1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/PatternMatch.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/InstructionCost.h" 135 #include "llvm/Support/MathExtras.h" 136 #include "llvm/Support/raw_ostream.h" 137 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 138 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 139 #include "llvm/Transforms/Utils/LoopSimplify.h" 140 #include "llvm/Transforms/Utils/LoopUtils.h" 141 #include "llvm/Transforms/Utils/LoopVersioning.h" 142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 143 #include "llvm/Transforms/Utils/SizeOpts.h" 144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 145 #include <algorithm> 146 #include <cassert> 147 #include <cstdint> 148 #include <cstdlib> 149 #include <functional> 150 #include <iterator> 151 #include <limits> 152 #include <memory> 153 #include <string> 154 #include <tuple> 155 #include <utility> 156 157 using namespace llvm; 158 159 #define LV_NAME "loop-vectorize" 160 #define DEBUG_TYPE LV_NAME 161 162 #ifndef NDEBUG 163 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 164 #endif 165 166 /// @{ 167 /// Metadata attribute names 168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 169 const char LLVMLoopVectorizeFollowupVectorized[] = 170 "llvm.loop.vectorize.followup_vectorized"; 171 const char LLVMLoopVectorizeFollowupEpilogue[] = 172 "llvm.loop.vectorize.followup_epilogue"; 173 /// @} 174 175 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 178 179 static cl::opt<bool> EnableEpilogueVectorization( 180 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 181 cl::desc("Enable vectorization of epilogue loops.")); 182 183 static cl::opt<unsigned> EpilogueVectorizationForceVF( 184 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 185 cl::desc("When epilogue vectorization is enabled, and a value greater than " 186 "1 is specified, forces the given VF for all applicable epilogue " 187 "loops.")); 188 189 static cl::opt<unsigned> EpilogueVectorizationMinVF( 190 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 191 cl::desc("Only loops with vectorization factor equal to or larger than " 192 "the specified value are considered for epilogue vectorization.")); 193 194 /// Loops with a known constant trip count below this number are vectorized only 195 /// if no scalar iteration overheads are incurred. 196 static cl::opt<unsigned> TinyTripCountVectorThreshold( 197 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 198 cl::desc("Loops with a constant trip count that is smaller than this " 199 "value are vectorized only if no scalar iteration overheads " 200 "are incurred.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 208 // that predication is preferred, and this lists all options. I.e., the 209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 210 // and predicate the instructions accordingly. If tail-folding fails, there are 211 // different fallback strategies depending on these values: 212 namespace PreferPredicateTy { 213 enum Option { 214 ScalarEpilogue = 0, 215 PredicateElseScalarEpilogue, 216 PredicateOrDontVectorize 217 }; 218 } // namespace PreferPredicateTy 219 220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 221 "prefer-predicate-over-epilogue", 222 cl::init(PreferPredicateTy::ScalarEpilogue), 223 cl::Hidden, 224 cl::desc("Tail-folding and predication preferences over creating a scalar " 225 "epilogue loop."), 226 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 227 "scalar-epilogue", 228 "Don't tail-predicate loops, create scalar epilogue"), 229 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 230 "predicate-else-scalar-epilogue", 231 "prefer tail-folding, create scalar epilogue if tail " 232 "folding fails."), 233 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 234 "predicate-dont-vectorize", 235 "prefers tail-folding, don't attempt vectorization if " 236 "tail-folding fails."))); 237 238 static cl::opt<bool> MaximizeBandwidth( 239 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 240 cl::desc("Maximize bandwidth when selecting vectorization factor which " 241 "will be determined by the smallest type in loop.")); 242 243 static cl::opt<bool> EnableInterleavedMemAccesses( 244 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 246 247 /// An interleave-group may need masking if it resides in a block that needs 248 /// predication, or in order to mask away gaps. 249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 250 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 251 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 252 253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 254 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 255 cl::desc("We don't interleave loops with a estimated constant trip count " 256 "below this number")); 257 258 static cl::opt<unsigned> ForceTargetNumScalarRegs( 259 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of scalar registers.")); 261 262 static cl::opt<unsigned> ForceTargetNumVectorRegs( 263 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's number of vector registers.")); 265 266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 267 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 268 cl::desc("A flag that overrides the target's max interleave factor for " 269 "scalar loops.")); 270 271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 272 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 273 cl::desc("A flag that overrides the target's max interleave factor for " 274 "vectorized loops.")); 275 276 static cl::opt<unsigned> ForceTargetInstructionCost( 277 "force-target-instruction-cost", cl::init(0), cl::Hidden, 278 cl::desc("A flag that overrides the target's expected cost for " 279 "an instruction to a single constant value. Mostly " 280 "useful for getting consistent testing.")); 281 282 static cl::opt<bool> ForceTargetSupportsScalableVectors( 283 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 284 cl::desc( 285 "Pretend that scalable vectors are supported, even if the target does " 286 "not support them. This flag should only be used for testing.")); 287 288 static cl::opt<unsigned> SmallLoopCost( 289 "small-loop-cost", cl::init(20), cl::Hidden, 290 cl::desc( 291 "The cost of a loop that is considered 'small' by the interleaver.")); 292 293 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 294 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 295 cl::desc("Enable the use of the block frequency analysis to access PGO " 296 "heuristics minimizing code growth in cold regions and being more " 297 "aggressive in hot regions.")); 298 299 // Runtime interleave loops for load/store throughput. 300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 301 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 302 cl::desc( 303 "Enable runtime interleaving until load/store ports are saturated")); 304 305 /// Interleave small loops with scalar reductions. 306 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 307 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 308 cl::desc("Enable interleaving for loops with small iteration counts that " 309 "contain scalar reductions to expose ILP.")); 310 311 /// The number of stores in a loop that are allowed to need predication. 312 static cl::opt<unsigned> NumberOfStoresToPredicate( 313 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 314 cl::desc("Max number of stores to be predicated behind an if.")); 315 316 static cl::opt<bool> EnableIndVarRegisterHeur( 317 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 318 cl::desc("Count the induction variable only once when interleaving")); 319 320 static cl::opt<bool> EnableCondStoresVectorization( 321 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 322 cl::desc("Enable if predication of stores during vectorization.")); 323 324 static cl::opt<unsigned> MaxNestedScalarReductionIC( 325 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 326 cl::desc("The maximum interleave count to use when interleaving a scalar " 327 "reduction in a nested loop.")); 328 329 static cl::opt<bool> 330 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 331 cl::Hidden, 332 cl::desc("Prefer in-loop vector reductions, " 333 "overriding the targets preference.")); 334 335 cl::opt<bool> EnableStrictReductions( 336 "enable-strict-reductions", cl::init(false), cl::Hidden, 337 cl::desc("Enable the vectorisation of loops with in-order (strict) " 338 "FP reductions")); 339 340 static cl::opt<bool> PreferPredicatedReductionSelect( 341 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 342 cl::desc( 343 "Prefer predicating a reduction operation over an after loop select.")); 344 345 cl::opt<bool> EnableVPlanNativePath( 346 "enable-vplan-native-path", cl::init(false), cl::Hidden, 347 cl::desc("Enable VPlan-native vectorization path with " 348 "support for outer loop vectorization.")); 349 350 // FIXME: Remove this switch once we have divergence analysis. Currently we 351 // assume divergent non-backedge branches when this switch is true. 352 cl::opt<bool> EnableVPlanPredication( 353 "enable-vplan-predication", cl::init(false), cl::Hidden, 354 cl::desc("Enable VPlan-native vectorization path predicator with " 355 "support for outer loop vectorization.")); 356 357 // This flag enables the stress testing of the VPlan H-CFG construction in the 358 // VPlan-native vectorization path. It must be used in conjuction with 359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 360 // verification of the H-CFGs built. 361 static cl::opt<bool> VPlanBuildStressTest( 362 "vplan-build-stress-test", cl::init(false), cl::Hidden, 363 cl::desc( 364 "Build VPlan for every supported loop nest in the function and bail " 365 "out right after the build (stress test the VPlan H-CFG construction " 366 "in the VPlan-native vectorization path).")); 367 368 cl::opt<bool> llvm::EnableLoopInterleaving( 369 "interleave-loops", cl::init(true), cl::Hidden, 370 cl::desc("Enable loop interleaving in Loop vectorization passes")); 371 cl::opt<bool> llvm::EnableLoopVectorization( 372 "vectorize-loops", cl::init(true), cl::Hidden, 373 cl::desc("Run the Loop vectorization passes")); 374 375 cl::opt<bool> PrintVPlansInDotFormat( 376 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 377 cl::desc("Use dot format instead of plain text when dumping VPlans")); 378 379 /// A helper function that returns true if the given type is irregular. The 380 /// type is irregular if its allocated size doesn't equal the store size of an 381 /// element of the corresponding vector type. 382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 383 // Determine if an array of N elements of type Ty is "bitcast compatible" 384 // with a <N x Ty> vector. 385 // This is only true if there is no padding between the array elements. 386 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 387 } 388 389 /// A helper function that returns the reciprocal of the block probability of 390 /// predicated blocks. If we return X, we are assuming the predicated block 391 /// will execute once for every X iterations of the loop header. 392 /// 393 /// TODO: We should use actual block probability here, if available. Currently, 394 /// we always assume predicated blocks have a 50% chance of executing. 395 static unsigned getReciprocalPredBlockProb() { return 2; } 396 397 /// A helper function that returns an integer or floating-point constant with 398 /// value C. 399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 400 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 401 : ConstantFP::get(Ty, C); 402 } 403 404 /// Returns "best known" trip count for the specified loop \p L as defined by 405 /// the following procedure: 406 /// 1) Returns exact trip count if it is known. 407 /// 2) Returns expected trip count according to profile data if any. 408 /// 3) Returns upper bound estimate if it is known. 409 /// 4) Returns None if all of the above failed. 410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 411 // Check if exact trip count is known. 412 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 413 return ExpectedTC; 414 415 // Check if there is an expected trip count available from profile data. 416 if (LoopVectorizeWithBlockFrequency) 417 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 418 return EstimatedTC; 419 420 // Check if upper bound estimate is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 422 return ExpectedTC; 423 424 return None; 425 } 426 427 // Forward declare GeneratedRTChecks. 428 class GeneratedRTChecks; 429 430 namespace llvm { 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop. 473 /// In the case of epilogue vectorization, this function is overriden to 474 /// handle the more complex control flow around the loops. 475 virtual BasicBlock *createVectorizedLoopSkeleton(); 476 477 /// Widen a single instruction within the innermost loop. 478 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 479 VPTransformState &State); 480 481 /// Widen a single call instruction within the innermost loop. 482 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 483 VPTransformState &State); 484 485 /// Widen a single select instruction within the innermost loop. 486 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 487 bool InvariantCond, VPTransformState &State); 488 489 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 490 void fixVectorizedLoop(VPTransformState &State); 491 492 // Return true if any runtime check is added. 493 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 494 495 /// A type for vectorized values in the new loop. Each value from the 496 /// original loop, when vectorized, is represented by UF vector values in the 497 /// new unrolled loop, where UF is the unroll factor. 498 using VectorParts = SmallVector<Value *, 2>; 499 500 /// Vectorize a single GetElementPtrInst based on information gathered and 501 /// decisions taken during planning. 502 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 503 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 504 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 505 506 /// Vectorize a single PHINode in a block. This method handles the induction 507 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 508 /// arbitrary length vectors. 509 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 510 VPWidenPHIRecipe *PhiR, VPTransformState &State); 511 512 /// A helper function to scalarize a single Instruction in the innermost loop. 513 /// Generates a sequence of scalar instances for each lane between \p MinLane 514 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 515 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 516 /// Instr's operands. 517 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 518 const VPIteration &Instance, bool IfPredicateInstr, 519 VPTransformState &State); 520 521 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 522 /// is provided, the integer induction variable will first be truncated to 523 /// the corresponding type. 524 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 525 VPValue *Def, VPValue *CastDef, 526 VPTransformState &State); 527 528 /// Construct the vector value of a scalarized value \p V one lane at a time. 529 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 530 VPTransformState &State); 531 532 /// Try to vectorize interleaved access group \p Group with the base address 533 /// given in \p Addr, optionally masking the vector operations if \p 534 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 535 /// values in the vectorized loop. 536 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 537 ArrayRef<VPValue *> VPDefs, 538 VPTransformState &State, VPValue *Addr, 539 ArrayRef<VPValue *> StoredValues, 540 VPValue *BlockInMask = nullptr); 541 542 /// Vectorize Load and Store instructions with the base address given in \p 543 /// Addr, optionally masking the vector operations if \p BlockInMask is 544 /// non-null. Use \p State to translate given VPValues to IR values in the 545 /// vectorized loop. 546 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 547 VPValue *Def, VPValue *Addr, 548 VPValue *StoredValue, VPValue *BlockInMask); 549 550 /// Set the debug location in the builder \p Ptr using the debug location in 551 /// \p V. If \p Ptr is None then it uses the class member's Builder. 552 void setDebugLocFromInst(const Value *V, 553 Optional<IRBuilder<> *> CustomBuilder = None); 554 555 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 556 void fixNonInductionPHIs(VPTransformState &State); 557 558 /// Returns true if the reordering of FP operations is not allowed, but we are 559 /// able to vectorize with strict in-order reductions for the given RdxDesc. 560 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 561 562 /// Create a broadcast instruction. This method generates a broadcast 563 /// instruction (shuffle) for loop invariant values and for the induction 564 /// value. If this is the induction variable then we extend it to N, N+1, ... 565 /// this is needed because each iteration in the loop corresponds to a SIMD 566 /// element. 567 virtual Value *getBroadcastInstrs(Value *V); 568 569 protected: 570 friend class LoopVectorizationPlanner; 571 572 /// A small list of PHINodes. 573 using PhiVector = SmallVector<PHINode *, 4>; 574 575 /// A type for scalarized values in the new loop. Each value from the 576 /// original loop, when scalarized, is represented by UF x VF scalar values 577 /// in the new unrolled loop, where UF is the unroll factor and VF is the 578 /// vectorization factor. 579 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 580 581 /// Set up the values of the IVs correctly when exiting the vector loop. 582 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 583 Value *CountRoundDown, Value *EndValue, 584 BasicBlock *MiddleBlock); 585 586 /// Create a new induction variable inside L. 587 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 588 Value *Step, Instruction *DL); 589 590 /// Handle all cross-iteration phis in the header. 591 void fixCrossIterationPHIs(VPTransformState &State); 592 593 /// Fix a first-order recurrence. This is the second phase of vectorizing 594 /// this phi node. 595 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 596 597 /// Fix a reduction cross-iteration phi. This is the second phase of 598 /// vectorizing this phi node. 599 void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State); 600 601 /// Clear NSW/NUW flags from reduction instructions if necessary. 602 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 603 VPTransformState &State); 604 605 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 606 /// means we need to add the appropriate incoming value from the middle 607 /// block as exiting edges from the scalar epilogue loop (if present) are 608 /// already in place, and we exit the vector loop exclusively to the middle 609 /// block. 610 void fixLCSSAPHIs(VPTransformState &State); 611 612 /// Iteratively sink the scalarized operands of a predicated instruction into 613 /// the block that was created for it. 614 void sinkScalarOperands(Instruction *PredInst); 615 616 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 617 /// represented as. 618 void truncateToMinimalBitwidths(VPTransformState &State); 619 620 /// This function adds 621 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 622 /// to each vector element of Val. The sequence starts at StartIndex. 623 /// \p Opcode is relevant for FP induction variable. 624 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 625 Instruction::BinaryOps Opcode = 626 Instruction::BinaryOpsEnd); 627 628 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 629 /// variable on which to base the steps, \p Step is the size of the step, and 630 /// \p EntryVal is the value from the original loop that maps to the steps. 631 /// Note that \p EntryVal doesn't have to be an induction variable - it 632 /// can also be a truncate instruction. 633 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 634 const InductionDescriptor &ID, VPValue *Def, 635 VPValue *CastDef, VPTransformState &State); 636 637 /// Create a vector induction phi node based on an existing scalar one. \p 638 /// EntryVal is the value from the original loop that maps to the vector phi 639 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 640 /// truncate instruction, instead of widening the original IV, we widen a 641 /// version of the IV truncated to \p EntryVal's type. 642 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 643 Value *Step, Value *Start, 644 Instruction *EntryVal, VPValue *Def, 645 VPValue *CastDef, 646 VPTransformState &State); 647 648 /// Returns true if an instruction \p I should be scalarized instead of 649 /// vectorized for the chosen vectorization factor. 650 bool shouldScalarizeInstruction(Instruction *I) const; 651 652 /// Returns true if we should generate a scalar version of \p IV. 653 bool needsScalarInduction(Instruction *IV) const; 654 655 /// If there is a cast involved in the induction variable \p ID, which should 656 /// be ignored in the vectorized loop body, this function records the 657 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 658 /// cast. We had already proved that the casted Phi is equal to the uncasted 659 /// Phi in the vectorized loop (under a runtime guard), and therefore 660 /// there is no need to vectorize the cast - the same value can be used in the 661 /// vector loop for both the Phi and the cast. 662 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 663 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 664 /// 665 /// \p EntryVal is the value from the original loop that maps to the vector 666 /// phi node and is used to distinguish what is the IV currently being 667 /// processed - original one (if \p EntryVal is a phi corresponding to the 668 /// original IV) or the "newly-created" one based on the proof mentioned above 669 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 670 /// latter case \p EntryVal is a TruncInst and we must not record anything for 671 /// that IV, but it's error-prone to expect callers of this routine to care 672 /// about that, hence this explicit parameter. 673 void recordVectorLoopValueForInductionCast( 674 const InductionDescriptor &ID, const Instruction *EntryVal, 675 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 676 unsigned Part, unsigned Lane = UINT_MAX); 677 678 /// Generate a shuffle sequence that will reverse the vector Vec. 679 virtual Value *reverseVector(Value *Vec); 680 681 /// Returns (and creates if needed) the original loop trip count. 682 Value *getOrCreateTripCount(Loop *NewLoop); 683 684 /// Returns (and creates if needed) the trip count of the widened loop. 685 Value *getOrCreateVectorTripCount(Loop *NewLoop); 686 687 /// Returns a bitcasted value to the requested vector type. 688 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 689 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 690 const DataLayout &DL); 691 692 /// Emit a bypass check to see if the vector trip count is zero, including if 693 /// it overflows. 694 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 695 696 /// Emit a bypass check to see if all of the SCEV assumptions we've 697 /// had to make are correct. Returns the block containing the checks or 698 /// nullptr if no checks have been added. 699 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 700 701 /// Emit bypass checks to check any memory assumptions we may have made. 702 /// Returns the block containing the checks or nullptr if no checks have been 703 /// added. 704 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 705 706 /// Compute the transformed value of Index at offset StartValue using step 707 /// StepValue. 708 /// For integer induction, returns StartValue + Index * StepValue. 709 /// For pointer induction, returns StartValue[Index * StepValue]. 710 /// FIXME: The newly created binary instructions should contain nsw/nuw 711 /// flags, which can be found from the original scalar operations. 712 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 713 const DataLayout &DL, 714 const InductionDescriptor &ID) const; 715 716 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 717 /// vector loop preheader, middle block and scalar preheader. Also 718 /// allocate a loop object for the new vector loop and return it. 719 Loop *createVectorLoopSkeleton(StringRef Prefix); 720 721 /// Create new phi nodes for the induction variables to resume iteration count 722 /// in the scalar epilogue, from where the vectorized loop left off (given by 723 /// \p VectorTripCount). 724 /// In cases where the loop skeleton is more complicated (eg. epilogue 725 /// vectorization) and the resume values can come from an additional bypass 726 /// block, the \p AdditionalBypass pair provides information about the bypass 727 /// block and the end value on the edge from bypass to this loop. 728 void createInductionResumeValues( 729 Loop *L, Value *VectorTripCount, 730 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 731 732 /// Complete the loop skeleton by adding debug MDs, creating appropriate 733 /// conditional branches in the middle block, preparing the builder and 734 /// running the verifier. Take in the vector loop \p L as argument, and return 735 /// the preheader of the completed vector loop. 736 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 737 738 /// Add additional metadata to \p To that was not present on \p Orig. 739 /// 740 /// Currently this is used to add the noalias annotations based on the 741 /// inserted memchecks. Use this for instructions that are *cloned* into the 742 /// vector loop. 743 void addNewMetadata(Instruction *To, const Instruction *Orig); 744 745 /// Add metadata from one instruction to another. 746 /// 747 /// This includes both the original MDs from \p From and additional ones (\see 748 /// addNewMetadata). Use this for *newly created* instructions in the vector 749 /// loop. 750 void addMetadata(Instruction *To, Instruction *From); 751 752 /// Similar to the previous function but it adds the metadata to a 753 /// vector of instructions. 754 void addMetadata(ArrayRef<Value *> To, Instruction *From); 755 756 /// Allow subclasses to override and print debug traces before/after vplan 757 /// execution, when trace information is requested. 758 virtual void printDebugTracesAtStart(){}; 759 virtual void printDebugTracesAtEnd(){}; 760 761 /// The original loop. 762 Loop *OrigLoop; 763 764 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 765 /// dynamic knowledge to simplify SCEV expressions and converts them to a 766 /// more usable form. 767 PredicatedScalarEvolution &PSE; 768 769 /// Loop Info. 770 LoopInfo *LI; 771 772 /// Dominator Tree. 773 DominatorTree *DT; 774 775 /// Alias Analysis. 776 AAResults *AA; 777 778 /// Target Library Info. 779 const TargetLibraryInfo *TLI; 780 781 /// Target Transform Info. 782 const TargetTransformInfo *TTI; 783 784 /// Assumption Cache. 785 AssumptionCache *AC; 786 787 /// Interface to emit optimization remarks. 788 OptimizationRemarkEmitter *ORE; 789 790 /// LoopVersioning. It's only set up (non-null) if memchecks were 791 /// used. 792 /// 793 /// This is currently only used to add no-alias metadata based on the 794 /// memchecks. The actually versioning is performed manually. 795 std::unique_ptr<LoopVersioning> LVer; 796 797 /// The vectorization SIMD factor to use. Each vector will have this many 798 /// vector elements. 799 ElementCount VF; 800 801 /// The vectorization unroll factor to use. Each scalar is vectorized to this 802 /// many different vector instructions. 803 unsigned UF; 804 805 /// The builder that we use 806 IRBuilder<> Builder; 807 808 // --- Vectorization state --- 809 810 /// The vector-loop preheader. 811 BasicBlock *LoopVectorPreHeader; 812 813 /// The scalar-loop preheader. 814 BasicBlock *LoopScalarPreHeader; 815 816 /// Middle Block between the vector and the scalar. 817 BasicBlock *LoopMiddleBlock; 818 819 /// The (unique) ExitBlock of the scalar loop. Note that 820 /// there can be multiple exiting edges reaching this block. 821 BasicBlock *LoopExitBlock; 822 823 /// The vector loop body. 824 BasicBlock *LoopVectorBody; 825 826 /// The scalar loop body. 827 BasicBlock *LoopScalarBody; 828 829 /// A list of all bypass blocks. The first block is the entry of the loop. 830 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 831 832 /// The new Induction variable which was added to the new block. 833 PHINode *Induction = nullptr; 834 835 /// The induction variable of the old basic block. 836 PHINode *OldInduction = nullptr; 837 838 /// Store instructions that were predicated. 839 SmallVector<Instruction *, 4> PredicatedInstructions; 840 841 /// Trip count of the original loop. 842 Value *TripCount = nullptr; 843 844 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 845 Value *VectorTripCount = nullptr; 846 847 /// The legality analysis. 848 LoopVectorizationLegality *Legal; 849 850 /// The profitablity analysis. 851 LoopVectorizationCostModel *Cost; 852 853 // Record whether runtime checks are added. 854 bool AddedSafetyChecks = false; 855 856 // Holds the end values for each induction variable. We save the end values 857 // so we can later fix-up the external users of the induction variables. 858 DenseMap<PHINode *, Value *> IVEndValues; 859 860 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 861 // fixed up at the end of vector code generation. 862 SmallVector<PHINode *, 8> OrigPHIsToFix; 863 864 /// BFI and PSI are used to check for profile guided size optimizations. 865 BlockFrequencyInfo *BFI; 866 ProfileSummaryInfo *PSI; 867 868 // Whether this loop should be optimized for size based on profile guided size 869 // optimizatios. 870 bool OptForSizeBasedOnProfile; 871 872 /// Structure to hold information about generated runtime checks, responsible 873 /// for cleaning the checks, if vectorization turns out unprofitable. 874 GeneratedRTChecks &RTChecks; 875 }; 876 877 class InnerLoopUnroller : public InnerLoopVectorizer { 878 public: 879 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 880 LoopInfo *LI, DominatorTree *DT, 881 const TargetLibraryInfo *TLI, 882 const TargetTransformInfo *TTI, AssumptionCache *AC, 883 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 884 LoopVectorizationLegality *LVL, 885 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 886 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 887 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 888 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 889 BFI, PSI, Check) {} 890 891 private: 892 Value *getBroadcastInstrs(Value *V) override; 893 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 894 Instruction::BinaryOps Opcode = 895 Instruction::BinaryOpsEnd) override; 896 Value *reverseVector(Value *Vec) override; 897 }; 898 899 /// Encapsulate information regarding vectorization of a loop and its epilogue. 900 /// This information is meant to be updated and used across two stages of 901 /// epilogue vectorization. 902 struct EpilogueLoopVectorizationInfo { 903 ElementCount MainLoopVF = ElementCount::getFixed(0); 904 unsigned MainLoopUF = 0; 905 ElementCount EpilogueVF = ElementCount::getFixed(0); 906 unsigned EpilogueUF = 0; 907 BasicBlock *MainLoopIterationCountCheck = nullptr; 908 BasicBlock *EpilogueIterationCountCheck = nullptr; 909 BasicBlock *SCEVSafetyCheck = nullptr; 910 BasicBlock *MemSafetyCheck = nullptr; 911 Value *TripCount = nullptr; 912 Value *VectorTripCount = nullptr; 913 914 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 915 unsigned EUF) 916 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 917 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 918 assert(EUF == 1 && 919 "A high UF for the epilogue loop is likely not beneficial."); 920 } 921 }; 922 923 /// An extension of the inner loop vectorizer that creates a skeleton for a 924 /// vectorized loop that has its epilogue (residual) also vectorized. 925 /// The idea is to run the vplan on a given loop twice, firstly to setup the 926 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 927 /// from the first step and vectorize the epilogue. This is achieved by 928 /// deriving two concrete strategy classes from this base class and invoking 929 /// them in succession from the loop vectorizer planner. 930 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 931 public: 932 InnerLoopAndEpilogueVectorizer( 933 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 934 DominatorTree *DT, const TargetLibraryInfo *TLI, 935 const TargetTransformInfo *TTI, AssumptionCache *AC, 936 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 937 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 938 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 939 GeneratedRTChecks &Checks) 940 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 941 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 942 Checks), 943 EPI(EPI) {} 944 945 // Override this function to handle the more complex control flow around the 946 // three loops. 947 BasicBlock *createVectorizedLoopSkeleton() final override { 948 return createEpilogueVectorizedLoopSkeleton(); 949 } 950 951 /// The interface for creating a vectorized skeleton using one of two 952 /// different strategies, each corresponding to one execution of the vplan 953 /// as described above. 954 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 955 956 /// Holds and updates state information required to vectorize the main loop 957 /// and its epilogue in two separate passes. This setup helps us avoid 958 /// regenerating and recomputing runtime safety checks. It also helps us to 959 /// shorten the iteration-count-check path length for the cases where the 960 /// iteration count of the loop is so small that the main vector loop is 961 /// completely skipped. 962 EpilogueLoopVectorizationInfo &EPI; 963 }; 964 965 /// A specialized derived class of inner loop vectorizer that performs 966 /// vectorization of *main* loops in the process of vectorizing loops and their 967 /// epilogues. 968 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 969 public: 970 EpilogueVectorizerMainLoop( 971 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 972 DominatorTree *DT, const TargetLibraryInfo *TLI, 973 const TargetTransformInfo *TTI, AssumptionCache *AC, 974 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 975 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 976 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 977 GeneratedRTChecks &Check) 978 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 979 EPI, LVL, CM, BFI, PSI, Check) {} 980 /// Implements the interface for creating a vectorized skeleton using the 981 /// *main loop* strategy (ie the first pass of vplan execution). 982 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 983 984 protected: 985 /// Emits an iteration count bypass check once for the main loop (when \p 986 /// ForEpilogue is false) and once for the epilogue loop (when \p 987 /// ForEpilogue is true). 988 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 989 bool ForEpilogue); 990 void printDebugTracesAtStart() override; 991 void printDebugTracesAtEnd() override; 992 }; 993 994 // A specialized derived class of inner loop vectorizer that performs 995 // vectorization of *epilogue* loops in the process of vectorizing loops and 996 // their epilogues. 997 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 998 public: 999 EpilogueVectorizerEpilogueLoop( 1000 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1001 DominatorTree *DT, const TargetLibraryInfo *TLI, 1002 const TargetTransformInfo *TTI, AssumptionCache *AC, 1003 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1004 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1005 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1006 GeneratedRTChecks &Checks) 1007 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1008 EPI, LVL, CM, BFI, PSI, Checks) {} 1009 /// Implements the interface for creating a vectorized skeleton using the 1010 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1011 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1012 1013 protected: 1014 /// Emits an iteration count bypass check after the main vector loop has 1015 /// finished to see if there are any iterations left to execute by either 1016 /// the vector epilogue or the scalar epilogue. 1017 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1018 BasicBlock *Bypass, 1019 BasicBlock *Insert); 1020 void printDebugTracesAtStart() override; 1021 void printDebugTracesAtEnd() override; 1022 }; 1023 } // end namespace llvm 1024 1025 /// Look for a meaningful debug location on the instruction or it's 1026 /// operands. 1027 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1028 if (!I) 1029 return I; 1030 1031 DebugLoc Empty; 1032 if (I->getDebugLoc() != Empty) 1033 return I; 1034 1035 for (Use &Op : I->operands()) { 1036 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1037 if (OpInst->getDebugLoc() != Empty) 1038 return OpInst; 1039 } 1040 1041 return I; 1042 } 1043 1044 void InnerLoopVectorizer::setDebugLocFromInst( 1045 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1046 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1047 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1048 const DILocation *DIL = Inst->getDebugLoc(); 1049 1050 // When a FSDiscriminator is enabled, we don't need to add the multiply 1051 // factors to the discriminators. 1052 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1053 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1054 // FIXME: For scalable vectors, assume vscale=1. 1055 auto NewDIL = 1056 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1057 if (NewDIL) 1058 B->SetCurrentDebugLocation(NewDIL.getValue()); 1059 else 1060 LLVM_DEBUG(dbgs() 1061 << "Failed to create new discriminator: " 1062 << DIL->getFilename() << " Line: " << DIL->getLine()); 1063 } else 1064 B->SetCurrentDebugLocation(DIL); 1065 } else 1066 B->SetCurrentDebugLocation(DebugLoc()); 1067 } 1068 1069 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1070 /// is passed, the message relates to that particular instruction. 1071 #ifndef NDEBUG 1072 static void debugVectorizationMessage(const StringRef Prefix, 1073 const StringRef DebugMsg, 1074 Instruction *I) { 1075 dbgs() << "LV: " << Prefix << DebugMsg; 1076 if (I != nullptr) 1077 dbgs() << " " << *I; 1078 else 1079 dbgs() << '.'; 1080 dbgs() << '\n'; 1081 } 1082 #endif 1083 1084 /// Create an analysis remark that explains why vectorization failed 1085 /// 1086 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1087 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1088 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1089 /// the location of the remark. \return the remark object that can be 1090 /// streamed to. 1091 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1092 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1093 Value *CodeRegion = TheLoop->getHeader(); 1094 DebugLoc DL = TheLoop->getStartLoc(); 1095 1096 if (I) { 1097 CodeRegion = I->getParent(); 1098 // If there is no debug location attached to the instruction, revert back to 1099 // using the loop's. 1100 if (I->getDebugLoc()) 1101 DL = I->getDebugLoc(); 1102 } 1103 1104 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1105 } 1106 1107 /// Return a value for Step multiplied by VF. 1108 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1109 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1110 Constant *StepVal = ConstantInt::get( 1111 Step->getType(), 1112 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1113 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1114 } 1115 1116 namespace llvm { 1117 1118 /// Return the runtime value for VF. 1119 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1120 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1121 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1122 } 1123 1124 void reportVectorizationFailure(const StringRef DebugMsg, 1125 const StringRef OREMsg, const StringRef ORETag, 1126 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1127 Instruction *I) { 1128 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1129 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1130 ORE->emit( 1131 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1132 << "loop not vectorized: " << OREMsg); 1133 } 1134 1135 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1136 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1137 Instruction *I) { 1138 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1139 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1140 ORE->emit( 1141 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1142 << Msg); 1143 } 1144 1145 } // end namespace llvm 1146 1147 #ifndef NDEBUG 1148 /// \return string containing a file name and a line # for the given loop. 1149 static std::string getDebugLocString(const Loop *L) { 1150 std::string Result; 1151 if (L) { 1152 raw_string_ostream OS(Result); 1153 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1154 LoopDbgLoc.print(OS); 1155 else 1156 // Just print the module name. 1157 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1158 OS.flush(); 1159 } 1160 return Result; 1161 } 1162 #endif 1163 1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1165 const Instruction *Orig) { 1166 // If the loop was versioned with memchecks, add the corresponding no-alias 1167 // metadata. 1168 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1169 LVer->annotateInstWithNoAlias(To, Orig); 1170 } 1171 1172 void InnerLoopVectorizer::addMetadata(Instruction *To, 1173 Instruction *From) { 1174 propagateMetadata(To, From); 1175 addNewMetadata(To, From); 1176 } 1177 1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1179 Instruction *From) { 1180 for (Value *V : To) { 1181 if (Instruction *I = dyn_cast<Instruction>(V)) 1182 addMetadata(I, From); 1183 } 1184 } 1185 1186 namespace llvm { 1187 1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1189 // lowered. 1190 enum ScalarEpilogueLowering { 1191 1192 // The default: allowing scalar epilogues. 1193 CM_ScalarEpilogueAllowed, 1194 1195 // Vectorization with OptForSize: don't allow epilogues. 1196 CM_ScalarEpilogueNotAllowedOptSize, 1197 1198 // A special case of vectorisation with OptForSize: loops with a very small 1199 // trip count are considered for vectorization under OptForSize, thereby 1200 // making sure the cost of their loop body is dominant, free of runtime 1201 // guards and scalar iteration overheads. 1202 CM_ScalarEpilogueNotAllowedLowTripLoop, 1203 1204 // Loop hint predicate indicating an epilogue is undesired. 1205 CM_ScalarEpilogueNotNeededUsePredicate, 1206 1207 // Directive indicating we must either tail fold or not vectorize 1208 CM_ScalarEpilogueNotAllowedUsePredicate 1209 }; 1210 1211 /// ElementCountComparator creates a total ordering for ElementCount 1212 /// for the purposes of using it in a set structure. 1213 struct ElementCountComparator { 1214 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1215 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1216 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1217 } 1218 }; 1219 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1220 1221 /// LoopVectorizationCostModel - estimates the expected speedups due to 1222 /// vectorization. 1223 /// In many cases vectorization is not profitable. This can happen because of 1224 /// a number of reasons. In this class we mainly attempt to predict the 1225 /// expected speedup/slowdowns due to the supported instruction set. We use the 1226 /// TargetTransformInfo to query the different backends for the cost of 1227 /// different operations. 1228 class LoopVectorizationCostModel { 1229 public: 1230 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1231 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1232 LoopVectorizationLegality *Legal, 1233 const TargetTransformInfo &TTI, 1234 const TargetLibraryInfo *TLI, DemandedBits *DB, 1235 AssumptionCache *AC, 1236 OptimizationRemarkEmitter *ORE, const Function *F, 1237 const LoopVectorizeHints *Hints, 1238 InterleavedAccessInfo &IAI) 1239 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1240 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1241 Hints(Hints), InterleaveInfo(IAI) {} 1242 1243 /// \return An upper bound for the vectorization factors (both fixed and 1244 /// scalable). If the factors are 0, vectorization and interleaving should be 1245 /// avoided up front. 1246 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1247 1248 /// \return True if runtime checks are required for vectorization, and false 1249 /// otherwise. 1250 bool runtimeChecksRequired(); 1251 1252 /// \return The most profitable vectorization factor and the cost of that VF. 1253 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1254 /// then this vectorization factor will be selected if vectorization is 1255 /// possible. 1256 VectorizationFactor 1257 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1258 1259 VectorizationFactor 1260 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1261 const LoopVectorizationPlanner &LVP); 1262 1263 /// Setup cost-based decisions for user vectorization factor. 1264 void selectUserVectorizationFactor(ElementCount UserVF) { 1265 collectUniformsAndScalars(UserVF); 1266 collectInstsToScalarize(UserVF); 1267 } 1268 1269 /// \return The size (in bits) of the smallest and widest types in the code 1270 /// that needs to be vectorized. We ignore values that remain scalar such as 1271 /// 64 bit loop indices. 1272 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1273 1274 /// \return The desired interleave count. 1275 /// If interleave count has been specified by metadata it will be returned. 1276 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1277 /// are the selected vectorization factor and the cost of the selected VF. 1278 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1279 1280 /// Memory access instruction may be vectorized in more than one way. 1281 /// Form of instruction after vectorization depends on cost. 1282 /// This function takes cost-based decisions for Load/Store instructions 1283 /// and collects them in a map. This decisions map is used for building 1284 /// the lists of loop-uniform and loop-scalar instructions. 1285 /// The calculated cost is saved with widening decision in order to 1286 /// avoid redundant calculations. 1287 void setCostBasedWideningDecision(ElementCount VF); 1288 1289 /// A struct that represents some properties of the register usage 1290 /// of a loop. 1291 struct RegisterUsage { 1292 /// Holds the number of loop invariant values that are used in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1295 /// Holds the maximum number of concurrent live intervals in the loop. 1296 /// The key is ClassID of target-provided register class. 1297 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1298 }; 1299 1300 /// \return Returns information about the register usages of the loop for the 1301 /// given vectorization factors. 1302 SmallVector<RegisterUsage, 8> 1303 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1304 1305 /// Collect values we want to ignore in the cost model. 1306 void collectValuesToIgnore(); 1307 1308 /// Split reductions into those that happen in the loop, and those that happen 1309 /// outside. In loop reductions are collected into InLoopReductionChains. 1310 void collectInLoopReductions(); 1311 1312 /// Returns true if we should use strict in-order reductions for the given 1313 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1314 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1315 /// of FP operations. 1316 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1317 return EnableStrictReductions && !Hints->allowReordering() && 1318 RdxDesc.isOrdered(); 1319 } 1320 1321 /// \returns The smallest bitwidth each instruction can be represented with. 1322 /// The vector equivalents of these instructions should be truncated to this 1323 /// type. 1324 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1325 return MinBWs; 1326 } 1327 1328 /// \returns True if it is more profitable to scalarize instruction \p I for 1329 /// vectorization factor \p VF. 1330 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1331 assert(VF.isVector() && 1332 "Profitable to scalarize relevant only for VF > 1."); 1333 1334 // Cost model is not run in the VPlan-native path - return conservative 1335 // result until this changes. 1336 if (EnableVPlanNativePath) 1337 return false; 1338 1339 auto Scalars = InstsToScalarize.find(VF); 1340 assert(Scalars != InstsToScalarize.end() && 1341 "VF not yet analyzed for scalarization profitability"); 1342 return Scalars->second.find(I) != Scalars->second.end(); 1343 } 1344 1345 /// Returns true if \p I is known to be uniform after vectorization. 