1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 cl::opt<bool> EnableStrictReductions( 335 "enable-strict-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns the type of loaded or stored value. 379 static Type *getMemInstValueType(Value *I) { 380 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 381 "Expected Load or Store instruction"); 382 if (auto *LI = dyn_cast<LoadInst>(I)) 383 return LI->getType(); 384 return cast<StoreInst>(I)->getValueOperand()->getType(); 385 } 386 387 /// A helper function that returns true if the given type is irregular. The 388 /// type is irregular if its allocated size doesn't equal the store size of an 389 /// element of the corresponding vector type. 390 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 391 // Determine if an array of N elements of type Ty is "bitcast compatible" 392 // with a <N x Ty> vector. 393 // This is only true if there is no padding between the array elements. 394 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 395 } 396 397 /// A helper function that returns the reciprocal of the block probability of 398 /// predicated blocks. If we return X, we are assuming the predicated block 399 /// will execute once for every X iterations of the loop header. 400 /// 401 /// TODO: We should use actual block probability here, if available. Currently, 402 /// we always assume predicated blocks have a 50% chance of executing. 403 static unsigned getReciprocalPredBlockProb() { return 2; } 404 405 /// A helper function that returns an integer or floating-point constant with 406 /// value C. 407 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 408 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 409 : ConstantFP::get(Ty, C); 410 } 411 412 /// Returns "best known" trip count for the specified loop \p L as defined by 413 /// the following procedure: 414 /// 1) Returns exact trip count if it is known. 415 /// 2) Returns expected trip count according to profile data if any. 416 /// 3) Returns upper bound estimate if it is known. 417 /// 4) Returns None if all of the above failed. 418 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 419 // Check if exact trip count is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 421 return ExpectedTC; 422 423 // Check if there is an expected trip count available from profile data. 424 if (LoopVectorizeWithBlockFrequency) 425 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 426 return EstimatedTC; 427 428 // Check if upper bound estimate is known. 429 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 430 return ExpectedTC; 431 432 return None; 433 } 434 435 // Forward declare GeneratedRTChecks. 436 class GeneratedRTChecks; 437 438 namespace llvm { 439 440 /// InnerLoopVectorizer vectorizes loops which contain only one basic 441 /// block to a specified vectorization factor (VF). 442 /// This class performs the widening of scalars into vectors, or multiple 443 /// scalars. This class also implements the following features: 444 /// * It inserts an epilogue loop for handling loops that don't have iteration 445 /// counts that are known to be a multiple of the vectorization factor. 446 /// * It handles the code generation for reduction variables. 447 /// * Scalarization (implementation using scalars) of un-vectorizable 448 /// instructions. 449 /// InnerLoopVectorizer does not perform any vectorization-legality 450 /// checks, and relies on the caller to check for the different legality 451 /// aspects. The InnerLoopVectorizer relies on the 452 /// LoopVectorizationLegality class to provide information about the induction 453 /// and reduction variables that were found to a given vectorization factor. 454 class InnerLoopVectorizer { 455 public: 456 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 457 LoopInfo *LI, DominatorTree *DT, 458 const TargetLibraryInfo *TLI, 459 const TargetTransformInfo *TTI, AssumptionCache *AC, 460 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 461 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 462 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 463 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 464 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 465 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 466 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 467 PSI(PSI), RTChecks(RTChecks) { 468 // Query this against the original loop and save it here because the profile 469 // of the original loop header may change as the transformation happens. 470 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 471 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 472 } 473 474 virtual ~InnerLoopVectorizer() = default; 475 476 /// Create a new empty loop that will contain vectorized instructions later 477 /// on, while the old loop will be used as the scalar remainder. Control flow 478 /// is generated around the vectorized (and scalar epilogue) loops consisting 479 /// of various checks and bypasses. Return the pre-header block of the new 480 /// loop. 481 /// In the case of epilogue vectorization, this function is overriden to 482 /// handle the more complex control flow around the loops. 483 virtual BasicBlock *createVectorizedLoopSkeleton(); 484 485 /// Widen a single instruction within the innermost loop. 486 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 487 VPTransformState &State); 488 489 /// Widen a single call instruction within the innermost loop. 490 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 491 VPTransformState &State); 492 493 /// Widen a single select instruction within the innermost loop. 494 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 495 bool InvariantCond, VPTransformState &State); 496 497 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 498 void fixVectorizedLoop(VPTransformState &State); 499 500 // Return true if any runtime check is added. 501 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 502 503 /// A type for vectorized values in the new loop. Each value from the 504 /// original loop, when vectorized, is represented by UF vector values in the 505 /// new unrolled loop, where UF is the unroll factor. 506 using VectorParts = SmallVector<Value *, 2>; 507 508 /// Vectorize a single GetElementPtrInst based on information gathered and 509 /// decisions taken during planning. 510 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 511 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 512 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 513 514 /// Vectorize a single PHINode in a block. This method handles the induction 515 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 516 /// arbitrary length vectors. 517 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 518 VPWidenPHIRecipe *PhiR, VPTransformState &State); 519 520 /// A helper function to scalarize a single Instruction in the innermost loop. 521 /// Generates a sequence of scalar instances for each lane between \p MinLane 522 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 523 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 524 /// Instr's operands. 525 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 526 const VPIteration &Instance, bool IfPredicateInstr, 527 VPTransformState &State); 528 529 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 530 /// is provided, the integer induction variable will first be truncated to 531 /// the corresponding type. 532 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 533 VPValue *Def, VPValue *CastDef, 534 VPTransformState &State); 535 536 /// Construct the vector value of a scalarized value \p V one lane at a time. 537 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 538 VPTransformState &State); 539 540 /// Try to vectorize interleaved access group \p Group with the base address 541 /// given in \p Addr, optionally masking the vector operations if \p 542 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 543 /// values in the vectorized loop. 544 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 545 ArrayRef<VPValue *> VPDefs, 546 VPTransformState &State, VPValue *Addr, 547 ArrayRef<VPValue *> StoredValues, 548 VPValue *BlockInMask = nullptr); 549 550 /// Vectorize Load and Store instructions with the base address given in \p 551 /// Addr, optionally masking the vector operations if \p BlockInMask is 552 /// non-null. Use \p State to translate given VPValues to IR values in the 553 /// vectorized loop. 554 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 555 VPValue *Def, VPValue *Addr, 556 VPValue *StoredValue, VPValue *BlockInMask); 557 558 /// Set the debug location in the builder using the debug location in 559 /// the instruction. 560 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 561 562 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 563 void fixNonInductionPHIs(VPTransformState &State); 564 565 /// Create a broadcast instruction. This method generates a broadcast 566 /// instruction (shuffle) for loop invariant values and for the induction 567 /// value. If this is the induction variable then we extend it to N, N+1, ... 568 /// this is needed because each iteration in the loop corresponds to a SIMD 569 /// element. 570 virtual Value *getBroadcastInstrs(Value *V); 571 572 protected: 573 friend class LoopVectorizationPlanner; 574 575 /// A small list of PHINodes. 576 using PhiVector = SmallVector<PHINode *, 4>; 577 578 /// A type for scalarized values in the new loop. Each value from the 579 /// original loop, when scalarized, is represented by UF x VF scalar values 580 /// in the new unrolled loop, where UF is the unroll factor and VF is the 581 /// vectorization factor. 582 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 583 584 /// Set up the values of the IVs correctly when exiting the vector loop. 585 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 586 Value *CountRoundDown, Value *EndValue, 587 BasicBlock *MiddleBlock); 588 589 /// Create a new induction variable inside L. 590 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 591 Value *Step, Instruction *DL); 592 593 /// Handle all cross-iteration phis in the header. 594 void fixCrossIterationPHIs(VPTransformState &State); 595 596 /// Fix a first-order recurrence. This is the second phase of vectorizing 597 /// this phi node. 598 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 599 600 /// Fix a reduction cross-iteration phi. This is the second phase of 601 /// vectorizing this phi node. 602 void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State); 603 604 /// Clear NSW/NUW flags from reduction instructions if necessary. 605 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 606 VPTransformState &State); 607 608 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 609 /// means we need to add the appropriate incoming value from the middle 610 /// block as exiting edges from the scalar epilogue loop (if present) are 611 /// already in place, and we exit the vector loop exclusively to the middle 612 /// block. 613 void fixLCSSAPHIs(VPTransformState &State); 614 615 /// Iteratively sink the scalarized operands of a predicated instruction into 616 /// the block that was created for it. 617 void sinkScalarOperands(Instruction *PredInst); 618 619 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 620 /// represented as. 621 void truncateToMinimalBitwidths(VPTransformState &State); 622 623 /// This function adds 624 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 625 /// to each vector element of Val. The sequence starts at StartIndex. 626 /// \p Opcode is relevant for FP induction variable. 627 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 628 Instruction::BinaryOps Opcode = 629 Instruction::BinaryOpsEnd); 630 631 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 632 /// variable on which to base the steps, \p Step is the size of the step, and 633 /// \p EntryVal is the value from the original loop that maps to the steps. 634 /// Note that \p EntryVal doesn't have to be an induction variable - it 635 /// can also be a truncate instruction. 636 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 637 const InductionDescriptor &ID, VPValue *Def, 638 VPValue *CastDef, VPTransformState &State); 639 640 /// Create a vector induction phi node based on an existing scalar one. \p 641 /// EntryVal is the value from the original loop that maps to the vector phi 642 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 643 /// truncate instruction, instead of widening the original IV, we widen a 644 /// version of the IV truncated to \p EntryVal's type. 645 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 646 Value *Step, Value *Start, 647 Instruction *EntryVal, VPValue *Def, 648 VPValue *CastDef, 649 VPTransformState &State); 650 651 /// Returns true if an instruction \p I should be scalarized instead of 652 /// vectorized for the chosen vectorization factor. 653 bool shouldScalarizeInstruction(Instruction *I) const; 654 655 /// Returns true if we should generate a scalar version of \p IV. 656 bool needsScalarInduction(Instruction *IV) const; 657 658 /// If there is a cast involved in the induction variable \p ID, which should 659 /// be ignored in the vectorized loop body, this function records the 660 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 661 /// cast. We had already proved that the casted Phi is equal to the uncasted 662 /// Phi in the vectorized loop (under a runtime guard), and therefore 663 /// there is no need to vectorize the cast - the same value can be used in the 664 /// vector loop for both the Phi and the cast. 665 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 666 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 667 /// 668 /// \p EntryVal is the value from the original loop that maps to the vector 669 /// phi node and is used to distinguish what is the IV currently being 670 /// processed - original one (if \p EntryVal is a phi corresponding to the 671 /// original IV) or the "newly-created" one based on the proof mentioned above 672 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 673 /// latter case \p EntryVal is a TruncInst and we must not record anything for 674 /// that IV, but it's error-prone to expect callers of this routine to care 675 /// about that, hence this explicit parameter. 676 void recordVectorLoopValueForInductionCast( 677 const InductionDescriptor &ID, const Instruction *EntryVal, 678 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 679 unsigned Part, unsigned Lane = UINT_MAX); 680 681 /// Generate a shuffle sequence that will reverse the vector Vec. 682 virtual Value *reverseVector(Value *Vec); 683 684 /// Returns (and creates if needed) the original loop trip count. 685 Value *getOrCreateTripCount(Loop *NewLoop); 686 687 /// Returns (and creates if needed) the trip count of the widened loop. 688 Value *getOrCreateVectorTripCount(Loop *NewLoop); 689 690 /// Returns a bitcasted value to the requested vector type. 691 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 692 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 693 const DataLayout &DL); 694 695 /// Emit a bypass check to see if the vector trip count is zero, including if 696 /// it overflows. 697 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 698 699 /// Emit a bypass check to see if all of the SCEV assumptions we've 700 /// had to make are correct. Returns the block containing the checks or 701 /// nullptr if no checks have been added. 702 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Emit bypass checks to check any memory assumptions we may have made. 705 /// Returns the block containing the checks or nullptr if no checks have been 706 /// added. 707 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 708 709 /// Compute the transformed value of Index at offset StartValue using step 710 /// StepValue. 711 /// For integer induction, returns StartValue + Index * StepValue. 712 /// For pointer induction, returns StartValue[Index * StepValue]. 713 /// FIXME: The newly created binary instructions should contain nsw/nuw 714 /// flags, which can be found from the original scalar operations. 715 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 716 const DataLayout &DL, 717 const InductionDescriptor &ID) const; 718 719 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 720 /// vector loop preheader, middle block and scalar preheader. Also 721 /// allocate a loop object for the new vector loop and return it. 722 Loop *createVectorLoopSkeleton(StringRef Prefix); 723 724 /// Create new phi nodes for the induction variables to resume iteration count 725 /// in the scalar epilogue, from where the vectorized loop left off (given by 726 /// \p VectorTripCount). 727 /// In cases where the loop skeleton is more complicated (eg. epilogue 728 /// vectorization) and the resume values can come from an additional bypass 729 /// block, the \p AdditionalBypass pair provides information about the bypass 730 /// block and the end value on the edge from bypass to this loop. 731 void createInductionResumeValues( 732 Loop *L, Value *VectorTripCount, 733 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 734 735 /// Complete the loop skeleton by adding debug MDs, creating appropriate 736 /// conditional branches in the middle block, preparing the builder and 737 /// running the verifier. Take in the vector loop \p L as argument, and return 738 /// the preheader of the completed vector loop. 739 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 740 741 /// Add additional metadata to \p To that was not present on \p Orig. 742 /// 743 /// Currently this is used to add the noalias annotations based on the 744 /// inserted memchecks. Use this for instructions that are *cloned* into the 745 /// vector loop. 746 void addNewMetadata(Instruction *To, const Instruction *Orig); 747 748 /// Add metadata from one instruction to another. 749 /// 750 /// This includes both the original MDs from \p From and additional ones (\see 751 /// addNewMetadata). Use this for *newly created* instructions in the vector 752 /// loop. 753 void addMetadata(Instruction *To, Instruction *From); 754 755 /// Similar to the previous function but it adds the metadata to a 756 /// vector of instructions. 757 void addMetadata(ArrayRef<Value *> To, Instruction *From); 758 759 /// Allow subclasses to override and print debug traces before/after vplan 760 /// execution, when trace information is requested. 761 virtual void printDebugTracesAtStart(){}; 762 virtual void printDebugTracesAtEnd(){}; 763 764 /// The original loop. 765 Loop *OrigLoop; 766 767 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 768 /// dynamic knowledge to simplify SCEV expressions and converts them to a 769 /// more usable form. 770 PredicatedScalarEvolution &PSE; 771 772 /// Loop Info. 773 LoopInfo *LI; 774 775 /// Dominator Tree. 776 DominatorTree *DT; 777 778 /// Alias Analysis. 779 AAResults *AA; 780 781 /// Target Library Info. 782 const TargetLibraryInfo *TLI; 783 784 /// Target Transform Info. 785 const TargetTransformInfo *TTI; 786 787 /// Assumption Cache. 788 AssumptionCache *AC; 789 790 /// Interface to emit optimization remarks. 791 OptimizationRemarkEmitter *ORE; 792 793 /// LoopVersioning. It's only set up (non-null) if memchecks were 794 /// used. 795 /// 796 /// This is currently only used to add no-alias metadata based on the 797 /// memchecks. The actually versioning is performed manually. 798 std::unique_ptr<LoopVersioning> LVer; 799 800 /// The vectorization SIMD factor to use. Each vector will have this many 801 /// vector elements. 802 ElementCount VF; 803 804 /// The vectorization unroll factor to use. Each scalar is vectorized to this 805 /// many different vector instructions. 806 unsigned UF; 807 808 /// The builder that we use 809 IRBuilder<> Builder; 810 811 // --- Vectorization state --- 812 813 /// The vector-loop preheader. 814 BasicBlock *LoopVectorPreHeader; 815 816 /// The scalar-loop preheader. 817 BasicBlock *LoopScalarPreHeader; 818 819 /// Middle Block between the vector and the scalar. 820 BasicBlock *LoopMiddleBlock; 821 822 /// The (unique) ExitBlock of the scalar loop. Note that 823 /// there can be multiple exiting edges reaching this block. 824 BasicBlock *LoopExitBlock; 825 826 /// The vector loop body. 827 BasicBlock *LoopVectorBody; 828 829 /// The scalar loop body. 830 BasicBlock *LoopScalarBody; 831 832 /// A list of all bypass blocks. The first block is the entry of the loop. 833 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 834 835 /// The new Induction variable which was added to the new block. 836 PHINode *Induction = nullptr; 837 838 /// The induction variable of the old basic block. 839 PHINode *OldInduction = nullptr; 840 841 /// Store instructions that were predicated. 842 SmallVector<Instruction *, 4> PredicatedInstructions; 843 844 /// Trip count of the original loop. 845 Value *TripCount = nullptr; 846 847 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 848 Value *VectorTripCount = nullptr; 849 850 /// The legality analysis. 851 LoopVectorizationLegality *Legal; 852 853 /// The profitablity analysis. 854 LoopVectorizationCostModel *Cost; 855 856 // Record whether runtime checks are added. 857 bool AddedSafetyChecks = false; 858 859 // Holds the end values for each induction variable. We save the end values 860 // so we can later fix-up the external users of the induction variables. 861 DenseMap<PHINode *, Value *> IVEndValues; 862 863 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 864 // fixed up at the end of vector code generation. 865 SmallVector<PHINode *, 8> OrigPHIsToFix; 866 867 /// BFI and PSI are used to check for profile guided size optimizations. 868 BlockFrequencyInfo *BFI; 869 ProfileSummaryInfo *PSI; 870 871 // Whether this loop should be optimized for size based on profile guided size 872 // optimizatios. 873 bool OptForSizeBasedOnProfile; 874 875 /// Structure to hold information about generated runtime checks, responsible 876 /// for cleaning the checks, if vectorization turns out unprofitable. 877 GeneratedRTChecks &RTChecks; 878 }; 879 880 class InnerLoopUnroller : public InnerLoopVectorizer { 881 public: 882 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 883 LoopInfo *LI, DominatorTree *DT, 884 const TargetLibraryInfo *TLI, 885 const TargetTransformInfo *TTI, AssumptionCache *AC, 886 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 887 LoopVectorizationLegality *LVL, 888 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 889 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 890 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 891 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 892 BFI, PSI, Check) {} 893 894 private: 895 Value *getBroadcastInstrs(Value *V) override; 896 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 897 Instruction::BinaryOps Opcode = 898 Instruction::BinaryOpsEnd) override; 899 Value *reverseVector(Value *Vec) override; 900 }; 901 902 /// Encapsulate information regarding vectorization of a loop and its epilogue. 903 /// This information is meant to be updated and used across two stages of 904 /// epilogue vectorization. 905 struct EpilogueLoopVectorizationInfo { 906 ElementCount MainLoopVF = ElementCount::getFixed(0); 907 unsigned MainLoopUF = 0; 908 ElementCount EpilogueVF = ElementCount::getFixed(0); 909 unsigned EpilogueUF = 0; 910 BasicBlock *MainLoopIterationCountCheck = nullptr; 911 BasicBlock *EpilogueIterationCountCheck = nullptr; 912 BasicBlock *SCEVSafetyCheck = nullptr; 913 BasicBlock *MemSafetyCheck = nullptr; 914 Value *TripCount = nullptr; 915 Value *VectorTripCount = nullptr; 916 917 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 918 unsigned EUF) 919 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 920 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 921 assert(EUF == 1 && 922 "A high UF for the epilogue loop is likely not beneficial."); 923 } 924 }; 925 926 /// An extension of the inner loop vectorizer that creates a skeleton for a 927 /// vectorized loop that has its epilogue (residual) also vectorized. 928 /// The idea is to run the vplan on a given loop twice, firstly to setup the 929 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 930 /// from the first step and vectorize the epilogue. This is achieved by 931 /// deriving two concrete strategy classes from this base class and invoking 932 /// them in succession from the loop vectorizer planner. 933 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 934 public: 935 InnerLoopAndEpilogueVectorizer( 936 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 937 DominatorTree *DT, const TargetLibraryInfo *TLI, 938 const TargetTransformInfo *TTI, AssumptionCache *AC, 939 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 940 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 941 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 942 GeneratedRTChecks &Checks) 943 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 944 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 945 Checks), 946 EPI(EPI) {} 947 948 // Override this function to handle the more complex control flow around the 949 // three loops. 950 BasicBlock *createVectorizedLoopSkeleton() final override { 951 return createEpilogueVectorizedLoopSkeleton(); 952 } 953 954 /// The interface for creating a vectorized skeleton using one of two 955 /// different strategies, each corresponding to one execution of the vplan 956 /// as described above. 957 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 958 959 /// Holds and updates state information required to vectorize the main loop 960 /// and its epilogue in two separate passes. This setup helps us avoid 961 /// regenerating and recomputing runtime safety checks. It also helps us to 962 /// shorten the iteration-count-check path length for the cases where the 963 /// iteration count of the loop is so small that the main vector loop is 964 /// completely skipped. 965 EpilogueLoopVectorizationInfo &EPI; 966 }; 967 968 /// A specialized derived class of inner loop vectorizer that performs 969 /// vectorization of *main* loops in the process of vectorizing loops and their 970 /// epilogues. 971 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 972 public: 973 EpilogueVectorizerMainLoop( 974 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 975 DominatorTree *DT, const TargetLibraryInfo *TLI, 976 const TargetTransformInfo *TTI, AssumptionCache *AC, 977 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 978 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 979 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 980 GeneratedRTChecks &Check) 981 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 982 EPI, LVL, CM, BFI, PSI, Check) {} 983 /// Implements the interface for creating a vectorized skeleton using the 984 /// *main loop* strategy (ie the first pass of vplan execution). 985 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 986 987 protected: 988 /// Emits an iteration count bypass check once for the main loop (when \p 989 /// ForEpilogue is false) and once for the epilogue loop (when \p 990 /// ForEpilogue is true). 991 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 992 bool ForEpilogue); 993 void printDebugTracesAtStart() override; 994 void printDebugTracesAtEnd() override; 995 }; 996 997 // A specialized derived class of inner loop vectorizer that performs 998 // vectorization of *epilogue* loops in the process of vectorizing loops and 999 // their epilogues. 1000 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 1001 public: 1002 EpilogueVectorizerEpilogueLoop( 1003 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1004 DominatorTree *DT, const TargetLibraryInfo *TLI, 1005 const TargetTransformInfo *TTI, AssumptionCache *AC, 1006 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1007 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1008 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1009 GeneratedRTChecks &Checks) 1010 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1011 EPI, LVL, CM, BFI, PSI, Checks) {} 1012 /// Implements the interface for creating a vectorized skeleton using the 1013 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1014 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1015 1016 protected: 1017 /// Emits an iteration count bypass check after the main vector loop has 1018 /// finished to see if there are any iterations left to execute by either 1019 /// the vector epilogue or the scalar epilogue. 1020 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1021 BasicBlock *Bypass, 1022 BasicBlock *Insert); 1023 void printDebugTracesAtStart() override; 1024 void printDebugTracesAtEnd() override; 1025 }; 1026 } // end namespace llvm 1027 1028 /// Look for a meaningful debug location on the instruction or it's 1029 /// operands. 1030 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1031 if (!I) 1032 return I; 1033 1034 DebugLoc Empty; 1035 if (I->getDebugLoc() != Empty) 1036 return I; 1037 1038 for (Use &Op : I->operands()) { 1039 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1040 if (OpInst->getDebugLoc() != Empty) 1041 return OpInst; 1042 } 1043 1044 return I; 1045 } 1046 1047 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1048 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1049 const DILocation *DIL = Inst->getDebugLoc(); 1050 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1051 !isa<DbgInfoIntrinsic>(Inst)) { 1052 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1053 auto NewDIL = 1054 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1055 if (NewDIL) 1056 B.SetCurrentDebugLocation(NewDIL.getValue()); 1057 else 1058 LLVM_DEBUG(dbgs() 1059 << "Failed to create new discriminator: " 1060 << DIL->getFilename() << " Line: " << DIL->getLine()); 1061 } 1062 else 1063 B.SetCurrentDebugLocation(DIL); 1064 } else 1065 B.SetCurrentDebugLocation(DebugLoc()); 1066 } 1067 1068 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1069 /// is passed, the message relates to that particular instruction. 1070 #ifndef NDEBUG 1071 static void debugVectorizationMessage(const StringRef Prefix, 1072 const StringRef DebugMsg, 1073 Instruction *I) { 1074 dbgs() << "LV: " << Prefix << DebugMsg; 1075 if (I != nullptr) 1076 dbgs() << " " << *I; 1077 else 1078 dbgs() << '.'; 1079 dbgs() << '\n'; 1080 } 1081 #endif 1082 1083 /// Create an analysis remark that explains why vectorization failed 1084 /// 1085 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1086 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1087 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1088 /// the location of the remark. \return the remark object that can be 1089 /// streamed to. 1090 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1091 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1092 Value *CodeRegion = TheLoop->getHeader(); 1093 DebugLoc DL = TheLoop->getStartLoc(); 1094 1095 if (I) { 1096 CodeRegion = I->getParent(); 1097 // If there is no debug location attached to the instruction, revert back to 1098 // using the loop's. 1099 if (I->getDebugLoc()) 1100 DL = I->getDebugLoc(); 1101 } 1102 1103 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1104 } 1105 1106 /// Return a value for Step multiplied by VF. 1107 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1108 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1109 Constant *StepVal = ConstantInt::get( 1110 Step->getType(), 1111 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1112 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1113 } 1114 1115 namespace llvm { 1116 1117 /// Return the runtime value for VF. 1118 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1119 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1120 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1121 } 1122 1123 void reportVectorizationFailure(const StringRef DebugMsg, 1124 const StringRef OREMsg, const StringRef ORETag, 1125 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1126 Instruction *I) { 1127 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1128 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1129 ORE->emit( 1130 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1131 << "loop not vectorized: " << OREMsg); 1132 } 1133 1134 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1135 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1136 Instruction *I) { 1137 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1138 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1139 ORE->emit( 1140 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1141 << Msg); 1142 } 1143 1144 } // end namespace llvm 1145 1146 #ifndef NDEBUG 1147 /// \return string containing a file name and a line # for the given loop. 1148 static std::string getDebugLocString(const Loop *L) { 1149 std::string Result; 1150 if (L) { 1151 raw_string_ostream OS(Result); 1152 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1153 LoopDbgLoc.print(OS); 1154 else 1155 // Just print the module name. 1156 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1157 OS.flush(); 1158 } 1159 return Result; 1160 } 1161 #endif 1162 1163 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1164 const Instruction *Orig) { 1165 // If the loop was versioned with memchecks, add the corresponding no-alias 1166 // metadata. 1167 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1168 LVer->annotateInstWithNoAlias(To, Orig); 1169 } 1170 1171 void InnerLoopVectorizer::addMetadata(Instruction *To, 1172 Instruction *From) { 1173 propagateMetadata(To, From); 1174 addNewMetadata(To, From); 1175 } 1176 1177 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1178 Instruction *From) { 1179 for (Value *V : To) { 1180 if (Instruction *I = dyn_cast<Instruction>(V)) 1181 addMetadata(I, From); 1182 } 1183 } 1184 1185 namespace llvm { 1186 1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1188 // lowered. 1189 enum ScalarEpilogueLowering { 1190 1191 // The default: allowing scalar epilogues. 1192 CM_ScalarEpilogueAllowed, 1193 1194 // Vectorization with OptForSize: don't allow epilogues. 1195 CM_ScalarEpilogueNotAllowedOptSize, 1196 1197 // A special case of vectorisation with OptForSize: loops with a very small 1198 // trip count are considered for vectorization under OptForSize, thereby 1199 // making sure the cost of their loop body is dominant, free of runtime 1200 // guards and scalar iteration overheads. 1201 CM_ScalarEpilogueNotAllowedLowTripLoop, 1202 1203 // Loop hint predicate indicating an epilogue is undesired. 1204 CM_ScalarEpilogueNotNeededUsePredicate, 1205 1206 // Directive indicating we must either tail fold or not vectorize 1207 CM_ScalarEpilogueNotAllowedUsePredicate 1208 }; 1209 1210 /// LoopVectorizationCostModel - estimates the expected speedups due to 1211 /// vectorization. 1212 /// In many cases vectorization is not profitable. This can happen because of 1213 /// a number of reasons. In this class we mainly attempt to predict the 1214 /// expected speedup/slowdowns due to the supported instruction set. We use the 1215 /// TargetTransformInfo to query the different backends for the cost of 1216 /// different operations. 1217 class LoopVectorizationCostModel { 1218 public: 1219 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1220 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1221 LoopVectorizationLegality *Legal, 1222 const TargetTransformInfo &TTI, 1223 const TargetLibraryInfo *TLI, DemandedBits *DB, 1224 AssumptionCache *AC, 1225 OptimizationRemarkEmitter *ORE, const Function *F, 1226 const LoopVectorizeHints *Hints, 1227 InterleavedAccessInfo &IAI) 1228 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1229 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1230 Hints(Hints), InterleaveInfo(IAI) {} 1231 1232 /// \return An upper bound for the vectorization factor, or None if 1233 /// vectorization and interleaving should be avoided up front. 1234 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1235 1236 /// \return True if runtime checks are required for vectorization, and false 1237 /// otherwise. 1238 bool runtimeChecksRequired(); 1239 1240 /// \return The most profitable vectorization factor and the cost of that VF. 1241 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1242 /// then this vectorization factor will be selected if vectorization is 1243 /// possible. 1244 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1245 VectorizationFactor 1246 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1247 const LoopVectorizationPlanner &LVP); 1248 1249 /// Setup cost-based decisions for user vectorization factor. 1250 void selectUserVectorizationFactor(ElementCount UserVF) { 1251 collectUniformsAndScalars(UserVF); 1252 collectInstsToScalarize(UserVF); 1253 } 1254 1255 /// \return The size (in bits) of the smallest and widest types in the code 1256 /// that needs to be vectorized. We ignore values that remain scalar such as 1257 /// 64 bit loop indices. 1258 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1259 1260 /// \return The desired interleave count. 1261 /// If interleave count has been specified by metadata it will be returned. 1262 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1263 /// are the selected vectorization factor and the cost of the selected VF. 1264 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1265 1266 /// Memory access instruction may be vectorized in more than one way. 1267 /// Form of instruction after vectorization depends on cost. 1268 /// This function takes cost-based decisions for Load/Store instructions 1269 /// and collects them in a map. This decisions map is used for building 1270 /// the lists of loop-uniform and loop-scalar instructions. 1271 /// The calculated cost is saved with widening decision in order to 1272 /// avoid redundant calculations. 1273 void setCostBasedWideningDecision(ElementCount VF); 1274 1275 /// A struct that represents some properties of the register usage 1276 /// of a loop. 1277 struct RegisterUsage { 1278 /// Holds the number of loop invariant values that are used in the loop. 1279 /// The key is ClassID of target-provided register class. 1280 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1281 /// Holds the maximum number of concurrent live intervals in the loop. 1282 /// The key is ClassID of target-provided register class. 1283 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1284 }; 1285 1286 /// \return Returns information about the register usages of the loop for the 1287 /// given vectorization factors. 1288 SmallVector<RegisterUsage, 8> 1289 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1290 1291 /// Collect values we want to ignore in the cost model. 1292 void collectValuesToIgnore(); 1293 1294 /// Split reductions into those that happen in the loop, and those that happen 1295 /// outside. In loop reductions are collected into InLoopReductionChains. 1296 void collectInLoopReductions(); 1297 1298 /// \returns The smallest bitwidth each instruction can be represented with. 1299 /// The vector equivalents of these instructions should be truncated to this 1300 /// type. 1301 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1302 return MinBWs; 1303 } 1304 1305 /// \returns True if it is more profitable to scalarize instruction \p I for 1306 /// vectorization factor \p VF. 1307 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1308 assert(VF.isVector() && 1309 "Profitable to scalarize relevant only for VF > 1."); 1310 1311 // Cost model is not run in the VPlan-native path - return conservative 1312 // result until this changes. 1313 if (EnableVPlanNativePath) 1314 return false; 1315 1316 auto Scalars = InstsToScalarize.find(VF); 1317 assert(Scalars != InstsToScalarize.end() && 1318 "VF not yet analyzed for scalarization profitability"); 1319 return Scalars->second.find(I) != Scalars->second.end(); 1320 } 1321 1322 /// Returns true if \p I is known to be uniform after vectorization. 1323 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1324 if (VF.isScalar()) 1325 return true; 1326 1327 // Cost model is not run in the VPlan-native path - return conservative 1328 // result until this changes. 1329 if (EnableVPlanNativePath) 1330 return false; 1331 1332 auto UniformsPerVF = Uniforms.find(VF); 1333 assert(UniformsPerVF != Uniforms.end() && 1334 "VF not yet analyzed for uniformity"); 1335 return UniformsPerVF->second.count(I); 1336 } 1337 1338 /// Returns true if \p I is known to be scalar after vectorization. 1339 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1340 if (VF.isScalar()) 1341 return true; 1342 1343 // Cost model is not run in the VPlan-native path - return conservative 1344 // result until this changes. 1345 if (EnableVPlanNativePath) 1346 return false; 1347 1348 auto ScalarsPerVF = Scalars.find(VF); 1349 assert(ScalarsPerVF != Scalars.end() && 1350 "Scalar values are not calculated for VF"); 1351 return ScalarsPerVF->second.count(I); 1352 } 1353 1354 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1355 /// for vectorization factor \p VF. 1356 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1357 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1358 !isProfitableToScalarize(I, VF) && 1359 !isScalarAfterVectorization(I, VF); 1360 } 1361 1362 /// Decision that was taken during cost calculation for memory instruction. 1363 enum InstWidening { 1364 CM_Unknown, 1365 CM_Widen, // For consecutive accesses with stride +1. 1366 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1367 CM_Interleave, 1368 CM_GatherScatter, 1369 CM_Scalarize 1370 }; 1371 1372 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1373 /// instruction \p I and vector width \p VF. 1374 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1375 InstructionCost Cost) { 1376 assert(VF.isVector() && "Expected VF >=2"); 1377 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1378 } 1379 1380 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1381 /// interleaving group \p Grp and vector width \p VF. 1382 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1383 ElementCount VF, InstWidening W, 1384 InstructionCost Cost) { 1385 assert(VF.isVector() && "Expected VF >=2"); 1386 /// Broadcast this decicion to all instructions inside the group. 1387 /// But the cost will be assigned to one instruction only. 1388 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1389 if (auto *I = Grp->getMember(i)) { 1390 if (Grp->getInsertPos() == I) 1391 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1392 else 1393 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1394 } 1395 } 1396 } 1397 1398 /// Return the cost model decision for the given instruction \p I and vector 1399 /// width \p VF. Return CM_Unknown if this instruction did not pass 1400 /// through the cost modeling. 1401 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1402 assert(VF.isVector() && "Expected VF to be a vector VF"); 1403 // Cost model is not run in the VPlan-native path - return conservative 1404 // result until this changes. 1405 if (EnableVPlanNativePath) 1406 return CM_GatherScatter; 1407 1408 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1409 auto Itr = WideningDecisions.find(InstOnVF); 1410 if (Itr == WideningDecisions.end()) 1411 return CM_Unknown; 1412 return Itr->second.first; 1413 } 1414 1415 /// Return the vectorization cost for the given instruction \p I and vector 1416 /// width \p VF. 1417 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1418 assert(VF.isVector() && "Expected VF >=2"); 1419 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1420 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1421 "The cost is not calculated"); 1422 return WideningDecisions[InstOnVF].second; 1423 } 1424 1425 /// Return True if instruction \p I is an optimizable truncate whose operand 1426 /// is an induction variable. Such a truncate will be removed by adding a new 1427 /// induction variable with the destination type. 1428 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1429 // If the instruction is not a truncate, return false. 1430 auto *Trunc = dyn_cast<TruncInst>(I); 1431 if (!Trunc) 1432 return false; 1433 1434 // Get the source and destination types of the truncate. 1435 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1436 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1437 1438 // If the truncate is free for the given types, return false. Replacing a 1439 // free truncate with an induction variable would add an induction variable 1440 // update instruction to each iteration of the loop. We exclude from this 1441 // check the primary induction variable since it will need an update 1442 // instruction regardless. 1443 Value *Op = Trunc->getOperand(0); 1444 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1445 return false; 1446 1447 // If the truncated value is not an induction variable, return false. 1448 return Legal->isInductionPhi(Op); 1449 } 1450 1451 /// Collects the instructions to scalarize for each predicated instruction in 1452 /// the loop. 1453 void collectInstsToScalarize(ElementCount VF); 1454 1455 /// Collect Uniform and Scalar values for the given \p VF. 1456 /// The sets depend on CM decision for Load/Store instructions 1457 /// that may be vectorized as interleave, gather-scatter or scalarized. 1458 void collectUniformsAndScalars(ElementCount VF) { 1459 // Do the analysis once. 1460 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1461 return; 1462 setCostBasedWideningDecision(VF); 1463 collectLoopUniforms(VF); 1464 collectLoopScalars(VF); 1465 } 1466 1467 /// Returns true if the target machine supports masked store operation 1468 /// for the given \p DataType and kind of access to \p Ptr. 1469 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1470 return Legal->isConsecutivePtr(Ptr) && 1471 TTI.isLegalMaskedStore(DataType, Alignment); 1472 } 1473 1474 /// Returns true if the target machine supports masked load operation 1475 /// for the given \p DataType and kind of access to \p Ptr. 1476 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1477 return Legal->isConsecutivePtr(Ptr) && 1478 TTI.isLegalMaskedLoad(DataType, Alignment); 1479 } 1480 1481 /// Returns true if the target machine supports masked scatter operation 1482 /// for the given \p DataType. 1483 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const { 1484 return TTI.isLegalMaskedScatter(DataType, Alignment); 1485 } 1486 1487 /// Returns true if the target machine supports masked gather operation 1488 /// for the given \p DataType. 1489 bool isLegalMaskedGather(Type *DataType, Align Alignment) const { 1490 return TTI.isLegalMaskedGather(DataType, Alignment); 1491 } 1492 1493 /// Returns true if the target machine can represent \p V as a masked gather 1494 /// or scatter operation. 1495 bool isLegalGatherOrScatter(Value *V) { 1496 bool LI = isa<LoadInst>(V); 1497 bool SI = isa<StoreInst>(V); 1498 if (!LI && !SI) 1499 return false; 1500 auto *Ty = getMemInstValueType(V); 1501 Align Align = getLoadStoreAlignment(V); 1502 return (LI && isLegalMaskedGather(Ty, Align)) || 1503 (SI && isLegalMaskedScatter(Ty, Align)); 1504 } 1505 1506 /// Returns true if the target machine supports all of the reduction 1507 /// variables found for the given VF. 1508 bool canVectorizeReductions(ElementCount VF) { 1509 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1510 RecurrenceDescriptor RdxDesc = Reduction.second; 1511 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1512 })); 1513 } 1514 1515 /// Returns true if \p I is an instruction that will be scalarized with 1516 /// predication. Such instructions include conditional stores and 1517 /// instructions that may divide by zero. 1518 /// If a non-zero VF has been calculated, we check if I will be scalarized 1519 /// predication for that VF. 1520 bool 1521 isScalarWithPredication(Instruction *I, 1522 ElementCount VF = ElementCount::getFixed(1)) const; 1523 1524 // Returns true if \p I is an instruction that will be predicated either 1525 // through scalar predication or masked load/store or masked gather/scatter. 1526 // Superset of instructions that return true for isScalarWithPredication. 1527 bool isPredicatedInst(Instruction *I, ElementCount VF) { 1528 if (!blockNeedsPredication(I->getParent())) 1529 return false; 1530 // Loads and stores that need some form of masked operation are predicated 1531 // instructions. 1532 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1533 return Legal->isMaskRequired(I); 1534 return isScalarWithPredication(I, VF); 1535 } 1536 1537 /// Returns true if \p I is a memory instruction with consecutive memory 1538 /// access that can be widened. 1539 bool 1540 memoryInstructionCanBeWidened(Instruction *I, 1541 ElementCount VF = ElementCount::getFixed(1)); 1542 1543 /// Returns true if \p I is a memory instruction in an interleaved-group 1544 /// of memory accesses that can be vectorized with wide vector loads/stores 1545 /// and shuffles. 1546 bool 1547 interleavedAccessCanBeWidened(Instruction *I, 1548 ElementCount VF = ElementCount::getFixed(1)); 1549 1550 /// Check if \p Instr belongs to any interleaved access group. 1551 bool isAccessInterleaved(Instruction *Instr) { 1552 return InterleaveInfo.isInterleaved(Instr); 1553 } 1554 1555 /// Get the interleaved access group that \p Instr belongs to. 1556 const InterleaveGroup<Instruction> * 1557 getInterleavedAccessGroup(Instruction *Instr) { 1558 return InterleaveInfo.getInterleaveGroup(Instr); 1559 } 1560 1561 /// Returns true if we're required to use a scalar epilogue for at least 1562 /// the final iteration of the original loop. 1563 bool requiresScalarEpilogue() const { 1564 if (!isScalarEpilogueAllowed()) 1565 return false; 1566 // If we might exit from anywhere but the latch, must run the exiting 1567 // iteration in scalar form. 1568 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1569 return true; 1570 return InterleaveInfo.requiresScalarEpilogue(); 1571 } 1572 1573 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1574 /// loop hint annotation. 