uniform after 4556 // vectorization. 4557 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4558 auto *I = cast<Instruction>(U); 4559 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4560 isVectorizedMemAccessUse(I, Ind); 4561 }); 4562 if (!UniformInd) 4563 continue; 4564 4565 // Determine if all users of the induction variable update instruction are 4566 // uniform after vectorization. 4567 auto UniformIndUpdate = 4568 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4569 auto *I = cast<Instruction>(U); 4570 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4571 isVectorizedMemAccessUse(I, IndUpdate); 4572 }); 4573 if (!UniformIndUpdate) 4574 continue; 4575 4576 // The induction variable and its update instruction will remain uniform. 4577 Worklist.insert(Ind); 4578 Worklist.insert(IndUpdate); 4579 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4580 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4581 << "\n"); 4582 } 4583 4584 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4585 } 4586 4587 void InterleavedAccessInfo::collectConstStrideAccesses( 4588 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 4589 const ValueToValueMap &Strides) { 4590 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4591 4592 // Since it's desired that the load/store instructions be maintained in 4593 // "program order" for the interleaved access analysis, we have to visit the 4594 // blocks in the loop in reverse postorder (i.e., in a topological order). 4595 // Such an ordering will ensure that any load/store that may be executed 4596 // before a second load/store will precede the second load/store in 4597 // AccessStrideInfo. 4598 LoopBlocksDFS DFS(TheLoop); 4599 DFS.perform(LI); 4600 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 4601 for (auto &I : *BB) { 4602 auto *LI = dyn_cast<LoadInst>(&I); 4603 auto *SI = dyn_cast<StoreInst>(&I); 4604 if (!LI && !SI) 4605 continue; 4606 4607 Value *Ptr = getLoadStorePointerOperand(&I); 4608 // We don't check wrapping here because we don't know yet if Ptr will be 4609 // part of a full group or a group with gaps. Checking wrapping for all 4610 // pointers (even those that end up in groups with no gaps) will be overly 4611 // conservative. For full groups, wrapping should be ok since if we would 4612 // wrap around the address space we would do a memory access at nullptr 4613 // even without the transformation. The wrapping checks are therefore 4614 // deferred until after we've formed the interleaved groups. 4615 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 4616 /*Assume=*/true, /*ShouldCheckWrap=*/false); 4617 4618 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4619 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4620 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4621 4622 // An alignment of 0 means target ABI alignment. 4623 unsigned Align = getMemInstAlignment(&I); 4624 if (!Align) 4625 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4626 4627 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 4628 } 4629 } 4630 4631 // Analyze interleaved accesses and collect them into interleaved load and 4632 // store groups. 4633 // 4634 // When generating code for an interleaved load group, we effectively hoist all 4635 // loads in the group to the location of the first load in program order. When 4636 // generating code for an interleaved store group, we sink all stores to the 4637 // location of the last store. This code motion can change the order of load 4638 // and store instructions and may break dependences. 4639 // 4640 // The code generation strategy mentioned above ensures that we won't violate 4641 // any write-after-read (WAR) dependences. 4642 // 4643 // E.g., for the WAR dependence: a = A[i]; // (1) 4644 // A[i] = b; // (2) 4645 // 4646 // The store group of (2) is always inserted at or below (2), and the load 4647 // group of (1) is always inserted at or above (1). Thus, the instructions will 4648 // never be reordered. All other dependences are checked to ensure the 4649 // correctness of the instruction reordering. 4650 // 4651 // The algorithm visits all memory accesses in the loop in bottom-up program 4652 // order. Program order is established by traversing the blocks in the loop in 4653 // reverse postorder when collecting the accesses. 4654 // 4655 // We visit the memory accesses in bottom-up order because it can simplify the 4656 // construction of store groups in the presence of write-after-write (WAW) 4657 // dependences. 4658 // 4659 // E.g., for the WAW dependence: A[i] = a; // (1) 4660 // A[i] = b; // (2) 4661 // A[i + 1] = c; // (3) 4662 // 4663 // We will first create a store group with (3) and (2). (1) can't be added to 4664 // this group because it and (2) are dependent. However, (1) can be grouped 4665 // with other accesses that may precede it in program order. Note that a 4666 // bottom-up order does not imply that WAW dependences should not be checked. 4667 void InterleavedAccessInfo::analyzeInterleaving() { 4668 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4669 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 4670 4671 // Holds all accesses with a constant stride. 4672 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 4673 collectConstStrideAccesses(AccessStrideInfo, Strides); 4674 4675 if (AccessStrideInfo.empty()) 4676 return; 4677 4678 // Collect the dependences in the loop. 4679 collectDependences(); 4680 4681 // Holds all interleaved store groups temporarily. 4682 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4683 // Holds all interleaved load groups temporarily. 4684 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 4685 4686 // Search in bottom-up program order for pairs of accesses (A and B) that can 4687 // form interleaved load or store groups. In the algorithm below, access A 4688 // precedes access B in program order. We initialize a group for B in the 4689 // outer loop of the algorithm, and then in the inner loop, we attempt to 4690 // insert each A into B's group if: 4691 // 4692 // 1. A and B have the same stride, 4693 // 2. A and B have the same memory object size, and 4694 // 3. A belongs in B's group according to its distance from B. 4695 // 4696 // Special care is taken to ensure group formation will not break any 4697 // dependences. 4698 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 4699 BI != E; ++BI) { 4700 Instruction *B = BI->first; 4701 StrideDescriptor DesB = BI->second; 4702 4703 // Initialize a group for B if it has an allowable stride. Even if we don't 4704 // create a group for B, we continue with the bottom-up algorithm to ensure 4705 // we don't break any of B's dependences. 4706 InterleaveGroup *Group = nullptr; 4707 if (isStrided(DesB.Stride)) { 4708 Group = getInterleaveGroup(B); 4709 if (!Group) { 4710 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 4711 << '\n'); 4712 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 4713 } 4714 if (B->mayWriteToMemory()) 4715 StoreGroups.insert(Group); 4716 else 4717 LoadGroups.insert(Group); 4718 } 4719 4720 for (auto AI = std::next(BI); AI != E; ++AI) { 4721 Instruction *A = AI->first; 4722 StrideDescriptor DesA = AI->second; 4723 4724 // Our code motion strategy implies that we can't have dependences 4725 // between accesses in an interleaved group and other accesses located 4726 // between the first and last member of the group. Note that this also 4727 // means that a group can't have more than one member at a given offset. 4728 // The accesses in a group can have dependences with other accesses, but 4729 // we must ensure we don't extend the boundaries of the group such that 4730 // we encompass those dependent accesses. 4731 // 4732 // For example, assume we have the sequence of accesses shown below in a 4733 // stride-2 loop: 4734 // 4735 // (1, 2) is a group | A[i] = a; // (1) 4736 // | A[i-1] = b; // (2) | 4737 // A[i-3] = c; // (3) 4738 // A[i] = d; // (4) | (2, 4) is not a group 4739 // 4740 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 4741 // but not with (4). If we did, the dependent access (3) would be within 4742 // the boundaries of the (2, 4) group. 4743 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 4744 // If a dependence exists and A is already in a group, we know that A 4745 // must be a store since A precedes B and WAR dependences are allowed. 4746 // Thus, A would be sunk below B. We release A's group to prevent this 4747 // illegal code motion. A will then be free to form another group with 4748 // instructions that precede it. 4749 if (isInterleaved(A)) { 4750 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 4751 StoreGroups.remove(StoreGroup); 4752 releaseGroup(StoreGroup); 4753 } 4754 4755 // If a dependence exists and A is not already in a group (or it was 4756 // and we just released it), B might be hoisted above A (if B is a 4757 // load) or another store might be sunk below A (if B is a store). In 4758 // either case, we can't add additional instructions to B's group. B 4759 // will only form a group with instructions that it precedes. 4760 break; 4761 } 4762 4763 // At this point, we've checked for illegal code motion. If either A or B 4764 // isn't strided, there's nothing left to do. 4765 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 4766 continue; 4767 4768 // Ignore A if it's already in a group or isn't the same kind of memory 4769 // operation as B. 4770 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory 4771 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory() 4772 // should have returned false - except for the case we asked for optimization 4773 // remarks. 4774 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) 4775 || (A->mayWriteToMemory() != B->mayWriteToMemory())) 4776 continue; 4777 4778 // Check rules 1 and 2. Ignore A if its stride or size is different from 4779 // that of B. 4780 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 4781 continue; 4782 4783 // Ignore A if the memory object of A and B don't belong to the same 4784 // address space 4785 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 4786 continue; 4787 4788 // Calculate the distance from A to B. 4789 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 4790 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 4791 if (!DistToB) 4792 continue; 4793 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 4794 4795 // Check rule 3. Ignore A if its distance to B is not a multiple of the 4796 // size. 4797 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 4798 continue; 4799 4800 // Ignore A if either A or B is in a predicated block. Although we 4801 // currently prevent group formation for predicated accesses, we may be 4802 // able to relax this limitation in the future once we handle more 4803 // complicated blocks. 4804 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 4805 continue; 4806 4807 // The index of A is the index of B plus A's distance to B in multiples 4808 // of the size. 4809 int IndexA = 4810 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 4811 4812 // Try to insert A into B's group. 4813 if (Group->insertMember(A, IndexA, DesA.Align)) { 4814 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 4815 << " into the interleave group with" << *B 4816 << '\n'); 4817 InterleaveGroupMap[A] = Group; 4818 4819 // Set the first load in program order as the insert position. 4820 if (A->mayReadFromMemory()) 4821 Group->setInsertPos(A); 4822 } 4823 } // Iteration over A accesses. 4824 } // Iteration over B accesses. 4825 4826 // Remove interleaved store groups with gaps. 4827 for (InterleaveGroup *Group : StoreGroups) 4828 if (Group->getNumMembers() != Group->getFactor()) { 4829 LLVM_DEBUG( 4830 dbgs() << "LV: Invalidate candidate interleaved store group due " 4831 "to gaps.\n"); 4832 releaseGroup(Group); 4833 } 4834 // Remove interleaved groups with gaps (currently only loads) whose memory 4835 // accesses may wrap around. We have to revisit the getPtrStride analysis, 4836 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 4837 // not check wrapping (see documentation there). 4838 // FORNOW we use Assume=false; 4839 // TODO: Change to Assume=true but making sure we don't exceed the threshold 4840 // of runtime SCEV assumptions checks (thereby potentially failing to 4841 // vectorize altogether). 4842 // Additional optional optimizations: 4843 // TODO: If we are peeling the loop and we know that the first pointer doesn't 4844 // wrap then we can deduce that all pointers in the group don't wrap. 4845 // This means that we can forcefully peel the loop in order to only have to 4846 // check the first pointer for no-wrap. When we'll change to use Assume=true 4847 // we'll only need at most one runtime check per interleaved group. 4848 for (InterleaveGroup *Group : LoadGroups) { 4849 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 4850 // load would wrap around the address space we would do a memory access at 4851 // nullptr even without the transformation. 4852 if (Group->getNumMembers() == Group->getFactor()) 4853 continue; 4854 4855 // Case 2: If first and last members of the group don't wrap this implies 4856 // that all the pointers in the group don't wrap. 4857 // So we check only group member 0 (which is always guaranteed to exist), 4858 // and group member Factor - 1; If the latter doesn't exist we rely on 4859 // peeling (if it is a non-reveresed accsess -- see Case 3). 4860 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 4861 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 4862 /*ShouldCheckWrap=*/true)) { 4863 LLVM_DEBUG( 4864 dbgs() << "LV: Invalidate candidate interleaved group due to " 4865 "first group member potentially pointer-wrapping.\n"); 4866 releaseGroup(Group); 4867 continue; 4868 } 4869 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 4870 if (LastMember) { 4871 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 4872 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 4873 /*ShouldCheckWrap=*/true)) { 4874 LLVM_DEBUG( 4875 dbgs() << "LV: Invalidate candidate interleaved group due to " 4876 "last group member potentially pointer-wrapping.\n"); 4877 releaseGroup(Group); 4878 } 4879 } else { 4880 // Case 3: A non-reversed interleaved load group with gaps: We need 4881 // to execute at least one scalar epilogue iteration. This will ensure 4882 // we don't speculatively access memory out-of-bounds. We only need 4883 // to look for a member at index factor - 1, since every group must have 4884 // a member at index zero. 4885 if (Group->isReverse()) { 4886 LLVM_DEBUG( 4887 dbgs() << "LV: Invalidate candidate interleaved group due to " 4888 "a reverse access with gaps.