1346 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1347 if (VF.isScalar()) 1348 return true; 1349 1350 // Cost model is not run in the VPlan-native path - return conservative 1351 // result until this changes. 1352 if (EnableVPlanNativePath) 1353 return false; 1354 1355 auto UniformsPerVF = Uniforms.find(VF); 1356 assert(UniformsPerVF != Uniforms.end() && 1357 "VF not yet analyzed for uniformity"); 1358 return UniformsPerVF->second.count(I); 1359 } 1360 1361 /// Returns true if \p I is known to be scalar after vectorization. 1362 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1363 if (VF.isScalar()) 1364 return true; 1365 1366 // Cost model is not run in the VPlan-native path - return conservative 1367 // result until this changes. 1368 if (EnableVPlanNativePath) 1369 return false; 1370 1371 auto ScalarsPerVF = Scalars.find(VF); 1372 assert(ScalarsPerVF != Scalars.end() && 1373 "Scalar values are not calculated for VF"); 1374 return ScalarsPerVF->second.count(I); 1375 } 1376 1377 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1378 /// for vectorization factor \p VF. 1379 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1380 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1381 !isProfitableToScalarize(I, VF) && 1382 !isScalarAfterVectorization(I, VF); 1383 } 1384 1385 /// Decision that was taken during cost calculation for memory instruction. 1386 enum InstWidening { 1387 CM_Unknown, 1388 CM_Widen, // For consecutive accesses with stride +1. 1389 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1390 CM_Interleave, 1391 CM_GatherScatter, 1392 CM_Scalarize 1393 }; 1394 1395 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1396 /// instruction \p I and vector width \p VF. 1397 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1398 InstructionCost Cost) { 1399 assert(VF.isVector() && "Expected VF >=2"); 1400 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1401 } 1402 1403 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1404 /// interleaving group \p Grp and vector width \p VF. 1405 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1406 ElementCount VF, InstWidening W, 1407 InstructionCost Cost) { 1408 assert(VF.isVector() && "Expected VF >=2"); 1409 /// Broadcast this decicion to all instructions inside the group. 1410 /// But the cost will be assigned to one instruction only. 1411 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1412 if (auto *I = Grp->getMember(i)) { 1413 if (Grp->getInsertPos() == I) 1414 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1415 else 1416 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1417 } 1418 } 1419 } 1420 1421 /// Return the cost model decision for the given instruction \p I and vector 1422 /// width \p VF. Return CM_Unknown if this instruction did not pass 1423 /// through the cost modeling. 1424 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1425 assert(VF.isVector() && "Expected VF to be a vector VF"); 1426 // Cost model is not run in the VPlan-native path - return conservative 1427 // result until this changes. 1428 if (EnableVPlanNativePath) 1429 return CM_GatherScatter; 1430 1431 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1432 auto Itr = WideningDecisions.find(InstOnVF); 1433 if (Itr == WideningDecisions.end()) 1434 return CM_Unknown; 1435 return Itr->second.first; 1436 } 1437 1438 /// Return the vectorization cost for the given instruction \p I and vector 1439 /// width \p VF. 1440 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1441 assert(VF.isVector() && "Expected VF >=2"); 1442 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1443 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1444 "The cost is not calculated"); 1445 return WideningDecisions[InstOnVF].second; 1446 } 1447 1448 /// Return True if instruction \p I is an optimizable truncate whose operand 1449 /// is an induction variable. Such a truncate will be removed by adding a new 1450 /// induction variable with the destination type. 1451 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1452 // If the instruction is not a truncate, return false. 1453 auto *Trunc = dyn_cast<TruncInst>(I); 1454 if (!Trunc) 1455 return false; 1456 1457 // Get the source and destination types of the truncate. 1458 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1459 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1460 1461 // If the truncate is free for the given types, return false. Replacing a 1462 // free truncate with an induction variable would add an induction variable 1463 // update instruction to each iteration of the loop. We exclude from this 1464 // check the primary induction variable since it will need an update 1465 // instruction regardless. 1466 Value *Op = Trunc->getOperand(0); 1467 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1468 return false; 1469 1470 // If the truncated value is not an induction variable, return false. 1471 return Legal->isInductionPhi(Op); 1472 } 1473 1474 /// Collects the instructions to scalarize for each predicated instruction in 1475 /// the loop. 1476 void collectInstsToScalarize(ElementCount VF); 1477 1478 /// Collect Uniform and Scalar values for the given \p VF. 1479 /// The sets depend on CM decision for Load/Store instructions 1480 /// that may be vectorized as interleave, gather-scatter or scalarized. 1481 void collectUniformsAndScalars(ElementCount VF) { 1482 // Do the analysis once. 1483 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1484 return; 1485 setCostBasedWideningDecision(VF); 1486 collectLoopUniforms(VF); 1487 collectLoopScalars(VF); 1488 } 1489 1490 /// Returns true if the target machine supports masked store operation 1491 /// for the given \p DataType and kind of access to \p Ptr. 1492 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1493 return Legal->isConsecutivePtr(Ptr) && 1494 TTI.isLegalMaskedStore(DataType, Alignment); 1495 } 1496 1497 /// Returns true if the target machine supports masked load operation 1498 /// for the given \p DataType and kind of access to \p Ptr. 1499 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1500 return Legal->isConsecutivePtr(Ptr) && 1501 TTI.isLegalMaskedLoad(DataType, Alignment); 1502 } 1503 1504 /// Returns true if the target machine can represent \p V as a masked gather 1505 /// or scatter operation. 1506 bool isLegalGatherOrScatter(Value *V) { 1507 bool LI = isa<LoadInst>(V); 1508 bool SI = isa<StoreInst>(V); 1509 if (!LI && !SI) 1510 return false; 1511 auto *Ty = getLoadStoreType(V); 1512 Align Align = getLoadStoreAlignment(V); 1513 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1514 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1515 } 1516 1517 /// Returns true if the target machine supports all of the reduction 1518 /// variables found for the given VF. 1519 bool canVectorizeReductions(ElementCount VF) { 1520 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1521 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1522 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1523 })); 1524 } 1525 1526 /// Returns true if \p I is an instruction that will be scalarized with 1527 /// predication. Such instructions include conditional stores and 1528 /// instructions that may divide by zero. 1529 /// If a non-zero VF has been calculated, we check if I will be scalarized 1530 /// predication for that VF. 1531 bool isScalarWithPredication(Instruction *I) const; 1532 1533 // Returns true if \p I is an instruction that will be predicated either 1534 // through scalar predication or masked load/store or masked gather/scatter. 1535 // Superset of instructions that return true for isScalarWithPredication. 1536 bool isPredicatedInst(Instruction *I) { 1537 if (!blockNeedsPredication(I->getParent())) 1538 return false; 1539 // Loads and stores that need some form of masked operation are predicated 1540 // instructions. 1541 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1542 return Legal->isMaskRequired(I); 1543 return isScalarWithPredication(I); 1544 } 1545 1546 /// Returns true if \p I is a memory instruction with consecutive memory 1547 /// access that can be widened. 1548 bool 1549 memoryInstructionCanBeWidened(Instruction *I, 1550 ElementCount VF = ElementCount::getFixed(1)); 1551 1552 /// Returns true if \p I is a memory instruction in an interleaved-group 1553 /// of memory accesses that can be vectorized with wide vector loads/stores 1554 /// and shuffles. 1555 bool 1556 interleavedAccessCanBeWidened(Instruction *I, 1557 ElementCount VF = ElementCount::getFixed(1)); 1558 1559 /// Check if \p Instr belongs to any interleaved access group. 1560 bool isAccessInterleaved(Instruction *Instr) { 1561 return InterleaveInfo.isInterleaved(Instr); 1562 } 1563 1564 /// Get the interleaved access group that \p Instr belongs to. 1565 const InterleaveGroup<Instruction> * 1566 getInterleavedAccessGroup(Instruction *Instr) { 1567 return InterleaveInfo.getInterleaveGroup(Instr); 1568 } 1569 1570 /// Returns true if we're required to use a scalar epilogue for at least 1571 /// the final iteration of the original loop. 1572 bool requiresScalarEpilogue(ElementCount VF) const { 1573 if (!isScalarEpilogueAllowed()) 1574 return false; 1575 // If we might exit from anywhere but the latch, must run the exiting 1576 // iteration in scalar form. 1577 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1578 return true; 1579 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1580 } 1581 1582 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1583 /// loop hint annotation. 1584 bool isScalarEpilogueAllowed() const { 1585 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1586 } 1587 1588 /// Returns true if all loop blocks should be masked to fold tail loop. 1589 bool foldTailByMasking() const { return FoldTailByMasking; } 1590 1591 bool blockNeedsPredication(BasicBlock *BB) const { 1592 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1593 } 1594 1595 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1596 /// nodes to the chain of instructions representing the reductions. Uses a 1597 /// MapVector to ensure deterministic iteration order. 1598 using ReductionChainMap = 1599 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1600 1601 /// Return the chain of instructions representing an inloop reduction. 1602 const ReductionChainMap &getInLoopReductionChains() const { 1603 return InLoopReductionChains; 1604 } 1605 1606 /// Returns true if the Phi is part of an inloop reduction. 1607 bool isInLoopReduction(PHINode *Phi) const { 1608 return InLoopReductionChains.count(Phi); 1609 } 1610 1611 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1612 /// with factor VF. Return the cost of the instruction, including 1613 /// scalarization overhead if it's needed. 1614 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1615 1616 /// Estimate cost of a call instruction CI if it were vectorized with factor 1617 /// VF. Return the cost of the instruction, including scalarization overhead 1618 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1619 /// scalarized - 1620 /// i.e. either vector version isn't available, or is too expensive. 1621 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1622 bool &NeedToScalarize) const; 1623 1624 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1625 /// that of B. 1626 bool isMoreProfitable(const VectorizationFactor &A, 1627 const VectorizationFactor &B) const; 1628 1629 /// Invalidates decisions already taken by the cost model. 1630 void invalidateCostModelingDecisions() { 1631 WideningDecisions.clear(); 1632 Uniforms.clear(); 1633 Scalars.clear(); 1634 } 1635 1636 private: 1637 unsigned NumPredStores = 0; 1638 1639 /// \return An upper bound for the vectorization factors for both 1640 /// fixed and scalable vectorization, where the minimum-known number of 1641 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1642 /// disabled or unsupported, then the scalable part will be equal to 1643 /// ElementCount::getScalable(0). 1644 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1645 ElementCount UserVF); 1646 1647 /// \return the maximized element count based on the targets vector 1648 /// registers and the loop trip-count, but limited to a maximum safe VF. 1649 /// This is a helper function of computeFeasibleMaxVF. 1650 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1651 /// issue that occurred on one of the buildbots which cannot be reproduced 1652 /// without having access to the properietary compiler (see comments on 1653 /// D98509). The issue is currently under investigation and this workaround 1654 /// will be removed as soon as possible. 1655 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1656 unsigned SmallestType, 1657 unsigned WidestType, 1658 const ElementCount &MaxSafeVF); 1659 1660 /// \return the maximum legal scalable VF, based on the safe max number 1661 /// of elements. 1662 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1663 1664 /// The vectorization cost is a combination of the cost itself and a boolean 1665 /// indicating whether any of the contributing operations will actually 1666 /// operate on vector values after type legalization in the backend. If this 1667 /// latter value is false, then all operations will be scalarized (i.e. no 1668 /// vectorization has actually taken place). 1669 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1670 1671 /// Returns the expected execution cost. The unit of the cost does 1672 /// not matter because we use the 'cost' units to compare different 1673 /// vector widths. The cost that is returned is *not* normalized by 1674 /// the factor width. 1675 VectorizationCostTy expectedCost(ElementCount VF); 1676 1677 /// Returns the execution time cost of an instruction for a given vector 1678 /// width. Vector width of one means scalar. 1679 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1680 1681 /// The cost-computation logic from getInstructionCost which provides 1682 /// the vector type as an output parameter. 1683 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1684 Type *&VectorTy); 1685 1686 /// Return the cost of instructions in an inloop reduction pattern, if I is 1687 /// part of that pattern. 1688 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1689 Type *VectorTy, 1690 TTI::TargetCostKind CostKind); 1691 1692 /// Calculate vectorization cost of memory instruction \p I. 1693 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1694 1695 /// The cost computation for scalarized memory instruction. 1696 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1697 1698 /// The cost computation for interleaving group of memory instructions. 1699 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1700 1701 /// The cost computation for Gather/Scatter instruction. 1702 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1703 1704 /// The cost computation for widening instruction \p I with consecutive 1705 /// memory access. 1706 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1707 1708 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1709 /// Load: scalar load + broadcast. 1710 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1711 /// element) 1712 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1713 1714 /// Estimate the overhead of scalarizing an instruction. This is a 1715 /// convenience wrapper for the type-based getScalarizationOverhead API. 1716 InstructionCost getScalarizationOverhead(Instruction *I, 1717 ElementCount VF) const; 1718 1719 /// Returns whether the instruction is a load or store and will be a emitted 1720 /// as a vector operation. 1721 bool isConsecutiveLoadOrStore(Instruction *I); 1722 1723 /// Returns true if an artificially high cost for emulated masked memrefs 1724 /// should be used. 1725 bool useEmulatedMaskMemRefHack(Instruction *I); 1726 1727 /// Map of scalar integer values to the smallest bitwidth they can be legally 1728 /// represented as. The vector equivalents of these values should be truncated 1729 /// to this type. 1730 MapVector<Instruction *, uint64_t> MinBWs; 1731 1732 /// A type representing the costs for instructions if they were to be 1733 /// scalarized rather than vectorized. The entries are Instruction-Cost 1734 /// pairs. 1735 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1736 1737 /// A set containing all BasicBlocks that are known to present after 1738 /// vectorization as a predicated block. 1739 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1740 1741 /// Records whether it is allowed to have the original scalar loop execute at 1742 /// least once. This may be needed as a fallback loop in case runtime 1743 /// aliasing/dependence checks fail, or to handle the tail/remainder 1744 /// iterations when the trip count is unknown or doesn't divide by the VF, 1745 /// or as a peel-loop to handle gaps in interleave-groups. 1746 /// Under optsize and when the trip count is very small we don't allow any 1747 /// iterations to execute in the scalar loop. 1748 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1749 1750 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1751 bool FoldTailByMasking = false; 1752 1753 /// A map holding scalar costs for different vectorization factors. The 1754 /// presence of a cost for an instruction in the mapping indicates that the 1755 /// instruction will be scalarized when vectorizing with the associated 1756 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1757 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1758 1759 /// Holds the instructions known to be uniform after vectorization. 1760 /// The data is collected per VF. 1761 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1762 1763 /// Holds the instructions known to be scalar after vectorization. 1764 /// The data is collected per VF. 1765 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1766 1767 /// Holds the instructions (address computations) that are forced to be 1768 /// scalarized. 1769 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1770 1771 /// PHINodes of the reductions that should be expanded in-loop along with 1772 /// their associated chains of reduction operations, in program order from top 1773 /// (PHI) to bottom 1774 ReductionChainMap InLoopReductionChains; 1775 1776 /// A Map of inloop reduction operations and their immediate chain operand. 1777 /// FIXME: This can be removed once reductions can be costed correctly in 1778 /// vplan. This was added to allow quick lookup to the inloop operations, 1779 /// without having to loop through InLoopReductionChains. 1780 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1781 1782 /// Returns the expected difference in cost from scalarizing the expression 1783 /// feeding a predicated instruction \p PredInst. The instructions to 1784 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1785 /// non-negative return value implies the expression will be scalarized. 1786 /// Currently, only single-use chains are considered for scalarization. 1787 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1788 ElementCount VF); 1789 1790 /// Collect the instructions that are uniform after vectorization. An 1791 /// instruction is uniform if we represent it with a single scalar value in 1792 /// the vectorized loop corresponding to each vector iteration. Examples of 1793 /// uniform instructions include pointer operands of consecutive or 1794 /// interleaved memory accesses. Note that although uniformity implies an 1795 /// instruction will be scalar, the reverse is not true. In general, a 1796 /// scalarized instruction will be represented by VF scalar values in the 1797 /// vectorized loop, each corresponding to an iteration of the original 1798 /// scalar loop. 1799 void collectLoopUniforms(ElementCount VF); 1800 1801 /// Collect the instructions that are scalar after vectorization. An 1802 /// instruction is scalar if it is known to be uniform or will be scalarized 1803 /// during vectorization. Non-uniform scalarized instructions will be 1804 /// represented by VF values in the vectorized loop, each corresponding to an 1805 /// iteration of the original scalar loop. 1806 void collectLoopScalars(ElementCount VF); 1807 1808 /// Keeps cost model vectorization decision and cost for instructions. 1809 /// Right now it is used for memory instructions only. 1810 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1811 std::pair<InstWidening, InstructionCost>>; 1812 1813 DecisionList WideningDecisions; 1814 1815 /// Returns true if \p V is expected to be vectorized and it needs to be 1816 /// extracted. 1817 bool needsExtract(Value *V, ElementCount VF) const { 1818 Instruction *I = dyn_cast<Instruction>(V); 1819 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1820 TheLoop->isLoopInvariant(I)) 1821 return false; 1822 1823 // Assume we can vectorize V (and hence we need extraction) if the 1824 // scalars are not computed yet. This can happen, because it is called 1825 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1826 // the scalars are collected. That should be a safe assumption in most 1827 // cases, because we check if the operands have vectorizable types 1828 // beforehand in LoopVectorizationLegality. 1829 return Scalars.find(VF) == Scalars.end() || 1830 !isScalarAfterVectorization(I, VF); 1831 }; 1832 1833 /// Returns a range containing only operands needing to be extracted. 1834 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1835 ElementCount VF) const { 1836 return SmallVector<Value *, 4>(make_filter_range( 1837 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1838 } 1839 1840 /// Determines if we have the infrastructure to vectorize loop \p L and its 1841 /// epilogue, assuming the main loop is vectorized by \p VF. 1842 bool isCandidateForEpilogueVectorization(const Loop &L, 1843 const ElementCount VF) const; 1844 1845 /// Returns true if epilogue vectorization is considered profitable, and 1846 /// false otherwise. 1847 /// \p VF is the vectorization factor chosen for the original loop. 1848 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1849 1850 public: 1851 /// The loop that we evaluate. 1852 Loop *TheLoop; 1853 1854 /// Predicated scalar evolution analysis. 1855 PredicatedScalarEvolution &PSE; 1856 1857 /// Loop Info analysis. 1858 LoopInfo *LI; 1859 1860 /// Vectorization legality. 1861 LoopVectorizationLegality *Legal; 1862 1863 /// Vector target information. 1864 const TargetTransformInfo &TTI; 1865 1866 /// Target Library Info. 1867 const TargetLibraryInfo *TLI; 1868 1869 /// Demanded bits analysis. 1870 DemandedBits *DB; 1871 1872 /// Assumption cache. 1873 AssumptionCache *AC; 1874 1875 /// Interface to emit optimization remarks. 1876 OptimizationRemarkEmitter *ORE; 1877 1878 const Function *TheFunction; 1879 1880 /// Loop Vectorize Hint. 1881 const LoopVectorizeHints *Hints; 1882 1883 /// The interleave access information contains groups of interleaved accesses 1884 /// with the same stride and close to each other. 1885 InterleavedAccessInfo &InterleaveInfo; 1886 1887 /// Values to ignore in the cost model. 1888 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1889 1890 /// Values to ignore in the cost model when VF > 1. 1891 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1892 1893 /// Profitable vector factors. 1894 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1895 }; 1896 } // end namespace llvm 1897 1898 /// Helper struct to manage generating runtime checks for vectorization. 1899 /// 1900 /// The runtime checks are created up-front in temporary blocks to allow better 1901 /// estimating the cost and un-linked from the existing IR. After deciding to 1902 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1903 /// temporary blocks are completely removed. 1904 class GeneratedRTChecks { 1905 /// Basic block which contains the generated SCEV checks, if any. 1906 BasicBlock *SCEVCheckBlock = nullptr; 1907 1908 /// The value representing the result of the generated SCEV checks. If it is 1909 /// nullptr, either no SCEV checks have been generated or they have been used. 1910 Value *SCEVCheckCond = nullptr; 1911 1912 /// Basic block which contains the generated memory runtime checks, if any. 1913 BasicBlock *MemCheckBlock = nullptr; 1914 1915 /// The value representing the result of the generated memory runtime checks. 1916 /// If it is nullptr, either no memory runtime checks have been generated or 1917 /// they have been used. 1918 Instruction *MemRuntimeCheckCond = nullptr; 1919 1920 DominatorTree *DT; 1921 LoopInfo *LI; 1922 1923 SCEVExpander SCEVExp; 1924 SCEVExpander MemCheckExp; 1925 1926 public: 1927 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1928 const DataLayout &DL) 1929 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1930 MemCheckExp(SE, DL, "scev.check") {} 1931 1932 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1933 /// accurately estimate the cost of the runtime checks. The blocks are 1934 /// un-linked from the IR and is added back during vector code generation. If 1935 /// there is no vector code generation, the check blocks are removed 1936 /// completely. 1937 void Create(Loop *L, const LoopAccessInfo &LAI, 1938 const SCEVUnionPredicate &UnionPred) { 1939 1940 BasicBlock *LoopHeader = L->getHeader(); 1941 BasicBlock *Preheader = L->getLoopPreheader(); 1942 1943 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1944 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1945 // may be used by SCEVExpander. The blocks will be un-linked from their 1946 // predecessors and removed from LI & DT at the end of the function. 1947 if (!UnionPred.isAlwaysTrue()) { 1948 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1949 nullptr, "vector.scevcheck"); 1950 1951 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1952 &UnionPred, SCEVCheckBlock->getTerminator()); 1953 } 1954 1955 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1956 if (RtPtrChecking.Need) { 1957 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1958 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1959 "vector.memcheck"); 1960 1961 std::tie(std::ignore, MemRuntimeCheckCond) = 1962 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1963 RtPtrChecking.getChecks(), MemCheckExp); 1964 assert(MemRuntimeCheckCond && 1965 "no RT checks generated although RtPtrChecking " 1966 "claimed checks are required"); 1967 } 1968 1969 if (!MemCheckBlock && !SCEVCheckBlock) 1970 return; 1971 1972 // Unhook the temporary block with the checks, update various places 1973 // accordingly. 1974 if (SCEVCheckBlock) 1975 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1976 if (MemCheckBlock) 1977 MemCheckBlock->replaceAllUsesWith(Preheader); 1978 1979 if (SCEVCheckBlock) { 1980 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1981 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1982 Preheader->getTerminator()->eraseFromParent(); 1983 } 1984 if (MemCheckBlock) { 1985 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1986 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1987 Preheader->getTerminator()->eraseFromParent(); 1988 } 1989 1990 DT->changeImmediateDominator(LoopHeader, Preheader); 1991 if (MemCheckBlock) { 1992 DT->eraseNode(MemCheckBlock); 1993 LI->removeBlock(MemCheckBlock); 1994 } 1995 if (SCEVCheckBlock) { 1996 DT->eraseNode(SCEVCheckBlock); 1997 LI->removeBlock(SCEVCheckBlock); 1998 } 1999 } 2000 2001 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2002 /// unused. 2003 ~GeneratedRTChecks() { 2004 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2005 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2006 if (!SCEVCheckCond) 2007 SCEVCleaner.markResultUsed(); 2008 2009 if (!MemRuntimeCheckCond) 2010 MemCheckCleaner.markResultUsed(); 2011 2012 if (MemRuntimeCheckCond) { 2013 auto &SE = *MemCheckExp.getSE(); 2014 // Memory runtime check generation creates compares that use expanded 2015 // values. Remove them before running the SCEVExpanderCleaners. 2016 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2017 if (MemCheckExp.isInsertedInstruction(&I)) 2018 continue; 2019 SE.forgetValue(&I); 2020 SE.eraseValueFromMap(&I); 2021 I.eraseFromParent(); 2022 } 2023 } 2024 MemCheckCleaner.cleanup(); 2025 SCEVCleaner.cleanup(); 2026 2027 if (SCEVCheckCond) 2028 SCEVCheckBlock->eraseFromParent(); 2029 if (MemRuntimeCheckCond) 2030 MemCheckBlock->eraseFromParent(); 2031 } 2032 2033 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2034 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2035 /// depending on the generated condition. 2036 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2037 BasicBlock *LoopVectorPreHeader, 2038 BasicBlock *LoopExitBlock) { 2039 if (!SCEVCheckCond) 2040 return nullptr; 2041 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2042 if (C->isZero()) 2043 return nullptr; 2044 2045 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2046 2047 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2048 // Create new preheader for vector loop. 2049 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2050 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2051 2052 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2053 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2054 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2055 SCEVCheckBlock); 2056 2057 DT->addNewBlock(SCEVCheckBlock, Pred); 2058 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2059 2060 ReplaceInstWithInst( 2061 SCEVCheckBlock->getTerminator(), 2062 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2063 // Mark the check as used, to prevent it from being removed during cleanup. 2064 SCEVCheckCond = nullptr; 2065 return SCEVCheckBlock; 2066 } 2067 2068 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2069 /// the branches to branch to the vector preheader or \p Bypass, depending on 2070 /// the generated condition. 2071 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2072 BasicBlock *LoopVectorPreHeader) { 2073 // Check if we generated code that checks in runtime if arrays overlap. 2074 if (!MemRuntimeCheckCond) 2075 return nullptr; 2076 2077 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2078 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2079 MemCheckBlock); 2080 2081 DT->addNewBlock(MemCheckBlock, Pred); 2082 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2083 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2084 2085 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2086 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2087 2088 ReplaceInstWithInst( 2089 MemCheckBlock->getTerminator(), 2090 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2091 MemCheckBlock->getTerminator()->setDebugLoc( 2092 Pred->getTerminator()->getDebugLoc()); 2093 2094 // Mark the check as used, to prevent it from being removed during cleanup. 2095 MemRuntimeCheckCond = nullptr; 2096 return MemCheckBlock; 2097 } 2098 }; 2099 2100 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2101 // vectorization. The loop needs to be annotated with #pragma omp simd 2102 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2103 // vector length information is not provided, vectorization is not considered 2104 // explicit. Interleave hints are not allowed either. These limitations will be 2105 // relaxed in the future. 2106 // Please, note that we are currently forced to abuse the pragma 'clang 2107 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2108 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2109 // provides *explicit vectorization hints* (LV can bypass legal checks and 2110 // assume that vectorization is legal). However, both hints are implemented 2111 // using the same metadata (llvm.loop.vectorize, processed by 2112 // LoopVectorizeHints). This will be fixed in the future when the native IR 2113 // representation for pragma 'omp simd' is introduced. 2114 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2115 OptimizationRemarkEmitter *ORE) { 2116 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2117 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2118 2119 // Only outer loops with an explicit vectorization hint are supported. 2120 // Unannotated outer loops are ignored. 2121 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2122 return false; 2123 2124 Function *Fn = OuterLp->getHeader()->getParent(); 2125 if (!Hints.allowVectorization(Fn, OuterLp, 2126 true /*VectorizeOnlyWhenForced*/)) { 2127 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2128 return false; 2129 } 2130 2131 if (Hints.getInterleave() > 1) { 2132 // TODO: Interleave support is future work. 2133 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2134 "outer loops.\n"); 2135 Hints.emitRemarkWithHints(); 2136 return false; 2137 } 2138 2139 return true; 2140 } 2141 2142 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2143 OptimizationRemarkEmitter *ORE, 2144 SmallVectorImpl<Loop *> &V) { 2145 // Collect inner loops and outer loops without irreducible control flow. For 2146 // now, only collect outer loops that have explicit vectorization hints. If we 2147 // are stress testing the VPlan H-CFG construction, we collect the outermost 2148 // loop of every loop nest. 2149 if (L.isInnermost() || VPlanBuildStressTest || 2150 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2151 LoopBlocksRPO RPOT(&L); 2152 RPOT.perform(LI); 2153 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2154 V.push_back(&L); 2155 // TODO: Collect inner loops inside marked outer loops in case 2156 // vectorization fails for the outer loop. Do not invoke 2157 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2158 // already known to be reducible. We can use an inherited attribute for 2159 // that. 2160 return; 2161 } 2162 } 2163 for (Loop *InnerL : L) 2164 collectSupportedLoops(*InnerL, LI, ORE, V); 2165 } 2166 2167 namespace { 2168 2169 /// The LoopVectorize Pass. 2170 struct LoopVectorize : public FunctionPass { 2171 /// Pass identification, replacement for typeid 2172 static char ID; 2173 2174 LoopVectorizePass Impl; 2175 2176 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2177 bool VectorizeOnlyWhenForced = false) 2178 : FunctionPass(ID), 2179 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2180 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2181 } 2182 2183 bool runOnFunction(Function &F) override { 2184 if (skipFunction(F)) 2185 return false; 2186 2187 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2188 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2189 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2190 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2191 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2192 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2193 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2194 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2195 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2196 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2197 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2198 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2199 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2200 2201 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2202 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2203 2204 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2205 GetLAA, *ORE, PSI).MadeAnyChange; 2206 } 2207 2208 void getAnalysisUsage(AnalysisUsage &AU) const override { 2209 AU.addRequired<AssumptionCacheTracker>(); 2210 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2211 AU.addRequired<DominatorTreeWrapperPass>(); 2212 AU.addRequired<LoopInfoWrapperPass>(); 2213 AU.addRequired<ScalarEvolutionWrapperPass>(); 2214 AU.addRequired<TargetTransformInfoWrapperPass>(); 2215 AU.addRequired<AAResultsWrapperPass>(); 2216 AU.addRequired<LoopAccessLegacyAnalysis>(); 2217 AU.addRequired<DemandedBitsWrapperPass>(); 2218 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2219 AU.addRequired<InjectTLIMappingsLegacy>(); 2220 2221 // We currently do not preserve loopinfo/dominator analyses with outer loop 2222 // vectorization. Until this is addressed, mark these analyses as preserved 2223 // only for non-VPlan-native path. 2224 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2225 if (!EnableVPlanNativePath) { 2226 AU.addPreserved<LoopInfoWrapperPass>(); 2227 AU.addPreserved<DominatorTreeWrapperPass>(); 2228 } 2229 2230 AU.addPreserved<BasicAAWrapperPass>(); 2231 AU.addPreserved<GlobalsAAWrapperPass>(); 2232 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2233 } 2234 }; 2235 2236 } // end anonymous namespace 2237 2238 //===----------------------------------------------------------------------===// 2239 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2240 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2241 //===----------------------------------------------------------------------===// 2242 2243 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2244 // We need to place the broadcast of invariant variables outside the loop, 2245 // but only if it's proven safe to do so. Else, broadcast will be inside 2246 // vector loop body. 2247 Instruction *Instr = dyn_cast<Instruction>(V); 2248 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2249 (!Instr || 2250 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2251 // Place the code for broadcasting invariant variables in the new preheader. 2252 IRBuilder<>::InsertPointGuard Guard(Builder); 2253 if (SafeToHoist) 2254 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2255 2256 // Broadcast the scalar into all locations in the vector. 2257 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2258 2259 return Shuf; 2260 } 2261 2262 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2263 const InductionDescriptor &II, Value *Step, Value *Start, 2264 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2265 VPTransformState &State) { 2266 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2267 "Expected either an induction phi-node or a truncate of it!"); 2268 2269 // Construct the initial value of the vector IV in the vector loop preheader 2270 auto CurrIP = Builder.saveIP(); 2271 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2272 if (isa<TruncInst>(EntryVal)) { 2273 assert(Start->getType()->isIntegerTy() && 2274 "Truncation requires an integer type"); 2275 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2276 Step = Builder.CreateTrunc(Step, TruncType); 2277 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2278 } 2279 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2280 Value *SteppedStart = 2281 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2282 2283 // We create vector phi nodes for both integer and floating-point induction 2284 // variables. Here, we determine the kind of arithmetic we will perform. 2285 Instruction::BinaryOps AddOp; 2286 Instruction::BinaryOps MulOp; 2287 if (Step->getType()->isIntegerTy()) { 2288 AddOp = Instruction::Add; 2289 MulOp = Instruction::Mul; 2290 } else { 2291 AddOp = II.getInductionOpcode(); 2292 MulOp = Instruction::FMul; 2293 } 2294 2295 // Multiply the vectorization factor by the step using integer or 2296 // floating-point arithmetic as appropriate. 2297 Type *StepType = Step->getType(); 2298 if (Step->getType()->isFloatingPointTy()) 2299 StepType = IntegerType::get(StepType->getContext(), 2300 StepType->getScalarSizeInBits()); 2301 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2302 if (Step->getType()->isFloatingPointTy()) 2303 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2304 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2305 2306 // Create a vector splat to use in the induction update. 2307 // 2308 // FIXME: If the step is non-constant, we create the vector splat with 2309 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2310 // handle a constant vector splat. 2311 Value *SplatVF = isa<Constant>(Mul) 2312 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2313 : Builder.CreateVectorSplat(VF, Mul); 2314 Builder.restoreIP(CurrIP); 2315 2316 // We may need to add the step a number of times, depending on the unroll 2317 // factor. The last of those goes into the PHI. 2318 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2319 &*LoopVectorBody->getFirstInsertionPt()); 2320 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2321 Instruction *LastInduction = VecInd; 2322 for (unsigned Part = 0; Part < UF; ++Part) { 2323 State.set(Def, LastInduction, Part); 2324 2325 if (isa<TruncInst>(EntryVal)) 2326 addMetadata(LastInduction, EntryVal); 2327 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2328 State, Part); 2329 2330 LastInduction = cast<Instruction>( 2331 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2332 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2333 } 2334 2335 // Move the last step to the end of the latch block. This ensures consistent 2336 // placement of all induction updates. 2337 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2338 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2339 auto *ICmp = cast<Instruction>(Br->getCondition()); 2340 LastInduction->moveBefore(ICmp); 2341 LastInduction->setName("vec.ind.next"); 2342 2343 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2344 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2345 } 2346 2347 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2348 return Cost->isScalarAfterVectorization(I, VF) || 2349 Cost->isProfitableToScalarize(I, VF); 2350 } 2351 2352 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2353 if (shouldScalarizeInstruction(IV)) 2354 return true; 2355 auto isScalarInst = [&](User *U) -> bool { 2356 auto *I = cast<Instruction>(U); 2357 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2358 }; 2359 return llvm::any_of(IV->users(), isScalarInst); 2360 } 2361 2362 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2363 const InductionDescriptor &ID, const Instruction *EntryVal, 2364 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2365 unsigned Part, unsigned Lane) { 2366 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2367 "Expected either an induction phi-node or a truncate of it!"); 2368 2369 // This induction variable is not the phi from the original loop but the 2370 // newly-created IV based on the proof that casted Phi is equal to the 2371 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2372 // re-uses the same InductionDescriptor that original IV uses but we don't 2373 // have to do any recording in this case - that is done when original IV is 2374 // processed. 2375 if (isa<TruncInst>(EntryVal)) 2376 return; 2377 2378 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2379 if (Casts.empty()) 2380 return; 2381 // Only the first Cast instruction in the Casts vector is of interest. 2382 // The rest of the Casts (if exist) have no uses outside the 2383 // induction update chain itself. 2384 if (Lane < UINT_MAX) 2385 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2386 else 2387 State.set(CastDef, VectorLoopVal, Part); 2388 } 2389 2390 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2391 TruncInst *Trunc, VPValue *Def, 2392 VPValue *CastDef, 2393 VPTransformState &State) { 2394 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2395 "Primary induction variable must have an integer type"); 2396 2397 auto II = Legal->getInductionVars().find(IV); 2398 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2399 2400 auto ID = II->second; 2401 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2402 2403 // The value from the original loop to which we are mapping the new induction 2404 // variable. 2405 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2406 2407 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2408 2409 // Generate code for the induction step. Note that induction steps are 2410 // required to be loop-invariant 2411 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2412 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2413 "Induction step should be loop invariant"); 2414 if (PSE.getSE()->isSCEVable(IV->getType())) { 2415 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2416 return Exp.expandCodeFor(Step, Step->getType(), 2417 LoopVectorPreHeader->getTerminator()); 2418 } 2419 return cast<SCEVUnknown>(Step)->getValue(); 2420 }; 2421 2422 // The scalar value to broadcast. This is derived from the canonical 2423 // induction variable. If a truncation type is given, truncate the canonical 2424 // induction variable and step. Otherwise, derive these values from the 2425 // induction descriptor. 2426 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2427 Value *ScalarIV = Induction; 2428 if (IV != OldInduction) { 2429 ScalarIV = IV->getType()->isIntegerTy() 2430 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2431 : Builder.CreateCast(Instruction::SIToFP, Induction, 2432 IV->getType()); 2433 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2434 ScalarIV->setName("offset.idx"); 2435 } 2436 if (Trunc) { 2437 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2438 assert(Step->getType()->isIntegerTy() && 2439 "Truncation requires an integer step"); 2440 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2441 Step = Builder.CreateTrunc(Step, TruncType); 2442 } 2443 return ScalarIV; 2444 }; 2445 2446 // Create the vector values from the scalar IV, in the absence of creating a 2447 // vector IV. 2448 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2449 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2450 for (unsigned Part = 0; Part < UF; ++Part) { 2451 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2452 Value *EntryPart = 2453 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2454 ID.getInductionOpcode()); 2455 State.set(Def, EntryPart, Part); 2456 if (Trunc) 2457 addMetadata(EntryPart, Trunc); 2458 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2459 State, Part); 2460 } 2461 }; 2462 2463 // Fast-math-flags propagate from the original induction instruction. 2464 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2465 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2466 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2467 2468 // Now do the actual transformations, and start with creating the step value. 2469 Value *Step = CreateStepValue(ID.getStep()); 2470 if (VF.isZero() || VF.isScalar()) { 2471 Value *ScalarIV = CreateScalarIV(Step); 2472 CreateSplatIV(ScalarIV, Step); 2473 return; 2474 } 2475 2476 // Determine if we want a scalar version of the induction variable. This is 2477 // true if the induction variable itself is not widened, or if it has at 2478 // least one user in the loop that is not widened. 2479 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2480 if (!NeedsScalarIV) { 2481 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2482 State); 2483 return; 2484 } 2485 2486 // Try to create a new independent vector induction variable. If we can't 2487 // create the phi node, we will splat the scalar induction variable in each 2488 // loop iteration. 2489 if (!shouldScalarizeInstruction(EntryVal)) { 2490 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2491 State); 2492 Value *ScalarIV = CreateScalarIV(Step); 2493 // Create scalar steps that can be used by instructions we will later 2494 // scalarize. Note that the addition of the scalar steps will not increase 2495 // the number of instructions in the loop in the common case prior to 2496 // InstCombine. We will be trading one vector extract for each scalar step. 2497 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2498 return; 2499 } 2500 2501 // All IV users are scalar instructions, so only emit a scalar IV, not a 2502 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2503 // predicate used by the masked loads/stores. 2504 Value *ScalarIV = CreateScalarIV(Step); 2505 if (!Cost->isScalarEpilogueAllowed()) 2506 CreateSplatIV(ScalarIV, Step); 2507 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2508 } 2509 2510 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2511 Instruction::BinaryOps BinOp) { 2512 // Create and check the types. 2513 auto *ValVTy = cast<VectorType>(Val->getType()); 2514 ElementCount VLen = ValVTy->getElementCount(); 2515 2516 Type *STy = Val->getType()->getScalarType(); 2517 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2518 "Induction Step must be an integer or FP"); 2519 assert(Step->getType() == STy && "Step has wrong type"); 2520 2521 SmallVector<Constant *, 8> Indices; 2522 2523 // Create a vector of consecutive numbers from zero to VF. 2524 VectorType *InitVecValVTy = ValVTy; 2525 Type *InitVecValSTy = STy; 2526 if (STy->isFloatingPointTy()) { 2527 InitVecValSTy = 2528 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2529 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2530 } 2531 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2532 2533 // Add on StartIdx 2534 Value *StartIdxSplat = Builder.CreateVectorSplat( 2535 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2536 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2537 2538 if (STy->isIntegerTy()) { 2539 Step = Builder.CreateVectorSplat(VLen, Step); 2540 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2541 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2542 // which can be found from the original scalar operations. 