1575 bool isScalarEpilogueAllowed() const { 1576 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1577 } 1578 1579 /// Returns true if all loop blocks should be masked to fold tail loop. 1580 bool foldTailByMasking() const { return FoldTailByMasking; } 1581 1582 bool blockNeedsPredication(BasicBlock *BB) const { 1583 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1584 } 1585 1586 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1587 /// nodes to the chain of instructions representing the reductions. Uses a 1588 /// MapVector to ensure deterministic iteration order. 1589 using ReductionChainMap = 1590 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1591 1592 /// Return the chain of instructions representing an inloop reduction. 1593 const ReductionChainMap &getInLoopReductionChains() const { 1594 return InLoopReductionChains; 1595 } 1596 1597 /// Returns true if the Phi is part of an inloop reduction. 1598 bool isInLoopReduction(PHINode *Phi) const { 1599 return InLoopReductionChains.count(Phi); 1600 } 1601 1602 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1603 /// with factor VF. Return the cost of the instruction, including 1604 /// scalarization overhead if it's needed. 1605 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1606 1607 /// Estimate cost of a call instruction CI if it were vectorized with factor 1608 /// VF. Return the cost of the instruction, including scalarization overhead 1609 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1610 /// scalarized - 1611 /// i.e. either vector version isn't available, or is too expensive. 1612 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1613 bool &NeedToScalarize) const; 1614 1615 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1616 /// that of B. 1617 bool isMoreProfitable(const VectorizationFactor &A, 1618 const VectorizationFactor &B) const; 1619 1620 /// Invalidates decisions already taken by the cost model. 1621 void invalidateCostModelingDecisions() { 1622 WideningDecisions.clear(); 1623 Uniforms.clear(); 1624 Scalars.clear(); 1625 } 1626 1627 private: 1628 unsigned NumPredStores = 0; 1629 1630 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1631 /// than zero. One is returned if vectorization should best be avoided due 1632 /// to cost. 1633 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1634 ElementCount UserVF); 1635 1636 /// \return the maximized element count based on the targets vector 1637 /// registers and the loop trip-count, but limited to a maximum safe VF. 1638 /// This is a helper function of computeFeasibleMaxVF. 1639 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1640 /// issue that occurred on one of the buildbots which cannot be reproduced 1641 /// without having access to the properietary compiler (see comments on 1642 /// D98509). The issue is currently under investigation and this workaround 1643 /// will be removed as soon as possible. 1644 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1645 unsigned SmallestType, 1646 unsigned WidestType, 1647 const ElementCount &MaxSafeVF); 1648 1649 /// \return the maximum legal scalable VF, based on the safe max number 1650 /// of elements. 1651 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1652 1653 /// The vectorization cost is a combination of the cost itself and a boolean 1654 /// indicating whether any of the contributing operations will actually 1655 /// operate on 1656 /// vector values after type legalization in the backend. If this latter value 1657 /// is 1658 /// false, then all operations will be scalarized (i.e. no vectorization has 1659 /// actually taken place). 1660 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1661 1662 /// Returns the expected execution cost. The unit of the cost does 1663 /// not matter because we use the 'cost' units to compare different 1664 /// vector widths. The cost that is returned is *not* normalized by 1665 /// the factor width. 1666 VectorizationCostTy expectedCost(ElementCount VF); 1667 1668 /// Returns the execution time cost of an instruction for a given vector 1669 /// width. Vector width of one means scalar. 1670 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1671 1672 /// The cost-computation logic from getInstructionCost which provides 1673 /// the vector type as an output parameter. 1674 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1675 Type *&VectorTy); 1676 1677 /// Return the cost of instructions in an inloop reduction pattern, if I is 1678 /// part of that pattern. 1679 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1680 Type *VectorTy, 1681 TTI::TargetCostKind CostKind); 1682 1683 /// Calculate vectorization cost of memory instruction \p I. 1684 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1685 1686 /// The cost computation for scalarized memory instruction. 1687 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1688 1689 /// The cost computation for interleaving group of memory instructions. 1690 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1691 1692 /// The cost computation for Gather/Scatter instruction. 1693 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1694 1695 /// The cost computation for widening instruction \p I with consecutive 1696 /// memory access. 1697 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1698 1699 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1700 /// Load: scalar load + broadcast. 1701 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1702 /// element) 1703 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1704 1705 /// Estimate the overhead of scalarizing an instruction. This is a 1706 /// convenience wrapper for the type-based getScalarizationOverhead API. 1707 InstructionCost getScalarizationOverhead(Instruction *I, 1708 ElementCount VF) const; 1709 1710 /// Returns whether the instruction is a load or store and will be a emitted 1711 /// as a vector operation. 1712 bool isConsecutiveLoadOrStore(Instruction *I); 1713 1714 /// Returns true if an artificially high cost for emulated masked memrefs 1715 /// should be used. 1716 bool useEmulatedMaskMemRefHack(Instruction *I); 1717 1718 /// Map of scalar integer values to the smallest bitwidth they can be legally 1719 /// represented as. The vector equivalents of these values should be truncated 1720 /// to this type. 1721 MapVector<Instruction *, uint64_t> MinBWs; 1722 1723 /// A type representing the costs for instructions if they were to be 1724 /// scalarized rather than vectorized. The entries are Instruction-Cost 1725 /// pairs. 1726 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1727 1728 /// A set containing all BasicBlocks that are known to present after 1729 /// vectorization as a predicated block. 1730 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1731 1732 /// Records whether it is allowed to have the original scalar loop execute at 1733 /// least once. This may be needed as a fallback loop in case runtime 1734 /// aliasing/dependence checks fail, or to handle the tail/remainder 1735 /// iterations when the trip count is unknown or doesn't divide by the VF, 1736 /// or as a peel-loop to handle gaps in interleave-groups. 1737 /// Under optsize and when the trip count is very small we don't allow any 1738 /// iterations to execute in the scalar loop. 1739 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1740 1741 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1742 bool FoldTailByMasking = false; 1743 1744 /// A map holding scalar costs for different vectorization factors. The 1745 /// presence of a cost for an instruction in the mapping indicates that the 1746 /// instruction will be scalarized when vectorizing with the associated 1747 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1748 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1749 1750 /// Holds the instructions known to be uniform after vectorization. 1751 /// The data is collected per VF. 1752 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1753 1754 /// Holds the instructions known to be scalar after vectorization. 1755 /// The data is collected per VF. 1756 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1757 1758 /// Holds the instructions (address computations) that are forced to be 1759 /// scalarized. 1760 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1761 1762 /// PHINodes of the reductions that should be expanded in-loop along with 1763 /// their associated chains of reduction operations, in program order from top 1764 /// (PHI) to bottom 1765 ReductionChainMap InLoopReductionChains; 1766 1767 /// A Map of inloop reduction operations and their immediate chain operand. 1768 /// FIXME: This can be removed once reductions can be costed correctly in 1769 /// vplan. This was added to allow quick lookup to the inloop operations, 1770 /// without having to loop through InLoopReductionChains. 1771 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1772 1773 /// Returns the expected difference in cost from scalarizing the expression 1774 /// feeding a predicated instruction \p PredInst. The instructions to 1775 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1776 /// non-negative return value implies the expression will be scalarized. 1777 /// Currently, only single-use chains are considered for scalarization. 1778 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1779 ElementCount VF); 1780 1781 /// Collect the instructions that are uniform after vectorization. An 1782 /// instruction is uniform if we represent it with a single scalar value in 1783 /// the vectorized loop corresponding to each vector iteration. Examples of 1784 /// uniform instructions include pointer operands of consecutive or 1785 /// interleaved memory accesses. Note that although uniformity implies an 1786 /// instruction will be scalar, the reverse is not true. In general, a 1787 /// scalarized instruction will be represented by VF scalar values in the 1788 /// vectorized loop, each corresponding to an iteration of the original 1789 /// scalar loop. 1790 void collectLoopUniforms(ElementCount VF); 1791 1792 /// Collect the instructions that are scalar after vectorization. An 1793 /// instruction is scalar if it is known to be uniform or will be scalarized 1794 /// during vectorization. Non-uniform scalarized instructions will be 1795 /// represented by VF values in the vectorized loop, each corresponding to an 1796 /// iteration of the original scalar loop. 1797 void collectLoopScalars(ElementCount VF); 1798 1799 /// Keeps cost model vectorization decision and cost for instructions. 1800 /// Right now it is used for memory instructions only. 1801 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1802 std::pair<InstWidening, InstructionCost>>; 1803 1804 DecisionList WideningDecisions; 1805 1806 /// Returns true if \p V is expected to be vectorized and it needs to be 1807 /// extracted. 1808 bool needsExtract(Value *V, ElementCount VF) const { 1809 Instruction *I = dyn_cast<Instruction>(V); 1810 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1811 TheLoop->isLoopInvariant(I)) 1812 return false; 1813 1814 // Assume we can vectorize V (and hence we need extraction) if the 1815 // scalars are not computed yet. This can happen, because it is called 1816 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1817 // the scalars are collected. That should be a safe assumption in most 1818 // cases, because we check if the operands have vectorizable types 1819 // beforehand in LoopVectorizationLegality. 1820 return Scalars.find(VF) == Scalars.end() || 1821 !isScalarAfterVectorization(I, VF); 1822 }; 1823 1824 /// Returns a range containing only operands needing to be extracted. 1825 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1826 ElementCount VF) const { 1827 return SmallVector<Value *, 4>(make_filter_range( 1828 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1829 } 1830 1831 /// Determines if we have the infrastructure to vectorize loop \p L and its 1832 /// epilogue, assuming the main loop is vectorized by \p VF. 1833 bool isCandidateForEpilogueVectorization(const Loop &L, 1834 const ElementCount VF) const; 1835 1836 /// Returns true if epilogue vectorization is considered profitable, and 1837 /// false otherwise. 1838 /// \p VF is the vectorization factor chosen for the original loop. 1839 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1840 1841 public: 1842 /// The loop that we evaluate. 1843 Loop *TheLoop; 1844 1845 /// Predicated scalar evolution analysis. 1846 PredicatedScalarEvolution &PSE; 1847 1848 /// Loop Info analysis. 1849 LoopInfo *LI; 1850 1851 /// Vectorization legality. 1852 LoopVectorizationLegality *Legal; 1853 1854 /// Vector target information. 1855 const TargetTransformInfo &TTI; 1856 1857 /// Target Library Info. 1858 const TargetLibraryInfo *TLI; 1859 1860 /// Demanded bits analysis. 1861 DemandedBits *DB; 1862 1863 /// Assumption cache. 1864 AssumptionCache *AC; 1865 1866 /// Interface to emit optimization remarks. 1867 OptimizationRemarkEmitter *ORE; 1868 1869 const Function *TheFunction; 1870 1871 /// Loop Vectorize Hint. 1872 const LoopVectorizeHints *Hints; 1873 1874 /// The interleave access information contains groups of interleaved accesses 1875 /// with the same stride and close to each other. 1876 InterleavedAccessInfo &InterleaveInfo; 1877 1878 /// Values to ignore in the cost model. 1879 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1880 1881 /// Values to ignore in the cost model when VF > 1. 1882 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1883 1884 /// Profitable vector factors. 1885 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1886 }; 1887 } // end namespace llvm 1888 1889 /// Helper struct to manage generating runtime checks for vectorization. 1890 /// 1891 /// The runtime checks are created up-front in temporary blocks to allow better 1892 /// estimating the cost and un-linked from the existing IR. After deciding to 1893 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1894 /// temporary blocks are completely removed. 1895 class GeneratedRTChecks { 1896 /// Basic block which contains the generated SCEV checks, if any. 1897 BasicBlock *SCEVCheckBlock = nullptr; 1898 1899 /// The value representing the result of the generated SCEV checks. If it is 1900 /// nullptr, either no SCEV checks have been generated or they have been used. 1901 Value *SCEVCheckCond = nullptr; 1902 1903 /// Basic block which contains the generated memory runtime checks, if any. 1904 BasicBlock *MemCheckBlock = nullptr; 1905 1906 /// The value representing the result of the generated memory runtime checks. 1907 /// If it is nullptr, either no memory runtime checks have been generated or 1908 /// they have been used. 1909 Instruction *MemRuntimeCheckCond = nullptr; 1910 1911 DominatorTree *DT; 1912 LoopInfo *LI; 1913 1914 SCEVExpander SCEVExp; 1915 SCEVExpander MemCheckExp; 1916 1917 public: 1918 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1919 const DataLayout &DL) 1920 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1921 MemCheckExp(SE, DL, "scev.check") {} 1922 1923 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1924 /// accurately estimate the cost of the runtime checks. The blocks are 1925 /// un-linked from the IR and is added back during vector code generation. If 1926 /// there is no vector code generation, the check blocks are removed 1927 /// completely. 1928 void Create(Loop *L, const LoopAccessInfo &LAI, 1929 const SCEVUnionPredicate &UnionPred) { 1930 1931 BasicBlock *LoopHeader = L->getHeader(); 1932 BasicBlock *Preheader = L->getLoopPreheader(); 1933 1934 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1935 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1936 // may be used by SCEVExpander. The blocks will be un-linked from their 1937 // predecessors and removed from LI & DT at the end of the function. 1938 if (!UnionPred.isAlwaysTrue()) { 1939 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1940 nullptr, "vector.scevcheck"); 1941 1942 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1943 &UnionPred, SCEVCheckBlock->getTerminator()); 1944 } 1945 1946 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1947 if (RtPtrChecking.Need) { 1948 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1949 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1950 "vector.memcheck"); 1951 1952 std::tie(std::ignore, MemRuntimeCheckCond) = 1953 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1954 RtPtrChecking.getChecks(), MemCheckExp); 1955 assert(MemRuntimeCheckCond && 1956 "no RT checks generated although RtPtrChecking " 1957 "claimed checks are required"); 1958 } 1959 1960 if (!MemCheckBlock && !SCEVCheckBlock) 1961 return; 1962 1963 // Unhook the temporary block with the checks, update various places 1964 // accordingly. 1965 if (SCEVCheckBlock) 1966 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1967 if (MemCheckBlock) 1968 MemCheckBlock->replaceAllUsesWith(Preheader); 1969 1970 if (SCEVCheckBlock) { 1971 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1972 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1973 Preheader->getTerminator()->eraseFromParent(); 1974 } 1975 if (MemCheckBlock) { 1976 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1977 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1978 Preheader->getTerminator()->eraseFromParent(); 1979 } 1980 1981 DT->changeImmediateDominator(LoopHeader, Preheader); 1982 if (MemCheckBlock) { 1983 DT->eraseNode(MemCheckBlock); 1984 LI->removeBlock(MemCheckBlock); 1985 } 1986 if (SCEVCheckBlock) { 1987 DT->eraseNode(SCEVCheckBlock); 1988 LI->removeBlock(SCEVCheckBlock); 1989 } 1990 } 1991 1992 /// Remove the created SCEV & memory runtime check blocks & instructions, if 1993 /// unused. 1994 ~GeneratedRTChecks() { 1995 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 1996 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 1997 if (!SCEVCheckCond) 1998 SCEVCleaner.markResultUsed(); 1999 2000 if (!MemRuntimeCheckCond) 2001 MemCheckCleaner.markResultUsed(); 2002 2003 if (MemRuntimeCheckCond) { 2004 auto &SE = *MemCheckExp.getSE(); 2005 // Memory runtime check generation creates compares that use expanded 2006 // values. Remove them before running the SCEVExpanderCleaners. 2007 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2008 if (MemCheckExp.isInsertedInstruction(&I)) 2009 continue; 2010 SE.forgetValue(&I); 2011 SE.eraseValueFromMap(&I); 2012 I.eraseFromParent(); 2013 } 2014 } 2015 MemCheckCleaner.cleanup(); 2016 SCEVCleaner.cleanup(); 2017 2018 if (SCEVCheckCond) 2019 SCEVCheckBlock->eraseFromParent(); 2020 if (MemRuntimeCheckCond) 2021 MemCheckBlock->eraseFromParent(); 2022 } 2023 2024 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2025 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2026 /// depending on the generated condition. 2027 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2028 BasicBlock *LoopVectorPreHeader, 2029 BasicBlock *LoopExitBlock) { 2030 if (!SCEVCheckCond) 2031 return nullptr; 2032 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2033 if (C->isZero()) 2034 return nullptr; 2035 2036 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2037 2038 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2039 // Create new preheader for vector loop. 2040 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2041 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2042 2043 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2044 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2045 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2046 SCEVCheckBlock); 2047 2048 DT->addNewBlock(SCEVCheckBlock, Pred); 2049 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2050 2051 ReplaceInstWithInst( 2052 SCEVCheckBlock->getTerminator(), 2053 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2054 // Mark the check as used, to prevent it from being removed during cleanup. 2055 SCEVCheckCond = nullptr; 2056 return SCEVCheckBlock; 2057 } 2058 2059 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2060 /// the branches to branch to the vector preheader or \p Bypass, depending on 2061 /// the generated condition. 2062 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2063 BasicBlock *LoopVectorPreHeader) { 2064 // Check if we generated code that checks in runtime if arrays overlap. 2065 if (!MemRuntimeCheckCond) 2066 return nullptr; 2067 2068 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2069 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2070 MemCheckBlock); 2071 2072 DT->addNewBlock(MemCheckBlock, Pred); 2073 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2074 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2075 2076 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2077 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2078 2079 ReplaceInstWithInst( 2080 MemCheckBlock->getTerminator(), 2081 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2082 MemCheckBlock->getTerminator()->setDebugLoc( 2083 Pred->getTerminator()->getDebugLoc()); 2084 2085 // Mark the check as used, to prevent it from being removed during cleanup. 2086 MemRuntimeCheckCond = nullptr; 2087 return MemCheckBlock; 2088 } 2089 }; 2090 2091 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2092 // vectorization. The loop needs to be annotated with #pragma omp simd 2093 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2094 // vector length information is not provided, vectorization is not considered 2095 // explicit. Interleave hints are not allowed either. These limitations will be 2096 // relaxed in the future. 2097 // Please, note that we are currently forced to abuse the pragma 'clang 2098 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2099 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2100 // provides *explicit vectorization hints* (LV can bypass legal checks and 2101 // assume that vectorization is legal). However, both hints are implemented 2102 // using the same metadata (llvm.loop.vectorize, processed by 2103 // LoopVectorizeHints). This will be fixed in the future when the native IR 2104 // representation for pragma 'omp simd' is introduced. 2105 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2106 OptimizationRemarkEmitter *ORE) { 2107 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2108 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2109 2110 // Only outer loops with an explicit vectorization hint are supported. 2111 // Unannotated outer loops are ignored. 2112 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2113 return false; 2114 2115 Function *Fn = OuterLp->getHeader()->getParent(); 2116 if (!Hints.allowVectorization(Fn, OuterLp, 2117 true /*VectorizeOnlyWhenForced*/)) { 2118 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2119 return false; 2120 } 2121 2122 if (Hints.getInterleave() > 1) { 2123 // TODO: Interleave support is future work. 2124 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2125 "outer loops.\n"); 2126 Hints.emitRemarkWithHints(); 2127 return false; 2128 } 2129 2130 return true; 2131 } 2132 2133 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2134 OptimizationRemarkEmitter *ORE, 2135 SmallVectorImpl<Loop *> &V) { 2136 // Collect inner loops and outer loops without irreducible control flow. For 2137 // now, only collect outer loops that have explicit vectorization hints. If we 2138 // are stress testing the VPlan H-CFG construction, we collect the outermost 2139 // loop of every loop nest. 2140 if (L.isInnermost() || VPlanBuildStressTest || 2141 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2142 LoopBlocksRPO RPOT(&L); 2143 RPOT.perform(LI); 2144 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2145 V.push_back(&L); 2146 // TODO: Collect inner loops inside marked outer loops in case 2147 // vectorization fails for the outer loop. Do not invoke 2148 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2149 // already known to be reducible. We can use an inherited attribute for 2150 // that. 2151 return; 2152 } 2153 } 2154 for (Loop *InnerL : L) 2155 collectSupportedLoops(*InnerL, LI, ORE, V); 2156 } 2157 2158 namespace { 2159 2160 /// The LoopVectorize Pass. 2161 struct LoopVectorize : public FunctionPass { 2162 /// Pass identification, replacement for typeid 2163 static char ID; 2164 2165 LoopVectorizePass Impl; 2166 2167 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2168 bool VectorizeOnlyWhenForced = false) 2169 : FunctionPass(ID), 2170 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2171 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2172 } 2173 2174 bool runOnFunction(Function &F) override { 2175 if (skipFunction(F)) 2176 return false; 2177 2178 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2179 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2180 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2181 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2182 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2183 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2184 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2185 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2186 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2187 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2188 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2189 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2190 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2191 2192 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2193 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2194 2195 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2196 GetLAA, *ORE, PSI).MadeAnyChange; 2197 } 2198 2199 void getAnalysisUsage(AnalysisUsage &AU) const override { 2200 AU.addRequired<AssumptionCacheTracker>(); 2201 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2202 AU.addRequired<DominatorTreeWrapperPass>(); 2203 AU.addRequired<LoopInfoWrapperPass>(); 2204 AU.addRequired<ScalarEvolutionWrapperPass>(); 2205 AU.addRequired<TargetTransformInfoWrapperPass>(); 2206 AU.addRequired<AAResultsWrapperPass>(); 2207 AU.addRequired<LoopAccessLegacyAnalysis>(); 2208 AU.addRequired<DemandedBitsWrapperPass>(); 2209 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2210 AU.addRequired<InjectTLIMappingsLegacy>(); 2211 2212 // We currently do not preserve loopinfo/dominator analyses with outer loop 2213 // vectorization. Until this is addressed, mark these analyses as preserved 2214 // only for non-VPlan-native path. 2215 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2216 if (!EnableVPlanNativePath) { 2217 AU.addPreserved<LoopInfoWrapperPass>(); 2218 AU.addPreserved<DominatorTreeWrapperPass>(); 2219 } 2220 2221 AU.addPreserved<BasicAAWrapperPass>(); 2222 AU.addPreserved<GlobalsAAWrapperPass>(); 2223 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2224 } 2225 }; 2226 2227 } // end anonymous namespace 2228 2229 //===----------------------------------------------------------------------===// 2230 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2231 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2232 //===----------------------------------------------------------------------===// 2233 2234 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2235 // We need to place the broadcast of invariant variables outside the loop, 2236 // but only if it's proven safe to do so. Else, broadcast will be inside 2237 // vector loop body. 2238 Instruction *Instr = dyn_cast<Instruction>(V); 2239 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2240 (!Instr || 2241 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2242 // Place the code for broadcasting invariant variables in the new preheader. 2243 IRBuilder<>::InsertPointGuard Guard(Builder); 2244 if (SafeToHoist) 2245 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2246 2247 // Broadcast the scalar into all locations in the vector. 2248 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2249 2250 return Shuf; 2251 } 2252 2253 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2254 const InductionDescriptor &II, Value *Step, Value *Start, 2255 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2256 VPTransformState &State) { 2257 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2258 "Expected either an induction phi-node or a truncate of it!"); 2259 2260 // Construct the initial value of the vector IV in the vector loop preheader 2261 auto CurrIP = Builder.saveIP(); 2262 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2263 if (isa<TruncInst>(EntryVal)) { 2264 assert(Start->getType()->isIntegerTy() && 2265 "Truncation requires an integer type"); 2266 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2267 Step = Builder.CreateTrunc(Step, TruncType); 2268 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2269 } 2270 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2271 Value *SteppedStart = 2272 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2273 2274 // We create vector phi nodes for both integer and floating-point induction 2275 // variables. Here, we determine the kind of arithmetic we will perform. 2276 Instruction::BinaryOps AddOp; 2277 Instruction::BinaryOps MulOp; 2278 if (Step->getType()->isIntegerTy()) { 2279 AddOp = Instruction::Add; 2280 MulOp = Instruction::Mul; 2281 } else { 2282 AddOp = II.getInductionOpcode(); 2283 MulOp = Instruction::FMul; 2284 } 2285 2286 // Multiply the vectorization factor by the step using integer or 2287 // floating-point arithmetic as appropriate. 2288 Type *StepType = Step->getType(); 2289 if (Step->getType()->isFloatingPointTy()) 2290 StepType = IntegerType::get(StepType->getContext(), 2291 StepType->getScalarSizeInBits()); 2292 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2293 if (Step->getType()->isFloatingPointTy()) 2294 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2295 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2296 2297 // Create a vector splat to use in the induction update. 2298 // 2299 // FIXME: If the step is non-constant, we create the vector splat with 2300 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2301 // handle a constant vector splat. 2302 Value *SplatVF = isa<Constant>(Mul) 2303 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2304 : Builder.CreateVectorSplat(VF, Mul); 2305 Builder.restoreIP(CurrIP); 2306 2307 // We may need to add the step a number of times, depending on the unroll 2308 // factor. The last of those goes into the PHI. 2309 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2310 &*LoopVectorBody->getFirstInsertionPt()); 2311 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2312 Instruction *LastInduction = VecInd; 2313 for (unsigned Part = 0; Part < UF; ++Part) { 2314 State.set(Def, LastInduction, Part); 2315 2316 if (isa<TruncInst>(EntryVal)) 2317 addMetadata(LastInduction, EntryVal); 2318 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2319 State, Part); 2320 2321 LastInduction = cast<Instruction>( 2322 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2323 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2324 } 2325 2326 // Move the last step to the end of the latch block. This ensures consistent 2327 // placement of all induction updates. 2328 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2329 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2330 auto *ICmp = cast<Instruction>(Br->getCondition()); 2331 LastInduction->moveBefore(ICmp); 2332 LastInduction->setName("vec.ind.next"); 2333 2334 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2335 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2336 } 2337 2338 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2339 return Cost->isScalarAfterVectorization(I, VF) || 2340 Cost->isProfitableToScalarize(I, VF); 2341 } 2342 2343 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2344 if (shouldScalarizeInstruction(IV)) 2345 return true; 2346 auto isScalarInst = [&](User *U) -> bool { 2347 auto *I = cast<Instruction>(U); 2348 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2349 }; 2350 return llvm::any_of(IV->users(), isScalarInst); 2351 } 2352 2353 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2354 const InductionDescriptor &ID, const Instruction *EntryVal, 2355 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2356 unsigned Part, unsigned Lane) { 2357 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2358 "Expected either an induction phi-node or a truncate of it!"); 2359 2360 // This induction variable is not the phi from the original loop but the 2361 // newly-created IV based on the proof that casted Phi is equal to the 2362 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2363 // re-uses the same InductionDescriptor that original IV uses but we don't 2364 // have to do any recording in this case - that is done when original IV is 2365 // processed. 2366 if (isa<TruncInst>(EntryVal)) 2367 return; 2368 2369 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2370 if (Casts.empty()) 2371 return; 2372 // Only the first Cast instruction in the Casts vector is of interest. 2373 // The rest of the Casts (if exist) have no uses outside the 2374 // induction update chain itself. 2375 if (Lane < UINT_MAX) 2376 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2377 else 2378 State.set(CastDef, VectorLoopVal, Part); 2379 } 2380 2381 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2382 TruncInst *Trunc, VPValue *Def, 2383 VPValue *CastDef, 2384 VPTransformState &State) { 2385 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2386 "Primary induction variable must have an integer type"); 2387 2388 auto II = Legal->getInductionVars().find(IV); 2389 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2390 2391 auto ID = II->second; 2392 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2393 2394 // The value from the original loop to which we are mapping the new induction 2395 // variable. 2396 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2397 2398 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2399 2400 // Generate code for the induction step. Note that induction steps are 2401 // required to be loop-invariant 2402 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2403 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2404 "Induction step should be loop invariant"); 2405 if (PSE.getSE()->isSCEVable(IV->getType())) { 2406 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2407 return Exp.expandCodeFor(Step, Step->getType(), 2408 LoopVectorPreHeader->getTerminator()); 2409 } 2410 return cast<SCEVUnknown>(Step)->getValue(); 2411 }; 2412 2413 // The scalar value to broadcast. This is derived from the canonical 2414 // induction variable. If a truncation type is given, truncate the canonical 2415 // induction variable and step. Otherwise, derive these values from the 2416 // induction descriptor. 2417 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2418 Value *ScalarIV = Induction; 2419 if (IV != OldInduction) { 2420 ScalarIV = IV->getType()->isIntegerTy() 2421 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2422 : Builder.CreateCast(Instruction::SIToFP, Induction, 2423 IV->getType()); 2424 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2425 ScalarIV->setName("offset.idx"); 2426 } 2427 if (Trunc) { 2428 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2429 assert(Step->getType()->isIntegerTy() && 2430 "Truncation requires an integer step"); 2431 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2432 Step = Builder.CreateTrunc(Step, TruncType); 2433 } 2434 return ScalarIV; 2435 }; 2436 2437 // Create the vector values from the scalar IV, in the absence of creating a 2438 // vector IV. 2439 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2440 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2441 for (unsigned Part = 0; Part < UF; ++Part) { 2442 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2443 Value *EntryPart = 2444 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2445 ID.getInductionOpcode()); 2446 State.set(Def, EntryPart, Part); 2447 if (Trunc) 2448 addMetadata(EntryPart, Trunc); 2449 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2450 State, Part); 2451 } 2452 }; 2453 2454 // Fast-math-flags propagate from the original induction instruction. 2455 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2456 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2457 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2458 2459 // Now do the actual transformations, and start with creating the step value. 2460 Value *Step = CreateStepValue(ID.getStep()); 2461 if (VF.isZero() || VF.isScalar()) { 2462 Value *ScalarIV = CreateScalarIV(Step); 2463 CreateSplatIV(ScalarIV, Step); 2464 return; 2465 } 2466 2467 // Determine if we want a scalar version of the induction variable. This is 2468 // true if the induction variable itself is not widened, or if it has at 2469 // least one user in the loop that is not widened. 2470 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2471 if (!NeedsScalarIV) { 2472 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2473 State); 2474 return; 2475 } 2476 2477 // Try to create a new independent vector induction variable. If we can't 2478 // create the phi node, we will splat the scalar induction variable in each 2479 // loop iteration. 2480 if (!shouldScalarizeInstruction(EntryVal)) { 2481 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2482 State); 2483 Value *ScalarIV = CreateScalarIV(Step); 2484 // Create scalar steps that can be used by instructions we will later 2485 // scalarize. Note that the addition of the scalar steps will not increase 2486 // the number of instructions in the loop in the common case prior to 2487 // InstCombine. We will be trading one vector extract for each scalar step. 2488 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2489 return; 2490 } 2491 2492 // All IV users are scalar instructions, so only emit a scalar IV, not a 2493 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2494 // predicate used by the masked loads/stores. 2495 Value *ScalarIV = CreateScalarIV(Step); 2496 if (!Cost->isScalarEpilogueAllowed()) 2497 CreateSplatIV(ScalarIV, Step); 2498 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2499 } 2500 2501 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2502 Instruction::BinaryOps BinOp) { 2503 // Create and check the types. 2504 auto *ValVTy = cast<VectorType>(Val->getType()); 2505 ElementCount VLen = ValVTy->getElementCount(); 2506 2507 Type *STy = Val->getType()->getScalarType(); 2508 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2509 "Induction Step must be an integer or FP"); 2510 assert(Step->getType() == STy && "Step has wrong type"); 2511 2512 SmallVector<Constant *, 8> Indices; 2513 2514 // Create a vector of consecutive numbers from zero to VF. 2515 VectorType *InitVecValVTy = ValVTy; 2516 Type *InitVecValSTy = STy; 2517 if (STy->isFloatingPointTy()) { 2518 InitVecValSTy = 2519 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2520 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2521 } 2522 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2523 2524 // Add on StartIdx 2525 Value *StartIdxSplat = Builder.CreateVectorSplat( 2526 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2527 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2528 2529 if (STy->isIntegerTy()) { 2530 Step = Builder.CreateVectorSplat(VLen, Step); 2531 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2532 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2533 // which can be found from the original scalar operations. 2534 Step = Builder.CreateMul(InitVec, Step); 2535 return Builder.CreateAdd(Val, Step, "induction"); 2536 } 2537 2538 // Floating point induction. 2539 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2540 "Binary Opcode should be specified for FP induction"); 2541 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2542 Step = Builder.CreateVectorSplat(VLen, Step); 2543 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2544 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2545 } 2546 2547 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2548 Instruction *EntryVal, 2549 const InductionDescriptor &ID, 2550 VPValue *Def, VPValue *CastDef, 2551 VPTransformState &State) { 2552 // We shouldn't have to build scalar steps if we aren't vectorizing. 2553 assert(VF.isVector() && "VF should be greater than one"); 2554 // Get the value type and ensure it and the step have the same integer type. 2555 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2556 assert(ScalarIVTy == Step->getType() && 2557 "Val and Step should have the same type"); 2558 2559 // We build scalar steps for both integer and floating-point induction 2560 // variables. Here, we determine the kind of arithmetic we will perform. 2561 Instruction::BinaryOps AddOp; 2562 Instruction::BinaryOps MulOp; 2563 if (ScalarIVTy->isIntegerTy()) { 2564 AddOp = Instruction::Add; 2565 MulOp = Instruction::Mul; 2566 } else { 2567 AddOp = ID.getInductionOpcode(); 2568 MulOp = Instruction::FMul; 2569 } 2570 2571 // Determine the number of scalars we need to generate for each unroll 2572 // iteration. If EntryVal is uniform, we only need to generate the first 2573 // lane. Otherwise, we generate all VF values. 2574 bool IsUniform = 2575 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2576 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2577 // Compute the scalar steps and save the results in State. 2578 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2579 ScalarIVTy->getScalarSizeInBits()); 2580 Type *VecIVTy = nullptr; 2581 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2582 if (!IsUniform && VF.isScalable()) { 2583 VecIVTy = VectorType::get(ScalarIVTy, VF); 2584 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2585 SplatStep = Builder.CreateVectorSplat(VF, Step); 2586 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2587 } 2588 2589 for (unsigned Part = 0; Part < UF; ++Part) { 2590 Value *StartIdx0 = 2591 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2592 2593 if (!IsUniform && VF.isScalable()) { 2594 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2595 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2596 if (ScalarIVTy->isFloatingPointTy()) 2597 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2598 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2599 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2600 State.set(Def, Add, Part); 2601 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2602 Part); 2603 // It's useful to record the lane values too for the known minimum number 2604 // of elements so we do those below. This improves the code quality when 2605 // trying to extract the first element, for example. 2606 } 2607 2608 if (ScalarIVTy->isFloatingPointTy()) 2609 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2610 2611 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2612 Value *StartIdx = Builder.CreateBinOp( 2613 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2614 // The step returned by `createStepForVF` is a runtime-evaluated value 2615 // when VF is scalable. Otherwise, it should be folded into a Constant. 2616 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2617 "Expected StartIdx to be folded to a constant when VF is not " 2618 "scalable"); 2619 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2620 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2621 State.set(Def, Add, VPIteration(Part, Lane)); 2622 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2623 Part, Lane); 2624 } 2625 } 2626 } 2627 2628 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2629 const VPIteration &Instance, 2630 VPTransformState &State) { 2631 Value *ScalarInst = State.get(Def, Instance); 2632 Value *VectorValue = State.get(Def, Instance.Part); 2633 VectorValue = Builder.CreateInsertElement( 2634 VectorValue, ScalarInst, 2635 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2636 State.set(Def, VectorValue, Instance.Part); 2637 } 2638 2639 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2640 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2641 return Builder.CreateVectorReverse(Vec, "reverse"); 2642 } 2643 2644 // Return whether we allow using masked interleave-groups (for dealing with 2645 // strided loads/stores that reside in predicated blocks, or for dealing 2646 // with gaps). 2647 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2648 // If an override option has been passed in for interleaved accesses, use it. 2649 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2650 return EnableMaskedInterleavedMemAccesses; 2651 2652 return TTI.enableMaskedInterleavedAccessVectorization(); 2653 } 2654 2655 // Try to vectorize the interleave group that \p Instr belongs to. 2656 // 2657 // E.g. Translate following interleaved load group (factor = 3): 2658 // for (i = 0; i < N; i+=3) { 2659 // R = Pic[i]; // Member of index 0 2660 // G = Pic[i+1]; // Member of index 1 2661 // B = Pic[i+2]; // Member of index 2 2662 // ... // do something to R, G, B 2663 // } 2664 // To: 2665 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2666 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2667 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2668 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2669 // 2670 // Or translate following interleaved store group (factor = 3): 2671 // for (i = 0; i < N; i+=3) { 2672 // ... do something to R, G, B 2673 // Pic[i] = R; // Member of index 0 2674 // Pic[i+1] = G; // Member of index 1 2675 // Pic[i+2] = B; // Member of index 2 2676 // } 2677 // To: 2678 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2679 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2680 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2681 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2682 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2683 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2684 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2685 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2686 VPValue *BlockInMask) { 2687 Instruction *Instr = Group->getInsertPos(); 2688 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2689 2690 // Prepare for the vector type of the interleaved load/store. 2691 Type *ScalarTy = getMemInstValueType(Instr); 2692 unsigned InterleaveFactor = Group->getFactor(); 2693 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2694 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2695 2696 // Prepare for the new pointers. 2697 SmallVector<Value *, 2> AddrParts; 2698 unsigned Index = Group->getIndex(Instr); 2699 2700 // TODO: extend the masked interleaved-group support to reversed access. 2701 assert((!BlockInMask || !Group->isReverse()) && 2702 "Reversed masked interleave-group not supported."); 2703 2704 // If the group is reverse, adjust the index to refer to the last vector lane 2705 // instead of the first. We adjust the index from the first vector lane, 2706 // rather than directly getting the pointer for lane VF - 1, because the 2707 // pointer operand of the interleaved access is supposed to be uniform. For 2708 // uniform instructions, we're only required to generate a value for the 2709 // first vector lane in each unroll iteration. 2710 if (Group->isReverse()) 2711 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2712 2713 for (unsigned Part = 0; Part < UF; Part++) { 2714 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2715 setDebugLocFromInst(Builder, AddrPart); 2716 2717 // Notice current instruction could be any index. Need to adjust the address 2718 // to the member of index 0. 2719 // 2720 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2721 // b = A[i]; // Member of index 0 2722 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2723 // 2724 // E.g. A[i+1] = a; // Member of index 1 2725 // A[i] = b; // Member of index 0 2726 // A[i+2] = c; // Member of index 2 (Current instruction) 2727 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2728 2729 bool InBounds = false; 2730 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2731 InBounds = gep->isInBounds(); 2732 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2733 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2734 2735 // Cast to the vector pointer type. 2736 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2737 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2738 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2739 } 2740 2741 setDebugLocFromInst(Builder, Instr); 2742 Value *PoisonVec = PoisonValue::get(VecTy); 2743 2744 Value *MaskForGaps = nullptr; 2745 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2746 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2747 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2748 } 2749 2750 // Vectorize the interleaved load group. 2751 if (isa<LoadInst>(Instr)) { 2752 // For each unroll part, create a wide load for the group. 