\n"); 4889 releaseGroup(Group); 4890 continue; 4891 } 4892 LLVM_DEBUG( 4893 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 4894 RequiresScalarEpilogue = true; 4895 } 4896 } 4897 } 4898 4899 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4900 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4901 // TODO: It may by useful to do since it's still likely to be dynamically 4902 // uniform if the target can skip. 4903 LLVM_DEBUG( 4904 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4905 4906 ORE->emit( 4907 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4908 << "runtime pointer checks needed. Not enabled for divergent target"); 4909 4910 return None; 4911 } 4912 4913 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4914 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4915 return computeFeasibleMaxVF(OptForSize, TC); 4916 4917 if (Legal->getRuntimePointerChecking()->Need) { 4918 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4919 << "runtime pointer checks needed. Enable vectorization of this " 4920 "loop with '#pragma clang loop vectorize(enable)' when " 4921 "compiling with -Os/-Oz"); 4922 LLVM_DEBUG( 4923 dbgs() 4924 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4925 return None; 4926 } 4927 4928 // If we optimize the program for size, avoid creating the tail loop. 4929 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4930 4931 // If we don't know the precise trip count, don't try to vectorize. 4932 if (TC < 2) { 4933 ORE->emit( 4934 createMissedAnalysis("UnknownLoopCountComplexCFG") 4935 << "unable to calculate the loop count due to complex control flow"); 4936 LLVM_DEBUG( 4937 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4938 return None; 4939 } 4940 4941 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4942 4943 if (TC % MaxVF != 0) { 4944 // If the trip count that we found modulo the vectorization factor is not 4945 // zero then we require a tail. 4946 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 4947 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 4948 // smaller MaxVF that does not require a scalar epilog. 4949 4950 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4951 << "cannot optimize for size and vectorize at the " 4952 "same time. Enable vectorization of this loop " 4953 "with '#pragma clang loop vectorize(enable)' " 4954 "when compiling with -Os/-Oz"); 4955 LLVM_DEBUG( 4956 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4957 return None; 4958 } 4959 4960 return MaxVF; 4961 } 4962 4963 unsigned 4964 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4965 unsigned ConstTripCount) { 4966 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4967 unsigned SmallestType, WidestType; 4968 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4969 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4970 4971 // Get the maximum safe dependence distance in bits computed by LAA. 4972 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4973 // the memory accesses that is most restrictive (involved in the smallest 4974 // dependence distance). 4975 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4976 4977 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4978 4979 unsigned MaxVectorSize = WidestRegister / WidestType; 4980 4981 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4982 << " / " << WidestType << " bits.\n"); 4983 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4984 << WidestRegister << " bits.\n"); 4985 4986 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4987 " into one vector!"); 4988 if (MaxVectorSize == 0) { 4989 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4990 MaxVectorSize = 1; 4991 return MaxVectorSize; 4992 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4993 isPowerOf2_32(ConstTripCount)) { 4994 // We need to clamp the VF to be the ConstTripCount. There is no point in 4995 // choosing a higher viable VF as done in the loop below. 4996 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4997 << ConstTripCount << "\n"); 4998 MaxVectorSize = ConstTripCount; 4999 return MaxVectorSize; 5000 } 5001 5002 unsigned MaxVF = MaxVectorSize; 5003 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 5004 (MaximizeBandwidth && !OptForSize)) { 5005 // Collect all viable vectorization factors larger than the default MaxVF 5006 // (i.e. MaxVectorSize). 5007 SmallVector<unsigned, 8> VFs; 5008 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5009 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5010 VFs.push_back(VS); 5011 5012 // For each VF calculate its register usage. 5013 auto RUs = calculateRegisterUsage(VFs); 5014 5015 // Select the largest VF which doesn't require more registers than existing 5016 // ones. 5017 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5018 for (int i = RUs.size() - 1; i >= 0; --i) { 5019 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5020 MaxVF = VFs[i]; 5021 break; 5022 } 5023 } 5024 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5025 if (MaxVF < MinVF) { 5026 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5027 << ") with target's minimum: " << MinVF << '\n'); 5028 MaxVF = MinVF; 5029 } 5030 } 5031 } 5032 return MaxVF; 5033 } 5034 5035 VectorizationFactor 5036 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5037 float Cost = expectedCost(1).first; 5038 const float ScalarCost = Cost; 5039 unsigned Width = 1; 5040 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5041 5042 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5043 if (ForceVectorization && MaxVF > 1) { 5044 // Ignore scalar width, because the user explicitly wants vectorization. 5045 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5046 // evaluation. 5047 Cost = std::numeric_limits<float>::max(); 5048 } 5049 5050 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5051 // Notice that the vector loop needs to be executed less times, so 5052 // we need to divide the cost of the vector loops by the width of 5053 // the vector elements. 5054 VectorizationCostTy C = expectedCost(i); 5055 float VectorCost = C.first / (float)i; 5056 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5057 << " costs: " << (int)VectorCost << ".\n"); 5058 if (!C.second && !ForceVectorization) { 5059 LLVM_DEBUG( 5060 dbgs() << "LV: Not considering vector loop of width " << i 5061 << " because it will not generate any vector instructions.\n"); 5062 continue; 5063 } 5064 if (VectorCost < Cost) { 5065 Cost = VectorCost; 5066 Width = i; 5067 } 5068 } 5069 5070 if (!EnableCondStoresVectorization && NumPredStores) { 5071 ORE->emit(createMissedAnalysis("ConditionalStore") 5072 << "store that is conditionally executed prevents vectorization"); 5073 LLVM_DEBUG( 5074 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5075 Width = 1; 5076 Cost = ScalarCost; 5077 } 5078 5079 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5080 << "LV: Vectorization seems to be not beneficial, " 5081 << "but was forced by a user.\n"); 5082 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5083 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5084 return Factor; 5085 } 5086 5087 std::pair<unsigned, unsigned> 5088 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5089 unsigned MinWidth = -1U; 5090 unsigned MaxWidth = 8; 5091 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5092 5093 // For each block. 5094 for (BasicBlock *BB : TheLoop->blocks()) { 5095 // For each instruction in the loop. 5096 for (Instruction &I : *BB) { 5097 Type *T = I.getType(); 5098 5099 // Skip ignored values. 5100 if (ValuesToIgnore.count(&I)) 5101 continue; 5102 5103 // Only examine Loads, Stores and PHINodes. 5104 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5105 continue; 5106 5107 // Examine PHI nodes that are reduction variables. Update the type to 5108 // account for the recurrence type. 5109 if (auto *PN = dyn_cast<PHINode>(&I)) { 5110 if (!Legal->isReductionVariable(PN)) 5111 continue; 5112 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5113 T = RdxDesc.getRecurrenceType(); 5114 } 5115 5116 // Examine the stored values. 5117 if (auto *ST = dyn_cast<StoreInst>(&I)) 5118 T = ST->getValueOperand()->getType(); 5119 5120 // Ignore loaded pointer types and stored pointer types that are not 5121 // vectorizable. 5122 // 5123 // FIXME: The check here attempts to predict whether a load or store will 5124 // be vectorized. We only know this for certain after a VF has 5125 // been selected. Here, we assume that if an access can be 5126 // vectorized, it will be. We should also look at extending this 5127 // optimization to non-pointer types. 5128 // 5129 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5130 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5131 continue; 5132 5133 MinWidth = std::min(MinWidth, 5134 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5135 MaxWidth = std::max(MaxWidth, 5136 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5137 } 5138 } 5139 5140 return {MinWidth, MaxWidth}; 5141 } 5142 5143 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5144 unsigned VF, 5145 unsigned LoopCost) { 5146 // -- The interleave heuristics -- 5147 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5148 // There are many micro-architectural considerations that we can't predict 5149 // at this level. For example, frontend pressure (on decode or fetch) due to 5150 // code size, or the number and capabilities of the execution ports. 5151 // 5152 // We use the following heuristics to select the interleave count: 5153 // 1. If the code has reductions, then we interleave to break the cross 5154 // iteration dependency. 5155 // 2. If the loop is really small, then we interleave to reduce the loop 5156 // overhead. 5157 // 3. We don't interleave if we think that we will spill registers to memory 5158 // due to the increased register pressure. 5159 5160 // When we optimize for size, we don't interleave. 5161 if (OptForSize) 5162 return 1; 5163 5164 // We used the distance for the interleave count. 5165 if (Legal->getMaxSafeDepDistBytes() != -1U) 5166 return 1; 5167 5168 // Do not interleave loops with a relatively small trip count. 5169 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5170 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5171 return 1; 5172 5173 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5174 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5175 << " registers\n"); 5176 5177 if (VF == 1) { 5178 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5179 TargetNumRegisters = ForceTargetNumScalarRegs; 5180 } else { 5181 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5182 TargetNumRegisters = ForceTargetNumVectorRegs; 5183 } 5184 5185 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5186 // We divide by these constants so assume that we have at least one 5187 // instruction that uses at least one register. 5188 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5189 5190 // We calculate the interleave count using the following formula. 5191 // Subtract the number of loop invariants from the number of available 5192 // registers. These registers are used by all of the interleaved instances. 5193 // Next, divide the remaining registers by the number of registers that is 5194 // required by the loop, in order to estimate how many parallel instances 5195 // fit without causing spills. All of this is rounded down if necessary to be 5196 // a power of two. We want power of two interleave count to simplify any 5197 // addressing operations or alignment considerations. 5198 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5199 R.MaxLocalUsers); 5200 5201 // Don't count the induction variable as interleaved. 5202 if (EnableIndVarRegisterHeur) 5203 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5204 std::max(1U, (R.MaxLocalUsers - 1))); 5205 5206 // Clamp the interleave ranges to reasonable counts. 5207 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5208 5209 // Check if the user has overridden the max. 5210 if (VF == 1) { 5211 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5212 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5213 } else { 5214 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5215 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5216 } 5217 5218 // If we did not calculate the cost for VF (because the user selected the VF) 5219 // then we calculate the cost of VF here. 5220 if (LoopCost == 0) 5221 LoopCost = expectedCost(VF).first; 5222 5223 // Clamp the calculated IC to be between the 1 and the max interleave count 5224 // that the target allows. 5225 if (IC > MaxInterleaveCount) 5226 IC = MaxInterleaveCount; 5227 else if (IC < 1) 5228 IC = 1; 5229 5230 // Interleave if we vectorized this loop and there is a reduction that could 5231 // benefit from interleaving. 5232 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5233 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5234 return IC; 5235 } 5236 5237 // Note that if we've already vectorized the loop we will have done the 5238 // runtime check and so interleaving won't require further checks. 5239 bool InterleavingRequiresRuntimePointerCheck = 5240 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5241 5242 // We want to interleave small loops in order to reduce the loop overhead and 5243 // potentially expose ILP opportunities. 5244 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5245 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5246 // We assume that the cost overhead is 1 and we use the cost model 5247 // to estimate the cost of the loop and interleave until the cost of the 5248 // loop overhead is about 5% of the cost of the loop. 5249 unsigned SmallIC = 5250 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5251 5252 // Interleave until store/load ports (estimated by max interleave count) are 5253 // saturated. 5254 unsigned NumStores = Legal->getNumStores(); 5255 unsigned NumLoads = Legal->getNumLoads(); 5256 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5257 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5258 5259 // If we have a scalar reduction (vector reductions are already dealt with 5260 // by this point), we can increase the critical path length if the loop 5261 // we're interleaving is inside another loop. Limit, by default to 2, so the 5262 // critical path only gets increased by one reduction operation. 5263 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5264 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5265 SmallIC = std::min(SmallIC, F); 5266 StoresIC = std::min(StoresIC, F); 5267 LoadsIC = std::min(LoadsIC, F); 5268 } 5269 5270 if (EnableLoadStoreRuntimeInterleave && 5271 std::max(StoresIC, LoadsIC) > SmallIC) { 5272 LLVM_DEBUG( 5273 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5274 return std::max(StoresIC, LoadsIC); 5275 } 5276 5277 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5278 return SmallIC; 5279 } 5280 5281 // Interleave if this is a large loop (small loops are already dealt with by 5282 // this point) that could benefit from interleaving. 5283 bool HasReductions = !Legal->getReductionVars()->empty(); 5284 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5285 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5286 return IC; 5287 } 5288 5289 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5290 return 1; 5291 } 5292 5293 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5294 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5295 // This function calculates the register usage by measuring the highest number 5296 // of values that are alive at a single location. Obviously, this is a very 5297 // rough estimation. We scan the loop in a topological order in order and 5298 // assign a number to each instruction. We use RPO to ensure that defs are 5299 // met before their users. We assume that each instruction that has in-loop 5300 // users starts an interval. We record every time that an in-loop value is 5301 // used, so we have a list of the first and last occurrences of each 5302 // instruction. Next, we transpose this data structure into a multi map that 5303 // holds the list of intervals that *end* at a specific location. This multi 5304 // map allows us to perform a linear search. We scan the instructions linearly 5305 // and record each time that a new interval starts, by placing it in a set. 5306 // If we find this value in the multi-map then we remove it from the set. 5307 // The max register usage is the maximum size of the set. 5308 // We also search for instructions that are defined outside the loop, but are 5309 // used inside the loop. We need this number separately from the max-interval 5310 // usage number because when we unroll, loop-invariant values do not take 5311 // more register. 