2543 Step = Builder.CreateMul(InitVec, Step); 2544 return Builder.CreateAdd(Val, Step, "induction"); 2545 } 2546 2547 // Floating point induction. 2548 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2549 "Binary Opcode should be specified for FP induction"); 2550 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2551 Step = Builder.CreateVectorSplat(VLen, Step); 2552 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2553 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2554 } 2555 2556 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2557 Instruction *EntryVal, 2558 const InductionDescriptor &ID, 2559 VPValue *Def, VPValue *CastDef, 2560 VPTransformState &State) { 2561 // We shouldn't have to build scalar steps if we aren't vectorizing. 2562 assert(VF.isVector() && "VF should be greater than one"); 2563 // Get the value type and ensure it and the step have the same integer type. 2564 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2565 assert(ScalarIVTy == Step->getType() && 2566 "Val and Step should have the same type"); 2567 2568 // We build scalar steps for both integer and floating-point induction 2569 // variables. Here, we determine the kind of arithmetic we will perform. 2570 Instruction::BinaryOps AddOp; 2571 Instruction::BinaryOps MulOp; 2572 if (ScalarIVTy->isIntegerTy()) { 2573 AddOp = Instruction::Add; 2574 MulOp = Instruction::Mul; 2575 } else { 2576 AddOp = ID.getInductionOpcode(); 2577 MulOp = Instruction::FMul; 2578 } 2579 2580 // Determine the number of scalars we need to generate for each unroll 2581 // iteration. If EntryVal is uniform, we only need to generate the first 2582 // lane. Otherwise, we generate all VF values. 2583 bool IsUniform = 2584 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2585 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2586 // Compute the scalar steps and save the results in State. 2587 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2588 ScalarIVTy->getScalarSizeInBits()); 2589 Type *VecIVTy = nullptr; 2590 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2591 if (!IsUniform && VF.isScalable()) { 2592 VecIVTy = VectorType::get(ScalarIVTy, VF); 2593 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2594 SplatStep = Builder.CreateVectorSplat(VF, Step); 2595 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2596 } 2597 2598 for (unsigned Part = 0; Part < UF; ++Part) { 2599 Value *StartIdx0 = 2600 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2601 2602 if (!IsUniform && VF.isScalable()) { 2603 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2604 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2605 if (ScalarIVTy->isFloatingPointTy()) 2606 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2607 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2608 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2609 State.set(Def, Add, Part); 2610 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2611 Part); 2612 // It's useful to record the lane values too for the known minimum number 2613 // of elements so we do those below. This improves the code quality when 2614 // trying to extract the first element, for example. 2615 } 2616 2617 if (ScalarIVTy->isFloatingPointTy()) 2618 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2619 2620 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2621 Value *StartIdx = Builder.CreateBinOp( 2622 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2623 // The step returned by `createStepForVF` is a runtime-evaluated value 2624 // when VF is scalable. Otherwise, it should be folded into a Constant. 2625 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2626 "Expected StartIdx to be folded to a constant when VF is not " 2627 "scalable"); 2628 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2629 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2630 State.set(Def, Add, VPIteration(Part, Lane)); 2631 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2632 Part, Lane); 2633 } 2634 } 2635 } 2636 2637 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2638 const VPIteration &Instance, 2639 VPTransformState &State) { 2640 Value *ScalarInst = State.get(Def, Instance); 2641 Value *VectorValue = State.get(Def, Instance.Part); 2642 VectorValue = Builder.CreateInsertElement( 2643 VectorValue, ScalarInst, 2644 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2645 State.set(Def, VectorValue, Instance.Part); 2646 } 2647 2648 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2649 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2650 return Builder.CreateVectorReverse(Vec, "reverse"); 2651 } 2652 2653 // Return whether we allow using masked interleave-groups (for dealing with 2654 // strided loads/stores that reside in predicated blocks, or for dealing 2655 // with gaps). 2656 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2657 // If an override option has been passed in for interleaved accesses, use it. 2658 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2659 return EnableMaskedInterleavedMemAccesses; 2660 2661 return TTI.enableMaskedInterleavedAccessVectorization(); 2662 } 2663 2664 // Try to vectorize the interleave group that \p Instr belongs to. 2665 // 2666 // E.g. Translate following interleaved load group (factor = 3): 2667 // for (i = 0; i < N; i+=3) { 2668 // R = Pic[i]; // Member of index 0 2669 // G = Pic[i+1]; // Member of index 1 2670 // B = Pic[i+2]; // Member of index 2 2671 // ... // do something to R, G, B 2672 // } 2673 // To: 2674 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2675 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2676 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2677 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2678 // 2679 // Or translate following interleaved store group (factor = 3): 2680 // for (i = 0; i < N; i+=3) { 2681 // ... do something to R, G, B 2682 // Pic[i] = R; // Member of index 0 2683 // Pic[i+1] = G; // Member of index 1 2684 // Pic[i+2] = B; // Member of index 2 2685 // } 2686 // To: 2687 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2688 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2689 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2690 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2691 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2692 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2693 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2694 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2695 VPValue *BlockInMask) { 2696 Instruction *Instr = Group->getInsertPos(); 2697 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2698 2699 // Prepare for the vector type of the interleaved load/store. 2700 Type *ScalarTy = getLoadStoreType(Instr); 2701 unsigned InterleaveFactor = Group->getFactor(); 2702 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2703 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2704 2705 // Prepare for the new pointers. 2706 SmallVector<Value *, 2> AddrParts; 2707 unsigned Index = Group->getIndex(Instr); 2708 2709 // TODO: extend the masked interleaved-group support to reversed access. 2710 assert((!BlockInMask || !Group->isReverse()) && 2711 "Reversed masked interleave-group not supported."); 2712 2713 // If the group is reverse, adjust the index to refer to the last vector lane 2714 // instead of the first. We adjust the index from the first vector lane, 2715 // rather than directly getting the pointer for lane VF - 1, because the 2716 // pointer operand of the interleaved access is supposed to be uniform. For 2717 // uniform instructions, we're only required to generate a value for the 2718 // first vector lane in each unroll iteration. 2719 if (Group->isReverse()) 2720 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2721 2722 for (unsigned Part = 0; Part < UF; Part++) { 2723 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2724 setDebugLocFromInst(AddrPart); 2725 2726 // Notice current instruction could be any index. Need to adjust the address 2727 // to the member of index 0. 2728 // 2729 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2730 // b = A[i]; // Member of index 0 2731 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2732 // 2733 // E.g. A[i+1] = a; // Member of index 1 2734 // A[i] = b; // Member of index 0 2735 // A[i+2] = c; // Member of index 2 (Current instruction) 2736 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2737 2738 bool InBounds = false; 2739 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2740 InBounds = gep->isInBounds(); 2741 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2742 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2743 2744 // Cast to the vector pointer type. 2745 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2746 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2747 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2748 } 2749 2750 setDebugLocFromInst(Instr); 2751 Value *PoisonVec = PoisonValue::get(VecTy); 2752 2753 Value *MaskForGaps = nullptr; 2754 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2755 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2756 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2757 } 2758 2759 // Vectorize the interleaved load group. 2760 if (isa<LoadInst>(Instr)) { 2761 // For each unroll part, create a wide load for the group. 2762 SmallVector<Value *, 2> NewLoads; 2763 for (unsigned Part = 0; Part < UF; Part++) { 2764 Instruction *NewLoad; 2765 if (BlockInMask || MaskForGaps) { 2766 assert(useMaskedInterleavedAccesses(*TTI) && 2767 "masked interleaved groups are not allowed."); 2768 Value *GroupMask = MaskForGaps; 2769 if (BlockInMask) { 2770 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2771 Value *ShuffledMask = Builder.CreateShuffleVector( 2772 BlockInMaskPart, 2773 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2774 "interleaved.mask"); 2775 GroupMask = MaskForGaps 2776 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2777 MaskForGaps) 2778 : ShuffledMask; 2779 } 2780 NewLoad = 2781 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2782 GroupMask, PoisonVec, "wide.masked.vec"); 2783 } 2784 else 2785 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2786 Group->getAlign(), "wide.vec"); 2787 Group->addMetadata(NewLoad); 2788 NewLoads.push_back(NewLoad); 2789 } 2790 2791 // For each member in the group, shuffle out the appropriate data from the 2792 // wide loads. 2793 unsigned J = 0; 2794 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2795 Instruction *Member = Group->getMember(I); 2796 2797 // Skip the gaps in the group. 2798 if (!Member) 2799 continue; 2800 2801 auto StrideMask = 2802 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2803 for (unsigned Part = 0; Part < UF; Part++) { 2804 Value *StridedVec = Builder.CreateShuffleVector( 2805 NewLoads[Part], StrideMask, "strided.vec"); 2806 2807 // If this member has different type, cast the result type. 2808 if (Member->getType() != ScalarTy) { 2809 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2810 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2811 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2812 } 2813 2814 if (Group->isReverse()) 2815 StridedVec = reverseVector(StridedVec); 2816 2817 State.set(VPDefs[J], StridedVec, Part); 2818 } 2819 ++J; 2820 } 2821 return; 2822 } 2823 2824 // The sub vector type for current instruction. 2825 auto *SubVT = VectorType::get(ScalarTy, VF); 2826 2827 // Vectorize the interleaved store group. 2828 for (unsigned Part = 0; Part < UF; Part++) { 2829 // Collect the stored vector from each member. 2830 SmallVector<Value *, 4> StoredVecs; 2831 for (unsigned i = 0; i < InterleaveFactor; i++) { 2832 // Interleaved store group doesn't allow a gap, so each index has a member 2833 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2834 2835 Value *StoredVec = State.get(StoredValues[i], Part); 2836 2837 if (Group->isReverse()) 2838 StoredVec = reverseVector(StoredVec); 2839 2840 // If this member has different type, cast it to a unified type. 2841 2842 if (StoredVec->getType() != SubVT) 2843 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2844 2845 StoredVecs.push_back(StoredVec); 2846 } 2847 2848 // Concatenate all vectors into a wide vector. 2849 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2850 2851 // Interleave the elements in the wide vector. 2852 Value *IVec = Builder.CreateShuffleVector( 2853 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2854 "interleaved.vec"); 2855 2856 Instruction *NewStoreInstr; 2857 if (BlockInMask) { 2858 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2859 Value *ShuffledMask = Builder.CreateShuffleVector( 2860 BlockInMaskPart, 2861 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2862 "interleaved.mask"); 2863 NewStoreInstr = Builder.CreateMaskedStore( 2864 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2865 } 2866 else 2867 NewStoreInstr = 2868 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2869 2870 Group->addMetadata(NewStoreInstr); 2871 } 2872 } 2873 2874 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2875 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2876 VPValue *StoredValue, VPValue *BlockInMask) { 2877 // Attempt to issue a wide load. 2878 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2879 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2880 2881 assert((LI || SI) && "Invalid Load/Store instruction"); 2882 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2883 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2884 2885 LoopVectorizationCostModel::InstWidening Decision = 2886 Cost->getWideningDecision(Instr, VF); 2887 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2888 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2889 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2890 "CM decision is not to widen the memory instruction"); 2891 2892 Type *ScalarDataTy = getLoadStoreType(Instr); 2893 2894 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2895 const Align Alignment = getLoadStoreAlignment(Instr); 2896 2897 // Determine if the pointer operand of the access is either consecutive or 2898 // reverse consecutive. 2899 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2900 bool ConsecutiveStride = 2901 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2902 bool CreateGatherScatter = 2903 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2904 2905 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2906 // gather/scatter. Otherwise Decision should have been to Scalarize. 2907 assert((ConsecutiveStride || CreateGatherScatter) && 2908 "The instruction should be scalarized"); 2909 (void)ConsecutiveStride; 2910 2911 VectorParts BlockInMaskParts(UF); 2912 bool isMaskRequired = BlockInMask; 2913 if (isMaskRequired) 2914 for (unsigned Part = 0; Part < UF; ++Part) 2915 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2916 2917 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2918 // Calculate the pointer for the specific unroll-part. 2919 GetElementPtrInst *PartPtr = nullptr; 2920 2921 bool InBounds = false; 2922 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2923 InBounds = gep->isInBounds(); 2924 if (Reverse) { 2925 // If the address is consecutive but reversed, then the 2926 // wide store needs to start at the last vector element. 2927 // RunTimeVF = VScale * VF.getKnownMinValue() 2928 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2929 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2930 // NumElt = -Part * RunTimeVF 2931 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2932 // LastLane = 1 - RunTimeVF 2933 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2934 PartPtr = 2935 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2936 PartPtr->setIsInBounds(InBounds); 2937 PartPtr = cast<GetElementPtrInst>( 2938 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2939 PartPtr->setIsInBounds(InBounds); 2940 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2941 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2942 } else { 2943 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2944 PartPtr = cast<GetElementPtrInst>( 2945 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2946 PartPtr->setIsInBounds(InBounds); 2947 } 2948 2949 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2950 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2951 }; 2952 2953 // Handle Stores: 2954 if (SI) { 2955 setDebugLocFromInst(SI); 2956 2957 for (unsigned Part = 0; Part < UF; ++Part) { 2958 Instruction *NewSI = nullptr; 2959 Value *StoredVal = State.get(StoredValue, Part); 2960 if (CreateGatherScatter) { 2961 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2962 Value *VectorGep = State.get(Addr, Part); 2963 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2964 MaskPart); 2965 } else { 2966 if (Reverse) { 2967 // If we store to reverse consecutive memory locations, then we need 2968 // to reverse the order of elements in the stored value. 2969 StoredVal = reverseVector(StoredVal); 2970 // We don't want to update the value in the map as it might be used in 2971 // another expression. So don't call resetVectorValue(StoredVal). 2972 } 2973 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2974 if (isMaskRequired) 2975 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2976 BlockInMaskParts[Part]); 2977 else 2978 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2979 } 2980 addMetadata(NewSI, SI); 2981 } 2982 return; 2983 } 2984 2985 // Handle loads. 2986 assert(LI && "Must have a load instruction"); 2987 setDebugLocFromInst(LI); 2988 for (unsigned Part = 0; Part < UF; ++Part) { 2989 Value *NewLI; 2990 if (CreateGatherScatter) { 2991 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2992 Value *VectorGep = State.get(Addr, Part); 2993 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2994 nullptr, "wide.masked.gather"); 2995 addMetadata(NewLI, LI); 2996 } else { 2997 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2998 if (isMaskRequired) 2999 NewLI = Builder.CreateMaskedLoad( 3000 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 3001 "wide.masked.load"); 3002 else 3003 NewLI = 3004 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3005 3006 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3007 addMetadata(NewLI, LI); 3008 if (Reverse) 3009 NewLI = reverseVector(NewLI); 3010 } 3011 3012 State.set(Def, NewLI, Part); 3013 } 3014 } 3015 3016 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3017 VPUser &User, 3018 const VPIteration &Instance, 3019 bool IfPredicateInstr, 3020 VPTransformState &State) { 3021 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3022 3023 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3024 // the first lane and part. 3025 if (isa<NoAliasScopeDeclInst>(Instr)) 3026 if (!Instance.isFirstIteration()) 3027 return; 3028 3029 setDebugLocFromInst(Instr); 3030 3031 // Does this instruction return a value ? 3032 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3033 3034 Instruction *Cloned = Instr->clone(); 3035 if (!IsVoidRetTy) 3036 Cloned->setName(Instr->getName() + ".cloned"); 3037 3038 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3039 Builder.GetInsertPoint()); 3040 // Replace the operands of the cloned instructions with their scalar 3041 // equivalents in the new loop. 3042 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3043 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3044 auto InputInstance = Instance; 3045 if (!Operand || !OrigLoop->contains(Operand) || 3046 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3047 InputInstance.Lane = VPLane::getFirstLane(); 3048 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3049 Cloned->setOperand(op, NewOp); 3050 } 3051 addNewMetadata(Cloned, Instr); 3052 3053 // Place the cloned scalar in the new loop. 3054 Builder.Insert(Cloned); 3055 3056 State.set(Def, Cloned, Instance); 3057 3058 // If we just cloned a new assumption, add it the assumption cache. 3059 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3060 AC->registerAssumption(II); 3061 3062 // End if-block. 3063 if (IfPredicateInstr) 3064 PredicatedInstructions.push_back(Cloned); 3065 } 3066 3067 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3068 Value *End, Value *Step, 3069 Instruction *DL) { 3070 BasicBlock *Header = L->getHeader(); 3071 BasicBlock *Latch = L->getLoopLatch(); 3072 // As we're just creating this loop, it's possible no latch exists 3073 // yet. If so, use the header as this will be a single block loop. 3074 if (!Latch) 3075 Latch = Header; 3076 3077 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3078 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3079 setDebugLocFromInst(OldInst, &B); 3080 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3081 3082 B.SetInsertPoint(Latch->getTerminator()); 3083 setDebugLocFromInst(OldInst, &B); 3084 3085 // Create i+1 and fill the PHINode. 3086 // 3087 // If the tail is not folded, we know that End - Start >= Step (either 3088 // statically or through the minimum iteration checks). We also know that both 3089 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3090 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3091 // overflows and we can mark the induction increment as NUW. 3092 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3093 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3094 Induction->addIncoming(Start, L->getLoopPreheader()); 3095 Induction->addIncoming(Next, Latch); 3096 // Create the compare. 3097 Value *ICmp = B.CreateICmpEQ(Next, End); 3098 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3099 3100 // Now we have two terminators. Remove the old one from the block. 3101 Latch->getTerminator()->eraseFromParent(); 3102 3103 return Induction; 3104 } 3105 3106 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3107 if (TripCount) 3108 return TripCount; 3109 3110 assert(L && "Create Trip Count for null loop."); 3111 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3112 // Find the loop boundaries. 3113 ScalarEvolution *SE = PSE.getSE(); 3114 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3115 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3116 "Invalid loop count"); 3117 3118 Type *IdxTy = Legal->getWidestInductionType(); 3119 assert(IdxTy && "No type for induction"); 3120 3121 // The exit count might have the type of i64 while the phi is i32. This can 3122 // happen if we have an induction variable that is sign extended before the 3123 // compare. The only way that we get a backedge taken count is that the 3124 // induction variable was signed and as such will not overflow. In such a case 3125 // truncation is legal. 3126 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3127 IdxTy->getPrimitiveSizeInBits()) 3128 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3129 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3130 3131 // Get the total trip count from the count by adding 1. 3132 const SCEV *ExitCount = SE->getAddExpr( 3133 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3134 3135 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3136 3137 // Expand the trip count and place the new instructions in the preheader. 3138 // Notice that the pre-header does not change, only the loop body. 3139 SCEVExpander Exp(*SE, DL, "induction"); 3140 3141 // Count holds the overall loop count (N). 3142 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3143 L->getLoopPreheader()->getTerminator()); 3144 3145 if (TripCount->getType()->isPointerTy()) 3146 TripCount = 3147 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3148 L->getLoopPreheader()->getTerminator()); 3149 3150 return TripCount; 3151 } 3152 3153 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3154 if (VectorTripCount) 3155 return VectorTripCount; 3156 3157 Value *TC = getOrCreateTripCount(L); 3158 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3159 3160 Type *Ty = TC->getType(); 3161 // This is where we can make the step a runtime constant. 3162 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3163 3164 // If the tail is to be folded by masking, round the number of iterations N 3165 // up to a multiple of Step instead of rounding down. This is done by first 3166 // adding Step-1 and then rounding down. Note that it's ok if this addition 3167 // overflows: the vector induction variable will eventually wrap to zero given 3168 // that it starts at zero and its Step is a power of two; the loop will then 3169 // exit, with the last early-exit vector comparison also producing all-true. 3170 if (Cost->foldTailByMasking()) { 3171 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3172 "VF*UF must be a power of 2 when folding tail by masking"); 3173 assert(!VF.isScalable() && 3174 "Tail folding not yet supported for scalable vectors"); 3175 TC = Builder.CreateAdd( 3176 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3177 } 3178 3179 // Now we need to generate the expression for the part of the loop that the 3180 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3181 // iterations are not required for correctness, or N - Step, otherwise. Step 3182 // is equal to the vectorization factor (number of SIMD elements) times the 3183 // unroll factor (number of SIMD instructions). 3184 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3185 3186 // There are cases where we *must* run at least one iteration in the remainder 3187 // loop. See the cost model for when this can happen. If the step evenly 3188 // divides the trip count, we set the remainder to be equal to the step. If 3189 // the step does not evenly divide the trip count, no adjustment is necessary 3190 // since there will already be scalar iterations. Note that the minimum 3191 // iterations check ensures that N >= Step. 3192 if (Cost->requiresScalarEpilogue(VF)) { 3193 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3194 R = Builder.CreateSelect(IsZero, Step, R); 3195 } 3196 3197 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3198 3199 return VectorTripCount; 3200 } 3201 3202 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3203 const DataLayout &DL) { 3204 // Verify that V is a vector type with same number of elements as DstVTy. 3205 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3206 unsigned VF = DstFVTy->getNumElements(); 3207 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3208 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3209 Type *SrcElemTy = SrcVecTy->getElementType(); 3210 Type *DstElemTy = DstFVTy->getElementType(); 3211 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3212 "Vector elements must have same size"); 3213 3214 // Do a direct cast if element types are castable. 3215 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3216 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3217 } 3218 // V cannot be directly casted to desired vector type. 3219 // May happen when V is a floating point vector but DstVTy is a vector of 3220 // pointers or vice-versa. Handle this using a two-step bitcast using an 3221 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3222 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3223 "Only one type should be a pointer type"); 3224 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3225 "Only one type should be a floating point type"); 3226 Type *IntTy = 3227 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3228 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3229 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3230 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3231 } 3232 3233 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3234 BasicBlock *Bypass) { 3235 Value *Count = getOrCreateTripCount(L); 3236 // Reuse existing vector loop preheader for TC checks. 3237 // Note that new preheader block is generated for vector loop. 3238 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3239 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3240 3241 // Generate code to check if the loop's trip count is less than VF * UF, or 3242 // equal to it in case a scalar epilogue is required; this implies that the 3243 // vector trip count is zero. This check also covers the case where adding one 3244 // to the backedge-taken count overflowed leading to an incorrect trip count 3245 // of zero. In this case we will also jump to the scalar loop. 3246 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3247 : ICmpInst::ICMP_ULT; 3248 3249 // If tail is to be folded, vector loop takes care of all iterations. 3250 Value *CheckMinIters = Builder.getFalse(); 3251 if (!Cost->foldTailByMasking()) { 3252 Value *Step = 3253 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3254 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3255 } 3256 // Create new preheader for vector loop. 3257 LoopVectorPreHeader = 3258 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3259 "vector.ph"); 3260 3261 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3262 DT->getNode(Bypass)->getIDom()) && 3263 "TC check is expected to dominate Bypass"); 3264 3265 // Update dominator for Bypass & LoopExit. 3266 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3267 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3268 3269 ReplaceInstWithInst( 3270 TCCheckBlock->getTerminator(), 3271 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3272 LoopBypassBlocks.push_back(TCCheckBlock); 3273 } 3274 3275 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3276 3277 BasicBlock *const SCEVCheckBlock = 3278 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3279 if (!SCEVCheckBlock) 3280 return nullptr; 3281 3282 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3283 (OptForSizeBasedOnProfile && 3284 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3285 "Cannot SCEV check stride or overflow when optimizing for size"); 3286 3287 3288 // Update dominator only if this is first RT check. 3289 if (LoopBypassBlocks.empty()) { 3290 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3291 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3292 } 3293 3294 LoopBypassBlocks.push_back(SCEVCheckBlock); 3295 AddedSafetyChecks = true; 3296 return SCEVCheckBlock; 3297 } 3298 3299 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3300 BasicBlock *Bypass) { 3301 // VPlan-native path does not do any analysis for runtime checks currently. 3302 if (EnableVPlanNativePath) 3303 return nullptr; 3304 3305 BasicBlock *const MemCheckBlock = 3306 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3307 3308 // Check if we generated code that checks in runtime if arrays overlap. We put 3309 // the checks into a separate block to make the more common case of few 3310 // elements faster. 3311 if (!MemCheckBlock) 3312 return nullptr; 3313 3314 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3315 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3316 "Cannot emit memory checks when optimizing for size, unless forced " 3317 "to vectorize."); 3318 ORE->emit([&]() { 3319 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3320 L->getStartLoc(), L->getHeader()) 3321 << "Code-size may be reduced by not forcing " 3322 "vectorization, or by source-code modifications " 3323 "eliminating the need for runtime checks " 3324 "(e.g., adding 'restrict')."; 3325 }); 3326 } 3327 3328 LoopBypassBlocks.push_back(MemCheckBlock); 3329 3330 AddedSafetyChecks = true; 3331 3332 // We currently don't use LoopVersioning for the actual loop cloning but we 3333 // still use it to add the noalias metadata. 3334 LVer = std::make_unique<LoopVersioning>( 3335 *Legal->getLAI(), 3336 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3337 DT, PSE.getSE()); 3338 LVer->prepareNoAliasMetadata(); 3339 return MemCheckBlock; 3340 } 3341 3342 Value *InnerLoopVectorizer::emitTransformedIndex( 3343 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3344 const InductionDescriptor &ID) const { 3345 3346 SCEVExpander Exp(*SE, DL, "induction"); 3347 auto Step = ID.getStep(); 3348 auto StartValue = ID.getStartValue(); 3349 assert(Index->getType()->getScalarType() == Step->getType() && 3350 "Index scalar type does not match StepValue type"); 3351 3352 // Note: the IR at this point is broken. We cannot use SE to create any new 3353 // SCEV and then expand it, hoping that SCEV's simplification will give us 3354 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3355 // lead to various SCEV crashes. So all we can do is to use builder and rely 3356 // on InstCombine for future simplifications. Here we handle some trivial 3357 // cases only. 3358 auto CreateAdd = [&B](Value *X, Value *Y) { 3359 assert(X->getType() == Y->getType() && "Types don't match!"); 3360 if (auto *CX = dyn_cast<ConstantInt>(X)) 3361 if (CX->isZero()) 3362 return Y; 3363 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3364 if (CY->isZero()) 3365 return X; 3366 return B.CreateAdd(X, Y); 3367 }; 3368 3369 // We allow X to be a vector type, in which case Y will potentially be 3370 // splatted into a vector with the same element count. 3371 auto CreateMul = [&B](Value *X, Value *Y) { 3372 assert(X->getType()->getScalarType() == Y->getType() && 3373 "Types don't match!"); 3374 if (auto *CX = dyn_cast<ConstantInt>(X)) 3375 if (CX->isOne()) 3376 return Y; 3377 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3378 if (CY->isOne()) 3379 return X; 3380 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3381 if (XVTy && !isa<VectorType>(Y->getType())) 3382 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3383 return B.CreateMul(X, Y); 3384 }; 3385 3386 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3387 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3388 // the DomTree is not kept up-to-date for additional blocks generated in the 3389 // vector loop. By using the header as insertion point, we guarantee that the 3390 // expanded instructions dominate all their uses. 3391 auto GetInsertPoint = [this, &B]() { 3392 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3393 if (InsertBB != LoopVectorBody && 3394 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3395 return LoopVectorBody->getTerminator(); 3396 return &*B.GetInsertPoint(); 3397 }; 3398 3399 switch (ID.getKind()) { 3400 case InductionDescriptor::IK_IntInduction: { 3401 assert(!isa<VectorType>(Index->getType()) && 3402 "Vector indices not supported for integer inductions yet"); 3403 assert(Index->getType() == StartValue->getType() && 3404 "Index type does not match StartValue type"); 3405 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3406 return B.CreateSub(StartValue, Index); 3407 auto *Offset = CreateMul( 3408 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3409 return CreateAdd(StartValue, Offset); 3410 } 3411 case InductionDescriptor::IK_PtrInduction: { 3412 assert(isa<SCEVConstant>(Step) && 3413 "Expected constant step for pointer induction"); 3414 return B.CreateGEP( 3415 StartValue->getType()->getPointerElementType(), StartValue, 3416 CreateMul(Index, 3417 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3418 GetInsertPoint()))); 3419 } 3420 case InductionDescriptor::IK_FpInduction: { 3421 assert(!isa<VectorType>(Index->getType()) && 3422 "Vector indices not supported for FP inductions yet"); 3423 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3424 auto InductionBinOp = ID.getInductionBinOp(); 3425 assert(InductionBinOp && 3426 (InductionBinOp->getOpcode() == Instruction::FAdd || 3427 InductionBinOp->getOpcode() == Instruction::FSub) && 3428 "Original bin op should be defined for FP induction"); 3429 3430 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3431 Value *MulExp = B.CreateFMul(StepValue, Index); 3432 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3433 "induction"); 3434 } 3435 case InductionDescriptor::IK_NoInduction: 3436 return nullptr; 3437 } 3438 llvm_unreachable("invalid enum"); 3439 } 3440 3441 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3442 LoopScalarBody = OrigLoop->getHeader(); 3443 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3444 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3445 assert(LoopExitBlock && "Must have an exit block"); 3446 assert(LoopVectorPreHeader && "Invalid loop structure"); 3447 3448 LoopMiddleBlock = 3449 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3450 LI, nullptr, Twine(Prefix) + "middle.block"); 3451 LoopScalarPreHeader = 3452 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3453 nullptr, Twine(Prefix) + "scalar.ph"); 3454 3455 // Set up branch from middle block to the exit and scalar preheader blocks. 3456 // completeLoopSkeleton will update the condition to use an iteration check, 3457 // if required to decide whether to execute the remainder. 3458 BranchInst *BrInst = 3459 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3460 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3461 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3462 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3463 3464 // We intentionally don't let SplitBlock to update LoopInfo since 3465 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3466 // LoopVectorBody is explicitly added to the correct place few lines later. 3467 LoopVectorBody = 3468 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3469 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3470 3471 // Update dominator for loop exit. 3472 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3473 3474 // Create and register the new vector loop. 3475 Loop *Lp = LI->AllocateLoop(); 3476 Loop *ParentLoop = OrigLoop->getParentLoop(); 3477 3478 // Insert the new loop into the loop nest and register the new basic blocks 3479 // before calling any utilities such as SCEV that require valid LoopInfo. 3480 if (ParentLoop) { 3481 ParentLoop->addChildLoop(Lp); 3482 } else { 3483 LI->addTopLevelLoop(Lp); 3484 } 3485 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3486 return Lp; 3487 } 3488 3489 void InnerLoopVectorizer::createInductionResumeValues( 3490 Loop *L, Value *VectorTripCount, 3491 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3492 assert(VectorTripCount && L && "Expected valid arguments"); 3493 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3494 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3495 "Inconsistent information about additional bypass."); 3496 // We are going to resume the execution of the scalar loop. 3497 // Go over all of the induction variables that we found and fix the 3498 // PHIs that are left in the scalar version of the loop. 3499 // The starting values of PHI nodes depend on the counter of the last 3500 // iteration in the vectorized loop. 3501 // If we come from a bypass edge then we need to start from the original 3502 // start value. 3503 for (auto &InductionEntry : Legal->getInductionVars()) { 3504 PHINode *OrigPhi = InductionEntry.first; 3505 InductionDescriptor II = InductionEntry.second; 3506 3507 // Create phi nodes to merge from the backedge-taken check block. 3508 PHINode *BCResumeVal = 3509 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3510 LoopScalarPreHeader->getTerminator()); 3511 // Copy original phi DL over to the new one. 3512 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3513 Value *&EndValue = IVEndValues[OrigPhi]; 3514 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3515 if (OrigPhi == OldInduction) { 3516 // We know what the end value is. 3517 EndValue = VectorTripCount; 3518 } else { 3519 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3520 3521 // Fast-math-flags propagate from the original induction instruction. 3522 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3523 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3524 3525 Type *StepType = II.getStep()->getType(); 3526 Instruction::CastOps CastOp = 3527 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3528 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3529 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3530 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3531 EndValue->setName("ind.end"); 3532 3533 // Compute the end value for the additional bypass (if applicable). 3534 if (AdditionalBypass.first) { 3535 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3536 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3537 StepType, true); 3538 CRD = 3539 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3540 EndValueFromAdditionalBypass = 3541 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3542 EndValueFromAdditionalBypass->setName("ind.end"); 3543 } 3544 } 3545 // The new PHI merges the original incoming value, in case of a bypass, 3546 // or the value at the end of the vectorized loop. 3547 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3548 3549 // Fix the scalar body counter (PHI node). 3550 // The old induction's phi node in the scalar body needs the truncated 3551 // value. 3552 for (BasicBlock *BB : LoopBypassBlocks) 3553 BCResumeVal->addIncoming(II.getStartValue(), BB); 3554 3555 if (AdditionalBypass.first) 3556 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3557 EndValueFromAdditionalBypass); 3558 3559 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3560 } 3561 } 3562 3563 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3564 MDNode *OrigLoopID) { 3565 assert(L && "Expected valid loop."); 3566 3567 // The trip counts should be cached by now. 3568 Value *Count = getOrCreateTripCount(L); 3569 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3570 3571 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3572 3573 // Add a check in the middle block to see if we have completed 3574 // all of the iterations in the first vector loop. 3575 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3576 // If tail is to be folded, we know we don't need to run the remainder. 3577 if (!Cost->foldTailByMasking()) { 3578 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3579 Count, VectorTripCount, "cmp.n", 3580 LoopMiddleBlock->getTerminator()); 3581 3582 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3583 // of the corresponding compare because they may have ended up with 3584 // different line numbers and we want to avoid awkward line stepping while 3585 // debugging. Eg. if the compare has got a line number inside the loop. 3586 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3587 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3588 } 3589 3590 // Get ready to start creating new instructions into the vectorized body. 3591 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3592 "Inconsistent vector loop preheader"); 3593 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3594 3595 Optional<MDNode *> VectorizedLoopID = 3596 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3597 LLVMLoopVectorizeFollowupVectorized}); 3598 if (VectorizedLoopID.hasValue()) { 3599 L->setLoopID(VectorizedLoopID.getValue()); 3600 3601 // Do not setAlreadyVectorized if loop attributes have been defined 3602 // explicitly. 3603 return LoopVectorPreHeader; 3604 } 3605 3606 // Keep all loop hints from the original loop on the vector loop (we'll 3607 // replace the vectorizer-specific hints below). 3608 if (MDNode *LID = OrigLoop->getLoopID()) 3609 L->setLoopID(LID); 3610 3611 LoopVectorizeHints Hints(L, true, *ORE); 3612 Hints.setAlreadyVectorized(); 3613 3614 #ifdef EXPENSIVE_CHECKS 3615 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3616 LI->verify(*DT); 3617 #endif 3618 3619 return LoopVectorPreHeader; 3620 } 3621 3622 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3623 /* 3624 In this function we generate a new loop. The new loop will contain 3625 the vectorized instructions while the old loop will continue to run the 3626 scalar remainder. 3627 3628 [ ] <-- loop iteration number check. 3629 / | 3630 / v 3631 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3632 | / | 3633 | / v 3634 || [ ] <-- vector pre header. 3635 |/ | 3636 | v 3637 | [ ] \ 3638 | [ ]_| <-- vector loop. 3639 | | 3640 | v 3641 | -[ ] <--- middle-block. 3642 | / | 3643 | / v 3644 -|- >[ ] <--- new preheader. 3645 | | 3646 | v 3647 | [ ] \ 3648 | [ ]_| <-- old scalar loop to handle remainder. 3649 \ | 3650 \ v 3651 >[ ] <-- exit block. 3652 ... 3653 */ 3654 3655 // Get the metadata of the original loop before it gets modified. 3656 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3657 3658 // Workaround! Compute the trip count of the original loop and cache it 3659 // before we start modifying the CFG. This code has a systemic problem 3660 // wherein it tries to run analysis over partially constructed IR; this is 3661 // wrong, and not simply for SCEV. The trip count of the original loop 3662 // simply happens to be prone to hitting this in practice. In theory, we 3663 // can hit the same issue for any SCEV, or ValueTracking query done during 3664 // mutation. See PR49900. 3665 getOrCreateTripCount(OrigLoop); 3666 3667 // Create an empty vector loop, and prepare basic blocks for the runtime 3668 // checks. 3669 Loop *Lp = createVectorLoopSkeleton(""); 3670 3671 // Now, compare the new count to zero. If it is zero skip the vector loop and 3672 // jump to the scalar loop. This check also covers the case where the 3673 // backedge-taken count is uint##_max: adding one to it will overflow leading 3674 // to an incorrect trip count of zero. In this (rare) case we will also jump 3675 // to the scalar loop. 3676 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3677 3678 // Generate the code to check any assumptions that we've made for SCEV 3679 // expressions. 3680 emitSCEVChecks(Lp, LoopScalarPreHeader); 3681 3682 // Generate the code that checks in runtime if arrays overlap. We put the 3683 // checks into a separate block to make the more common case of few elements 3684 // faster. 3685 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3686 3687 // Some loops have a single integer induction variable, while other loops 3688 // don't. One example is c++ iterators that often have multiple pointer 3689 // induction variables. In the code below we also support a case where we 3690 // don't have a single induction variable. 3691 // 3692 // We try to obtain an induction variable from the original loop as hard 3693 // as possible. However if we don't find one that: 3694 // - is an integer 3695 // - counts from zero, stepping by one 3696 // - is the size of the widest induction variable type 3697 // then we create a new one. 3698 OldInduction = Legal->getPrimaryInduction(); 3699 Type *IdxTy = Legal->getWidestInductionType(); 3700 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3701 // The loop step is equal to the vectorization factor (num of SIMD elements) 3702 // times the unroll factor (num of SIMD instructions). 3703 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3704 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3705 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3706 Induction = 3707 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3708 getDebugLocFromInstOrOperands(OldInduction)); 3709 3710 // Emit phis for the new starting index of the scalar loop. 3711 createInductionResumeValues(Lp, CountRoundDown); 3712 3713 return completeLoopSkeleton(Lp, OrigLoopID); 3714 } 3715 3716 // Fix up external users of the induction variable. At this point, we are 3717 // in LCSSA form, with all external PHIs that use the IV having one input value, 3718 // coming from the remainder loop. We need those PHIs to also have a correct 3719 // value for the IV when arriving directly from the middle block. 3720 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3721 const InductionDescriptor &II, 3722 Value *CountRoundDown, Value *EndValue, 3723 BasicBlock *MiddleBlock) { 3724 // There are two kinds of external IV usages - those that use the value 3725 // computed in the last iteration (the PHI) and those that use the penultimate 3726 // value (the value that feeds into the phi from the loop latch). 3727 // We allow both, but they, obviously, have different values. 3728 3729 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3730 3731 DenseMap<Value *, Value *> MissingVals; 3732 3733 // An external user of the last iteration's value should see the value that 3734 // the remainder loop uses to initialize its own IV. 3735 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3736 for (User *U : PostInc->users()) { 3737 Instruction *UI = cast<Instruction>(U); 3738 if (!OrigLoop->contains(UI)) { 3739 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3740 MissingVals[UI] = EndValue; 3741 } 3742 } 3743 3744 // An external user of the penultimate value need to see EndValue - Step. 3745 // The simplest way to get this is to recompute it from the constituent SCEVs, 3746 // that is Start + (Step * (CRD - 1)). 