2753 SmallVector<Value *, 2> NewLoads; 2754 for (unsigned Part = 0; Part < UF; Part++) { 2755 Instruction *NewLoad; 2756 if (BlockInMask || MaskForGaps) { 2757 assert(useMaskedInterleavedAccesses(*TTI) && 2758 "masked interleaved groups are not allowed."); 2759 Value *GroupMask = MaskForGaps; 2760 if (BlockInMask) { 2761 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2762 Value *ShuffledMask = Builder.CreateShuffleVector( 2763 BlockInMaskPart, 2764 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2765 "interleaved.mask"); 2766 GroupMask = MaskForGaps 2767 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2768 MaskForGaps) 2769 : ShuffledMask; 2770 } 2771 NewLoad = 2772 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2773 GroupMask, PoisonVec, "wide.masked.vec"); 2774 } 2775 else 2776 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2777 Group->getAlign(), "wide.vec"); 2778 Group->addMetadata(NewLoad); 2779 NewLoads.push_back(NewLoad); 2780 } 2781 2782 // For each member in the group, shuffle out the appropriate data from the 2783 // wide loads. 2784 unsigned J = 0; 2785 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2786 Instruction *Member = Group->getMember(I); 2787 2788 // Skip the gaps in the group. 2789 if (!Member) 2790 continue; 2791 2792 auto StrideMask = 2793 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2794 for (unsigned Part = 0; Part < UF; Part++) { 2795 Value *StridedVec = Builder.CreateShuffleVector( 2796 NewLoads[Part], StrideMask, "strided.vec"); 2797 2798 // If this member has different type, cast the result type. 2799 if (Member->getType() != ScalarTy) { 2800 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2801 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2802 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2803 } 2804 2805 if (Group->isReverse()) 2806 StridedVec = reverseVector(StridedVec); 2807 2808 State.set(VPDefs[J], StridedVec, Part); 2809 } 2810 ++J; 2811 } 2812 return; 2813 } 2814 2815 // The sub vector type for current instruction. 2816 auto *SubVT = VectorType::get(ScalarTy, VF); 2817 2818 // Vectorize the interleaved store group. 2819 for (unsigned Part = 0; Part < UF; Part++) { 2820 // Collect the stored vector from each member. 2821 SmallVector<Value *, 4> StoredVecs; 2822 for (unsigned i = 0; i < InterleaveFactor; i++) { 2823 // Interleaved store group doesn't allow a gap, so each index has a member 2824 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2825 2826 Value *StoredVec = State.get(StoredValues[i], Part); 2827 2828 if (Group->isReverse()) 2829 StoredVec = reverseVector(StoredVec); 2830 2831 // If this member has different type, cast it to a unified type. 2832 2833 if (StoredVec->getType() != SubVT) 2834 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2835 2836 StoredVecs.push_back(StoredVec); 2837 } 2838 2839 // Concatenate all vectors into a wide vector. 2840 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2841 2842 // Interleave the elements in the wide vector. 2843 Value *IVec = Builder.CreateShuffleVector( 2844 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2845 "interleaved.vec"); 2846 2847 Instruction *NewStoreInstr; 2848 if (BlockInMask) { 2849 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2850 Value *ShuffledMask = Builder.CreateShuffleVector( 2851 BlockInMaskPart, 2852 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2853 "interleaved.mask"); 2854 NewStoreInstr = Builder.CreateMaskedStore( 2855 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2856 } 2857 else 2858 NewStoreInstr = 2859 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2860 2861 Group->addMetadata(NewStoreInstr); 2862 } 2863 } 2864 2865 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2866 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2867 VPValue *StoredValue, VPValue *BlockInMask) { 2868 // Attempt to issue a wide load. 2869 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2870 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2871 2872 assert((LI || SI) && "Invalid Load/Store instruction"); 2873 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2874 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2875 2876 LoopVectorizationCostModel::InstWidening Decision = 2877 Cost->getWideningDecision(Instr, VF); 2878 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2879 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2880 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2881 "CM decision is not to widen the memory instruction"); 2882 2883 Type *ScalarDataTy = getMemInstValueType(Instr); 2884 2885 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2886 const Align Alignment = getLoadStoreAlignment(Instr); 2887 2888 // Determine if the pointer operand of the access is either consecutive or 2889 // reverse consecutive. 2890 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2891 bool ConsecutiveStride = 2892 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2893 bool CreateGatherScatter = 2894 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2895 2896 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2897 // gather/scatter. Otherwise Decision should have been to Scalarize. 2898 assert((ConsecutiveStride || CreateGatherScatter) && 2899 "The instruction should be scalarized"); 2900 (void)ConsecutiveStride; 2901 2902 VectorParts BlockInMaskParts(UF); 2903 bool isMaskRequired = BlockInMask; 2904 if (isMaskRequired) 2905 for (unsigned Part = 0; Part < UF; ++Part) 2906 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2907 2908 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2909 // Calculate the pointer for the specific unroll-part. 2910 GetElementPtrInst *PartPtr = nullptr; 2911 2912 bool InBounds = false; 2913 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2914 InBounds = gep->isInBounds(); 2915 if (Reverse) { 2916 // If the address is consecutive but reversed, then the 2917 // wide store needs to start at the last vector element. 2918 // RunTimeVF = VScale * VF.getKnownMinValue() 2919 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2920 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2921 // NumElt = -Part * RunTimeVF 2922 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2923 // LastLane = 1 - RunTimeVF 2924 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2925 PartPtr = 2926 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2927 PartPtr->setIsInBounds(InBounds); 2928 PartPtr = cast<GetElementPtrInst>( 2929 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2930 PartPtr->setIsInBounds(InBounds); 2931 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2932 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2933 } else { 2934 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2935 PartPtr = cast<GetElementPtrInst>( 2936 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2937 PartPtr->setIsInBounds(InBounds); 2938 } 2939 2940 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2941 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2942 }; 2943 2944 // Handle Stores: 2945 if (SI) { 2946 setDebugLocFromInst(Builder, SI); 2947 2948 for (unsigned Part = 0; Part < UF; ++Part) { 2949 Instruction *NewSI = nullptr; 2950 Value *StoredVal = State.get(StoredValue, Part); 2951 if (CreateGatherScatter) { 2952 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2953 Value *VectorGep = State.get(Addr, Part); 2954 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2955 MaskPart); 2956 } else { 2957 if (Reverse) { 2958 // If we store to reverse consecutive memory locations, then we need 2959 // to reverse the order of elements in the stored value. 2960 StoredVal = reverseVector(StoredVal); 2961 // We don't want to update the value in the map as it might be used in 2962 // another expression. So don't call resetVectorValue(StoredVal). 2963 } 2964 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2965 if (isMaskRequired) 2966 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2967 BlockInMaskParts[Part]); 2968 else 2969 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2970 } 2971 addMetadata(NewSI, SI); 2972 } 2973 return; 2974 } 2975 2976 // Handle loads. 2977 assert(LI && "Must have a load instruction"); 2978 setDebugLocFromInst(Builder, LI); 2979 for (unsigned Part = 0; Part < UF; ++Part) { 2980 Value *NewLI; 2981 if (CreateGatherScatter) { 2982 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2983 Value *VectorGep = State.get(Addr, Part); 2984 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2985 nullptr, "wide.masked.gather"); 2986 addMetadata(NewLI, LI); 2987 } else { 2988 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2989 if (isMaskRequired) 2990 NewLI = Builder.CreateMaskedLoad( 2991 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2992 "wide.masked.load"); 2993 else 2994 NewLI = 2995 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2996 2997 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2998 addMetadata(NewLI, LI); 2999 if (Reverse) 3000 NewLI = reverseVector(NewLI); 3001 } 3002 3003 State.set(Def, NewLI, Part); 3004 } 3005 } 3006 3007 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3008 VPUser &User, 3009 const VPIteration &Instance, 3010 bool IfPredicateInstr, 3011 VPTransformState &State) { 3012 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3013 3014 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3015 // the first lane and part. 3016 if (isa<NoAliasScopeDeclInst>(Instr)) 3017 if (!Instance.isFirstIteration()) 3018 return; 3019 3020 setDebugLocFromInst(Builder, Instr); 3021 3022 // Does this instruction return a value ? 3023 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3024 3025 Instruction *Cloned = Instr->clone(); 3026 if (!IsVoidRetTy) 3027 Cloned->setName(Instr->getName() + ".cloned"); 3028 3029 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3030 Builder.GetInsertPoint()); 3031 // Replace the operands of the cloned instructions with their scalar 3032 // equivalents in the new loop. 3033 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3034 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3035 auto InputInstance = Instance; 3036 if (!Operand || !OrigLoop->contains(Operand) || 3037 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3038 InputInstance.Lane = VPLane::getFirstLane(); 3039 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3040 Cloned->setOperand(op, NewOp); 3041 } 3042 addNewMetadata(Cloned, Instr); 3043 3044 // Place the cloned scalar in the new loop. 3045 Builder.Insert(Cloned); 3046 3047 State.set(Def, Cloned, Instance); 3048 3049 // If we just cloned a new assumption, add it the assumption cache. 3050 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3051 AC->registerAssumption(II); 3052 3053 // End if-block. 3054 if (IfPredicateInstr) 3055 PredicatedInstructions.push_back(Cloned); 3056 } 3057 3058 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3059 Value *End, Value *Step, 3060 Instruction *DL) { 3061 BasicBlock *Header = L->getHeader(); 3062 BasicBlock *Latch = L->getLoopLatch(); 3063 // As we're just creating this loop, it's possible no latch exists 3064 // yet. If so, use the header as this will be a single block loop. 3065 if (!Latch) 3066 Latch = Header; 3067 3068 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3069 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3070 setDebugLocFromInst(Builder, OldInst); 3071 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3072 3073 Builder.SetInsertPoint(Latch->getTerminator()); 3074 setDebugLocFromInst(Builder, OldInst); 3075 3076 // Create i+1 and fill the PHINode. 3077 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3078 Induction->addIncoming(Start, L->getLoopPreheader()); 3079 Induction->addIncoming(Next, Latch); 3080 // Create the compare. 3081 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3082 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3083 3084 // Now we have two terminators. Remove the old one from the block. 3085 Latch->getTerminator()->eraseFromParent(); 3086 3087 return Induction; 3088 } 3089 3090 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3091 if (TripCount) 3092 return TripCount; 3093 3094 assert(L && "Create Trip Count for null loop."); 3095 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3096 // Find the loop boundaries. 3097 ScalarEvolution *SE = PSE.getSE(); 3098 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3099 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3100 "Invalid loop count"); 3101 3102 Type *IdxTy = Legal->getWidestInductionType(); 3103 assert(IdxTy && "No type for induction"); 3104 3105 // The exit count might have the type of i64 while the phi is i32. This can 3106 // happen if we have an induction variable that is sign extended before the 3107 // compare. The only way that we get a backedge taken count is that the 3108 // induction variable was signed and as such will not overflow. In such a case 3109 // truncation is legal. 3110 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3111 IdxTy->getPrimitiveSizeInBits()) 3112 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3113 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3114 3115 // Get the total trip count from the count by adding 1. 3116 const SCEV *ExitCount = SE->getAddExpr( 3117 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3118 3119 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3120 3121 // Expand the trip count and place the new instructions in the preheader. 3122 // Notice that the pre-header does not change, only the loop body. 3123 SCEVExpander Exp(*SE, DL, "induction"); 3124 3125 // Count holds the overall loop count (N). 3126 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3127 L->getLoopPreheader()->getTerminator()); 3128 3129 if (TripCount->getType()->isPointerTy()) 3130 TripCount = 3131 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3132 L->getLoopPreheader()->getTerminator()); 3133 3134 return TripCount; 3135 } 3136 3137 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3138 if (VectorTripCount) 3139 return VectorTripCount; 3140 3141 Value *TC = getOrCreateTripCount(L); 3142 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3143 3144 Type *Ty = TC->getType(); 3145 // This is where we can make the step a runtime constant. 3146 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3147 3148 // If the tail is to be folded by masking, round the number of iterations N 3149 // up to a multiple of Step instead of rounding down. This is done by first 3150 // adding Step-1 and then rounding down. Note that it's ok if this addition 3151 // overflows: the vector induction variable will eventually wrap to zero given 3152 // that it starts at zero and its Step is a power of two; the loop will then 3153 // exit, with the last early-exit vector comparison also producing all-true. 3154 if (Cost->foldTailByMasking()) { 3155 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3156 "VF*UF must be a power of 2 when folding tail by masking"); 3157 assert(!VF.isScalable() && 3158 "Tail folding not yet supported for scalable vectors"); 3159 TC = Builder.CreateAdd( 3160 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3161 } 3162 3163 // Now we need to generate the expression for the part of the loop that the 3164 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3165 // iterations are not required for correctness, or N - Step, otherwise. Step 3166 // is equal to the vectorization factor (number of SIMD elements) times the 3167 // unroll factor (number of SIMD instructions). 3168 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3169 3170 // There are two cases where we need to ensure (at least) the last iteration 3171 // runs in the scalar remainder loop. Thus, if the step evenly divides 3172 // the trip count, we set the remainder to be equal to the step. If the step 3173 // does not evenly divide the trip count, no adjustment is necessary since 3174 // there will already be scalar iterations. Note that the minimum iterations 3175 // check ensures that N >= Step. The cases are: 3176 // 1) If there is a non-reversed interleaved group that may speculatively 3177 // access memory out-of-bounds. 3178 // 2) If any instruction may follow a conditionally taken exit. That is, if 3179 // the loop contains multiple exiting blocks, or a single exiting block 3180 // which is not the latch. 3181 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3182 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3183 R = Builder.CreateSelect(IsZero, Step, R); 3184 } 3185 3186 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3187 3188 return VectorTripCount; 3189 } 3190 3191 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3192 const DataLayout &DL) { 3193 // Verify that V is a vector type with same number of elements as DstVTy. 3194 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3195 unsigned VF = DstFVTy->getNumElements(); 3196 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3197 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3198 Type *SrcElemTy = SrcVecTy->getElementType(); 3199 Type *DstElemTy = DstFVTy->getElementType(); 3200 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3201 "Vector elements must have same size"); 3202 3203 // Do a direct cast if element types are castable. 3204 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3205 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3206 } 3207 // V cannot be directly casted to desired vector type. 3208 // May happen when V is a floating point vector but DstVTy is a vector of 3209 // pointers or vice-versa. Handle this using a two-step bitcast using an 3210 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3211 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3212 "Only one type should be a pointer type"); 3213 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3214 "Only one type should be a floating point type"); 3215 Type *IntTy = 3216 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3217 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3218 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3219 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3220 } 3221 3222 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3223 BasicBlock *Bypass) { 3224 Value *Count = getOrCreateTripCount(L); 3225 // Reuse existing vector loop preheader for TC checks. 3226 // Note that new preheader block is generated for vector loop. 3227 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3228 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3229 3230 // Generate code to check if the loop's trip count is less than VF * UF, or 3231 // equal to it in case a scalar epilogue is required; this implies that the 3232 // vector trip count is zero. This check also covers the case where adding one 3233 // to the backedge-taken count overflowed leading to an incorrect trip count 3234 // of zero. In this case we will also jump to the scalar loop. 3235 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3236 : ICmpInst::ICMP_ULT; 3237 3238 // If tail is to be folded, vector loop takes care of all iterations. 3239 Value *CheckMinIters = Builder.getFalse(); 3240 if (!Cost->foldTailByMasking()) { 3241 Value *Step = 3242 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3243 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3244 } 3245 // Create new preheader for vector loop. 3246 LoopVectorPreHeader = 3247 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3248 "vector.ph"); 3249 3250 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3251 DT->getNode(Bypass)->getIDom()) && 3252 "TC check is expected to dominate Bypass"); 3253 3254 // Update dominator for Bypass & LoopExit. 3255 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3256 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3257 3258 ReplaceInstWithInst( 3259 TCCheckBlock->getTerminator(), 3260 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3261 LoopBypassBlocks.push_back(TCCheckBlock); 3262 } 3263 3264 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3265 3266 BasicBlock *const SCEVCheckBlock = 3267 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3268 if (!SCEVCheckBlock) 3269 return nullptr; 3270 3271 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3272 (OptForSizeBasedOnProfile && 3273 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3274 "Cannot SCEV check stride or overflow when optimizing for size"); 3275 3276 3277 // Update dominator only if this is first RT check. 3278 if (LoopBypassBlocks.empty()) { 3279 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3280 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3281 } 3282 3283 LoopBypassBlocks.push_back(SCEVCheckBlock); 3284 AddedSafetyChecks = true; 3285 return SCEVCheckBlock; 3286 } 3287 3288 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3289 BasicBlock *Bypass) { 3290 // VPlan-native path does not do any analysis for runtime checks currently. 3291 if (EnableVPlanNativePath) 3292 return nullptr; 3293 3294 BasicBlock *const MemCheckBlock = 3295 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3296 3297 // Check if we generated code that checks in runtime if arrays overlap. We put 3298 // the checks into a separate block to make the more common case of few 3299 // elements faster. 3300 if (!MemCheckBlock) 3301 return nullptr; 3302 3303 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3304 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3305 "Cannot emit memory checks when optimizing for size, unless forced " 3306 "to vectorize."); 3307 ORE->emit([&]() { 3308 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3309 L->getStartLoc(), L->getHeader()) 3310 << "Code-size may be reduced by not forcing " 3311 "vectorization, or by source-code modifications " 3312 "eliminating the need for runtime checks " 3313 "(e.g., adding 'restrict')."; 3314 }); 3315 } 3316 3317 LoopBypassBlocks.push_back(MemCheckBlock); 3318 3319 AddedSafetyChecks = true; 3320 3321 // We currently don't use LoopVersioning for the actual loop cloning but we 3322 // still use it to add the noalias metadata. 3323 LVer = std::make_unique<LoopVersioning>( 3324 *Legal->getLAI(), 3325 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3326 DT, PSE.getSE()); 3327 LVer->prepareNoAliasMetadata(); 3328 return MemCheckBlock; 3329 } 3330 3331 Value *InnerLoopVectorizer::emitTransformedIndex( 3332 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3333 const InductionDescriptor &ID) const { 3334 3335 SCEVExpander Exp(*SE, DL, "induction"); 3336 auto Step = ID.getStep(); 3337 auto StartValue = ID.getStartValue(); 3338 assert(Index->getType() == Step->getType() && 3339 "Index type does not match StepValue type"); 3340 3341 // Note: the IR at this point is broken. We cannot use SE to create any new 3342 // SCEV and then expand it, hoping that SCEV's simplification will give us 3343 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3344 // lead to various SCEV crashes. So all we can do is to use builder and rely 3345 // on InstCombine for future simplifications. Here we handle some trivial 3346 // cases only. 3347 auto CreateAdd = [&B](Value *X, Value *Y) { 3348 assert(X->getType() == Y->getType() && "Types don't match!"); 3349 if (auto *CX = dyn_cast<ConstantInt>(X)) 3350 if (CX->isZero()) 3351 return Y; 3352 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3353 if (CY->isZero()) 3354 return X; 3355 return B.CreateAdd(X, Y); 3356 }; 3357 3358 auto CreateMul = [&B](Value *X, Value *Y) { 3359 assert(X->getType() == Y->getType() && "Types don't match!"); 3360 if (auto *CX = dyn_cast<ConstantInt>(X)) 3361 if (CX->isOne()) 3362 return Y; 3363 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3364 if (CY->isOne()) 3365 return X; 3366 return B.CreateMul(X, Y); 3367 }; 3368 3369 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3370 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3371 // the DomTree is not kept up-to-date for additional blocks generated in the 3372 // vector loop. By using the header as insertion point, we guarantee that the 3373 // expanded instructions dominate all their uses. 3374 auto GetInsertPoint = [this, &B]() { 3375 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3376 if (InsertBB != LoopVectorBody && 3377 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3378 return LoopVectorBody->getTerminator(); 3379 return &*B.GetInsertPoint(); 3380 }; 3381 3382 switch (ID.getKind()) { 3383 case InductionDescriptor::IK_IntInduction: { 3384 assert(Index->getType() == StartValue->getType() && 3385 "Index type does not match StartValue type"); 3386 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3387 return B.CreateSub(StartValue, Index); 3388 auto *Offset = CreateMul( 3389 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3390 return CreateAdd(StartValue, Offset); 3391 } 3392 case InductionDescriptor::IK_PtrInduction: { 3393 assert(isa<SCEVConstant>(Step) && 3394 "Expected constant step for pointer induction"); 3395 return B.CreateGEP( 3396 StartValue->getType()->getPointerElementType(), StartValue, 3397 CreateMul(Index, 3398 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3399 } 3400 case InductionDescriptor::IK_FpInduction: { 3401 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3402 auto InductionBinOp = ID.getInductionBinOp(); 3403 assert(InductionBinOp && 3404 (InductionBinOp->getOpcode() == Instruction::FAdd || 3405 InductionBinOp->getOpcode() == Instruction::FSub) && 3406 "Original bin op should be defined for FP induction"); 3407 3408 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3409 Value *MulExp = B.CreateFMul(StepValue, Index); 3410 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3411 "induction"); 3412 } 3413 case InductionDescriptor::IK_NoInduction: 3414 return nullptr; 3415 } 3416 llvm_unreachable("invalid enum"); 3417 } 3418 3419 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3420 LoopScalarBody = OrigLoop->getHeader(); 3421 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3422 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3423 assert(LoopExitBlock && "Must have an exit block"); 3424 assert(LoopVectorPreHeader && "Invalid loop structure"); 3425 3426 LoopMiddleBlock = 3427 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3428 LI, nullptr, Twine(Prefix) + "middle.block"); 3429 LoopScalarPreHeader = 3430 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3431 nullptr, Twine(Prefix) + "scalar.ph"); 3432 3433 // Set up branch from middle block to the exit and scalar preheader blocks. 3434 // completeLoopSkeleton will update the condition to use an iteration check, 3435 // if required to decide whether to execute the remainder. 3436 BranchInst *BrInst = 3437 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3438 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3439 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3440 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3441 3442 // We intentionally don't let SplitBlock to update LoopInfo since 3443 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3444 // LoopVectorBody is explicitly added to the correct place few lines later. 3445 LoopVectorBody = 3446 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3447 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3448 3449 // Update dominator for loop exit. 3450 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3451 3452 // Create and register the new vector loop. 3453 Loop *Lp = LI->AllocateLoop(); 3454 Loop *ParentLoop = OrigLoop->getParentLoop(); 3455 3456 // Insert the new loop into the loop nest and register the new basic blocks 3457 // before calling any utilities such as SCEV that require valid LoopInfo. 3458 if (ParentLoop) { 3459 ParentLoop->addChildLoop(Lp); 3460 } else { 3461 LI->addTopLevelLoop(Lp); 3462 } 3463 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3464 return Lp; 3465 } 3466 3467 void InnerLoopVectorizer::createInductionResumeValues( 3468 Loop *L, Value *VectorTripCount, 3469 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3470 assert(VectorTripCount && L && "Expected valid arguments"); 3471 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3472 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3473 "Inconsistent information about additional bypass."); 3474 // We are going to resume the execution of the scalar loop. 3475 // Go over all of the induction variables that we found and fix the 3476 // PHIs that are left in the scalar version of the loop. 3477 // The starting values of PHI nodes depend on the counter of the last 3478 // iteration in the vectorized loop. 3479 // If we come from a bypass edge then we need to start from the original 3480 // start value. 3481 for (auto &InductionEntry : Legal->getInductionVars()) { 3482 PHINode *OrigPhi = InductionEntry.first; 3483 InductionDescriptor II = InductionEntry.second; 3484 3485 // Create phi nodes to merge from the backedge-taken check block. 3486 PHINode *BCResumeVal = 3487 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3488 LoopScalarPreHeader->getTerminator()); 3489 // Copy original phi DL over to the new one. 3490 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3491 Value *&EndValue = IVEndValues[OrigPhi]; 3492 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3493 if (OrigPhi == OldInduction) { 3494 // We know what the end value is. 3495 EndValue = VectorTripCount; 3496 } else { 3497 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3498 3499 // Fast-math-flags propagate from the original induction instruction. 3500 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3501 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3502 3503 Type *StepType = II.getStep()->getType(); 3504 Instruction::CastOps CastOp = 3505 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3506 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3507 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3508 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3509 EndValue->setName("ind.end"); 3510 3511 // Compute the end value for the additional bypass (if applicable). 3512 if (AdditionalBypass.first) { 3513 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3514 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3515 StepType, true); 3516 CRD = 3517 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3518 EndValueFromAdditionalBypass = 3519 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3520 EndValueFromAdditionalBypass->setName("ind.end"); 3521 } 3522 } 3523 // The new PHI merges the original incoming value, in case of a bypass, 3524 // or the value at the end of the vectorized loop. 3525 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3526 3527 // Fix the scalar body counter (PHI node). 3528 // The old induction's phi node in the scalar body needs the truncated 3529 // value. 3530 for (BasicBlock *BB : LoopBypassBlocks) 3531 BCResumeVal->addIncoming(II.getStartValue(), BB); 3532 3533 if (AdditionalBypass.first) 3534 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3535 EndValueFromAdditionalBypass); 3536 3537 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3538 } 3539 } 3540 3541 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3542 MDNode *OrigLoopID) { 3543 assert(L && "Expected valid loop."); 3544 3545 // The trip counts should be cached by now. 3546 Value *Count = getOrCreateTripCount(L); 3547 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3548 3549 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3550 3551 // Add a check in the middle block to see if we have completed 3552 // all of the iterations in the first vector loop. 3553 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3554 // If tail is to be folded, we know we don't need to run the remainder. 3555 if (!Cost->foldTailByMasking()) { 3556 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3557 Count, VectorTripCount, "cmp.n", 3558 LoopMiddleBlock->getTerminator()); 3559 3560 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3561 // of the corresponding compare because they may have ended up with 3562 // different line numbers and we want to avoid awkward line stepping while 3563 // debugging. Eg. if the compare has got a line number inside the loop. 3564 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3565 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3566 } 3567 3568 // Get ready to start creating new instructions into the vectorized body. 3569 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3570 "Inconsistent vector loop preheader"); 3571 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3572 3573 Optional<MDNode *> VectorizedLoopID = 3574 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3575 LLVMLoopVectorizeFollowupVectorized}); 3576 if (VectorizedLoopID.hasValue()) { 3577 L->setLoopID(VectorizedLoopID.getValue()); 3578 3579 // Do not setAlreadyVectorized if loop attributes have been defined 3580 // explicitly. 3581 return LoopVectorPreHeader; 3582 } 3583 3584 // Keep all loop hints from the original loop on the vector loop (we'll 3585 // replace the vectorizer-specific hints below). 3586 if (MDNode *LID = OrigLoop->getLoopID()) 3587 L->setLoopID(LID); 3588 3589 LoopVectorizeHints Hints(L, true, *ORE); 3590 Hints.setAlreadyVectorized(); 3591 3592 #ifdef EXPENSIVE_CHECKS 3593 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3594 LI->verify(*DT); 3595 #endif 3596 3597 return LoopVectorPreHeader; 3598 } 3599 3600 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3601 /* 3602 In this function we generate a new loop. The new loop will contain 3603 the vectorized instructions while the old loop will continue to run the 3604 scalar remainder. 3605 3606 [ ] <-- loop iteration number check. 3607 / | 3608 / v 3609 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3610 | / | 3611 | / v 3612 || [ ] <-- vector pre header. 3613 |/ | 3614 | v 3615 | [ ] \ 3616 | [ ]_| <-- vector loop. 3617 | | 3618 | v 3619 | -[ ] <--- middle-block. 3620 | / | 3621 | / v 3622 -|- >[ ] <--- new preheader. 3623 | | 3624 | v 3625 | [ ] \ 3626 | [ ]_| <-- old scalar loop to handle remainder. 3627 \ | 3628 \ v 3629 >[ ] <-- exit block. 3630 ... 3631 */ 3632 3633 // Get the metadata of the original loop before it gets modified. 3634 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3635 3636 // Workaround! Compute the trip count of the original loop and cache it 3637 // before we start modifying the CFG. This code has a systemic problem 3638 // wherein it tries to run analysis over partially constructed IR; this is 3639 // wrong, and not simply for SCEV. The trip count of the original loop 3640 // simply happens to be prone to hitting this in practice. In theory, we 3641 // can hit the same issue for any SCEV, or ValueTracking query done during 3642 // mutation. See PR49900. 3643 getOrCreateTripCount(OrigLoop); 3644 3645 // Create an empty vector loop, and prepare basic blocks for the runtime 3646 // checks. 3647 Loop *Lp = createVectorLoopSkeleton(""); 3648 3649 // Now, compare the new count to zero. If it is zero skip the vector loop and 3650 // jump to the scalar loop. This check also covers the case where the 3651 // backedge-taken count is uint##_max: adding one to it will overflow leading 3652 // to an incorrect trip count of zero. In this (rare) case we will also jump 3653 // to the scalar loop. 3654 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3655 3656 // Generate the code to check any assumptions that we've made for SCEV 3657 // expressions. 3658 emitSCEVChecks(Lp, LoopScalarPreHeader); 3659 3660 // Generate the code that checks in runtime if arrays overlap. We put the 3661 // checks into a separate block to make the more common case of few elements 3662 // faster. 3663 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3664 3665 // Some loops have a single integer induction variable, while other loops 3666 // don't. One example is c++ iterators that often have multiple pointer 3667 // induction variables. In the code below we also support a case where we 3668 // don't have a single induction variable. 3669 // 3670 // We try to obtain an induction variable from the original loop as hard 3671 // as possible. However if we don't find one that: 3672 // - is an integer 3673 // - counts from zero, stepping by one 3674 // - is the size of the widest induction variable type 3675 // then we create a new one. 3676 OldInduction = Legal->getPrimaryInduction(); 3677 Type *IdxTy = Legal->getWidestInductionType(); 3678 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3679 // The loop step is equal to the vectorization factor (num of SIMD elements) 3680 // times the unroll factor (num of SIMD instructions). 3681 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3682 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3683 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3684 Induction = 3685 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3686 getDebugLocFromInstOrOperands(OldInduction)); 3687 3688 // Emit phis for the new starting index of the scalar loop. 3689 createInductionResumeValues(Lp, CountRoundDown); 3690 3691 return completeLoopSkeleton(Lp, OrigLoopID); 3692 } 3693 3694 // Fix up external users of the induction variable. At this point, we are 3695 // in LCSSA form, with all external PHIs that use the IV having one input value, 3696 // coming from the remainder loop. We need those PHIs to also have a correct 3697 // value for the IV when arriving directly from the middle block. 3698 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3699 const InductionDescriptor &II, 3700 Value *CountRoundDown, Value *EndValue, 3701 BasicBlock *MiddleBlock) { 3702 // There are two kinds of external IV usages - those that use the value 3703 // computed in the last iteration (the PHI) and those that use the penultimate 3704 // value (the value that feeds into the phi from the loop latch). 3705 // We allow both, but they, obviously, have different values. 3706 3707 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3708 3709 DenseMap<Value *, Value *> MissingVals; 3710 3711 // An external user of the last iteration's value should see the value that 3712 // the remainder loop uses to initialize its own IV. 3713 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3714 for (User *U : PostInc->users()) { 3715 Instruction *UI = cast<Instruction>(U); 3716 if (!OrigLoop->contains(UI)) { 3717 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3718 MissingVals[UI] = EndValue; 3719 } 3720 } 3721 3722 // An external user of the penultimate value need to see EndValue - Step. 3723 // The simplest way to get this is to recompute it from the constituent SCEVs, 3724 // that is Start + (Step * (CRD - 1)). 3725 for (User *U : OrigPhi->users()) { 3726 auto *UI = cast<Instruction>(U); 3727 if (!OrigLoop->contains(UI)) { 3728 const DataLayout &DL = 3729 OrigLoop->getHeader()->getModule()->getDataLayout(); 3730 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3731 3732 IRBuilder<> B(MiddleBlock->getTerminator()); 3733 3734 // Fast-math-flags propagate from the original induction instruction. 3735 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3736 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3737 3738 Value *CountMinusOne = B.CreateSub( 3739 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3740 Value *CMO = 3741 !II.getStep()->getType()->isIntegerTy() 3742 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3743 II.getStep()->getType()) 3744 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3745 CMO->setName("cast.cmo"); 3746 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3747 Escape->setName("ind.escape"); 3748 MissingVals[UI] = Escape; 3749 } 3750 } 3751 3752 for (auto &I : MissingVals) { 3753 PHINode *PHI = cast<PHINode>(I.first); 3754 // One corner case we have to handle is two IVs "chasing" each-other, 3755 // that is %IV2 = phi [...], [ %IV1, %latch ] 3756 // In this case, if IV1 has an external use, we need to avoid adding both 3757 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3758 // don't already have an incoming value for the middle block. 3759 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3760 PHI->addIncoming(I.second, MiddleBlock); 3761 } 3762 } 3763 3764 namespace { 3765 3766 struct CSEDenseMapInfo { 3767 static bool canHandle(const Instruction *I) { 3768 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3769 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3770 } 3771 3772 static inline Instruction *getEmptyKey() { 3773 return DenseMapInfo<Instruction *>::getEmptyKey(); 3774 } 3775 3776 static inline Instruction *getTombstoneKey() { 3777 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3778 } 3779 3780 static unsigned getHashValue(const Instruction *I) { 3781 assert(canHandle(I) && "Unknown instruction!"); 3782 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3783 I->value_op_end())); 3784 } 3785 3786 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3787 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3788 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3789 return LHS == RHS; 3790 return LHS->isIdenticalTo(RHS); 3791 } 3792 }; 3793 3794 } // end anonymous namespace 3795 3796 ///Perform cse of induction variable instructions. 3797 static void cse(BasicBlock *BB) { 3798 // Perform simple cse. 3799 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3800 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3801 Instruction *In = &*I++; 3802 3803 if (!CSEDenseMapInfo::canHandle(In)) 3804 continue; 3805 3806 // Check if we can replace this instruction with any of the 3807 // visited instructions. 3808 if (Instruction *V = CSEMap.lookup(In)) { 3809 In->replaceAllUsesWith(V); 3810 In->eraseFromParent(); 3811 continue; 3812 } 3813 3814 CSEMap[In] = In; 3815 } 3816 } 3817 3818 InstructionCost 3819 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3820 bool &NeedToScalarize) const { 3821 Function *F = CI->getCalledFunction(); 3822 Type *ScalarRetTy = CI->getType(); 3823 SmallVector<Type *, 4> Tys, ScalarTys; 3824 for (auto &ArgOp : CI->arg_operands()) 3825 ScalarTys.push_back(ArgOp->getType()); 3826 3827 // Estimate cost of scalarized vector call. The source operands are assumed 3828 // to be vectors, so we need to extract individual elements from there, 3829 // execute VF scalar calls, and then gather the result into the vector return 3830 // value. 3831 InstructionCost ScalarCallCost = 3832 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3833 if (VF.isScalar()) 3834 return ScalarCallCost; 3835 3836 // Compute corresponding vector type for return value and arguments. 3837 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3838 for (Type *ScalarTy : ScalarTys) 3839 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3840 3841 // Compute costs of unpacking argument values for the scalar calls and 3842 // packing the return values to a vector. 3843 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3844 3845 InstructionCost Cost = 3846 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3847 3848 // If we can't emit a vector call for this function, then the currently found 3849 // cost is the cost we need to return. 3850 NeedToScalarize = true; 3851 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3852 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3853 3854 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3855 return Cost; 3856 3857 // If the corresponding vector cost is cheaper, return its cost. 3858 InstructionCost VectorCallCost = 3859 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3860 if (VectorCallCost < Cost) { 3861 NeedToScalarize = false; 3862 Cost = VectorCallCost; 3863 } 3864 return Cost; 3865 } 3866 3867 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3868 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3869 return Elt; 3870 return VectorType::get(Elt, VF); 3871 } 3872 3873 InstructionCost 3874 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3875 ElementCount VF) const { 3876 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3877 assert(ID && "Expected intrinsic call!"); 3878 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3879 FastMathFlags FMF; 3880 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3881 FMF = FPMO->getFastMathFlags(); 3882 3883 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3884 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3885 SmallVector<Type *> ParamTys; 3886 std::transform(FTy->param_begin(), FTy->param_end(), 3887 std::back_inserter(ParamTys), 3888 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3889 3890 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3891 dyn_cast<IntrinsicInst>(CI)); 3892 return TTI.getIntrinsicInstrCost(CostAttrs, 3893 TargetTransformInfo::TCK_RecipThroughput); 3894 } 3895 3896 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3897 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3898 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3899 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3900 } 3901 3902 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3903 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3904 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3905 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3906 } 3907 3908 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3909 // For every instruction `I` in MinBWs, truncate the operands, create a 3910 // truncated version of `I` and reextend its result. InstCombine runs 3911 // later and will remove any ext/trunc pairs. 3912 SmallPtrSet<Value *, 4> Erased; 3913 for (const auto &KV : Cost->getMinimalBitwidths()) { 3914 // If the value wasn't vectorized, we must maintain the original scalar 3915 // type. The absence of the value from State indicates that it 3916 // wasn't vectorized. 3917 VPValue *Def = State.Plan->getVPValue(KV.first); 3918 if (!State.hasAnyVectorValue(Def)) 3919 continue; 3920 for (unsigned Part = 0; Part < UF; ++Part) { 3921 Value *I = State.get(Def, Part); 3922 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3923 continue; 3924 Type *OriginalTy = I->getType(); 3925 Type *ScalarTruncatedTy = 3926 IntegerType::get(OriginalTy->getContext(), KV.second); 3927 auto *TruncatedTy = FixedVectorType::get( 3928 ScalarTruncatedTy, 3929 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3930 if (TruncatedTy == OriginalTy) 3931 continue; 3932 3933 IRBuilder<> B(cast<Instruction>(I)); 3934 auto ShrinkOperand = [&](Value *V) -> Value * { 3935 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3936 if (ZI->getSrcTy() == TruncatedTy) 3937 return ZI->getOperand(0); 3938 return B.CreateZExtOrTrunc(V, TruncatedTy); 3939 }; 3940 3941 // The actual instruction modification depends on the instruction type, 3942 // unfortunately. 3943 Value *NewI = nullptr; 3944 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3945 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3946 ShrinkOperand(BO->getOperand(1))); 3947 3948 // Any wrapping introduced by shrinking this operation shouldn't be 3949 // considered undefined behavior. So, we can't unconditionally copy 3950 // arithmetic wrapping flags to NewI. 3951 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3952 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3953 NewI = 3954 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3955 ShrinkOperand(CI->getOperand(1))); 3956 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3957 NewI = B.CreateSelect(SI->getCondition(), 3958 ShrinkOperand(SI->getTrueValue()), 3959 ShrinkOperand(SI->getFalseValue())); 3960 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3961 switch (CI->getOpcode()) { 3962 default: 3963 llvm_unreachable("Unhandled cast!"); 3964 case Instruction::Trunc: 3965 NewI = ShrinkOperand(CI->getOperand(0)); 3966 break; 3967 case Instruction::SExt: 3968 NewI = B.CreateSExtOrTrunc( 3969 CI->getOperand(0), 3970 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3971 break; 3972 case Instruction::ZExt: 3973 NewI = B.CreateZExtOrTrunc( 3974 CI->getOperand(0), 3975 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3976 break; 3977 } 3978 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3979 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3980 ->getNumElements(); 3981 auto *O0 = B.CreateZExtOrTrunc( 3982 SI->getOperand(0), 3983 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3984 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3985 ->getNumElements(); 3986 auto *O1 = B.CreateZExtOrTrunc( 3987 SI->getOperand(1), 3988 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3989 3990 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3991 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3992 // Don't do anything with the operands, just extend the result. 3993 continue; 3994 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3995 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3996 ->getNumElements(); 3997 auto *O0 = B.CreateZExtOrTrunc( 3998 IE->getOperand(0), 3999 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4000 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4001 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4002 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4003 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 4004 ->getNumElements(); 4005 auto *O0 = B.CreateZExtOrTrunc( 4006 EE->getOperand(0), 4007 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4008 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4009 } else { 4010 // If we don't know what to do, be conservative and don't do anything. 4011 continue; 4012 } 4013 4014 // Lastly, extend the result. 4015 NewI->takeName(cast<Instruction>(I)); 4016 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4017 I->replaceAllUsesWith(Res); 4018 cast<Instruction>(I)->eraseFromParent(); 4019 Erased.insert(I); 4020 State.reset(Def, Res, Part); 4021 } 4022 } 4023 4024 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4025 for (const auto &KV : Cost->getMinimalBitwidths()) { 4026 // If the value wasn't vectorized, we must maintain the original scalar 4027 // type. The absence of the value from State indicates that it 4028 // wasn't vectorized. 