5312 LoopBlocksDFS DFS(TheLoop); 5313 DFS.perform(LI); 5314 5315 RegisterUsage RU; 5316 5317 // Each 'key' in the map opens a new interval. The values 5318 // of the map are the index of the 'last seen' usage of the 5319 // instruction that is the key. 5320 using IntervalMap = DenseMap<Instruction *, unsigned>; 5321 5322 // Maps instruction to its index. 5323 DenseMap<unsigned, Instruction *> IdxToInstr; 5324 // Marks the end of each interval. 5325 IntervalMap EndPoint; 5326 // Saves the list of instruction indices that are used in the loop. 5327 SmallPtrSet<Instruction *, 8> Ends; 5328 // Saves the list of values that are used in the loop but are 5329 // defined outside the loop, such as arguments and constants. 5330 SmallPtrSet<Value *, 8> LoopInvariants; 5331 5332 unsigned Index = 0; 5333 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5334 for (Instruction &I : *BB) { 5335 IdxToInstr[Index++] = &I; 5336 5337 // Save the end location of each USE. 5338 for (Value *U : I.operands()) { 5339 auto *Instr = dyn_cast<Instruction>(U); 5340 5341 // Ignore non-instruction values such as arguments, constants, etc. 5342 if (!Instr) 5343 continue; 5344 5345 // If this instruction is outside the loop then record it and continue. 5346 if (!TheLoop->contains(Instr)) { 5347 LoopInvariants.insert(Instr); 5348 continue; 5349 } 5350 5351 // Overwrite previous end points. 5352 EndPoint[Instr] = Index; 5353 Ends.insert(Instr); 5354 } 5355 } 5356 } 5357 5358 // Saves the list of intervals that end with the index in 'key'. 5359 using InstrList = SmallVector<Instruction *, 2>; 5360 DenseMap<unsigned, InstrList> TransposeEnds; 5361 5362 // Transpose the EndPoints to a list of values that end at each index. 5363 for (auto &Interval : EndPoint) 5364 TransposeEnds[Interval.second].push_back(Interval.first); 5365 5366 SmallPtrSet<Instruction *, 8> OpenIntervals; 5367 5368 // Get the size of the widest register. 5369 unsigned MaxSafeDepDist = -1U; 5370 if (Legal->getMaxSafeDepDistBytes() != -1U) 5371 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5372 unsigned WidestRegister = 5373 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5374 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5375 5376 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5377 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5378 5379 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5380 5381 // A lambda that gets the register usage for the given type and VF. 5382 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5383 if (Ty->isTokenTy()) 5384 return 0U; 5385 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5386 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5387 }; 5388 5389 for (unsigned int i = 0; i < Index; ++i) { 5390 Instruction *I = IdxToInstr[i]; 5391 5392 // Remove all of the instructions that end at this location. 5393 InstrList &List = TransposeEnds[i]; 5394 for (Instruction *ToRemove : List) 5395 OpenIntervals.erase(ToRemove); 5396 5397 // Ignore instructions that are never used within the loop. 5398 if (!Ends.count(I)) 5399 continue; 5400 5401 // Skip ignored values. 5402 if (ValuesToIgnore.count(I)) 5403 continue; 5404 5405 // For each VF find the maximum usage of registers. 5406 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5407 if (VFs[j] == 1) { 5408 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5409 continue; 5410 } 5411 collectUniformsAndScalars(VFs[j]); 5412 // Count the number of live intervals. 5413 unsigned RegUsage = 0; 5414 for (auto Inst : OpenIntervals) { 5415 // Skip ignored values for VF > 1. 5416 if (VecValuesToIgnore.count(Inst) || 5417 isScalarAfterVectorization(Inst, VFs[j])) 5418 continue; 5419 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5420 } 5421 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5422 } 5423 5424 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5425 << OpenIntervals.size() << '\n'); 5426 5427 // Add the current instruction to the list of open intervals. 5428 OpenIntervals.insert(I); 5429 } 5430 5431 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5432 unsigned Invariant = 0; 5433 if (VFs[i] == 1) 5434 Invariant = LoopInvariants.size(); 5435 else { 5436 for (auto Inst : LoopInvariants) 5437 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5438 } 5439 5440 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5441 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5442 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5443 << '\n'); 5444 5445 RU.LoopInvariantRegs = Invariant; 5446 RU.MaxLocalUsers = MaxUsages[i]; 5447 RUs[i] = RU; 5448 } 5449 5450 return RUs; 5451 } 5452 5453 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5454 // TODO: Cost model for emulated masked load/store is completely 5455 // broken. This hack guides the cost model to use an artificially 5456 // high enough value to practically disable vectorization with such 5457 // operations, except where previously deployed legality hack allowed 5458 // using very low cost values. This is to avoid regressions coming simply 5459 // from moving "masked load/store" check from legality to cost model. 5460 // Masked Load/Gather emulation was previously never allowed. 5461 // Limited number of Masked Store/Scatter emulation was allowed. 5462 assert(isScalarWithPredication(I) && 5463 "Expecting a scalar emulated instruction"); 5464 return isa<LoadInst>(I) || 5465 (isa<StoreInst>(I) && 5466 NumPredStores > NumberOfStoresToPredicate); 5467 } 5468 5469 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5470 // If we aren't vectorizing the loop, or if we've already collected the 5471 // instructions to scalarize, there's nothing to do. Collection may already 5472 // have occurred if we have a user-selected VF and are now computing the 5473 // expected cost for interleaving. 5474 if (VF < 2 || InstsToScalarize.count(VF)) 5475 return; 5476 5477 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5478 // not profitable to scalarize any instructions, the presence of VF in the 5479 // map will indicate that we've analyzed it already. 5480 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5481 5482 // Find all the instructions that are scalar with predication in the loop and 5483 // determine if it would be better to not if-convert the blocks they are in. 5484 // If so, we also record the instructions to scalarize. 5485 for (BasicBlock *BB : TheLoop->blocks()) { 5486 if (!Legal->blockNeedsPredication(BB)) 5487 continue; 5488 for (Instruction &I : *BB) 5489 if (isScalarWithPredication(&I)) { 5490 ScalarCostsTy ScalarCosts; 5491 // Do not apply discount logic if hacked cost is needed 5492 // for emulated masked memrefs. 5493 if (!useEmulatedMaskMemRefHack(&I) && 5494 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5495 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5496 // Remember that BB will remain after vectorization. 5497 PredicatedBBsAfterVectorization.insert(BB); 5498 } 5499 } 5500 } 5501 5502 int LoopVectorizationCostModel::computePredInstDiscount( 5503 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5504 unsigned VF) { 5505 assert(!isUniformAfterVectorization(PredInst, VF) && 5506 "Instruction marked uniform-after-vectorization will be predicated"); 5507 5508 // Initialize the discount to zero, meaning that the scalar version and the 5509 // vector version cost the same. 5510 int Discount = 0; 5511 5512 // Holds instructions to analyze. The instructions we visit are mapped in 5513 // ScalarCosts. Those instructions are the ones that would be scalarized if 5514 // we find that the scalar version costs less. 5515 SmallVector<Instruction *, 8> Worklist; 5516 5517 // Returns true if the given instruction can be scalarized. 5518 auto canBeScalarized = [&](Instruction *I) -> bool { 5519 // We only attempt to scalarize instructions forming a single-use chain 5520 // from the original predicated block that would otherwise be vectorized. 5521 // Although not strictly necessary, we give up on instructions we know will 5522 // already be scalar to avoid traversing chains that are unlikely to be 5523 // beneficial. 5524 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5525 isScalarAfterVectorization(I, VF)) 5526 return false; 5527 5528 // If the instruction is scalar with predication, it will be analyzed 5529 // separately. We ignore it within the context of PredInst. 5530 if (isScalarWithPredication(I)) 5531 return false; 5532 5533 // If any of the instruction's operands are uniform after vectorization, 5534 // the instruction cannot be scalarized. This prevents, for example, a 5535 // masked load from being scalarized. 5536 // 5537 // We assume we will only emit a value for lane zero of an instruction 5538 // marked uniform after vectorization, rather than VF identical values. 5539 // Thus, if we scalarize an instruction that uses a uniform, we would 5540 // create uses of values corresponding to the lanes we aren't emitting code 5541 // for. This behavior can be changed by allowing getScalarValue to clone 5542 // the lane zero values for uniforms rather than asserting. 5543 for (Use &U : I->operands()) 5544 if (auto *J = dyn_cast<Instruction>(U.get())) 5545 if (isUniformAfterVectorization(J, VF)) 5546 return false; 5547 5548 // Otherwise, we can scalarize the instruction. 5549 return true; 5550 }; 5551 5552 // Returns true if an operand that cannot be scalarized must be extracted 5553 // from a vector. We will account for this scalarization overhead below. Note 5554 // that the non-void predicated instructions are placed in their own blocks, 5555 // and their return values are inserted into vectors. Thus, an extract would 5556 // still be required. 5557 auto needsExtract = [&](Instruction *I) -> bool { 5558 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5559 }; 5560 5561 // Compute the expected cost discount from scalarizing the entire expression 5562 // feeding the predicated instruction. We currently only consider expressions 5563 // that are single-use instruction chains. 5564 Worklist.push_back(PredInst); 5565 while (!Worklist.empty()) { 5566 Instruction *I = Worklist.pop_back_val(); 5567 5568 // If we've already analyzed the instruction, there's nothing to do. 5569 if (ScalarCosts.count(I)) 5570 continue; 5571 5572 // Compute the cost of the vector instruction. Note that this cost already 5573 // includes the scalarization overhead of the predicated instruction. 5574 unsigned VectorCost = getInstructionCost(I, VF).first; 5575 5576 // Compute the cost of the scalarized instruction. This cost is the cost of 5577 // the instruction as if it wasn't if-converted and instead remained in the 5578 // predicated block. We will scale this cost by block probability after 5579 // computing the scalarization overhead. 5580 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5581 5582 // Compute the scalarization overhead of needed insertelement instructions 5583 // and phi nodes. 5584 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5585 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5586 true, false); 5587 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5588 } 5589 5590 // Compute the scalarization overhead of needed extractelement 5591 // instructions. For each of the instruction's operands, if the operand can 5592 // be scalarized, add it to the worklist; otherwise, account for the 5593 // overhead. 5594 for (Use &U : I->operands()) 5595 if (auto *J = dyn_cast<Instruction>(U.get())) { 5596 assert(VectorType::isValidElementType(J->getType()) && 5597 "Instruction has non-scalar type"); 5598 if (canBeScalarized(J)) 5599 Worklist.push_back(J); 5600 else if (needsExtract(J)) 5601 ScalarCost += TTI.getScalarizationOverhead( 5602 ToVectorTy(J->getType(),VF), false, true); 5603 } 5604 5605 // Scale the total scalar cost by block probability. 5606 ScalarCost /= getReciprocalPredBlockProb(); 5607 5608 // Compute the discount. A non-negative discount means the vector version 5609 // of the instruction costs more, and scalarizing would be beneficial. 5610 Discount += VectorCost - ScalarCost; 5611 ScalarCosts[I] = ScalarCost; 5612 } 5613 5614 return Discount; 5615 } 5616 5617 LoopVectorizationCostModel::VectorizationCostTy 5618 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5619 VectorizationCostTy Cost; 5620 5621 // For each block. 5622 for (BasicBlock *BB : TheLoop->blocks()) { 5623 VectorizationCostTy BlockCost; 5624 5625 // For each instruction in the old loop. 5626 for (Instruction &I : BB->instructionsWithoutDebug()) { 5627 // Skip ignored values. 5628 if (ValuesToIgnore.count(&I) || 5629 (VF > 1 && VecValuesToIgnore.count(&I))) 5630 continue; 5631 5632 VectorizationCostTy C = getInstructionCost(&I, VF); 5633 5634 // Check if we should override the cost. 5635 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5636 C.first = ForceTargetInstructionCost; 5637 5638 BlockCost.first += C.first; 5639 BlockCost.second |= C.second; 5640 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5641 << " for VF " << VF << " For instruction: " << I 5642 << '\n'); 5643 } 5644 5645 // If we are vectorizing a predicated block, it will have been 5646 // if-converted. This means that the block's instructions (aside from 5647 // stores and instructions that may divide by zero) will now be 5648 // unconditionally executed. For the scalar case, we may not always execute 5649 // the predicated block. Thus, scale the block's cost by the probability of 5650 // executing it. 5651 if (VF == 1 && Legal->blockNeedsPredication(BB)) 5652 BlockCost.first /= getReciprocalPredBlockProb(); 5653 5654 Cost.first += BlockCost.first; 5655 Cost.second |= BlockCost.second; 5656 } 5657 5658 return Cost; 5659 } 5660 5661 /// Gets Address Access SCEV after verifying that the access pattern 5662 /// is loop invariant except the induction variable dependence. 5663 /// 5664 /// This SCEV can be sent to the Target in order to estimate the address 5665 /// calculation cost. 5666 static const SCEV *getAddressAccessSCEV( 5667 Value *Ptr, 5668 LoopVectorizationLegality *Legal, 5669 PredicatedScalarEvolution &PSE, 5670 const Loop *TheLoop) { 5671 5672 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5673 if (!Gep) 5674 return nullptr; 5675 5676 // We are looking for a gep with all loop invariant indices except for one 5677 // which should be an induction variable. 