3747 for (User *U : OrigPhi->users()) { 3748 auto *UI = cast<Instruction>(U); 3749 if (!OrigLoop->contains(UI)) { 3750 const DataLayout &DL = 3751 OrigLoop->getHeader()->getModule()->getDataLayout(); 3752 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3753 3754 IRBuilder<> B(MiddleBlock->getTerminator()); 3755 3756 // Fast-math-flags propagate from the original induction instruction. 3757 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3758 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3759 3760 Value *CountMinusOne = B.CreateSub( 3761 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3762 Value *CMO = 3763 !II.getStep()->getType()->isIntegerTy() 3764 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3765 II.getStep()->getType()) 3766 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3767 CMO->setName("cast.cmo"); 3768 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3769 Escape->setName("ind.escape"); 3770 MissingVals[UI] = Escape; 3771 } 3772 } 3773 3774 for (auto &I : MissingVals) { 3775 PHINode *PHI = cast<PHINode>(I.first); 3776 // One corner case we have to handle is two IVs "chasing" each-other, 3777 // that is %IV2 = phi [...], [ %IV1, %latch ] 3778 // In this case, if IV1 has an external use, we need to avoid adding both 3779 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3780 // don't already have an incoming value for the middle block. 3781 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3782 PHI->addIncoming(I.second, MiddleBlock); 3783 } 3784 } 3785 3786 namespace { 3787 3788 struct CSEDenseMapInfo { 3789 static bool canHandle(const Instruction *I) { 3790 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3791 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3792 } 3793 3794 static inline Instruction *getEmptyKey() { 3795 return DenseMapInfo<Instruction *>::getEmptyKey(); 3796 } 3797 3798 static inline Instruction *getTombstoneKey() { 3799 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3800 } 3801 3802 static unsigned getHashValue(const Instruction *I) { 3803 assert(canHandle(I) && "Unknown instruction!"); 3804 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3805 I->value_op_end())); 3806 } 3807 3808 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3809 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3810 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3811 return LHS == RHS; 3812 return LHS->isIdenticalTo(RHS); 3813 } 3814 }; 3815 3816 } // end anonymous namespace 3817 3818 ///Perform cse of induction variable instructions. 3819 static void cse(BasicBlock *BB) { 3820 // Perform simple cse. 3821 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3822 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3823 Instruction *In = &*I++; 3824 3825 if (!CSEDenseMapInfo::canHandle(In)) 3826 continue; 3827 3828 // Check if we can replace this instruction with any of the 3829 // visited instructions. 3830 if (Instruction *V = CSEMap.lookup(In)) { 3831 In->replaceAllUsesWith(V); 3832 In->eraseFromParent(); 3833 continue; 3834 } 3835 3836 CSEMap[In] = In; 3837 } 3838 } 3839 3840 InstructionCost 3841 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3842 bool &NeedToScalarize) const { 3843 Function *F = CI->getCalledFunction(); 3844 Type *ScalarRetTy = CI->getType(); 3845 SmallVector<Type *, 4> Tys, ScalarTys; 3846 for (auto &ArgOp : CI->arg_operands()) 3847 ScalarTys.push_back(ArgOp->getType()); 3848 3849 // Estimate cost of scalarized vector call. The source operands are assumed 3850 // to be vectors, so we need to extract individual elements from there, 3851 // execute VF scalar calls, and then gather the result into the vector return 3852 // value. 3853 InstructionCost ScalarCallCost = 3854 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3855 if (VF.isScalar()) 3856 return ScalarCallCost; 3857 3858 // Compute corresponding vector type for return value and arguments. 3859 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3860 for (Type *ScalarTy : ScalarTys) 3861 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3862 3863 // Compute costs of unpacking argument values for the scalar calls and 3864 // packing the return values to a vector. 3865 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3866 3867 InstructionCost Cost = 3868 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3869 3870 // If we can't emit a vector call for this function, then the currently found 3871 // cost is the cost we need to return. 3872 NeedToScalarize = true; 3873 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3874 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3875 3876 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3877 return Cost; 3878 3879 // If the corresponding vector cost is cheaper, return its cost. 3880 InstructionCost VectorCallCost = 3881 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3882 if (VectorCallCost < Cost) { 3883 NeedToScalarize = false; 3884 Cost = VectorCallCost; 3885 } 3886 return Cost; 3887 } 3888 3889 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3890 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3891 return Elt; 3892 return VectorType::get(Elt, VF); 3893 } 3894 3895 InstructionCost 3896 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3897 ElementCount VF) const { 3898 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3899 assert(ID && "Expected intrinsic call!"); 3900 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3901 FastMathFlags FMF; 3902 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3903 FMF = FPMO->getFastMathFlags(); 3904 3905 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3906 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3907 SmallVector<Type *> ParamTys; 3908 std::transform(FTy->param_begin(), FTy->param_end(), 3909 std::back_inserter(ParamTys), 3910 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3911 3912 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3913 dyn_cast<IntrinsicInst>(CI)); 3914 return TTI.getIntrinsicInstrCost(CostAttrs, 3915 TargetTransformInfo::TCK_RecipThroughput); 3916 } 3917 3918 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3919 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3920 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3921 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3922 } 3923 3924 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3925 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3926 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3927 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3928 } 3929 3930 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3931 // For every instruction `I` in MinBWs, truncate the operands, create a 3932 // truncated version of `I` and reextend its result. InstCombine runs 3933 // later and will remove any ext/trunc pairs. 3934 SmallPtrSet<Value *, 4> Erased; 3935 for (const auto &KV : Cost->getMinimalBitwidths()) { 3936 // If the value wasn't vectorized, we must maintain the original scalar 3937 // type. The absence of the value from State indicates that it 3938 // wasn't vectorized. 3939 VPValue *Def = State.Plan->getVPValue(KV.first); 3940 if (!State.hasAnyVectorValue(Def)) 3941 continue; 3942 for (unsigned Part = 0; Part < UF; ++Part) { 3943 Value *I = State.get(Def, Part); 3944 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3945 continue; 3946 Type *OriginalTy = I->getType(); 3947 Type *ScalarTruncatedTy = 3948 IntegerType::get(OriginalTy->getContext(), KV.second); 3949 auto *TruncatedTy = FixedVectorType::get( 3950 ScalarTruncatedTy, 3951 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3952 if (TruncatedTy == OriginalTy) 3953 continue; 3954 3955 IRBuilder<> B(cast<Instruction>(I)); 3956 auto ShrinkOperand = [&](Value *V) -> Value * { 3957 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3958 if (ZI->getSrcTy() == TruncatedTy) 3959 return ZI->getOperand(0); 3960 return B.CreateZExtOrTrunc(V, TruncatedTy); 3961 }; 3962 3963 // The actual instruction modification depends on the instruction type, 3964 // unfortunately. 3965 Value *NewI = nullptr; 3966 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3967 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3968 ShrinkOperand(BO->getOperand(1))); 3969 3970 // Any wrapping introduced by shrinking this operation shouldn't be 3971 // considered undefined behavior. So, we can't unconditionally copy 3972 // arithmetic wrapping flags to NewI. 3973 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3974 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3975 NewI = 3976 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3977 ShrinkOperand(CI->getOperand(1))); 3978 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3979 NewI = B.CreateSelect(SI->getCondition(), 3980 ShrinkOperand(SI->getTrueValue()), 3981 ShrinkOperand(SI->getFalseValue())); 3982 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3983 switch (CI->getOpcode()) { 3984 default: 3985 llvm_unreachable("Unhandled cast!"); 3986 case Instruction::Trunc: 3987 NewI = ShrinkOperand(CI->getOperand(0)); 3988 break; 3989 case Instruction::SExt: 3990 NewI = B.CreateSExtOrTrunc( 3991 CI->getOperand(0), 3992 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3993 break; 3994 case Instruction::ZExt: 3995 NewI = B.CreateZExtOrTrunc( 3996 CI->getOperand(0), 3997 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3998 break; 3999 } 4000 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4001 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 4002 ->getNumElements(); 4003 auto *O0 = B.CreateZExtOrTrunc( 4004 SI->getOperand(0), 4005 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 4006 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 4007 ->getNumElements(); 4008 auto *O1 = B.CreateZExtOrTrunc( 4009 SI->getOperand(1), 4010 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 4011 4012 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4013 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4014 // Don't do anything with the operands, just extend the result. 4015 continue; 4016 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4017 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 4018 ->getNumElements(); 4019 auto *O0 = B.CreateZExtOrTrunc( 4020 IE->getOperand(0), 4021 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4022 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4023 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4024 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4025 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 4026 ->getNumElements(); 4027 auto *O0 = B.CreateZExtOrTrunc( 4028 EE->getOperand(0), 4029 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4030 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4031 } else { 4032 // If we don't know what to do, be conservative and don't do anything. 4033 continue; 4034 } 4035 4036 // Lastly, extend the result. 4037 NewI->takeName(cast<Instruction>(I)); 4038 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4039 I->replaceAllUsesWith(Res); 4040 cast<Instruction>(I)->eraseFromParent(); 4041 Erased.insert(I); 4042 State.reset(Def, Res, Part); 4043 } 4044 } 4045 4046 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4047 for (const auto &KV : Cost->getMinimalBitwidths()) { 4048 // If the value wasn't vectorized, we must maintain the original scalar 4049 // type. The absence of the value from State indicates that it 4050 // wasn't vectorized. 4051 VPValue *Def = State.Plan->getVPValue(KV.first); 4052 if (!State.hasAnyVectorValue(Def)) 4053 continue; 4054 for (unsigned Part = 0; Part < UF; ++Part) { 4055 Value *I = State.get(Def, Part); 4056 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4057 if (Inst && Inst->use_empty()) { 4058 Value *NewI = Inst->getOperand(0); 4059 Inst->eraseFromParent(); 4060 State.reset(Def, NewI, Part); 4061 } 4062 } 4063 } 4064 } 4065 4066 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4067 // Insert truncates and extends for any truncated instructions as hints to 4068 // InstCombine. 4069 if (VF.isVector()) 4070 truncateToMinimalBitwidths(State); 4071 4072 // Fix widened non-induction PHIs by setting up the PHI operands. 4073 if (OrigPHIsToFix.size()) { 4074 assert(EnableVPlanNativePath && 4075 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4076 fixNonInductionPHIs(State); 4077 } 4078 4079 // At this point every instruction in the original loop is widened to a 4080 // vector form. Now we need to fix the recurrences in the loop. These PHI 4081 // nodes are currently empty because we did not want to introduce cycles. 4082 // This is the second stage of vectorizing recurrences. 4083 fixCrossIterationPHIs(State); 4084 4085 // Forget the original basic block. 4086 PSE.getSE()->forgetLoop(OrigLoop); 4087 4088 // Fix-up external users of the induction variables. 4089 for (auto &Entry : Legal->getInductionVars()) 4090 fixupIVUsers(Entry.first, Entry.second, 4091 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4092 IVEndValues[Entry.first], LoopMiddleBlock); 4093 4094 fixLCSSAPHIs(State); 4095 for (Instruction *PI : PredicatedInstructions) 4096 sinkScalarOperands(&*PI); 4097 4098 // Remove redundant induction instructions. 4099 cse(LoopVectorBody); 4100 4101 // Set/update profile weights for the vector and remainder loops as original 4102 // loop iterations are now distributed among them. Note that original loop 4103 // represented by LoopScalarBody becomes remainder loop after vectorization. 4104 // 4105 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4106 // end up getting slightly roughened result but that should be OK since 4107 // profile is not inherently precise anyway. Note also possible bypass of 4108 // vector code caused by legality checks is ignored, assigning all the weight 4109 // to the vector loop, optimistically. 4110 // 4111 // For scalable vectorization we can't know at compile time how many iterations 4112 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4113 // vscale of '1'. 4114 setProfileInfoAfterUnrolling( 4115 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4116 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4117 } 4118 4119 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4120 // In order to support recurrences we need to be able to vectorize Phi nodes. 4121 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4122 // stage #2: We now need to fix the recurrences by adding incoming edges to 4123 // the currently empty PHI nodes. At this point every instruction in the 4124 // original loop is widened to a vector form so we can use them to construct 4125 // the incoming edges. 4126 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4127 for (VPRecipeBase &R : Header->phis()) { 4128 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 4129 if (!PhiR) 4130 continue; 4131 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4132 if (PhiR->getRecurrenceDescriptor()) { 4133 fixReduction(PhiR, State); 4134 } else if (Legal->isFirstOrderRecurrence(OrigPhi)) 4135 fixFirstOrderRecurrence(PhiR, State); 4136 } 4137 } 4138 4139 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4140 VPTransformState &State) { 4141 // This is the second phase of vectorizing first-order recurrences. An 4142 // overview of the transformation is described below. Suppose we have the 4143 // following loop. 4144 // 4145 // for (int i = 0; i < n; ++i) 4146 // b[i] = a[i] - a[i - 1]; 4147 // 4148 // There is a first-order recurrence on "a". For this loop, the shorthand 4149 // scalar IR looks like: 4150 // 4151 // scalar.ph: 4152 // s_init = a[-1] 4153 // br scalar.body 4154 // 4155 // scalar.body: 4156 // i = phi [0, scalar.ph], [i+1, scalar.body] 4157 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4158 // s2 = a[i] 4159 // b[i] = s2 - s1 4160 // br cond, scalar.body, ... 4161 // 4162 // In this example, s1 is a recurrence because it's value depends on the 4163 // previous iteration. In the first phase of vectorization, we created a 4164 // temporary value for s1. We now complete the vectorization and produce the 4165 // shorthand vector IR shown below (for VF = 4, UF = 1). 4166 // 4167 // vector.ph: 4168 // v_init = vector(..., ..., ..., a[-1]) 4169 // br vector.body 4170 // 4171 // vector.body 4172 // i = phi [0, vector.ph], [i+4, vector.body] 4173 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4174 // v2 = a[i, i+1, i+2, i+3]; 4175 // v3 = vector(v1(3), v2(0, 1, 2)) 4176 // b[i, i+1, i+2, i+3] = v2 - v3 4177 // br cond, vector.body, middle.block 4178 // 4179 // middle.block: 4180 // x = v2(3) 4181 // br scalar.ph 4182 // 4183 // scalar.ph: 4184 // s_init = phi [x, middle.block], [a[-1], otherwise] 4185 // br scalar.body 4186 // 4187 // After execution completes the vector loop, we extract the next value of 4188 // the recurrence (x) to use as the initial value in the scalar loop. 4189 4190 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4191 4192 auto *IdxTy = Builder.getInt32Ty(); 4193 auto *One = ConstantInt::get(IdxTy, 1); 4194 4195 // Create a vector from the initial value. 4196 auto *VectorInit = ScalarInit; 4197 if (VF.isVector()) { 4198 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4199 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4200 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4201 VectorInit = Builder.CreateInsertElement( 4202 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), 4203 VectorInit, LastIdx, "vector.recur.init"); 4204 } 4205 4206 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4207 // We constructed a temporary phi node in the first phase of vectorization. 4208 // This phi node will eventually be deleted. 4209 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiR, 0))); 4210 4211 // Create a phi node for the new recurrence. The current value will either be 4212 // the initial value inserted into a vector or loop-varying vector value. 4213 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4214 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4215 4216 // Get the vectorized previous value of the last part UF - 1. It appears last 4217 // among all unrolled iterations, due to the order of their construction. 4218 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4219 4220 // Find and set the insertion point after the previous value if it is an 4221 // instruction. 4222 BasicBlock::iterator InsertPt; 4223 // Note that the previous value may have been constant-folded so it is not 4224 // guaranteed to be an instruction in the vector loop. 4225 // FIXME: Loop invariant values do not form recurrences. We should deal with 4226 // them earlier. 4227 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4228 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4229 else { 4230 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4231 if (isa<PHINode>(PreviousLastPart)) 4232 // If the previous value is a phi node, we should insert after all the phi 4233 // nodes in the block containing the PHI to avoid breaking basic block 4234 // verification. Note that the basic block may be different to 4235 // LoopVectorBody, in case we predicate the loop. 4236 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4237 else 4238 InsertPt = ++PreviousInst->getIterator(); 4239 } 4240 Builder.SetInsertPoint(&*InsertPt); 4241 4242 // The vector from which to take the initial value for the current iteration 4243 // (actual or unrolled). Initially, this is the vector phi node. 4244 Value *Incoming = VecPhi; 4245 4246 // Shuffle the current and previous vector and update the vector parts. 4247 for (unsigned Part = 0; Part < UF; ++Part) { 4248 Value *PreviousPart = State.get(PreviousDef, Part); 4249 Value *PhiPart = State.get(PhiR, Part); 4250 auto *Shuffle = VF.isVector() 4251 ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1) 4252 : Incoming; 4253 PhiPart->replaceAllUsesWith(Shuffle); 4254 cast<Instruction>(PhiPart)->eraseFromParent(); 4255 State.reset(PhiR, Shuffle, Part); 4256 Incoming = PreviousPart; 4257 } 4258 4259 // Fix the latch value of the new recurrence in the vector loop. 4260 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4261 4262 // Extract the last vector element in the middle block. This will be the 4263 // initial value for the recurrence when jumping to the scalar loop. 4264 auto *ExtractForScalar = Incoming; 4265 if (VF.isVector()) { 4266 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4267 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4268 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4269 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4270 "vector.recur.extract"); 4271 } 4272 // Extract the second last element in the middle block if the 4273 // Phi is used outside the loop. We need to extract the phi itself 4274 // and not the last element (the phi update in the current iteration). This 4275 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4276 // when the scalar loop is not run at all. 4277 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4278 if (VF.isVector()) { 4279 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4280 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4281 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4282 Incoming, Idx, "vector.recur.extract.for.phi"); 4283 } else if (UF > 1) 4284 // When loop is unrolled without vectorizing, initialize 4285 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4286 // of `Incoming`. This is analogous to the vectorized case above: extracting 4287 // the second last element when VF > 1. 4288 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4289 4290 // Fix the initial value of the original recurrence in the scalar loop. 4291 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4292 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4293 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4294 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4295 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4296 Start->addIncoming(Incoming, BB); 4297 } 4298 4299 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4300 Phi->setName("scalar.recur"); 4301 4302 // Finally, fix users of the recurrence outside the loop. The users will need 4303 // either the last value of the scalar recurrence or the last value of the 4304 // vector recurrence we extracted in the middle block. Since the loop is in 4305 // LCSSA form, we just need to find all the phi nodes for the original scalar 4306 // recurrence in the exit block, and then add an edge for the middle block. 4307 // Note that LCSSA does not imply single entry when the original scalar loop 4308 // had multiple exiting edges (as we always run the last iteration in the 4309 // scalar epilogue); in that case, the exiting path through middle will be 4310 // dynamically dead and the value picked for the phi doesn't matter. 4311 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4312 if (any_of(LCSSAPhi.incoming_values(), 4313 [Phi](Value *V) { return V == Phi; })) 4314 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4315 } 4316 4317 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR, 4318 VPTransformState &State) { 4319 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4320 // Get it's reduction variable descriptor. 4321 assert(Legal->isReductionVariable(OrigPhi) && 4322 "Unable to find the reduction variable"); 4323 const RecurrenceDescriptor &RdxDesc = *PhiR->getRecurrenceDescriptor(); 4324 4325 RecurKind RK = RdxDesc.getRecurrenceKind(); 4326 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4327 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4328 setDebugLocFromInst(ReductionStartValue); 4329 bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi); 4330 4331 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4332 // This is the vector-clone of the value that leaves the loop. 4333 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4334 4335 // Wrap flags are in general invalid after vectorization, clear them. 4336 clearReductionWrapFlags(RdxDesc, State); 4337 4338 // Fix the vector-loop phi. 4339 4340 // Reductions do not have to start at zero. They can start with 4341 // any loop invariant values. 4342 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4343 4344 bool IsOrdered = IsInLoopReductionPhi && Cost->useOrderedReductions(RdxDesc); 4345 4346 for (unsigned Part = 0; Part < UF; ++Part) { 4347 if (IsOrdered && Part > 0) 4348 break; 4349 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4350 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4351 if (IsOrdered) 4352 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4353 4354 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4355 } 4356 4357 // Before each round, move the insertion point right between 4358 // the PHIs and the values we are going to write. 4359 // This allows us to write both PHINodes and the extractelement 4360 // instructions. 4361 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4362 4363 setDebugLocFromInst(LoopExitInst); 4364 4365 Type *PhiTy = OrigPhi->getType(); 4366 // If tail is folded by masking, the vector value to leave the loop should be 4367 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4368 // instead of the former. For an inloop reduction the reduction will already 4369 // be predicated, and does not need to be handled here. 4370 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4371 for (unsigned Part = 0; Part < UF; ++Part) { 4372 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4373 Value *Sel = nullptr; 4374 for (User *U : VecLoopExitInst->users()) { 4375 if (isa<SelectInst>(U)) { 4376 assert(!Sel && "Reduction exit feeding two selects"); 4377 Sel = U; 4378 } else 4379 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4380 } 4381 assert(Sel && "Reduction exit feeds no select"); 4382 State.reset(LoopExitInstDef, Sel, Part); 4383 4384 // If the target can create a predicated operator for the reduction at no 4385 // extra cost in the loop (for example a predicated vadd), it can be 4386 // cheaper for the select to remain in the loop than be sunk out of it, 4387 // and so use the select value for the phi instead of the old 4388 // LoopExitValue. 4389 if (PreferPredicatedReductionSelect || 4390 TTI->preferPredicatedReductionSelect( 4391 RdxDesc.getOpcode(), PhiTy, 4392 TargetTransformInfo::ReductionFlags())) { 4393 auto *VecRdxPhi = 4394 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4395 VecRdxPhi->setIncomingValueForBlock( 4396 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4397 } 4398 } 4399 } 4400 4401 // If the vector reduction can be performed in a smaller type, we truncate 4402 // then extend the loop exit value to enable InstCombine to evaluate the 4403 // entire expression in the smaller type. 4404 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4405 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4406 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4407 Builder.SetInsertPoint( 4408 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4409 VectorParts RdxParts(UF); 4410 for (unsigned Part = 0; Part < UF; ++Part) { 4411 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4412 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4413 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4414 : Builder.CreateZExt(Trunc, VecTy); 4415 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4416 UI != RdxParts[Part]->user_end();) 4417 if (*UI != Trunc) { 4418 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4419 RdxParts[Part] = Extnd; 4420 } else { 4421 ++UI; 4422 } 4423 } 4424 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4425 for (unsigned Part = 0; Part < UF; ++Part) { 4426 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4427 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4428 } 4429 } 4430 4431 // Reduce all of the unrolled parts into a single vector. 4432 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4433 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4434 4435 // The middle block terminator has already been assigned a DebugLoc here (the 4436 // OrigLoop's single latch terminator). We want the whole middle block to 4437 // appear to execute on this line because: (a) it is all compiler generated, 4438 // (b) these instructions are always executed after evaluating the latch 4439 // conditional branch, and (c) other passes may add new predecessors which 4440 // terminate on this line. This is the easiest way to ensure we don't 4441 // accidentally cause an extra step back into the loop while debugging. 4442 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4443 if (IsOrdered) 4444 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4445 else { 4446 // Floating-point operations should have some FMF to enable the reduction. 4447 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4448 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4449 for (unsigned Part = 1; Part < UF; ++Part) { 4450 Value *RdxPart = State.get(LoopExitInstDef, Part); 4451 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4452 ReducedPartRdx = Builder.CreateBinOp( 4453 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4454 } else { 4455 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4456 } 4457 } 4458 } 4459 4460 // Create the reduction after the loop. Note that inloop reductions create the 4461 // target reduction in the loop using a Reduction recipe. 4462 if (VF.isVector() && !IsInLoopReductionPhi) { 4463 ReducedPartRdx = 4464 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4465 // If the reduction can be performed in a smaller type, we need to extend 4466 // the reduction to the wider type before we branch to the original loop. 4467 if (PhiTy != RdxDesc.getRecurrenceType()) 4468 ReducedPartRdx = RdxDesc.isSigned() 4469 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4470 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4471 } 4472 4473 // Create a phi node that merges control-flow from the backedge-taken check 4474 // block and the middle block. 4475 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4476 LoopScalarPreHeader->getTerminator()); 4477 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4478 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4479 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4480 4481 // Now, we need to fix the users of the reduction variable 4482 // inside and outside of the scalar remainder loop. 4483 4484 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4485 // in the exit blocks. See comment on analogous loop in 4486 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4487 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4488 if (any_of(LCSSAPhi.incoming_values(), 4489 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4490 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4491 4492 // Fix the scalar loop reduction variable with the incoming reduction sum 4493 // from the vector body and from the backedge value. 4494 int IncomingEdgeBlockIdx = 4495 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4496 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4497 // Pick the other block. 4498 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4499 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4500 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4501 } 4502 4503 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4504 VPTransformState &State) { 4505 RecurKind RK = RdxDesc.getRecurrenceKind(); 4506 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4507 return; 4508 4509 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4510 assert(LoopExitInstr && "null loop exit instruction"); 4511 SmallVector<Instruction *, 8> Worklist; 4512 SmallPtrSet<Instruction *, 8> Visited; 4513 Worklist.push_back(LoopExitInstr); 4514 Visited.insert(LoopExitInstr); 4515 4516 while (!Worklist.empty()) { 4517 Instruction *Cur = Worklist.pop_back_val(); 4518 if (isa<OverflowingBinaryOperator>(Cur)) 4519 for (unsigned Part = 0; Part < UF; ++Part) { 4520 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4521 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4522 } 4523 4524 for (User *U : Cur->users()) { 4525 Instruction *UI = cast<Instruction>(U); 4526 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4527 Visited.insert(UI).second) 4528 Worklist.push_back(UI); 4529 } 4530 } 4531 } 4532 4533 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4534 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4535 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4536 // Some phis were already hand updated by the reduction and recurrence 4537 // code above, leave them alone. 4538 continue; 4539 4540 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4541 // Non-instruction incoming values will have only one value. 4542 4543 VPLane Lane = VPLane::getFirstLane(); 4544 if (isa<Instruction>(IncomingValue) && 4545 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4546 VF)) 4547 Lane = VPLane::getLastLaneForVF(VF); 4548 4549 // Can be a loop invariant incoming value or the last scalar value to be 4550 // extracted from the vectorized loop. 4551 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4552 Value *lastIncomingValue = 4553 OrigLoop->isLoopInvariant(IncomingValue) 4554 ? IncomingValue 4555 : State.get(State.Plan->getVPValue(IncomingValue), 4556 VPIteration(UF - 1, Lane)); 4557 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4558 } 4559 } 4560 4561 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4562 // The basic block and loop containing the predicated instruction. 4563 auto *PredBB = PredInst->getParent(); 4564 auto *VectorLoop = LI->getLoopFor(PredBB); 4565 4566 // Initialize a worklist with the operands of the predicated instruction. 4567 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4568 4569 // Holds instructions that we need to analyze again. An instruction may be 4570 // reanalyzed if we don't yet know if we can sink it or not. 4571 SmallVector<Instruction *, 8> InstsToReanalyze; 4572 4573 // Returns true if a given use occurs in the predicated block. Phi nodes use 4574 // their operands in their corresponding predecessor blocks. 4575 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4576 auto *I = cast<Instruction>(U.getUser()); 4577 BasicBlock *BB = I->getParent(); 4578 if (auto *Phi = dyn_cast<PHINode>(I)) 4579 BB = Phi->getIncomingBlock( 4580 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4581 return BB == PredBB; 4582 }; 4583 4584 // Iteratively sink the scalarized operands of the predicated instruction 4585 // into the block we created for it. When an instruction is sunk, it's 4586 // operands are then added to the worklist. The algorithm ends after one pass 4587 // through the worklist doesn't sink a single instruction. 4588 bool Changed; 4589 do { 4590 // Add the instructions that need to be reanalyzed to the worklist, and 4591 // reset the changed indicator. 4592 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4593 InstsToReanalyze.clear(); 4594 Changed = false; 4595 4596 while (!Worklist.empty()) { 4597 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4598 4599 // We can't sink an instruction if it is a phi node, is not in the loop, 4600 // or may have side effects. 4601 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4602 I->mayHaveSideEffects()) 4603 continue; 4604 4605 // If the instruction is already in PredBB, check if we can sink its 4606 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4607 // sinking the scalar instruction I, hence it appears in PredBB; but it 4608 // may have failed to sink I's operands (recursively), which we try 4609 // (again) here. 4610 if (I->getParent() == PredBB) { 4611 Worklist.insert(I->op_begin(), I->op_end()); 4612 continue; 4613 } 4614 4615 // It's legal to sink the instruction if all its uses occur in the 4616 // predicated block. Otherwise, there's nothing to do yet, and we may 4617 // need to reanalyze the instruction. 4618 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4619 InstsToReanalyze.push_back(I); 4620 continue; 4621 } 4622 4623 // Move the instruction to the beginning of the predicated block, and add 4624 // it's operands to the worklist. 4625 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4626 Worklist.insert(I->op_begin(), I->op_end()); 4627 4628 // The sinking may have enabled other instructions to be sunk, so we will 4629 // need to iterate. 4630 Changed = true; 4631 } 4632 } while (Changed); 4633 } 4634 4635 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4636 for (PHINode *OrigPhi : OrigPHIsToFix) { 4637 VPWidenPHIRecipe *VPPhi = 4638 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4639 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4640 // Make sure the builder has a valid insert point. 4641 Builder.SetInsertPoint(NewPhi); 4642 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4643 VPValue *Inc = VPPhi->getIncomingValue(i); 4644 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4645 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4646 } 4647 } 4648 } 4649 4650 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4651 return Cost->useOrderedReductions(RdxDesc); 4652 } 4653 4654 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4655 VPUser &Operands, unsigned UF, 4656 ElementCount VF, bool IsPtrLoopInvariant, 4657 SmallBitVector &IsIndexLoopInvariant, 4658 VPTransformState &State) { 4659 // Construct a vector GEP by widening the operands of the scalar GEP as 4660 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4661 // results in a vector of pointers when at least one operand of the GEP 4662 // is vector-typed. Thus, to keep the representation compact, we only use 4663 // vector-typed operands for loop-varying values. 4664 4665 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4666 // If we are vectorizing, but the GEP has only loop-invariant operands, 4667 // the GEP we build (by only using vector-typed operands for 4668 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4669 // produce a vector of pointers, we need to either arbitrarily pick an 4670 // operand to broadcast, or broadcast a clone of the original GEP. 4671 // Here, we broadcast a clone of the original. 4672 // 4673 // TODO: If at some point we decide to scalarize instructions having 4674 // loop-invariant operands, this special case will no longer be 4675 // required. We would add the scalarization decision to 4676 // collectLoopScalars() and teach getVectorValue() to broadcast 4677 // the lane-zero scalar value. 4678 auto *Clone = Builder.Insert(GEP->clone()); 4679 for (unsigned Part = 0; Part < UF; ++Part) { 4680 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4681 State.set(VPDef, EntryPart, Part); 4682 addMetadata(EntryPart, GEP); 4683 } 4684 } else { 4685 // If the GEP has at least one loop-varying operand, we are sure to 4686 // produce a vector of pointers. But if we are only unrolling, we want 4687 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4688 // produce with the code below will be scalar (if VF == 1) or vector 4689 // (otherwise). Note that for the unroll-only case, we still maintain 4690 // values in the vector mapping with initVector, as we do for other 4691 // instructions. 4692 for (unsigned Part = 0; Part < UF; ++Part) { 4693 // The pointer operand of the new GEP. If it's loop-invariant, we 4694 // won't broadcast it. 4695 auto *Ptr = IsPtrLoopInvariant 4696 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4697 : State.get(Operands.getOperand(0), Part); 4698 4699 // Collect all the indices for the new GEP. If any index is 4700 // loop-invariant, we won't broadcast it. 4701 SmallVector<Value *, 4> Indices; 4702 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4703 VPValue *Operand = Operands.getOperand(I); 4704 if (IsIndexLoopInvariant[I - 1]) 4705 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4706 else 4707 Indices.push_back(State.get(Operand, Part)); 4708 } 4709 4710 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4711 // but it should be a vector, otherwise. 4712 auto *NewGEP = 4713 GEP->isInBounds() 4714 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4715 Indices) 4716 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4717 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4718 "NewGEP is not a pointer vector"); 4719 State.set(VPDef, NewGEP, Part); 4720 addMetadata(NewGEP, GEP); 4721 } 4722 } 4723 } 4724 4725 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4726 RecurrenceDescriptor *RdxDesc, 4727 VPWidenPHIRecipe *PhiR, 4728 VPTransformState &State) { 4729 PHINode *P = cast<PHINode>(PN); 4730 if (EnableVPlanNativePath) { 4731 // Currently we enter here in the VPlan-native path for non-induction 4732 // PHIs where all control flow is uniform. We simply widen these PHIs. 4733 // Create a vector phi with no operands - the vector phi operands will be 4734 // set at the end of vector code generation. 4735 Type *VecTy = (State.VF.isScalar()) 4736 ? PN->getType() 4737 : VectorType::get(PN->getType(), State.VF); 4738 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4739 State.set(PhiR, VecPhi, 0); 4740 OrigPHIsToFix.push_back(P); 4741 4742 return; 4743 } 4744 4745 assert(PN->getParent() == OrigLoop->getHeader() && 4746 "Non-header phis should have been handled elsewhere"); 4747 4748 // In order to support recurrences we need to be able to vectorize Phi nodes. 4749 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4750 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4751 // this value when we vectorize all of the instructions that use the PHI. 4752 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4753 bool ScalarPHI = 4754 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4755 Type *VecTy = 4756 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4757 4758 bool IsOrdered = Cost->isInLoopReduction(cast<PHINode>(PN)) && 4759 Cost->useOrderedReductions(*RdxDesc); 4760 unsigned LastPartForNewPhi = IsOrdered ? 1 : State.UF; 4761 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 4762 Value *EntryPart = PHINode::Create( 4763 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4764 State.set(PhiR, EntryPart, Part); 4765 } 4766 if (Legal->isFirstOrderRecurrence(P)) 4767 return; 4768 VPValue *StartVPV = PhiR->getStartValue(); 4769 Value *StartV = StartVPV->getLiveInIRValue(); 4770 4771 Value *Iden = nullptr; 4772 4773 assert(Legal->isReductionVariable(P) && StartV && 4774 "RdxDesc should only be set for reduction variables; in that case " 4775 "a StartV is also required"); 4776 RecurKind RK = RdxDesc->getRecurrenceKind(); 4777 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4778 // MinMax reduction have the start value as their identify. 4779 if (ScalarPHI) { 4780 Iden = StartV; 4781 } else { 4782 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4783 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4784 StartV = Iden = 4785 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4786 } 4787 } else { 4788 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4789 RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags()); 4790 Iden = IdenC; 4791 4792 if (!ScalarPHI) { 4793 Iden = ConstantVector::getSplat(State.VF, IdenC); 4794 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4795 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4796 Constant *Zero = Builder.getInt32(0); 4797 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4798 } 4799 } 4800 4801 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 4802 Value *EntryPart = State.get(PhiR, Part); 4803 // Make sure to add the reduction start value only to the 4804 // first unroll part. 4805 Value *StartVal = (Part == 0) ? StartV : Iden; 4806 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4807 } 4808 4809 return; 4810 } 4811 4812 assert(!Legal->isReductionVariable(P) && 4813 "reductions should be handled above"); 4814 4815 setDebugLocFromInst(P); 4816 4817 // This PHINode must be an induction variable. 4818 // Make sure that we know about it. 4819 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4820 4821 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4822 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4823 4824 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4825 // which can be found from the original scalar operations. 4826 switch (II.getKind()) { 4827 case InductionDescriptor::IK_NoInduction: 4828 llvm_unreachable("Unknown induction"); 4829 case InductionDescriptor::IK_IntInduction: 4830 case InductionDescriptor::IK_FpInduction: 4831 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4832 case InductionDescriptor::IK_PtrInduction: { 4833 // Handle the pointer induction variable case. 4834 assert(P->getType()->isPointerTy() && "Unexpected type."); 4835 4836 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4837 // This is the normalized GEP that starts counting at zero. 4838 Value *PtrInd = 4839 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4840 // Determine the number of scalars we need to generate for each unroll 4841 // iteration. If the instruction is uniform, we only need to generate the 4842 // first lane. Otherwise, we generate all VF values. 4843 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4844 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4845 4846 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4847 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4848 if (NeedsVectorIndex) { 4849 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4850 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4851 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4852 } 4853 4854 for (unsigned Part = 0; Part < UF; ++Part) { 4855 Value *PartStart = createStepForVF( 4856 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4857 4858 if (NeedsVectorIndex) { 4859 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4860 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4861 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4862 Value *SclrGep = 4863 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4864 SclrGep->setName("next.gep"); 4865 State.set(PhiR, SclrGep, Part); 4866 // We've cached the whole vector, which means we can support the 4867 // extraction of any lane. 4868 continue; 4869 } 4870 4871 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4872 Value *Idx = Builder.CreateAdd( 4873 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4874 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4875 Value *SclrGep = 4876 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4877 SclrGep->setName("next.gep"); 4878 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4879 } 4880 } 4881 return; 4882 } 4883 assert(isa<SCEVConstant>(II.getStep()) && 4884 "Induction step not a SCEV constant!"); 4885 Type *PhiType = II.getStep()->getType(); 4886 4887 // Build a pointer phi 4888 Value *ScalarStartValue = II.getStartValue(); 4889 Type *ScStValueType = ScalarStartValue->getType(); 4890 PHINode *NewPointerPhi = 4891 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4892 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4893 4894 // A pointer induction, performed by using a gep 4895 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4896 Instruction *InductionLoc = LoopLatch->getTerminator(); 4897 const SCEV *ScalarStep = II.getStep(); 4898 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4899 Value *ScalarStepValue = 4900 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4901 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4902 Value *NumUnrolledElems = 4903 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4904 Value *InductionGEP = GetElementPtrInst::Create( 4905 ScStValueType->getPointerElementType(), NewPointerPhi, 4906 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4907 InductionLoc); 4908 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4909 4910 // Create UF many actual address geps that use the pointer 4911 // phi as base and a vectorized version of the step value 4912 // (<step*0, ..., step*N>) as offset. 4913 for (unsigned Part = 0; Part < State.UF; ++Part) { 4914 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4915 Value *StartOffsetScalar = 4916 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4917 Value *StartOffset = 4918 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4919 // Create a vector of consecutive numbers from zero to VF. 4920 StartOffset = 4921 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4922 4923 Value *GEP = Builder.CreateGEP( 4924 ScStValueType->getPointerElementType(), NewPointerPhi, 4925 Builder.CreateMul( 4926 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4927 "vector.gep")); 4928 State.set(PhiR, GEP, Part); 4929 } 4930 } 4931 } 4932 } 4933 4934 /// A helper function for checking whether an integer division-related 4935 /// instruction may divide by zero (in which case it must be predicated if 4936 /// executed conditionally in the scalar code). 