4029 VPValue *Def = State.Plan->getVPValue(KV.first); 4030 if (!State.hasAnyVectorValue(Def)) 4031 continue; 4032 for (unsigned Part = 0; Part < UF; ++Part) { 4033 Value *I = State.get(Def, Part); 4034 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4035 if (Inst && Inst->use_empty()) { 4036 Value *NewI = Inst->getOperand(0); 4037 Inst->eraseFromParent(); 4038 State.reset(Def, NewI, Part); 4039 } 4040 } 4041 } 4042 } 4043 4044 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4045 // Insert truncates and extends for any truncated instructions as hints to 4046 // InstCombine. 4047 if (VF.isVector()) 4048 truncateToMinimalBitwidths(State); 4049 4050 // Fix widened non-induction PHIs by setting up the PHI operands. 4051 if (OrigPHIsToFix.size()) { 4052 assert(EnableVPlanNativePath && 4053 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4054 fixNonInductionPHIs(State); 4055 } 4056 4057 // At this point every instruction in the original loop is widened to a 4058 // vector form. Now we need to fix the recurrences in the loop. These PHI 4059 // nodes are currently empty because we did not want to introduce cycles. 4060 // This is the second stage of vectorizing recurrences. 4061 fixCrossIterationPHIs(State); 4062 4063 // Forget the original basic block. 4064 PSE.getSE()->forgetLoop(OrigLoop); 4065 4066 // Fix-up external users of the induction variables. 4067 for (auto &Entry : Legal->getInductionVars()) 4068 fixupIVUsers(Entry.first, Entry.second, 4069 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4070 IVEndValues[Entry.first], LoopMiddleBlock); 4071 4072 fixLCSSAPHIs(State); 4073 for (Instruction *PI : PredicatedInstructions) 4074 sinkScalarOperands(&*PI); 4075 4076 // Remove redundant induction instructions. 4077 cse(LoopVectorBody); 4078 4079 // Set/update profile weights for the vector and remainder loops as original 4080 // loop iterations are now distributed among them. Note that original loop 4081 // represented by LoopScalarBody becomes remainder loop after vectorization. 4082 // 4083 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4084 // end up getting slightly roughened result but that should be OK since 4085 // profile is not inherently precise anyway. Note also possible bypass of 4086 // vector code caused by legality checks is ignored, assigning all the weight 4087 // to the vector loop, optimistically. 4088 // 4089 // For scalable vectorization we can't know at compile time how many iterations 4090 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4091 // vscale of '1'. 4092 setProfileInfoAfterUnrolling( 4093 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4094 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4095 } 4096 4097 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4098 // In order to support recurrences we need to be able to vectorize Phi nodes. 4099 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4100 // stage #2: We now need to fix the recurrences by adding incoming edges to 4101 // the currently empty PHI nodes. At this point every instruction in the 4102 // original loop is widened to a vector form so we can use them to construct 4103 // the incoming edges. 4104 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4105 for (VPRecipeBase &R : Header->phis()) { 4106 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 4107 if (!PhiR) 4108 continue; 4109 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4110 if (PhiR->getRecurrenceDescriptor()) { 4111 fixReduction(PhiR, State); 4112 } else if (Legal->isFirstOrderRecurrence(OrigPhi)) 4113 fixFirstOrderRecurrence(OrigPhi, State); 4114 } 4115 } 4116 4117 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 4118 VPTransformState &State) { 4119 // This is the second phase of vectorizing first-order recurrences. An 4120 // overview of the transformation is described below. Suppose we have the 4121 // following loop. 4122 // 4123 // for (int i = 0; i < n; ++i) 4124 // b[i] = a[i] - a[i - 1]; 4125 // 4126 // There is a first-order recurrence on "a". For this loop, the shorthand 4127 // scalar IR looks like: 4128 // 4129 // scalar.ph: 4130 // s_init = a[-1] 4131 // br scalar.body 4132 // 4133 // scalar.body: 4134 // i = phi [0, scalar.ph], [i+1, scalar.body] 4135 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4136 // s2 = a[i] 4137 // b[i] = s2 - s1 4138 // br cond, scalar.body, ... 4139 // 4140 // In this example, s1 is a recurrence because it's value depends on the 4141 // previous iteration. In the first phase of vectorization, we created a 4142 // temporary value for s1. We now complete the vectorization and produce the 4143 // shorthand vector IR shown below (for VF = 4, UF = 1). 4144 // 4145 // vector.ph: 4146 // v_init = vector(..., ..., ..., a[-1]) 4147 // br vector.body 4148 // 4149 // vector.body 4150 // i = phi [0, vector.ph], [i+4, vector.body] 4151 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4152 // v2 = a[i, i+1, i+2, i+3]; 4153 // v3 = vector(v1(3), v2(0, 1, 2)) 4154 // b[i, i+1, i+2, i+3] = v2 - v3 4155 // br cond, vector.body, middle.block 4156 // 4157 // middle.block: 4158 // x = v2(3) 4159 // br scalar.ph 4160 // 4161 // scalar.ph: 4162 // s_init = phi [x, middle.block], [a[-1], otherwise] 4163 // br scalar.body 4164 // 4165 // After execution completes the vector loop, we extract the next value of 4166 // the recurrence (x) to use as the initial value in the scalar loop. 4167 4168 // Get the original loop preheader and single loop latch. 4169 auto *Preheader = OrigLoop->getLoopPreheader(); 4170 auto *Latch = OrigLoop->getLoopLatch(); 4171 4172 // Get the initial and previous values of the scalar recurrence. 4173 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4174 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4175 4176 auto *IdxTy = Builder.getInt32Ty(); 4177 auto *One = ConstantInt::get(IdxTy, 1); 4178 4179 // Create a vector from the initial value. 4180 auto *VectorInit = ScalarInit; 4181 if (VF.isVector()) { 4182 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4183 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4184 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4185 VectorInit = Builder.CreateInsertElement( 4186 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), 4187 VectorInit, LastIdx, "vector.recur.init"); 4188 } 4189 4190 VPValue *PhiDef = State.Plan->getVPValue(Phi); 4191 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 4192 // We constructed a temporary phi node in the first phase of vectorization. 4193 // This phi node will eventually be deleted. 4194 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 4195 4196 // Create a phi node for the new recurrence. The current value will either be 4197 // the initial value inserted into a vector or loop-varying vector value. 4198 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4199 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4200 4201 // Get the vectorized previous value of the last part UF - 1. It appears last 4202 // among all unrolled iterations, due to the order of their construction. 4203 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4204 4205 // Find and set the insertion point after the previous value if it is an 4206 // instruction. 4207 BasicBlock::iterator InsertPt; 4208 // Note that the previous value may have been constant-folded so it is not 4209 // guaranteed to be an instruction in the vector loop. 4210 // FIXME: Loop invariant values do not form recurrences. We should deal with 4211 // them earlier. 4212 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4213 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4214 else { 4215 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4216 if (isa<PHINode>(PreviousLastPart)) 4217 // If the previous value is a phi node, we should insert after all the phi 4218 // nodes in the block containing the PHI to avoid breaking basic block 4219 // verification. Note that the basic block may be different to 4220 // LoopVectorBody, in case we predicate the loop. 4221 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4222 else 4223 InsertPt = ++PreviousInst->getIterator(); 4224 } 4225 Builder.SetInsertPoint(&*InsertPt); 4226 4227 // The vector from which to take the initial value for the current iteration 4228 // (actual or unrolled). Initially, this is the vector phi node. 4229 Value *Incoming = VecPhi; 4230 4231 // Shuffle the current and previous vector and update the vector parts. 4232 for (unsigned Part = 0; Part < UF; ++Part) { 4233 Value *PreviousPart = State.get(PreviousDef, Part); 4234 Value *PhiPart = State.get(PhiDef, Part); 4235 auto *Shuffle = VF.isVector() 4236 ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1) 4237 : Incoming; 4238 PhiPart->replaceAllUsesWith(Shuffle); 4239 cast<Instruction>(PhiPart)->eraseFromParent(); 4240 State.reset(PhiDef, Shuffle, Part); 4241 Incoming = PreviousPart; 4242 } 4243 4244 // Fix the latch value of the new recurrence in the vector loop. 4245 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4246 4247 // Extract the last vector element in the middle block. This will be the 4248 // initial value for the recurrence when jumping to the scalar loop. 4249 auto *ExtractForScalar = Incoming; 4250 if (VF.isVector()) { 4251 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4252 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4253 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4254 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4255 "vector.recur.extract"); 4256 } 4257 // Extract the second last element in the middle block if the 4258 // Phi is used outside the loop. We need to extract the phi itself 4259 // and not the last element (the phi update in the current iteration). This 4260 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4261 // when the scalar loop is not run at all. 4262 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4263 if (VF.isVector()) { 4264 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4265 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4266 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4267 Incoming, Idx, "vector.recur.extract.for.phi"); 4268 } else if (UF > 1) 4269 // When loop is unrolled without vectorizing, initialize 4270 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4271 // of `Incoming`. This is analogous to the vectorized case above: extracting 4272 // the second last element when VF > 1. 4273 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4274 4275 // Fix the initial value of the original recurrence in the scalar loop. 4276 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4277 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4278 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4279 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4280 Start->addIncoming(Incoming, BB); 4281 } 4282 4283 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4284 Phi->setName("scalar.recur"); 4285 4286 // Finally, fix users of the recurrence outside the loop. The users will need 4287 // either the last value of the scalar recurrence or the last value of the 4288 // vector recurrence we extracted in the middle block. Since the loop is in 4289 // LCSSA form, we just need to find all the phi nodes for the original scalar 4290 // recurrence in the exit block, and then add an edge for the middle block. 4291 // Note that LCSSA does not imply single entry when the original scalar loop 4292 // had multiple exiting edges (as we always run the last iteration in the 4293 // scalar epilogue); in that case, the exiting path through middle will be 4294 // dynamically dead and the value picked for the phi doesn't matter. 4295 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4296 if (any_of(LCSSAPhi.incoming_values(), 4297 [Phi](Value *V) { return V == Phi; })) 4298 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4299 } 4300 4301 static bool useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4302 return EnableStrictReductions && RdxDesc.isOrdered(); 4303 } 4304 4305 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR, 4306 VPTransformState &State) { 4307 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4308 // Get it's reduction variable descriptor. 4309 assert(Legal->isReductionVariable(OrigPhi) && 4310 "Unable to find the reduction variable"); 4311 RecurrenceDescriptor RdxDesc = *PhiR->getRecurrenceDescriptor(); 4312 4313 RecurKind RK = RdxDesc.getRecurrenceKind(); 4314 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4315 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4316 setDebugLocFromInst(Builder, ReductionStartValue); 4317 bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi); 4318 4319 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4320 // This is the vector-clone of the value that leaves the loop. 4321 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4322 4323 // Wrap flags are in general invalid after vectorization, clear them. 4324 clearReductionWrapFlags(RdxDesc, State); 4325 4326 // Fix the vector-loop phi. 4327 4328 // Reductions do not have to start at zero. They can start with 4329 // any loop invariant values. 4330 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4331 4332 bool IsOrdered = State.VF.isVector() && IsInLoopReductionPhi && 4333 useOrderedReductions(RdxDesc); 4334 4335 for (unsigned Part = 0; Part < UF; ++Part) { 4336 if (IsOrdered && Part > 0) 4337 break; 4338 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4339 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4340 if (IsOrdered) 4341 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4342 4343 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4344 } 4345 4346 // Before each round, move the insertion point right between 4347 // the PHIs and the values we are going to write. 4348 // This allows us to write both PHINodes and the extractelement 4349 // instructions. 4350 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4351 4352 setDebugLocFromInst(Builder, LoopExitInst); 4353 4354 Type *PhiTy = OrigPhi->getType(); 4355 // If tail is folded by masking, the vector value to leave the loop should be 4356 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4357 // instead of the former. For an inloop reduction the reduction will already 4358 // be predicated, and does not need to be handled here. 4359 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4360 for (unsigned Part = 0; Part < UF; ++Part) { 4361 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4362 Value *Sel = nullptr; 4363 for (User *U : VecLoopExitInst->users()) { 4364 if (isa<SelectInst>(U)) { 4365 assert(!Sel && "Reduction exit feeding two selects"); 4366 Sel = U; 4367 } else 4368 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4369 } 4370 assert(Sel && "Reduction exit feeds no select"); 4371 State.reset(LoopExitInstDef, Sel, Part); 4372 4373 // If the target can create a predicated operator for the reduction at no 4374 // extra cost in the loop (for example a predicated vadd), it can be 4375 // cheaper for the select to remain in the loop than be sunk out of it, 4376 // and so use the select value for the phi instead of the old 4377 // LoopExitValue. 4378 if (PreferPredicatedReductionSelect || 4379 TTI->preferPredicatedReductionSelect( 4380 RdxDesc.getOpcode(), PhiTy, 4381 TargetTransformInfo::ReductionFlags())) { 4382 auto *VecRdxPhi = 4383 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4384 VecRdxPhi->setIncomingValueForBlock( 4385 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4386 } 4387 } 4388 } 4389 4390 // If the vector reduction can be performed in a smaller type, we truncate 4391 // then extend the loop exit value to enable InstCombine to evaluate the 4392 // entire expression in the smaller type. 4393 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4394 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4395 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4396 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4397 Builder.SetInsertPoint( 4398 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4399 VectorParts RdxParts(UF); 4400 for (unsigned Part = 0; Part < UF; ++Part) { 4401 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4402 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4403 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4404 : Builder.CreateZExt(Trunc, VecTy); 4405 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4406 UI != RdxParts[Part]->user_end();) 4407 if (*UI != Trunc) { 4408 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4409 RdxParts[Part] = Extnd; 4410 } else { 4411 ++UI; 4412 } 4413 } 4414 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4415 for (unsigned Part = 0; Part < UF; ++Part) { 4416 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4417 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4418 } 4419 } 4420 4421 // Reduce all of the unrolled parts into a single vector. 4422 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4423 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4424 4425 // The middle block terminator has already been assigned a DebugLoc here (the 4426 // OrigLoop's single latch terminator). We want the whole middle block to 4427 // appear to execute on this line because: (a) it is all compiler generated, 4428 // (b) these instructions are always executed after evaluating the latch 4429 // conditional branch, and (c) other passes may add new predecessors which 4430 // terminate on this line. This is the easiest way to ensure we don't 4431 // accidentally cause an extra step back into the loop while debugging. 4432 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4433 if (IsOrdered) 4434 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4435 else { 4436 // Floating-point operations should have some FMF to enable the reduction. 4437 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4438 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4439 for (unsigned Part = 1; Part < UF; ++Part) { 4440 Value *RdxPart = State.get(LoopExitInstDef, Part); 4441 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4442 ReducedPartRdx = Builder.CreateBinOp( 4443 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4444 } else { 4445 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4446 } 4447 } 4448 } 4449 4450 // Create the reduction after the loop. Note that inloop reductions create the 4451 // target reduction in the loop using a Reduction recipe. 4452 if (VF.isVector() && !IsInLoopReductionPhi) { 4453 ReducedPartRdx = 4454 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4455 // If the reduction can be performed in a smaller type, we need to extend 4456 // the reduction to the wider type before we branch to the original loop. 4457 if (PhiTy != RdxDesc.getRecurrenceType()) 4458 ReducedPartRdx = RdxDesc.isSigned() 4459 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4460 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4461 } 4462 4463 // Create a phi node that merges control-flow from the backedge-taken check 4464 // block and the middle block. 4465 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4466 LoopScalarPreHeader->getTerminator()); 4467 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4468 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4469 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4470 4471 // Now, we need to fix the users of the reduction variable 4472 // inside and outside of the scalar remainder loop. 4473 4474 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4475 // in the exit blocks. See comment on analogous loop in 4476 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4477 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4478 if (any_of(LCSSAPhi.incoming_values(), 4479 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4480 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4481 4482 // Fix the scalar loop reduction variable with the incoming reduction sum 4483 // from the vector body and from the backedge value. 4484 int IncomingEdgeBlockIdx = 4485 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4486 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4487 // Pick the other block. 4488 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4489 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4490 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4491 } 4492 4493 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 4494 VPTransformState &State) { 4495 RecurKind RK = RdxDesc.getRecurrenceKind(); 4496 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4497 return; 4498 4499 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4500 assert(LoopExitInstr && "null loop exit instruction"); 4501 SmallVector<Instruction *, 8> Worklist; 4502 SmallPtrSet<Instruction *, 8> Visited; 4503 Worklist.push_back(LoopExitInstr); 4504 Visited.insert(LoopExitInstr); 4505 4506 while (!Worklist.empty()) { 4507 Instruction *Cur = Worklist.pop_back_val(); 4508 if (isa<OverflowingBinaryOperator>(Cur)) 4509 for (unsigned Part = 0; Part < UF; ++Part) { 4510 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4511 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4512 } 4513 4514 for (User *U : Cur->users()) { 4515 Instruction *UI = cast<Instruction>(U); 4516 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4517 Visited.insert(UI).second) 4518 Worklist.push_back(UI); 4519 } 4520 } 4521 } 4522 4523 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4524 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4525 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4526 // Some phis were already hand updated by the reduction and recurrence 4527 // code above, leave them alone. 4528 continue; 4529 4530 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4531 // Non-instruction incoming values will have only one value. 4532 4533 VPLane Lane = VPLane::getFirstLane(); 4534 if (isa<Instruction>(IncomingValue) && 4535 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4536 VF)) 4537 Lane = VPLane::getLastLaneForVF(VF); 4538 4539 // Can be a loop invariant incoming value or the last scalar value to be 4540 // extracted from the vectorized loop. 4541 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4542 Value *lastIncomingValue = 4543 OrigLoop->isLoopInvariant(IncomingValue) 4544 ? IncomingValue 4545 : State.get(State.Plan->getVPValue(IncomingValue), 4546 VPIteration(UF - 1, Lane)); 4547 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4548 } 4549 } 4550 4551 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4552 // The basic block and loop containing the predicated instruction. 4553 auto *PredBB = PredInst->getParent(); 4554 auto *VectorLoop = LI->getLoopFor(PredBB); 4555 4556 // Initialize a worklist with the operands of the predicated instruction. 4557 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4558 4559 // Holds instructions that we need to analyze again. An instruction may be 4560 // reanalyzed if we don't yet know if we can sink it or not. 4561 SmallVector<Instruction *, 8> InstsToReanalyze; 4562 4563 // Returns true if a given use occurs in the predicated block. Phi nodes use 4564 // their operands in their corresponding predecessor blocks. 4565 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4566 auto *I = cast<Instruction>(U.getUser()); 4567 BasicBlock *BB = I->getParent(); 4568 if (auto *Phi = dyn_cast<PHINode>(I)) 4569 BB = Phi->getIncomingBlock( 4570 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4571 return BB == PredBB; 4572 }; 4573 4574 // Iteratively sink the scalarized operands of the predicated instruction 4575 // into the block we created for it. When an instruction is sunk, it's 4576 // operands are then added to the worklist. The algorithm ends after one pass 4577 // through the worklist doesn't sink a single instruction. 4578 bool Changed; 4579 do { 4580 // Add the instructions that need to be reanalyzed to the worklist, and 4581 // reset the changed indicator. 4582 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4583 InstsToReanalyze.clear(); 4584 Changed = false; 4585 4586 while (!Worklist.empty()) { 4587 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4588 4589 // We can't sink an instruction if it is a phi node, is already in the 4590 // predicated block, is not in the loop, or may have side effects. 4591 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4592 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4593 continue; 4594 4595 // It's legal to sink the instruction if all its uses occur in the 4596 // predicated block. Otherwise, there's nothing to do yet, and we may 4597 // need to reanalyze the instruction. 4598 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4599 InstsToReanalyze.push_back(I); 4600 continue; 4601 } 4602 4603 // Move the instruction to the beginning of the predicated block, and add 4604 // it's operands to the worklist. 4605 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4606 Worklist.insert(I->op_begin(), I->op_end()); 4607 4608 // The sinking may have enabled other instructions to be sunk, so we will 4609 // need to iterate. 4610 Changed = true; 4611 } 4612 } while (Changed); 4613 } 4614 4615 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4616 for (PHINode *OrigPhi : OrigPHIsToFix) { 4617 VPWidenPHIRecipe *VPPhi = 4618 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4619 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4620 // Make sure the builder has a valid insert point. 4621 Builder.SetInsertPoint(NewPhi); 4622 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4623 VPValue *Inc = VPPhi->getIncomingValue(i); 4624 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4625 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4626 } 4627 } 4628 } 4629 4630 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4631 VPUser &Operands, unsigned UF, 4632 ElementCount VF, bool IsPtrLoopInvariant, 4633 SmallBitVector &IsIndexLoopInvariant, 4634 VPTransformState &State) { 4635 // Construct a vector GEP by widening the operands of the scalar GEP as 4636 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4637 // results in a vector of pointers when at least one operand of the GEP 4638 // is vector-typed. Thus, to keep the representation compact, we only use 4639 // vector-typed operands for loop-varying values. 4640 4641 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4642 // If we are vectorizing, but the GEP has only loop-invariant operands, 4643 // the GEP we build (by only using vector-typed operands for 4644 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4645 // produce a vector of pointers, we need to either arbitrarily pick an 4646 // operand to broadcast, or broadcast a clone of the original GEP. 4647 // Here, we broadcast a clone of the original. 4648 // 4649 // TODO: If at some point we decide to scalarize instructions having 4650 // loop-invariant operands, this special case will no longer be 4651 // required. We would add the scalarization decision to 4652 // collectLoopScalars() and teach getVectorValue() to broadcast 4653 // the lane-zero scalar value. 4654 auto *Clone = Builder.Insert(GEP->clone()); 4655 for (unsigned Part = 0; Part < UF; ++Part) { 4656 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4657 State.set(VPDef, EntryPart, Part); 4658 addMetadata(EntryPart, GEP); 4659 } 4660 } else { 4661 // If the GEP has at least one loop-varying operand, we are sure to 4662 // produce a vector of pointers. But if we are only unrolling, we want 4663 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4664 // produce with the code below will be scalar (if VF == 1) or vector 4665 // (otherwise). Note that for the unroll-only case, we still maintain 4666 // values in the vector mapping with initVector, as we do for other 4667 // instructions. 4668 for (unsigned Part = 0; Part < UF; ++Part) { 4669 // The pointer operand of the new GEP. If it's loop-invariant, we 4670 // won't broadcast it. 4671 auto *Ptr = IsPtrLoopInvariant 4672 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4673 : State.get(Operands.getOperand(0), Part); 4674 4675 // Collect all the indices for the new GEP. If any index is 4676 // loop-invariant, we won't broadcast it. 4677 SmallVector<Value *, 4> Indices; 4678 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4679 VPValue *Operand = Operands.getOperand(I); 4680 if (IsIndexLoopInvariant[I - 1]) 4681 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4682 else 4683 Indices.push_back(State.get(Operand, Part)); 4684 } 4685 4686 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4687 // but it should be a vector, otherwise. 4688 auto *NewGEP = 4689 GEP->isInBounds() 4690 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4691 Indices) 4692 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4693 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4694 "NewGEP is not a pointer vector"); 4695 State.set(VPDef, NewGEP, Part); 4696 addMetadata(NewGEP, GEP); 4697 } 4698 } 4699 } 4700 4701 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4702 RecurrenceDescriptor *RdxDesc, 4703 VPWidenPHIRecipe *PhiR, 4704 VPTransformState &State) { 4705 PHINode *P = cast<PHINode>(PN); 4706 if (EnableVPlanNativePath) { 4707 // Currently we enter here in the VPlan-native path for non-induction 4708 // PHIs where all control flow is uniform. We simply widen these PHIs. 4709 // Create a vector phi with no operands - the vector phi operands will be 4710 // set at the end of vector code generation. 4711 Type *VecTy = (State.VF.isScalar()) 4712 ? PN->getType() 4713 : VectorType::get(PN->getType(), State.VF); 4714 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4715 State.set(PhiR, VecPhi, 0); 4716 OrigPHIsToFix.push_back(P); 4717 4718 return; 4719 } 4720 4721 assert(PN->getParent() == OrigLoop->getHeader() && 4722 "Non-header phis should have been handled elsewhere"); 4723 4724 VPValue *StartVPV = PhiR->getStartValue(); 4725 Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr; 4726 // In order to support recurrences we need to be able to vectorize Phi nodes. 4727 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4728 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4729 // this value when we vectorize all of the instructions that use the PHI. 4730 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4731 Value *Iden = nullptr; 4732 bool ScalarPHI = 4733 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4734 Type *VecTy = 4735 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4736 4737 if (RdxDesc) { 4738 assert(Legal->isReductionVariable(P) && StartV && 4739 "RdxDesc should only be set for reduction variables; in that case " 4740 "a StartV is also required"); 4741 RecurKind RK = RdxDesc->getRecurrenceKind(); 4742 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4743 // MinMax reduction have the start value as their identify. 4744 if (ScalarPHI) { 4745 Iden = StartV; 4746 } else { 4747 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4748 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4749 StartV = Iden = 4750 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4751 } 4752 } else { 4753 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4754 RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags()); 4755 Iden = IdenC; 4756 4757 if (!ScalarPHI) { 4758 Iden = ConstantVector::getSplat(State.VF, IdenC); 4759 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4760 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4761 Constant *Zero = Builder.getInt32(0); 4762 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4763 } 4764 } 4765 } 4766 4767 bool IsOrdered = State.VF.isVector() && 4768 Cost->isInLoopReduction(cast<PHINode>(PN)) && 4769 useOrderedReductions(*RdxDesc); 4770 4771 for (unsigned Part = 0; Part < State.UF; ++Part) { 4772 // This is phase one of vectorizing PHIs. 4773 if (Part > 0 && IsOrdered) 4774 return; 4775 Value *EntryPart = PHINode::Create( 4776 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4777 State.set(PhiR, EntryPart, Part); 4778 if (StartV) { 4779 // Make sure to add the reduction start value only to the 4780 // first unroll part. 4781 Value *StartVal = (Part == 0) ? StartV : Iden; 4782 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4783 } 4784 } 4785 return; 4786 } 4787 4788 assert(!Legal->isReductionVariable(P) && 4789 "reductions should be handled above"); 4790 4791 setDebugLocFromInst(Builder, P); 4792 4793 // This PHINode must be an induction variable. 4794 // Make sure that we know about it. 4795 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4796 4797 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4798 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4799 4800 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4801 // which can be found from the original scalar operations. 4802 switch (II.getKind()) { 4803 case InductionDescriptor::IK_NoInduction: 4804 llvm_unreachable("Unknown induction"); 4805 case InductionDescriptor::IK_IntInduction: 4806 case InductionDescriptor::IK_FpInduction: 4807 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4808 case InductionDescriptor::IK_PtrInduction: { 4809 // Handle the pointer induction variable case. 4810 assert(P->getType()->isPointerTy() && "Unexpected type."); 4811 4812 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4813 // This is the normalized GEP that starts counting at zero. 4814 Value *PtrInd = 4815 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4816 // Determine the number of scalars we need to generate for each unroll 4817 // iteration. If the instruction is uniform, we only need to generate the 4818 // first lane. Otherwise, we generate all VF values. 4819 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4820 assert((IsUniform || !VF.isScalable()) && 4821 "Currently unsupported for scalable vectors"); 4822 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4823 4824 for (unsigned Part = 0; Part < UF; ++Part) { 4825 Value *PartStart = createStepForVF( 4826 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4827 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4828 Value *Idx = Builder.CreateAdd( 4829 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4830 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4831 Value *SclrGep = 4832 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4833 SclrGep->setName("next.gep"); 4834 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4835 } 4836 } 4837 return; 4838 } 4839 assert(isa<SCEVConstant>(II.getStep()) && 4840 "Induction step not a SCEV constant!"); 4841 Type *PhiType = II.getStep()->getType(); 4842 4843 // Build a pointer phi 4844 Value *ScalarStartValue = II.getStartValue(); 4845 Type *ScStValueType = ScalarStartValue->getType(); 4846 PHINode *NewPointerPhi = 4847 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4848 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4849 4850 // A pointer induction, performed by using a gep 4851 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4852 Instruction *InductionLoc = LoopLatch->getTerminator(); 4853 const SCEV *ScalarStep = II.getStep(); 4854 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4855 Value *ScalarStepValue = 4856 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4857 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4858 Value *NumUnrolledElems = 4859 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4860 Value *InductionGEP = GetElementPtrInst::Create( 4861 ScStValueType->getPointerElementType(), NewPointerPhi, 4862 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4863 InductionLoc); 4864 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4865 4866 // Create UF many actual address geps that use the pointer 4867 // phi as base and a vectorized version of the step value 4868 // (<step*0, ..., step*N>) as offset. 4869 for (unsigned Part = 0; Part < State.UF; ++Part) { 4870 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4871 Value *StartOffsetScalar = 4872 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4873 Value *StartOffset = 4874 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4875 // Create a vector of consecutive numbers from zero to VF. 4876 StartOffset = 4877 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4878 4879 Value *GEP = Builder.CreateGEP( 4880 ScStValueType->getPointerElementType(), NewPointerPhi, 4881 Builder.CreateMul( 4882 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4883 "vector.gep")); 4884 State.set(PhiR, GEP, Part); 4885 } 4886 } 4887 } 4888 } 4889 4890 /// A helper function for checking whether an integer division-related 4891 /// instruction may divide by zero (in which case it must be predicated if 4892 /// executed conditionally in the scalar code). 4893 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4894 /// Non-zero divisors that are non compile-time constants will not be 4895 /// converted into multiplication, so we will still end up scalarizing 4896 /// the division, but can do so w/o predication. 4897 static bool mayDivideByZero(Instruction &I) { 4898 assert((I.getOpcode() == Instruction::UDiv || 4899 I.getOpcode() == Instruction::SDiv || 4900 I.getOpcode() == Instruction::URem || 4901 I.getOpcode() == Instruction::SRem) && 4902 "Unexpected instruction"); 4903 Value *Divisor = I.getOperand(1); 4904 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4905 return !CInt || CInt->isZero(); 4906 } 4907 4908 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4909 VPUser &User, 4910 VPTransformState &State) { 4911 switch (I.getOpcode()) { 4912 case Instruction::Call: 4913 case Instruction::Br: 4914 case Instruction::PHI: 4915 case Instruction::GetElementPtr: 4916 case Instruction::Select: 4917 llvm_unreachable("This instruction is handled by a different recipe."); 4918 case Instruction::UDiv: 4919 case Instruction::SDiv: 4920 case Instruction::SRem: 4921 case Instruction::URem: 4922 case Instruction::Add: 4923 case Instruction::FAdd: 4924 case Instruction::Sub: 4925 case Instruction::FSub: 4926 case Instruction::FNeg: 4927 case Instruction::Mul: 4928 case Instruction::FMul: 4929 case Instruction::FDiv: 4930 case Instruction::FRem: 4931 case Instruction::Shl: 4932 case Instruction::LShr: 4933 case Instruction::AShr: 4934 case Instruction::And: 4935 case Instruction::Or: 4936 case Instruction::Xor: { 4937 // Just widen unops and binops. 4938 setDebugLocFromInst(Builder, &I); 4939 4940 for (unsigned Part = 0; Part < UF; ++Part) { 4941 SmallVector<Value *, 2> Ops; 4942 for (VPValue *VPOp : User.operands()) 4943 Ops.push_back(State.get(VPOp, Part)); 4944 4945 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4946 4947 if (auto *VecOp = dyn_cast<Instruction>(V)) 4948 VecOp->copyIRFlags(&I); 4949 4950 // Use this vector value for all users of the original instruction. 4951 State.set(Def, V, Part); 4952 addMetadata(V, &I); 4953 } 4954 4955 break; 4956 } 4957 case Instruction::ICmp: 4958 case Instruction::FCmp: { 4959 // Widen compares. Generate vector compares. 4960 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4961 auto *Cmp = cast<CmpInst>(&I); 4962 setDebugLocFromInst(Builder, Cmp); 4963 for (unsigned Part = 0; Part < UF; ++Part) { 4964 Value *A = State.get(User.getOperand(0), Part); 4965 Value *B = State.get(User.getOperand(1), Part); 4966 Value *C = nullptr; 4967 if (FCmp) { 4968 // Propagate fast math flags. 4969 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4970 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4971 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4972 } else { 4973 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4974 } 4975 State.set(Def, C, Part); 4976 addMetadata(C, &I); 4977 } 4978 4979 break; 4980 } 4981 4982 case Instruction::ZExt: 4983 case Instruction::SExt: 4984 case Instruction::FPToUI: 4985 case Instruction::FPToSI: 4986 case Instruction::FPExt: 4987 case Instruction::PtrToInt: 4988 case Instruction::IntToPtr: 4989 case Instruction::SIToFP: 4990 case Instruction::UIToFP: 4991 case Instruction::Trunc: 4992 case Instruction::FPTrunc: 4993 case Instruction::BitCast: { 4994 auto *CI = cast<CastInst>(&I); 4995 setDebugLocFromInst(Builder, CI); 4996 4997 /// Vectorize casts. 4998 Type *DestTy = 4999 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 5000 5001 for (unsigned Part = 0; Part < UF; ++Part) { 5002 Value *A = State.get(User.getOperand(0), Part); 5003 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 5004 State.set(Def, Cast, Part); 5005 addMetadata(Cast, &I); 5006 } 5007 break; 5008 } 5009 default: 5010 // This instruction is not vectorized by simple widening. 5011 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 5012 llvm_unreachable("Unhandled instruction!"); 5013 } // end of switch. 5014 } 5015 5016 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 5017 VPUser &ArgOperands, 5018 VPTransformState &State) { 5019 assert(!isa<DbgInfoIntrinsic>(I) && 5020 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 5021 setDebugLocFromInst(Builder, &I); 5022 5023 Module *M = I.getParent()->getParent()->getParent(); 5024 auto *CI = cast<CallInst>(&I); 5025 5026 SmallVector<Type *, 4> Tys; 5027 for (Value *ArgOperand : CI->arg_operands()) 5028 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 5029 5030 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5031 5032 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5033 // version of the instruction. 5034 // Is it beneficial to perform intrinsic call compared to lib call? 5035 bool NeedToScalarize = false; 5036 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 5037 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 5038 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 5039 assert((UseVectorIntrinsic || !NeedToScalarize) && 5040 "Instruction should be scalarized elsewhere."); 5041 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5042 "Either the intrinsic cost or vector call cost must be valid"); 5043 5044 for (unsigned Part = 0; Part < UF; ++Part) { 5045 SmallVector<Value *, 4> Args; 5046 for (auto &I : enumerate(ArgOperands.operands())) { 5047 // Some intrinsics have a scalar argument - don't replace it with a 5048 // vector. 5049 Value *Arg; 5050 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5051 Arg = State.get(I.value(), Part); 5052 else 5053 Arg = State.get(I.value(), VPIteration(0, 0)); 5054 Args.push_back(Arg); 5055 } 5056 5057 Function *VectorF; 5058 if (UseVectorIntrinsic) { 5059 // Use vector version of the intrinsic. 5060 Type *TysForDecl[] = {CI->getType()}; 5061 if (VF.isVector()) 5062 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5063 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5064 assert(VectorF && "Can't retrieve vector intrinsic."); 5065 } else { 5066 // Use vector version of the function call. 5067 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5068 #ifndef NDEBUG 5069 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5070 "Can't create vector function."); 5071 #endif 5072 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5073 } 5074 SmallVector<OperandBundleDef, 1> OpBundles; 5075 CI->getOperandBundlesAsDefs(OpBundles); 5076 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5077 5078 if (isa<FPMathOperator>(V)) 5079 V->copyFastMathFlags(CI); 5080 5081 State.set(Def, V, Part); 5082 addMetadata(V, &I); 5083 } 5084 } 5085 5086 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5087 VPUser &Operands, 5088 bool InvariantCond, 5089 VPTransformState &State) { 5090 setDebugLocFromInst(Builder, &I); 5091 5092 // The condition can be loop invariant but still defined inside the 5093 // loop. This means that we can't just use the original 'cond' value. 5094 // We have to take the 'vectorized' value and pick the first lane. 5095 // Instcombine will make this a no-op. 5096 auto *InvarCond = InvariantCond 5097 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5098 : nullptr; 5099 5100 for (unsigned Part = 0; Part < UF; ++Part) { 5101 Value *Cond = 5102 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5103 Value *Op0 = State.get(Operands.getOperand(1), Part); 5104 Value *Op1 = State.get(Operands.getOperand(2), Part); 5105 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5106 State.set(VPDef, Sel, Part); 5107 addMetadata(Sel, &I); 5108 } 5109 } 5110 5111 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5112 // We should not collect Scalars more than once per VF. Right now, this 5113 // function is called from collectUniformsAndScalars(), which already does 5114 // this check. Collecting Scalars for VF=1 does not make any sense. 5115 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5116 "This function should not be visited twice for the same VF"); 5117 5118 SmallSetVector<Instruction *, 8> Worklist; 5119 5120 // These sets are used to seed the analysis with pointers used by memory 5121 // accesses that will remain scalar. 5122 SmallSetVector<Instruction *, 8> ScalarPtrs; 5123 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5124 auto *Latch = TheLoop->getLoopLatch(); 5125 5126 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5127 // The pointer operands of loads and stores will be scalar as long as the 5128 // memory access is not a gather or scatter operation. The value operand of a 5129 // store will remain scalar if the store is scalarized. 5130 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5131 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5132 assert(WideningDecision != CM_Unknown && 5133 "Widening decision should be ready at this moment"); 5134 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5135 if (Ptr == Store->getValueOperand()) 5136 return WideningDecision == CM_Scalarize; 5137 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5138 "Ptr is neither a value or pointer operand"); 5139 return WideningDecision != CM_GatherScatter; 5140 }; 5141 5142 // A helper that returns true if the given value is a bitcast or 5143 // getelementptr instruction contained in the loop. 5144 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5145 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5146 isa<GetElementPtrInst>(V)) && 5147 !TheLoop->isLoopInvariant(V); 5148 }; 5149 5150 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5151 if (!isa<PHINode>(Ptr) || 5152 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5153 return false; 5154 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5155 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5156 return false; 5157 return isScalarUse(MemAccess, Ptr); 5158 }; 5159 5160 // A helper that evaluates a memory access's use of a pointer. If the 5161 // pointer is actually the pointer induction of a loop, it is being 5162 // inserted into Worklist. If the use will be a scalar use, and the 5163 // pointer is only used by memory accesses, we place the pointer in 5164 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5165 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5166 if (isScalarPtrInduction(MemAccess, Ptr)) { 5167 Worklist.insert(cast<Instruction>(Ptr)); 5168 Instruction *Update = cast<Instruction>( 5169 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5170 Worklist.insert(Update); 5171 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5172 << "\n"); 5173 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5174 << "\n"); 5175 return; 5176 } 5177 // We only care about bitcast and getelementptr instructions contained in 5178 // the loop. 5179 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5180 return; 5181 5182 // If the pointer has already been identified as scalar (e.g., if it was 5183 // also identified as uniform), there's nothing to do. 5184 auto *I = cast<Instruction>(Ptr); 5185 if (Worklist.count(I)) 5186 return; 5187 5188 // If the use of the pointer will be a scalar use, and all users of the 5189 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5190 // place the pointer in PossibleNonScalarPtrs. 5191 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5192 return isa<LoadInst>(U) || isa<StoreInst>(U); 5193 })) 5194 ScalarPtrs.insert(I); 5195 else 5196 PossibleNonScalarPtrs.insert(I); 5197 }; 5198 5199 // We seed the scalars analysis with three classes of instructions: (1) 5200 // instructions marked uniform-after-vectorization and (2) bitcast, 5201 // getelementptr and (pointer) phi instructions used by memory accesses 5202 // requiring a scalar use. 5203 // 5204 // (1) Add to the worklist all instructions that have been identified as 5205 // uniform-after-vectorization. 5206 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5207 5208 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5209 // memory accesses requiring a scalar use. The pointer operands of loads and 5210 // stores will be scalar as long as the memory accesses is not a gather or 5211 // scatter operation. The value operand of a store will remain scalar if the 5212 // store is scalarized. 5213 for (auto *BB : TheLoop->blocks()) 5214 for (auto &I : *BB) { 5215 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5216 evaluatePtrUse(Load, Load->getPointerOperand()); 5217 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5218 evaluatePtrUse(Store, Store->getPointerOperand()); 5219 evaluatePtrUse(Store, Store->getValueOperand()); 5220 } 5221 } 5222 for (auto *I : ScalarPtrs) 5223 if (!PossibleNonScalarPtrs.count(I)) { 5224 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5225 Worklist.insert(I); 5226 } 5227 5228 // Insert the forced scalars. 5229 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5230 // induction variable when the PHI user is scalarized. 