5678 auto SE = PSE.getSE(); 5679 unsigned NumOperands = Gep->getNumOperands(); 5680 for (unsigned i = 1; i < NumOperands; ++i) { 5681 Value *Opd = Gep->getOperand(i); 5682 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5683 !Legal->isInductionVariable(Opd)) 5684 return nullptr; 5685 } 5686 5687 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5688 return PSE.getSCEV(Ptr); 5689 } 5690 5691 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5692 return Legal->hasStride(I->getOperand(0)) || 5693 Legal->hasStride(I->getOperand(1)); 5694 } 5695 5696 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5697 unsigned VF) { 5698 Type *ValTy = getMemInstValueType(I); 5699 auto SE = PSE.getSE(); 5700 5701 unsigned Alignment = getMemInstAlignment(I); 5702 unsigned AS = getMemInstAddressSpace(I); 5703 Value *Ptr = getLoadStorePointerOperand(I); 5704 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5705 5706 // Figure out whether the access is strided and get the stride value 5707 // if it's known in compile time 5708 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5709 5710 // Get the cost of the scalar memory instruction and address computation. 5711 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5712 5713 Cost += VF * 5714 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5715 AS, I); 5716 5717 // Get the overhead of the extractelement and insertelement instructions 5718 // we might create due to scalarization. 5719 Cost += getScalarizationOverhead(I, VF, TTI); 5720 5721 // If we have a predicated store, it may not be executed for each vector 5722 // lane. Scale the cost by the probability of executing the predicated 5723 // block. 5724 if (isScalarWithPredication(I)) { 5725 Cost /= getReciprocalPredBlockProb(); 5726 5727 if (useEmulatedMaskMemRefHack(I)) 5728 // Artificially setting to a high enough value to practically disable 5729 // vectorization with such operations. 5730 Cost = 3000000; 5731 } 5732 5733 return Cost; 5734 } 5735 5736 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5737 unsigned VF) { 5738 Type *ValTy = getMemInstValueType(I); 5739 Type *VectorTy = ToVectorTy(ValTy, VF); 5740 unsigned Alignment = getMemInstAlignment(I); 5741 Value *Ptr = getLoadStorePointerOperand(I); 5742 unsigned AS = getMemInstAddressSpace(I); 5743 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5744 5745 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5746 "Stride should be 1 or -1 for consecutive memory access"); 5747 unsigned Cost = 0; 5748 if (Legal->isMaskRequired(I)) 5749 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5750 else 5751 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5752 5753 bool Reverse = ConsecutiveStride < 0; 5754 if (Reverse) 5755 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5756 return Cost; 5757 } 5758 5759 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5760 unsigned VF) { 5761 LoadInst *LI = cast<LoadInst>(I); 5762 Type *ValTy = LI->getType(); 5763 Type *VectorTy = ToVectorTy(ValTy, VF); 5764 unsigned Alignment = LI->getAlignment(); 5765 unsigned AS = LI->getPointerAddressSpace(); 5766 5767 return TTI.getAddressComputationCost(ValTy) + 5768 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5769 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5770 } 5771 5772 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5773 unsigned VF) { 5774 Type *ValTy = getMemInstValueType(I); 5775 Type *VectorTy = ToVectorTy(ValTy, VF); 5776 unsigned Alignment = getMemInstAlignment(I); 5777 Value *Ptr = getLoadStorePointerOperand(I); 5778 5779 return TTI.getAddressComputationCost(VectorTy) + 5780 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5781 Legal->isMaskRequired(I), Alignment); 5782 } 5783 5784 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5785 unsigned VF) { 5786 Type *ValTy = getMemInstValueType(I); 5787 Type *VectorTy = ToVectorTy(ValTy, VF); 5788 unsigned AS = getMemInstAddressSpace(I); 5789 5790 auto Group = getInterleavedAccessGroup(I); 5791 assert(Group && "Fail to get an interleaved access group."); 5792 5793 unsigned InterleaveFactor = Group->getFactor(); 5794 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5795 5796 // Holds the indices of existing members in an interleaved load group. 5797 // An interleaved store group doesn't need this as it doesn't allow gaps. 5798 SmallVector<unsigned, 4> Indices; 5799 if (isa<LoadInst>(I)) { 5800 for (unsigned i = 0; i < InterleaveFactor; i++) 5801 if (Group->getMember(i)) 5802 Indices.push_back(i); 5803 } 5804 5805 // Calculate the cost of the whole interleaved group. 5806 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 5807 Group->getFactor(), Indices, 5808 Group->getAlignment(), AS); 5809 5810 if (Group->isReverse()) 5811 Cost += Group->getNumMembers() * 5812 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5813 return Cost; 5814 } 5815 5816 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5817 unsigned VF) { 5818 // Calculate scalar cost only. Vectorization cost should be ready at this 5819 // moment. 5820 if (VF == 1) { 5821 Type *ValTy = getMemInstValueType(I); 5822 unsigned Alignment = getMemInstAlignment(I); 5823 unsigned AS = getMemInstAddressSpace(I); 5824 5825 return TTI.getAddressComputationCost(ValTy) + 5826 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5827 } 5828 return getWideningCost(I, VF); 5829 } 5830 5831 LoopVectorizationCostModel::VectorizationCostTy 5832 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5833 // If we know that this instruction will remain uniform, check the cost of 5834 // the scalar version. 5835 if (isUniformAfterVectorization(I, VF)) 5836 VF = 1; 5837 5838 if (VF > 1 && isProfitableToScalarize(I, VF)) 5839 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5840 5841 // Forced scalars do not have any scalarization overhead. 5842 if (VF > 1 && ForcedScalars.count(VF) && 5843 ForcedScalars.find(VF)->second.count(I)) 5844 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5845 5846 Type *VectorTy; 5847 unsigned C = getInstructionCost(I, VF, VectorTy); 5848 5849 bool TypeNotScalarized = 5850 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5851 return VectorizationCostTy(C, TypeNotScalarized); 5852 } 5853 5854 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5855 if (VF == 1) 5856 return; 5857 NumPredStores = 0; 5858 for (BasicBlock *BB : TheLoop->blocks()) { 5859 // For each instruction in the old loop. 5860 for (Instruction &I : *BB) { 5861 Value *Ptr = getLoadStorePointerOperand(&I); 5862 if (!Ptr) 5863 continue; 5864 5865 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5866 NumPredStores++; 5867 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 5868 // Scalar load + broadcast 5869 unsigned Cost = getUniformMemOpCost(&I, VF); 5870 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5871 continue; 5872 } 5873 5874 // We assume that widening is the best solution when possible. 5875 if (memoryInstructionCanBeWidened(&I, VF)) { 5876 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5877 int ConsecutiveStride = 5878 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5879 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5880 "Expected consecutive stride."); 5881 InstWidening Decision = 5882 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5883 setWideningDecision(&I, VF, Decision, Cost); 5884 continue; 5885 } 5886 5887 // Choose between Interleaving, Gather/Scatter or Scalarization. 5888 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5889 unsigned NumAccesses = 1; 5890 if (isAccessInterleaved(&I)) { 5891 auto Group = getInterleavedAccessGroup(&I); 5892 assert(Group && "Fail to get an interleaved access group."); 5893 5894 // Make one decision for the whole group. 5895 if (getWideningDecision(&I, VF) != CM_Unknown) 5896 continue; 5897 5898 NumAccesses = Group->getNumMembers(); 5899 InterleaveCost = getInterleaveGroupCost(&I, VF); 5900 } 5901 5902 unsigned GatherScatterCost = 5903 isLegalGatherOrScatter(&I) 5904 ? getGatherScatterCost(&I, VF) * NumAccesses 5905 : std::numeric_limits<unsigned>::max(); 5906 5907 unsigned ScalarizationCost = 5908 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5909 5910 // Choose better solution for the current VF, 5911 // write down this decision and use it during vectorization. 5912 unsigned Cost; 5913 InstWidening Decision; 5914 if (InterleaveCost <= GatherScatterCost && 5915 InterleaveCost < ScalarizationCost) { 5916 Decision = CM_Interleave; 5917 Cost = InterleaveCost; 5918 } else if (GatherScatterCost < ScalarizationCost) { 5919 Decision = CM_GatherScatter; 5920 Cost = GatherScatterCost; 5921 } else { 5922 Decision = CM_Scalarize; 5923 Cost = ScalarizationCost; 5924 } 5925 // If the instructions belongs to an interleave group, the whole group 5926 // receives the same decision. The whole group receives the cost, but 5927 // the cost will actually be assigned to one instruction. 5928 if (auto Group = getInterleavedAccessGroup(&I)) 5929 setWideningDecision(Group, VF, Decision, Cost); 5930 else 5931 setWideningDecision(&I, VF, Decision, Cost); 5932 } 5933 } 5934 5935 // Make sure that any load of address and any other address computation 5936 // remains scalar unless there is gather/scatter support. This avoids 5937 // inevitable extracts into address registers, and also has the benefit of 5938 // activating LSR more, since that pass can't optimize vectorized 5939 // addresses. 5940 if (TTI.prefersVectorizedAddressing()) 5941 return; 5942 5943 // Start with all scalar pointer uses. 5944 SmallPtrSet<Instruction *, 8> AddrDefs; 5945 for (BasicBlock *BB : TheLoop->blocks()) 5946 for (Instruction &I : *BB) { 5947 Instruction *PtrDef = 5948 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5949 if (PtrDef && TheLoop->contains(PtrDef) && 5950 getWideningDecision(&I, VF) != CM_GatherScatter) 5951 AddrDefs.insert(PtrDef); 5952 } 5953 5954 // Add all instructions used to generate the addresses. 5955 SmallVector<Instruction *, 4> Worklist; 5956 for (auto *I : AddrDefs) 5957 Worklist.push_back(I); 5958 while (!Worklist.empty()) { 5959 Instruction *I = Worklist.pop_back_val(); 5960 for (auto &Op : I->operands()) 5961 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5962 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5963 AddrDefs.insert(InstOp).second) 5964 Worklist.push_back(InstOp); 5965 } 5966 5967 for (auto *I : AddrDefs) { 5968 if (isa<LoadInst>(I)) { 5969 // Setting the desired widening decision should ideally be handled in 5970 // by cost functions, but since this involves the task of finding out 5971 // if the loaded register is involved in an address computation, it is 5972 // instead changed here when we know this is the case. 5973 InstWidening Decision = getWideningDecision(I, VF); 5974 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5975 // Scalarize a widened load of address. 5976 setWideningDecision(I, VF, CM_Scalarize, 5977 (VF * getMemoryInstructionCost(I, 1))); 5978 else if (auto Group = getInterleavedAccessGroup(I)) { 5979 // Scalarize an interleave group of address loads. 5980 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5981 if (Instruction *Member = Group->getMember(I)) 5982 setWideningDecision(Member, VF, CM_Scalarize, 5983 (VF * getMemoryInstructionCost(Member, 1))); 5984 } 5985 } 5986 } else 5987 // Make sure I gets scalarized and a cost estimate without 5988 // scalarization overhead. 5989 ForcedScalars[VF].insert(I); 5990 } 5991 } 5992 5993 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5994 unsigned VF, 5995 Type *&VectorTy) { 5996 Type *RetTy = I->getType(); 5997 if (canTruncateToMinimalBitwidth(I, VF)) 5998 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5999 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6000 auto SE = PSE.getSE(); 6001 6002 // TODO: We need to estimate the cost of intrinsic calls. 6003 switch (I->getOpcode()) { 6004 case Instruction::GetElementPtr: 6005 // We mark this instruction as zero-cost because the cost of GEPs in 6006 // vectorized code depends on whether the corresponding memory instruction 6007 // is scalarized or not. Therefore, we handle GEPs with the memory 6008 // instruction cost. 6009 return 0; 6010 case Instruction::Br: { 6011 // In cases of scalarized and predicated instructions, there will be VF 6012 // predicated blocks in the vectorized loop. Each branch around these 6013 // blocks requires also an extract of its vector compare i1 element. 6014 bool ScalarPredicatedBB = false; 6015 BranchInst *BI = cast<BranchInst>(I); 6016 if (VF > 1 && BI->isConditional() && 6017 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6018 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6019 ScalarPredicatedBB = true; 6020 6021 if (ScalarPredicatedBB) { 6022 // Return cost for branches around scalarized and predicated blocks. 6023 Type *Vec_i1Ty = 6024 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6025 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6026 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6027 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6028 // The back-edge branch will remain, as will all scalar branches. 6029 return TTI.getCFInstrCost(Instruction::Br); 6030 else 6031 // This branch will be eliminated by if-conversion. 6032 return 0; 6033 // Note: We currently assume zero cost for an unconditional branch inside 6034 // a predicated block since it will become a fall-through, although we 6035 // may decide in the future to call TTI for all branches. 6036 } 6037 case Instruction::PHI: { 6038 auto *Phi = cast<PHINode>(I); 6039 6040 // First-order recurrences are replaced by vector shuffles inside the loop. 6041 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6042 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6043 VectorTy, VF - 1, VectorTy); 6044 6045 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6046 // converted into select instructions. We require N - 1 selects per phi 6047 // node, where N is the number of incoming values. 6048 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6049 return (Phi->getNumIncomingValues() - 1) * 6050 TTI.getCmpSelInstrCost( 6051 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6052 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6053 6054 return TTI.getCFInstrCost(Instruction::PHI); 6055 } 6056 case Instruction::UDiv: 6057 case Instruction::SDiv: 6058 case Instruction::URem: 6059 case Instruction::SRem: 6060 // If we have a predicated instruction, it may not be executed for each 6061 // vector lane. Get the scalarization cost and scale this amount by the 6062 // probability of executing the predicated block. If the instruction is not 6063 // predicated, we fall through to the next case. 6064 if (VF > 1 && isScalarWithPredication(I)) { 6065 unsigned Cost = 0; 6066 6067 // These instructions have a non-void type, so account for the phi nodes 6068 // that we will create. This cost is likely to be zero. The phi node 6069 // cost, if any, should be scaled by the block probability because it 6070 // models a copy at the end of each predicated block. 6071 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6072 6073 // The cost of the non-predicated instruction. 6074 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6075 6076 // The cost of insertelement and extractelement instructions needed for 6077 // scalarization. 6078 Cost += getScalarizationOverhead(I, VF, TTI); 6079 6080 // Scale the cost by the probability of executing the predicated blocks. 