4937 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4938 /// Non-zero divisors that are non compile-time constants will not be 4939 /// converted into multiplication, so we will still end up scalarizing 4940 /// the division, but can do so w/o predication. 4941 static bool mayDivideByZero(Instruction &I) { 4942 assert((I.getOpcode() == Instruction::UDiv || 4943 I.getOpcode() == Instruction::SDiv || 4944 I.getOpcode() == Instruction::URem || 4945 I.getOpcode() == Instruction::SRem) && 4946 "Unexpected instruction"); 4947 Value *Divisor = I.getOperand(1); 4948 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4949 return !CInt || CInt->isZero(); 4950 } 4951 4952 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4953 VPUser &User, 4954 VPTransformState &State) { 4955 switch (I.getOpcode()) { 4956 case Instruction::Call: 4957 case Instruction::Br: 4958 case Instruction::PHI: 4959 case Instruction::GetElementPtr: 4960 case Instruction::Select: 4961 llvm_unreachable("This instruction is handled by a different recipe."); 4962 case Instruction::UDiv: 4963 case Instruction::SDiv: 4964 case Instruction::SRem: 4965 case Instruction::URem: 4966 case Instruction::Add: 4967 case Instruction::FAdd: 4968 case Instruction::Sub: 4969 case Instruction::FSub: 4970 case Instruction::FNeg: 4971 case Instruction::Mul: 4972 case Instruction::FMul: 4973 case Instruction::FDiv: 4974 case Instruction::FRem: 4975 case Instruction::Shl: 4976 case Instruction::LShr: 4977 case Instruction::AShr: 4978 case Instruction::And: 4979 case Instruction::Or: 4980 case Instruction::Xor: { 4981 // Just widen unops and binops. 4982 setDebugLocFromInst(&I); 4983 4984 for (unsigned Part = 0; Part < UF; ++Part) { 4985 SmallVector<Value *, 2> Ops; 4986 for (VPValue *VPOp : User.operands()) 4987 Ops.push_back(State.get(VPOp, Part)); 4988 4989 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4990 4991 if (auto *VecOp = dyn_cast<Instruction>(V)) 4992 VecOp->copyIRFlags(&I); 4993 4994 // Use this vector value for all users of the original instruction. 4995 State.set(Def, V, Part); 4996 addMetadata(V, &I); 4997 } 4998 4999 break; 5000 } 5001 case Instruction::ICmp: 5002 case Instruction::FCmp: { 5003 // Widen compares. Generate vector compares. 5004 bool FCmp = (I.getOpcode() == Instruction::FCmp); 5005 auto *Cmp = cast<CmpInst>(&I); 5006 setDebugLocFromInst(Cmp); 5007 for (unsigned Part = 0; Part < UF; ++Part) { 5008 Value *A = State.get(User.getOperand(0), Part); 5009 Value *B = State.get(User.getOperand(1), Part); 5010 Value *C = nullptr; 5011 if (FCmp) { 5012 // Propagate fast math flags. 5013 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 5014 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 5015 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 5016 } else { 5017 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 5018 } 5019 State.set(Def, C, Part); 5020 addMetadata(C, &I); 5021 } 5022 5023 break; 5024 } 5025 5026 case Instruction::ZExt: 5027 case Instruction::SExt: 5028 case Instruction::FPToUI: 5029 case Instruction::FPToSI: 5030 case Instruction::FPExt: 5031 case Instruction::PtrToInt: 5032 case Instruction::IntToPtr: 5033 case Instruction::SIToFP: 5034 case Instruction::UIToFP: 5035 case Instruction::Trunc: 5036 case Instruction::FPTrunc: 5037 case Instruction::BitCast: { 5038 auto *CI = cast<CastInst>(&I); 5039 setDebugLocFromInst(CI); 5040 5041 /// Vectorize casts. 5042 Type *DestTy = 5043 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 5044 5045 for (unsigned Part = 0; Part < UF; ++Part) { 5046 Value *A = State.get(User.getOperand(0), Part); 5047 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 5048 State.set(Def, Cast, Part); 5049 addMetadata(Cast, &I); 5050 } 5051 break; 5052 } 5053 default: 5054 // This instruction is not vectorized by simple widening. 5055 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 5056 llvm_unreachable("Unhandled instruction!"); 5057 } // end of switch. 5058 } 5059 5060 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 5061 VPUser &ArgOperands, 5062 VPTransformState &State) { 5063 assert(!isa<DbgInfoIntrinsic>(I) && 5064 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 5065 setDebugLocFromInst(&I); 5066 5067 Module *M = I.getParent()->getParent()->getParent(); 5068 auto *CI = cast<CallInst>(&I); 5069 5070 SmallVector<Type *, 4> Tys; 5071 for (Value *ArgOperand : CI->arg_operands()) 5072 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 5073 5074 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5075 5076 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5077 // version of the instruction. 5078 // Is it beneficial to perform intrinsic call compared to lib call? 5079 bool NeedToScalarize = false; 5080 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 5081 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 5082 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 5083 assert((UseVectorIntrinsic || !NeedToScalarize) && 5084 "Instruction should be scalarized elsewhere."); 5085 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5086 "Either the intrinsic cost or vector call cost must be valid"); 5087 5088 for (unsigned Part = 0; Part < UF; ++Part) { 5089 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5090 SmallVector<Value *, 4> Args; 5091 for (auto &I : enumerate(ArgOperands.operands())) { 5092 // Some intrinsics have a scalar argument - don't replace it with a 5093 // vector. 5094 Value *Arg; 5095 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5096 Arg = State.get(I.value(), Part); 5097 else { 5098 Arg = State.get(I.value(), VPIteration(0, 0)); 5099 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5100 TysForDecl.push_back(Arg->getType()); 5101 } 5102 Args.push_back(Arg); 5103 } 5104 5105 Function *VectorF; 5106 if (UseVectorIntrinsic) { 5107 // Use vector version of the intrinsic. 5108 if (VF.isVector()) 5109 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5110 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5111 assert(VectorF && "Can't retrieve vector intrinsic."); 5112 } else { 5113 // Use vector version of the function call. 5114 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5115 #ifndef NDEBUG 5116 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5117 "Can't create vector function."); 5118 #endif 5119 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5120 } 5121 SmallVector<OperandBundleDef, 1> OpBundles; 5122 CI->getOperandBundlesAsDefs(OpBundles); 5123 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5124 5125 if (isa<FPMathOperator>(V)) 5126 V->copyFastMathFlags(CI); 5127 5128 State.set(Def, V, Part); 5129 addMetadata(V, &I); 5130 } 5131 } 5132 5133 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5134 VPUser &Operands, 5135 bool InvariantCond, 5136 VPTransformState &State) { 5137 setDebugLocFromInst(&I); 5138 5139 // The condition can be loop invariant but still defined inside the 5140 // loop. This means that we can't just use the original 'cond' value. 5141 // We have to take the 'vectorized' value and pick the first lane. 5142 // Instcombine will make this a no-op. 5143 auto *InvarCond = InvariantCond 5144 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5145 : nullptr; 5146 5147 for (unsigned Part = 0; Part < UF; ++Part) { 5148 Value *Cond = 5149 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5150 Value *Op0 = State.get(Operands.getOperand(1), Part); 5151 Value *Op1 = State.get(Operands.getOperand(2), Part); 5152 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5153 State.set(VPDef, Sel, Part); 5154 addMetadata(Sel, &I); 5155 } 5156 } 5157 5158 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5159 // We should not collect Scalars more than once per VF. Right now, this 5160 // function is called from collectUniformsAndScalars(), which already does 5161 // this check. Collecting Scalars for VF=1 does not make any sense. 5162 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5163 "This function should not be visited twice for the same VF"); 5164 5165 SmallSetVector<Instruction *, 8> Worklist; 5166 5167 // These sets are used to seed the analysis with pointers used by memory 5168 // accesses that will remain scalar. 5169 SmallSetVector<Instruction *, 8> ScalarPtrs; 5170 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5171 auto *Latch = TheLoop->getLoopLatch(); 5172 5173 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5174 // The pointer operands of loads and stores will be scalar as long as the 5175 // memory access is not a gather or scatter operation. The value operand of a 5176 // store will remain scalar if the store is scalarized. 5177 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5178 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5179 assert(WideningDecision != CM_Unknown && 5180 "Widening decision should be ready at this moment"); 5181 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5182 if (Ptr == Store->getValueOperand()) 5183 return WideningDecision == CM_Scalarize; 5184 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5185 "Ptr is neither a value or pointer operand"); 5186 return WideningDecision != CM_GatherScatter; 5187 }; 5188 5189 // A helper that returns true if the given value is a bitcast or 5190 // getelementptr instruction contained in the loop. 5191 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5192 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5193 isa<GetElementPtrInst>(V)) && 5194 !TheLoop->isLoopInvariant(V); 5195 }; 5196 5197 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5198 if (!isa<PHINode>(Ptr) || 5199 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5200 return false; 5201 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5202 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5203 return false; 5204 return isScalarUse(MemAccess, Ptr); 5205 }; 5206 5207 // A helper that evaluates a memory access's use of a pointer. If the 5208 // pointer is actually the pointer induction of a loop, it is being 5209 // inserted into Worklist. If the use will be a scalar use, and the 5210 // pointer is only used by memory accesses, we place the pointer in 5211 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5212 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5213 if (isScalarPtrInduction(MemAccess, Ptr)) { 5214 Worklist.insert(cast<Instruction>(Ptr)); 5215 Instruction *Update = cast<Instruction>( 5216 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5217 Worklist.insert(Update); 5218 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5219 << "\n"); 5220 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5221 << "\n"); 5222 return; 5223 } 5224 // We only care about bitcast and getelementptr instructions contained in 5225 // the loop. 5226 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5227 return; 5228 5229 // If the pointer has already been identified as scalar (e.g., if it was 5230 // also identified as uniform), there's nothing to do. 5231 auto *I = cast<Instruction>(Ptr); 5232 if (Worklist.count(I)) 5233 return; 5234 5235 // If the use of the pointer will be a scalar use, and all users of the 5236 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5237 // place the pointer in PossibleNonScalarPtrs. 5238 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5239 return isa<LoadInst>(U) || isa<StoreInst>(U); 5240 })) 5241 ScalarPtrs.insert(I); 5242 else 5243 PossibleNonScalarPtrs.insert(I); 5244 }; 5245 5246 // We seed the scalars analysis with three classes of instructions: (1) 5247 // instructions marked uniform-after-vectorization and (2) bitcast, 5248 // getelementptr and (pointer) phi instructions used by memory accesses 5249 // requiring a scalar use. 5250 // 5251 // (1) Add to the worklist all instructions that have been identified as 5252 // uniform-after-vectorization. 5253 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5254 5255 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5256 // memory accesses requiring a scalar use. The pointer operands of loads and 5257 // stores will be scalar as long as the memory accesses is not a gather or 5258 // scatter operation. The value operand of a store will remain scalar if the 5259 // store is scalarized. 5260 for (auto *BB : TheLoop->blocks()) 5261 for (auto &I : *BB) { 5262 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5263 evaluatePtrUse(Load, Load->getPointerOperand()); 5264 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5265 evaluatePtrUse(Store, Store->getPointerOperand()); 5266 evaluatePtrUse(Store, Store->getValueOperand()); 5267 } 5268 } 5269 for (auto *I : ScalarPtrs) 5270 if (!PossibleNonScalarPtrs.count(I)) { 5271 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5272 Worklist.insert(I); 5273 } 5274 5275 // Insert the forced scalars. 5276 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5277 // induction variable when the PHI user is scalarized. 5278 auto ForcedScalar = ForcedScalars.find(VF); 5279 if (ForcedScalar != ForcedScalars.end()) 5280 for (auto *I : ForcedScalar->second) 5281 Worklist.insert(I); 5282 5283 // Expand the worklist by looking through any bitcasts and getelementptr 5284 // instructions we've already identified as scalar. This is similar to the 5285 // expansion step in collectLoopUniforms(); however, here we're only 5286 // expanding to include additional bitcasts and getelementptr instructions. 5287 unsigned Idx = 0; 5288 while (Idx != Worklist.size()) { 5289 Instruction *Dst = Worklist[Idx++]; 5290 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5291 continue; 5292 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5293 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5294 auto *J = cast<Instruction>(U); 5295 return !TheLoop->contains(J) || Worklist.count(J) || 5296 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5297 isScalarUse(J, Src)); 5298 })) { 5299 Worklist.insert(Src); 5300 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5301 } 5302 } 5303 5304 // An induction variable will remain scalar if all users of the induction 5305 // variable and induction variable update remain scalar. 5306 for (auto &Induction : Legal->getInductionVars()) { 5307 auto *Ind = Induction.first; 5308 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5309 5310 // If tail-folding is applied, the primary induction variable will be used 5311 // to feed a vector compare. 5312 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5313 continue; 5314 5315 // Determine if all users of the induction variable are scalar after 5316 // vectorization. 5317 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5318 auto *I = cast<Instruction>(U); 5319 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5320 }); 5321 if (!ScalarInd) 5322 continue; 5323 5324 // Determine if all users of the induction variable update instruction are 5325 // scalar after vectorization. 5326 auto ScalarIndUpdate = 5327 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5328 auto *I = cast<Instruction>(U); 5329 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5330 }); 5331 if (!ScalarIndUpdate) 5332 continue; 5333 5334 // The induction variable and its update instruction will remain scalar. 5335 Worklist.insert(Ind); 5336 Worklist.insert(IndUpdate); 5337 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5338 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5339 << "\n"); 5340 } 5341 5342 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5343 } 5344 5345 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5346 if (!blockNeedsPredication(I->getParent())) 5347 return false; 5348 switch(I->getOpcode()) { 5349 default: 5350 break; 5351 case Instruction::Load: 5352 case Instruction::Store: { 5353 if (!Legal->isMaskRequired(I)) 5354 return false; 5355 auto *Ptr = getLoadStorePointerOperand(I); 5356 auto *Ty = getLoadStoreType(I); 5357 const Align Alignment = getLoadStoreAlignment(I); 5358 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5359 TTI.isLegalMaskedGather(Ty, Alignment)) 5360 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5361 TTI.isLegalMaskedScatter(Ty, Alignment)); 5362 } 5363 case Instruction::UDiv: 5364 case Instruction::SDiv: 5365 case Instruction::SRem: 5366 case Instruction::URem: 5367 return mayDivideByZero(*I); 5368 } 5369 return false; 5370 } 5371 5372 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5373 Instruction *I, ElementCount VF) { 5374 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5375 assert(getWideningDecision(I, VF) == CM_Unknown && 5376 "Decision should not be set yet."); 5377 auto *Group = getInterleavedAccessGroup(I); 5378 assert(Group && "Must have a group."); 5379 5380 // If the instruction's allocated size doesn't equal it's type size, it 5381 // requires padding and will be scalarized. 5382 auto &DL = I->getModule()->getDataLayout(); 5383 auto *ScalarTy = getLoadStoreType(I); 5384 if (hasIrregularType(ScalarTy, DL)) 5385 return false; 5386 5387 // Check if masking is required. 5388 // A Group may need masking for one of two reasons: it resides in a block that 5389 // needs predication, or it was decided to use masking to deal with gaps. 5390 bool PredicatedAccessRequiresMasking = 5391 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5392 bool AccessWithGapsRequiresMasking = 5393 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5394 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5395 return true; 5396 5397 // If masked interleaving is required, we expect that the user/target had 5398 // enabled it, because otherwise it either wouldn't have been created or 5399 // it should have been invalidated by the CostModel. 5400 assert(useMaskedInterleavedAccesses(TTI) && 5401 "Masked interleave-groups for predicated accesses are not enabled."); 5402 5403 auto *Ty = getLoadStoreType(I); 5404 const Align Alignment = getLoadStoreAlignment(I); 5405 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5406 : TTI.isLegalMaskedStore(Ty, Alignment); 5407 } 5408 5409 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5410 Instruction *I, ElementCount VF) { 5411 // Get and ensure we have a valid memory instruction. 5412 LoadInst *LI = dyn_cast<LoadInst>(I); 5413 StoreInst *SI = dyn_cast<StoreInst>(I); 5414 assert((LI || SI) && "Invalid memory instruction"); 5415 5416 auto *Ptr = getLoadStorePointerOperand(I); 5417 5418 // In order to be widened, the pointer should be consecutive, first of all. 5419 if (!Legal->isConsecutivePtr(Ptr)) 5420 return false; 5421 5422 // If the instruction is a store located in a predicated block, it will be 5423 // scalarized. 5424 if (isScalarWithPredication(I)) 5425 return false; 5426 5427 // If the instruction's allocated size doesn't equal it's type size, it 5428 // requires padding and will be scalarized. 5429 auto &DL = I->getModule()->getDataLayout(); 5430 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5431 if (hasIrregularType(ScalarTy, DL)) 5432 return false; 5433 5434 return true; 5435 } 5436 5437 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5438 // We should not collect Uniforms more than once per VF. Right now, 5439 // this function is called from collectUniformsAndScalars(), which 5440 // already does this check. Collecting Uniforms for VF=1 does not make any 5441 // sense. 5442 5443 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5444 "This function should not be visited twice for the same VF"); 5445 5446 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5447 // not analyze again. Uniforms.count(VF) will return 1. 5448 Uniforms[VF].clear(); 5449 5450 // We now know that the loop is vectorizable! 5451 // Collect instructions inside the loop that will remain uniform after 5452 // vectorization. 5453 5454 // Global values, params and instructions outside of current loop are out of 5455 // scope. 5456 auto isOutOfScope = [&](Value *V) -> bool { 5457 Instruction *I = dyn_cast<Instruction>(V); 5458 return (!I || !TheLoop->contains(I)); 5459 }; 5460 5461 SetVector<Instruction *> Worklist; 5462 BasicBlock *Latch = TheLoop->getLoopLatch(); 5463 5464 // Instructions that are scalar with predication must not be considered 5465 // uniform after vectorization, because that would create an erroneous 5466 // replicating region where only a single instance out of VF should be formed. 5467 // TODO: optimize such seldom cases if found important, see PR40816. 5468 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5469 if (isOutOfScope(I)) { 5470 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5471 << *I << "\n"); 5472 return; 5473 } 5474 if (isScalarWithPredication(I)) { 5475 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5476 << *I << "\n"); 5477 return; 5478 } 5479 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5480 Worklist.insert(I); 5481 }; 5482 5483 // Start with the conditional branch. If the branch condition is an 5484 // instruction contained in the loop that is only used by the branch, it is 5485 // uniform. 5486 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5487 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5488 addToWorklistIfAllowed(Cmp); 5489 5490 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5491 InstWidening WideningDecision = getWideningDecision(I, VF); 5492 assert(WideningDecision != CM_Unknown && 5493 "Widening decision should be ready at this moment"); 5494 5495 // A uniform memory op is itself uniform. We exclude uniform stores 5496 // here as they demand the last lane, not the first one. 5497 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5498 assert(WideningDecision == CM_Scalarize); 5499 return true; 5500 } 5501 5502 return (WideningDecision == CM_Widen || 5503 WideningDecision == CM_Widen_Reverse || 5504 WideningDecision == CM_Interleave); 5505 }; 5506 5507 5508 // Returns true if Ptr is the pointer operand of a memory access instruction 5509 // I, and I is known to not require scalarization. 5510 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5511 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5512 }; 5513 5514 // Holds a list of values which are known to have at least one uniform use. 5515 // Note that there may be other uses which aren't uniform. A "uniform use" 5516 // here is something which only demands lane 0 of the unrolled iterations; 5517 // it does not imply that all lanes produce the same value (e.g. this is not 5518 // the usual meaning of uniform) 5519 SetVector<Value *> HasUniformUse; 5520 5521 // Scan the loop for instructions which are either a) known to have only 5522 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5523 for (auto *BB : TheLoop->blocks()) 5524 for (auto &I : *BB) { 5525 // If there's no pointer operand, there's nothing to do. 5526 auto *Ptr = getLoadStorePointerOperand(&I); 5527 if (!Ptr) 5528 continue; 5529 5530 // A uniform memory op is itself uniform. We exclude uniform stores 5531 // here as they demand the last lane, not the first one. 5532 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5533 addToWorklistIfAllowed(&I); 5534 5535 if (isUniformDecision(&I, VF)) { 5536 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5537 HasUniformUse.insert(Ptr); 5538 } 5539 } 5540 5541 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5542 // demanding) users. Since loops are assumed to be in LCSSA form, this 5543 // disallows uses outside the loop as well. 5544 for (auto *V : HasUniformUse) { 5545 if (isOutOfScope(V)) 5546 continue; 5547 auto *I = cast<Instruction>(V); 5548 auto UsersAreMemAccesses = 5549 llvm::all_of(I->users(), [&](User *U) -> bool { 5550 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5551 }); 5552 if (UsersAreMemAccesses) 5553 addToWorklistIfAllowed(I); 5554 } 5555 5556 // Expand Worklist in topological order: whenever a new instruction 5557 // is added , its users should be already inside Worklist. It ensures 5558 // a uniform instruction will only be used by uniform instructions. 5559 unsigned idx = 0; 5560 while (idx != Worklist.size()) { 5561 Instruction *I = Worklist[idx++]; 5562 5563 for (auto OV : I->operand_values()) { 5564 // isOutOfScope operands cannot be uniform instructions. 5565 if (isOutOfScope(OV)) 5566 continue; 5567 // First order recurrence Phi's should typically be considered 5568 // non-uniform. 5569 auto *OP = dyn_cast<PHINode>(OV); 5570 if (OP && Legal->isFirstOrderRecurrence(OP)) 5571 continue; 5572 // If all the users of the operand are uniform, then add the 5573 // operand into the uniform worklist. 5574 auto *OI = cast<Instruction>(OV); 5575 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5576 auto *J = cast<Instruction>(U); 5577 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5578 })) 5579 addToWorklistIfAllowed(OI); 5580 } 5581 } 5582 5583 // For an instruction to be added into Worklist above, all its users inside 5584 // the loop should also be in Worklist. However, this condition cannot be 5585 // true for phi nodes that form a cyclic dependence. We must process phi 5586 // nodes separately. An induction variable will remain uniform if all users 5587 // of the induction variable and induction variable update remain uniform. 5588 // The code below handles both pointer and non-pointer induction variables. 5589 for (auto &Induction : Legal->getInductionVars()) { 5590 auto *Ind = Induction.first; 5591 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5592 5593 // Determine if all users of the induction variable are uniform after 5594 // vectorization. 5595 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5596 auto *I = cast<Instruction>(U); 5597 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5598 isVectorizedMemAccessUse(I, Ind); 5599 }); 5600 if (!UniformInd) 5601 continue; 5602 5603 // Determine if all users of the induction variable update instruction are 5604 // uniform after vectorization. 5605 auto UniformIndUpdate = 5606 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5607 auto *I = cast<Instruction>(U); 5608 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5609 isVectorizedMemAccessUse(I, IndUpdate); 5610 }); 5611 if (!UniformIndUpdate) 5612 continue; 5613 5614 // The induction variable and its update instruction will remain uniform. 5615 addToWorklistIfAllowed(Ind); 5616 addToWorklistIfAllowed(IndUpdate); 5617 } 5618 5619 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5620 } 5621 5622 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5623 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5624 5625 if (Legal->getRuntimePointerChecking()->Need) { 5626 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5627 "runtime pointer checks needed. Enable vectorization of this " 5628 "loop with '#pragma clang loop vectorize(enable)' when " 5629 "compiling with -Os/-Oz", 5630 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5631 return true; 5632 } 5633 5634 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5635 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5636 "runtime SCEV checks needed. Enable vectorization of this " 5637 "loop with '#pragma clang loop vectorize(enable)' when " 5638 "compiling with -Os/-Oz", 5639 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5640 return true; 5641 } 5642 5643 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5644 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5645 reportVectorizationFailure("Runtime stride check for small trip count", 5646 "runtime stride == 1 checks needed. Enable vectorization of " 5647 "this loop without such check by compiling with -Os/-Oz", 5648 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5649 return true; 5650 } 5651 5652 return false; 5653 } 5654 5655 ElementCount 5656 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5657 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5658 reportVectorizationInfo( 5659 "Disabling scalable vectorization, because target does not " 5660 "support scalable vectors.", 5661 "ScalableVectorsUnsupported", ORE, TheLoop); 5662 return ElementCount::getScalable(0); 5663 } 5664 5665 if (Hints->isScalableVectorizationDisabled()) { 5666 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5667 "ScalableVectorizationDisabled", ORE, TheLoop); 5668 return ElementCount::getScalable(0); 5669 } 5670 5671 auto MaxScalableVF = ElementCount::getScalable( 5672 std::numeric_limits<ElementCount::ScalarTy>::max()); 5673 5674 // Disable scalable vectorization if the loop contains unsupported reductions. 5675 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5676 // FIXME: While for scalable vectors this is currently sufficient, this should 5677 // be replaced by a more detailed mechanism that filters out specific VFs, 5678 // instead of invalidating vectorization for a whole set of VFs based on the 5679 // MaxVF. 5680 if (!canVectorizeReductions(MaxScalableVF)) { 5681 reportVectorizationInfo( 5682 "Scalable vectorization not supported for the reduction " 5683 "operations found in this loop.", 5684 "ScalableVFUnfeasible", ORE, TheLoop); 5685 return ElementCount::getScalable(0); 5686 } 5687 5688 if (Legal->isSafeForAnyVectorWidth()) 5689 return MaxScalableVF; 5690 5691 // Limit MaxScalableVF by the maximum safe dependence distance. 5692 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5693 MaxScalableVF = ElementCount::getScalable( 5694 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5695 if (!MaxScalableVF) 5696 reportVectorizationInfo( 5697 "Max legal vector width too small, scalable vectorization " 5698 "unfeasible.", 5699 "ScalableVFUnfeasible", ORE, TheLoop); 5700 5701 return MaxScalableVF; 5702 } 5703 5704 FixedScalableVFPair 5705 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5706 ElementCount UserVF) { 5707 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5708 unsigned SmallestType, WidestType; 5709 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5710 5711 // Get the maximum safe dependence distance in bits computed by LAA. 5712 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5713 // the memory accesses that is most restrictive (involved in the smallest 5714 // dependence distance). 5715 unsigned MaxSafeElements = 5716 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5717 5718 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5719 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5720 5721 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5722 << ".\n"); 5723 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5724 << ".\n"); 5725 5726 // First analyze the UserVF, fall back if the UserVF should be ignored. 5727 if (UserVF) { 5728 auto MaxSafeUserVF = 5729 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5730 5731 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) 5732 return UserVF; 5733 5734 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5735 5736 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5737 // is better to ignore the hint and let the compiler choose a suitable VF. 5738 if (!UserVF.isScalable()) { 5739 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5740 << " is unsafe, clamping to max safe VF=" 5741 << MaxSafeFixedVF << ".\n"); 5742 ORE->emit([&]() { 5743 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5744 TheLoop->getStartLoc(), 5745 TheLoop->getHeader()) 5746 << "User-specified vectorization factor " 5747 << ore::NV("UserVectorizationFactor", UserVF) 5748 << " is unsafe, clamping to maximum safe vectorization factor " 5749 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5750 }); 5751 return MaxSafeFixedVF; 5752 } 5753 5754 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5755 << " is unsafe. Ignoring scalable UserVF.\n"); 5756 ORE->emit([&]() { 5757 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5758 TheLoop->getStartLoc(), 5759 TheLoop->getHeader()) 5760 << "User-specified vectorization factor " 5761 << ore::NV("UserVectorizationFactor", UserVF) 5762 << " is unsafe. Ignoring the hint to let the compiler pick a " 5763 "suitable VF."; 5764 }); 5765 } 5766 5767 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5768 << " / " << WidestType << " bits.\n"); 5769 5770 FixedScalableVFPair Result(ElementCount::getFixed(1), 5771 ElementCount::getScalable(0)); 5772 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5773 WidestType, MaxSafeFixedVF)) 5774 Result.FixedVF = MaxVF; 5775 5776 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5777 WidestType, MaxSafeScalableVF)) 5778 if (MaxVF.isScalable()) { 5779 Result.ScalableVF = MaxVF; 5780 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5781 << "\n"); 5782 } 5783 5784 return Result; 5785 } 5786 5787 FixedScalableVFPair 5788 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5789 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5790 // TODO: It may by useful to do since it's still likely to be dynamically 5791 // uniform if the target can skip. 5792 reportVectorizationFailure( 5793 "Not inserting runtime ptr check for divergent target", 5794 "runtime pointer checks needed. Not enabled for divergent target", 5795 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5796 return FixedScalableVFPair::getNone(); 5797 } 5798 5799 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5800 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5801 if (TC == 1) { 5802 reportVectorizationFailure("Single iteration (non) loop", 5803 "loop trip count is one, irrelevant for vectorization", 5804 "SingleIterationLoop", ORE, TheLoop); 5805 return FixedScalableVFPair::getNone(); 5806 } 5807 5808 switch (ScalarEpilogueStatus) { 5809 case CM_ScalarEpilogueAllowed: 5810 return computeFeasibleMaxVF(TC, UserVF); 5811 case CM_ScalarEpilogueNotAllowedUsePredicate: 5812 LLVM_FALLTHROUGH; 5813 case CM_ScalarEpilogueNotNeededUsePredicate: 5814 LLVM_DEBUG( 5815 dbgs() << "LV: vector predicate hint/switch found.\n" 5816 << "LV: Not allowing scalar epilogue, creating predicated " 5817 << "vector loop.\n"); 5818 break; 5819 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5820 // fallthrough as a special case of OptForSize 5821 case CM_ScalarEpilogueNotAllowedOptSize: 5822 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5823 LLVM_DEBUG( 5824 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5825 else 5826 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5827 << "count.\n"); 5828 5829 // Bail if runtime checks are required, which are not good when optimising 5830 // for size. 5831 if (runtimeChecksRequired()) 5832 return FixedScalableVFPair::getNone(); 5833 5834 break; 5835 } 5836 5837 // The only loops we can vectorize without a scalar epilogue, are loops with 5838 // a bottom-test and a single exiting block. We'd have to handle the fact 5839 // that not every instruction executes on the last iteration. This will 5840 // require a lane mask which varies through the vector loop body. (TODO) 5841 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5842 // If there was a tail-folding hint/switch, but we can't fold the tail by 5843 // masking, fallback to a vectorization with a scalar epilogue. 5844 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5845 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5846 "scalar epilogue instead.\n"); 5847 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5848 return computeFeasibleMaxVF(TC, UserVF); 5849 } 5850 return FixedScalableVFPair::getNone(); 5851 } 5852 5853 // Now try the tail folding 5854 5855 // Invalidate interleave groups that require an epilogue if we can't mask 5856 // the interleave-group. 5857 if (!useMaskedInterleavedAccesses(TTI)) { 5858 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5859 "No decisions should have been taken at this point"); 5860 // Note: There is no need to invalidate any cost modeling decisions here, as 5861 // non where taken so far. 5862 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5863 } 5864 5865 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5866 // Avoid tail folding if the trip count is known to be a multiple of any VF 5867 // we chose. 5868 // FIXME: The condition below pessimises the case for fixed-width vectors, 5869 // when scalable VFs are also candidates for vectorization. 5870 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5871 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5872 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5873 "MaxFixedVF must be a power of 2"); 5874 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5875 : MaxFixedVF.getFixedValue(); 5876 ScalarEvolution *SE = PSE.getSE(); 5877 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5878 const SCEV *ExitCount = SE->getAddExpr( 5879 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5880 const SCEV *Rem = SE->getURemExpr( 5881 SE->applyLoopGuards(ExitCount, TheLoop), 5882 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5883 if (Rem->isZero()) { 5884 // Accept MaxFixedVF if we do not have a tail. 5885 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5886 return MaxFactors; 5887 } 5888 } 5889 5890 // If we don't know the precise trip count, or if the trip count that we 5891 // found modulo the vectorization factor is not zero, try to fold the tail 5892 // by masking. 5893 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5894 if (Legal->prepareToFoldTailByMasking()) { 5895 FoldTailByMasking = true; 5896 return MaxFactors; 5897 } 5898 5899 // If there was a tail-folding hint/switch, but we can't fold the tail by 5900 // masking, fallback to a vectorization with a scalar epilogue. 5901 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5902 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5903 "scalar epilogue instead.\n"); 5904 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5905 return MaxFactors; 5906 } 5907 5908 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5909 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5910 return FixedScalableVFPair::getNone(); 5911 } 5912 5913 if (TC == 0) { 5914 reportVectorizationFailure( 5915 "Unable to calculate the loop count due to complex control flow", 5916 "unable to calculate the loop count due to complex control flow", 5917 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5918 return FixedScalableVFPair::getNone(); 5919 } 5920 5921 reportVectorizationFailure( 5922 "Cannot optimize for size and vectorize at the same time.", 5923 "cannot optimize for size and vectorize at the same time. " 5924 "Enable vectorization of this loop with '#pragma clang loop " 5925 "vectorize(enable)' when compiling with -Os/-Oz", 5926 "NoTailLoopWithOptForSize", ORE, TheLoop); 5927 return FixedScalableVFPair::getNone(); 5928 } 5929 5930 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5931 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5932 const ElementCount &MaxSafeVF) { 5933 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5934 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5935 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5936 : TargetTransformInfo::RGK_FixedWidthVector); 5937 5938 // Convenience function to return the minimum of two ElementCounts. 5939 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5940 assert((LHS.isScalable() == RHS.isScalable()) && 5941 "Scalable flags must match"); 5942 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5943 }; 5944 5945 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5946 // Note that both WidestRegister and WidestType may not be a powers of 2. 5947 auto MaxVectorElementCount = ElementCount::get( 5948 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5949 ComputeScalableMaxVF); 5950 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5951 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5952 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5953 5954 if (!MaxVectorElementCount) { 5955 LLVM_DEBUG(dbgs() << "LV: The target has no " 5956 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5957 << " vector registers.\n"); 5958 return ElementCount::getFixed(1); 5959 } 5960 5961 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5962 if (ConstTripCount && 5963 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5964 isPowerOf2_32(ConstTripCount)) { 5965 // We need to clamp the VF to be the ConstTripCount. There is no point in 5966 // choosing a higher viable VF as done in the loop below. If 5967 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5968 // the TC is less than or equal to the known number of lanes. 5969 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5970 << ConstTripCount << "\n"); 5971 return TripCountEC; 5972 } 5973 5974 ElementCount MaxVF = MaxVectorElementCount; 5975 if (TTI.shouldMaximizeVectorBandwidth() || 5976 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5977 auto MaxVectorElementCountMaxBW = ElementCount::get( 5978 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5979 ComputeScalableMaxVF); 5980 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5981 5982 // Collect all viable vectorization factors larger than the default MaxVF 5983 // (i.e. MaxVectorElementCount). 5984 SmallVector<ElementCount, 8> VFs; 5985 for (ElementCount VS = MaxVectorElementCount * 2; 5986 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5987 VFs.push_back(VS); 5988 5989 // For each VF calculate its register usage. 5990 auto RUs = calculateRegisterUsage(VFs); 5991 5992 // Select the largest VF which doesn't require more registers than existing 5993 // ones. 5994 for (int i = RUs.size() - 1; i >= 0; --i) { 5995 bool Selected = true; 5996 for (auto &pair : RUs[i].MaxLocalUsers) { 5997 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5998 if (pair.second > TargetNumRegisters) 5999 Selected = false; 6000 } 6001 if (Selected) { 6002 MaxVF = VFs[i]; 6003 break; 6004 } 6005 } 6006 if (ElementCount MinVF = 6007 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 6008 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6009 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6010 << ") with target's minimum: " << MinVF << '\n'); 6011 MaxVF = MinVF; 6012 } 6013 } 6014 } 6015 return MaxVF; 6016 } 6017 6018 bool LoopVectorizationCostModel::isMoreProfitable( 6019 const VectorizationFactor &A, const VectorizationFactor &B) const { 6020 InstructionCost::CostType CostA = *A.Cost.getValue(); 6021 InstructionCost::CostType CostB = *B.Cost.getValue(); 6022 6023 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6024 6025 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6026 MaxTripCount) { 6027 // If we are folding the tail and the trip count is a known (possibly small) 6028 // constant, the trip count will be rounded up to an integer number of 6029 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6030 // which we compare directly. When not folding the tail, the total cost will 6031 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6032 // approximated with the per-lane cost below instead of using the tripcount 6033 // as here. 6034 int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6035 int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6036 return RTCostA < RTCostB; 6037 } 6038 6039 // When set to preferred, for now assume vscale may be larger than 1, so 6040 // that scalable vectorization is slightly favorable over fixed-width 6041 // vectorization. 6042 if (Hints->isScalableVectorizationPreferred()) 6043 if (A.Width.isScalable() && !B.Width.isScalable()) 6044 return (CostA * B.Width.getKnownMinValue()) <= 6045 (CostB * A.Width.getKnownMinValue()); 6046 6047 // To avoid the need for FP division: 6048 // (CostA / A.Width) < (CostB / B.Width) 6049 // <=> (CostA * B.Width) < (CostB * A.Width) 6050 return (CostA * B.Width.getKnownMinValue()) < 6051 (CostB * A.Width.getKnownMinValue()); 6052 } 6053 6054 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6055 const ElementCountSet &VFCandidates) { 6056 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6057 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6058 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6059 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6060 "Expected Scalar VF to be a candidate"); 6061 6062 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6063 VectorizationFactor ChosenFactor = ScalarCost; 6064 6065 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6066 if (ForceVectorization && VFCandidates.size() > 1) { 6067 // Ignore scalar width, because the user explicitly wants vectorization. 6068 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6069 // evaluation. 6070 ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max(); 6071 } 6072 6073 for (const auto &i : VFCandidates) { 6074 // The cost for scalar VF=1 is already calculated, so ignore it. 6075 if (i.isScalar()) 6076 continue; 6077 6078 // Notice that the vector loop needs to be executed less times, so 6079 // we need to divide the cost of the vector loops by the width of 6080 // the vector elements. 6081 VectorizationCostTy C = expectedCost(i); 6082 6083 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 6084 VectorizationFactor Candidate(i, C.first); 6085 LLVM_DEBUG( 6086 dbgs() << "LV: Vector loop of width " << i << " costs: " 6087 << (*Candidate.Cost.getValue() / 6088 Candidate.Width.getKnownMinValue()) 6089 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6090 << ".\n"); 6091 6092 if (!C.second && !ForceVectorization) { 6093 LLVM_DEBUG( 6094 dbgs() << "LV: Not considering vector loop of width " << i 6095 << " because it will not generate any vector instructions.\n"); 6096 continue; 6097 } 6098 6099 // If profitable add it to ProfitableVF list. 6100 if (isMoreProfitable(Candidate, ScalarCost)) 6101 ProfitableVFs.push_back(Candidate); 6102 6103 if (isMoreProfitable(Candidate, ChosenFactor)) 6104 ChosenFactor = Candidate; 6105 } 6106 6107 if (!EnableCondStoresVectorization && NumPredStores) { 6108 reportVectorizationFailure("There are conditional stores.", 6109 "store that is conditionally executed prevents vectorization", 6110 "ConditionalStore", ORE, TheLoop); 6111 ChosenFactor = ScalarCost; 6112 } 6113 6114 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6115 *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue()) 6116 dbgs() 6117 << "LV: Vectorization seems to be not beneficial, " 6118 << "but was forced by a user.\n"); 6119 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6120 return ChosenFactor; 6121 } 6122 6123 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6124 const Loop &L, ElementCount VF) const { 6125 // Cross iteration phis such as reductions need special handling and are 6126 // currently unsupported. 6127 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6128 return Legal->isFirstOrderRecurrence(&Phi) || 6129 Legal->isReductionVariable(&Phi); 6130 })) 6131 return false; 6132 6133 // Phis with uses outside of the loop require special handling and are 6134 // currently unsupported. 6135 for (auto &Entry : Legal->getInductionVars()) { 6136 // Look for uses of the value of the induction at the last iteration. 6137 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6138 for (User *U : PostInc->users()) 6139 if (!L.contains(cast<Instruction>(U))) 6140 return false; 6141 // Look for uses of penultimate value of the induction. 6142 for (User *U : Entry.first->users()) 6143 if (!L.contains(cast<Instruction>(U))) 6144 return false; 6145 } 6146 6147 // Induction variables that are widened require special handling that is 6148 // currently not supported. 6149 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6150 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6151 this->isProfitableToScalarize(Entry.first, VF)); 6152 })) 6153 return false; 6154 6155 return true; 6156 } 6157 6158 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6159 const ElementCount VF) const { 6160 // FIXME: We need a much better cost-model to take different parameters such 6161 // as register pressure, code size increase and cost of extra branches into 6162 // account. For now we apply a very crude heuristic and only consider loops 6163 // with vectorization factors larger than a certain value. 6164 // We also consider epilogue vectorization unprofitable for targets that don't 6165 // consider interleaving beneficial (eg. MVE). 6166 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6167 return false; 6168 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6169 return true; 6170 return false; 6171 } 6172 6173 VectorizationFactor 6174 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6175 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6176 VectorizationFactor Result = VectorizationFactor::Disabled(); 6177 if (!EnableEpilogueVectorization) { 6178 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6179 return Result; 6180 } 6181 6182 if (!isScalarEpilogueAllowed()) { 6183 LLVM_DEBUG( 6184 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6185 "allowed.\n";); 6186 return Result; 6187 } 6188 6189 // FIXME: This can be fixed for scalable vectors later, because at this stage 6190 // the LoopVectorizer will only consider vectorizing a loop with scalable 6191 // vectors when the loop has a hint to enable vectorization for a given VF. 6192 if (MainLoopVF.isScalable()) { 6193 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6194 "yet supported.