5231 auto ForcedScalar = ForcedScalars.find(VF); 5232 if (ForcedScalar != ForcedScalars.end()) 5233 for (auto *I : ForcedScalar->second) 5234 Worklist.insert(I); 5235 5236 // Expand the worklist by looking through any bitcasts and getelementptr 5237 // instructions we've already identified as scalar. This is similar to the 5238 // expansion step in collectLoopUniforms(); however, here we're only 5239 // expanding to include additional bitcasts and getelementptr instructions. 5240 unsigned Idx = 0; 5241 while (Idx != Worklist.size()) { 5242 Instruction *Dst = Worklist[Idx++]; 5243 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5244 continue; 5245 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5246 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5247 auto *J = cast<Instruction>(U); 5248 return !TheLoop->contains(J) || Worklist.count(J) || 5249 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5250 isScalarUse(J, Src)); 5251 })) { 5252 Worklist.insert(Src); 5253 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5254 } 5255 } 5256 5257 // An induction variable will remain scalar if all users of the induction 5258 // variable and induction variable update remain scalar. 5259 for (auto &Induction : Legal->getInductionVars()) { 5260 auto *Ind = Induction.first; 5261 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5262 5263 // If tail-folding is applied, the primary induction variable will be used 5264 // to feed a vector compare. 5265 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5266 continue; 5267 5268 // Determine if all users of the induction variable are scalar after 5269 // vectorization. 5270 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5271 auto *I = cast<Instruction>(U); 5272 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5273 }); 5274 if (!ScalarInd) 5275 continue; 5276 5277 // Determine if all users of the induction variable update instruction are 5278 // scalar after vectorization. 5279 auto ScalarIndUpdate = 5280 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5281 auto *I = cast<Instruction>(U); 5282 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5283 }); 5284 if (!ScalarIndUpdate) 5285 continue; 5286 5287 // The induction variable and its update instruction will remain scalar. 5288 Worklist.insert(Ind); 5289 Worklist.insert(IndUpdate); 5290 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5291 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5292 << "\n"); 5293 } 5294 5295 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5296 } 5297 5298 bool LoopVectorizationCostModel::isScalarWithPredication( 5299 Instruction *I, ElementCount VF) const { 5300 if (!blockNeedsPredication(I->getParent())) 5301 return false; 5302 switch(I->getOpcode()) { 5303 default: 5304 break; 5305 case Instruction::Load: 5306 case Instruction::Store: { 5307 if (!Legal->isMaskRequired(I)) 5308 return false; 5309 auto *Ptr = getLoadStorePointerOperand(I); 5310 auto *Ty = getMemInstValueType(I); 5311 // We have already decided how to vectorize this instruction, get that 5312 // result. 5313 if (VF.isVector()) { 5314 InstWidening WideningDecision = getWideningDecision(I, VF); 5315 assert(WideningDecision != CM_Unknown && 5316 "Widening decision should be ready at this moment"); 5317 return WideningDecision == CM_Scalarize; 5318 } 5319 const Align Alignment = getLoadStoreAlignment(I); 5320 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5321 isLegalMaskedGather(Ty, Alignment)) 5322 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5323 isLegalMaskedScatter(Ty, Alignment)); 5324 } 5325 case Instruction::UDiv: 5326 case Instruction::SDiv: 5327 case Instruction::SRem: 5328 case Instruction::URem: 5329 return mayDivideByZero(*I); 5330 } 5331 return false; 5332 } 5333 5334 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5335 Instruction *I, ElementCount VF) { 5336 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5337 assert(getWideningDecision(I, VF) == CM_Unknown && 5338 "Decision should not be set yet."); 5339 auto *Group = getInterleavedAccessGroup(I); 5340 assert(Group && "Must have a group."); 5341 5342 // If the instruction's allocated size doesn't equal it's type size, it 5343 // requires padding and will be scalarized. 5344 auto &DL = I->getModule()->getDataLayout(); 5345 auto *ScalarTy = getMemInstValueType(I); 5346 if (hasIrregularType(ScalarTy, DL)) 5347 return false; 5348 5349 // Check if masking is required. 5350 // A Group may need masking for one of two reasons: it resides in a block that 5351 // needs predication, or it was decided to use masking to deal with gaps. 5352 bool PredicatedAccessRequiresMasking = 5353 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5354 bool AccessWithGapsRequiresMasking = 5355 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5356 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5357 return true; 5358 5359 // If masked interleaving is required, we expect that the user/target had 5360 // enabled it, because otherwise it either wouldn't have been created or 5361 // it should have been invalidated by the CostModel. 5362 assert(useMaskedInterleavedAccesses(TTI) && 5363 "Masked interleave-groups for predicated accesses are not enabled."); 5364 5365 auto *Ty = getMemInstValueType(I); 5366 const Align Alignment = getLoadStoreAlignment(I); 5367 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5368 : TTI.isLegalMaskedStore(Ty, Alignment); 5369 } 5370 5371 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5372 Instruction *I, ElementCount VF) { 5373 // Get and ensure we have a valid memory instruction. 5374 LoadInst *LI = dyn_cast<LoadInst>(I); 5375 StoreInst *SI = dyn_cast<StoreInst>(I); 5376 assert((LI || SI) && "Invalid memory instruction"); 5377 5378 auto *Ptr = getLoadStorePointerOperand(I); 5379 5380 // In order to be widened, the pointer should be consecutive, first of all. 5381 if (!Legal->isConsecutivePtr(Ptr)) 5382 return false; 5383 5384 // If the instruction is a store located in a predicated block, it will be 5385 // scalarized. 5386 if (isScalarWithPredication(I)) 5387 return false; 5388 5389 // If the instruction's allocated size doesn't equal it's type size, it 5390 // requires padding and will be scalarized. 5391 auto &DL = I->getModule()->getDataLayout(); 5392 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5393 if (hasIrregularType(ScalarTy, DL)) 5394 return false; 5395 5396 return true; 5397 } 5398 5399 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5400 // We should not collect Uniforms more than once per VF. Right now, 5401 // this function is called from collectUniformsAndScalars(), which 5402 // already does this check. Collecting Uniforms for VF=1 does not make any 5403 // sense. 5404 5405 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5406 "This function should not be visited twice for the same VF"); 5407 5408 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5409 // not analyze again. Uniforms.count(VF) will return 1. 5410 Uniforms[VF].clear(); 5411 5412 // We now know that the loop is vectorizable! 5413 // Collect instructions inside the loop that will remain uniform after 5414 // vectorization. 5415 5416 // Global values, params and instructions outside of current loop are out of 5417 // scope. 5418 auto isOutOfScope = [&](Value *V) -> bool { 5419 Instruction *I = dyn_cast<Instruction>(V); 5420 return (!I || !TheLoop->contains(I)); 5421 }; 5422 5423 SetVector<Instruction *> Worklist; 5424 BasicBlock *Latch = TheLoop->getLoopLatch(); 5425 5426 // Instructions that are scalar with predication must not be considered 5427 // uniform after vectorization, because that would create an erroneous 5428 // replicating region where only a single instance out of VF should be formed. 5429 // TODO: optimize such seldom cases if found important, see PR40816. 5430 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5431 if (isOutOfScope(I)) { 5432 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5433 << *I << "\n"); 5434 return; 5435 } 5436 if (isScalarWithPredication(I, VF)) { 5437 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5438 << *I << "\n"); 5439 return; 5440 } 5441 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5442 Worklist.insert(I); 5443 }; 5444 5445 // Start with the conditional branch. If the branch condition is an 5446 // instruction contained in the loop that is only used by the branch, it is 5447 // uniform. 5448 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5449 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5450 addToWorklistIfAllowed(Cmp); 5451 5452 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5453 InstWidening WideningDecision = getWideningDecision(I, VF); 5454 assert(WideningDecision != CM_Unknown && 5455 "Widening decision should be ready at this moment"); 5456 5457 // A uniform memory op is itself uniform. We exclude uniform stores 5458 // here as they demand the last lane, not the first one. 5459 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5460 assert(WideningDecision == CM_Scalarize); 5461 return true; 5462 } 5463 5464 return (WideningDecision == CM_Widen || 5465 WideningDecision == CM_Widen_Reverse || 5466 WideningDecision == CM_Interleave); 5467 }; 5468 5469 5470 // Returns true if Ptr is the pointer operand of a memory access instruction 5471 // I, and I is known to not require scalarization. 5472 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5473 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5474 }; 5475 5476 // Holds a list of values which are known to have at least one uniform use. 5477 // Note that there may be other uses which aren't uniform. A "uniform use" 5478 // here is something which only demands lane 0 of the unrolled iterations; 5479 // it does not imply that all lanes produce the same value (e.g. this is not 5480 // the usual meaning of uniform) 5481 SetVector<Value *> HasUniformUse; 5482 5483 // Scan the loop for instructions which are either a) known to have only 5484 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5485 for (auto *BB : TheLoop->blocks()) 5486 for (auto &I : *BB) { 5487 // If there's no pointer operand, there's nothing to do. 5488 auto *Ptr = getLoadStorePointerOperand(&I); 5489 if (!Ptr) 5490 continue; 5491 5492 // A uniform memory op is itself uniform. We exclude uniform stores 5493 // here as they demand the last lane, not the first one. 5494 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5495 addToWorklistIfAllowed(&I); 5496 5497 if (isUniformDecision(&I, VF)) { 5498 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5499 HasUniformUse.insert(Ptr); 5500 } 5501 } 5502 5503 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5504 // demanding) users. Since loops are assumed to be in LCSSA form, this 5505 // disallows uses outside the loop as well. 5506 for (auto *V : HasUniformUse) { 5507 if (isOutOfScope(V)) 5508 continue; 5509 auto *I = cast<Instruction>(V); 5510 auto UsersAreMemAccesses = 5511 llvm::all_of(I->users(), [&](User *U) -> bool { 5512 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5513 }); 5514 if (UsersAreMemAccesses) 5515 addToWorklistIfAllowed(I); 5516 } 5517 5518 // Expand Worklist in topological order: whenever a new instruction 5519 // is added , its users should be already inside Worklist. It ensures 5520 // a uniform instruction will only be used by uniform instructions. 5521 unsigned idx = 0; 5522 while (idx != Worklist.size()) { 5523 Instruction *I = Worklist[idx++]; 5524 5525 for (auto OV : I->operand_values()) { 5526 // isOutOfScope operands cannot be uniform instructions. 5527 if (isOutOfScope(OV)) 5528 continue; 5529 // First order recurrence Phi's should typically be considered 5530 // non-uniform. 5531 auto *OP = dyn_cast<PHINode>(OV); 5532 if (OP && Legal->isFirstOrderRecurrence(OP)) 5533 continue; 5534 // If all the users of the operand are uniform, then add the 5535 // operand into the uniform worklist. 5536 auto *OI = cast<Instruction>(OV); 5537 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5538 auto *J = cast<Instruction>(U); 5539 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5540 })) 5541 addToWorklistIfAllowed(OI); 5542 } 5543 } 5544 5545 // For an instruction to be added into Worklist above, all its users inside 5546 // the loop should also be in Worklist. However, this condition cannot be 5547 // true for phi nodes that form a cyclic dependence. We must process phi 5548 // nodes separately. An induction variable will remain uniform if all users 5549 // of the induction variable and induction variable update remain uniform. 5550 // The code below handles both pointer and non-pointer induction variables. 5551 for (auto &Induction : Legal->getInductionVars()) { 5552 auto *Ind = Induction.first; 5553 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5554 5555 // Determine if all users of the induction variable are uniform after 5556 // vectorization. 5557 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5558 auto *I = cast<Instruction>(U); 5559 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5560 isVectorizedMemAccessUse(I, Ind); 5561 }); 5562 if (!UniformInd) 5563 continue; 5564 5565 // Determine if all users of the induction variable update instruction are 5566 // uniform after vectorization. 5567 auto UniformIndUpdate = 5568 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5569 auto *I = cast<Instruction>(U); 5570 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5571 isVectorizedMemAccessUse(I, IndUpdate); 5572 }); 5573 if (!UniformIndUpdate) 5574 continue; 5575 5576 // The induction variable and its update instruction will remain uniform. 5577 addToWorklistIfAllowed(Ind); 5578 addToWorklistIfAllowed(IndUpdate); 5579 } 5580 5581 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5582 } 5583 5584 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5585 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5586 5587 if (Legal->getRuntimePointerChecking()->Need) { 5588 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5589 "runtime pointer checks needed. Enable vectorization of this " 5590 "loop with '#pragma clang loop vectorize(enable)' when " 5591 "compiling with -Os/-Oz", 5592 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5593 return true; 5594 } 5595 5596 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5597 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5598 "runtime SCEV checks needed. Enable vectorization of this " 5599 "loop with '#pragma clang loop vectorize(enable)' when " 5600 "compiling with -Os/-Oz", 5601 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5602 return true; 5603 } 5604 5605 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5606 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5607 reportVectorizationFailure("Runtime stride check for small trip count", 5608 "runtime stride == 1 checks needed. Enable vectorization of " 5609 "this loop without such check by compiling with -Os/-Oz", 5610 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5611 return true; 5612 } 5613 5614 return false; 5615 } 5616 5617 ElementCount 5618 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5619 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5620 reportVectorizationInfo( 5621 "Disabling scalable vectorization, because target does not " 5622 "support scalable vectors.", 5623 "ScalableVectorsUnsupported", ORE, TheLoop); 5624 return ElementCount::getScalable(0); 5625 } 5626 5627 auto MaxScalableVF = ElementCount::getScalable( 5628 std::numeric_limits<ElementCount::ScalarTy>::max()); 5629 5630 // Disable scalable vectorization if the loop contains unsupported reductions. 5631 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5632 // FIXME: While for scalable vectors this is currently sufficient, this should 5633 // be replaced by a more detailed mechanism that filters out specific VFs, 5634 // instead of invalidating vectorization for a whole set of VFs based on the 5635 // MaxVF. 5636 if (!canVectorizeReductions(MaxScalableVF)) { 5637 reportVectorizationInfo( 5638 "Scalable vectorization not supported for the reduction " 5639 "operations found in this loop.", 5640 "ScalableVFUnfeasible", ORE, TheLoop); 5641 return ElementCount::getScalable(0); 5642 } 5643 5644 if (Legal->isSafeForAnyVectorWidth()) 5645 return MaxScalableVF; 5646 5647 // Limit MaxScalableVF by the maximum safe dependence distance. 5648 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5649 MaxScalableVF = ElementCount::getScalable( 5650 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5651 if (!MaxScalableVF) 5652 reportVectorizationInfo( 5653 "Max legal vector width too small, scalable vectorization " 5654 "unfeasible.", 5655 "ScalableVFUnfeasible", ORE, TheLoop); 5656 5657 return MaxScalableVF; 5658 } 5659 5660 ElementCount 5661 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5662 ElementCount UserVF) { 5663 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5664 unsigned SmallestType, WidestType; 5665 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5666 5667 // Get the maximum safe dependence distance in bits computed by LAA. 5668 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5669 // the memory accesses that is most restrictive (involved in the smallest 5670 // dependence distance). 5671 unsigned MaxSafeElements = 5672 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5673 5674 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5675 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5676 5677 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5678 << ".\n"); 5679 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5680 << ".\n"); 5681 5682 // First analyze the UserVF, fall back if the UserVF should be ignored. 5683 if (UserVF) { 5684 auto MaxSafeUserVF = 5685 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5686 5687 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) 5688 return UserVF; 5689 5690 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5691 5692 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5693 // is better to ignore the hint and let the compiler choose a suitable VF. 5694 if (!UserVF.isScalable()) { 5695 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5696 << " is unsafe, clamping to max safe VF=" 5697 << MaxSafeFixedVF << ".\n"); 5698 ORE->emit([&]() { 5699 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5700 TheLoop->getStartLoc(), 5701 TheLoop->getHeader()) 5702 << "User-specified vectorization factor " 5703 << ore::NV("UserVectorizationFactor", UserVF) 5704 << " is unsafe, clamping to maximum safe vectorization factor " 5705 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5706 }); 5707 return MaxSafeFixedVF; 5708 } 5709 5710 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5711 << " is unsafe. Ignoring scalable UserVF.\n"); 5712 ORE->emit([&]() { 5713 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5714 TheLoop->getStartLoc(), 5715 TheLoop->getHeader()) 5716 << "User-specified vectorization factor " 5717 << ore::NV("UserVectorizationFactor", UserVF) 5718 << " is unsafe. Ignoring the hint to let the compiler pick a " 5719 "suitable VF."; 5720 }); 5721 } 5722 5723 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5724 << " / " << WidestType << " bits.\n"); 5725 5726 ElementCount MaxFixedVF = ElementCount::getFixed(1); 5727 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5728 WidestType, MaxSafeFixedVF)) 5729 MaxFixedVF = MaxVF; 5730 5731 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5732 WidestType, MaxSafeScalableVF)) 5733 // FIXME: Return scalable VF as well (to be added in future patch). 5734 if (MaxVF.isScalable()) 5735 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5736 << "\n"); 5737 5738 return MaxFixedVF; 5739 } 5740 5741 Optional<ElementCount> 5742 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5743 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5744 // TODO: It may by useful to do since it's still likely to be dynamically 5745 // uniform if the target can skip. 5746 reportVectorizationFailure( 5747 "Not inserting runtime ptr check for divergent target", 5748 "runtime pointer checks needed. Not enabled for divergent target", 5749 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5750 return None; 5751 } 5752 5753 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5754 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5755 if (TC == 1) { 5756 reportVectorizationFailure("Single iteration (non) loop", 5757 "loop trip count is one, irrelevant for vectorization", 5758 "SingleIterationLoop", ORE, TheLoop); 5759 return None; 5760 } 5761 5762 switch (ScalarEpilogueStatus) { 5763 case CM_ScalarEpilogueAllowed: 5764 return computeFeasibleMaxVF(TC, UserVF); 5765 case CM_ScalarEpilogueNotAllowedUsePredicate: 5766 LLVM_FALLTHROUGH; 5767 case CM_ScalarEpilogueNotNeededUsePredicate: 5768 LLVM_DEBUG( 5769 dbgs() << "LV: vector predicate hint/switch found.\n" 5770 << "LV: Not allowing scalar epilogue, creating predicated " 5771 << "vector loop.\n"); 5772 break; 5773 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5774 // fallthrough as a special case of OptForSize 5775 case CM_ScalarEpilogueNotAllowedOptSize: 5776 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5777 LLVM_DEBUG( 5778 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5779 else 5780 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5781 << "count.\n"); 5782 5783 // Bail if runtime checks are required, which are not good when optimising 5784 // for size. 5785 if (runtimeChecksRequired()) 5786 return None; 5787 5788 break; 5789 } 5790 5791 // The only loops we can vectorize without a scalar epilogue, are loops with 5792 // a bottom-test and a single exiting block. We'd have to handle the fact 5793 // that not every instruction executes on the last iteration. This will 5794 // require a lane mask which varies through the vector loop body. (TODO) 5795 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5796 // If there was a tail-folding hint/switch, but we can't fold the tail by 5797 // masking, fallback to a vectorization with a scalar epilogue. 5798 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5799 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5800 "scalar epilogue instead.\n"); 5801 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5802 return computeFeasibleMaxVF(TC, UserVF); 5803 } 5804 return None; 5805 } 5806 5807 // Now try the tail folding 5808 5809 // Invalidate interleave groups that require an epilogue if we can't mask 5810 // the interleave-group. 5811 if (!useMaskedInterleavedAccesses(TTI)) { 5812 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5813 "No decisions should have been taken at this point"); 5814 // Note: There is no need to invalidate any cost modeling decisions here, as 5815 // non where taken so far. 5816 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5817 } 5818 5819 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5820 assert(!MaxVF.isScalable() && 5821 "Scalable vectors do not yet support tail folding"); 5822 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5823 "MaxVF must be a power of 2"); 5824 unsigned MaxVFtimesIC = 5825 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5826 // Avoid tail folding if the trip count is known to be a multiple of any VF we 5827 // chose. 5828 ScalarEvolution *SE = PSE.getSE(); 5829 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5830 const SCEV *ExitCount = SE->getAddExpr( 5831 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5832 const SCEV *Rem = SE->getURemExpr( 5833 SE->applyLoopGuards(ExitCount, TheLoop), 5834 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5835 if (Rem->isZero()) { 5836 // Accept MaxVF if we do not have a tail. 5837 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5838 return MaxVF; 5839 } 5840 5841 // If we don't know the precise trip count, or if the trip count that we 5842 // found modulo the vectorization factor is not zero, try to fold the tail 5843 // by masking. 5844 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5845 if (Legal->prepareToFoldTailByMasking()) { 5846 FoldTailByMasking = true; 5847 return MaxVF; 5848 } 5849 5850 // If there was a tail-folding hint/switch, but we can't fold the tail by 5851 // masking, fallback to a vectorization with a scalar epilogue. 5852 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5853 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5854 "scalar epilogue instead.\n"); 5855 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5856 return MaxVF; 5857 } 5858 5859 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5860 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5861 return None; 5862 } 5863 5864 if (TC == 0) { 5865 reportVectorizationFailure( 5866 "Unable to calculate the loop count due to complex control flow", 5867 "unable to calculate the loop count due to complex control flow", 5868 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5869 return None; 5870 } 5871 5872 reportVectorizationFailure( 5873 "Cannot optimize for size and vectorize at the same time.", 5874 "cannot optimize for size and vectorize at the same time. " 5875 "Enable vectorization of this loop with '#pragma clang loop " 5876 "vectorize(enable)' when compiling with -Os/-Oz", 5877 "NoTailLoopWithOptForSize", ORE, TheLoop); 5878 return None; 5879 } 5880 5881 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5882 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5883 const ElementCount &MaxSafeVF) { 5884 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5885 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5886 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5887 : TargetTransformInfo::RGK_FixedWidthVector); 5888 5889 // Convenience function to return the minimum of two ElementCounts. 5890 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5891 assert((LHS.isScalable() == RHS.isScalable()) && 5892 "Scalable flags must match"); 5893 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5894 }; 5895 5896 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5897 // Note that both WidestRegister and WidestType may not be a powers of 2. 5898 auto MaxVectorElementCount = ElementCount::get( 5899 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5900 ComputeScalableMaxVF); 5901 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5902 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5903 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5904 5905 if (!MaxVectorElementCount) { 5906 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5907 return ElementCount::getFixed(1); 5908 } 5909 5910 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5911 if (ConstTripCount && 5912 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5913 isPowerOf2_32(ConstTripCount)) { 5914 // We need to clamp the VF to be the ConstTripCount. There is no point in 5915 // choosing a higher viable VF as done in the loop below. If 5916 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5917 // the TC is less than or equal to the known number of lanes. 5918 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5919 << ConstTripCount << "\n"); 5920 return TripCountEC; 5921 } 5922 5923 ElementCount MaxVF = MaxVectorElementCount; 5924 if (TTI.shouldMaximizeVectorBandwidth() || 5925 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5926 auto MaxVectorElementCountMaxBW = ElementCount::get( 5927 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5928 ComputeScalableMaxVF); 5929 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5930 5931 // Collect all viable vectorization factors larger than the default MaxVF 5932 // (i.e. MaxVectorElementCount). 5933 SmallVector<ElementCount, 8> VFs; 5934 for (ElementCount VS = MaxVectorElementCount * 2; 5935 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5936 VFs.push_back(VS); 5937 5938 // For each VF calculate its register usage. 5939 auto RUs = calculateRegisterUsage(VFs); 5940 5941 // Select the largest VF which doesn't require more registers than existing 5942 // ones. 5943 for (int i = RUs.size() - 1; i >= 0; --i) { 5944 bool Selected = true; 5945 for (auto &pair : RUs[i].MaxLocalUsers) { 5946 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5947 if (pair.second > TargetNumRegisters) 5948 Selected = false; 5949 } 5950 if (Selected) { 5951 MaxVF = VFs[i]; 5952 break; 5953 } 5954 } 5955 if (ElementCount MinVF = 5956 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5957 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5958 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5959 << ") with target's minimum: " << MinVF << '\n'); 5960 MaxVF = MinVF; 5961 } 5962 } 5963 } 5964 return MaxVF; 5965 } 5966 5967 bool LoopVectorizationCostModel::isMoreProfitable( 5968 const VectorizationFactor &A, const VectorizationFactor &B) const { 5969 InstructionCost::CostType CostA = *A.Cost.getValue(); 5970 InstructionCost::CostType CostB = *B.Cost.getValue(); 5971 5972 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5973 5974 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5975 MaxTripCount) { 5976 // If we are folding the tail and the trip count is a known (possibly small) 5977 // constant, the trip count will be rounded up to an integer number of 5978 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5979 // which we compare directly. When not folding the tail, the total cost will 5980 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5981 // approximated with the per-lane cost below instead of using the tripcount 5982 // as here. 5983 int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5984 int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5985 return RTCostA < RTCostB; 5986 } 5987 5988 // To avoid the need for FP division: 5989 // (CostA / A.Width) < (CostB / B.Width) 5990 // <=> (CostA * B.Width) < (CostB * A.Width) 5991 return (CostA * B.Width.getKnownMinValue()) < 5992 (CostB * A.Width.getKnownMinValue()); 5993 } 5994 5995 VectorizationFactor 5996 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5997 // FIXME: This can be fixed for scalable vectors later, because at this stage 5998 // the LoopVectorizer will only consider vectorizing a loop with scalable 5999 // vectors when the loop has a hint to enable vectorization for a given VF. 6000 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 6001 6002 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6003 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6004 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6005 6006 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6007 VectorizationFactor ChosenFactor = ScalarCost; 6008 6009 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6010 if (ForceVectorization && MaxVF.isVector()) { 6011 // Ignore scalar width, because the user explicitly wants vectorization. 6012 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6013 // evaluation. 6014 ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max(); 6015 } 6016 6017 for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF); 6018 i *= 2) { 6019 // Notice that the vector loop needs to be executed less times, so 6020 // we need to divide the cost of the vector loops by the width of 6021 // the vector elements. 6022 VectorizationCostTy C = expectedCost(i); 6023 6024 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 6025 VectorizationFactor Candidate(i, C.first); 6026 LLVM_DEBUG( 6027 dbgs() << "LV: Vector loop of width " << i << " costs: " 6028 << (*Candidate.Cost.getValue() / Candidate.Width.getFixedValue()) 6029 << ".\n"); 6030 6031 if (!C.second && !ForceVectorization) { 6032 LLVM_DEBUG( 6033 dbgs() << "LV: Not considering vector loop of width " << i 6034 << " because it will not generate any vector instructions.\n"); 6035 continue; 6036 } 6037 6038 // If profitable add it to ProfitableVF list. 6039 if (isMoreProfitable(Candidate, ScalarCost)) 6040 ProfitableVFs.push_back(Candidate); 6041 6042 if (isMoreProfitable(Candidate, ChosenFactor)) 6043 ChosenFactor = Candidate; 6044 } 6045 6046 if (!EnableCondStoresVectorization && NumPredStores) { 6047 reportVectorizationFailure("There are conditional stores.", 6048 "store that is conditionally executed prevents vectorization", 6049 "ConditionalStore", ORE, TheLoop); 6050 ChosenFactor = ScalarCost; 6051 } 6052 6053 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6054 *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue()) 6055 dbgs() 6056 << "LV: Vectorization seems to be not beneficial, " 6057 << "but was forced by a user.\n"); 6058 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6059 return ChosenFactor; 6060 } 6061 6062 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6063 const Loop &L, ElementCount VF) const { 6064 // Cross iteration phis such as reductions need special handling and are 6065 // currently unsupported. 6066 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6067 return Legal->isFirstOrderRecurrence(&Phi) || 6068 Legal->isReductionVariable(&Phi); 6069 })) 6070 return false; 6071 6072 // Phis with uses outside of the loop require special handling and are 6073 // currently unsupported. 6074 for (auto &Entry : Legal->getInductionVars()) { 6075 // Look for uses of the value of the induction at the last iteration. 6076 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6077 for (User *U : PostInc->users()) 6078 if (!L.contains(cast<Instruction>(U))) 6079 return false; 6080 // Look for uses of penultimate value of the induction. 6081 for (User *U : Entry.first->users()) 6082 if (!L.contains(cast<Instruction>(U))) 6083 return false; 6084 } 6085 6086 // Induction variables that are widened require special handling that is 6087 // currently not supported. 6088 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6089 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6090 this->isProfitableToScalarize(Entry.first, VF)); 6091 })) 6092 return false; 6093 6094 return true; 6095 } 6096 6097 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6098 const ElementCount VF) const { 6099 // FIXME: We need a much better cost-model to take different parameters such 6100 // as register pressure, code size increase and cost of extra branches into 6101 // account. For now we apply a very crude heuristic and only consider loops 6102 // with vectorization factors larger than a certain value. 6103 // We also consider epilogue vectorization unprofitable for targets that don't 6104 // consider interleaving beneficial (eg. MVE). 6105 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6106 return false; 6107 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6108 return true; 6109 return false; 6110 } 6111 6112 VectorizationFactor 6113 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6114 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6115 VectorizationFactor Result = VectorizationFactor::Disabled(); 6116 if (!EnableEpilogueVectorization) { 6117 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6118 return Result; 6119 } 6120 6121 if (!isScalarEpilogueAllowed()) { 6122 LLVM_DEBUG( 6123 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6124 "allowed.\n";); 6125 return Result; 6126 } 6127 6128 // FIXME: This can be fixed for scalable vectors later, because at this stage 6129 // the LoopVectorizer will only consider vectorizing a loop with scalable 6130 // vectors when the loop has a hint to enable vectorization for a given VF. 6131 if (MainLoopVF.isScalable()) { 6132 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6133 "yet supported.\n"); 6134 return Result; 6135 } 6136 6137 // Not really a cost consideration, but check for unsupported cases here to 6138 // simplify the logic. 6139 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6140 LLVM_DEBUG( 6141 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6142 "not a supported candidate.\n";); 6143 return Result; 6144 } 6145 6146 if (EpilogueVectorizationForceVF > 1) { 6147 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6148 if (LVP.hasPlanWithVFs( 6149 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6150 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6151 else { 6152 LLVM_DEBUG( 6153 dbgs() 6154 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6155 return Result; 6156 } 6157 } 6158 6159 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6160 TheLoop->getHeader()->getParent()->hasMinSize()) { 6161 LLVM_DEBUG( 6162 dbgs() 6163 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6164 return Result; 6165 } 6166 6167 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6168 return Result; 6169 6170 for (auto &NextVF : ProfitableVFs) 6171 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6172 (Result.Width.getFixedValue() == 1 || 6173 isMoreProfitable(NextVF, Result)) && 6174 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6175 Result = NextVF; 6176 6177 if (Result != VectorizationFactor::Disabled()) 6178 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6179 << Result.Width.getFixedValue() << "\n";); 6180 return Result; 6181 } 6182 6183 std::pair<unsigned, unsigned> 6184 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6185 unsigned MinWidth = -1U; 6186 unsigned MaxWidth = 8; 6187 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6188 6189 // For each block. 6190 for (BasicBlock *BB : TheLoop->blocks()) { 6191 // For each instruction in the loop. 6192 for (Instruction &I : BB->instructionsWithoutDebug()) { 6193 Type *T = I.getType(); 6194 6195 // Skip ignored values. 6196 if (ValuesToIgnore.count(&I)) 6197 continue; 6198 6199 // Only examine Loads, Stores and PHINodes. 6200 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6201 continue; 6202 6203 // Examine PHI nodes that are reduction variables. Update the type to 6204 // account for the recurrence type. 6205 if (auto *PN = dyn_cast<PHINode>(&I)) { 6206 if (!Legal->isReductionVariable(PN)) 6207 continue; 6208 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 6209 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6210 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6211 RdxDesc.getRecurrenceType(), 6212 TargetTransformInfo::ReductionFlags())) 6213 continue; 6214 T = RdxDesc.getRecurrenceType(); 6215 } 6216 6217 // Examine the stored values. 6218 if (auto *ST = dyn_cast<StoreInst>(&I)) 6219 T = ST->getValueOperand()->getType(); 6220 6221 // Ignore loaded pointer types and stored pointer types that are not 6222 // vectorizable. 6223 // 6224 // FIXME: The check here attempts to predict whether a load or store will 6225 // be vectorized. We only know this for certain after a VF has 6226 // been selected. Here, we assume that if an access can be 6227 // vectorized, it will be. We should also look at extending this 6228 // optimization to non-pointer types. 6229 // 6230 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6231 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6232 continue; 6233 6234 MinWidth = std::min(MinWidth, 6235 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6236 MaxWidth = std::max(MaxWidth, 6237 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6238 } 6239 } 6240 6241 return {MinWidth, MaxWidth}; 6242 } 6243 6244 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6245 unsigned LoopCost) { 6246 // -- The interleave heuristics -- 6247 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6248 // There are many micro-architectural considerations that we can't predict 6249 // at this level. For example, frontend pressure (on decode or fetch) due to 6250 // code size, or the number and capabilities of the execution ports. 6251 // 6252 // We use the following heuristics to select the interleave count: 6253 // 1. If the code has reductions, then we interleave to break the cross 6254 // iteration dependency. 6255 // 2. If the loop is really small, then we interleave to reduce the loop 6256 // overhead. 6257 // 3. We don't interleave if we think that we will spill registers to memory 6258 // due to the increased register pressure. 6259 6260 if (!isScalarEpilogueAllowed()) 6261 return 1; 6262 6263 // We used the distance for the interleave count. 6264 if (Legal->getMaxSafeDepDistBytes() != -1U) 6265 return 1; 6266 6267 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6268 const bool HasReductions = !Legal->getReductionVars().empty(); 6269 // Do not interleave loops with a relatively small known or estimated trip 6270 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6271 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6272 // because with the above conditions interleaving can expose ILP and break 6273 // cross iteration dependences for reductions. 6274 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6275 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6276 return 1; 6277 6278 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6279 // We divide by these constants so assume that we have at least one 6280 // instruction that uses at least one register. 6281 for (auto& pair : R.MaxLocalUsers) { 6282 pair.second = std::max(pair.second, 1U); 6283 } 6284 6285 // We calculate the interleave count using the following formula. 6286 // Subtract the number of loop invariants from the number of available 6287 // registers. These registers are used by all of the interleaved instances. 6288 // Next, divide the remaining registers by the number of registers that is 6289 // required by the loop, in order to estimate how many parallel instances 6290 // fit without causing spills. All of this is rounded down if necessary to be 6291 // a power of two. We want power of two interleave count to simplify any 6292 // addressing operations or alignment considerations. 6293 // We also want power of two interleave counts to ensure that the induction 6294 // variable of the vector loop wraps to zero, when tail is folded by masking; 6295 // this currently happens when OptForSize, in which case IC is set to 1 above. 6296 unsigned IC = UINT_MAX; 6297 6298 for (auto& pair : R.MaxLocalUsers) { 6299 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6300 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6301 << " registers of " 6302 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6303 if (VF.isScalar()) { 6304 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6305 TargetNumRegisters = ForceTargetNumScalarRegs; 6306 } else { 6307 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6308 TargetNumRegisters = ForceTargetNumVectorRegs; 6309 } 6310 unsigned MaxLocalUsers = pair.second; 6311 unsigned LoopInvariantRegs = 0; 6312 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6313 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6314 6315 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6316 // Don't count the induction variable as interleaved. 6317 if (EnableIndVarRegisterHeur) { 6318 TmpIC = 6319 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6320 std::max(1U, (MaxLocalUsers - 1))); 6321 } 6322 6323 IC = std::min(IC, TmpIC); 6324 } 6325 6326 // Clamp the interleave ranges to reasonable counts. 6327 unsigned MaxInterleaveCount = 6328 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6329 6330 // Check if the user has overridden the max. 6331 if (VF.isScalar()) { 6332 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6333 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6334 } else { 6335 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6336 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6337 } 6338 6339 // If trip count is known or estimated compile time constant, limit the 6340 // interleave count to be less than the trip count divided by VF, provided it 6341 // is at least 1. 6342 // 6343 // For scalable vectors we can't know if interleaving is beneficial. It may 6344 // not be beneficial for small loops if none of the lanes in the second vector 6345 // iterations is enabled. However, for larger loops, there is likely to be a 6346 // similar benefit as for fixed-width vectors. For now, we choose to leave 6347 // the InterleaveCount as if vscale is '1', although if some information about 6348 // the vector is known (e.g. min vector size), we can make a better decision. 6349 if (BestKnownTC) { 6350 MaxInterleaveCount = 6351 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6352 // Make sure MaxInterleaveCount is greater than 0. 6353 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6354 } 6355 6356 assert(MaxInterleaveCount > 0 && 6357 "Maximum interleave count must be greater than 0"); 6358 6359 // Clamp the calculated IC to be between the 1 and the max interleave count 6360 // that the target and trip count allows. 6361 if (IC > MaxInterleaveCount) 6362 IC = MaxInterleaveCount; 6363 else 6364 // Make sure IC is greater than 0. 6365 IC = std::max(1u, IC); 6366 6367 assert(IC > 0 && "Interleave count must be greater than 0."); 6368 6369 // If we did not calculate the cost for VF (because the user selected the VF) 6370 // then we calculate the cost of VF here. 6371 if (LoopCost == 0) { 6372 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6373 LoopCost = *expectedCost(VF).first.getValue(); 6374 } 6375 6376 assert(LoopCost && "Non-zero loop cost expected"); 6377 6378 // Interleave if we vectorized this loop and there is a reduction that could 6379 // benefit from interleaving. 6380 if (VF.isVector() && HasReductions) { 6381 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6382 return IC; 6383 } 6384 6385 // Note that if we've already vectorized the loop we will have done the 6386 // runtime check and so interleaving won't require further checks. 6387 bool InterleavingRequiresRuntimePointerCheck = 6388 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6389 6390 // We want to interleave small loops in order to reduce the loop overhead and 6391 // potentially expose ILP opportunities. 6392 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6393 << "LV: IC is " << IC << '\n' 6394 << "LV: VF is " << VF << '\n'); 6395 const bool AggressivelyInterleaveReductions = 6396 TTI.enableAggressiveInterleaving(HasReductions); 6397 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6398 // We assume that the cost overhead is 1 and we use the cost model 6399 // to estimate the cost of the loop and interleave until the cost of the 6400 // loop overhead is about 5% of the cost of the loop. 6401 unsigned SmallIC = 6402 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6403 6404 // Interleave until store/load ports (estimated by max interleave count) are 6405 // saturated. 6406 unsigned NumStores = Legal->getNumStores(); 6407 unsigned NumLoads = Legal->getNumLoads(); 6408 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6409 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6410 6411 // If we have a scalar reduction (vector reductions are already dealt with 6412 // by this point), we can increase the critical path length if the loop 6413 // we're interleaving is inside another loop. Limit, by default to 2, so the 6414 // critical path only gets increased by one reduction operation. 6415 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6416 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6417 SmallIC = std::min(SmallIC, F); 6418 StoresIC = std::min(StoresIC, F); 6419 LoadsIC = std::min(LoadsIC, F); 6420 } 6421 6422 if (EnableLoadStoreRuntimeInterleave && 6423 std::max(StoresIC, LoadsIC) > SmallIC) { 6424 LLVM_DEBUG( 6425 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6426 return std::max(StoresIC, LoadsIC); 6427 } 6428 6429 // If there are scalar reductions and TTI has enabled aggressive 6430 // interleaving for reductions, we will interleave to expose ILP. 6431 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6432 AggressivelyInterleaveReductions) { 6433 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6434 // Interleave no less than SmallIC but not as aggressive as the normal IC 6435 // to satisfy the rare situation when resources are too limited. 6436 return std::max(IC / 2, SmallIC); 6437 } else { 6438 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6439 return SmallIC; 6440 } 6441 } 6442 6443 // Interleave if this is a large loop (small loops are already dealt with by 6444 // this point) that could benefit from interleaving. 6445 if (AggressivelyInterleaveReductions) { 6446 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6447 return IC; 6448 } 6449 6450 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6451 return 1; 6452 } 6453 6454 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6455 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6456 // This function calculates the register usage by measuring the highest number 6457 // of values that are alive at a single location. Obviously, this is a very 6458 // rough estimation. We scan the loop in a topological order in order and 6459 // assign a number to each instruction. We use RPO to ensure that defs are 6460 // met before their users. We assume that each instruction that has in-loop 6461 // users starts an interval. We record every time that an in-loop value is 6462 // used, so we have a list of the first and last occurrences of each 6463 // instruction. Next, we transpose this data structure into a multi map that 6464 // holds the list of intervals that *end* at a specific location. This multi 6465 // map allows us to perform a linear search. We scan the instructions linearly 6466 // and record each time that a new interval starts, by placing it in a set. 6467 // If we find this value in the multi-map then we remove it from the set. 6468 // The max register usage is the maximum size of the set. 6469 // We also search for instructions that are defined outside the loop, but are 6470 // used inside the loop. We need this number separately from the max-interval 6471 // usage number because when we unroll, loop-invariant values do not take 6472 // more register. 