6081 // This assumes the predicated block for each vector lane is equally 6082 // likely. 6083 return Cost / getReciprocalPredBlockProb(); 6084 } 6085 LLVM_FALLTHROUGH; 6086 case Instruction::Add: 6087 case Instruction::FAdd: 6088 case Instruction::Sub: 6089 case Instruction::FSub: 6090 case Instruction::Mul: 6091 case Instruction::FMul: 6092 case Instruction::FDiv: 6093 case Instruction::FRem: 6094 case Instruction::Shl: 6095 case Instruction::LShr: 6096 case Instruction::AShr: 6097 case Instruction::And: 6098 case Instruction::Or: 6099 case Instruction::Xor: { 6100 // Since we will replace the stride by 1 the multiplication should go away. 6101 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6102 return 0; 6103 // Certain instructions can be cheaper to vectorize if they have a constant 6104 // second vector operand. One example of this are shifts on x86. 6105 TargetTransformInfo::OperandValueKind Op1VK = 6106 TargetTransformInfo::OK_AnyValue; 6107 TargetTransformInfo::OperandValueKind Op2VK = 6108 TargetTransformInfo::OK_AnyValue; 6109 TargetTransformInfo::OperandValueProperties Op1VP = 6110 TargetTransformInfo::OP_None; 6111 TargetTransformInfo::OperandValueProperties Op2VP = 6112 TargetTransformInfo::OP_None; 6113 Value *Op2 = I->getOperand(1); 6114 6115 // Check for a splat or for a non uniform vector of constants. 6116 if (isa<ConstantInt>(Op2)) { 6117 ConstantInt *CInt = cast<ConstantInt>(Op2); 6118 if (CInt && CInt->getValue().isPowerOf2()) 6119 Op2VP = TargetTransformInfo::OP_PowerOf2; 6120 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6121 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6122 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6123 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6124 if (SplatValue) { 6125 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6126 if (CInt && CInt->getValue().isPowerOf2()) 6127 Op2VP = TargetTransformInfo::OP_PowerOf2; 6128 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6129 } 6130 } else if (Legal->isUniform(Op2)) { 6131 Op2VK = TargetTransformInfo::OK_UniformValue; 6132 } 6133 SmallVector<const Value *, 4> Operands(I->operand_values()); 6134 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6135 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 6136 Op2VK, Op1VP, Op2VP, Operands); 6137 } 6138 case Instruction::Select: { 6139 SelectInst *SI = cast<SelectInst>(I); 6140 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6141 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6142 Type *CondTy = SI->getCondition()->getType(); 6143 if (!ScalarCond) 6144 CondTy = VectorType::get(CondTy, VF); 6145 6146 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6147 } 6148 case Instruction::ICmp: 6149 case Instruction::FCmp: { 6150 Type *ValTy = I->getOperand(0)->getType(); 6151 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6152 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6153 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6154 VectorTy = ToVectorTy(ValTy, VF); 6155 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6156 } 6157 case Instruction::Store: 6158 case Instruction::Load: { 6159 unsigned Width = VF; 6160 if (Width > 1) { 6161 InstWidening Decision = getWideningDecision(I, Width); 6162 assert(Decision != CM_Unknown && 6163 "CM decision should be taken at this point"); 6164 if (Decision == CM_Scalarize) 6165 Width = 1; 6166 } 6167 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6168 return getMemoryInstructionCost(I, VF); 6169 } 6170 case Instruction::ZExt: 6171 case Instruction::SExt: 6172 case Instruction::FPToUI: 6173 case Instruction::FPToSI: 6174 case Instruction::FPExt: 6175 case Instruction::PtrToInt: 6176 case Instruction::IntToPtr: 6177 case Instruction::SIToFP: 6178 case Instruction::UIToFP: 6179 case Instruction::Trunc: 6180 case Instruction::FPTrunc: 6181 case Instruction::BitCast: { 6182 // We optimize the truncation of induction variables having constant 6183 // integer steps. The cost of these truncations is the same as the scalar 6184 // operation. 6185 if (isOptimizableIVTruncate(I, VF)) { 6186 auto *Trunc = cast<TruncInst>(I); 6187 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6188 Trunc->getSrcTy(), Trunc); 6189 } 6190 6191 Type *SrcScalarTy = I->getOperand(0)->getType(); 6192 Type *SrcVecTy = 6193 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6194 if (canTruncateToMinimalBitwidth(I, VF)) { 6195 // This cast is going to be shrunk. This may remove the cast or it might 6196 // turn it into slightly different cast. For example, if MinBW == 16, 6197 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6198 // 6199 // Calculate the modified src and dest types. 6200 Type *MinVecTy = VectorTy; 6201 if (I->getOpcode() == Instruction::Trunc) { 6202 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6203 VectorTy = 6204 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6205 } else if (I->getOpcode() == Instruction::ZExt || 6206 I->getOpcode() == Instruction::SExt) { 6207 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6208 VectorTy = 6209 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6210 } 6211 } 6212 6213 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6214 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6215 } 6216 case Instruction::Call: { 6217 bool NeedToScalarize; 6218 CallInst *CI = cast<CallInst>(I); 6219 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6220 if (getVectorIntrinsicIDForCall(CI, TLI)) 6221 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6222 return CallCost; 6223 } 6224 default: 6225 // The cost of executing VF copies of the scalar instruction. This opcode 6226 // is unknown. Assume that it is the same as 'mul'. 6227 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6228 getScalarizationOverhead(I, VF, TTI); 6229 } // end of switch. 6230 } 6231 6232 char LoopVectorize::ID = 0; 6233 6234 static const char lv_name[] = "Loop Vectorization"; 6235 6236 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6237 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6238 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6239 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6240 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6241 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6242 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6243 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6244 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6245 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6246 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6247 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6248 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6249 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6250 6251 namespace llvm { 6252 6253 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6254 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6255 } 6256 6257 } // end namespace llvm 6258 6259 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6260 // Check if the pointer operand of a load or store instruction is 6261 // consecutive. 6262 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6263 return Legal->isConsecutivePtr(Ptr); 6264 return false; 6265 } 6266 6267 void LoopVectorizationCostModel::collectValuesToIgnore() { 6268 // Ignore ephemeral values. 6269 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6270 6271 // Ignore type-promoting instructions we identified during reduction 6272 // detection. 6273 for (auto &Reduction : *Legal->getReductionVars()) { 6274 RecurrenceDescriptor &RedDes = Reduction.second; 6275 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6276 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6277 } 6278 // Ignore type-casting instructions we identified during induction 6279 // detection. 6280 for (auto &Induction : *Legal->getInductionVars()) { 6281 InductionDescriptor &IndDes = Induction.second; 6282 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6283 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6284 } 6285 } 6286 6287 VectorizationFactor 6288 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6289 unsigned UserVF) { 6290 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6291 const VectorizationFactor NoVectorization = {1U, 0U}; 6292 6293 // Outer loop handling: They may require CFG and instruction level 6294 // transformations before even evaluating whether vectorization is profitable. 6295 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6296 // the vectorization pipeline. 6297 if (!OrigLoop->empty()) { 6298 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 6299 // This won't be necessary when UserVF is not required in the VPlan-native 6300 // path. 6301 if (VPlanBuildStressTest && !UserVF) 6302 UserVF = 4; 6303 6304 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6305 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6306 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6307 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6308 buildVPlans(UserVF, UserVF); 6309 6310 // For VPlan build stress testing, we bail out after VPlan construction. 6311 if (VPlanBuildStressTest) 6312 return NoVectorization; 6313 6314 return {UserVF, 0}; 6315 } 6316 6317 LLVM_DEBUG( 6318 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6319 "VPlan-native path.\n"); 6320 return NoVectorization; 6321 } 6322 6323 VectorizationFactor 6324 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 6325 assert(OrigLoop->empty() && "Inner loop expected."); 6326 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6327 const VectorizationFactor NoVectorization = {1U, 0U}; 6328 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6329 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 6330 return NoVectorization; 6331 6332 if (UserVF) { 6333 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6334 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6335 // Collect the instructions (and their associated costs) that will be more 6336 // profitable to scalarize. 6337 CM.selectUserVectorizationFactor(UserVF); 6338 buildVPlansWithVPRecipes(UserVF, UserVF); 6339 LLVM_DEBUG(printPlans(dbgs())); 6340 return {UserVF, 0}; 6341 } 6342 6343 unsigned MaxVF = MaybeMaxVF.getValue(); 6344 assert(MaxVF != 0 && "MaxVF is zero."); 6345 6346 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6347 // Collect Uniform and Scalar instructions after vectorization with VF. 6348 CM.collectUniformsAndScalars(VF); 6349 6350 // Collect the instructions (and their associated costs) that will be more 6351 // profitable to scalarize. 6352 if (VF > 1) 6353 CM.collectInstsToScalarize(VF); 6354 } 6355 6356 buildVPlansWithVPRecipes(1, MaxVF); 6357 LLVM_DEBUG(printPlans(dbgs())); 6358 if (MaxVF == 1) 6359 return NoVectorization; 6360 6361 // Select the optimal vectorization factor. 6362 return CM.selectVectorizationFactor(MaxVF); 6363 } 6364 6365 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6366 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6367 << '\n'); 6368 BestVF = VF; 6369 BestUF = UF; 6370 6371 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6372 return !Plan->hasVF(VF); 6373 }); 6374 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6375 } 6376 6377 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6378 DominatorTree *DT) { 6379 // Perform the actual loop transformation. 6380 6381 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6382 VPCallbackILV CallbackILV(ILV); 6383 6384 VPTransformState State{BestVF, BestUF, LI, 6385 DT, ILV.Builder, ILV.VectorLoopValueMap, 6386 &ILV, CallbackILV}; 6387 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6388 6389 //===------------------------------------------------===// 6390 // 6391 // Notice: any optimization or new instruction that go 6392 // into the code below should also be implemented in 6393 // the cost-model. 6394 // 6395 //===------------------------------------------------===// 6396 6397 // 2. Copy and widen instructions from the old loop into the new loop. 6398 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6399 VPlans.front()->execute(&State); 6400 6401 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6402 // predication, updating analyses. 6403 ILV.fixVectorizedLoop(); 6404 } 6405 6406 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6407 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6408 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6409 6410 // We create new control-flow for the vectorized loop, so the original 6411 // condition will be dead after vectorization if it's only used by the 6412 // branch. 6413 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6414 if (Cmp && Cmp->hasOneUse()) 6415 DeadInstructions.insert(Cmp); 6416 6417 // We create new "steps" for induction variable updates to which the original 6418 // induction variables map. An original update instruction will be dead if 6419 // all its users except the induction variable are dead. 6420 for (auto &Induction : *Legal->getInductionVars()) { 6421 PHINode *Ind = Induction.first; 6422 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6423 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6424 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6425 })) 6426 DeadInstructions.insert(IndUpdate); 6427 6428 // We record as "Dead" also the type-casting instructions we had identified 6429 // during induction analysis. We don't need any handling for them in the 6430 // vectorized loop because we have proven that, under a proper runtime 6431 // test guarding the vectorized loop, the value of the phi, and the casted 6432 // value of the phi, are the same. The last instruction in this casting chain 6433 // will get its scalar/vector/widened def from the scalar/vector/widened def 6434 // of the respective phi node. Any other casts in the induction def-use chain 6435 // have no other uses outside the phi update chain, and will be ignored. 6436 InductionDescriptor &IndDes = Induction.second; 6437 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6438 DeadInstructions.insert(Casts.begin(), Casts.end()); 6439 } 6440 } 6441 6442 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6443 6444 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6445 6446 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6447 Instruction::BinaryOps BinOp) { 6448 // When unrolling and the VF is 1, we only need to add a simple scalar. 6449 Type *Ty = Val->getType(); 6450 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6451 6452 if (Ty->isFloatingPointTy()) { 6453 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6454 6455 // Floating point operations had to be 'fast' to enable the unrolling. 6456 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6457 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6458 } 6459 Constant *C = ConstantInt::get(Ty, StartIdx); 6460 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6461 } 6462 6463 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6464 SmallVector<Metadata *, 4> MDs; 6465 // Reserve first location for self reference to the LoopID metadata node. 6466 MDs.push_back(nullptr); 6467 bool IsUnrollMetadata = false; 6468 MDNode *LoopID = L->getLoopID(); 6469 if (LoopID) { 6470 // First find existing loop unrolling disable metadata. 