\n"); 6195 return Result; 6196 } 6197 6198 // Not really a cost consideration, but check for unsupported cases here to 6199 // simplify the logic. 6200 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6201 LLVM_DEBUG( 6202 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6203 "not a supported candidate.\n";); 6204 return Result; 6205 } 6206 6207 if (EpilogueVectorizationForceVF > 1) { 6208 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6209 if (LVP.hasPlanWithVFs( 6210 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6211 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6212 else { 6213 LLVM_DEBUG( 6214 dbgs() 6215 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6216 return Result; 6217 } 6218 } 6219 6220 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6221 TheLoop->getHeader()->getParent()->hasMinSize()) { 6222 LLVM_DEBUG( 6223 dbgs() 6224 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6225 return Result; 6226 } 6227 6228 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6229 return Result; 6230 6231 for (auto &NextVF : ProfitableVFs) 6232 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6233 (Result.Width.getFixedValue() == 1 || 6234 isMoreProfitable(NextVF, Result)) && 6235 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6236 Result = NextVF; 6237 6238 if (Result != VectorizationFactor::Disabled()) 6239 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6240 << Result.Width.getFixedValue() << "\n";); 6241 return Result; 6242 } 6243 6244 std::pair<unsigned, unsigned> 6245 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6246 unsigned MinWidth = -1U; 6247 unsigned MaxWidth = 8; 6248 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6249 6250 // For each block. 6251 for (BasicBlock *BB : TheLoop->blocks()) { 6252 // For each instruction in the loop. 6253 for (Instruction &I : BB->instructionsWithoutDebug()) { 6254 Type *T = I.getType(); 6255 6256 // Skip ignored values. 6257 if (ValuesToIgnore.count(&I)) 6258 continue; 6259 6260 // Only examine Loads, Stores and PHINodes. 6261 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6262 continue; 6263 6264 // Examine PHI nodes that are reduction variables. Update the type to 6265 // account for the recurrence type. 6266 if (auto *PN = dyn_cast<PHINode>(&I)) { 6267 if (!Legal->isReductionVariable(PN)) 6268 continue; 6269 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6270 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6271 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6272 RdxDesc.getRecurrenceType(), 6273 TargetTransformInfo::ReductionFlags())) 6274 continue; 6275 T = RdxDesc.getRecurrenceType(); 6276 } 6277 6278 // Examine the stored values. 6279 if (auto *ST = dyn_cast<StoreInst>(&I)) 6280 T = ST->getValueOperand()->getType(); 6281 6282 // Ignore loaded pointer types and stored pointer types that are not 6283 // vectorizable. 6284 // 6285 // FIXME: The check here attempts to predict whether a load or store will 6286 // be vectorized. We only know this for certain after a VF has 6287 // been selected. Here, we assume that if an access can be 6288 // vectorized, it will be. We should also look at extending this 6289 // optimization to non-pointer types. 6290 // 6291 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6292 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6293 continue; 6294 6295 MinWidth = std::min(MinWidth, 6296 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6297 MaxWidth = std::max(MaxWidth, 6298 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6299 } 6300 } 6301 6302 return {MinWidth, MaxWidth}; 6303 } 6304 6305 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6306 unsigned LoopCost) { 6307 // -- The interleave heuristics -- 6308 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6309 // There are many micro-architectural considerations that we can't predict 6310 // at this level. For example, frontend pressure (on decode or fetch) due to 6311 // code size, or the number and capabilities of the execution ports. 6312 // 6313 // We use the following heuristics to select the interleave count: 6314 // 1. If the code has reductions, then we interleave to break the cross 6315 // iteration dependency. 6316 // 2. If the loop is really small, then we interleave to reduce the loop 6317 // overhead. 6318 // 3. We don't interleave if we think that we will spill registers to memory 6319 // due to the increased register pressure. 6320 6321 if (!isScalarEpilogueAllowed()) 6322 return 1; 6323 6324 // We used the distance for the interleave count. 6325 if (Legal->getMaxSafeDepDistBytes() != -1U) 6326 return 1; 6327 6328 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6329 const bool HasReductions = !Legal->getReductionVars().empty(); 6330 // Do not interleave loops with a relatively small known or estimated trip 6331 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6332 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6333 // because with the above conditions interleaving can expose ILP and break 6334 // cross iteration dependences for reductions. 6335 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6336 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6337 return 1; 6338 6339 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6340 // We divide by these constants so assume that we have at least one 6341 // instruction that uses at least one register. 6342 for (auto& pair : R.MaxLocalUsers) { 6343 pair.second = std::max(pair.second, 1U); 6344 } 6345 6346 // We calculate the interleave count using the following formula. 6347 // Subtract the number of loop invariants from the number of available 6348 // registers. These registers are used by all of the interleaved instances. 6349 // Next, divide the remaining registers by the number of registers that is 6350 // required by the loop, in order to estimate how many parallel instances 6351 // fit without causing spills. All of this is rounded down if necessary to be 6352 // a power of two. We want power of two interleave count to simplify any 6353 // addressing operations or alignment considerations. 6354 // We also want power of two interleave counts to ensure that the induction 6355 // variable of the vector loop wraps to zero, when tail is folded by masking; 6356 // this currently happens when OptForSize, in which case IC is set to 1 above. 6357 unsigned IC = UINT_MAX; 6358 6359 for (auto& pair : R.MaxLocalUsers) { 6360 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6361 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6362 << " registers of " 6363 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6364 if (VF.isScalar()) { 6365 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6366 TargetNumRegisters = ForceTargetNumScalarRegs; 6367 } else { 6368 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6369 TargetNumRegisters = ForceTargetNumVectorRegs; 6370 } 6371 unsigned MaxLocalUsers = pair.second; 6372 unsigned LoopInvariantRegs = 0; 6373 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6374 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6375 6376 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6377 // Don't count the induction variable as interleaved. 6378 if (EnableIndVarRegisterHeur) { 6379 TmpIC = 6380 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6381 std::max(1U, (MaxLocalUsers - 1))); 6382 } 6383 6384 IC = std::min(IC, TmpIC); 6385 } 6386 6387 // Clamp the interleave ranges to reasonable counts. 6388 unsigned MaxInterleaveCount = 6389 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6390 6391 // Check if the user has overridden the max. 6392 if (VF.isScalar()) { 6393 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6394 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6395 } else { 6396 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6397 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6398 } 6399 6400 // If trip count is known or estimated compile time constant, limit the 6401 // interleave count to be less than the trip count divided by VF, provided it 6402 // is at least 1. 6403 // 6404 // For scalable vectors we can't know if interleaving is beneficial. It may 6405 // not be beneficial for small loops if none of the lanes in the second vector 6406 // iterations is enabled. However, for larger loops, there is likely to be a 6407 // similar benefit as for fixed-width vectors. For now, we choose to leave 6408 // the InterleaveCount as if vscale is '1', although if some information about 6409 // the vector is known (e.g. min vector size), we can make a better decision. 6410 if (BestKnownTC) { 6411 MaxInterleaveCount = 6412 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6413 // Make sure MaxInterleaveCount is greater than 0. 6414 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6415 } 6416 6417 assert(MaxInterleaveCount > 0 && 6418 "Maximum interleave count must be greater than 0"); 6419 6420 // Clamp the calculated IC to be between the 1 and the max interleave count 6421 // that the target and trip count allows. 6422 if (IC > MaxInterleaveCount) 6423 IC = MaxInterleaveCount; 6424 else 6425 // Make sure IC is greater than 0. 6426 IC = std::max(1u, IC); 6427 6428 assert(IC > 0 && "Interleave count must be greater than 0."); 6429 6430 // If we did not calculate the cost for VF (because the user selected the VF) 6431 // then we calculate the cost of VF here. 6432 if (LoopCost == 0) { 6433 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6434 LoopCost = *expectedCost(VF).first.getValue(); 6435 } 6436 6437 assert(LoopCost && "Non-zero loop cost expected"); 6438 6439 // Interleave if we vectorized this loop and there is a reduction that could 6440 // benefit from interleaving. 6441 if (VF.isVector() && HasReductions) { 6442 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6443 return IC; 6444 } 6445 6446 // Note that if we've already vectorized the loop we will have done the 6447 // runtime check and so interleaving won't require further checks. 6448 bool InterleavingRequiresRuntimePointerCheck = 6449 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6450 6451 // We want to interleave small loops in order to reduce the loop overhead and 6452 // potentially expose ILP opportunities. 6453 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6454 << "LV: IC is " << IC << '\n' 6455 << "LV: VF is " << VF << '\n'); 6456 const bool AggressivelyInterleaveReductions = 6457 TTI.enableAggressiveInterleaving(HasReductions); 6458 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6459 // We assume that the cost overhead is 1 and we use the cost model 6460 // to estimate the cost of the loop and interleave until the cost of the 6461 // loop overhead is about 5% of the cost of the loop. 6462 unsigned SmallIC = 6463 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6464 6465 // Interleave until store/load ports (estimated by max interleave count) are 6466 // saturated. 6467 unsigned NumStores = Legal->getNumStores(); 6468 unsigned NumLoads = Legal->getNumLoads(); 6469 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6470 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6471 6472 // If we have a scalar reduction (vector reductions are already dealt with 6473 // by this point), we can increase the critical path length if the loop 6474 // we're interleaving is inside another loop. Limit, by default to 2, so the 6475 // critical path only gets increased by one reduction operation. 6476 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6477 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6478 SmallIC = std::min(SmallIC, F); 6479 StoresIC = std::min(StoresIC, F); 6480 LoadsIC = std::min(LoadsIC, F); 6481 } 6482 6483 if (EnableLoadStoreRuntimeInterleave && 6484 std::max(StoresIC, LoadsIC) > SmallIC) { 6485 LLVM_DEBUG( 6486 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6487 return std::max(StoresIC, LoadsIC); 6488 } 6489 6490 // If there are scalar reductions and TTI has enabled aggressive 6491 // interleaving for reductions, we will interleave to expose ILP. 6492 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6493 AggressivelyInterleaveReductions) { 6494 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6495 // Interleave no less than SmallIC but not as aggressive as the normal IC 6496 // to satisfy the rare situation when resources are too limited. 6497 return std::max(IC / 2, SmallIC); 6498 } else { 6499 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6500 return SmallIC; 6501 } 6502 } 6503 6504 // Interleave if this is a large loop (small loops are already dealt with by 6505 // this point) that could benefit from interleaving. 6506 if (AggressivelyInterleaveReductions) { 6507 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6508 return IC; 6509 } 6510 6511 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6512 return 1; 6513 } 6514 6515 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6516 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6517 // This function calculates the register usage by measuring the highest number 6518 // of values that are alive at a single location. Obviously, this is a very 6519 // rough estimation. We scan the loop in a topological order in order and 6520 // assign a number to each instruction. We use RPO to ensure that defs are 6521 // met before their users. We assume that each instruction that has in-loop 6522 // users starts an interval. We record every time that an in-loop value is 6523 // used, so we have a list of the first and last occurrences of each 6524 // instruction. Next, we transpose this data structure into a multi map that 6525 // holds the list of intervals that *end* at a specific location. This multi 6526 // map allows us to perform a linear search. We scan the instructions linearly 6527 // and record each time that a new interval starts, by placing it in a set. 6528 // If we find this value in the multi-map then we remove it from the set. 6529 // The max register usage is the maximum size of the set. 6530 // We also search for instructions that are defined outside the loop, but are 6531 // used inside the loop. We need this number separately from the max-interval 6532 // usage number because when we unroll, loop-invariant values do not take 6533 // more register. 6534 LoopBlocksDFS DFS(TheLoop); 6535 DFS.perform(LI); 6536 6537 RegisterUsage RU; 6538 6539 // Each 'key' in the map opens a new interval. The values 6540 // of the map are the index of the 'last seen' usage of the 6541 // instruction that is the key. 6542 using IntervalMap = DenseMap<Instruction *, unsigned>; 6543 6544 // Maps instruction to its index. 6545 SmallVector<Instruction *, 64> IdxToInstr; 6546 // Marks the end of each interval. 6547 IntervalMap EndPoint; 6548 // Saves the list of instruction indices that are used in the loop. 6549 SmallPtrSet<Instruction *, 8> Ends; 6550 // Saves the list of values that are used in the loop but are 6551 // defined outside the loop, such as arguments and constants. 6552 SmallPtrSet<Value *, 8> LoopInvariants; 6553 6554 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6555 for (Instruction &I : BB->instructionsWithoutDebug()) { 6556 IdxToInstr.push_back(&I); 6557 6558 // Save the end location of each USE. 6559 for (Value *U : I.operands()) { 6560 auto *Instr = dyn_cast<Instruction>(U); 6561 6562 // Ignore non-instruction values such as arguments, constants, etc. 6563 if (!Instr) 6564 continue; 6565 6566 // If this instruction is outside the loop then record it and continue. 6567 if (!TheLoop->contains(Instr)) { 6568 LoopInvariants.insert(Instr); 6569 continue; 6570 } 6571 6572 // Overwrite previous end points. 6573 EndPoint[Instr] = IdxToInstr.size(); 6574 Ends.insert(Instr); 6575 } 6576 } 6577 } 6578 6579 // Saves the list of intervals that end with the index in 'key'. 6580 using InstrList = SmallVector<Instruction *, 2>; 6581 DenseMap<unsigned, InstrList> TransposeEnds; 6582 6583 // Transpose the EndPoints to a list of values that end at each index. 6584 for (auto &Interval : EndPoint) 6585 TransposeEnds[Interval.second].push_back(Interval.first); 6586 6587 SmallPtrSet<Instruction *, 8> OpenIntervals; 6588 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6589 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6590 6591 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6592 6593 // A lambda that gets the register usage for the given type and VF. 6594 const auto &TTICapture = TTI; 6595 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6596 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6597 return 0; 6598 return *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6599 }; 6600 6601 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6602 Instruction *I = IdxToInstr[i]; 6603 6604 // Remove all of the instructions that end at this location. 6605 InstrList &List = TransposeEnds[i]; 6606 for (Instruction *ToRemove : List) 6607 OpenIntervals.erase(ToRemove); 6608 6609 // Ignore instructions that are never used within the loop. 6610 if (!Ends.count(I)) 6611 continue; 6612 6613 // Skip ignored values. 6614 if (ValuesToIgnore.count(I)) 6615 continue; 6616 6617 // For each VF find the maximum usage of registers. 6618 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6619 // Count the number of live intervals. 6620 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6621 6622 if (VFs[j].isScalar()) { 6623 for (auto Inst : OpenIntervals) { 6624 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6625 if (RegUsage.find(ClassID) == RegUsage.end()) 6626 RegUsage[ClassID] = 1; 6627 else 6628 RegUsage[ClassID] += 1; 6629 } 6630 } else { 6631 collectUniformsAndScalars(VFs[j]); 6632 for (auto Inst : OpenIntervals) { 6633 // Skip ignored values for VF > 1. 6634 if (VecValuesToIgnore.count(Inst)) 6635 continue; 6636 if (isScalarAfterVectorization(Inst, VFs[j])) { 6637 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6638 if (RegUsage.find(ClassID) == RegUsage.end()) 6639 RegUsage[ClassID] = 1; 6640 else 6641 RegUsage[ClassID] += 1; 6642 } else { 6643 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6644 if (RegUsage.find(ClassID) == RegUsage.end()) 6645 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6646 else 6647 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6648 } 6649 } 6650 } 6651 6652 for (auto& pair : RegUsage) { 6653 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6654 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6655 else 6656 MaxUsages[j][pair.first] = pair.second; 6657 } 6658 } 6659 6660 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6661 << OpenIntervals.size() << '\n'); 6662 6663 // Add the current instruction to the list of open intervals. 6664 OpenIntervals.insert(I); 6665 } 6666 6667 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6668 SmallMapVector<unsigned, unsigned, 4> Invariant; 6669 6670 for (auto Inst : LoopInvariants) { 6671 unsigned Usage = 6672 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6673 unsigned ClassID = 6674 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6675 if (Invariant.find(ClassID) == Invariant.end()) 6676 Invariant[ClassID] = Usage; 6677 else 6678 Invariant[ClassID] += Usage; 6679 } 6680 6681 LLVM_DEBUG({ 6682 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6683 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6684 << " item\n"; 6685 for (const auto &pair : MaxUsages[i]) { 6686 dbgs() << "LV(REG): RegisterClass: " 6687 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6688 << " registers\n"; 6689 } 6690 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6691 << " item\n"; 6692 for (const auto &pair : Invariant) { 6693 dbgs() << "LV(REG): RegisterClass: " 6694 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6695 << " registers\n"; 6696 } 6697 }); 6698 6699 RU.LoopInvariantRegs = Invariant; 6700 RU.MaxLocalUsers = MaxUsages[i]; 6701 RUs[i] = RU; 6702 } 6703 6704 return RUs; 6705 } 6706 6707 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6708 // TODO: Cost model for emulated masked load/store is completely 6709 // broken. This hack guides the cost model to use an artificially 6710 // high enough value to practically disable vectorization with such 6711 // operations, except where previously deployed legality hack allowed 6712 // using very low cost values. This is to avoid regressions coming simply 6713 // from moving "masked load/store" check from legality to cost model. 6714 // Masked Load/Gather emulation was previously never allowed. 6715 // Limited number of Masked Store/Scatter emulation was allowed. 6716 assert(isPredicatedInst(I) && 6717 "Expecting a scalar emulated instruction"); 6718 return isa<LoadInst>(I) || 6719 (isa<StoreInst>(I) && 6720 NumPredStores > NumberOfStoresToPredicate); 6721 } 6722 6723 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6724 // If we aren't vectorizing the loop, or if we've already collected the 6725 // instructions to scalarize, there's nothing to do. Collection may already 6726 // have occurred if we have a user-selected VF and are now computing the 6727 // expected cost for interleaving. 6728 if (VF.isScalar() || VF.isZero() || 6729 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6730 return; 6731 6732 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6733 // not profitable to scalarize any instructions, the presence of VF in the 6734 // map will indicate that we've analyzed it already. 6735 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6736 6737 // Find all the instructions that are scalar with predication in the loop and 6738 // determine if it would be better to not if-convert the blocks they are in. 6739 // If so, we also record the instructions to scalarize. 6740 for (BasicBlock *BB : TheLoop->blocks()) { 6741 if (!blockNeedsPredication(BB)) 6742 continue; 6743 for (Instruction &I : *BB) 6744 if (isScalarWithPredication(&I)) { 6745 ScalarCostsTy ScalarCosts; 6746 // Do not apply discount logic if hacked cost is needed 6747 // for emulated masked memrefs. 6748 if (!useEmulatedMaskMemRefHack(&I) && 6749 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6750 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6751 // Remember that BB will remain after vectorization. 6752 PredicatedBBsAfterVectorization.insert(BB); 6753 } 6754 } 6755 } 6756 6757 int LoopVectorizationCostModel::computePredInstDiscount( 6758 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6759 assert(!isUniformAfterVectorization(PredInst, VF) && 6760 "Instruction marked uniform-after-vectorization will be predicated"); 6761 6762 // Initialize the discount to zero, meaning that the scalar version and the 6763 // vector version cost the same. 6764 InstructionCost Discount = 0; 6765 6766 // Holds instructions to analyze. The instructions we visit are mapped in 6767 // ScalarCosts. Those instructions are the ones that would be scalarized if 6768 // we find that the scalar version costs less. 6769 SmallVector<Instruction *, 8> Worklist; 6770 6771 // Returns true if the given instruction can be scalarized. 6772 auto canBeScalarized = [&](Instruction *I) -> bool { 6773 // We only attempt to scalarize instructions forming a single-use chain 6774 // from the original predicated block that would otherwise be vectorized. 6775 // Although not strictly necessary, we give up on instructions we know will 6776 // already be scalar to avoid traversing chains that are unlikely to be 6777 // beneficial. 6778 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6779 isScalarAfterVectorization(I, VF)) 6780 return false; 6781 6782 // If the instruction is scalar with predication, it will be analyzed 6783 // separately. We ignore it within the context of PredInst. 6784 if (isScalarWithPredication(I)) 6785 return false; 6786 6787 // If any of the instruction's operands are uniform after vectorization, 6788 // the instruction cannot be scalarized. This prevents, for example, a 6789 // masked load from being scalarized. 6790 // 6791 // We assume we will only emit a value for lane zero of an instruction 6792 // marked uniform after vectorization, rather than VF identical values. 6793 // Thus, if we scalarize an instruction that uses a uniform, we would 6794 // create uses of values corresponding to the lanes we aren't emitting code 6795 // for. This behavior can be changed by allowing getScalarValue to clone 6796 // the lane zero values for uniforms rather than asserting. 6797 for (Use &U : I->operands()) 6798 if (auto *J = dyn_cast<Instruction>(U.get())) 6799 if (isUniformAfterVectorization(J, VF)) 6800 return false; 6801 6802 // Otherwise, we can scalarize the instruction. 6803 return true; 6804 }; 6805 6806 // Compute the expected cost discount from scalarizing the entire expression 6807 // feeding the predicated instruction. We currently only consider expressions 6808 // that are single-use instruction chains. 6809 Worklist.push_back(PredInst); 6810 while (!Worklist.empty()) { 6811 Instruction *I = Worklist.pop_back_val(); 6812 6813 // If we've already analyzed the instruction, there's nothing to do. 6814 if (ScalarCosts.find(I) != ScalarCosts.end()) 6815 continue; 6816 6817 // Compute the cost of the vector instruction. Note that this cost already 6818 // includes the scalarization overhead of the predicated instruction. 6819 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6820 6821 // Compute the cost of the scalarized instruction. This cost is the cost of 6822 // the instruction as if it wasn't if-converted and instead remained in the 6823 // predicated block. We will scale this cost by block probability after 6824 // computing the scalarization overhead. 6825 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6826 InstructionCost ScalarCost = 6827 VF.getKnownMinValue() * 6828 getInstructionCost(I, ElementCount::getFixed(1)).first; 6829 6830 // Compute the scalarization overhead of needed insertelement instructions 6831 // and phi nodes. 6832 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6833 ScalarCost += TTI.getScalarizationOverhead( 6834 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6835 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6836 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6837 ScalarCost += 6838 VF.getKnownMinValue() * 6839 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6840 } 6841 6842 // Compute the scalarization overhead of needed extractelement 6843 // instructions. For each of the instruction's operands, if the operand can 6844 // be scalarized, add it to the worklist; otherwise, account for the 6845 // overhead. 6846 for (Use &U : I->operands()) 6847 if (auto *J = dyn_cast<Instruction>(U.get())) { 6848 assert(VectorType::isValidElementType(J->getType()) && 6849 "Instruction has non-scalar type"); 6850 if (canBeScalarized(J)) 6851 Worklist.push_back(J); 6852 else if (needsExtract(J, VF)) { 6853 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6854 ScalarCost += TTI.getScalarizationOverhead( 6855 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6856 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6857 } 6858 } 6859 6860 // Scale the total scalar cost by block probability. 6861 ScalarCost /= getReciprocalPredBlockProb(); 6862 6863 // Compute the discount. A non-negative discount means the vector version 6864 // of the instruction costs more, and scalarizing would be beneficial. 6865 Discount += VectorCost - ScalarCost; 6866 ScalarCosts[I] = ScalarCost; 6867 } 6868 6869 return *Discount.getValue(); 6870 } 6871 6872 LoopVectorizationCostModel::VectorizationCostTy 6873 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6874 VectorizationCostTy Cost; 6875 6876 // For each block. 6877 for (BasicBlock *BB : TheLoop->blocks()) { 6878 VectorizationCostTy BlockCost; 6879 6880 // For each instruction in the old loop. 6881 for (Instruction &I : BB->instructionsWithoutDebug()) { 6882 // Skip ignored values. 6883 if (ValuesToIgnore.count(&I) || 6884 (VF.isVector() && VecValuesToIgnore.count(&I))) 6885 continue; 6886 6887 VectorizationCostTy C = getInstructionCost(&I, VF); 6888 6889 // Check if we should override the cost. 6890 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6891 C.first = InstructionCost(ForceTargetInstructionCost); 6892 6893 BlockCost.first += C.first; 6894 BlockCost.second |= C.second; 6895 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6896 << " for VF " << VF << " For instruction: " << I 6897 << '\n'); 6898 } 6899 6900 // If we are vectorizing a predicated block, it will have been 6901 // if-converted. This means that the block's instructions (aside from 6902 // stores and instructions that may divide by zero) will now be 6903 // unconditionally executed. For the scalar case, we may not always execute 6904 // the predicated block, if it is an if-else block. Thus, scale the block's 6905 // cost by the probability of executing it. blockNeedsPredication from 6906 // Legal is used so as to not include all blocks in tail folded loops. 6907 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6908 BlockCost.first /= getReciprocalPredBlockProb(); 6909 6910 Cost.first += BlockCost.first; 6911 Cost.second |= BlockCost.second; 6912 } 6913 6914 return Cost; 6915 } 6916 6917 /// Gets Address Access SCEV after verifying that the access pattern 6918 /// is loop invariant except the induction variable dependence. 6919 /// 6920 /// This SCEV can be sent to the Target in order to estimate the address 6921 /// calculation cost. 6922 static const SCEV *getAddressAccessSCEV( 6923 Value *Ptr, 6924 LoopVectorizationLegality *Legal, 6925 PredicatedScalarEvolution &PSE, 6926 const Loop *TheLoop) { 6927 6928 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6929 if (!Gep) 6930 return nullptr; 6931 6932 // We are looking for a gep with all loop invariant indices except for one 6933 // which should be an induction variable. 6934 auto SE = PSE.getSE(); 6935 unsigned NumOperands = Gep->getNumOperands(); 6936 for (unsigned i = 1; i < NumOperands; ++i) { 6937 Value *Opd = Gep->getOperand(i); 6938 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6939 !Legal->isInductionVariable(Opd)) 6940 return nullptr; 6941 } 6942 6943 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6944 return PSE.getSCEV(Ptr); 6945 } 6946 6947 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6948 return Legal->hasStride(I->getOperand(0)) || 6949 Legal->hasStride(I->getOperand(1)); 6950 } 6951 6952 InstructionCost 6953 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6954 ElementCount VF) { 6955 assert(VF.isVector() && 6956 "Scalarization cost of instruction implies vectorization."); 6957 if (VF.isScalable()) 6958 return InstructionCost::getInvalid(); 6959 6960 Type *ValTy = getLoadStoreType(I); 6961 auto SE = PSE.getSE(); 6962 6963 unsigned AS = getLoadStoreAddressSpace(I); 6964 Value *Ptr = getLoadStorePointerOperand(I); 6965 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6966 6967 // Figure out whether the access is strided and get the stride value 6968 // if it's known in compile time 6969 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6970 6971 // Get the cost of the scalar memory instruction and address computation. 6972 InstructionCost Cost = 6973 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6974 6975 // Don't pass *I here, since it is scalar but will actually be part of a 6976 // vectorized loop where the user of it is a vectorized instruction. 6977 const Align Alignment = getLoadStoreAlignment(I); 6978 Cost += VF.getKnownMinValue() * 6979 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6980 AS, TTI::TCK_RecipThroughput); 6981 6982 // Get the overhead of the extractelement and insertelement instructions 6983 // we might create due to scalarization. 6984 Cost += getScalarizationOverhead(I, VF); 6985 6986 // If we have a predicated load/store, it will need extra i1 extracts and 6987 // conditional branches, but may not be executed for each vector lane. Scale 6988 // the cost by the probability of executing the predicated block. 6989 if (isPredicatedInst(I)) { 6990 Cost /= getReciprocalPredBlockProb(); 6991 6992 // Add the cost of an i1 extract and a branch 6993 auto *Vec_i1Ty = 6994 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6995 Cost += TTI.getScalarizationOverhead( 6996 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6997 /*Insert=*/false, /*Extract=*/true); 6998 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6999 7000 if (useEmulatedMaskMemRefHack(I)) 7001 // Artificially setting to a high enough value to practically disable 7002 // vectorization with such operations. 7003 Cost = 3000000; 7004 } 7005 7006 return Cost; 7007 } 7008 7009 InstructionCost 7010 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7011 ElementCount VF) { 7012 Type *ValTy = getLoadStoreType(I); 7013 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7014 Value *Ptr = getLoadStorePointerOperand(I); 7015 unsigned AS = getLoadStoreAddressSpace(I); 7016 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7017 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7018 7019 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7020 "Stride should be 1 or -1 for consecutive memory access"); 7021 const Align Alignment = getLoadStoreAlignment(I); 7022 InstructionCost Cost = 0; 7023 if (Legal->isMaskRequired(I)) 7024 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7025 CostKind); 7026 else 7027 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7028 CostKind, I); 7029 7030 bool Reverse = ConsecutiveStride < 0; 7031 if (Reverse) 7032 Cost += 7033 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7034 return Cost; 7035 } 7036 7037 InstructionCost 7038 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7039 ElementCount VF) { 7040 assert(Legal->isUniformMemOp(*I)); 7041 7042 Type *ValTy = getLoadStoreType(I); 7043 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7044 const Align Alignment = getLoadStoreAlignment(I); 7045 unsigned AS = getLoadStoreAddressSpace(I); 7046 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7047 if (isa<LoadInst>(I)) { 7048 return TTI.getAddressComputationCost(ValTy) + 7049 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7050 CostKind) + 7051 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7052 } 7053 StoreInst *SI = cast<StoreInst>(I); 7054 7055 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7056 return TTI.getAddressComputationCost(ValTy) + 7057 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7058 CostKind) + 7059 (isLoopInvariantStoreValue 7060 ? 0 7061 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7062 VF.getKnownMinValue() - 1)); 7063 } 7064 7065 InstructionCost 7066 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7067 ElementCount VF) { 7068 Type *ValTy = getLoadStoreType(I); 7069 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7070 const Align Alignment = getLoadStoreAlignment(I); 7071 const Value *Ptr = getLoadStorePointerOperand(I); 7072 7073 return TTI.getAddressComputationCost(VectorTy) + 7074 TTI.getGatherScatterOpCost( 7075 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7076 TargetTransformInfo::TCK_RecipThroughput, I); 7077 } 7078 7079 InstructionCost 7080 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7081 ElementCount VF) { 7082 // TODO: Once we have support for interleaving with scalable vectors 7083 // we can calculate the cost properly here. 7084 if (VF.isScalable()) 7085 return InstructionCost::getInvalid(); 7086 7087 Type *ValTy = getLoadStoreType(I); 7088 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7089 unsigned AS = getLoadStoreAddressSpace(I); 7090 7091 auto Group = getInterleavedAccessGroup(I); 7092 assert(Group && "Fail to get an interleaved access group."); 7093 7094 unsigned InterleaveFactor = Group->getFactor(); 7095 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7096 7097 // Holds the indices of existing members in an interleaved load group. 7098 // An interleaved store group doesn't need this as it doesn't allow gaps. 7099 SmallVector<unsigned, 4> Indices; 7100 if (isa<LoadInst>(I)) { 7101 for (unsigned i = 0; i < InterleaveFactor; i++) 7102 if (Group->getMember(i)) 7103 Indices.push_back(i); 7104 } 7105 7106 // Calculate the cost of the whole interleaved group. 7107 bool UseMaskForGaps = 7108 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7109 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7110 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7111 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7112 7113 if (Group->isReverse()) { 7114 // TODO: Add support for reversed masked interleaved access. 7115 assert(!Legal->isMaskRequired(I) && 7116 "Reverse masked interleaved access not supported."); 7117 Cost += 7118 Group->getNumMembers() * 7119 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7120 } 7121 return Cost; 7122 } 7123 7124 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 7125 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7126 // Early exit for no inloop reductions 7127 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7128 return InstructionCost::getInvalid(); 7129 auto *VectorTy = cast<VectorType>(Ty); 7130 7131 // We are looking for a pattern of, and finding the minimal acceptable cost: 7132 // reduce(mul(ext(A), ext(B))) or 7133 // reduce(mul(A, B)) or 7134 // reduce(ext(A)) or 7135 // reduce(A). 7136 // The basic idea is that we walk down the tree to do that, finding the root 7137 // reduction instruction in InLoopReductionImmediateChains. From there we find 7138 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7139 // of the components. If the reduction cost is lower then we return it for the 7140 // reduction instruction and 0 for the other instructions in the pattern. If 7141 // it is not we return an invalid cost specifying the orignal cost method 7142 // should be used. 7143 Instruction *RetI = I; 7144 if ((RetI->getOpcode() == Instruction::SExt || 7145 RetI->getOpcode() == Instruction::ZExt)) { 7146 if (!RetI->hasOneUser()) 7147 return InstructionCost::getInvalid(); 7148 RetI = RetI->user_back(); 7149 } 7150 if (RetI->getOpcode() == Instruction::Mul && 7151 RetI->user_back()->getOpcode() == Instruction::Add) { 7152 if (!RetI->hasOneUser()) 7153 return InstructionCost::getInvalid(); 7154 RetI = RetI->user_back(); 7155 } 7156 7157 // Test if the found instruction is a reduction, and if not return an invalid 7158 // cost specifying the parent to use the original cost modelling. 7159 if (!InLoopReductionImmediateChains.count(RetI)) 7160 return InstructionCost::getInvalid(); 7161 7162 // Find the reduction this chain is a part of and calculate the basic cost of 7163 // the reduction on its own. 7164 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7165 Instruction *ReductionPhi = LastChain; 7166 while (!isa<PHINode>(ReductionPhi)) 7167 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7168 7169 const RecurrenceDescriptor &RdxDesc = 7170 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7171 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7172 RdxDesc.getOpcode(), VectorTy, false, CostKind); 7173 7174 // Get the operand that was not the reduction chain and match it to one of the 7175 // patterns, returning the better cost if it is found. 7176 Instruction *RedOp = RetI->getOperand(1) == LastChain 7177 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7178 : dyn_cast<Instruction>(RetI->getOperand(1)); 7179 7180 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7181 7182 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7183 !TheLoop->isLoopInvariant(RedOp)) { 7184 bool IsUnsigned = isa<ZExtInst>(RedOp); 7185 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7186 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7187 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7188 CostKind); 7189 7190 InstructionCost ExtCost = 7191 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7192 TTI::CastContextHint::None, CostKind, RedOp); 7193 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7194 return I == RetI ? *RedCost.getValue() : 0; 7195 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7196 Instruction *Mul = RedOp; 7197 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7198 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7199 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7200 Op0->getOpcode() == Op1->getOpcode() && 7201 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7202 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7203 bool IsUnsigned = isa<ZExtInst>(Op0); 7204 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7205 // reduce(mul(ext, ext)) 7206 InstructionCost ExtCost = 7207 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7208 TTI::CastContextHint::None, CostKind, Op0); 7209 InstructionCost MulCost = 7210 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7211 7212 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7213 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7214 CostKind); 7215 7216 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7217 return I == RetI ? *RedCost.getValue() : 0; 7218 } else { 7219 InstructionCost MulCost = 7220 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7221 7222 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7223 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7224 CostKind); 7225 7226 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7227 return I == RetI ? *RedCost.getValue() : 0; 7228 } 7229 } 7230 7231 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7232 } 7233 7234 InstructionCost 7235 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7236 ElementCount VF) { 7237 // Calculate scalar cost only. Vectorization cost should be ready at this 7238 // moment. 7239 if (VF.isScalar()) { 7240 Type *ValTy = getLoadStoreType(I); 7241 const Align Alignment = getLoadStoreAlignment(I); 7242 unsigned AS = getLoadStoreAddressSpace(I); 7243 7244 return TTI.getAddressComputationCost(ValTy) + 7245 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7246 TTI::TCK_RecipThroughput, I); 7247 } 7248 return getWideningCost(I, VF); 7249 } 7250 7251 LoopVectorizationCostModel::VectorizationCostTy 7252 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7253 ElementCount VF) { 7254 // If we know that this instruction will remain uniform, check the cost of 7255 // the scalar version. 7256 if (isUniformAfterVectorization(I, VF)) 7257 VF = ElementCount::getFixed(1); 7258 7259 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7260 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7261 7262 // Forced scalars do not have any scalarization overhead. 7263 auto ForcedScalar = ForcedScalars.find(VF); 7264 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7265 auto InstSet = ForcedScalar->second; 7266 if (InstSet.count(I)) 7267 return VectorizationCostTy( 7268 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7269 VF.getKnownMinValue()), 7270 false); 7271 } 7272 7273 Type *VectorTy; 7274 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7275 7276 bool TypeNotScalarized = 7277 VF.isVector() && VectorTy->isVectorTy() && 7278 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7279 return VectorizationCostTy(C, TypeNotScalarized); 7280 } 7281 7282 InstructionCost 7283 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7284 ElementCount VF) const { 7285 7286 if (VF.isScalable()) 7287 return InstructionCost::getInvalid(); 7288 7289 if (VF.isScalar()) 7290 return 0; 7291 7292 InstructionCost Cost = 0; 7293 Type *RetTy = ToVectorTy(I->getType(), VF); 7294 if (!RetTy->isVoidTy() && 7295 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7296 Cost += TTI.getScalarizationOverhead( 7297 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7298 true, false); 7299 7300 // Some targets keep addresses scalar. 7301 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7302 return Cost; 7303 7304 // Some targets support efficient element stores. 7305 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7306 return Cost; 7307 7308 // Collect operands to consider. 7309 CallInst *CI = dyn_cast<CallInst>(I); 7310 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7311 7312 // Skip operands that do not require extraction/scalarization and do not incur 7313 // any overhead. 7314 SmallVector<Type *> Tys; 7315 for (auto *V : filterExtractingOperands(Ops, VF)) 7316 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7317 return Cost + TTI.getOperandsScalarizationOverhead( 7318 filterExtractingOperands(Ops, VF), Tys); 7319 } 7320 7321 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7322 if (VF.isScalar()) 7323 return; 7324 NumPredStores = 0; 7325 for (BasicBlock *BB : TheLoop->blocks()) { 7326 // For each instruction in the old loop. 7327 for (Instruction &I : *BB) { 7328 Value *Ptr = getLoadStorePointerOperand(&I); 7329 if (!Ptr) 7330 continue; 7331 7332 // TODO: We should generate better code and update the cost model for 7333 // predicated uniform stores. Today they are treated as any other 7334 // predicated store (see added test cases in 7335 // invariant-store-vectorization.ll). 7336 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7337 NumPredStores++; 7338 7339 if (Legal->isUniformMemOp(I)) { 7340 // TODO: Avoid replicating loads and stores instead of 7341 // relying on instcombine to remove them. 7342 // Load: Scalar load + broadcast 7343 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7344 InstructionCost Cost; 7345 if (isa<StoreInst>(&I) && VF.isScalable() && 7346 isLegalGatherOrScatter(&I)) { 7347 Cost = getGatherScatterCost(&I, VF); 7348 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7349 } else { 7350 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7351 "Cannot yet scalarize uniform stores"); 7352 Cost = getUniformMemOpCost(&I, VF); 7353 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7354 } 7355 continue; 7356 } 7357 7358 // We assume that widening is the best solution when possible. 7359 if (memoryInstructionCanBeWidened(&I, VF)) { 7360 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7361 int ConsecutiveStride = 7362 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7363 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7364 "Expected consecutive stride."); 7365 InstWidening Decision = 7366 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7367 setWideningDecision(&I, VF, Decision, Cost); 7368 continue; 7369 } 7370 7371 // Choose between Interleaving, Gather/Scatter or Scalarization. 7372 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7373 unsigned NumAccesses = 1; 7374 if (isAccessInterleaved(&I)) { 7375 auto Group = getInterleavedAccessGroup(&I); 7376 assert(Group && "Fail to get an interleaved access group."); 7377 7378 // Make one decision for the whole group. 7379 if (getWideningDecision(&I, VF) != CM_Unknown) 7380 continue; 7381 7382 NumAccesses = Group->getNumMembers(); 7383 if (interleavedAccessCanBeWidened(&I, VF)) 7384 InterleaveCost = getInterleaveGroupCost(&I, VF); 7385 } 7386 7387 InstructionCost GatherScatterCost = 7388 isLegalGatherOrScatter(&I) 7389 ? getGatherScatterCost(&I, VF) * NumAccesses 7390 : InstructionCost::getInvalid(); 7391 7392 InstructionCost ScalarizationCost = 7393 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7394 7395 // Choose better solution for the current VF, 7396 // write down this decision and use it during vectorization. 7397 InstructionCost Cost; 7398 InstWidening Decision; 7399 if (InterleaveCost <= GatherScatterCost && 7400 InterleaveCost < ScalarizationCost) { 7401 Decision = CM_Interleave; 7402 Cost = InterleaveCost; 7403 } else if (GatherScatterCost < ScalarizationCost) { 7404 Decision = CM_GatherScatter; 7405 Cost = GatherScatterCost; 7406 } else { 7407 assert(!VF.isScalable() && 7408 "We cannot yet scalarise for scalable vectors"); 7409 Decision = CM_Scalarize; 7410 Cost = ScalarizationCost; 7411 } 7412 // If the instructions belongs to an interleave group, the whole group 7413 // receives the same decision. The whole group receives the cost, but 7414 // the cost will actually be assigned to one instruction. 7415 if (auto Group = getInterleavedAccessGroup(&I)) 7416 setWideningDecision(Group, VF, Decision, Cost); 7417 else 7418 setWideningDecision(&I, VF, Decision, Cost); 7419 } 7420 } 7421 7422 // Make sure that any load of address and any other address computation 7423 // remains scalar unless there is gather/scatter support. This avoids 7424 // inevitable extracts into address registers, and also has the benefit of 7425 // activating LSR more, since that pass can't optimize vectorized 7426 // addresses. 7427 if (TTI.prefersVectorizedAddressing()) 7428 return; 7429 7430 // Start with all scalar pointer uses. 7431 SmallPtrSet<Instruction *, 8> AddrDefs; 7432 for (BasicBlock *BB : TheLoop->blocks()) 7433 for (Instruction &I : *BB) { 7434 Instruction *PtrDef = 7435 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7436 if (PtrDef && TheLoop->contains(PtrDef) && 7437 getWideningDecision(&I, VF) != CM_GatherScatter) 7438 AddrDefs.insert(PtrDef); 7439 } 7440 7441 // Add all instructions used to generate the addresses. 