6473 LoopBlocksDFS DFS(TheLoop); 6474 DFS.perform(LI); 6475 6476 RegisterUsage RU; 6477 6478 // Each 'key' in the map opens a new interval. The values 6479 // of the map are the index of the 'last seen' usage of the 6480 // instruction that is the key. 6481 using IntervalMap = DenseMap<Instruction *, unsigned>; 6482 6483 // Maps instruction to its index. 6484 SmallVector<Instruction *, 64> IdxToInstr; 6485 // Marks the end of each interval. 6486 IntervalMap EndPoint; 6487 // Saves the list of instruction indices that are used in the loop. 6488 SmallPtrSet<Instruction *, 8> Ends; 6489 // Saves the list of values that are used in the loop but are 6490 // defined outside the loop, such as arguments and constants. 6491 SmallPtrSet<Value *, 8> LoopInvariants; 6492 6493 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6494 for (Instruction &I : BB->instructionsWithoutDebug()) { 6495 IdxToInstr.push_back(&I); 6496 6497 // Save the end location of each USE. 6498 for (Value *U : I.operands()) { 6499 auto *Instr = dyn_cast<Instruction>(U); 6500 6501 // Ignore non-instruction values such as arguments, constants, etc. 6502 if (!Instr) 6503 continue; 6504 6505 // If this instruction is outside the loop then record it and continue. 6506 if (!TheLoop->contains(Instr)) { 6507 LoopInvariants.insert(Instr); 6508 continue; 6509 } 6510 6511 // Overwrite previous end points. 6512 EndPoint[Instr] = IdxToInstr.size(); 6513 Ends.insert(Instr); 6514 } 6515 } 6516 } 6517 6518 // Saves the list of intervals that end with the index in 'key'. 6519 using InstrList = SmallVector<Instruction *, 2>; 6520 DenseMap<unsigned, InstrList> TransposeEnds; 6521 6522 // Transpose the EndPoints to a list of values that end at each index. 6523 for (auto &Interval : EndPoint) 6524 TransposeEnds[Interval.second].push_back(Interval.first); 6525 6526 SmallPtrSet<Instruction *, 8> OpenIntervals; 6527 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6528 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6529 6530 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6531 6532 // A lambda that gets the register usage for the given type and VF. 6533 const auto &TTICapture = TTI; 6534 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6535 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6536 return 0U; 6537 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6538 }; 6539 6540 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6541 Instruction *I = IdxToInstr[i]; 6542 6543 // Remove all of the instructions that end at this location. 6544 InstrList &List = TransposeEnds[i]; 6545 for (Instruction *ToRemove : List) 6546 OpenIntervals.erase(ToRemove); 6547 6548 // Ignore instructions that are never used within the loop. 6549 if (!Ends.count(I)) 6550 continue; 6551 6552 // Skip ignored values. 6553 if (ValuesToIgnore.count(I)) 6554 continue; 6555 6556 // For each VF find the maximum usage of registers. 6557 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6558 // Count the number of live intervals. 6559 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6560 6561 if (VFs[j].isScalar()) { 6562 for (auto Inst : OpenIntervals) { 6563 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6564 if (RegUsage.find(ClassID) == RegUsage.end()) 6565 RegUsage[ClassID] = 1; 6566 else 6567 RegUsage[ClassID] += 1; 6568 } 6569 } else { 6570 collectUniformsAndScalars(VFs[j]); 6571 for (auto Inst : OpenIntervals) { 6572 // Skip ignored values for VF > 1. 6573 if (VecValuesToIgnore.count(Inst)) 6574 continue; 6575 if (isScalarAfterVectorization(Inst, VFs[j])) { 6576 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6577 if (RegUsage.find(ClassID) == RegUsage.end()) 6578 RegUsage[ClassID] = 1; 6579 else 6580 RegUsage[ClassID] += 1; 6581 } else { 6582 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6583 if (RegUsage.find(ClassID) == RegUsage.end()) 6584 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6585 else 6586 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6587 } 6588 } 6589 } 6590 6591 for (auto& pair : RegUsage) { 6592 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6593 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6594 else 6595 MaxUsages[j][pair.first] = pair.second; 6596 } 6597 } 6598 6599 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6600 << OpenIntervals.size() << '\n'); 6601 6602 // Add the current instruction to the list of open intervals. 6603 OpenIntervals.insert(I); 6604 } 6605 6606 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6607 SmallMapVector<unsigned, unsigned, 4> Invariant; 6608 6609 for (auto Inst : LoopInvariants) { 6610 unsigned Usage = 6611 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6612 unsigned ClassID = 6613 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6614 if (Invariant.find(ClassID) == Invariant.end()) 6615 Invariant[ClassID] = Usage; 6616 else 6617 Invariant[ClassID] += Usage; 6618 } 6619 6620 LLVM_DEBUG({ 6621 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6622 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6623 << " item\n"; 6624 for (const auto &pair : MaxUsages[i]) { 6625 dbgs() << "LV(REG): RegisterClass: " 6626 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6627 << " registers\n"; 6628 } 6629 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6630 << " item\n"; 6631 for (const auto &pair : Invariant) { 6632 dbgs() << "LV(REG): RegisterClass: " 6633 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6634 << " registers\n"; 6635 } 6636 }); 6637 6638 RU.LoopInvariantRegs = Invariant; 6639 RU.MaxLocalUsers = MaxUsages[i]; 6640 RUs[i] = RU; 6641 } 6642 6643 return RUs; 6644 } 6645 6646 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6647 // TODO: Cost model for emulated masked load/store is completely 6648 // broken. This hack guides the cost model to use an artificially 6649 // high enough value to practically disable vectorization with such 6650 // operations, except where previously deployed legality hack allowed 6651 // using very low cost values. This is to avoid regressions coming simply 6652 // from moving "masked load/store" check from legality to cost model. 6653 // Masked Load/Gather emulation was previously never allowed. 6654 // Limited number of Masked Store/Scatter emulation was allowed. 6655 assert(isPredicatedInst(I, ElementCount::getFixed(1)) && 6656 "Expecting a scalar emulated instruction"); 6657 return isa<LoadInst>(I) || 6658 (isa<StoreInst>(I) && 6659 NumPredStores > NumberOfStoresToPredicate); 6660 } 6661 6662 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6663 // If we aren't vectorizing the loop, or if we've already collected the 6664 // instructions to scalarize, there's nothing to do. Collection may already 6665 // have occurred if we have a user-selected VF and are now computing the 6666 // expected cost for interleaving. 6667 if (VF.isScalar() || VF.isZero() || 6668 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6669 return; 6670 6671 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6672 // not profitable to scalarize any instructions, the presence of VF in the 6673 // map will indicate that we've analyzed it already. 6674 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6675 6676 // Find all the instructions that are scalar with predication in the loop and 6677 // determine if it would be better to not if-convert the blocks they are in. 6678 // If so, we also record the instructions to scalarize. 6679 for (BasicBlock *BB : TheLoop->blocks()) { 6680 if (!blockNeedsPredication(BB)) 6681 continue; 6682 for (Instruction &I : *BB) 6683 if (isScalarWithPredication(&I)) { 6684 ScalarCostsTy ScalarCosts; 6685 // Do not apply discount logic if hacked cost is needed 6686 // for emulated masked memrefs. 6687 if (!useEmulatedMaskMemRefHack(&I) && 6688 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6689 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6690 // Remember that BB will remain after vectorization. 6691 PredicatedBBsAfterVectorization.insert(BB); 6692 } 6693 } 6694 } 6695 6696 int LoopVectorizationCostModel::computePredInstDiscount( 6697 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6698 assert(!isUniformAfterVectorization(PredInst, VF) && 6699 "Instruction marked uniform-after-vectorization will be predicated"); 6700 6701 // Initialize the discount to zero, meaning that the scalar version and the 6702 // vector version cost the same. 6703 InstructionCost Discount = 0; 6704 6705 // Holds instructions to analyze. The instructions we visit are mapped in 6706 // ScalarCosts. Those instructions are the ones that would be scalarized if 6707 // we find that the scalar version costs less. 6708 SmallVector<Instruction *, 8> Worklist; 6709 6710 // Returns true if the given instruction can be scalarized. 6711 auto canBeScalarized = [&](Instruction *I) -> bool { 6712 // We only attempt to scalarize instructions forming a single-use chain 6713 // from the original predicated block that would otherwise be vectorized. 6714 // Although not strictly necessary, we give up on instructions we know will 6715 // already be scalar to avoid traversing chains that are unlikely to be 6716 // beneficial. 6717 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6718 isScalarAfterVectorization(I, VF)) 6719 return false; 6720 6721 // If the instruction is scalar with predication, it will be analyzed 6722 // separately. We ignore it within the context of PredInst. 6723 if (isScalarWithPredication(I)) 6724 return false; 6725 6726 // If any of the instruction's operands are uniform after vectorization, 6727 // the instruction cannot be scalarized. This prevents, for example, a 6728 // masked load from being scalarized. 6729 // 6730 // We assume we will only emit a value for lane zero of an instruction 6731 // marked uniform after vectorization, rather than VF identical values. 6732 // Thus, if we scalarize an instruction that uses a uniform, we would 6733 // create uses of values corresponding to the lanes we aren't emitting code 6734 // for. This behavior can be changed by allowing getScalarValue to clone 6735 // the lane zero values for uniforms rather than asserting. 6736 for (Use &U : I->operands()) 6737 if (auto *J = dyn_cast<Instruction>(U.get())) 6738 if (isUniformAfterVectorization(J, VF)) 6739 return false; 6740 6741 // Otherwise, we can scalarize the instruction. 6742 return true; 6743 }; 6744 6745 // Compute the expected cost discount from scalarizing the entire expression 6746 // feeding the predicated instruction. We currently only consider expressions 6747 // that are single-use instruction chains. 6748 Worklist.push_back(PredInst); 6749 while (!Worklist.empty()) { 6750 Instruction *I = Worklist.pop_back_val(); 6751 6752 // If we've already analyzed the instruction, there's nothing to do. 6753 if (ScalarCosts.find(I) != ScalarCosts.end()) 6754 continue; 6755 6756 // Compute the cost of the vector instruction. Note that this cost already 6757 // includes the scalarization overhead of the predicated instruction. 6758 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6759 6760 // Compute the cost of the scalarized instruction. This cost is the cost of 6761 // the instruction as if it wasn't if-converted and instead remained in the 6762 // predicated block. We will scale this cost by block probability after 6763 // computing the scalarization overhead. 6764 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6765 InstructionCost ScalarCost = 6766 VF.getKnownMinValue() * 6767 getInstructionCost(I, ElementCount::getFixed(1)).first; 6768 6769 // Compute the scalarization overhead of needed insertelement instructions 6770 // and phi nodes. 6771 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6772 ScalarCost += TTI.getScalarizationOverhead( 6773 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6774 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6775 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6776 ScalarCost += 6777 VF.getKnownMinValue() * 6778 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6779 } 6780 6781 // Compute the scalarization overhead of needed extractelement 6782 // instructions. For each of the instruction's operands, if the operand can 6783 // be scalarized, add it to the worklist; otherwise, account for the 6784 // overhead. 6785 for (Use &U : I->operands()) 6786 if (auto *J = dyn_cast<Instruction>(U.get())) { 6787 assert(VectorType::isValidElementType(J->getType()) && 6788 "Instruction has non-scalar type"); 6789 if (canBeScalarized(J)) 6790 Worklist.push_back(J); 6791 else if (needsExtract(J, VF)) { 6792 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6793 ScalarCost += TTI.getScalarizationOverhead( 6794 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6795 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6796 } 6797 } 6798 6799 // Scale the total scalar cost by block probability. 6800 ScalarCost /= getReciprocalPredBlockProb(); 6801 6802 // Compute the discount. A non-negative discount means the vector version 6803 // of the instruction costs more, and scalarizing would be beneficial. 6804 Discount += VectorCost - ScalarCost; 6805 ScalarCosts[I] = ScalarCost; 6806 } 6807 6808 return *Discount.getValue(); 6809 } 6810 6811 LoopVectorizationCostModel::VectorizationCostTy 6812 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6813 VectorizationCostTy Cost; 6814 6815 // For each block. 6816 for (BasicBlock *BB : TheLoop->blocks()) { 6817 VectorizationCostTy BlockCost; 6818 6819 // For each instruction in the old loop. 6820 for (Instruction &I : BB->instructionsWithoutDebug()) { 6821 // Skip ignored values. 6822 if (ValuesToIgnore.count(&I) || 6823 (VF.isVector() && VecValuesToIgnore.count(&I))) 6824 continue; 6825 6826 VectorizationCostTy C = getInstructionCost(&I, VF); 6827 6828 // Check if we should override the cost. 6829 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6830 C.first = InstructionCost(ForceTargetInstructionCost); 6831 6832 BlockCost.first += C.first; 6833 BlockCost.second |= C.second; 6834 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6835 << " for VF " << VF << " For instruction: " << I 6836 << '\n'); 6837 } 6838 6839 // If we are vectorizing a predicated block, it will have been 6840 // if-converted. This means that the block's instructions (aside from 6841 // stores and instructions that may divide by zero) will now be 6842 // unconditionally executed. For the scalar case, we may not always execute 6843 // the predicated block, if it is an if-else block. Thus, scale the block's 6844 // cost by the probability of executing it. blockNeedsPredication from 6845 // Legal is used so as to not include all blocks in tail folded loops. 6846 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6847 BlockCost.first /= getReciprocalPredBlockProb(); 6848 6849 Cost.first += BlockCost.first; 6850 Cost.second |= BlockCost.second; 6851 } 6852 6853 return Cost; 6854 } 6855 6856 /// Gets Address Access SCEV after verifying that the access pattern 6857 /// is loop invariant except the induction variable dependence. 6858 /// 6859 /// This SCEV can be sent to the Target in order to estimate the address 6860 /// calculation cost. 6861 static const SCEV *getAddressAccessSCEV( 6862 Value *Ptr, 6863 LoopVectorizationLegality *Legal, 6864 PredicatedScalarEvolution &PSE, 6865 const Loop *TheLoop) { 6866 6867 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6868 if (!Gep) 6869 return nullptr; 6870 6871 // We are looking for a gep with all loop invariant indices except for one 6872 // which should be an induction variable. 6873 auto SE = PSE.getSE(); 6874 unsigned NumOperands = Gep->getNumOperands(); 6875 for (unsigned i = 1; i < NumOperands; ++i) { 6876 Value *Opd = Gep->getOperand(i); 6877 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6878 !Legal->isInductionVariable(Opd)) 6879 return nullptr; 6880 } 6881 6882 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6883 return PSE.getSCEV(Ptr); 6884 } 6885 6886 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6887 return Legal->hasStride(I->getOperand(0)) || 6888 Legal->hasStride(I->getOperand(1)); 6889 } 6890 6891 InstructionCost 6892 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6893 ElementCount VF) { 6894 assert(VF.isVector() && 6895 "Scalarization cost of instruction implies vectorization."); 6896 if (VF.isScalable()) 6897 return InstructionCost::getInvalid(); 6898 6899 Type *ValTy = getMemInstValueType(I); 6900 auto SE = PSE.getSE(); 6901 6902 unsigned AS = getLoadStoreAddressSpace(I); 6903 Value *Ptr = getLoadStorePointerOperand(I); 6904 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6905 6906 // Figure out whether the access is strided and get the stride value 6907 // if it's known in compile time 6908 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6909 6910 // Get the cost of the scalar memory instruction and address computation. 6911 InstructionCost Cost = 6912 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6913 6914 // Don't pass *I here, since it is scalar but will actually be part of a 6915 // vectorized loop where the user of it is a vectorized instruction. 6916 const Align Alignment = getLoadStoreAlignment(I); 6917 Cost += VF.getKnownMinValue() * 6918 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6919 AS, TTI::TCK_RecipThroughput); 6920 6921 // Get the overhead of the extractelement and insertelement instructions 6922 // we might create due to scalarization. 6923 Cost += getScalarizationOverhead(I, VF); 6924 6925 // If we have a predicated load/store, it will need extra i1 extracts and 6926 // conditional branches, but may not be executed for each vector lane. Scale 6927 // the cost by the probability of executing the predicated block. 6928 if (isPredicatedInst(I, ElementCount::getFixed(1))) { 6929 Cost /= getReciprocalPredBlockProb(); 6930 6931 // Add the cost of an i1 extract and a branch 6932 auto *Vec_i1Ty = 6933 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6934 Cost += TTI.getScalarizationOverhead( 6935 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6936 /*Insert=*/false, /*Extract=*/true); 6937 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6938 6939 if (useEmulatedMaskMemRefHack(I)) 6940 // Artificially setting to a high enough value to practically disable 6941 // vectorization with such operations. 6942 Cost = 3000000; 6943 } 6944 6945 return Cost; 6946 } 6947 6948 InstructionCost 6949 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6950 ElementCount VF) { 6951 Type *ValTy = getMemInstValueType(I); 6952 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6953 Value *Ptr = getLoadStorePointerOperand(I); 6954 unsigned AS = getLoadStoreAddressSpace(I); 6955 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6956 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6957 6958 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6959 "Stride should be 1 or -1 for consecutive memory access"); 6960 const Align Alignment = getLoadStoreAlignment(I); 6961 InstructionCost Cost = 0; 6962 if (Legal->isMaskRequired(I)) 6963 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6964 CostKind); 6965 else 6966 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6967 CostKind, I); 6968 6969 bool Reverse = ConsecutiveStride < 0; 6970 if (Reverse) 6971 Cost += 6972 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6973 return Cost; 6974 } 6975 6976 InstructionCost 6977 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6978 ElementCount VF) { 6979 assert(Legal->isUniformMemOp(*I)); 6980 6981 Type *ValTy = getMemInstValueType(I); 6982 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6983 const Align Alignment = getLoadStoreAlignment(I); 6984 unsigned AS = getLoadStoreAddressSpace(I); 6985 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6986 if (isa<LoadInst>(I)) { 6987 return TTI.getAddressComputationCost(ValTy) + 6988 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6989 CostKind) + 6990 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6991 } 6992 StoreInst *SI = cast<StoreInst>(I); 6993 6994 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6995 return TTI.getAddressComputationCost(ValTy) + 6996 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6997 CostKind) + 6998 (isLoopInvariantStoreValue 6999 ? 0 7000 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7001 VF.getKnownMinValue() - 1)); 7002 } 7003 7004 InstructionCost 7005 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7006 ElementCount VF) { 7007 Type *ValTy = getMemInstValueType(I); 7008 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7009 const Align Alignment = getLoadStoreAlignment(I); 7010 const Value *Ptr = getLoadStorePointerOperand(I); 7011 7012 return TTI.getAddressComputationCost(VectorTy) + 7013 TTI.getGatherScatterOpCost( 7014 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7015 TargetTransformInfo::TCK_RecipThroughput, I); 7016 } 7017 7018 InstructionCost 7019 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7020 ElementCount VF) { 7021 // TODO: Once we have support for interleaving with scalable vectors 7022 // we can calculate the cost properly here. 7023 if (VF.isScalable()) 7024 return InstructionCost::getInvalid(); 7025 7026 Type *ValTy = getMemInstValueType(I); 7027 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7028 unsigned AS = getLoadStoreAddressSpace(I); 7029 7030 auto Group = getInterleavedAccessGroup(I); 7031 assert(Group && "Fail to get an interleaved access group."); 7032 7033 unsigned InterleaveFactor = Group->getFactor(); 7034 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7035 7036 // Holds the indices of existing members in an interleaved load group. 7037 // An interleaved store group doesn't need this as it doesn't allow gaps. 7038 SmallVector<unsigned, 4> Indices; 7039 if (isa<LoadInst>(I)) { 7040 for (unsigned i = 0; i < InterleaveFactor; i++) 7041 if (Group->getMember(i)) 7042 Indices.push_back(i); 7043 } 7044 7045 // Calculate the cost of the whole interleaved group. 7046 bool UseMaskForGaps = 7047 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7048 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7049 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7050 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7051 7052 if (Group->isReverse()) { 7053 // TODO: Add support for reversed masked interleaved access. 7054 assert(!Legal->isMaskRequired(I) && 7055 "Reverse masked interleaved access not supported."); 7056 Cost += 7057 Group->getNumMembers() * 7058 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7059 } 7060 return Cost; 7061 } 7062 7063 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 7064 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7065 // Early exit for no inloop reductions 7066 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7067 return InstructionCost::getInvalid(); 7068 auto *VectorTy = cast<VectorType>(Ty); 7069 7070 // We are looking for a pattern of, and finding the minimal acceptable cost: 7071 // reduce(mul(ext(A), ext(B))) or 7072 // reduce(mul(A, B)) or 7073 // reduce(ext(A)) or 7074 // reduce(A). 7075 // The basic idea is that we walk down the tree to do that, finding the root 7076 // reduction instruction in InLoopReductionImmediateChains. From there we find 7077 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7078 // of the components. If the reduction cost is lower then we return it for the 7079 // reduction instruction and 0 for the other instructions in the pattern. If 7080 // it is not we return an invalid cost specifying the orignal cost method 7081 // should be used. 7082 Instruction *RetI = I; 7083 if ((RetI->getOpcode() == Instruction::SExt || 7084 RetI->getOpcode() == Instruction::ZExt)) { 7085 if (!RetI->hasOneUser()) 7086 return InstructionCost::getInvalid(); 7087 RetI = RetI->user_back(); 7088 } 7089 if (RetI->getOpcode() == Instruction::Mul && 7090 RetI->user_back()->getOpcode() == Instruction::Add) { 7091 if (!RetI->hasOneUser()) 7092 return InstructionCost::getInvalid(); 7093 RetI = RetI->user_back(); 7094 } 7095 7096 // Test if the found instruction is a reduction, and if not return an invalid 7097 // cost specifying the parent to use the original cost modelling. 7098 if (!InLoopReductionImmediateChains.count(RetI)) 7099 return InstructionCost::getInvalid(); 7100 7101 // Find the reduction this chain is a part of and calculate the basic cost of 7102 // the reduction on its own. 7103 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7104 Instruction *ReductionPhi = LastChain; 7105 while (!isa<PHINode>(ReductionPhi)) 7106 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7107 7108 RecurrenceDescriptor RdxDesc = 7109 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7110 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7111 RdxDesc.getOpcode(), VectorTy, false, CostKind); 7112 7113 // Get the operand that was not the reduction chain and match it to one of the 7114 // patterns, returning the better cost if it is found. 7115 Instruction *RedOp = RetI->getOperand(1) == LastChain 7116 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7117 : dyn_cast<Instruction>(RetI->getOperand(1)); 7118 7119 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7120 7121 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7122 !TheLoop->isLoopInvariant(RedOp)) { 7123 bool IsUnsigned = isa<ZExtInst>(RedOp); 7124 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7125 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7126 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7127 CostKind); 7128 7129 InstructionCost ExtCost = 7130 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7131 TTI::CastContextHint::None, CostKind, RedOp); 7132 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7133 return I == RetI ? *RedCost.getValue() : 0; 7134 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7135 Instruction *Mul = RedOp; 7136 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7137 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7138 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7139 Op0->getOpcode() == Op1->getOpcode() && 7140 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7141 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7142 bool IsUnsigned = isa<ZExtInst>(Op0); 7143 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7144 // reduce(mul(ext, ext)) 7145 InstructionCost ExtCost = 7146 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7147 TTI::CastContextHint::None, CostKind, Op0); 7148 InstructionCost MulCost = 7149 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7150 7151 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7152 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7153 CostKind); 7154 7155 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7156 return I == RetI ? *RedCost.getValue() : 0; 7157 } else { 7158 InstructionCost MulCost = 7159 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7160 7161 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7162 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7163 CostKind); 7164 7165 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7166 return I == RetI ? *RedCost.getValue() : 0; 7167 } 7168 } 7169 7170 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7171 } 7172 7173 InstructionCost 7174 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7175 ElementCount VF) { 7176 // Calculate scalar cost only. Vectorization cost should be ready at this 7177 // moment. 7178 if (VF.isScalar()) { 7179 Type *ValTy = getMemInstValueType(I); 7180 const Align Alignment = getLoadStoreAlignment(I); 7181 unsigned AS = getLoadStoreAddressSpace(I); 7182 7183 return TTI.getAddressComputationCost(ValTy) + 7184 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7185 TTI::TCK_RecipThroughput, I); 7186 } 7187 return getWideningCost(I, VF); 7188 } 7189 7190 LoopVectorizationCostModel::VectorizationCostTy 7191 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7192 ElementCount VF) { 7193 // If we know that this instruction will remain uniform, check the cost of 7194 // the scalar version. 7195 if (isUniformAfterVectorization(I, VF)) 7196 VF = ElementCount::getFixed(1); 7197 7198 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7199 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7200 7201 // Forced scalars do not have any scalarization overhead. 7202 auto ForcedScalar = ForcedScalars.find(VF); 7203 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7204 auto InstSet = ForcedScalar->second; 7205 if (InstSet.count(I)) 7206 return VectorizationCostTy( 7207 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7208 VF.getKnownMinValue()), 7209 false); 7210 } 7211 7212 Type *VectorTy; 7213 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7214 7215 bool TypeNotScalarized = 7216 VF.isVector() && VectorTy->isVectorTy() && 7217 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7218 return VectorizationCostTy(C, TypeNotScalarized); 7219 } 7220 7221 InstructionCost 7222 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7223 ElementCount VF) const { 7224 7225 if (VF.isScalable()) 7226 return InstructionCost::getInvalid(); 7227 7228 if (VF.isScalar()) 7229 return 0; 7230 7231 InstructionCost Cost = 0; 7232 Type *RetTy = ToVectorTy(I->getType(), VF); 7233 if (!RetTy->isVoidTy() && 7234 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7235 Cost += TTI.getScalarizationOverhead( 7236 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7237 true, false); 7238 7239 // Some targets keep addresses scalar. 7240 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7241 return Cost; 7242 7243 // Some targets support efficient element stores. 7244 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7245 return Cost; 7246 7247 // Collect operands to consider. 7248 CallInst *CI = dyn_cast<CallInst>(I); 7249 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7250 7251 // Skip operands that do not require extraction/scalarization and do not incur 7252 // any overhead. 7253 SmallVector<Type *> Tys; 7254 for (auto *V : filterExtractingOperands(Ops, VF)) 7255 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7256 return Cost + TTI.getOperandsScalarizationOverhead( 7257 filterExtractingOperands(Ops, VF), Tys); 7258 } 7259 7260 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7261 if (VF.isScalar()) 7262 return; 7263 NumPredStores = 0; 7264 for (BasicBlock *BB : TheLoop->blocks()) { 7265 // For each instruction in the old loop. 7266 for (Instruction &I : *BB) { 7267 Value *Ptr = getLoadStorePointerOperand(&I); 7268 if (!Ptr) 7269 continue; 7270 7271 // TODO: We should generate better code and update the cost model for 7272 // predicated uniform stores. Today they are treated as any other 7273 // predicated store (see added test cases in 7274 // invariant-store-vectorization.ll). 7275 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7276 NumPredStores++; 7277 7278 if (Legal->isUniformMemOp(I)) { 7279 // TODO: Avoid replicating loads and stores instead of 7280 // relying on instcombine to remove them. 7281 // Load: Scalar load + broadcast 7282 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7283 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7284 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7285 continue; 7286 } 7287 7288 // We assume that widening is the best solution when possible. 7289 if (memoryInstructionCanBeWidened(&I, VF)) { 7290 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7291 int ConsecutiveStride = 7292 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7293 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7294 "Expected consecutive stride."); 7295 InstWidening Decision = 7296 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7297 setWideningDecision(&I, VF, Decision, Cost); 7298 continue; 7299 } 7300 7301 // Choose between Interleaving, Gather/Scatter or Scalarization. 7302 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7303 unsigned NumAccesses = 1; 7304 if (isAccessInterleaved(&I)) { 7305 auto Group = getInterleavedAccessGroup(&I); 7306 assert(Group && "Fail to get an interleaved access group."); 7307 7308 // Make one decision for the whole group. 7309 if (getWideningDecision(&I, VF) != CM_Unknown) 7310 continue; 7311 7312 NumAccesses = Group->getNumMembers(); 7313 if (interleavedAccessCanBeWidened(&I, VF)) 7314 InterleaveCost = getInterleaveGroupCost(&I, VF); 7315 } 7316 7317 InstructionCost GatherScatterCost = 7318 isLegalGatherOrScatter(&I) 7319 ? getGatherScatterCost(&I, VF) * NumAccesses 7320 : InstructionCost::getInvalid(); 7321 7322 InstructionCost ScalarizationCost = 7323 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7324 7325 // Choose better solution for the current VF, 7326 // write down this decision and use it during vectorization. 7327 InstructionCost Cost; 7328 InstWidening Decision; 7329 if (InterleaveCost <= GatherScatterCost && 7330 InterleaveCost < ScalarizationCost) { 7331 Decision = CM_Interleave; 7332 Cost = InterleaveCost; 7333 } else if (GatherScatterCost < ScalarizationCost) { 7334 Decision = CM_GatherScatter; 7335 Cost = GatherScatterCost; 7336 } else { 7337 assert(!VF.isScalable() && 7338 "We cannot yet scalarise for scalable vectors"); 7339 Decision = CM_Scalarize; 7340 Cost = ScalarizationCost; 7341 } 7342 // If the instructions belongs to an interleave group, the whole group 7343 // receives the same decision. The whole group receives the cost, but 7344 // the cost will actually be assigned to one instruction. 7345 if (auto Group = getInterleavedAccessGroup(&I)) 7346 setWideningDecision(Group, VF, Decision, Cost); 7347 else 7348 setWideningDecision(&I, VF, Decision, Cost); 7349 } 7350 } 7351 7352 // Make sure that any load of address and any other address computation 7353 // remains scalar unless there is gather/scatter support. This avoids 7354 // inevitable extracts into address registers, and also has the benefit of 7355 // activating LSR more, since that pass can't optimize vectorized 7356 // addresses. 7357 if (TTI.prefersVectorizedAddressing()) 7358 return; 7359 7360 // Start with all scalar pointer uses. 7361 SmallPtrSet<Instruction *, 8> AddrDefs; 7362 for (BasicBlock *BB : TheLoop->blocks()) 7363 for (Instruction &I : *BB) { 7364 Instruction *PtrDef = 7365 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7366 if (PtrDef && TheLoop->contains(PtrDef) && 7367 getWideningDecision(&I, VF) != CM_GatherScatter) 7368 AddrDefs.insert(PtrDef); 7369 } 7370 7371 // Add all instructions used to generate the addresses. 7372 SmallVector<Instruction *, 4> Worklist; 7373 append_range(Worklist, AddrDefs); 7374 while (!Worklist.empty()) { 7375 Instruction *I = Worklist.pop_back_val(); 7376 for (auto &Op : I->operands()) 7377 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7378 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7379 AddrDefs.insert(InstOp).second) 7380 Worklist.push_back(InstOp); 7381 } 7382 7383 for (auto *I : AddrDefs) { 7384 if (isa<LoadInst>(I)) { 7385 // Setting the desired widening decision should ideally be handled in 7386 // by cost functions, but since this involves the task of finding out 7387 // if the loaded register is involved in an address computation, it is 7388 // instead changed here when we know this is the case. 7389 InstWidening Decision = getWideningDecision(I, VF); 7390 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7391 // Scalarize a widened load of address. 7392 setWideningDecision( 7393 I, VF, CM_Scalarize, 7394 (VF.getKnownMinValue() * 7395 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7396 else if (auto Group = getInterleavedAccessGroup(I)) { 7397 // Scalarize an interleave group of address loads. 7398 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7399 if (Instruction *Member = Group->getMember(I)) 7400 setWideningDecision( 7401 Member, VF, CM_Scalarize, 7402 (VF.getKnownMinValue() * 7403 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7404 } 7405 } 7406 } else 7407 // Make sure I gets scalarized and a cost estimate without 7408 // scalarization overhead. 7409 ForcedScalars[VF].insert(I); 7410 } 7411 } 7412 7413 InstructionCost 7414 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7415 Type *&VectorTy) { 7416 Type *RetTy = I->getType(); 7417 if (canTruncateToMinimalBitwidth(I, VF)) 7418 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7419 auto SE = PSE.getSE(); 7420 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7421 7422 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7423 ElementCount VF) -> bool { 7424 if (VF.isScalar()) 7425 return true; 7426 7427 auto Scalarized = InstsToScalarize.find(VF); 7428 assert(Scalarized != InstsToScalarize.end() && 7429 "VF not yet analyzed for scalarization profitability"); 7430 return !Scalarized->second.count(I) && 7431 llvm::all_of(I->users(), [&](User *U) { 7432 auto *UI = cast<Instruction>(U); 7433 return !Scalarized->second.count(UI); 7434 }); 7435 }; 7436 (void) hasSingleCopyAfterVectorization; 7437 7438 if (isScalarAfterVectorization(I, VF)) { 7439 // With the exception of GEPs and PHIs, after scalarization there should 7440 // only be one copy of the instruction generated in the loop. This is 7441 // because the VF is either 1, or any instructions that need scalarizing 7442 // have already been dealt with by the the time we get here. As a result, 7443 // it means we don't have to multiply the instruction cost by VF. 7444 assert(I->getOpcode() == Instruction::GetElementPtr || 7445 I->getOpcode() == Instruction::PHI || 7446 (I->getOpcode() == Instruction::BitCast && 7447 I->getType()->isPointerTy()) || 7448 hasSingleCopyAfterVectorization(I, VF)); 7449 VectorTy = RetTy; 7450 } else 7451 VectorTy = ToVectorTy(RetTy, VF); 7452 7453 // TODO: We need to estimate the cost of intrinsic calls. 7454 switch (I->getOpcode()) { 7455 case Instruction::GetElementPtr: 7456 // We mark this instruction as zero-cost because the cost of GEPs in 7457 // vectorized code depends on whether the corresponding memory instruction 7458 // is scalarized or not. Therefore, we handle GEPs with the memory 7459 // instruction cost. 7460 return 0; 7461 case Instruction::Br: { 7462 // In cases of scalarized and predicated instructions, there will be VF 7463 // predicated blocks in the vectorized loop. Each branch around these 7464 // blocks requires also an extract of its vector compare i1 element. 7465 bool ScalarPredicatedBB = false; 7466 BranchInst *BI = cast<BranchInst>(I); 7467 if (VF.isVector() && BI->isConditional() && 7468 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7469 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7470 ScalarPredicatedBB = true; 7471 7472 if (ScalarPredicatedBB) { 7473 // Return cost for branches around scalarized and predicated blocks. 7474 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7475 auto *Vec_i1Ty = 7476 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7477 return (TTI.getScalarizationOverhead( 7478 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7479 false, true) + 7480 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7481 VF.getKnownMinValue())); 7482 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7483 // The back-edge branch will remain, as will all scalar branches. 7484 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7485 else 7486 // This branch will be eliminated by if-conversion. 7487 return 0; 7488 // Note: We currently assume zero cost for an unconditional branch inside 7489 // a predicated block since it will become a fall-through, although we 7490 // may decide in the future to call TTI for all branches. 7491 } 7492 case Instruction::PHI: { 7493 auto *Phi = cast<PHINode>(I); 7494 7495 // First-order recurrences are replaced by vector shuffles inside the loop. 7496 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7497 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7498 return TTI.getShuffleCost( 7499 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7500 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7501 7502 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7503 // converted into select instructions. We require N - 1 selects per phi 7504 // node, where N is the number of incoming values. 7505 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7506 return (Phi->getNumIncomingValues() - 1) * 7507 TTI.getCmpSelInstrCost( 7508 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7509 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7510 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7511 7512 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7513 } 7514 case Instruction::UDiv: 7515 case Instruction::SDiv: 7516 case Instruction::URem: 7517 case Instruction::SRem: 7518 // If we have a predicated instruction, it may not be executed for each 7519 // vector lane. Get the scalarization cost and scale this amount by the 7520 // probability of executing the predicated block. If the instruction is not 7521 // predicated, we fall through to the next case. 7522 if (VF.isVector() && isScalarWithPredication(I)) { 7523 InstructionCost Cost = 0; 7524 7525 // These instructions have a non-void type, so account for the phi nodes 7526 // that we will create. This cost is likely to be zero. The phi node 7527 // cost, if any, should be scaled by the block probability because it 7528 // models a copy at the end of each predicated block. 7529 Cost += VF.getKnownMinValue() * 7530 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7531 7532 // The cost of the non-predicated instruction. 7533 Cost += VF.getKnownMinValue() * 7534 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7535 7536 // The cost of insertelement and extractelement instructions needed for 7537 // scalarization. 7538 Cost += getScalarizationOverhead(I, VF); 7539 7540 // Scale the cost by the probability of executing the predicated blocks. 7541 // This assumes the predicated block for each vector lane is equally 7542 // likely. 7543 return Cost / getReciprocalPredBlockProb(); 7544 } 7545 LLVM_FALLTHROUGH; 7546 case Instruction::Add: 7547 case Instruction::FAdd: 7548 case Instruction::Sub: 7549 case Instruction::FSub: 7550 case Instruction::Mul: 7551 case Instruction::FMul: 7552 case Instruction::FDiv: 7553 case Instruction::FRem: 7554 case Instruction::Shl: 7555 case Instruction::LShr: 7556 case Instruction::AShr: 7557 case Instruction::And: 7558 case Instruction::Or: 7559 case Instruction::Xor: { 7560 // Since we will replace the stride by 1 the multiplication should go away. 7561 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7562 return 0; 7563 7564 // Detect reduction patterns 7565 InstructionCost RedCost; 7566 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7567 .isValid()) 7568 return RedCost; 7569 7570 // Certain instructions can be cheaper to vectorize if they have a constant 7571 // second vector operand. One example of this are shifts on x86. 7572 Value *Op2 = I->getOperand(1); 7573 TargetTransformInfo::OperandValueProperties Op2VP; 7574 TargetTransformInfo::OperandValueKind Op2VK = 7575 TTI.getOperandInfo(Op2, Op2VP); 7576 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7577 Op2VK = TargetTransformInfo::OK_UniformValue; 7578 7579 SmallVector<const Value *, 4> Operands(I->operand_values()); 7580 return TTI.getArithmeticInstrCost( 7581 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7582 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7583 } 7584 case Instruction::FNeg: { 7585 return TTI.getArithmeticInstrCost( 7586 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7587 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7588 TargetTransformInfo::OP_None, I->getOperand(0), I); 7589 } 7590 case Instruction::Select: { 7591 SelectInst *SI = cast<SelectInst>(I); 7592 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7593 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7594 7595 const Value *Op0, *Op1; 7596 using namespace llvm::PatternMatch; 7597 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7598 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7599 // select x, y, false --> x & y 7600 // select x, true, y --> x | y 7601 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7602 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7603 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7604 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7605 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7606 Op1->getType()->getScalarSizeInBits() == 1); 7607 7608 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7609 return TTI.getArithmeticInstrCost( 7610 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7611 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7612 } 7613 7614 Type *CondTy = SI->getCondition()->getType(); 7615 if (!ScalarCond) 7616 CondTy = VectorType::get(CondTy, VF); 7617 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7618 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7619 } 7620 case Instruction::ICmp: 7621 case Instruction::FCmp: { 7622 Type *ValTy = I->getOperand(0)->getType(); 7623 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7624 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7625 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7626 VectorTy = ToVectorTy(ValTy, VF); 7627 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7628 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7629 } 7630 case Instruction::Store: 7631 case Instruction::Load: { 7632 ElementCount Width = VF; 7633 if (Width.isVector()) { 7634 InstWidening Decision = getWideningDecision(I, Width); 7635 assert(Decision != CM_Unknown && 7636 "CM decision should be taken at this point"); 7637 if (Decision == CM_Scalarize) 7638 Width = ElementCount::getFixed(1); 7639 } 7640 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7641 return getMemoryInstructionCost(I, VF); 7642 } 7643 case Instruction::BitCast: 7644 if (I->getType()->isPointerTy()) 7645 return 0; 7646 LLVM_FALLTHROUGH; 7647 case Instruction::ZExt: 7648 case Instruction::SExt: 7649 case Instruction::FPToUI: 7650 case Instruction::FPToSI: 7651 case Instruction::FPExt: 7652 case Instruction::PtrToInt: 7653 case Instruction::IntToPtr: 7654 case Instruction::SIToFP: 7655 case Instruction::UIToFP: 7656 case Instruction::Trunc: 7657 case Instruction::FPTrunc: { 7658 // Computes the CastContextHint from a Load/Store instruction. 7659 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7660 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7661 "Expected a load or a store!"); 7662 7663 if (VF.isScalar() || !TheLoop->contains(I)) 7664 return TTI::CastContextHint::Normal; 7665 7666 switch (getWideningDecision(I, VF)) { 7667 case LoopVectorizationCostModel::CM_GatherScatter: 7668 return TTI::CastContextHint::GatherScatter; 7669 case LoopVectorizationCostModel::CM_Interleave: 7670 return TTI::CastContextHint::Interleave; 7671 case LoopVectorizationCostModel::CM_Scalarize: 7672 case LoopVectorizationCostModel::CM_Widen: 7673 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7674 : TTI::CastContextHint::Normal; 7675 case LoopVectorizationCostModel::CM_Widen_Reverse: 7676 return TTI::CastContextHint::Reversed; 7677 case LoopVectorizationCostModel::CM_Unknown: 7678 llvm_unreachable("Instr did not go through cost modelling?"); 7679 } 7680 7681 llvm_unreachable("Unhandled case!"); 7682 }; 7683 7684 unsigned Opcode = I->getOpcode(); 7685 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7686 // For Trunc, the context is the only user, which must be a StoreInst. 7687 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7688 if (I->hasOneUse()) 7689 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7690 CCH = ComputeCCH(Store); 7691 } 7692 // For Z/Sext, the context is the operand, which must be a LoadInst. 7693 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7694 Opcode == Instruction::FPExt) { 7695 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7696 CCH = ComputeCCH(Load); 7697 } 7698 7699 // We optimize the truncation of induction variables having constant 7700 // integer steps. The cost of these truncations is the same as the scalar 7701 // operation. 7702 if (isOptimizableIVTruncate(I, VF)) { 7703 auto *Trunc = cast<TruncInst>(I); 7704 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7705 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7706 } 7707 7708 // Detect reduction patterns 7709 InstructionCost RedCost; 7710 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7711 .isValid()) 7712 return RedCost; 7713 7714 Type *SrcScalarTy = I->getOperand(0)->getType(); 7715 Type *SrcVecTy = 7716 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7717 if (canTruncateToMinimalBitwidth(I, VF)) { 7718 // This cast is going to be shrunk. This may remove the cast or it might 7719 // turn it into slightly different cast. For example, if MinBW == 16, 7720 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7721 // 7722 // Calculate the modified src and dest types. 7723 Type *MinVecTy = VectorTy; 7724 if (Opcode == Instruction::Trunc) { 7725 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7726 VectorTy = 7727 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7728 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7729 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7730 VectorTy = 7731 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7732 } 7733 } 7734 7735 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7736 } 7737 case Instruction::Call: { 7738 bool NeedToScalarize; 7739 CallInst *CI = cast<CallInst>(I); 7740 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7741 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7742 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7743 return std::min(CallCost, IntrinsicCost); 7744 } 7745 return CallCost; 7746 } 7747 case Instruction::ExtractValue: 7748 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7749 default: 7750 // This opcode is unknown. Assume that it is the same as 'mul'. 