6471 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6472 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6473 if (MD) { 6474 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6475 IsUnrollMetadata = 6476 S && S->getString().startswith("llvm.loop.unroll.disable"); 6477 } 6478 MDs.push_back(LoopID->getOperand(i)); 6479 } 6480 } 6481 6482 if (!IsUnrollMetadata) { 6483 // Add runtime unroll disable metadata. 6484 LLVMContext &Context = L->getHeader()->getContext(); 6485 SmallVector<Metadata *, 1> DisableOperands; 6486 DisableOperands.push_back( 6487 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6488 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6489 MDs.push_back(DisableNode); 6490 MDNode *NewLoopID = MDNode::get(Context, MDs); 6491 // Set operand 0 to refer to the loop id itself. 6492 NewLoopID->replaceOperandWith(0, NewLoopID); 6493 L->setLoopID(NewLoopID); 6494 } 6495 } 6496 6497 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6498 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6499 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6500 bool PredicateAtRangeStart = Predicate(Range.Start); 6501 6502 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6503 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6504 Range.End = TmpVF; 6505 break; 6506 } 6507 6508 return PredicateAtRangeStart; 6509 } 6510 6511 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6512 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6513 /// of VF's starting at a given VF and extending it as much as possible. Each 6514 /// vectorization decision can potentially shorten this sub-range during 6515 /// buildVPlan(). 6516 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6517 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6518 VFRange SubRange = {VF, MaxVF + 1}; 6519 VPlans.push_back(buildVPlan(SubRange)); 6520 VF = SubRange.End; 6521 } 6522 } 6523 6524 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6525 VPlanPtr &Plan) { 6526 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6527 6528 // Look for cached value. 6529 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6530 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6531 if (ECEntryIt != EdgeMaskCache.end()) 6532 return ECEntryIt->second; 6533 6534 VPValue *SrcMask = createBlockInMask(Src, Plan); 6535 6536 // The terminator has to be a branch inst! 6537 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6538 assert(BI && "Unexpected terminator found"); 6539 6540 if (!BI->isConditional()) 6541 return EdgeMaskCache[Edge] = SrcMask; 6542 6543 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6544 assert(EdgeMask && "No Edge Mask found for condition"); 6545 6546 if (BI->getSuccessor(0) != Dst) 6547 EdgeMask = Builder.createNot(EdgeMask); 6548 6549 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6550 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6551 6552 return EdgeMaskCache[Edge] = EdgeMask; 6553 } 6554 6555 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6556 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6557 6558 // Look for cached value. 6559 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6560 if (BCEntryIt != BlockMaskCache.end()) 6561 return BCEntryIt->second; 6562 6563 // All-one mask is modelled as no-mask following the convention for masked 6564 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6565 VPValue *BlockMask = nullptr; 6566 6567 // Loop incoming mask is all-one. 6568 if (OrigLoop->getHeader() == BB) 6569 return BlockMaskCache[BB] = BlockMask; 6570 6571 // This is the block mask. We OR all incoming edges. 6572 for (auto *Predecessor : predecessors(BB)) { 6573 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6574 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6575 return BlockMaskCache[BB] = EdgeMask; 6576 6577 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6578 BlockMask = EdgeMask; 6579 continue; 6580 } 6581 6582 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6583 } 6584 6585 return BlockMaskCache[BB] = BlockMask; 6586 } 6587 6588 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6589 VFRange &Range) { 6590 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I); 6591 if (!IG) 6592 return nullptr; 6593 6594 // Now check if IG is relevant for VF's in the given range. 6595 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6596 return [=](unsigned VF) -> bool { 6597 return (VF >= 2 && // Query is illegal for VF == 1 6598 CM.getWideningDecision(I, VF) == 6599 LoopVectorizationCostModel::CM_Interleave); 6600 }; 6601 }; 6602 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6603 return nullptr; 6604 6605 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6606 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6607 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6608 assert(I == IG->getInsertPos() && 6609 "Generating a recipe for an adjunct member of an interleave group"); 6610 6611 return new VPInterleaveRecipe(IG); 6612 } 6613 6614 VPWidenMemoryInstructionRecipe * 6615 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6616 VPlanPtr &Plan) { 6617 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6618 return nullptr; 6619 6620 auto willWiden = [&](unsigned VF) -> bool { 6621 if (VF == 1) 6622 return false; 6623 if (CM.isScalarAfterVectorization(I, VF) || 6624 CM.isProfitableToScalarize(I, VF)) 6625 return false; 6626 LoopVectorizationCostModel::InstWidening Decision = 6627 CM.getWideningDecision(I, VF); 6628 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6629 "CM decision should be taken at this point."); 6630 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6631 "Interleave memory opportunity should be caught earlier."); 6632 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6633 }; 6634 6635 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6636 return nullptr; 6637 6638 VPValue *Mask = nullptr; 6639 if (Legal->isMaskRequired(I)) 6640 Mask = createBlockInMask(I->getParent(), Plan); 6641 6642 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6643 } 6644 6645 VPWidenIntOrFpInductionRecipe * 6646 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6647 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6648 // Check if this is an integer or fp induction. If so, build the recipe that 6649 // produces its scalar and vector values. 6650 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6651 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6652 II.getKind() == InductionDescriptor::IK_FpInduction) 6653 return new VPWidenIntOrFpInductionRecipe(Phi); 6654 6655 return nullptr; 6656 } 6657 6658 // Optimize the special case where the source is a constant integer 6659 // induction variable. Notice that we can only optimize the 'trunc' case 6660 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6661 // (c) other casts depend on pointer size. 6662 6663 // Determine whether \p K is a truncation based on an induction variable that 6664 // can be optimized. 6665 auto isOptimizableIVTruncate = 6666 [&](Instruction *K) -> std::function<bool(unsigned)> { 6667 return 6668 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6669 }; 6670 6671 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6672 isOptimizableIVTruncate(I), Range)) 6673 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6674 cast<TruncInst>(I)); 6675 return nullptr; 6676 } 6677 6678 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6679 PHINode *Phi = dyn_cast<PHINode>(I); 6680 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6681 return nullptr; 6682 6683 // We know that all PHIs in non-header blocks are converted into selects, so 6684 // we don't have to worry about the insertion order and we can just use the 6685 // builder. At this point we generate the predication tree. There may be 6686 // duplications since this is a simple recursive scan, but future 6687 // optimizations will clean it up. 6688 6689 SmallVector<VPValue *, 2> Masks; 6690 unsigned NumIncoming = Phi->getNumIncomingValues(); 6691 for (unsigned In = 0; In < NumIncoming; In++) { 6692 VPValue *EdgeMask = 6693 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6694 assert((EdgeMask || NumIncoming == 1) && 6695 "Multiple predecessors with one having a full mask"); 6696 if (EdgeMask) 6697 Masks.push_back(EdgeMask); 6698 } 6699 return new VPBlendRecipe(Phi, Masks); 6700 } 6701 6702 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6703 VFRange &Range) { 6704 if (CM.isScalarWithPredication(I)) 6705 return false; 6706 6707 auto IsVectorizableOpcode = [](unsigned Opcode) { 6708 switch (Opcode) { 6709 case Instruction::Add: 6710 case Instruction::And: 6711 case Instruction::AShr: 6712 case Instruction::BitCast: 6713 case Instruction::Br: 6714 case Instruction::Call: 6715 case Instruction::FAdd: 6716 case Instruction::FCmp: 6717 case Instruction::FDiv: 6718 case Instruction::FMul: 6719 case Instruction::FPExt: 6720 case Instruction::FPToSI: 6721 case Instruction::FPToUI: 6722 case Instruction::FPTrunc: 6723 case Instruction::FRem: 6724 case Instruction::FSub: 6725 case Instruction::GetElementPtr: 6726 case Instruction::ICmp: 6727 case Instruction::IntToPtr: 6728 case Instruction::Load: 6729 case Instruction::LShr: 6730 case Instruction::Mul: 6731 case Instruction::Or: 6732 case Instruction::PHI: 6733 case Instruction::PtrToInt: 6734 case Instruction::SDiv: 6735 case Instruction::Select: 6736 case Instruction::SExt: 6737 case Instruction::Shl: 6738 case Instruction::SIToFP: 6739 case Instruction::SRem: 6740 case Instruction::Store: 6741 case Instruction::Sub: 6742 case Instruction::Trunc: 6743 case Instruction::UDiv: 6744 case Instruction::UIToFP: 6745 case Instruction::URem: 6746 case Instruction::Xor: 6747 case Instruction::ZExt: 6748 return true; 6749 } 6750 return false; 6751 }; 6752 6753 if (!IsVectorizableOpcode(I->getOpcode())) 6754 return false; 6755 6756 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6757 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6758 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6759 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6760 return false; 6761 } 6762 6763 auto willWiden = [&](unsigned VF) -> bool { 6764 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6765 CM.isProfitableToScalarize(I, VF))) 6766 return false; 6767 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6768 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6769 // The following case may be scalarized depending on the VF. 6770 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6771 // version of the instruction. 6772 // Is it beneficial to perform intrinsic call compared to lib call? 6773 bool NeedToScalarize; 6774 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6775 bool UseVectorIntrinsic = 6776 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6777 return UseVectorIntrinsic || !NeedToScalarize; 6778 } 6779 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6780 assert(CM.getWideningDecision(I, VF) == 6781 LoopVectorizationCostModel::CM_Scalarize && 6782 "Memory widening decisions should have been taken care by now"); 6783 return false; 6784 } 6785 return true; 6786 }; 6787 6788 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6789 return false; 6790 6791 // Success: widen this instruction. We optimize the common case where 6792 // consecutive instructions can be represented by a single recipe. 6793 if (!VPBB->empty()) { 6794 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6795 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6796 return true; 6797 } 6798 6799 VPBB->appendRecipe(new VPWidenRecipe(I)); 6800 return true; 6801 } 6802 6803 VPBasicBlock *VPRecipeBuilder::handleReplication( 6804 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6805 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6806 VPlanPtr &Plan) { 6807 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6808 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6809 Range); 6810 6811 bool IsPredicated = CM.isScalarWithPredication(I); 6812 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6813 6814 // Find if I uses a predicated instruction. If so, it will use its scalar 6815 // value. Avoid hoisting the insert-element which packs the scalar value into 6816 // a vector value, as that happens iff all users use the vector value. 6817 for (auto &Op : I->operands()) 6818 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6819 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6820 PredInst2Recipe[PredInst]->setAlsoPack(false); 6821 6822 // Finalize the recipe for Instr, first if it is not predicated. 6823 if (!IsPredicated) { 6824 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6825 VPBB->appendRecipe(Recipe); 6826 return VPBB; 6827 } 6828 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6829 assert(VPBB->getSuccessors().empty() && 6830 "VPBB has successors when handling predicated replication."); 6831 // Record predicated instructions for above packing optimizations. 6832 PredInst2Recipe[I] = Recipe; 6833 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6834 VPBlockUtils::insertBlockAfter(Region, VPBB); 6835 auto *RegSucc = new VPBasicBlock(); 6836 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6837 return RegSucc; 6838 } 6839 6840 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6841 VPRecipeBase *PredRecipe, 6842 VPlanPtr &Plan) { 6843 // Instructions marked for predication are replicated and placed under an 6844 // if-then construct to prevent side-effects. 6845 6846 // Generate recipes to compute the block mask for this region. 6847 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6848 6849 // Build the triangular if-then region. 6850 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6851 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6852 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6853 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6854 auto *PHIRecipe = 6855 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6856 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6857 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6858 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6859 6860 // Note: first set Entry as region entry and then connect successors starting 6861 // from it in order, to propagate the "parent" of each VPBasicBlock. 6862 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6863 VPBlockUtils::connectBlocks(Pred, Exit); 6864 6865 return Region; 6866 } 6867 6868 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6869 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6870 VPRecipeBase *Recipe = nullptr; 6871 // Check if Instr should belong to an interleave memory recipe, or already 6872 // does. In the latter case Instr is irrelevant. 6873 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 6874 VPBB->appendRecipe(Recipe); 6875 return true; 6876 } 6877 6878 // Check if Instr is a memory operation that should be widened. 6879 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6880 VPBB->appendRecipe(Recipe); 6881 return true; 6882 } 6883 6884 // Check if Instr should form some PHI recipe. 