7442 SmallVector<Instruction *, 4> Worklist; 7443 append_range(Worklist, AddrDefs); 7444 while (!Worklist.empty()) { 7445 Instruction *I = Worklist.pop_back_val(); 7446 for (auto &Op : I->operands()) 7447 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7448 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7449 AddrDefs.insert(InstOp).second) 7450 Worklist.push_back(InstOp); 7451 } 7452 7453 for (auto *I : AddrDefs) { 7454 if (isa<LoadInst>(I)) { 7455 // Setting the desired widening decision should ideally be handled in 7456 // by cost functions, but since this involves the task of finding out 7457 // if the loaded register is involved in an address computation, it is 7458 // instead changed here when we know this is the case. 7459 InstWidening Decision = getWideningDecision(I, VF); 7460 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7461 // Scalarize a widened load of address. 7462 setWideningDecision( 7463 I, VF, CM_Scalarize, 7464 (VF.getKnownMinValue() * 7465 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7466 else if (auto Group = getInterleavedAccessGroup(I)) { 7467 // Scalarize an interleave group of address loads. 7468 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7469 if (Instruction *Member = Group->getMember(I)) 7470 setWideningDecision( 7471 Member, VF, CM_Scalarize, 7472 (VF.getKnownMinValue() * 7473 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7474 } 7475 } 7476 } else 7477 // Make sure I gets scalarized and a cost estimate without 7478 // scalarization overhead. 7479 ForcedScalars[VF].insert(I); 7480 } 7481 } 7482 7483 InstructionCost 7484 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7485 Type *&VectorTy) { 7486 Type *RetTy = I->getType(); 7487 if (canTruncateToMinimalBitwidth(I, VF)) 7488 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7489 auto SE = PSE.getSE(); 7490 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7491 7492 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7493 ElementCount VF) -> bool { 7494 if (VF.isScalar()) 7495 return true; 7496 7497 auto Scalarized = InstsToScalarize.find(VF); 7498 assert(Scalarized != InstsToScalarize.end() && 7499 "VF not yet analyzed for scalarization profitability"); 7500 return !Scalarized->second.count(I) && 7501 llvm::all_of(I->users(), [&](User *U) { 7502 auto *UI = cast<Instruction>(U); 7503 return !Scalarized->second.count(UI); 7504 }); 7505 }; 7506 (void) hasSingleCopyAfterVectorization; 7507 7508 if (isScalarAfterVectorization(I, VF)) { 7509 // With the exception of GEPs and PHIs, after scalarization there should 7510 // only be one copy of the instruction generated in the loop. This is 7511 // because the VF is either 1, or any instructions that need scalarizing 7512 // have already been dealt with by the the time we get here. As a result, 7513 // it means we don't have to multiply the instruction cost by VF. 7514 assert(I->getOpcode() == Instruction::GetElementPtr || 7515 I->getOpcode() == Instruction::PHI || 7516 (I->getOpcode() == Instruction::BitCast && 7517 I->getType()->isPointerTy()) || 7518 hasSingleCopyAfterVectorization(I, VF)); 7519 VectorTy = RetTy; 7520 } else 7521 VectorTy = ToVectorTy(RetTy, VF); 7522 7523 // TODO: We need to estimate the cost of intrinsic calls. 7524 switch (I->getOpcode()) { 7525 case Instruction::GetElementPtr: 7526 // We mark this instruction as zero-cost because the cost of GEPs in 7527 // vectorized code depends on whether the corresponding memory instruction 7528 // is scalarized or not. Therefore, we handle GEPs with the memory 7529 // instruction cost. 7530 return 0; 7531 case Instruction::Br: { 7532 // In cases of scalarized and predicated instructions, there will be VF 7533 // predicated blocks in the vectorized loop. Each branch around these 7534 // blocks requires also an extract of its vector compare i1 element. 7535 bool ScalarPredicatedBB = false; 7536 BranchInst *BI = cast<BranchInst>(I); 7537 if (VF.isVector() && BI->isConditional() && 7538 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7539 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7540 ScalarPredicatedBB = true; 7541 7542 if (ScalarPredicatedBB) { 7543 // Return cost for branches around scalarized and predicated blocks. 7544 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7545 auto *Vec_i1Ty = 7546 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7547 return (TTI.getScalarizationOverhead( 7548 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7549 false, true) + 7550 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7551 VF.getKnownMinValue())); 7552 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7553 // The back-edge branch will remain, as will all scalar branches. 7554 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7555 else 7556 // This branch will be eliminated by if-conversion. 7557 return 0; 7558 // Note: We currently assume zero cost for an unconditional branch inside 7559 // a predicated block since it will become a fall-through, although we 7560 // may decide in the future to call TTI for all branches. 7561 } 7562 case Instruction::PHI: { 7563 auto *Phi = cast<PHINode>(I); 7564 7565 // First-order recurrences are replaced by vector shuffles inside the loop. 7566 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7567 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7568 return TTI.getShuffleCost( 7569 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7570 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7571 7572 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7573 // converted into select instructions. We require N - 1 selects per phi 7574 // node, where N is the number of incoming values. 7575 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7576 return (Phi->getNumIncomingValues() - 1) * 7577 TTI.getCmpSelInstrCost( 7578 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7579 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7580 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7581 7582 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7583 } 7584 case Instruction::UDiv: 7585 case Instruction::SDiv: 7586 case Instruction::URem: 7587 case Instruction::SRem: 7588 // If we have a predicated instruction, it may not be executed for each 7589 // vector lane. Get the scalarization cost and scale this amount by the 7590 // probability of executing the predicated block. If the instruction is not 7591 // predicated, we fall through to the next case. 7592 if (VF.isVector() && isScalarWithPredication(I)) { 7593 InstructionCost Cost = 0; 7594 7595 // These instructions have a non-void type, so account for the phi nodes 7596 // that we will create. This cost is likely to be zero. The phi node 7597 // cost, if any, should be scaled by the block probability because it 7598 // models a copy at the end of each predicated block. 7599 Cost += VF.getKnownMinValue() * 7600 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7601 7602 // The cost of the non-predicated instruction. 7603 Cost += VF.getKnownMinValue() * 7604 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7605 7606 // The cost of insertelement and extractelement instructions needed for 7607 // scalarization. 7608 Cost += getScalarizationOverhead(I, VF); 7609 7610 // Scale the cost by the probability of executing the predicated blocks. 7611 // This assumes the predicated block for each vector lane is equally 7612 // likely. 7613 return Cost / getReciprocalPredBlockProb(); 7614 } 7615 LLVM_FALLTHROUGH; 7616 case Instruction::Add: 7617 case Instruction::FAdd: 7618 case Instruction::Sub: 7619 case Instruction::FSub: 7620 case Instruction::Mul: 7621 case Instruction::FMul: 7622 case Instruction::FDiv: 7623 case Instruction::FRem: 7624 case Instruction::Shl: 7625 case Instruction::LShr: 7626 case Instruction::AShr: 7627 case Instruction::And: 7628 case Instruction::Or: 7629 case Instruction::Xor: { 7630 // Since we will replace the stride by 1 the multiplication should go away. 7631 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7632 return 0; 7633 7634 // Detect reduction patterns 7635 InstructionCost RedCost; 7636 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7637 .isValid()) 7638 return RedCost; 7639 7640 // Certain instructions can be cheaper to vectorize if they have a constant 7641 // second vector operand. One example of this are shifts on x86. 7642 Value *Op2 = I->getOperand(1); 7643 TargetTransformInfo::OperandValueProperties Op2VP; 7644 TargetTransformInfo::OperandValueKind Op2VK = 7645 TTI.getOperandInfo(Op2, Op2VP); 7646 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7647 Op2VK = TargetTransformInfo::OK_UniformValue; 7648 7649 SmallVector<const Value *, 4> Operands(I->operand_values()); 7650 return TTI.getArithmeticInstrCost( 7651 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7652 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7653 } 7654 case Instruction::FNeg: { 7655 return TTI.getArithmeticInstrCost( 7656 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7657 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7658 TargetTransformInfo::OP_None, I->getOperand(0), I); 7659 } 7660 case Instruction::Select: { 7661 SelectInst *SI = cast<SelectInst>(I); 7662 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7663 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7664 7665 const Value *Op0, *Op1; 7666 using namespace llvm::PatternMatch; 7667 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7668 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7669 // select x, y, false --> x & y 7670 // select x, true, y --> x | y 7671 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7672 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7673 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7674 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7675 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7676 Op1->getType()->getScalarSizeInBits() == 1); 7677 7678 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7679 return TTI.getArithmeticInstrCost( 7680 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7681 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7682 } 7683 7684 Type *CondTy = SI->getCondition()->getType(); 7685 if (!ScalarCond) 7686 CondTy = VectorType::get(CondTy, VF); 7687 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7688 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7689 } 7690 case Instruction::ICmp: 7691 case Instruction::FCmp: { 7692 Type *ValTy = I->getOperand(0)->getType(); 7693 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7694 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7695 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7696 VectorTy = ToVectorTy(ValTy, VF); 7697 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7698 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7699 } 7700 case Instruction::Store: 7701 case Instruction::Load: { 7702 ElementCount Width = VF; 7703 if (Width.isVector()) { 7704 InstWidening Decision = getWideningDecision(I, Width); 7705 assert(Decision != CM_Unknown && 7706 "CM decision should be taken at this point"); 7707 if (Decision == CM_Scalarize) 7708 Width = ElementCount::getFixed(1); 7709 } 7710 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7711 return getMemoryInstructionCost(I, VF); 7712 } 7713 case Instruction::BitCast: 7714 if (I->getType()->isPointerTy()) 7715 return 0; 7716 LLVM_FALLTHROUGH; 7717 case Instruction::ZExt: 7718 case Instruction::SExt: 7719 case Instruction::FPToUI: 7720 case Instruction::FPToSI: 7721 case Instruction::FPExt: 7722 case Instruction::PtrToInt: 7723 case Instruction::IntToPtr: 7724 case Instruction::SIToFP: 7725 case Instruction::UIToFP: 7726 case Instruction::Trunc: 7727 case Instruction::FPTrunc: { 7728 // Computes the CastContextHint from a Load/Store instruction. 7729 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7730 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7731 "Expected a load or a store!"); 7732 7733 if (VF.isScalar() || !TheLoop->contains(I)) 7734 return TTI::CastContextHint::Normal; 7735 7736 switch (getWideningDecision(I, VF)) { 7737 case LoopVectorizationCostModel::CM_GatherScatter: 7738 return TTI::CastContextHint::GatherScatter; 7739 case LoopVectorizationCostModel::CM_Interleave: 7740 return TTI::CastContextHint::Interleave; 7741 case LoopVectorizationCostModel::CM_Scalarize: 7742 case LoopVectorizationCostModel::CM_Widen: 7743 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7744 : TTI::CastContextHint::Normal; 7745 case LoopVectorizationCostModel::CM_Widen_Reverse: 7746 return TTI::CastContextHint::Reversed; 7747 case LoopVectorizationCostModel::CM_Unknown: 7748 llvm_unreachable("Instr did not go through cost modelling?"); 7749 } 7750 7751 llvm_unreachable("Unhandled case!"); 7752 }; 7753 7754 unsigned Opcode = I->getOpcode(); 7755 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7756 // For Trunc, the context is the only user, which must be a StoreInst. 7757 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7758 if (I->hasOneUse()) 7759 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7760 CCH = ComputeCCH(Store); 7761 } 7762 // For Z/Sext, the context is the operand, which must be a LoadInst. 7763 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7764 Opcode == Instruction::FPExt) { 7765 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7766 CCH = ComputeCCH(Load); 7767 } 7768 7769 // We optimize the truncation of induction variables having constant 7770 // integer steps. The cost of these truncations is the same as the scalar 7771 // operation. 7772 if (isOptimizableIVTruncate(I, VF)) { 7773 auto *Trunc = cast<TruncInst>(I); 7774 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7775 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7776 } 7777 7778 // Detect reduction patterns 7779 InstructionCost RedCost; 7780 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7781 .isValid()) 7782 return RedCost; 7783 7784 Type *SrcScalarTy = I->getOperand(0)->getType(); 7785 Type *SrcVecTy = 7786 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7787 if (canTruncateToMinimalBitwidth(I, VF)) { 7788 // This cast is going to be shrunk. This may remove the cast or it might 7789 // turn it into slightly different cast. For example, if MinBW == 16, 7790 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7791 // 7792 // Calculate the modified src and dest types. 7793 Type *MinVecTy = VectorTy; 7794 if (Opcode == Instruction::Trunc) { 7795 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7796 VectorTy = 7797 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7798 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7799 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7800 VectorTy = 7801 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7802 } 7803 } 7804 7805 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7806 } 7807 case Instruction::Call: { 7808 bool NeedToScalarize; 7809 CallInst *CI = cast<CallInst>(I); 7810 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7811 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7812 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7813 return std::min(CallCost, IntrinsicCost); 7814 } 7815 return CallCost; 7816 } 7817 case Instruction::ExtractValue: 7818 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7819 default: 7820 // This opcode is unknown. Assume that it is the same as 'mul'. 7821 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7822 } // end of switch. 7823 } 7824 7825 char LoopVectorize::ID = 0; 7826 7827 static const char lv_name[] = "Loop Vectorization"; 7828 7829 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7830 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7831 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7832 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7833 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7834 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7835 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7836 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7837 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7838 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7839 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7840 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7841 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7842 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7843 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7844 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7845 7846 namespace llvm { 7847 7848 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7849 7850 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7851 bool VectorizeOnlyWhenForced) { 7852 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7853 } 7854 7855 } // end namespace llvm 7856 7857 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7858 // Check if the pointer operand of a load or store instruction is 7859 // consecutive. 7860 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7861 return Legal->isConsecutivePtr(Ptr); 7862 return false; 7863 } 7864 7865 void LoopVectorizationCostModel::collectValuesToIgnore() { 7866 // Ignore ephemeral values. 7867 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7868 7869 // Ignore type-promoting instructions we identified during reduction 7870 // detection. 7871 for (auto &Reduction : Legal->getReductionVars()) { 7872 RecurrenceDescriptor &RedDes = Reduction.second; 7873 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7874 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7875 } 7876 // Ignore type-casting instructions we identified during induction 7877 // detection. 7878 for (auto &Induction : Legal->getInductionVars()) { 7879 InductionDescriptor &IndDes = Induction.second; 7880 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7881 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7882 } 7883 } 7884 7885 void LoopVectorizationCostModel::collectInLoopReductions() { 7886 for (auto &Reduction : Legal->getReductionVars()) { 7887 PHINode *Phi = Reduction.first; 7888 RecurrenceDescriptor &RdxDesc = Reduction.second; 7889 7890 // We don't collect reductions that are type promoted (yet). 7891 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7892 continue; 7893 7894 // If the target would prefer this reduction to happen "in-loop", then we 7895 // want to record it as such. 7896 unsigned Opcode = RdxDesc.getOpcode(); 7897 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7898 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7899 TargetTransformInfo::ReductionFlags())) 7900 continue; 7901 7902 // Check that we can correctly put the reductions into the loop, by 7903 // finding the chain of operations that leads from the phi to the loop 7904 // exit value. 7905 SmallVector<Instruction *, 4> ReductionOperations = 7906 RdxDesc.getReductionOpChain(Phi, TheLoop); 7907 bool InLoop = !ReductionOperations.empty(); 7908 if (InLoop) { 7909 InLoopReductionChains[Phi] = ReductionOperations; 7910 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7911 Instruction *LastChain = Phi; 7912 for (auto *I : ReductionOperations) { 7913 InLoopReductionImmediateChains[I] = LastChain; 7914 LastChain = I; 7915 } 7916 } 7917 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7918 << " reduction for phi: " << *Phi << "\n"); 7919 } 7920 } 7921 7922 // TODO: we could return a pair of values that specify the max VF and 7923 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7924 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7925 // doesn't have a cost model that can choose which plan to execute if 7926 // more than one is generated. 7927 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7928 LoopVectorizationCostModel &CM) { 7929 unsigned WidestType; 7930 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7931 return WidestVectorRegBits / WidestType; 7932 } 7933 7934 VectorizationFactor 7935 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7936 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7937 ElementCount VF = UserVF; 7938 // Outer loop handling: They may require CFG and instruction level 7939 // transformations before even evaluating whether vectorization is profitable. 7940 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7941 // the vectorization pipeline. 7942 if (!OrigLoop->isInnermost()) { 7943 // If the user doesn't provide a vectorization factor, determine a 7944 // reasonable one. 7945 if (UserVF.isZero()) { 7946 VF = ElementCount::getFixed(determineVPlanVF( 7947 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7948 .getFixedSize(), 7949 CM)); 7950 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7951 7952 // Make sure we have a VF > 1 for stress testing. 7953 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7954 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7955 << "overriding computed VF.\n"); 7956 VF = ElementCount::getFixed(4); 7957 } 7958 } 7959 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7960 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7961 "VF needs to be a power of two"); 7962 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7963 << "VF " << VF << " to build VPlans.\n"); 7964 buildVPlans(VF, VF); 7965 7966 // For VPlan build stress testing, we bail out after VPlan construction. 7967 if (VPlanBuildStressTest) 7968 return VectorizationFactor::Disabled(); 7969 7970 return {VF, 0 /*Cost*/}; 7971 } 7972 7973 LLVM_DEBUG( 7974 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7975 "VPlan-native path.\n"); 7976 return VectorizationFactor::Disabled(); 7977 } 7978 7979 Optional<VectorizationFactor> 7980 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7981 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7982 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7983 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7984 return None; 7985 7986 // Invalidate interleave groups if all blocks of loop will be predicated. 7987 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7988 !useMaskedInterleavedAccesses(*TTI)) { 7989 LLVM_DEBUG( 7990 dbgs() 7991 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7992 "which requires masked-interleaved support.\n"); 7993 if (CM.InterleaveInfo.invalidateGroups()) 7994 // Invalidating interleave groups also requires invalidating all decisions 7995 // based on them, which includes widening decisions and uniform and scalar 7996 // values. 7997 CM.invalidateCostModelingDecisions(); 7998 } 7999 8000 ElementCount MaxUserVF = 8001 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8002 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8003 if (!UserVF.isZero() && UserVFIsLegal) { 8004 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 8005 << " VF " << UserVF << ".\n"); 8006 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8007 "VF needs to be a power of two"); 8008 // Collect the instructions (and their associated costs) that will be more 8009 // profitable to scalarize. 8010 CM.selectUserVectorizationFactor(UserVF); 8011 CM.collectInLoopReductions(); 8012 buildVPlansWithVPRecipes(UserVF, UserVF); 8013 LLVM_DEBUG(printPlans(dbgs())); 8014 return {{UserVF, 0}}; 8015 } 8016 8017 // Populate the set of Vectorization Factor Candidates. 8018 ElementCountSet VFCandidates; 8019 for (auto VF = ElementCount::getFixed(1); 8020 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8021 VFCandidates.insert(VF); 8022 for (auto VF = ElementCount::getScalable(1); 8023 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8024 VFCandidates.insert(VF); 8025 8026 for (const auto &VF : VFCandidates) { 8027 // Collect Uniform and Scalar instructions after vectorization with VF. 8028 CM.collectUniformsAndScalars(VF); 8029 8030 // Collect the instructions (and their associated costs) that will be more 8031 // profitable to scalarize. 8032 if (VF.isVector()) 8033 CM.collectInstsToScalarize(VF); 8034 } 8035 8036 CM.collectInLoopReductions(); 8037 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8038 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8039 8040 LLVM_DEBUG(printPlans(dbgs())); 8041 if (!MaxFactors.hasVector()) 8042 return VectorizationFactor::Disabled(); 8043 8044 // Select the optimal vectorization factor. 8045 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8046 8047 // Check if it is profitable to vectorize with runtime checks. 8048 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8049 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8050 bool PragmaThresholdReached = 8051 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8052 bool ThresholdReached = 8053 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8054 if ((ThresholdReached && !Hints.allowReordering()) || 8055 PragmaThresholdReached) { 8056 ORE->emit([&]() { 8057 return OptimizationRemarkAnalysisAliasing( 8058 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8059 OrigLoop->getHeader()) 8060 << "loop not vectorized: cannot prove it is safe to reorder " 8061 "memory operations"; 8062 }); 8063 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8064 Hints.emitRemarkWithHints(); 8065 return VectorizationFactor::Disabled(); 8066 } 8067 } 8068 return SelectedVF; 8069 } 8070 8071 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8072 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8073 << '\n'); 8074 BestVF = VF; 8075 BestUF = UF; 8076 8077 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8078 return !Plan->hasVF(VF); 8079 }); 8080 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8081 } 8082 8083 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8084 DominatorTree *DT) { 8085 // Perform the actual loop transformation. 8086 8087 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8088 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8089 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8090 8091 VPTransformState State{ 8092 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8093 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8094 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8095 State.CanonicalIV = ILV.Induction; 8096 8097 ILV.printDebugTracesAtStart(); 8098 8099 //===------------------------------------------------===// 8100 // 8101 // Notice: any optimization or new instruction that go 8102 // into the code below should also be implemented in 8103 // the cost-model. 8104 // 8105 //===------------------------------------------------===// 8106 8107 // 2. Copy and widen instructions from the old loop into the new loop. 8108 VPlans.front()->execute(&State); 8109 8110 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8111 // predication, updating analyses. 8112 ILV.fixVectorizedLoop(State); 8113 8114 ILV.printDebugTracesAtEnd(); 8115 } 8116 8117 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8118 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8119 for (const auto &Plan : VPlans) 8120 if (PrintVPlansInDotFormat) 8121 Plan->printDOT(O); 8122 else 8123 Plan->print(O); 8124 } 8125 #endif 8126 8127 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8128 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8129 8130 // We create new control-flow for the vectorized loop, so the original exit 8131 // conditions will be dead after vectorization if it's only used by the 8132 // terminator 8133 SmallVector<BasicBlock*> ExitingBlocks; 8134 OrigLoop->getExitingBlocks(ExitingBlocks); 8135 for (auto *BB : ExitingBlocks) { 8136 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8137 if (!Cmp || !Cmp->hasOneUse()) 8138 continue; 8139 8140 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8141 if (!DeadInstructions.insert(Cmp).second) 8142 continue; 8143 8144 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8145 // TODO: can recurse through operands in general 8146 for (Value *Op : Cmp->operands()) { 8147 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8148 DeadInstructions.insert(cast<Instruction>(Op)); 8149 } 8150 } 8151 8152 // We create new "steps" for induction variable updates to which the original 8153 // induction variables map. An original update instruction will be dead if 8154 // all its users except the induction variable are dead. 8155 auto *Latch = OrigLoop->getLoopLatch(); 8156 for (auto &Induction : Legal->getInductionVars()) { 8157 PHINode *Ind = Induction.first; 8158 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8159 8160 // If the tail is to be folded by masking, the primary induction variable, 8161 // if exists, isn't dead: it will be used for masking. Don't kill it. 8162 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8163 continue; 8164 8165 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8166 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8167 })) 8168 DeadInstructions.insert(IndUpdate); 8169 8170 // We record as "Dead" also the type-casting instructions we had identified 8171 // during induction analysis. We don't need any handling for them in the 8172 // vectorized loop because we have proven that, under a proper runtime 8173 // test guarding the vectorized loop, the value of the phi, and the casted 8174 // value of the phi, are the same. The last instruction in this casting chain 8175 // will get its scalar/vector/widened def from the scalar/vector/widened def 8176 // of the respective phi node. Any other casts in the induction def-use chain 8177 // have no other uses outside the phi update chain, and will be ignored. 8178 InductionDescriptor &IndDes = Induction.second; 8179 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8180 DeadInstructions.insert(Casts.begin(), Casts.end()); 8181 } 8182 } 8183 8184 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8185 8186 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8187 8188 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8189 Instruction::BinaryOps BinOp) { 8190 // When unrolling and the VF is 1, we only need to add a simple scalar. 8191 Type *Ty = Val->getType(); 8192 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8193 8194 if (Ty->isFloatingPointTy()) { 8195 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8196 8197 // Floating-point operations inherit FMF via the builder's flags. 8198 Value *MulOp = Builder.CreateFMul(C, Step); 8199 return Builder.CreateBinOp(BinOp, Val, MulOp); 8200 } 8201 Constant *C = ConstantInt::get(Ty, StartIdx); 8202 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8203 } 8204 8205 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8206 SmallVector<Metadata *, 4> MDs; 8207 // Reserve first location for self reference to the LoopID metadata node. 8208 MDs.push_back(nullptr); 8209 bool IsUnrollMetadata = false; 8210 MDNode *LoopID = L->getLoopID(); 8211 if (LoopID) { 8212 // First find existing loop unrolling disable metadata. 8213 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8214 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8215 if (MD) { 8216 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8217 IsUnrollMetadata = 8218 S && S->getString().startswith("llvm.loop.unroll.disable"); 8219 } 8220 MDs.push_back(LoopID->getOperand(i)); 8221 } 8222 } 8223 8224 if (!IsUnrollMetadata) { 8225 // Add runtime unroll disable metadata. 8226 LLVMContext &Context = L->getHeader()->getContext(); 8227 SmallVector<Metadata *, 1> DisableOperands; 8228 DisableOperands.push_back( 8229 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8230 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8231 MDs.push_back(DisableNode); 8232 MDNode *NewLoopID = MDNode::get(Context, MDs); 8233 // Set operand 0 to refer to the loop id itself. 8234 NewLoopID->replaceOperandWith(0, NewLoopID); 8235 L->setLoopID(NewLoopID); 8236 } 8237 } 8238 8239 //===--------------------------------------------------------------------===// 8240 // EpilogueVectorizerMainLoop 8241 //===--------------------------------------------------------------------===// 8242 8243 /// This function is partially responsible for generating the control flow 8244 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8245 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8246 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8247 Loop *Lp = createVectorLoopSkeleton(""); 8248 8249 // Generate the code to check the minimum iteration count of the vector 8250 // epilogue (see below). 8251 EPI.EpilogueIterationCountCheck = 8252 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8253 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8254 8255 // Generate the code to check any assumptions that we've made for SCEV 8256 // expressions. 8257 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8258 8259 // Generate the code that checks at runtime if arrays overlap. We put the 8260 // checks into a separate block to make the more common case of few elements 8261 // faster. 8262 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8263 8264 // Generate the iteration count check for the main loop, *after* the check 8265 // for the epilogue loop, so that the path-length is shorter for the case 8266 // that goes directly through the vector epilogue. The longer-path length for 8267 // the main loop is compensated for, by the gain from vectorizing the larger 8268 // trip count. Note: the branch will get updated later on when we vectorize 8269 // the epilogue. 8270 EPI.MainLoopIterationCountCheck = 8271 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8272 8273 // Generate the induction variable. 8274 OldInduction = Legal->getPrimaryInduction(); 8275 Type *IdxTy = Legal->getWidestInductionType(); 8276 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8277 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8278 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8279 EPI.VectorTripCount = CountRoundDown; 8280 Induction = 8281 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8282 getDebugLocFromInstOrOperands(OldInduction)); 8283 8284 // Skip induction resume value creation here because they will be created in 8285 // the second pass. If we created them here, they wouldn't be used anyway, 8286 // because the vplan in the second pass still contains the inductions from the 8287 // original loop. 8288 8289 return completeLoopSkeleton(Lp, OrigLoopID); 8290 } 8291 8292 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8293 LLVM_DEBUG({ 8294 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8295 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8296 << ", Main Loop UF:" << EPI.MainLoopUF 8297 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8298 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8299 }); 8300 } 8301 8302 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8303 DEBUG_WITH_TYPE(VerboseDebug, { 8304 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8305 }); 8306 } 8307 8308 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8309 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8310 assert(L && "Expected valid Loop."); 8311 assert(Bypass && "Expected valid bypass basic block."); 8312 unsigned VFactor = 8313 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8314 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8315 Value *Count = getOrCreateTripCount(L); 8316 // Reuse existing vector loop preheader for TC checks. 8317 // Note that new preheader block is generated for vector loop. 8318 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8319 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8320 8321 // Generate code to check if the loop's trip count is less than VF * UF of the 8322 // main vector loop. 8323 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8324 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8325 8326 Value *CheckMinIters = Builder.CreateICmp( 8327 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8328 "min.iters.check"); 8329 8330 if (!ForEpilogue) 8331 TCCheckBlock->setName("vector.main.loop.iter.check"); 8332 8333 // Create new preheader for vector loop. 8334 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8335 DT, LI, nullptr, "vector.ph"); 8336 8337 if (ForEpilogue) { 8338 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8339 DT->getNode(Bypass)->getIDom()) && 8340 "TC check is expected to dominate Bypass"); 8341 8342 // Update dominator for Bypass & LoopExit. 8343 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8344 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8345 8346 LoopBypassBlocks.push_back(TCCheckBlock); 8347 8348 // Save the trip count so we don't have to regenerate it in the 8349 // vec.epilog.iter.check. This is safe to do because the trip count 8350 // generated here dominates the vector epilog iter check. 8351 EPI.TripCount = Count; 8352 } 8353 8354 ReplaceInstWithInst( 8355 TCCheckBlock->getTerminator(), 8356 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8357 8358 return TCCheckBlock; 8359 } 8360 8361 //===--------------------------------------------------------------------===// 8362 // EpilogueVectorizerEpilogueLoop 8363 //===--------------------------------------------------------------------===// 8364 8365 /// This function is partially responsible for generating the control flow 8366 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8367 BasicBlock * 8368 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8369 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8370 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8371 8372 // Now, compare the remaining count and if there aren't enough iterations to 8373 // execute the vectorized epilogue skip to the scalar part. 8374 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8375 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8376 LoopVectorPreHeader = 8377 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8378 LI, nullptr, "vec.epilog.ph"); 8379 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8380 VecEpilogueIterationCountCheck); 8381 8382 // Adjust the control flow taking the state info from the main loop 8383 // vectorization into account. 8384 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8385 "expected this to be saved from the previous pass."); 8386 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8387 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8388 8389 DT->changeImmediateDominator(LoopVectorPreHeader, 8390 EPI.MainLoopIterationCountCheck); 8391 8392 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8393 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8394 8395 if (EPI.SCEVSafetyCheck) 8396 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8397 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8398 if (EPI.MemSafetyCheck) 8399 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8400 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8401 8402 DT->changeImmediateDominator( 8403 VecEpilogueIterationCountCheck, 8404 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8405 8406 DT->changeImmediateDominator(LoopScalarPreHeader, 8407 EPI.EpilogueIterationCountCheck); 8408 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8409 8410 // Keep track of bypass blocks, as they feed start values to the induction 8411 // phis in the scalar loop preheader. 8412 if (EPI.SCEVSafetyCheck) 8413 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8414 if (EPI.MemSafetyCheck) 8415 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8416 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8417 8418 // Generate a resume induction for the vector epilogue and put it in the 8419 // vector epilogue preheader 8420 Type *IdxTy = Legal->getWidestInductionType(); 8421 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8422 LoopVectorPreHeader->getFirstNonPHI()); 8423 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8424 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8425 EPI.MainLoopIterationCountCheck); 8426 8427 // Generate the induction variable. 8428 OldInduction = Legal->getPrimaryInduction(); 8429 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8430 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8431 Value *StartIdx = EPResumeVal; 8432 Induction = 8433 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8434 getDebugLocFromInstOrOperands(OldInduction)); 8435 8436 // Generate induction resume values. These variables save the new starting 8437 // indexes for the scalar loop. They are used to test if there are any tail 8438 // iterations left once the vector loop has completed. 8439 // Note that when the vectorized epilogue is skipped due to iteration count 8440 // check, then the resume value for the induction variable comes from 8441 // the trip count of the main vector loop, hence passing the AdditionalBypass 8442 // argument. 8443 createInductionResumeValues(Lp, CountRoundDown, 8444 {VecEpilogueIterationCountCheck, 8445 EPI.VectorTripCount} /* AdditionalBypass */); 8446 8447 AddRuntimeUnrollDisableMetaData(Lp); 8448 return completeLoopSkeleton(Lp, OrigLoopID); 8449 } 8450 8451 BasicBlock * 8452 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8453 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8454 8455 assert(EPI.TripCount && 8456 "Expected trip count to have been safed in the first pass."); 8457 assert( 8458 (!isa<Instruction>(EPI.TripCount) || 8459 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8460 "saved trip count does not dominate insertion point."); 8461 Value *TC = EPI.TripCount; 8462 IRBuilder<> Builder(Insert->getTerminator()); 8463 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8464 8465 // Generate code to check if the loop's trip count is less than VF * UF of the 8466 // vector epilogue loop. 8467 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8468 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8469 8470 Value *CheckMinIters = Builder.CreateICmp( 8471 P, Count, 8472 ConstantInt::get(Count->getType(), 8473 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8474 "min.epilog.iters.check"); 8475 8476 ReplaceInstWithInst( 8477 Insert->getTerminator(), 8478 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8479 8480 LoopBypassBlocks.push_back(Insert); 8481 return Insert; 8482 } 8483 8484 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8485 LLVM_DEBUG({ 8486 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8487 << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8488 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8489 }); 8490 } 8491 8492 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8493 DEBUG_WITH_TYPE(VerboseDebug, { 8494 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8495 }); 8496 } 8497 8498 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8499 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8500 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8501 bool PredicateAtRangeStart = Predicate(Range.Start); 8502 8503 for (ElementCount TmpVF = Range.Start * 2; 8504 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8505 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8506 Range.End = TmpVF; 8507 break; 8508 } 8509 8510 return PredicateAtRangeStart; 8511 } 8512 8513 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8514 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8515 /// of VF's starting at a given VF and extending it as much as possible. Each 8516 /// vectorization decision can potentially shorten this sub-range during 8517 /// buildVPlan(). 8518 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8519 ElementCount MaxVF) { 8520 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8521 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8522 VFRange SubRange = {VF, MaxVFPlusOne}; 8523 VPlans.push_back(buildVPlan(SubRange)); 8524 VF = SubRange.End; 8525 } 8526 } 8527 8528 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8529 VPlanPtr &Plan) { 8530 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8531 8532 // Look for cached value. 8533 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8534 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8535 if (ECEntryIt != EdgeMaskCache.end()) 8536 return ECEntryIt->second; 8537 8538 VPValue *SrcMask = createBlockInMask(Src, Plan); 8539 8540 // The terminator has to be a branch inst! 8541 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8542 assert(BI && "Unexpected terminator found"); 8543 8544 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8545 return EdgeMaskCache[Edge] = SrcMask; 8546 8547 // If source is an exiting block, we know the exit edge is dynamically dead 8548 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8549 // adding uses of an otherwise potentially dead instruction. 8550 if (OrigLoop->isLoopExiting(Src)) 8551 return EdgeMaskCache[Edge] = SrcMask; 8552 8553 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8554 assert(EdgeMask && "No Edge Mask found for condition"); 8555 8556 if (BI->getSuccessor(0) != Dst) 8557 EdgeMask = Builder.createNot(EdgeMask); 8558 8559 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8560 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8561 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8562 // The select version does not introduce new UB if SrcMask is false and 8563 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8564 VPValue *False = Plan->getOrAddVPValue( 8565 ConstantInt::getFalse(BI->getCondition()->getType())); 8566 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8567 } 8568 8569 return EdgeMaskCache[Edge] = EdgeMask; 8570 } 8571 8572 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8573 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8574 8575 // Look for cached value. 8576 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8577 if (BCEntryIt != BlockMaskCache.end()) 8578 return BCEntryIt->second; 8579 8580 // All-one mask is modelled as no-mask following the convention for masked 8581 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8582 VPValue *BlockMask = nullptr; 8583 8584 if (OrigLoop->getHeader() == BB) { 8585 if (!CM.blockNeedsPredication(BB)) 8586 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8587 8588 // Create the block in mask as the first non-phi instruction in the block. 8589 VPBuilder::InsertPointGuard Guard(Builder); 8590 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8591 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8592 8593 // Introduce the early-exit compare IV <= BTC to form header block mask. 8594 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8595 // Start by constructing the desired canonical IV. 8596 VPValue *IV = nullptr; 8597 if (Legal->getPrimaryInduction()) 8598 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8599 else { 8600 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8601 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8602 IV = IVRecipe->getVPSingleValue(); 8603 } 8604 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8605 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8606 8607 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8608 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8609 // as a second argument, we only pass the IV here and extract the 8610 // tripcount from the transform state where codegen of the VP instructions 8611 // happen. 8612 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8613 } else { 8614 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8615 } 8616 return BlockMaskCache[BB] = BlockMask; 8617 } 8618 8619 // This is the block mask. We OR all incoming edges. 8620 for (auto *Predecessor : predecessors(BB)) { 8621 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8622 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8623 return BlockMaskCache[BB] = EdgeMask; 8624 8625 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8626 BlockMask = EdgeMask; 8627 continue; 8628 } 8629 8630 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8631 } 8632 8633 return BlockMaskCache[BB] = BlockMask; 8634 } 8635 8636 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8637 ArrayRef<VPValue *> Operands, 8638 VFRange &Range, 8639 VPlanPtr &Plan) { 8640 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8641 "Must be called with either a load or store"); 8642 8643 auto willWiden = [&](ElementCount VF) -> bool { 8644 if (VF.isScalar()) 8645 return false; 8646 LoopVectorizationCostModel::InstWidening Decision = 8647 CM.getWideningDecision(I, VF); 8648 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8649 "CM decision should be taken at this point."); 8650 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8651 return true; 8652 if (CM.isScalarAfterVectorization(I, VF) || 8653 CM.isProfitableToScalarize(I, VF)) 8654 return false; 8655 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8656 }; 8657 8658 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8659 return nullptr; 8660 8661 VPValue *Mask = nullptr; 8662 if (Legal->isMaskRequired(I)) 8663 Mask = createBlockInMask(I->getParent(), Plan); 8664 8665 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8666 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8667 8668 StoreInst *Store = cast<StoreInst>(I); 8669 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8670 Mask); 8671 } 8672 8673 VPWidenIntOrFpInductionRecipe * 8674 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8675 ArrayRef<VPValue *> Operands) const { 8676 // Check if this is an integer or fp induction. If so, build the recipe that 8677 // produces its scalar and vector values. 