7751 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7752 } // end of switch. 7753 } 7754 7755 char LoopVectorize::ID = 0; 7756 7757 static const char lv_name[] = "Loop Vectorization"; 7758 7759 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7760 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7761 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7762 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7763 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7764 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7765 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7766 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7767 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7768 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7769 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7770 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7771 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7772 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7773 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7774 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7775 7776 namespace llvm { 7777 7778 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7779 7780 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7781 bool VectorizeOnlyWhenForced) { 7782 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7783 } 7784 7785 } // end namespace llvm 7786 7787 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7788 // Check if the pointer operand of a load or store instruction is 7789 // consecutive. 7790 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7791 return Legal->isConsecutivePtr(Ptr); 7792 return false; 7793 } 7794 7795 void LoopVectorizationCostModel::collectValuesToIgnore() { 7796 // Ignore ephemeral values. 7797 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7798 7799 // Ignore type-promoting instructions we identified during reduction 7800 // detection. 7801 for (auto &Reduction : Legal->getReductionVars()) { 7802 RecurrenceDescriptor &RedDes = Reduction.second; 7803 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7804 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7805 } 7806 // Ignore type-casting instructions we identified during induction 7807 // detection. 7808 for (auto &Induction : Legal->getInductionVars()) { 7809 InductionDescriptor &IndDes = Induction.second; 7810 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7811 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7812 } 7813 } 7814 7815 void LoopVectorizationCostModel::collectInLoopReductions() { 7816 for (auto &Reduction : Legal->getReductionVars()) { 7817 PHINode *Phi = Reduction.first; 7818 RecurrenceDescriptor &RdxDesc = Reduction.second; 7819 7820 // We don't collect reductions that are type promoted (yet). 7821 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7822 continue; 7823 7824 // If the target would prefer this reduction to happen "in-loop", then we 7825 // want to record it as such. 7826 unsigned Opcode = RdxDesc.getOpcode(); 7827 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7828 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7829 TargetTransformInfo::ReductionFlags())) 7830 continue; 7831 7832 // Check that we can correctly put the reductions into the loop, by 7833 // finding the chain of operations that leads from the phi to the loop 7834 // exit value. 7835 SmallVector<Instruction *, 4> ReductionOperations = 7836 RdxDesc.getReductionOpChain(Phi, TheLoop); 7837 bool InLoop = !ReductionOperations.empty(); 7838 if (InLoop) { 7839 InLoopReductionChains[Phi] = ReductionOperations; 7840 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7841 Instruction *LastChain = Phi; 7842 for (auto *I : ReductionOperations) { 7843 InLoopReductionImmediateChains[I] = LastChain; 7844 LastChain = I; 7845 } 7846 } 7847 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7848 << " reduction for phi: " << *Phi << "\n"); 7849 } 7850 } 7851 7852 // TODO: we could return a pair of values that specify the max VF and 7853 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7854 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7855 // doesn't have a cost model that can choose which plan to execute if 7856 // more than one is generated. 7857 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7858 LoopVectorizationCostModel &CM) { 7859 unsigned WidestType; 7860 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7861 return WidestVectorRegBits / WidestType; 7862 } 7863 7864 VectorizationFactor 7865 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7866 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7867 ElementCount VF = UserVF; 7868 // Outer loop handling: They may require CFG and instruction level 7869 // transformations before even evaluating whether vectorization is profitable. 7870 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7871 // the vectorization pipeline. 7872 if (!OrigLoop->isInnermost()) { 7873 // If the user doesn't provide a vectorization factor, determine a 7874 // reasonable one. 7875 if (UserVF.isZero()) { 7876 VF = ElementCount::getFixed(determineVPlanVF( 7877 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7878 .getFixedSize(), 7879 CM)); 7880 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7881 7882 // Make sure we have a VF > 1 for stress testing. 7883 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7884 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7885 << "overriding computed VF.\n"); 7886 VF = ElementCount::getFixed(4); 7887 } 7888 } 7889 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7890 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7891 "VF needs to be a power of two"); 7892 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7893 << "VF " << VF << " to build VPlans.\n"); 7894 buildVPlans(VF, VF); 7895 7896 // For VPlan build stress testing, we bail out after VPlan construction. 7897 if (VPlanBuildStressTest) 7898 return VectorizationFactor::Disabled(); 7899 7900 return {VF, 0 /*Cost*/}; 7901 } 7902 7903 LLVM_DEBUG( 7904 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7905 "VPlan-native path.\n"); 7906 return VectorizationFactor::Disabled(); 7907 } 7908 7909 Optional<VectorizationFactor> 7910 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7911 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7912 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7913 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7914 return None; 7915 7916 // Invalidate interleave groups if all blocks of loop will be predicated. 7917 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7918 !useMaskedInterleavedAccesses(*TTI)) { 7919 LLVM_DEBUG( 7920 dbgs() 7921 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7922 "which requires masked-interleaved support.\n"); 7923 if (CM.InterleaveInfo.invalidateGroups()) 7924 // Invalidating interleave groups also requires invalidating all decisions 7925 // based on them, which includes widening decisions and uniform and scalar 7926 // values. 7927 CM.invalidateCostModelingDecisions(); 7928 } 7929 7930 ElementCount MaxVF = MaybeMaxVF.getValue(); 7931 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7932 7933 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF); 7934 if (!UserVF.isZero() && 7935 (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) { 7936 // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable 7937 // VFs here, this should be reverted to only use legal UserVFs once the 7938 // loop below supports scalable VFs. 7939 ElementCount VF = UserVFIsLegal ? UserVF : MaxVF; 7940 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7941 << " VF " << VF << ".\n"); 7942 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7943 "VF needs to be a power of two"); 7944 // Collect the instructions (and their associated costs) that will be more 7945 // profitable to scalarize. 7946 CM.selectUserVectorizationFactor(VF); 7947 CM.collectInLoopReductions(); 7948 buildVPlansWithVPRecipes(VF, VF); 7949 LLVM_DEBUG(printPlans(dbgs())); 7950 return {{VF, 0}}; 7951 } 7952 7953 assert(!MaxVF.isScalable() && 7954 "Scalable vectors not yet supported beyond this point"); 7955 7956 for (ElementCount VF = ElementCount::getFixed(1); 7957 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7958 // Collect Uniform and Scalar instructions after vectorization with VF. 7959 CM.collectUniformsAndScalars(VF); 7960 7961 // Collect the instructions (and their associated costs) that will be more 7962 // profitable to scalarize. 7963 if (VF.isVector()) 7964 CM.collectInstsToScalarize(VF); 7965 } 7966 7967 CM.collectInLoopReductions(); 7968 7969 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7970 LLVM_DEBUG(printPlans(dbgs())); 7971 if (MaxVF.isScalar()) 7972 return VectorizationFactor::Disabled(); 7973 7974 // Select the optimal vectorization factor. 7975 auto SelectedVF = CM.selectVectorizationFactor(MaxVF); 7976 7977 // Check if it is profitable to vectorize with runtime checks. 7978 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7979 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7980 bool PragmaThresholdReached = 7981 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7982 bool ThresholdReached = 7983 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7984 if ((ThresholdReached && !Hints.allowReordering()) || 7985 PragmaThresholdReached) { 7986 ORE->emit([&]() { 7987 return OptimizationRemarkAnalysisAliasing( 7988 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7989 OrigLoop->getHeader()) 7990 << "loop not vectorized: cannot prove it is safe to reorder " 7991 "memory operations"; 7992 }); 7993 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7994 Hints.emitRemarkWithHints(); 7995 return VectorizationFactor::Disabled(); 7996 } 7997 } 7998 return SelectedVF; 7999 } 8000 8001 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8002 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8003 << '\n'); 8004 BestVF = VF; 8005 BestUF = UF; 8006 8007 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8008 return !Plan->hasVF(VF); 8009 }); 8010 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8011 } 8012 8013 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8014 DominatorTree *DT) { 8015 // Perform the actual loop transformation. 8016 8017 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8018 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8019 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8020 8021 VPTransformState State{ 8022 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8023 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8024 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8025 State.CanonicalIV = ILV.Induction; 8026 8027 ILV.printDebugTracesAtStart(); 8028 8029 //===------------------------------------------------===// 8030 // 8031 // Notice: any optimization or new instruction that go 8032 // into the code below should also be implemented in 8033 // the cost-model. 8034 // 8035 //===------------------------------------------------===// 8036 8037 // 2. Copy and widen instructions from the old loop into the new loop. 8038 VPlans.front()->execute(&State); 8039 8040 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8041 // predication, updating analyses. 8042 ILV.fixVectorizedLoop(State); 8043 8044 ILV.printDebugTracesAtEnd(); 8045 } 8046 8047 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8048 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8049 for (const auto &Plan : VPlans) 8050 if (PrintVPlansInDotFormat) 8051 Plan->printDOT(O); 8052 else 8053 Plan->print(O); 8054 } 8055 #endif 8056 8057 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8058 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8059 8060 // We create new control-flow for the vectorized loop, so the original exit 8061 // conditions will be dead after vectorization if it's only used by the 8062 // terminator 8063 SmallVector<BasicBlock*> ExitingBlocks; 8064 OrigLoop->getExitingBlocks(ExitingBlocks); 8065 for (auto *BB : ExitingBlocks) { 8066 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8067 if (!Cmp || !Cmp->hasOneUse()) 8068 continue; 8069 8070 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8071 if (!DeadInstructions.insert(Cmp).second) 8072 continue; 8073 8074 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8075 // TODO: can recurse through operands in general 8076 for (Value *Op : Cmp->operands()) { 8077 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8078 DeadInstructions.insert(cast<Instruction>(Op)); 8079 } 8080 } 8081 8082 // We create new "steps" for induction variable updates to which the original 8083 // induction variables map. An original update instruction will be dead if 8084 // all its users except the induction variable are dead. 8085 auto *Latch = OrigLoop->getLoopLatch(); 8086 for (auto &Induction : Legal->getInductionVars()) { 8087 PHINode *Ind = Induction.first; 8088 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8089 8090 // If the tail is to be folded by masking, the primary induction variable, 8091 // if exists, isn't dead: it will be used for masking. Don't kill it. 8092 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8093 continue; 8094 8095 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8096 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8097 })) 8098 DeadInstructions.insert(IndUpdate); 8099 8100 // We record as "Dead" also the type-casting instructions we had identified 8101 // during induction analysis. We don't need any handling for them in the 8102 // vectorized loop because we have proven that, under a proper runtime 8103 // test guarding the vectorized loop, the value of the phi, and the casted 8104 // value of the phi, are the same. The last instruction in this casting chain 8105 // will get its scalar/vector/widened def from the scalar/vector/widened def 8106 // of the respective phi node. Any other casts in the induction def-use chain 8107 // have no other uses outside the phi update chain, and will be ignored. 8108 InductionDescriptor &IndDes = Induction.second; 8109 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8110 DeadInstructions.insert(Casts.begin(), Casts.end()); 8111 } 8112 } 8113 8114 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8115 8116 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8117 8118 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8119 Instruction::BinaryOps BinOp) { 8120 // When unrolling and the VF is 1, we only need to add a simple scalar. 8121 Type *Ty = Val->getType(); 8122 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8123 8124 if (Ty->isFloatingPointTy()) { 8125 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8126 8127 // Floating-point operations inherit FMF via the builder's flags. 8128 Value *MulOp = Builder.CreateFMul(C, Step); 8129 return Builder.CreateBinOp(BinOp, Val, MulOp); 8130 } 8131 Constant *C = ConstantInt::get(Ty, StartIdx); 8132 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8133 } 8134 8135 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8136 SmallVector<Metadata *, 4> MDs; 8137 // Reserve first location for self reference to the LoopID metadata node. 8138 MDs.push_back(nullptr); 8139 bool IsUnrollMetadata = false; 8140 MDNode *LoopID = L->getLoopID(); 8141 if (LoopID) { 8142 // First find existing loop unrolling disable metadata. 8143 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8144 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8145 if (MD) { 8146 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8147 IsUnrollMetadata = 8148 S && S->getString().startswith("llvm.loop.unroll.disable"); 8149 } 8150 MDs.push_back(LoopID->getOperand(i)); 8151 } 8152 } 8153 8154 if (!IsUnrollMetadata) { 8155 // Add runtime unroll disable metadata. 8156 LLVMContext &Context = L->getHeader()->getContext(); 8157 SmallVector<Metadata *, 1> DisableOperands; 8158 DisableOperands.push_back( 8159 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8160 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8161 MDs.push_back(DisableNode); 8162 MDNode *NewLoopID = MDNode::get(Context, MDs); 8163 // Set operand 0 to refer to the loop id itself. 8164 NewLoopID->replaceOperandWith(0, NewLoopID); 8165 L->setLoopID(NewLoopID); 8166 } 8167 } 8168 8169 //===--------------------------------------------------------------------===// 8170 // EpilogueVectorizerMainLoop 8171 //===--------------------------------------------------------------------===// 8172 8173 /// This function is partially responsible for generating the control flow 8174 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8175 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8176 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8177 Loop *Lp = createVectorLoopSkeleton(""); 8178 8179 // Generate the code to check the minimum iteration count of the vector 8180 // epilogue (see below). 8181 EPI.EpilogueIterationCountCheck = 8182 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8183 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8184 8185 // Generate the code to check any assumptions that we've made for SCEV 8186 // expressions. 8187 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8188 8189 // Generate the code that checks at runtime if arrays overlap. We put the 8190 // checks into a separate block to make the more common case of few elements 8191 // faster. 8192 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8193 8194 // Generate the iteration count check for the main loop, *after* the check 8195 // for the epilogue loop, so that the path-length is shorter for the case 8196 // that goes directly through the vector epilogue. The longer-path length for 8197 // the main loop is compensated for, by the gain from vectorizing the larger 8198 // trip count. Note: the branch will get updated later on when we vectorize 8199 // the epilogue. 8200 EPI.MainLoopIterationCountCheck = 8201 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8202 8203 // Generate the induction variable. 8204 OldInduction = Legal->getPrimaryInduction(); 8205 Type *IdxTy = Legal->getWidestInductionType(); 8206 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8207 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8208 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8209 EPI.VectorTripCount = CountRoundDown; 8210 Induction = 8211 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8212 getDebugLocFromInstOrOperands(OldInduction)); 8213 8214 // Skip induction resume value creation here because they will be created in 8215 // the second pass. If we created them here, they wouldn't be used anyway, 8216 // because the vplan in the second pass still contains the inductions from the 8217 // original loop. 8218 8219 return completeLoopSkeleton(Lp, OrigLoopID); 8220 } 8221 8222 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8223 LLVM_DEBUG({ 8224 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8225 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8226 << ", Main Loop UF:" << EPI.MainLoopUF 8227 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8228 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8229 }); 8230 } 8231 8232 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8233 DEBUG_WITH_TYPE(VerboseDebug, { 8234 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8235 }); 8236 } 8237 8238 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8239 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8240 assert(L && "Expected valid Loop."); 8241 assert(Bypass && "Expected valid bypass basic block."); 8242 unsigned VFactor = 8243 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8244 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8245 Value *Count = getOrCreateTripCount(L); 8246 // Reuse existing vector loop preheader for TC checks. 8247 // Note that new preheader block is generated for vector loop. 8248 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8249 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8250 8251 // Generate code to check if the loop's trip count is less than VF * UF of the 8252 // main vector loop. 8253 auto P = 8254 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8255 8256 Value *CheckMinIters = Builder.CreateICmp( 8257 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8258 "min.iters.check"); 8259 8260 if (!ForEpilogue) 8261 TCCheckBlock->setName("vector.main.loop.iter.check"); 8262 8263 // Create new preheader for vector loop. 8264 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8265 DT, LI, nullptr, "vector.ph"); 8266 8267 if (ForEpilogue) { 8268 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8269 DT->getNode(Bypass)->getIDom()) && 8270 "TC check is expected to dominate Bypass"); 8271 8272 // Update dominator for Bypass & LoopExit. 8273 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8274 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8275 8276 LoopBypassBlocks.push_back(TCCheckBlock); 8277 8278 // Save the trip count so we don't have to regenerate it in the 8279 // vec.epilog.iter.check. This is safe to do because the trip count 8280 // generated here dominates the vector epilog iter check. 8281 EPI.TripCount = Count; 8282 } 8283 8284 ReplaceInstWithInst( 8285 TCCheckBlock->getTerminator(), 8286 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8287 8288 return TCCheckBlock; 8289 } 8290 8291 //===--------------------------------------------------------------------===// 8292 // EpilogueVectorizerEpilogueLoop 8293 //===--------------------------------------------------------------------===// 8294 8295 /// This function is partially responsible for generating the control flow 8296 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8297 BasicBlock * 8298 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8299 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8300 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8301 8302 // Now, compare the remaining count and if there aren't enough iterations to 8303 // execute the vectorized epilogue skip to the scalar part. 8304 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8305 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8306 LoopVectorPreHeader = 8307 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8308 LI, nullptr, "vec.epilog.ph"); 8309 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8310 VecEpilogueIterationCountCheck); 8311 8312 // Adjust the control flow taking the state info from the main loop 8313 // vectorization into account. 8314 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8315 "expected this to be saved from the previous pass."); 8316 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8317 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8318 8319 DT->changeImmediateDominator(LoopVectorPreHeader, 8320 EPI.MainLoopIterationCountCheck); 8321 8322 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8323 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8324 8325 if (EPI.SCEVSafetyCheck) 8326 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8327 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8328 if (EPI.MemSafetyCheck) 8329 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8330 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8331 8332 DT->changeImmediateDominator( 8333 VecEpilogueIterationCountCheck, 8334 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8335 8336 DT->changeImmediateDominator(LoopScalarPreHeader, 8337 EPI.EpilogueIterationCountCheck); 8338 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8339 8340 // Keep track of bypass blocks, as they feed start values to the induction 8341 // phis in the scalar loop preheader. 8342 if (EPI.SCEVSafetyCheck) 8343 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8344 if (EPI.MemSafetyCheck) 8345 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8346 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8347 8348 // Generate a resume induction for the vector epilogue and put it in the 8349 // vector epilogue preheader 8350 Type *IdxTy = Legal->getWidestInductionType(); 8351 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8352 LoopVectorPreHeader->getFirstNonPHI()); 8353 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8354 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8355 EPI.MainLoopIterationCountCheck); 8356 8357 // Generate the induction variable. 8358 OldInduction = Legal->getPrimaryInduction(); 8359 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8360 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8361 Value *StartIdx = EPResumeVal; 8362 Induction = 8363 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8364 getDebugLocFromInstOrOperands(OldInduction)); 8365 8366 // Generate induction resume values. These variables save the new starting 8367 // indexes for the scalar loop. They are used to test if there are any tail 8368 // iterations left once the vector loop has completed. 8369 // Note that when the vectorized epilogue is skipped due to iteration count 8370 // check, then the resume value for the induction variable comes from 8371 // the trip count of the main vector loop, hence passing the AdditionalBypass 8372 // argument. 8373 createInductionResumeValues(Lp, CountRoundDown, 8374 {VecEpilogueIterationCountCheck, 8375 EPI.VectorTripCount} /* AdditionalBypass */); 8376 8377 AddRuntimeUnrollDisableMetaData(Lp); 8378 return completeLoopSkeleton(Lp, OrigLoopID); 8379 } 8380 8381 BasicBlock * 8382 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8383 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8384 8385 assert(EPI.TripCount && 8386 "Expected trip count to have been safed in the first pass."); 8387 assert( 8388 (!isa<Instruction>(EPI.TripCount) || 8389 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8390 "saved trip count does not dominate insertion point."); 8391 Value *TC = EPI.TripCount; 8392 IRBuilder<> Builder(Insert->getTerminator()); 8393 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8394 8395 // Generate code to check if the loop's trip count is less than VF * UF of the 8396 // vector epilogue loop. 8397 auto P = 8398 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8399 8400 Value *CheckMinIters = Builder.CreateICmp( 8401 P, Count, 8402 ConstantInt::get(Count->getType(), 8403 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8404 "min.epilog.iters.check"); 8405 8406 ReplaceInstWithInst( 8407 Insert->getTerminator(), 8408 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8409 8410 LoopBypassBlocks.push_back(Insert); 8411 return Insert; 8412 } 8413 8414 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8415 LLVM_DEBUG({ 8416 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8417 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8418 << ", Main Loop UF:" << EPI.MainLoopUF 8419 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8420 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8421 }); 8422 } 8423 8424 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8425 DEBUG_WITH_TYPE(VerboseDebug, { 8426 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8427 }); 8428 } 8429 8430 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8431 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8432 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8433 bool PredicateAtRangeStart = Predicate(Range.Start); 8434 8435 for (ElementCount TmpVF = Range.Start * 2; 8436 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8437 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8438 Range.End = TmpVF; 8439 break; 8440 } 8441 8442 return PredicateAtRangeStart; 8443 } 8444 8445 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8446 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8447 /// of VF's starting at a given VF and extending it as much as possible. Each 8448 /// vectorization decision can potentially shorten this sub-range during 8449 /// buildVPlan(). 8450 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8451 ElementCount MaxVF) { 8452 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8453 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8454 VFRange SubRange = {VF, MaxVFPlusOne}; 8455 VPlans.push_back(buildVPlan(SubRange)); 8456 VF = SubRange.End; 8457 } 8458 } 8459 8460 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8461 VPlanPtr &Plan) { 8462 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8463 8464 // Look for cached value. 8465 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8466 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8467 if (ECEntryIt != EdgeMaskCache.end()) 8468 return ECEntryIt->second; 8469 8470 VPValue *SrcMask = createBlockInMask(Src, Plan); 8471 8472 // The terminator has to be a branch inst! 8473 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8474 assert(BI && "Unexpected terminator found"); 8475 8476 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8477 return EdgeMaskCache[Edge] = SrcMask; 8478 8479 // If source is an exiting block, we know the exit edge is dynamically dead 8480 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8481 // adding uses of an otherwise potentially dead instruction. 8482 if (OrigLoop->isLoopExiting(Src)) 8483 return EdgeMaskCache[Edge] = SrcMask; 8484 8485 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8486 assert(EdgeMask && "No Edge Mask found for condition"); 8487 8488 if (BI->getSuccessor(0) != Dst) 8489 EdgeMask = Builder.createNot(EdgeMask); 8490 8491 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8492 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8493 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8494 // The select version does not introduce new UB if SrcMask is false and 8495 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8496 VPValue *False = Plan->getOrAddVPValue( 8497 ConstantInt::getFalse(BI->getCondition()->getType())); 8498 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8499 } 8500 8501 return EdgeMaskCache[Edge] = EdgeMask; 8502 } 8503 8504 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8505 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8506 8507 // Look for cached value. 8508 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8509 if (BCEntryIt != BlockMaskCache.end()) 8510 return BCEntryIt->second; 8511 8512 // All-one mask is modelled as no-mask following the convention for masked 8513 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8514 VPValue *BlockMask = nullptr; 8515 8516 if (OrigLoop->getHeader() == BB) { 8517 if (!CM.blockNeedsPredication(BB)) 8518 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8519 8520 // Create the block in mask as the first non-phi instruction in the block. 8521 VPBuilder::InsertPointGuard Guard(Builder); 8522 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8523 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8524 8525 // Introduce the early-exit compare IV <= BTC to form header block mask. 8526 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8527 // Start by constructing the desired canonical IV. 8528 VPValue *IV = nullptr; 8529 if (Legal->getPrimaryInduction()) 8530 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8531 else { 8532 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8533 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8534 IV = IVRecipe->getVPSingleValue(); 8535 } 8536 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8537 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8538 8539 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8540 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8541 // as a second argument, we only pass the IV here and extract the 8542 // tripcount from the transform state where codegen of the VP instructions 8543 // happen. 8544 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8545 } else { 8546 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8547 } 8548 return BlockMaskCache[BB] = BlockMask; 8549 } 8550 8551 // This is the block mask. We OR all incoming edges. 8552 for (auto *Predecessor : predecessors(BB)) { 8553 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8554 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8555 return BlockMaskCache[BB] = EdgeMask; 8556 8557 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8558 BlockMask = EdgeMask; 8559 continue; 8560 } 8561 8562 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8563 } 8564 8565 return BlockMaskCache[BB] = BlockMask; 8566 } 8567 8568 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8569 ArrayRef<VPValue *> Operands, 8570 VFRange &Range, 8571 VPlanPtr &Plan) { 8572 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8573 "Must be called with either a load or store"); 8574 8575 auto willWiden = [&](ElementCount VF) -> bool { 8576 if (VF.isScalar()) 8577 return false; 8578 LoopVectorizationCostModel::InstWidening Decision = 8579 CM.getWideningDecision(I, VF); 8580 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8581 "CM decision should be taken at this point."); 8582 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8583 return true; 8584 if (CM.isScalarAfterVectorization(I, VF) || 8585 CM.isProfitableToScalarize(I, VF)) 8586 return false; 8587 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8588 }; 8589 8590 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8591 return nullptr; 8592 8593 VPValue *Mask = nullptr; 8594 if (Legal->isMaskRequired(I)) 8595 Mask = createBlockInMask(I->getParent(), Plan); 8596 8597 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8598 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8599 8600 StoreInst *Store = cast<StoreInst>(I); 8601 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8602 Mask); 8603 } 8604 8605 VPWidenIntOrFpInductionRecipe * 8606 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8607 ArrayRef<VPValue *> Operands) const { 8608 // Check if this is an integer or fp induction. If so, build the recipe that 8609 // produces its scalar and vector values. 8610 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8611 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8612 II.getKind() == InductionDescriptor::IK_FpInduction) { 8613 assert(II.getStartValue() == 8614 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8615 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8616 return new VPWidenIntOrFpInductionRecipe( 8617 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8618 } 8619 8620 return nullptr; 8621 } 8622 8623 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8624 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8625 VPlan &Plan) const { 8626 // Optimize the special case where the source is a constant integer 8627 // induction variable. Notice that we can only optimize the 'trunc' case 8628 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8629 // (c) other casts depend on pointer size. 8630 8631 // Determine whether \p K is a truncation based on an induction variable that 8632 // can be optimized. 8633 auto isOptimizableIVTruncate = 8634 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8635 return [=](ElementCount VF) -> bool { 8636 return CM.isOptimizableIVTruncate(K, VF); 8637 }; 8638 }; 8639 8640 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8641 isOptimizableIVTruncate(I), Range)) { 8642 8643 InductionDescriptor II = 8644 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8645 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8646 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8647 Start, nullptr, I); 8648 } 8649 return nullptr; 8650 } 8651 8652 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8653 ArrayRef<VPValue *> Operands, 8654 VPlanPtr &Plan) { 8655 // If all incoming values are equal, the incoming VPValue can be used directly 8656 // instead of creating a new VPBlendRecipe. 8657 VPValue *FirstIncoming = Operands[0]; 8658 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8659 return FirstIncoming == Inc; 8660 })) { 8661 return Operands[0]; 8662 } 8663 8664 // We know that all PHIs in non-header blocks are converted into selects, so 8665 // we don't have to worry about the insertion order and we can just use the 8666 // builder. At this point we generate the predication tree. There may be 8667 // duplications since this is a simple recursive scan, but future 8668 // optimizations will clean it up. 8669 SmallVector<VPValue *, 2> OperandsWithMask; 8670 unsigned NumIncoming = Phi->getNumIncomingValues(); 8671 8672 for (unsigned In = 0; In < NumIncoming; In++) { 8673 VPValue *EdgeMask = 8674 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8675 assert((EdgeMask || NumIncoming == 1) && 8676 "Multiple predecessors with one having a full mask"); 8677 OperandsWithMask.push_back(Operands[In]); 8678 if (EdgeMask) 8679 OperandsWithMask.push_back(EdgeMask); 8680 } 8681 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8682 } 8683 8684 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8685 ArrayRef<VPValue *> Operands, 8686 VFRange &Range) const { 8687 8688 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8689 [this, CI](ElementCount VF) { 8690 return CM.isScalarWithPredication(CI, VF); 8691 }, 8692 Range); 8693 8694 if (IsPredicated) 8695 return nullptr; 8696 8697 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8698 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8699 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8700 ID == Intrinsic::pseudoprobe || 8701 ID == Intrinsic::experimental_noalias_scope_decl)) 8702 return nullptr; 8703 8704 auto willWiden = [&](ElementCount VF) -> bool { 8705 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8706 // The following case may be scalarized depending on the VF. 8707 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8708 // version of the instruction. 8709 // Is it beneficial to perform intrinsic call compared to lib call? 8710 bool NeedToScalarize = false; 8711 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8712 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8713 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8714 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 8715 "Either the intrinsic cost or vector call cost must be valid"); 8716 return UseVectorIntrinsic || !NeedToScalarize; 8717 }; 8718 8719 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8720 return nullptr; 8721 8722 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8723 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8724 } 8725 8726 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8727 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8728 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8729 // Instruction should be widened, unless it is scalar after vectorization, 8730 // scalarization is profitable or it is predicated. 8731 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8732 return CM.isScalarAfterVectorization(I, VF) || 8733 CM.isProfitableToScalarize(I, VF) || 8734 CM.isScalarWithPredication(I, VF); 8735 }; 8736 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8737 Range); 8738 } 8739 8740 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8741 ArrayRef<VPValue *> Operands) const { 8742 auto IsVectorizableOpcode = [](unsigned Opcode) { 8743 switch (Opcode) { 8744 case Instruction::Add: 8745 case Instruction::And: 8746 case Instruction::AShr: 8747 case Instruction::BitCast: 8748 case Instruction::FAdd: 8749 case Instruction::FCmp: 8750 case Instruction::FDiv: 8751 case Instruction::FMul: 8752 case Instruction::FNeg: 8753 case Instruction::FPExt: 8754 case Instruction::FPToSI: 8755 case Instruction::FPToUI: 8756 case Instruction::FPTrunc: 8757 case Instruction::FRem: 8758 case Instruction::FSub: 8759 case Instruction::ICmp: 8760 case Instruction::IntToPtr: 8761 case Instruction::LShr: 8762 case Instruction::Mul: 8763 case Instruction::Or: 8764 case Instruction::PtrToInt: 8765 case Instruction::SDiv: 8766 case Instruction::Select: 8767 case Instruction::SExt: 8768 case Instruction::Shl: 8769 case Instruction::SIToFP: 8770 case Instruction::SRem: 8771 case Instruction::Sub: 8772 case Instruction::Trunc: 8773 case Instruction::UDiv: 8774 case Instruction::UIToFP: 8775 case Instruction::URem: 8776 case Instruction::Xor: 8777 case Instruction::ZExt: 8778 return true; 8779 } 8780 return false; 8781 }; 8782 8783 if (!IsVectorizableOpcode(I->getOpcode())) 8784 return nullptr; 8785 8786 // Success: widen this instruction. 8787 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8788 } 8789 8790 void VPRecipeBuilder::fixHeaderPhis() { 8791 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8792 for (VPWidenPHIRecipe *R : PhisToFix) { 8793 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8794 VPRecipeBase *IncR = 8795 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8796 R->addOperand(IncR->getVPSingleValue()); 8797 } 8798 } 8799 8800 VPBasicBlock *VPRecipeBuilder::handleReplication( 8801 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8802 VPlanPtr &Plan) { 8803 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8804 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8805 Range); 8806 8807 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8808 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF); }, Range); 8809 8810 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8811 IsUniform, IsPredicated); 8812 setRecipe(I, Recipe); 8813 Plan->addVPValue(I, Recipe); 8814 8815 // Find if I uses a predicated instruction. If so, it will use its scalar 8816 // value. Avoid hoisting the insert-element which packs the scalar value into 8817 // a vector value, as that happens iff all users use the vector value. 8818 for (VPValue *Op : Recipe->operands()) { 8819 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8820 if (!PredR) 8821 continue; 8822 auto *RepR = 8823 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8824 assert(RepR->isPredicated() && 8825 "expected Replicate recipe to be predicated"); 8826 RepR->setAlsoPack(false); 8827 } 8828 8829 // Finalize the recipe for Instr, first if it is not predicated. 8830 if (!IsPredicated) { 8831 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8832 VPBB->appendRecipe(Recipe); 8833 return VPBB; 8834 } 8835 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8836 assert(VPBB->getSuccessors().empty() && 8837 "VPBB has successors when handling predicated replication."); 8838 // Record predicated instructions for above packing optimizations. 8839 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8840 VPBlockUtils::insertBlockAfter(Region, VPBB); 8841 auto *RegSucc = new VPBasicBlock(); 8842 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8843 return RegSucc; 8844 } 8845 8846 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8847 VPRecipeBase *PredRecipe, 8848 VPlanPtr &Plan) { 8849 // Instructions marked for predication are replicated and placed under an 8850 // if-then construct to prevent side-effects. 8851 8852 // Generate recipes to compute the block mask for this region. 8853 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8854 8855 // Build the triangular if-then region. 8856 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8857 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8858 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8859 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8860 auto *PHIRecipe = Instr->getType()->isVoidTy() 8861 ? nullptr 8862 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8863 if (PHIRecipe) { 8864 Plan->removeVPValueFor(Instr); 8865 Plan->addVPValue(Instr, PHIRecipe); 8866 } 8867 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8868 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8869 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8870 8871 // Note: first set Entry as region entry and then connect successors starting 8872 // from it in order, to propagate the "parent" of each VPBasicBlock. 8873 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8874 VPBlockUtils::connectBlocks(Pred, Exit); 8875 8876 return Region; 8877 } 8878 8879 VPRecipeOrVPValueTy 8880 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8881 ArrayRef<VPValue *> Operands, 8882 VFRange &Range, VPlanPtr &Plan) { 8883 // First, check for specific widening recipes that deal with calls, memory 8884 // operations, inductions and Phi nodes. 8885 if (auto *CI = dyn_cast<CallInst>(Instr)) 8886 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8887 8888 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8889 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8890 8891 VPRecipeBase *Recipe; 8892 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8893 if (Phi->getParent() != OrigLoop->getHeader()) 8894 return tryToBlend(Phi, Operands, Plan); 8895 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8896 return toVPRecipeResult(Recipe); 8897 8898 if (Legal->isReductionVariable(Phi)) { 8899 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8900 assert(RdxDesc.getRecurrenceStartValue() == 8901 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8902 VPValue *StartV = Operands[0]; 8903 8904 // Record the PHI and the incoming value from the backedge, so we can add 8905 // the incoming value from the backedge after all recipes have been 8906 // created. 8907 auto *PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8908 PhisToFix.push_back(PhiRecipe); 8909 recordRecipeOf(cast<Instruction>( 8910 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8911 return toVPRecipeResult(PhiRecipe); 8912 } 8913 8914 return toVPRecipeResult(new VPWidenPHIRecipe(Phi)); 8915 } 8916 8917 if (isa<TruncInst>(Instr) && 8918 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8919 Range, *Plan))) 8920 return toVPRecipeResult(Recipe); 8921 8922 if (!shouldWiden(Instr, Range)) 8923 return nullptr; 8924 8925 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8926 return toVPRecipeResult(new VPWidenGEPRecipe( 8927 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8928 8929 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8930 bool InvariantCond = 8931 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8932 return toVPRecipeResult(new VPWidenSelectRecipe( 8933 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8934 } 8935 8936 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8937 } 8938 8939 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8940 ElementCount MaxVF) { 8941 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8942 8943 // Collect instructions from the original loop that will become trivially dead 8944 // in the vectorized loop. We don't need to vectorize these instructions. For 8945 // example, original induction update instructions can become dead because we 8946 // separately emit induction "steps" when generating code for the new loop. 8947 // Similarly, we create a new latch condition when setting up the structure 8948 // of the new loop, so the old one can become dead. 8949 SmallPtrSet<Instruction *, 4> DeadInstructions; 8950 collectTriviallyDeadInstructions(DeadInstructions); 8951 8952 // Add assume instructions we need to drop to DeadInstructions, to prevent 8953 // them from being added to the VPlan. 8954 // TODO: We only need to drop assumes in blocks that get flattend. If the 8955 // control flow is preserved, we should keep them. 8956 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8957 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8958 8959 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8960 // Dead instructions do not need sinking. Remove them from SinkAfter. 8961 for (Instruction *I : DeadInstructions) 8962 SinkAfter.erase(I); 8963 8964 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8965 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8966 VFRange SubRange = {VF, MaxVFPlusOne}; 8967 VPlans.push_back( 8968 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8969 VF = SubRange.End; 8970 } 8971 } 8972 8973 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8974 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8975 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8976 8977 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8978 8979 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8980 8981 // --------------------------------------------------------------------------- 8982 // Pre-construction: record ingredients whose recipes we'll need to further 8983 // process after constructing the initial VPlan. 8984 // --------------------------------------------------------------------------- 8985 8986 // Mark instructions we'll need to sink later and their targets as 8987 // ingredients whose recipe we'll need to record. 8988 for (auto &Entry : SinkAfter) { 8989 RecipeBuilder.recordRecipeOf(Entry.first); 8990 RecipeBuilder.recordRecipeOf(Entry.second); 8991 } 8992 for (auto &Reduction : CM.getInLoopReductionChains()) { 8993 PHINode *Phi = Reduction.first; 8994 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 8995 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8996 8997 RecipeBuilder.recordRecipeOf(Phi); 8998 for (auto &R : ReductionOperations) { 8999 RecipeBuilder.recordRecipeOf(R); 9000 // For min/max reducitons, where we have a pair of icmp/select, we also 9001 // need to record the ICmp recipe, so it can be removed later. 9002 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9003 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9004 } 9005 } 9006 9007 // For each interleave group which is relevant for this (possibly trimmed) 9008 // Range, add it to the set of groups to be later applied to the VPlan and add 9009 // placeholders for its members' Recipes which we'll be replacing with a 9010 // single VPInterleaveRecipe. 