6885 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6886 VPBB->appendRecipe(Recipe); 6887 return true; 6888 } 6889 if ((Recipe = tryToBlend(Instr, Plan))) { 6890 VPBB->appendRecipe(Recipe); 6891 return true; 6892 } 6893 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6894 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6895 return true; 6896 } 6897 6898 // Check if Instr is to be widened by a general VPWidenRecipe, after 6899 // having first checked for specific widening recipes that deal with 6900 // Interleave Groups, Inductions and Phi nodes. 6901 if (tryToWiden(Instr, VPBB, Range)) 6902 return true; 6903 6904 return false; 6905 } 6906 6907 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6908 unsigned MaxVF) { 6909 assert(OrigLoop->empty() && "Inner loop expected."); 6910 6911 // Collect conditions feeding internal conditional branches; they need to be 6912 // represented in VPlan for it to model masking. 6913 SmallPtrSet<Value *, 1> NeedDef; 6914 6915 auto *Latch = OrigLoop->getLoopLatch(); 6916 for (BasicBlock *BB : OrigLoop->blocks()) { 6917 if (BB == Latch) 6918 continue; 6919 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6920 if (Branch && Branch->isConditional()) 6921 NeedDef.insert(Branch->getCondition()); 6922 } 6923 6924 // Collect instructions from the original loop that will become trivially dead 6925 // in the vectorized loop. We don't need to vectorize these instructions. For 6926 // example, original induction update instructions can become dead because we 6927 // separately emit induction "steps" when generating code for the new loop. 6928 // Similarly, we create a new latch condition when setting up the structure 6929 // of the new loop, so the old one can become dead. 6930 SmallPtrSet<Instruction *, 4> DeadInstructions; 6931 collectTriviallyDeadInstructions(DeadInstructions); 6932 6933 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6934 VFRange SubRange = {VF, MaxVF + 1}; 6935 VPlans.push_back( 6936 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6937 VF = SubRange.End; 6938 } 6939 } 6940 6941 LoopVectorizationPlanner::VPlanPtr 6942 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6943 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6944 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6945 // Hold a mapping from predicated instructions to their recipes, in order to 6946 // fix their AlsoPack behavior if a user is determined to replicate and use a 6947 // scalar instead of vector value. 6948 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6949 6950 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6951 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6952 6953 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6954 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6955 auto Plan = llvm::make_unique<VPlan>(VPBB); 6956 6957 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6958 // Represent values that will have defs inside VPlan. 6959 for (Value *V : NeedDef) 6960 Plan->addVPValue(V); 6961 6962 // Scan the body of the loop in a topological order to visit each basic block 6963 // after having visited its predecessor basic blocks. 6964 LoopBlocksDFS DFS(OrigLoop); 6965 DFS.perform(LI); 6966 6967 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6968 // Relevant instructions from basic block BB will be grouped into VPRecipe 6969 // ingredients and fill a new VPBasicBlock. 6970 unsigned VPBBsForBB = 0; 6971 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6972 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6973 VPBB = FirstVPBBForBB; 6974 Builder.setInsertPoint(VPBB); 6975 6976 std::vector<Instruction *> Ingredients; 6977 6978 // Organize the ingredients to vectorize from current basic block in the 6979 // right order. 6980 for (Instruction &I : BB->instructionsWithoutDebug()) { 6981 Instruction *Instr = &I; 6982 6983 // First filter out irrelevant instructions, to ensure no recipes are 6984 // built for them. 6985 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 6986 continue; 6987 6988 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6989 // member of the IG, do not construct any Recipe for it. 6990 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr); 6991 if (IG && Instr != IG->getInsertPos() && 6992 Range.Start >= 2 && // Query is illegal for VF == 1 6993 CM.getWideningDecision(Instr, Range.Start) == 6994 LoopVectorizationCostModel::CM_Interleave) { 6995 if (SinkAfterInverse.count(Instr)) 6996 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 6997 continue; 6998 } 6999 7000 // Move instructions to handle first-order recurrences, step 1: avoid 7001 // handling this instruction until after we've handled the instruction it 7002 // should follow. 7003 auto SAIt = SinkAfter.find(Instr); 7004 if (SAIt != SinkAfter.end()) { 7005 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 7006 << *SAIt->second 7007 << " to vectorize a 1st order recurrence.\n"); 7008 SinkAfterInverse[SAIt->second] = Instr; 7009 continue; 7010 } 7011 7012 Ingredients.push_back(Instr); 7013 7014 // Move instructions to handle first-order recurrences, step 2: push the 7015 // instruction to be sunk at its insertion point. 7016 auto SAInvIt = SinkAfterInverse.find(Instr); 7017 if (SAInvIt != SinkAfterInverse.end()) 7018 Ingredients.push_back(SAInvIt->second); 7019 } 7020 7021 // Introduce each ingredient into VPlan. 7022 for (Instruction *Instr : Ingredients) { 7023 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7024 continue; 7025 7026 // Otherwise, if all widening options failed, Instruction is to be 7027 // replicated. This may create a successor for VPBB. 7028 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7029 Instr, Range, VPBB, PredInst2Recipe, Plan); 7030 if (NextVPBB != VPBB) { 7031 VPBB = NextVPBB; 7032 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7033 : ""); 7034 } 7035 } 7036 } 7037 7038 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7039 // may also be empty, such as the last one VPBB, reflecting original 7040 // basic-blocks with no recipes. 7041 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7042 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7043 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7044 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7045 delete PreEntry; 7046 7047 std::string PlanName; 7048 raw_string_ostream RSO(PlanName); 7049 unsigned VF = Range.Start; 7050 Plan->addVF(VF); 7051 RSO << "Initial VPlan for VF={" << VF; 7052 for (VF *= 2; VF < Range.End; VF *= 2) { 7053 Plan->addVF(VF); 7054 RSO << "," << VF; 7055 } 7056 RSO << "},UF>=1"; 7057 RSO.flush(); 7058 Plan->setName(PlanName); 7059 7060 return Plan; 7061 } 7062 7063 LoopVectorizationPlanner::VPlanPtr 7064 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7065 // Outer loop handling: They may require CFG and instruction level 7066 // transformations before even evaluating whether vectorization is profitable. 7067 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7068 // the vectorization pipeline. 7069 assert(!OrigLoop->empty()); 7070 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7071 7072 // Create new empty VPlan 7073 auto Plan = llvm::make_unique<VPlan>(); 7074 7075 // Build hierarchical CFG 7076 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7077 HCFGBuilder.buildHierarchicalCFG(); 7078 7079 return Plan; 7080 } 7081 7082 Value* LoopVectorizationPlanner::VPCallbackILV:: 7083 getOrCreateVectorValues(Value *V, unsigned Part) { 7084 return ILV.getOrCreateVectorValue(V, Part); 7085 } 7086 7087 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7088 O << " +\n" 7089 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7090 IG->getInsertPos()->printAsOperand(O, false); 7091 O << "\\l\""; 7092 for (unsigned i = 0; i < IG->getFactor(); ++i) 7093 if (Instruction *I = IG->getMember(i)) 7094 O << " +\n" 7095 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7096 } 7097 7098 void VPWidenRecipe::execute(VPTransformState &State) { 7099 for (auto &Instr : make_range(Begin, End)) 7100 State.ILV->widenInstruction(Instr); 7101 } 7102 7103 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7104 assert(!State.Instance && "Int or FP induction being replicated."); 7105 State.ILV->widenIntOrFpInduction(IV, Trunc); 7106 } 7107 7108 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7109 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7110 } 7111 7112 void VPBlendRecipe::execute(VPTransformState &State) { 7113 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7114 // We know that all PHIs in non-header blocks are converted into 7115 // selects, so we don't have to worry about the insertion order and we 7116 // can just use the builder. 7117 // At this point we generate the predication tree. There may be 7118 // duplications since this is a simple recursive scan, but future 7119 // optimizations will clean it up. 7120 7121 unsigned NumIncoming = Phi->getNumIncomingValues(); 7122 7123 assert((User || NumIncoming == 1) && 7124 "Multiple predecessors with predecessors having a full mask"); 7125 // Generate a sequence of selects of the form: 7126 // SELECT(Mask3, In3, 7127 // SELECT(Mask2, In2, 7128 // ( ...))) 7129 InnerLoopVectorizer::VectorParts Entry(State.UF); 7130 for (unsigned In = 0; In < NumIncoming; ++In) { 7131 for (unsigned Part = 0; Part < State.UF; ++Part) { 7132 // We might have single edge PHIs (blocks) - use an identity 7133 // 'select' for the first PHI operand. 7134 Value *In0 = 7135 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7136 if (In == 0) 7137 Entry[Part] = In0; // Initialize with the first incoming value. 7138 else { 7139 // Select between the current value and the previous incoming edge 7140 // based on the incoming mask. 7141 Value *Cond = State.get(User->getOperand(In), Part); 7142 Entry[Part] = 7143 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7144 } 7145 } 7146 } 7147 for (unsigned Part = 0; Part < State.UF; ++Part) 7148 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7149 } 7150 7151 void VPInterleaveRecipe::execute(VPTransformState &State) { 7152 assert(!State.Instance && "Interleave group being replicated."); 7153 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7154 } 7155 7156 void VPReplicateRecipe::execute(VPTransformState &State) { 7157 if (State.Instance) { // Generate a single instance. 7158 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7159 // Insert scalar instance packing it into a vector. 7160 if (AlsoPack && State.VF > 1) { 7161 // If we're constructing lane 0, initialize to start from undef. 7162 if (State.Instance->Lane == 0) { 7163 Value *Undef = 7164 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7165 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7166 } 7167 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7168 } 7169 return; 7170 } 7171 7172 // Generate scalar instances for all VF lanes of all UF parts, unless the 7173 // instruction is uniform inwhich case generate only the first lane for each 7174 // of the UF parts. 7175 unsigned EndLane = IsUniform ? 1 : State.VF; 7176 for (unsigned Part = 0; Part < State.UF; ++Part) 7177 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7178 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7179 } 7180 7181 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7182 assert(State.Instance && "Branch on Mask works only on single instance."); 7183 7184 unsigned Part = State.Instance->Part; 7185 unsigned Lane = State.Instance->Lane; 7186 7187 Value *ConditionBit = nullptr; 7188 if (!User) // Block in mask is all-one. 7189 ConditionBit = State.Builder.getTrue(); 7190 else { 7191 VPValue *BlockInMask = User->getOperand(0); 7192 ConditionBit = State.get(BlockInMask, Part); 7193 if (ConditionBit->getType()->isVectorTy()) 7194 ConditionBit = State.Builder.CreateExtractElement( 7195 ConditionBit, State.Builder.getInt32(Lane)); 7196 } 7197 7198 // Replace the temporary unreachable terminator with a new conditional branch, 7199 // whose two destinations will be set later when they are created. 7200 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7201 assert(isa<UnreachableInst>(CurrentTerminator) && 7202 "Expected to replace unreachable terminator with conditional branch."); 7203 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7204 CondBr->setSuccessor(0, nullptr); 7205 ReplaceInstWithInst(CurrentTerminator, CondBr); 7206 } 7207 7208 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7209 assert(State.Instance && "Predicated instruction PHI works per instance."); 7210 Instruction *ScalarPredInst = cast<Instruction>( 7211 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7212 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7213 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7214 assert(PredicatingBB && "Predicated block has no single predecessor."); 7215 7216 // By current pack/unpack logic we need to generate only a single phi node: if 7217 // a vector value for the predicated instruction exists at this point it means 7218 // the instruction has vector users only, and a phi for the vector value is 7219 // needed. In this case the recipe of the predicated instruction is marked to 7220 // also do that packing, thereby "hoisting" the insert-element sequence. 7221 // Otherwise, a phi node for the scalar value is needed. 7222 unsigned Part = State.Instance->Part; 7223 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7224 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7225 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7226 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7227 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7228 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7229 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7230 } else { 7231 Type *PredInstType = PredInst->getType(); 7232 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7233 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7234 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7235 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7236 } 7237 } 7238 7239 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7240 if (!User) 7241 return State.ILV->vectorizeMemoryInstruction(&Instr); 7242 7243 // Last (and currently only) operand is a mask. 7244 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7245 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7246 for (unsigned Part = 0; Part < State.UF; ++Part) 7247 MaskValues[Part] = State.get(Mask, Part); 7248 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7249 } 7250 7251 // Process the loop in the VPlan-native vectorization path. This path builds 7252 // VPlan upfront in the vectorization pipeline, which allows to apply 7253 // VPlan-to-VPlan transformations from the very beginning without modifying the 7254 // input LLVM IR. 7255 static bool processLoopInVPlanNativePath( 7256 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7257 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7258 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7259 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7260 7261 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7262 Function *F = L->getHeader()->getParent(); 7263 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7264 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7265 &Hints, IAI); 7266 // Use the planner for outer loop vectorization. 7267 // TODO: CM is not used at this point inside the planner. Turn CM into an 7268 // optional argument if we don't need it in the future. 7269 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7270 7271 // Get user vectorization factor. 7272 unsigned UserVF = Hints.getWidth(); 7273 7274 // Check the function attributes to find out if this function should be 7275 // optimized for size. 7276 bool OptForSize = 7277 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7278 7279 // Plan how to best vectorize, return the best VF and its cost. 7280 LVP.planInVPlanNativePath(OptForSize, UserVF); 7281 7282 // Returning false. We are currently not generating vector code in the VPlan 7283 // native path. 7284 return false; 7285 } 7286 7287 bool LoopVectorizePass::processLoop(Loop *L) { 7288 assert((EnableVPlanNativePath || L->empty()) && 7289 "VPlan-native path is not enabled. Only process inner loops."); 7290 7291 #ifndef NDEBUG 7292 const std::string DebugLocStr = getDebugLocString(L); 7293 #endif /* NDEBUG */ 7294 7295 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7296 << L->getHeader()->getParent()->getName() << "\" from " 7297 << DebugLocStr << "\n"); 7298 7299 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7300 7301 LLVM_DEBUG( 7302 dbgs() << "LV: Loop hints:" 7303 << " force=" 7304 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7305 ? "disabled" 7306 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7307 ? "enabled" 7308 : "?")) 7309 << " width=" << Hints.getWidth() 7310 << " unroll=" << Hints.getInterleave() << "\n"); 7311 7312 // Function containing loop 7313 Function *F = L->getHeader()->getParent(); 7314 7315 // Looking at the diagnostic output is the only way to determine if a loop 7316 // was vectorized (other than looking at the IR or machine code), so it 7317 // is important to generate an optimization remark for each loop. Most of 7318 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7319 // generated as OptimizationRemark and OptimizationRemarkMissed are 7320 // less verbose reporting vectorized loops and unvectorized loops that may 7321 // benefit from vectorization, respectively. 7322 7323 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7324 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7325 return false; 7326 } 7327 7328 PredicatedScalarEvolution PSE(*SE, *L); 7329 7330 // Check if it is legal to vectorize the loop. 7331 LoopVectorizationRequirements Requirements(*ORE); 7332 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7333 &Requirements, &Hints, DB, AC); 7334 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7335 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7336 emitMissedWarning(F, L, Hints, ORE); 7337 return false; 7338 } 7339 7340 // Check the function attributes to find out if this function should be 7341 // optimized for size. 7342 bool OptForSize = 7343 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7344 7345 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7346 // here. They may require CFG and instruction level transformations before 7347 // even evaluating whether vectorization is profitable. Since we cannot modify 7348 // the incoming IR, we need to build VPlan upfront in the vectorization 7349 // pipeline. 7350 if (!L->empty()) 7351 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7352 ORE, Hints); 7353 7354 assert(L->empty() && "Inner loop expected."); 7355 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7356 // count by optimizing for size, to minimize overheads. 7357 // Prefer constant trip counts over profile data, over upper bound estimate. 7358 unsigned ExpectedTC = 0; 7359 bool HasExpectedTC = false; 7360 if (const SCEVConstant *ConstExits = 7361 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7362 const APInt &ExitsCount = ConstExits->getAPInt(); 7363 // We are interested in small values for ExpectedTC. Skip over those that 7364 // can't fit an unsigned. 7365 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7366 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7367 HasExpectedTC = true; 7368 } 7369 } 7370 // ExpectedTC may be large because it's bound by a variable. Check 7371 // profiling information to validate we should vectorize. 7372 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7373 auto EstimatedTC = getLoopEstimatedTripCount(L); 7374 if (EstimatedTC) { 7375 ExpectedTC = *EstimatedTC; 7376 HasExpectedTC = true; 7377 } 7378 } 7379 if (!HasExpectedTC) { 7380 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7381 HasExpectedTC = (ExpectedTC > 0); 7382 } 7383 7384 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7385 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7386 << "This loop is worth vectorizing only if no scalar " 7387 << "iteration overheads are incurred."); 7388 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7389 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7390 else { 7391 LLVM_DEBUG(dbgs() << "\n"); 7392 // Loops with a very small trip count are considered for vectorization 7393 // under OptForSize, thereby making sure the cost of their loop body is 7394 // dominant, free of runtime guards and scalar iteration overheads. 7395 OptForSize = true; 7396 } 7397 } 7398 7399 // Check the function attributes to see if implicit floats are allowed. 7400 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7401 // an integer loop and the vector instructions selected are purely integer 7402 // vector instructions? 7403 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7404 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7405 "attribute is used.\n"); 7406 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7407 "NoImplicitFloat", L) 7408 << "loop not vectorized due to NoImplicitFloat attribute"); 7409 emitMissedWarning(F, L, Hints, ORE); 7410 return false; 7411 } 7412 7413 // Check if the target supports potentially unsafe FP vectorization. 7414 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7415 // for the target we're vectorizing for, to make sure none of the 7416 // additional fp-math flags can help. 7417 if (Hints.isPotentiallyUnsafe() && 7418 TTI->isFPVectorizationPotentiallyUnsafe()) { 7419 LLVM_DEBUG( 7420 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7421 ORE->emit( 7422 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7423 << "loop not vectorized due to unsafe FP support."); 7424 emitMissedWarning(F, L, Hints, ORE); 7425 return false; 7426 } 7427 7428 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7429 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7430 7431 // If an override option has been passed in for interleaved accesses, use it. 7432 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7433 UseInterleaved = EnableInterleavedMemAccesses; 7434 7435 // Analyze interleaved memory accesses. 7436 if (UseInterleaved) { 7437 IAI.analyzeInterleaving(); 7438 } 7439 7440 // Use the cost model. 7441 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7442 &Hints, IAI); 7443 CM.collectValuesToIgnore(); 7444 7445 // Use the planner for vectorization. 7446 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7447 7448 // Get user vectorization factor. 7449 unsigned UserVF = Hints.getWidth(); 7450 7451 // Plan how to best vectorize, return the best VF and its cost. 7452 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 7453 7454 // Select the interleave count. 7455 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7456 7457 // Get user interleave count. 7458 unsigned UserIC = Hints.getInterleave(); 7459 7460 // Identify the diagnostic messages that should be produced. 7461 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7462 bool VectorizeLoop = true, InterleaveLoop = true; 7463 if (Requirements.doesNotMeet(F, L, Hints)) { 7464 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7465 "requirements.\n"); 7466 emitMissedWarning(F, L, Hints, ORE); 7467 return false; 7468 } 7469 7470 if (VF.Width == 1) { 7471 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7472 VecDiagMsg = std::make_pair( 7473 "VectorizationNotBeneficial", 7474 "the cost-model indicates that vectorization is not beneficial"); 7475 VectorizeLoop = false; 7476 } 7477 7478 if (IC == 1 && UserIC <= 1) { 7479 // Tell the user interleaving is not beneficial. 7480 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7481 IntDiagMsg = std::make_pair( 7482 "InterleavingNotBeneficial", 7483 "the cost-model indicates that interleaving is not beneficial"); 7484 InterleaveLoop = false; 7485 if (UserIC == 1) { 7486 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7487 IntDiagMsg.second += 7488 " and is explicitly disabled or interleave count is set to 1"; 7489 } 7490 } else if (IC > 1 && UserIC == 1) { 7491 // Tell the user interleaving is beneficial, but it explicitly disabled. 7492 LLVM_DEBUG( 7493 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7494 IntDiagMsg = std::make_pair( 7495 "InterleavingBeneficialButDisabled", 7496 "the cost-model indicates that interleaving is beneficial " 7497 "but is explicitly disabled or interleave count is set to 1"); 7498 InterleaveLoop = false; 7499 } 7500 7501 // Override IC if user provided an interleave count. 7502 IC = UserIC > 0 ? UserIC : IC; 7503 7504 // Emit diagnostic messages, if any. 7505 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7506 if (!VectorizeLoop && !InterleaveLoop) { 7507 // Do not vectorize or interleaving the loop. 7508 ORE->emit([&]() { 7509 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7510 L->getStartLoc(), L->getHeader()) 7511 << VecDiagMsg.second; 7512 }); 7513 ORE->emit([&]() { 7514 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7515 L->getStartLoc(), L->getHeader()) 7516 << IntDiagMsg.second; 7517 }); 7518 return false; 7519 } else if (!VectorizeLoop && InterleaveLoop) { 7520 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7521 ORE->emit([&]() { 7522 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7523 L->getStartLoc(), L->getHeader()) 7524 << VecDiagMsg.second; 7525 }); 7526 } else if (VectorizeLoop && !InterleaveLoop) { 7527 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7528 << ") in " << DebugLocStr << '\n'); 7529 ORE->emit([&]() { 7530 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7531 L->getStartLoc(), L->getHeader()) 7532 << IntDiagMsg.second; 7533 }); 7534 } else if (VectorizeLoop && InterleaveLoop) { 7535 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7536 << ") in " << DebugLocStr << '\n'); 7537 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7538 } 7539 7540 LVP.setBestPlan(VF.Width, IC); 7541 7542 using namespace ore; 7543 7544 if (!VectorizeLoop) { 7545 assert(IC > 1 && "interleave count should not be 1 or 0"); 7546 // If we decided that it is not legal to vectorize the loop, then 7547 // interleave it. 7548 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7549 &CM); 7550 LVP.executePlan(Unroller, DT); 7551 7552 ORE->emit([&]() { 7553 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7554 L->getHeader()) 7555 << "interleaved loop (interleaved count: " 7556 << NV("InterleaveCount", IC) << ")"; 7557 }); 7558 } else { 7559 // If we decided that it is *legal* to vectorize the loop, then do it. 7560 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7561 &LVL, &CM); 7562 LVP.executePlan(LB, DT); 7563 ++LoopsVectorized; 7564 7565 // Add metadata to disable runtime unrolling a scalar loop when there are 7566 // no runtime checks about strides and memory. A scalar loop that is 7567 // rarely used is not worth unrolling. 7568 if (!LB.areSafetyChecksAdded()) 7569 AddRuntimeUnrollDisableMetaData(L); 7570 7571 // Report the vectorization decision. 7572 ORE->emit([&]() { 7573 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7574 L->getHeader()) 7575 << "vectorized loop (vectorization width: " 7576 << NV("VectorizationFactor", VF.Width) 7577 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7578 }); 7579 } 7580 7581 // Mark the loop as already vectorized to avoid vectorizing again. 7582 Hints.setAlreadyVectorized(); 7583 7584 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7585 return true; 7586 } 7587 7588 bool LoopVectorizePass::runImpl( 7589 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7590 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7591 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7592 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7593 OptimizationRemarkEmitter &ORE_) { 7594 SE = &SE_; 7595 LI = &LI_; 7596 TTI = &TTI_; 7597 DT = &DT_; 7598 BFI = &BFI_; 7599 TLI = TLI_; 7600 AA = &AA_; 7601 AC = &AC_; 7602 GetLAA = &GetLAA_; 7603 DB = &DB_; 7604 ORE = &ORE_; 7605 7606 // Don't attempt if 7607 // 1. the target claims to have no vector registers, and 7608 // 2. interleaving won't help ILP. 7609 // 7610 // The second condition is necessary because, even if the target has no 7611 // vector registers, loop vectorization may still enable scalar 7612 // interleaving. 7613 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7614 return false; 7615 7616 bool Changed = false; 7617 7618 // The vectorizer requires loops to be in simplified form. 7619 // Since simplification may add new inner loops, it has to run before the 7620 // legality and profitability checks. This means running the loop vectorizer 7621 // will simplify all loops, regardless of whether anything end up being 7622 // vectorized. 7623 for (auto &L : *LI) 7624 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7625 7626 // Build up a worklist of inner-loops to vectorize. This is necessary as 7627 // the act of vectorizing or partially unrolling a loop creates new loops 7628 // and can invalidate iterators across the loops. 7629 SmallVector<Loop *, 8> Worklist; 7630 7631 for (Loop *L : *LI) 7632 collectSupportedLoops(*L, LI, ORE, Worklist); 7633 7634 LoopsAnalyzed += Worklist.size(); 7635 7636 // Now walk the identified inner loops. 7637 while (!Worklist.empty()) { 7638 Loop *L = Worklist.pop_back_val(); 7639 7640 // For the inner loops we actually process, form LCSSA to simplify the 7641 // transform. 7642 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7643 7644 Changed |= processLoop(L); 7645 } 7646 7647 // Process each loop nest in the function. 7648 return Changed; 7649 } 7650 7651 PreservedAnalyses LoopVectorizePass::run(Function &F, 7652 FunctionAnalysisManager &AM) { 7653 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7654 auto &LI = AM.getResult<LoopAnalysis>(F); 7655 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7656 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7657 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7658 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7659 auto &AA = AM.getResult<AAManager>(F); 7660 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7661 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7662 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7663 7664 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7665 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7666 [&](Loop &L) -> const LoopAccessInfo & { 7667 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 7668 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7669 }; 7670 bool Changed = 7671 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7672 if (!Changed) 7673 return PreservedAnalyses::all(); 7674 PreservedAnalyses PA; 7675 PA.preserve<LoopAnalysis>(); 7676 PA.preserve<DominatorTreeAnalysis>(); 7677 PA.preserve<BasicAA>(); 7678 PA.preserve<GlobalsAA>(); 7679 return PA; 7680 } 7681