9011 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9012 auto applyIG = [IG, this](ElementCount VF) -> bool { 9013 return (VF.isVector() && // Query is illegal for VF == 1 9014 CM.getWideningDecision(IG->getInsertPos(), VF) == 9015 LoopVectorizationCostModel::CM_Interleave); 9016 }; 9017 if (!getDecisionAndClampRange(applyIG, Range)) 9018 continue; 9019 InterleaveGroups.insert(IG); 9020 for (unsigned i = 0; i < IG->getFactor(); i++) 9021 if (Instruction *Member = IG->getMember(i)) 9022 RecipeBuilder.recordRecipeOf(Member); 9023 }; 9024 9025 // --------------------------------------------------------------------------- 9026 // Build initial VPlan: Scan the body of the loop in a topological order to 9027 // visit each basic block after having visited its predecessor basic blocks. 9028 // --------------------------------------------------------------------------- 9029 9030 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9031 auto Plan = std::make_unique<VPlan>(); 9032 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9033 Plan->setEntry(VPBB); 9034 9035 // Scan the body of the loop in a topological order to visit each basic block 9036 // after having visited its predecessor basic blocks. 9037 LoopBlocksDFS DFS(OrigLoop); 9038 DFS.perform(LI); 9039 9040 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9041 // Relevant instructions from basic block BB will be grouped into VPRecipe 9042 // ingredients and fill a new VPBasicBlock. 9043 unsigned VPBBsForBB = 0; 9044 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9045 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9046 VPBB = FirstVPBBForBB; 9047 Builder.setInsertPoint(VPBB); 9048 9049 // Introduce each ingredient into VPlan. 9050 // TODO: Model and preserve debug instrinsics in VPlan. 9051 for (Instruction &I : BB->instructionsWithoutDebug()) { 9052 Instruction *Instr = &I; 9053 9054 // First filter out irrelevant instructions, to ensure no recipes are 9055 // built for them. 9056 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9057 continue; 9058 9059 SmallVector<VPValue *, 4> Operands; 9060 auto *Phi = dyn_cast<PHINode>(Instr); 9061 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9062 Operands.push_back(Plan->getOrAddVPValue( 9063 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9064 } else { 9065 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9066 Operands = {OpRange.begin(), OpRange.end()}; 9067 } 9068 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9069 Instr, Operands, Range, Plan)) { 9070 // If Instr can be simplified to an existing VPValue, use it. 9071 if (RecipeOrValue.is<VPValue *>()) { 9072 Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>()); 9073 continue; 9074 } 9075 // Otherwise, add the new recipe. 9076 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9077 for (auto *Def : Recipe->definedValues()) { 9078 auto *UV = Def->getUnderlyingValue(); 9079 Plan->addVPValue(UV, Def); 9080 } 9081 9082 RecipeBuilder.setRecipe(Instr, Recipe); 9083 VPBB->appendRecipe(Recipe); 9084 continue; 9085 } 9086 9087 // Otherwise, if all widening options failed, Instruction is to be 9088 // replicated. This may create a successor for VPBB. 9089 VPBasicBlock *NextVPBB = 9090 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9091 if (NextVPBB != VPBB) { 9092 VPBB = NextVPBB; 9093 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9094 : ""); 9095 } 9096 } 9097 } 9098 9099 RecipeBuilder.fixHeaderPhis(); 9100 9101 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9102 // may also be empty, such as the last one VPBB, reflecting original 9103 // basic-blocks with no recipes. 9104 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9105 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9106 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9107 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9108 delete PreEntry; 9109 9110 // --------------------------------------------------------------------------- 9111 // Transform initial VPlan: Apply previously taken decisions, in order, to 9112 // bring the VPlan to its final state. 9113 // --------------------------------------------------------------------------- 9114 9115 // Apply Sink-After legal constraints. 9116 for (auto &Entry : SinkAfter) { 9117 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9118 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9119 9120 // If the target is in a replication region, make sure to move Sink to the 9121 // block after it, not into the replication region itself. 9122 if (auto *Region = 9123 dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) { 9124 if (Region->isReplicator()) { 9125 assert(Region->getNumSuccessors() == 1 && "Expected SESE region!"); 9126 VPBasicBlock *NextBlock = 9127 cast<VPBasicBlock>(Region->getSuccessors().front()); 9128 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9129 continue; 9130 } 9131 } 9132 9133 auto *SinkRegion = 9134 dyn_cast_or_null<VPRegionBlock>(Sink->getParent()->getParent()); 9135 // Unless the sink source is in a replicate region, sink the recipe 9136 // directly. 9137 if (!SinkRegion || !SinkRegion->isReplicator()) { 9138 Sink->moveAfter(Target); 9139 continue; 9140 } 9141 9142 // If the sink source is in a replicate region, we need to move the whole 9143 // replicate region, which should only contain a single recipe in the main 9144 // block. 9145 assert(Sink->getParent()->size() == 1 && 9146 "parent must be a replicator with a single recipe"); 9147 auto *SplitBlock = 9148 Target->getParent()->splitAt(std::next(Target->getIterator())); 9149 9150 auto *Pred = SinkRegion->getSinglePredecessor(); 9151 auto *Succ = SinkRegion->getSingleSuccessor(); 9152 VPBlockUtils::disconnectBlocks(Pred, SinkRegion); 9153 VPBlockUtils::disconnectBlocks(SinkRegion, Succ); 9154 VPBlockUtils::connectBlocks(Pred, Succ); 9155 9156 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9157 9158 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9159 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9160 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9161 if (VPBB == SplitPred) 9162 VPBB = SplitBlock; 9163 } 9164 9165 // Interleave memory: for each Interleave Group we marked earlier as relevant 9166 // for this VPlan, replace the Recipes widening its memory instructions with a 9167 // single VPInterleaveRecipe at its insertion point. 9168 for (auto IG : InterleaveGroups) { 9169 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9170 RecipeBuilder.getRecipe(IG->getInsertPos())); 9171 SmallVector<VPValue *, 4> StoredValues; 9172 for (unsigned i = 0; i < IG->getFactor(); ++i) 9173 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 9174 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 9175 9176 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9177 Recipe->getMask()); 9178 VPIG->insertBefore(Recipe); 9179 unsigned J = 0; 9180 for (unsigned i = 0; i < IG->getFactor(); ++i) 9181 if (Instruction *Member = IG->getMember(i)) { 9182 if (!Member->getType()->isVoidTy()) { 9183 VPValue *OriginalV = Plan->getVPValue(Member); 9184 Plan->removeVPValueFor(Member); 9185 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9186 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9187 J++; 9188 } 9189 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9190 } 9191 } 9192 9193 // Adjust the recipes for any inloop reductions. 9194 if (Range.Start.isVector()) 9195 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 9196 9197 // Finally, if tail is folded by masking, introduce selects between the phi 9198 // and the live-out instruction of each reduction, at the end of the latch. 9199 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9200 Builder.setInsertPoint(VPBB); 9201 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9202 for (auto &Reduction : Legal->getReductionVars()) { 9203 if (CM.isInLoopReduction(Reduction.first)) 9204 continue; 9205 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9206 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9207 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9208 } 9209 } 9210 9211 std::string PlanName; 9212 raw_string_ostream RSO(PlanName); 9213 ElementCount VF = Range.Start; 9214 Plan->addVF(VF); 9215 RSO << "Initial VPlan for VF={" << VF; 9216 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9217 Plan->addVF(VF); 9218 RSO << "," << VF; 9219 } 9220 RSO << "},UF>=1"; 9221 RSO.flush(); 9222 Plan->setName(PlanName); 9223 9224 return Plan; 9225 } 9226 9227 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9228 // Outer loop handling: They may require CFG and instruction level 9229 // transformations before even evaluating whether vectorization is profitable. 9230 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9231 // the vectorization pipeline. 9232 assert(!OrigLoop->isInnermost()); 9233 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9234 9235 // Create new empty VPlan 9236 auto Plan = std::make_unique<VPlan>(); 9237 9238 // Build hierarchical CFG 9239 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9240 HCFGBuilder.buildHierarchicalCFG(); 9241 9242 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9243 VF *= 2) 9244 Plan->addVF(VF); 9245 9246 if (EnableVPlanPredication) { 9247 VPlanPredicator VPP(*Plan); 9248 VPP.predicate(); 9249 9250 // Avoid running transformation to recipes until masked code generation in 9251 // VPlan-native path is in place. 9252 return Plan; 9253 } 9254 9255 SmallPtrSet<Instruction *, 1> DeadInstructions; 9256 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9257 Legal->getInductionVars(), 9258 DeadInstructions, *PSE.getSE()); 9259 return Plan; 9260 } 9261 9262 // Adjust the recipes for any inloop reductions. The chain of instructions 9263 // leading from the loop exit instr to the phi need to be converted to 9264 // reductions, with one operand being vector and the other being the scalar 9265 // reduction chain. 9266 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9267 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 9268 for (auto &Reduction : CM.getInLoopReductionChains()) { 9269 PHINode *Phi = Reduction.first; 9270 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9271 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9272 9273 // ReductionOperations are orders top-down from the phi's use to the 9274 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9275 // which of the two operands will remain scalar and which will be reduced. 9276 // For minmax the chain will be the select instructions. 9277 Instruction *Chain = Phi; 9278 for (Instruction *R : ReductionOperations) { 9279 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9280 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9281 9282 VPValue *ChainOp = Plan->getVPValue(Chain); 9283 unsigned FirstOpId; 9284 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9285 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9286 "Expected to replace a VPWidenSelectSC"); 9287 FirstOpId = 1; 9288 } else { 9289 assert(isa<VPWidenRecipe>(WidenRecipe) && 9290 "Expected to replace a VPWidenSC"); 9291 FirstOpId = 0; 9292 } 9293 unsigned VecOpId = 9294 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9295 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9296 9297 auto *CondOp = CM.foldTailByMasking() 9298 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9299 : nullptr; 9300 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9301 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9302 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9303 Plan->removeVPValueFor(R); 9304 Plan->addVPValue(R, RedRecipe); 9305 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9306 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9307 WidenRecipe->eraseFromParent(); 9308 9309 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9310 VPRecipeBase *CompareRecipe = 9311 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9312 assert(isa<VPWidenRecipe>(CompareRecipe) && 9313 "Expected to replace a VPWidenSC"); 9314 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9315 "Expected no remaining users"); 9316 CompareRecipe->eraseFromParent(); 9317 } 9318 Chain = R; 9319 } 9320 } 9321 } 9322 9323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9324 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9325 VPSlotTracker &SlotTracker) const { 9326 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9327 IG->getInsertPos()->printAsOperand(O, false); 9328 O << ", "; 9329 getAddr()->printAsOperand(O, SlotTracker); 9330 VPValue *Mask = getMask(); 9331 if (Mask) { 9332 O << ", "; 9333 Mask->printAsOperand(O, SlotTracker); 9334 } 9335 for (unsigned i = 0; i < IG->getFactor(); ++i) 9336 if (Instruction *I = IG->getMember(i)) 9337 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9338 } 9339 #endif 9340 9341 void VPWidenCallRecipe::execute(VPTransformState &State) { 9342 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9343 *this, State); 9344 } 9345 9346 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9347 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9348 this, *this, InvariantCond, State); 9349 } 9350 9351 void VPWidenRecipe::execute(VPTransformState &State) { 9352 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9353 } 9354 9355 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9356 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9357 *this, State.UF, State.VF, IsPtrLoopInvariant, 9358 IsIndexLoopInvariant, State); 9359 } 9360 9361 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9362 assert(!State.Instance && "Int or FP induction being replicated."); 9363 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9364 getTruncInst(), getVPValue(0), 9365 getCastValue(), State); 9366 } 9367 9368 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9369 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9370 this, State); 9371 } 9372 9373 void VPBlendRecipe::execute(VPTransformState &State) { 9374 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9375 // We know that all PHIs in non-header blocks are converted into 9376 // selects, so we don't have to worry about the insertion order and we 9377 // can just use the builder. 9378 // At this point we generate the predication tree. There may be 9379 // duplications since this is a simple recursive scan, but future 9380 // optimizations will clean it up. 9381 9382 unsigned NumIncoming = getNumIncomingValues(); 9383 9384 // Generate a sequence of selects of the form: 9385 // SELECT(Mask3, In3, 9386 // SELECT(Mask2, In2, 9387 // SELECT(Mask1, In1, 9388 // In0))) 9389 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9390 // are essentially undef are taken from In0. 9391 InnerLoopVectorizer::VectorParts Entry(State.UF); 9392 for (unsigned In = 0; In < NumIncoming; ++In) { 9393 for (unsigned Part = 0; Part < State.UF; ++Part) { 9394 // We might have single edge PHIs (blocks) - use an identity 9395 // 'select' for the first PHI operand. 9396 Value *In0 = State.get(getIncomingValue(In), Part); 9397 if (In == 0) 9398 Entry[Part] = In0; // Initialize with the first incoming value. 9399 else { 9400 // Select between the current value and the previous incoming edge 9401 // based on the incoming mask. 9402 Value *Cond = State.get(getMask(In), Part); 9403 Entry[Part] = 9404 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9405 } 9406 } 9407 } 9408 for (unsigned Part = 0; Part < State.UF; ++Part) 9409 State.set(this, Entry[Part], Part); 9410 } 9411 9412 void VPInterleaveRecipe::execute(VPTransformState &State) { 9413 assert(!State.Instance && "Interleave group being replicated."); 9414 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9415 getStoredValues(), getMask()); 9416 } 9417 9418 void VPReductionRecipe::execute(VPTransformState &State) { 9419 assert(!State.Instance && "Reduction being replicated."); 9420 Value *PrevInChain = State.get(getChainOp(), 0); 9421 for (unsigned Part = 0; Part < State.UF; ++Part) { 9422 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9423 bool IsOrdered = useOrderedReductions(*RdxDesc); 9424 Value *NewVecOp = State.get(getVecOp(), Part); 9425 if (VPValue *Cond = getCondOp()) { 9426 Value *NewCond = State.get(Cond, Part); 9427 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9428 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9429 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9430 Constant *IdenVec = 9431 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9432 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9433 NewVecOp = Select; 9434 } 9435 Value *NewRed; 9436 Value *NextInChain; 9437 if (IsOrdered) { 9438 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9439 PrevInChain); 9440 PrevInChain = NewRed; 9441 } else { 9442 PrevInChain = State.get(getChainOp(), Part); 9443 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9444 } 9445 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9446 NextInChain = 9447 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9448 NewRed, PrevInChain); 9449 } else if (IsOrdered) 9450 NextInChain = NewRed; 9451 else { 9452 NextInChain = State.Builder.CreateBinOp( 9453 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9454 PrevInChain); 9455 } 9456 State.set(this, NextInChain, Part); 9457 } 9458 } 9459 9460 void VPReplicateRecipe::execute(VPTransformState &State) { 9461 if (State.Instance) { // Generate a single instance. 9462 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9463 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9464 *State.Instance, IsPredicated, State); 9465 // Insert scalar instance packing it into a vector. 9466 if (AlsoPack && State.VF.isVector()) { 9467 // If we're constructing lane 0, initialize to start from poison. 9468 if (State.Instance->Lane.isFirstLane()) { 9469 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9470 Value *Poison = PoisonValue::get( 9471 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9472 State.set(this, Poison, State.Instance->Part); 9473 } 9474 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9475 } 9476 return; 9477 } 9478 9479 // Generate scalar instances for all VF lanes of all UF parts, unless the 9480 // instruction is uniform inwhich case generate only the first lane for each 9481 // of the UF parts. 9482 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9483 assert((!State.VF.isScalable() || IsUniform) && 9484 "Can't scalarize a scalable vector"); 9485 for (unsigned Part = 0; Part < State.UF; ++Part) 9486 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9487 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9488 VPIteration(Part, Lane), IsPredicated, 9489 State); 9490 } 9491 9492 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9493 assert(State.Instance && "Branch on Mask works only on single instance."); 9494 9495 unsigned Part = State.Instance->Part; 9496 unsigned Lane = State.Instance->Lane.getKnownLane(); 9497 9498 Value *ConditionBit = nullptr; 9499 VPValue *BlockInMask = getMask(); 9500 if (BlockInMask) { 9501 ConditionBit = State.get(BlockInMask, Part); 9502 if (ConditionBit->getType()->isVectorTy()) 9503 ConditionBit = State.Builder.CreateExtractElement( 9504 ConditionBit, State.Builder.getInt32(Lane)); 9505 } else // Block in mask is all-one. 9506 ConditionBit = State.Builder.getTrue(); 9507 9508 // Replace the temporary unreachable terminator with a new conditional branch, 9509 // whose two destinations will be set later when they are created. 9510 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9511 assert(isa<UnreachableInst>(CurrentTerminator) && 9512 "Expected to replace unreachable terminator with conditional branch."); 9513 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9514 CondBr->setSuccessor(0, nullptr); 9515 ReplaceInstWithInst(CurrentTerminator, CondBr); 9516 } 9517 9518 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9519 assert(State.Instance && "Predicated instruction PHI works per instance."); 9520 Instruction *ScalarPredInst = 9521 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9522 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9523 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9524 assert(PredicatingBB && "Predicated block has no single predecessor."); 9525 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9526 "operand must be VPReplicateRecipe"); 9527 9528 // By current pack/unpack logic we need to generate only a single phi node: if 9529 // a vector value for the predicated instruction exists at this point it means 9530 // the instruction has vector users only, and a phi for the vector value is 9531 // needed. In this case the recipe of the predicated instruction is marked to 9532 // also do that packing, thereby "hoisting" the insert-element sequence. 9533 // Otherwise, a phi node for the scalar value is needed. 9534 unsigned Part = State.Instance->Part; 9535 if (State.hasVectorValue(getOperand(0), Part)) { 9536 Value *VectorValue = State.get(getOperand(0), Part); 9537 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9538 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9539 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9540 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9541 if (State.hasVectorValue(this, Part)) 9542 State.reset(this, VPhi, Part); 9543 else 9544 State.set(this, VPhi, Part); 9545 // NOTE: Currently we need to update the value of the operand, so the next 9546 // predicated iteration inserts its generated value in the correct vector. 9547 State.reset(getOperand(0), VPhi, Part); 9548 } else { 9549 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9550 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9551 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9552 PredicatingBB); 9553 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9554 if (State.hasScalarValue(this, *State.Instance)) 9555 State.reset(this, Phi, *State.Instance); 9556 else 9557 State.set(this, Phi, *State.Instance); 9558 // NOTE: Currently we need to update the value of the operand, so the next 9559 // predicated iteration inserts its generated value in the correct vector. 9560 State.reset(getOperand(0), Phi, *State.Instance); 9561 } 9562 } 9563 9564 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9565 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9566 State.ILV->vectorizeMemoryInstruction( 9567 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9568 StoredValue, getMask()); 9569 } 9570 9571 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9572 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9573 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9574 // for predication. 9575 static ScalarEpilogueLowering getScalarEpilogueLowering( 9576 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9577 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9578 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9579 LoopVectorizationLegality &LVL) { 9580 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9581 // don't look at hints or options, and don't request a scalar epilogue. 9582 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9583 // LoopAccessInfo (due to code dependency and not being able to reliably get 9584 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9585 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9586 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9587 // back to the old way and vectorize with versioning when forced. See D81345.) 9588 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9589 PGSOQueryType::IRPass) && 9590 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9591 return CM_ScalarEpilogueNotAllowedOptSize; 9592 9593 // 2) If set, obey the directives 9594 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9595 switch (PreferPredicateOverEpilogue) { 9596 case PreferPredicateTy::ScalarEpilogue: 9597 return CM_ScalarEpilogueAllowed; 9598 case PreferPredicateTy::PredicateElseScalarEpilogue: 9599 return CM_ScalarEpilogueNotNeededUsePredicate; 9600 case PreferPredicateTy::PredicateOrDontVectorize: 9601 return CM_ScalarEpilogueNotAllowedUsePredicate; 9602 }; 9603 } 9604 9605 // 3) If set, obey the hints 9606 switch (Hints.getPredicate()) { 9607 case LoopVectorizeHints::FK_Enabled: 9608 return CM_ScalarEpilogueNotNeededUsePredicate; 9609 case LoopVectorizeHints::FK_Disabled: 9610 return CM_ScalarEpilogueAllowed; 9611 }; 9612 9613 // 4) if the TTI hook indicates this is profitable, request predication. 9614 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9615 LVL.getLAI())) 9616 return CM_ScalarEpilogueNotNeededUsePredicate; 9617 9618 return CM_ScalarEpilogueAllowed; 9619 } 9620 9621 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9622 // If Values have been set for this Def return the one relevant for \p Part. 9623 if (hasVectorValue(Def, Part)) 9624 return Data.PerPartOutput[Def][Part]; 9625 9626 if (!hasScalarValue(Def, {Part, 0})) { 9627 Value *IRV = Def->getLiveInIRValue(); 9628 Value *B = ILV->getBroadcastInstrs(IRV); 9629 set(Def, B, Part); 9630 return B; 9631 } 9632 9633 Value *ScalarValue = get(Def, {Part, 0}); 9634 // If we aren't vectorizing, we can just copy the scalar map values over 9635 // to the vector map. 9636 if (VF.isScalar()) { 9637 set(Def, ScalarValue, Part); 9638 return ScalarValue; 9639 } 9640 9641 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9642 bool IsUniform = RepR && RepR->isUniform(); 9643 9644 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9645 // Check if there is a scalar value for the selected lane. 9646 if (!hasScalarValue(Def, {Part, LastLane})) { 9647 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9648 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9649 "unexpected recipe found to be invariant"); 9650 IsUniform = true; 9651 LastLane = 0; 9652 } 9653 9654 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9655 9656 // Set the insert point after the last scalarized instruction. This 9657 // ensures the insertelement sequence will directly follow the scalar 9658 // definitions. 9659 auto OldIP = Builder.saveIP(); 9660 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9661 Builder.SetInsertPoint(&*NewIP); 9662 9663 // However, if we are vectorizing, we need to construct the vector values. 9664 // If the value is known to be uniform after vectorization, we can just 9665 // broadcast the scalar value corresponding to lane zero for each unroll 9666 // iteration. Otherwise, we construct the vector values using 9667 // insertelement instructions. Since the resulting vectors are stored in 9668 // State, we will only generate the insertelements once. 9669 Value *VectorValue = nullptr; 9670 if (IsUniform) { 9671 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9672 set(Def, VectorValue, Part); 9673 } else { 9674 // Initialize packing with insertelements to start from undef. 9675 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9676 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9677 set(Def, Undef, Part); 9678 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9679 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9680 VectorValue = get(Def, Part); 9681 } 9682 Builder.restoreIP(OldIP); 9683 return VectorValue; 9684 } 9685 9686 // Process the loop in the VPlan-native vectorization path. This path builds 9687 // VPlan upfront in the vectorization pipeline, which allows to apply 9688 // VPlan-to-VPlan transformations from the very beginning without modifying the 9689 // input LLVM IR. 9690 static bool processLoopInVPlanNativePath( 9691 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9692 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9693 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9694 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9695 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9696 LoopVectorizationRequirements &Requirements) { 9697 9698 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9699 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9700 return false; 9701 } 9702 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9703 Function *F = L->getHeader()->getParent(); 9704 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9705 9706 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9707 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9708 9709 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9710 &Hints, IAI); 9711 // Use the planner for outer loop vectorization. 9712 // TODO: CM is not used at this point inside the planner. Turn CM into an 9713 // optional argument if we don't need it in the future. 9714 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9715 Requirements, ORE); 9716 9717 // Get user vectorization factor. 9718 ElementCount UserVF = Hints.getWidth(); 9719 9720 // Plan how to best vectorize, return the best VF and its cost. 9721 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9722 9723 // If we are stress testing VPlan builds, do not attempt to generate vector 9724 // code. Masked vector code generation support will follow soon. 9725 // Also, do not attempt to vectorize if no vector code will be produced. 9726 if (VPlanBuildStressTest || EnableVPlanPredication || 9727 VectorizationFactor::Disabled() == VF) 9728 return false; 9729 9730 LVP.setBestPlan(VF.Width, 1); 9731 9732 { 9733 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9734 F->getParent()->getDataLayout()); 9735 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9736 &CM, BFI, PSI, Checks); 9737 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9738 << L->getHeader()->getParent()->getName() << "\"\n"); 9739 LVP.executePlan(LB, DT); 9740 } 9741 9742 // Mark the loop as already vectorized to avoid vectorizing again. 9743 Hints.setAlreadyVectorized(); 9744 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9745 return true; 9746 } 9747 9748 // Emit a remark if there are stores to floats that required a floating point 9749 // extension. If the vectorized loop was generated with floating point there 9750 // will be a performance penalty from the conversion overhead and the change in 9751 // the vector width. 9752 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9753 SmallVector<Instruction *, 4> Worklist; 9754 for (BasicBlock *BB : L->getBlocks()) { 9755 for (Instruction &Inst : *BB) { 9756 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9757 if (S->getValueOperand()->getType()->isFloatTy()) 9758 Worklist.push_back(S); 9759 } 9760 } 9761 } 9762 9763 // Traverse the floating point stores upwards searching, for floating point 9764 // conversions. 9765 SmallPtrSet<const Instruction *, 4> Visited; 9766 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9767 while (!Worklist.empty()) { 9768 auto *I = Worklist.pop_back_val(); 9769 if (!L->contains(I)) 9770 continue; 9771 if (!Visited.insert(I).second) 9772 continue; 9773 9774 // Emit a remark if the floating point store required a floating 9775 // point conversion. 9776 // TODO: More work could be done to identify the root cause such as a 9777 // constant or a function return type and point the user to it. 9778 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9779 ORE->emit([&]() { 9780 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9781 I->getDebugLoc(), L->getHeader()) 9782 << "floating point conversion changes vector width. " 9783 << "Mixed floating point precision requires an up/down " 9784 << "cast that will negatively impact performance."; 9785 }); 9786 9787 for (Use &Op : I->operands()) 9788 if (auto *OpI = dyn_cast<Instruction>(Op)) 9789 Worklist.push_back(OpI); 9790 } 9791 } 9792 9793 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9794 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9795 !EnableLoopInterleaving), 9796 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9797 !EnableLoopVectorization) {} 9798 9799 bool LoopVectorizePass::processLoop(Loop *L) { 9800 assert((EnableVPlanNativePath || L->isInnermost()) && 9801 "VPlan-native path is not enabled. Only process inner loops."); 9802 9803 #ifndef NDEBUG 9804 const std::string DebugLocStr = getDebugLocString(L); 9805 #endif /* NDEBUG */ 9806 9807 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9808 << L->getHeader()->getParent()->getName() << "\" from " 9809 << DebugLocStr << "\n"); 9810 9811 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9812 9813 LLVM_DEBUG( 9814 dbgs() << "LV: Loop hints:" 9815 << " force=" 9816 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9817 ? "disabled" 9818 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9819 ? "enabled" 9820 : "?")) 9821 << " width=" << Hints.getWidth() 9822 << " interleave=" << Hints.getInterleave() << "\n"); 9823 9824 // Function containing loop 9825 Function *F = L->getHeader()->getParent(); 9826 9827 // Looking at the diagnostic output is the only way to determine if a loop 9828 // was vectorized (other than looking at the IR or machine code), so it 9829 // is important to generate an optimization remark for each loop. Most of 9830 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9831 // generated as OptimizationRemark and OptimizationRemarkMissed are 9832 // less verbose reporting vectorized loops and unvectorized loops that may 9833 // benefit from vectorization, respectively. 9834 9835 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9836 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9837 return false; 9838 } 9839 9840 PredicatedScalarEvolution PSE(*SE, *L); 9841 9842 // Check if it is legal to vectorize the loop. 9843 LoopVectorizationRequirements Requirements; 9844 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9845 &Requirements, &Hints, DB, AC, BFI, PSI); 9846 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9847 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9848 Hints.emitRemarkWithHints(); 9849 return false; 9850 } 9851 9852 // Check the function attributes and profiles to find out if this function 9853 // should be optimized for size. 9854 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9855 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9856 9857 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9858 // here. They may require CFG and instruction level transformations before 9859 // even evaluating whether vectorization is profitable. Since we cannot modify 9860 // the incoming IR, we need to build VPlan upfront in the vectorization 9861 // pipeline. 9862 if (!L->isInnermost()) 9863 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9864 ORE, BFI, PSI, Hints, Requirements); 9865 9866 assert(L->isInnermost() && "Inner loop expected."); 9867 9868 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9869 // count by optimizing for size, to minimize overheads. 9870 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9871 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9872 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9873 << "This loop is worth vectorizing only if no scalar " 9874 << "iteration overheads are incurred."); 9875 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9876 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9877 else { 9878 LLVM_DEBUG(dbgs() << "\n"); 9879 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9880 } 9881 } 9882 9883 // Check the function attributes to see if implicit floats are allowed. 9884 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9885 // an integer loop and the vector instructions selected are purely integer 9886 // vector instructions? 9887 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9888 reportVectorizationFailure( 9889 "Can't vectorize when the NoImplicitFloat attribute is used", 9890 "loop not vectorized due to NoImplicitFloat attribute", 9891 "NoImplicitFloat", ORE, L); 9892 Hints.emitRemarkWithHints(); 9893 return false; 9894 } 9895 9896 // Check if the target supports potentially unsafe FP vectorization. 9897 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9898 // for the target we're vectorizing for, to make sure none of the 9899 // additional fp-math flags can help. 9900 if (Hints.isPotentiallyUnsafe() && 9901 TTI->isFPVectorizationPotentiallyUnsafe()) { 9902 reportVectorizationFailure( 9903 "Potentially unsafe FP op prevents vectorization", 9904 "loop not vectorized due to unsafe FP support.", 9905 "UnsafeFP", ORE, L); 9906 Hints.emitRemarkWithHints(); 9907 return false; 9908 } 9909 9910 if (!Requirements.canVectorizeFPMath(Hints)) { 9911 ORE->emit([&]() { 9912 auto *ExactFPMathInst = Requirements.getExactFPInst(); 9913 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 9914 ExactFPMathInst->getDebugLoc(), 9915 ExactFPMathInst->getParent()) 9916 << "loop not vectorized: cannot prove it is safe to reorder " 9917 "floating-point operations"; 9918 }); 9919 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 9920 "reorder floating-point operations\n"); 9921 Hints.emitRemarkWithHints(); 9922 return false; 9923 } 9924 9925 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9926 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9927 9928 // If an override option has been passed in for interleaved accesses, use it. 9929 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9930 UseInterleaved = EnableInterleavedMemAccesses; 9931 9932 // Analyze interleaved memory accesses. 9933 if (UseInterleaved) { 9934 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9935 } 9936 9937 // Use the cost model. 9938 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9939 F, &Hints, IAI); 9940 CM.collectValuesToIgnore(); 9941 9942 // Use the planner for vectorization. 9943 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 9944 Requirements, ORE); 9945 9946 // Get user vectorization factor and interleave count. 9947 ElementCount UserVF = Hints.getWidth(); 9948 unsigned UserIC = Hints.getInterleave(); 9949 9950 // Plan how to best vectorize, return the best VF and its cost. 9951 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9952 9953 VectorizationFactor VF = VectorizationFactor::Disabled(); 9954 unsigned IC = 1; 9955 9956 if (MaybeVF) { 9957 VF = *MaybeVF; 9958 // Select the interleave count. 9959 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 9960 } 9961 9962 // Identify the diagnostic messages that should be produced. 9963 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9964 bool VectorizeLoop = true, InterleaveLoop = true; 9965 if (VF.Width.isScalar()) { 9966 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9967 VecDiagMsg = std::make_pair( 9968 "VectorizationNotBeneficial", 9969 "the cost-model indicates that vectorization is not beneficial"); 9970 VectorizeLoop = false; 9971 } 9972 9973 if (!MaybeVF && UserIC > 1) { 9974 // Tell the user interleaving was avoided up-front, despite being explicitly 9975 // requested. 9976 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9977 "interleaving should be avoided up front\n"); 9978 IntDiagMsg = std::make_pair( 9979 "InterleavingAvoided", 9980 "Ignoring UserIC, because interleaving was avoided up front"); 9981 InterleaveLoop = false; 9982 } else if (IC == 1 && UserIC <= 1) { 9983 // Tell the user interleaving is not beneficial. 9984 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9985 IntDiagMsg = std::make_pair( 9986 "InterleavingNotBeneficial", 9987 "the cost-model indicates that interleaving is not beneficial"); 9988 InterleaveLoop = false; 9989 if (UserIC == 1) { 9990 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9991 IntDiagMsg.second += 9992 " and is explicitly disabled or interleave count is set to 1"; 9993 } 9994 } else if (IC > 1 && UserIC == 1) { 9995 // Tell the user interleaving is beneficial, but it explicitly disabled. 9996 LLVM_DEBUG( 9997 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9998 IntDiagMsg = std::make_pair( 9999 "InterleavingBeneficialButDisabled", 10000 "the cost-model indicates that interleaving is beneficial " 10001 "but is explicitly disabled or interleave count is set to 1"); 10002 InterleaveLoop = false; 10003 } 10004 10005 // Override IC if user provided an interleave count. 10006 IC = UserIC > 0 ? UserIC : IC; 10007 10008 // Emit diagnostic messages, if any. 10009 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10010 if (!VectorizeLoop && !InterleaveLoop) { 10011 // Do not vectorize or interleaving the loop. 10012 ORE->emit([&]() { 10013 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10014 L->getStartLoc(), L->getHeader()) 10015 << VecDiagMsg.second; 10016 }); 10017 ORE->emit([&]() { 10018 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10019 L->getStartLoc(), L->getHeader()) 10020 << IntDiagMsg.second; 10021 }); 10022 return false; 10023 } else if (!VectorizeLoop && InterleaveLoop) { 10024 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10025 ORE->emit([&]() { 10026 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10027 L->getStartLoc(), L->getHeader()) 10028 << VecDiagMsg.second; 10029 }); 10030 } else if (VectorizeLoop && !InterleaveLoop) { 10031 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10032 << ") in " << DebugLocStr << '\n'); 10033 ORE->emit([&]() { 10034 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10035 L->getStartLoc(), L->getHeader()) 10036 << IntDiagMsg.second; 10037 }); 10038 } else if (VectorizeLoop && InterleaveLoop) { 10039 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10040 << ") in " << DebugLocStr << '\n'); 10041 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10042 } 10043 10044 bool DisableRuntimeUnroll = false; 10045 MDNode *OrigLoopID = L->getLoopID(); 10046 { 10047 // Optimistically generate runtime checks. Drop them if they turn out to not 10048 // be profitable. Limit the scope of Checks, so the cleanup happens 10049 // immediately after vector codegeneration is done. 10050 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10051 F->getParent()->getDataLayout()); 10052 if (!VF.Width.isScalar() || IC > 1) 10053 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10054 LVP.setBestPlan(VF.Width, IC); 10055 10056 using namespace ore; 10057 if (!VectorizeLoop) { 10058 assert(IC > 1 && "interleave count should not be 1 or 0"); 10059 // If we decided that it is not legal to vectorize the loop, then 10060 // interleave it. 10061 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10062 &CM, BFI, PSI, Checks); 10063 LVP.executePlan(Unroller, DT); 10064 10065 ORE->emit([&]() { 10066 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10067 L->getHeader()) 10068 << "interleaved loop (interleaved count: " 10069 << NV("InterleaveCount", IC) << ")"; 10070 }); 10071 } else { 10072 // If we decided that it is *legal* to vectorize the loop, then do it. 10073 10074 // Consider vectorizing the epilogue too if it's profitable. 10075 VectorizationFactor EpilogueVF = 10076 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10077 if (EpilogueVF.Width.isVector()) { 10078 10079 // The first pass vectorizes the main loop and creates a scalar epilogue 10080 // to be vectorized by executing the plan (potentially with a different 10081 // factor) again shortly afterwards. 10082 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10083 EpilogueVF.Width.getKnownMinValue(), 10084 1); 10085 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10086 EPI, &LVL, &CM, BFI, PSI, Checks); 10087 10088 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10089 LVP.executePlan(MainILV, DT); 10090 ++LoopsVectorized; 10091 10092 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10093 formLCSSARecursively(*L, *DT, LI, SE); 10094 10095 // Second pass vectorizes the epilogue and adjusts the control flow 10096 // edges from the first pass. 10097 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10098 EPI.MainLoopVF = EPI.EpilogueVF; 10099 EPI.MainLoopUF = EPI.EpilogueUF; 10100 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10101 ORE, EPI, &LVL, &CM, BFI, PSI, 10102 Checks); 10103 LVP.executePlan(EpilogILV, DT); 10104 ++LoopsEpilogueVectorized; 10105 10106 if (!MainILV.areSafetyChecksAdded()) 10107 DisableRuntimeUnroll = true; 10108 } else { 10109 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10110 &LVL, &CM, BFI, PSI, Checks); 10111 LVP.executePlan(LB, DT); 10112 ++LoopsVectorized; 10113 10114 // Add metadata to disable runtime unrolling a scalar loop when there 10115 // are no runtime checks about strides and memory. A scalar loop that is 10116 // rarely used is not worth unrolling. 10117 if (!LB.areSafetyChecksAdded()) 10118 DisableRuntimeUnroll = true; 10119 } 10120 // Report the vectorization decision. 10121 ORE->emit([&]() { 10122 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10123 L->getHeader()) 10124 << "vectorized loop (vectorization width: " 10125 << NV("VectorizationFactor", VF.Width) 10126 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10127 }); 10128 } 10129 10130 if (ORE->allowExtraAnalysis(LV_NAME)) 10131 checkMixedPrecision(L, ORE); 10132 } 10133 10134 Optional<MDNode *> RemainderLoopID = 10135 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10136 LLVMLoopVectorizeFollowupEpilogue}); 10137 if (RemainderLoopID.hasValue()) { 10138 L->setLoopID(RemainderLoopID.getValue()); 10139 } else { 10140 if (DisableRuntimeUnroll) 10141 AddRuntimeUnrollDisableMetaData(L); 10142 10143 // Mark the loop as already vectorized to avoid vectorizing again. 10144 Hints.setAlreadyVectorized(); 10145 } 10146 10147 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10148 return true; 10149 } 10150 10151 LoopVectorizeResult LoopVectorizePass::runImpl( 10152 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10153 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10154 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10155 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10156 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10157 SE = &SE_; 10158 LI = &LI_; 10159 TTI = &TTI_; 10160 DT = &DT_; 10161 BFI = &BFI_; 10162 TLI = TLI_; 10163 AA = &AA_; 10164 AC = &AC_; 10165 GetLAA = &GetLAA_; 10166 DB = &DB_; 10167 ORE = &ORE_; 10168 PSI = PSI_; 10169 10170 // Don't attempt if 10171 // 1. the target claims to have no vector registers, and 10172 // 2. interleaving won't help ILP. 10173 // 10174 // The second condition is necessary because, even if the target has no 10175 // vector registers, loop vectorization may still enable scalar 10176 // interleaving. 10177 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10178 TTI->getMaxInterleaveFactor(1) < 2) 10179 return LoopVectorizeResult(false, false); 10180 10181 bool Changed = false, CFGChanged = false; 10182 10183 // The vectorizer requires loops to be in simplified form. 10184 // Since simplification may add new inner loops, it has to run before the 10185 // legality and profitability checks. This means running the loop vectorizer 10186 // will simplify all loops, regardless of whether anything end up being 10187 // vectorized. 10188 for (auto &L : *LI) 10189 Changed |= CFGChanged |= 10190 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10191 10192 // Build up a worklist of inner-loops to vectorize. This is necessary as 10193 // the act of vectorizing or partially unrolling a loop creates new loops 10194 // and can invalidate iterators across the loops. 10195 SmallVector<Loop *, 8> Worklist; 10196 10197 for (Loop *L : *LI) 10198 collectSupportedLoops(*L, LI, ORE, Worklist); 10199 10200 LoopsAnalyzed += Worklist.size(); 10201 10202 // Now walk the identified inner loops. 10203 while (!Worklist.empty()) { 10204 Loop *L = Worklist.pop_back_val(); 10205 10206 // For the inner loops we actually process, form LCSSA to simplify the 10207 // transform. 10208 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10209 10210 Changed |= CFGChanged |= processLoop(L); 10211 } 10212 10213 // Process each loop nest in the function. 10214 return LoopVectorizeResult(Changed, CFGChanged); 10215 } 10216 10217 PreservedAnalyses LoopVectorizePass::run(Function &F, 10218 FunctionAnalysisManager &AM) { 10219 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10220 auto &LI = AM.getResult<LoopAnalysis>(F); 10221 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10222 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10223 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10224 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10225 auto &AA = AM.getResult<AAManager>(F); 10226 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10227 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10228 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10229 MemorySSA *MSSA = EnableMSSALoopDependency 10230 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10231 : nullptr; 10232 10233 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10234 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10235 [&](Loop &L) -> const LoopAccessInfo & { 10236 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10237 TLI, TTI, nullptr, MSSA}; 10238 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10239 }; 10240 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10241 ProfileSummaryInfo *PSI = 10242 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10243 LoopVectorizeResult Result = 10244 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10245 if (!Result.MadeAnyChange) 10246 return PreservedAnalyses::all(); 10247 PreservedAnalyses PA; 10248 10249 // We currently do not preserve loopinfo/dominator analyses with outer loop 10250 // vectorization. Until this is addressed, mark these analyses as preserved 10251 // only for non-VPlan-native path. 10252 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10253 if (!EnableVPlanNativePath) { 10254 PA.preserve<LoopAnalysis>(); 10255 PA.preserve<DominatorTreeAnalysis>(); 10256 } 10257 PA.preserve<BasicAA>(); 10258 PA.preserve<GlobalsAA>(); 10259 if (!Result.MadeCFGChange) 10260 PA.preserveSet<CFGAnalyses>(); 10261 return PA; 10262 } 10263