8678 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8679 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8680 II.getKind() == InductionDescriptor::IK_FpInduction) { 8681 assert(II.getStartValue() == 8682 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8683 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8684 return new VPWidenIntOrFpInductionRecipe( 8685 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8686 } 8687 8688 return nullptr; 8689 } 8690 8691 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8692 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8693 VPlan &Plan) const { 8694 // Optimize the special case where the source is a constant integer 8695 // induction variable. Notice that we can only optimize the 'trunc' case 8696 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8697 // (c) other casts depend on pointer size. 8698 8699 // Determine whether \p K is a truncation based on an induction variable that 8700 // can be optimized. 8701 auto isOptimizableIVTruncate = 8702 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8703 return [=](ElementCount VF) -> bool { 8704 return CM.isOptimizableIVTruncate(K, VF); 8705 }; 8706 }; 8707 8708 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8709 isOptimizableIVTruncate(I), Range)) { 8710 8711 InductionDescriptor II = 8712 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8713 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8714 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8715 Start, nullptr, I); 8716 } 8717 return nullptr; 8718 } 8719 8720 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8721 ArrayRef<VPValue *> Operands, 8722 VPlanPtr &Plan) { 8723 // If all incoming values are equal, the incoming VPValue can be used directly 8724 // instead of creating a new VPBlendRecipe. 8725 VPValue *FirstIncoming = Operands[0]; 8726 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8727 return FirstIncoming == Inc; 8728 })) { 8729 return Operands[0]; 8730 } 8731 8732 // We know that all PHIs in non-header blocks are converted into selects, so 8733 // we don't have to worry about the insertion order and we can just use the 8734 // builder. At this point we generate the predication tree. There may be 8735 // duplications since this is a simple recursive scan, but future 8736 // optimizations will clean it up. 8737 SmallVector<VPValue *, 2> OperandsWithMask; 8738 unsigned NumIncoming = Phi->getNumIncomingValues(); 8739 8740 for (unsigned In = 0; In < NumIncoming; In++) { 8741 VPValue *EdgeMask = 8742 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8743 assert((EdgeMask || NumIncoming == 1) && 8744 "Multiple predecessors with one having a full mask"); 8745 OperandsWithMask.push_back(Operands[In]); 8746 if (EdgeMask) 8747 OperandsWithMask.push_back(EdgeMask); 8748 } 8749 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8750 } 8751 8752 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8753 ArrayRef<VPValue *> Operands, 8754 VFRange &Range) const { 8755 8756 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8757 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8758 Range); 8759 8760 if (IsPredicated) 8761 return nullptr; 8762 8763 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8764 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8765 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8766 ID == Intrinsic::pseudoprobe || 8767 ID == Intrinsic::experimental_noalias_scope_decl)) 8768 return nullptr; 8769 8770 auto willWiden = [&](ElementCount VF) -> bool { 8771 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8772 // The following case may be scalarized depending on the VF. 8773 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8774 // version of the instruction. 8775 // Is it beneficial to perform intrinsic call compared to lib call? 8776 bool NeedToScalarize = false; 8777 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8778 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8779 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8780 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 8781 "Either the intrinsic cost or vector call cost must be valid"); 8782 return UseVectorIntrinsic || !NeedToScalarize; 8783 }; 8784 8785 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8786 return nullptr; 8787 8788 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8789 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8790 } 8791 8792 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8793 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8794 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8795 // Instruction should be widened, unless it is scalar after vectorization, 8796 // scalarization is profitable or it is predicated. 8797 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8798 return CM.isScalarAfterVectorization(I, VF) || 8799 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8800 }; 8801 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8802 Range); 8803 } 8804 8805 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8806 ArrayRef<VPValue *> Operands) const { 8807 auto IsVectorizableOpcode = [](unsigned Opcode) { 8808 switch (Opcode) { 8809 case Instruction::Add: 8810 case Instruction::And: 8811 case Instruction::AShr: 8812 case Instruction::BitCast: 8813 case Instruction::FAdd: 8814 case Instruction::FCmp: 8815 case Instruction::FDiv: 8816 case Instruction::FMul: 8817 case Instruction::FNeg: 8818 case Instruction::FPExt: 8819 case Instruction::FPToSI: 8820 case Instruction::FPToUI: 8821 case Instruction::FPTrunc: 8822 case Instruction::FRem: 8823 case Instruction::FSub: 8824 case Instruction::ICmp: 8825 case Instruction::IntToPtr: 8826 case Instruction::LShr: 8827 case Instruction::Mul: 8828 case Instruction::Or: 8829 case Instruction::PtrToInt: 8830 case Instruction::SDiv: 8831 case Instruction::Select: 8832 case Instruction::SExt: 8833 case Instruction::Shl: 8834 case Instruction::SIToFP: 8835 case Instruction::SRem: 8836 case Instruction::Sub: 8837 case Instruction::Trunc: 8838 case Instruction::UDiv: 8839 case Instruction::UIToFP: 8840 case Instruction::URem: 8841 case Instruction::Xor: 8842 case Instruction::ZExt: 8843 return true; 8844 } 8845 return false; 8846 }; 8847 8848 if (!IsVectorizableOpcode(I->getOpcode())) 8849 return nullptr; 8850 8851 // Success: widen this instruction. 8852 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8853 } 8854 8855 void VPRecipeBuilder::fixHeaderPhis() { 8856 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8857 for (VPWidenPHIRecipe *R : PhisToFix) { 8858 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8859 VPRecipeBase *IncR = 8860 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8861 R->addOperand(IncR->getVPSingleValue()); 8862 } 8863 } 8864 8865 VPBasicBlock *VPRecipeBuilder::handleReplication( 8866 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8867 VPlanPtr &Plan) { 8868 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8869 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8870 Range); 8871 8872 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8873 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8874 8875 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8876 IsUniform, IsPredicated); 8877 setRecipe(I, Recipe); 8878 Plan->addVPValue(I, Recipe); 8879 8880 // Find if I uses a predicated instruction. If so, it will use its scalar 8881 // value. Avoid hoisting the insert-element which packs the scalar value into 8882 // a vector value, as that happens iff all users use the vector value. 8883 for (VPValue *Op : Recipe->operands()) { 8884 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8885 if (!PredR) 8886 continue; 8887 auto *RepR = 8888 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8889 assert(RepR->isPredicated() && 8890 "expected Replicate recipe to be predicated"); 8891 RepR->setAlsoPack(false); 8892 } 8893 8894 // Finalize the recipe for Instr, first if it is not predicated. 8895 if (!IsPredicated) { 8896 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8897 VPBB->appendRecipe(Recipe); 8898 return VPBB; 8899 } 8900 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8901 assert(VPBB->getSuccessors().empty() && 8902 "VPBB has successors when handling predicated replication."); 8903 // Record predicated instructions for above packing optimizations. 8904 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8905 VPBlockUtils::insertBlockAfter(Region, VPBB); 8906 auto *RegSucc = new VPBasicBlock(); 8907 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8908 return RegSucc; 8909 } 8910 8911 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8912 VPRecipeBase *PredRecipe, 8913 VPlanPtr &Plan) { 8914 // Instructions marked for predication are replicated and placed under an 8915 // if-then construct to prevent side-effects. 8916 8917 // Generate recipes to compute the block mask for this region. 8918 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8919 8920 // Build the triangular if-then region. 8921 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8922 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8923 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8924 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8925 auto *PHIRecipe = Instr->getType()->isVoidTy() 8926 ? nullptr 8927 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8928 if (PHIRecipe) { 8929 Plan->removeVPValueFor(Instr); 8930 Plan->addVPValue(Instr, PHIRecipe); 8931 } 8932 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8933 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8934 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8935 8936 // Note: first set Entry as region entry and then connect successors starting 8937 // from it in order, to propagate the "parent" of each VPBasicBlock. 8938 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8939 VPBlockUtils::connectBlocks(Pred, Exit); 8940 8941 return Region; 8942 } 8943 8944 VPRecipeOrVPValueTy 8945 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8946 ArrayRef<VPValue *> Operands, 8947 VFRange &Range, VPlanPtr &Plan) { 8948 // First, check for specific widening recipes that deal with calls, memory 8949 // operations, inductions and Phi nodes. 8950 if (auto *CI = dyn_cast<CallInst>(Instr)) 8951 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8952 8953 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8954 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8955 8956 VPRecipeBase *Recipe; 8957 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8958 if (Phi->getParent() != OrigLoop->getHeader()) 8959 return tryToBlend(Phi, Operands, Plan); 8960 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8961 return toVPRecipeResult(Recipe); 8962 8963 VPWidenPHIRecipe *PhiRecipe = nullptr; 8964 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8965 VPValue *StartV = Operands[0]; 8966 if (Legal->isReductionVariable(Phi)) { 8967 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8968 assert(RdxDesc.getRecurrenceStartValue() == 8969 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8970 PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8971 } else { 8972 PhiRecipe = new VPWidenPHIRecipe(Phi, *StartV); 8973 } 8974 8975 // Record the incoming value from the backedge, so we can add the incoming 8976 // value from the backedge after all recipes have been created. 8977 recordRecipeOf(cast<Instruction>( 8978 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8979 PhisToFix.push_back(PhiRecipe); 8980 } else { 8981 // TODO: record start and backedge value for remaining pointer induction 8982 // phis. 8983 assert(Phi->getType()->isPointerTy() && 8984 "only pointer phis should be handled here"); 8985 PhiRecipe = new VPWidenPHIRecipe(Phi); 8986 } 8987 8988 return toVPRecipeResult(PhiRecipe); 8989 } 8990 8991 if (isa<TruncInst>(Instr) && 8992 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8993 Range, *Plan))) 8994 return toVPRecipeResult(Recipe); 8995 8996 if (!shouldWiden(Instr, Range)) 8997 return nullptr; 8998 8999 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9000 return toVPRecipeResult(new VPWidenGEPRecipe( 9001 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9002 9003 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9004 bool InvariantCond = 9005 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9006 return toVPRecipeResult(new VPWidenSelectRecipe( 9007 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9008 } 9009 9010 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9011 } 9012 9013 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9014 ElementCount MaxVF) { 9015 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9016 9017 // Collect instructions from the original loop that will become trivially dead 9018 // in the vectorized loop. We don't need to vectorize these instructions. For 9019 // example, original induction update instructions can become dead because we 9020 // separately emit induction "steps" when generating code for the new loop. 9021 // Similarly, we create a new latch condition when setting up the structure 9022 // of the new loop, so the old one can become dead. 9023 SmallPtrSet<Instruction *, 4> DeadInstructions; 9024 collectTriviallyDeadInstructions(DeadInstructions); 9025 9026 // Add assume instructions we need to drop to DeadInstructions, to prevent 9027 // them from being added to the VPlan. 9028 // TODO: We only need to drop assumes in blocks that get flattend. If the 9029 // control flow is preserved, we should keep them. 9030 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9031 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9032 9033 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9034 // Dead instructions do not need sinking. Remove them from SinkAfter. 9035 for (Instruction *I : DeadInstructions) 9036 SinkAfter.erase(I); 9037 9038 // Cannot sink instructions after dead instructions (there won't be any 9039 // recipes for them). Instead, find the first non-dead previous instruction. 9040 for (auto &P : Legal->getSinkAfter()) { 9041 Instruction *SinkTarget = P.second; 9042 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9043 (void)FirstInst; 9044 while (DeadInstructions.contains(SinkTarget)) { 9045 assert( 9046 SinkTarget != FirstInst && 9047 "Must find a live instruction (at least the one feeding the " 9048 "first-order recurrence PHI) before reaching beginning of the block"); 9049 SinkTarget = SinkTarget->getPrevNode(); 9050 assert(SinkTarget != P.first && 9051 "sink source equals target, no sinking required"); 9052 } 9053 P.second = SinkTarget; 9054 } 9055 9056 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9057 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9058 VFRange SubRange = {VF, MaxVFPlusOne}; 9059 VPlans.push_back( 9060 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9061 VF = SubRange.End; 9062 } 9063 } 9064 9065 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9066 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9067 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9068 9069 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9070 9071 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9072 9073 // --------------------------------------------------------------------------- 9074 // Pre-construction: record ingredients whose recipes we'll need to further 9075 // process after constructing the initial VPlan. 9076 // --------------------------------------------------------------------------- 9077 9078 // Mark instructions we'll need to sink later and their targets as 9079 // ingredients whose recipe we'll need to record. 9080 for (auto &Entry : SinkAfter) { 9081 RecipeBuilder.recordRecipeOf(Entry.first); 9082 RecipeBuilder.recordRecipeOf(Entry.second); 9083 } 9084 for (auto &Reduction : CM.getInLoopReductionChains()) { 9085 PHINode *Phi = Reduction.first; 9086 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9087 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9088 9089 RecipeBuilder.recordRecipeOf(Phi); 9090 for (auto &R : ReductionOperations) { 9091 RecipeBuilder.recordRecipeOf(R); 9092 // For min/max reducitons, where we have a pair of icmp/select, we also 9093 // need to record the ICmp recipe, so it can be removed later. 9094 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9095 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9096 } 9097 } 9098 9099 // For each interleave group which is relevant for this (possibly trimmed) 9100 // Range, add it to the set of groups to be later applied to the VPlan and add 9101 // placeholders for its members' Recipes which we'll be replacing with a 9102 // single VPInterleaveRecipe. 9103 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9104 auto applyIG = [IG, this](ElementCount VF) -> bool { 9105 return (VF.isVector() && // Query is illegal for VF == 1 9106 CM.getWideningDecision(IG->getInsertPos(), VF) == 9107 LoopVectorizationCostModel::CM_Interleave); 9108 }; 9109 if (!getDecisionAndClampRange(applyIG, Range)) 9110 continue; 9111 InterleaveGroups.insert(IG); 9112 for (unsigned i = 0; i < IG->getFactor(); i++) 9113 if (Instruction *Member = IG->getMember(i)) 9114 RecipeBuilder.recordRecipeOf(Member); 9115 }; 9116 9117 // --------------------------------------------------------------------------- 9118 // Build initial VPlan: Scan the body of the loop in a topological order to 9119 // visit each basic block after having visited its predecessor basic blocks. 9120 // --------------------------------------------------------------------------- 9121 9122 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9123 auto Plan = std::make_unique<VPlan>(); 9124 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9125 Plan->setEntry(VPBB); 9126 9127 // Scan the body of the loop in a topological order to visit each basic block 9128 // after having visited its predecessor basic blocks. 9129 LoopBlocksDFS DFS(OrigLoop); 9130 DFS.perform(LI); 9131 9132 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9133 // Relevant instructions from basic block BB will be grouped into VPRecipe 9134 // ingredients and fill a new VPBasicBlock. 9135 unsigned VPBBsForBB = 0; 9136 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9137 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9138 VPBB = FirstVPBBForBB; 9139 Builder.setInsertPoint(VPBB); 9140 9141 // Introduce each ingredient into VPlan. 9142 // TODO: Model and preserve debug instrinsics in VPlan. 9143 for (Instruction &I : BB->instructionsWithoutDebug()) { 9144 Instruction *Instr = &I; 9145 9146 // First filter out irrelevant instructions, to ensure no recipes are 9147 // built for them. 9148 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9149 continue; 9150 9151 SmallVector<VPValue *, 4> Operands; 9152 auto *Phi = dyn_cast<PHINode>(Instr); 9153 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9154 Operands.push_back(Plan->getOrAddVPValue( 9155 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9156 } else { 9157 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9158 Operands = {OpRange.begin(), OpRange.end()}; 9159 } 9160 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9161 Instr, Operands, Range, Plan)) { 9162 // If Instr can be simplified to an existing VPValue, use it. 9163 if (RecipeOrValue.is<VPValue *>()) { 9164 auto *VPV = RecipeOrValue.get<VPValue *>(); 9165 Plan->addVPValue(Instr, VPV); 9166 // If the re-used value is a recipe, register the recipe for the 9167 // instruction, in case the recipe for Instr needs to be recorded. 9168 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9169 RecipeBuilder.setRecipe(Instr, R); 9170 continue; 9171 } 9172 // Otherwise, add the new recipe. 9173 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9174 for (auto *Def : Recipe->definedValues()) { 9175 auto *UV = Def->getUnderlyingValue(); 9176 Plan->addVPValue(UV, Def); 9177 } 9178 9179 RecipeBuilder.setRecipe(Instr, Recipe); 9180 VPBB->appendRecipe(Recipe); 9181 continue; 9182 } 9183 9184 // Otherwise, if all widening options failed, Instruction is to be 9185 // replicated. This may create a successor for VPBB. 9186 VPBasicBlock *NextVPBB = 9187 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9188 if (NextVPBB != VPBB) { 9189 VPBB = NextVPBB; 9190 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9191 : ""); 9192 } 9193 } 9194 } 9195 9196 RecipeBuilder.fixHeaderPhis(); 9197 9198 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9199 // may also be empty, such as the last one VPBB, reflecting original 9200 // basic-blocks with no recipes. 9201 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9202 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9203 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9204 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9205 delete PreEntry; 9206 9207 // --------------------------------------------------------------------------- 9208 // Transform initial VPlan: Apply previously taken decisions, in order, to 9209 // bring the VPlan to its final state. 9210 // --------------------------------------------------------------------------- 9211 9212 // Apply Sink-After legal constraints. 9213 for (auto &Entry : SinkAfter) { 9214 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9215 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9216 9217 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9218 auto *Region = 9219 dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9220 if (Region && Region->isReplicator()) { 9221 assert(Region->getNumSuccessors() == 1 && 9222 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9223 assert(R->getParent()->size() == 1 && 9224 "A recipe in an original replicator region must be the only " 9225 "recipe in its block"); 9226 return Region; 9227 } 9228 return nullptr; 9229 }; 9230 auto *TargetRegion = GetReplicateRegion(Target); 9231 auto *SinkRegion = GetReplicateRegion(Sink); 9232 if (!SinkRegion) { 9233 // If the sink source is not a replicate region, sink the recipe directly. 9234 if (TargetRegion) { 9235 // The target is in a replication region, make sure to move Sink to 9236 // the block after it, not into the replication region itself. 9237 VPBasicBlock *NextBlock = 9238 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9239 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9240 } else 9241 Sink->moveAfter(Target); 9242 continue; 9243 } 9244 9245 // The sink source is in a replicate region. Unhook the region from the CFG. 9246 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9247 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9248 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9249 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9250 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9251 9252 if (TargetRegion) { 9253 // The target recipe is also in a replicate region, move the sink region 9254 // after the target region. 9255 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9256 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9257 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9258 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9259 } else { 9260 // The sink source is in a replicate region, we need to move the whole 9261 // replicate region, which should only contain a single recipe in the main 9262 // block. 9263 auto *SplitBlock = 9264 Target->getParent()->splitAt(std::next(Target->getIterator())); 9265 9266 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9267 9268 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9269 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9270 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9271 if (VPBB == SplitPred) 9272 VPBB = SplitBlock; 9273 } 9274 } 9275 9276 // Interleave memory: for each Interleave Group we marked earlier as relevant 9277 // for this VPlan, replace the Recipes widening its memory instructions with a 9278 // single VPInterleaveRecipe at its insertion point. 9279 for (auto IG : InterleaveGroups) { 9280 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9281 RecipeBuilder.getRecipe(IG->getInsertPos())); 9282 SmallVector<VPValue *, 4> StoredValues; 9283 for (unsigned i = 0; i < IG->getFactor(); ++i) 9284 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 9285 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 9286 9287 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9288 Recipe->getMask()); 9289 VPIG->insertBefore(Recipe); 9290 unsigned J = 0; 9291 for (unsigned i = 0; i < IG->getFactor(); ++i) 9292 if (Instruction *Member = IG->getMember(i)) { 9293 if (!Member->getType()->isVoidTy()) { 9294 VPValue *OriginalV = Plan->getVPValue(Member); 9295 Plan->removeVPValueFor(Member); 9296 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9297 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9298 J++; 9299 } 9300 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9301 } 9302 } 9303 9304 // Adjust the recipes for any inloop reductions. 9305 adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start); 9306 9307 // Finally, if tail is folded by masking, introduce selects between the phi 9308 // and the live-out instruction of each reduction, at the end of the latch. 9309 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9310 Builder.setInsertPoint(VPBB); 9311 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9312 for (auto &Reduction : Legal->getReductionVars()) { 9313 if (CM.isInLoopReduction(Reduction.first)) 9314 continue; 9315 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9316 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9317 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9318 } 9319 } 9320 9321 VPlanTransforms::sinkScalarOperands(*Plan); 9322 VPlanTransforms::mergeReplicateRegions(*Plan); 9323 9324 std::string PlanName; 9325 raw_string_ostream RSO(PlanName); 9326 ElementCount VF = Range.Start; 9327 Plan->addVF(VF); 9328 RSO << "Initial VPlan for VF={" << VF; 9329 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9330 Plan->addVF(VF); 9331 RSO << "," << VF; 9332 } 9333 RSO << "},UF>=1"; 9334 RSO.flush(); 9335 Plan->setName(PlanName); 9336 9337 return Plan; 9338 } 9339 9340 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9341 // Outer loop handling: They may require CFG and instruction level 9342 // transformations before even evaluating whether vectorization is profitable. 9343 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9344 // the vectorization pipeline. 9345 assert(!OrigLoop->isInnermost()); 9346 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9347 9348 // Create new empty VPlan 9349 auto Plan = std::make_unique<VPlan>(); 9350 9351 // Build hierarchical CFG 9352 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9353 HCFGBuilder.buildHierarchicalCFG(); 9354 9355 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9356 VF *= 2) 9357 Plan->addVF(VF); 9358 9359 if (EnableVPlanPredication) { 9360 VPlanPredicator VPP(*Plan); 9361 VPP.predicate(); 9362 9363 // Avoid running transformation to recipes until masked code generation in 9364 // VPlan-native path is in place. 9365 return Plan; 9366 } 9367 9368 SmallPtrSet<Instruction *, 1> DeadInstructions; 9369 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9370 Legal->getInductionVars(), 9371 DeadInstructions, *PSE.getSE()); 9372 return Plan; 9373 } 9374 9375 // Adjust the recipes for any inloop reductions. The chain of instructions 9376 // leading from the loop exit instr to the phi need to be converted to 9377 // reductions, with one operand being vector and the other being the scalar 9378 // reduction chain. 9379 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9380 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) { 9381 for (auto &Reduction : CM.getInLoopReductionChains()) { 9382 PHINode *Phi = Reduction.first; 9383 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9384 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9385 9386 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9387 continue; 9388 9389 // ReductionOperations are orders top-down from the phi's use to the 9390 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9391 // which of the two operands will remain scalar and which will be reduced. 9392 // For minmax the chain will be the select instructions. 9393 Instruction *Chain = Phi; 9394 for (Instruction *R : ReductionOperations) { 9395 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9396 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9397 9398 VPValue *ChainOp = Plan->getVPValue(Chain); 9399 unsigned FirstOpId; 9400 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9401 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9402 "Expected to replace a VPWidenSelectSC"); 9403 FirstOpId = 1; 9404 } else { 9405 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9406 "Expected to replace a VPWidenSC"); 9407 FirstOpId = 0; 9408 } 9409 unsigned VecOpId = 9410 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9411 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9412 9413 auto *CondOp = CM.foldTailByMasking() 9414 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9415 : nullptr; 9416 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9417 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9418 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9419 Plan->removeVPValueFor(R); 9420 Plan->addVPValue(R, RedRecipe); 9421 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9422 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9423 WidenRecipe->eraseFromParent(); 9424 9425 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9426 VPRecipeBase *CompareRecipe = 9427 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9428 assert(isa<VPWidenRecipe>(CompareRecipe) && 9429 "Expected to replace a VPWidenSC"); 9430 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9431 "Expected no remaining users"); 9432 CompareRecipe->eraseFromParent(); 9433 } 9434 Chain = R; 9435 } 9436 } 9437 } 9438 9439 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9440 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9441 VPSlotTracker &SlotTracker) const { 9442 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9443 IG->getInsertPos()->printAsOperand(O, false); 9444 O << ", "; 9445 getAddr()->printAsOperand(O, SlotTracker); 9446 VPValue *Mask = getMask(); 9447 if (Mask) { 9448 O << ", "; 9449 Mask->printAsOperand(O, SlotTracker); 9450 } 9451 for (unsigned i = 0; i < IG->getFactor(); ++i) 9452 if (Instruction *I = IG->getMember(i)) 9453 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9454 } 9455 #endif 9456 9457 void VPWidenCallRecipe::execute(VPTransformState &State) { 9458 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9459 *this, State); 9460 } 9461 9462 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9463 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9464 this, *this, InvariantCond, State); 9465 } 9466 9467 void VPWidenRecipe::execute(VPTransformState &State) { 9468 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9469 } 9470 9471 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9472 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9473 *this, State.UF, State.VF, IsPtrLoopInvariant, 9474 IsIndexLoopInvariant, State); 9475 } 9476 9477 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9478 assert(!State.Instance && "Int or FP induction being replicated."); 9479 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9480 getTruncInst(), getVPValue(0), 9481 getCastValue(), State); 9482 } 9483 9484 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9485 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9486 this, State); 9487 } 9488 9489 void VPBlendRecipe::execute(VPTransformState &State) { 9490 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9491 // We know that all PHIs in non-header blocks are converted into 9492 // selects, so we don't have to worry about the insertion order and we 9493 // can just use the builder. 9494 // At this point we generate the predication tree. There may be 9495 // duplications since this is a simple recursive scan, but future 9496 // optimizations will clean it up. 9497 9498 unsigned NumIncoming = getNumIncomingValues(); 9499 9500 // Generate a sequence of selects of the form: 9501 // SELECT(Mask3, In3, 9502 // SELECT(Mask2, In2, 9503 // SELECT(Mask1, In1, 9504 // In0))) 9505 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9506 // are essentially undef are taken from In0. 9507 InnerLoopVectorizer::VectorParts Entry(State.UF); 9508 for (unsigned In = 0; In < NumIncoming; ++In) { 9509 for (unsigned Part = 0; Part < State.UF; ++Part) { 9510 // We might have single edge PHIs (blocks) - use an identity 9511 // 'select' for the first PHI operand. 9512 Value *In0 = State.get(getIncomingValue(In), Part); 9513 if (In == 0) 9514 Entry[Part] = In0; // Initialize with the first incoming value. 9515 else { 9516 // Select between the current value and the previous incoming edge 9517 // based on the incoming mask. 9518 Value *Cond = State.get(getMask(In), Part); 9519 Entry[Part] = 9520 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9521 } 9522 } 9523 } 9524 for (unsigned Part = 0; Part < State.UF; ++Part) 9525 State.set(this, Entry[Part], Part); 9526 } 9527 9528 void VPInterleaveRecipe::execute(VPTransformState &State) { 9529 assert(!State.Instance && "Interleave group being replicated."); 9530 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9531 getStoredValues(), getMask()); 9532 } 9533 9534 void VPReductionRecipe::execute(VPTransformState &State) { 9535 assert(!State.Instance && "Reduction being replicated."); 9536 Value *PrevInChain = State.get(getChainOp(), 0); 9537 for (unsigned Part = 0; Part < State.UF; ++Part) { 9538 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9539 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9540 Value *NewVecOp = State.get(getVecOp(), Part); 9541 if (VPValue *Cond = getCondOp()) { 9542 Value *NewCond = State.get(Cond, Part); 9543 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9544 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9545 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9546 Constant *IdenVec = 9547 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9548 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9549 NewVecOp = Select; 9550 } 9551 Value *NewRed; 9552 Value *NextInChain; 9553 if (IsOrdered) { 9554 if (State.VF.isVector()) 9555 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9556 PrevInChain); 9557 else 9558 NewRed = State.Builder.CreateBinOp( 9559 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9560 PrevInChain, NewVecOp); 9561 PrevInChain = NewRed; 9562 } else { 9563 PrevInChain = State.get(getChainOp(), Part); 9564 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9565 } 9566 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9567 NextInChain = 9568 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9569 NewRed, PrevInChain); 9570 } else if (IsOrdered) 9571 NextInChain = NewRed; 9572 else { 9573 NextInChain = State.Builder.CreateBinOp( 9574 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9575 PrevInChain); 9576 } 9577 State.set(this, NextInChain, Part); 9578 } 9579 } 9580 9581 void VPReplicateRecipe::execute(VPTransformState &State) { 9582 if (State.Instance) { // Generate a single instance. 9583 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9584 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9585 *State.Instance, IsPredicated, State); 9586 // Insert scalar instance packing it into a vector. 9587 if (AlsoPack && State.VF.isVector()) { 9588 // If we're constructing lane 0, initialize to start from poison. 9589 if (State.Instance->Lane.isFirstLane()) { 9590 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9591 Value *Poison = PoisonValue::get( 9592 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9593 State.set(this, Poison, State.Instance->Part); 9594 } 9595 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9596 } 9597 return; 9598 } 9599 9600 // Generate scalar instances for all VF lanes of all UF parts, unless the 9601 // instruction is uniform inwhich case generate only the first lane for each 9602 // of the UF parts. 9603 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9604 assert((!State.VF.isScalable() || IsUniform) && 9605 "Can't scalarize a scalable vector"); 9606 for (unsigned Part = 0; Part < State.UF; ++Part) 9607 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9608 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9609 VPIteration(Part, Lane), IsPredicated, 9610 State); 9611 } 9612 9613 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9614 assert(State.Instance && "Branch on Mask works only on single instance."); 9615 9616 unsigned Part = State.Instance->Part; 9617 unsigned Lane = State.Instance->Lane.getKnownLane(); 9618 9619 Value *ConditionBit = nullptr; 9620 VPValue *BlockInMask = getMask(); 9621 if (BlockInMask) { 9622 ConditionBit = State.get(BlockInMask, Part); 9623 if (ConditionBit->getType()->isVectorTy()) 9624 ConditionBit = State.Builder.CreateExtractElement( 9625 ConditionBit, State.Builder.getInt32(Lane)); 9626 } else // Block in mask is all-one. 9627 ConditionBit = State.Builder.getTrue(); 9628 9629 // Replace the temporary unreachable terminator with a new conditional branch, 9630 // whose two destinations will be set later when they are created. 9631 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9632 assert(isa<UnreachableInst>(CurrentTerminator) && 9633 "Expected to replace unreachable terminator with conditional branch."); 9634 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9635 CondBr->setSuccessor(0, nullptr); 9636 ReplaceInstWithInst(CurrentTerminator, CondBr); 9637 } 9638 9639 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9640 assert(State.Instance && "Predicated instruction PHI works per instance."); 9641 Instruction *ScalarPredInst = 9642 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9643 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9644 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9645 assert(PredicatingBB && "Predicated block has no single predecessor."); 9646 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9647 "operand must be VPReplicateRecipe"); 9648 9649 // By current pack/unpack logic we need to generate only a single phi node: if 9650 // a vector value for the predicated instruction exists at this point it means 9651 // the instruction has vector users only, and a phi for the vector value is 9652 // needed. In this case the recipe of the predicated instruction is marked to 9653 // also do that packing, thereby "hoisting" the insert-element sequence. 9654 // Otherwise, a phi node for the scalar value is needed. 9655 unsigned Part = State.Instance->Part; 9656 if (State.hasVectorValue(getOperand(0), Part)) { 9657 Value *VectorValue = State.get(getOperand(0), Part); 9658 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9659 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9660 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9661 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9662 if (State.hasVectorValue(this, Part)) 9663 State.reset(this, VPhi, Part); 9664 else 9665 State.set(this, VPhi, Part); 9666 // NOTE: Currently we need to update the value of the operand, so the next 9667 // predicated iteration inserts its generated value in the correct vector. 9668 State.reset(getOperand(0), VPhi, Part); 9669 } else { 9670 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9671 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9672 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9673 PredicatingBB); 9674 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9675 if (State.hasScalarValue(this, *State.Instance)) 9676 State.reset(this, Phi, *State.Instance); 9677 else 9678 State.set(this, Phi, *State.Instance); 9679 // NOTE: Currently we need to update the value of the operand, so the next 9680 // predicated iteration inserts its generated value in the correct vector. 9681 State.reset(getOperand(0), Phi, *State.Instance); 9682 } 9683 } 9684 9685 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9686 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9687 State.ILV->vectorizeMemoryInstruction( 9688 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9689 StoredValue, getMask()); 9690 } 9691 9692 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9693 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9694 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9695 // for predication. 9696 static ScalarEpilogueLowering getScalarEpilogueLowering( 9697 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9698 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9699 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9700 LoopVectorizationLegality &LVL) { 9701 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9702 // don't look at hints or options, and don't request a scalar epilogue. 9703 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9704 // LoopAccessInfo (due to code dependency and not being able to reliably get 9705 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9706 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9707 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9708 // back to the old way and vectorize with versioning when forced. See D81345.) 9709 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9710 PGSOQueryType::IRPass) && 9711 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9712 return CM_ScalarEpilogueNotAllowedOptSize; 9713 9714 // 2) If set, obey the directives 9715 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9716 switch (PreferPredicateOverEpilogue) { 9717 case PreferPredicateTy::ScalarEpilogue: 9718 return CM_ScalarEpilogueAllowed; 9719 case PreferPredicateTy::PredicateElseScalarEpilogue: 9720 return CM_ScalarEpilogueNotNeededUsePredicate; 9721 case PreferPredicateTy::PredicateOrDontVectorize: 9722 return CM_ScalarEpilogueNotAllowedUsePredicate; 9723 }; 9724 } 9725 9726 // 3) If set, obey the hints 9727 switch (Hints.getPredicate()) { 9728 case LoopVectorizeHints::FK_Enabled: 9729 return CM_ScalarEpilogueNotNeededUsePredicate; 9730 case LoopVectorizeHints::FK_Disabled: 9731 return CM_ScalarEpilogueAllowed; 9732 }; 9733 9734 // 4) if the TTI hook indicates this is profitable, request predication. 9735 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9736 LVL.getLAI())) 9737 return CM_ScalarEpilogueNotNeededUsePredicate; 9738 9739 return CM_ScalarEpilogueAllowed; 9740 } 9741 9742 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9743 // If Values have been set for this Def return the one relevant for \p Part. 9744 if (hasVectorValue(Def, Part)) 9745 return Data.PerPartOutput[Def][Part]; 9746 9747 if (!hasScalarValue(Def, {Part, 0})) { 9748 Value *IRV = Def->getLiveInIRValue(); 9749 Value *B = ILV->getBroadcastInstrs(IRV); 9750 set(Def, B, Part); 9751 return B; 9752 } 9753 9754 Value *ScalarValue = get(Def, {Part, 0}); 9755 // If we aren't vectorizing, we can just copy the scalar map values over 9756 // to the vector map. 9757 if (VF.isScalar()) { 9758 set(Def, ScalarValue, Part); 9759 return ScalarValue; 9760 } 9761 9762 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9763 bool IsUniform = RepR && RepR->isUniform(); 9764 9765 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9766 // Check if there is a scalar value for the selected lane. 9767 if (!hasScalarValue(Def, {Part, LastLane})) { 9768 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9769 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9770 "unexpected recipe found to be invariant"); 9771 IsUniform = true; 9772 LastLane = 0; 9773 } 9774 9775 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9776 // Set the insert point after the last scalarized instruction or after the 9777 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9778 // will directly follow the scalar definitions. 9779 auto OldIP = Builder.saveIP(); 9780 auto NewIP = 9781 isa<PHINode>(LastInst) 9782 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9783 : std::next(BasicBlock::iterator(LastInst)); 9784 Builder.SetInsertPoint(&*NewIP); 9785 9786 // However, if we are vectorizing, we need to construct the vector values. 9787 // If the value is known to be uniform after vectorization, we can just 9788 // broadcast the scalar value corresponding to lane zero for each unroll 9789 // iteration. Otherwise, we construct the vector values using 9790 // insertelement instructions. Since the resulting vectors are stored in 9791 // State, we will only generate the insertelements once. 9792 Value *VectorValue = nullptr; 9793 if (IsUniform) { 9794 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9795 set(Def, VectorValue, Part); 9796 } else { 9797 // Initialize packing with insertelements to start from undef. 9798 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9799 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9800 set(Def, Undef, Part); 9801 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9802 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9803 VectorValue = get(Def, Part); 9804 } 9805 Builder.restoreIP(OldIP); 9806 return VectorValue; 9807 } 9808 9809 // Process the loop in the VPlan-native vectorization path. This path builds 9810 // VPlan upfront in the vectorization pipeline, which allows to apply 9811 // VPlan-to-VPlan transformations from the very beginning without modifying the 9812 // input LLVM IR. 9813 static bool processLoopInVPlanNativePath( 9814 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9815 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9816 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9817 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9818 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9819 LoopVectorizationRequirements &Requirements) { 9820 9821 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9822 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9823 return false; 9824 } 9825 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9826 Function *F = L->getHeader()->getParent(); 9827 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9828 9829 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9830 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9831 9832 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9833 &Hints, IAI); 9834 // Use the planner for outer loop vectorization. 9835 // TODO: CM is not used at this point inside the planner. Turn CM into an 9836 // optional argument if we don't need it in the future. 9837 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9838 Requirements, ORE); 9839 9840 // Get user vectorization factor. 9841 ElementCount UserVF = Hints.getWidth(); 9842 9843 // Plan how to best vectorize, return the best VF and its cost. 9844 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9845 9846 // If we are stress testing VPlan builds, do not attempt to generate vector 9847 // code. Masked vector code generation support will follow soon. 9848 // Also, do not attempt to vectorize if no vector code will be produced. 9849 if (VPlanBuildStressTest || EnableVPlanPredication || 9850 VectorizationFactor::Disabled() == VF) 9851 return false; 9852 9853 LVP.setBestPlan(VF.Width, 1); 9854 9855 { 9856 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9857 F->getParent()->getDataLayout()); 9858 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9859 &CM, BFI, PSI, Checks); 9860 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9861 << L->getHeader()->getParent()->getName() << "\"\n"); 9862 LVP.executePlan(LB, DT); 9863 } 9864 9865 // Mark the loop as already vectorized to avoid vectorizing again. 9866 Hints.setAlreadyVectorized(); 9867 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9868 return true; 9869 } 9870 9871 // Emit a remark if there are stores to floats that required a floating point 9872 // extension. If the vectorized loop was generated with floating point there 9873 // will be a performance penalty from the conversion overhead and the change in 9874 // the vector width. 9875 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9876 SmallVector<Instruction *, 4> Worklist; 9877 for (BasicBlock *BB : L->getBlocks()) { 9878 for (Instruction &Inst : *BB) { 9879 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9880 if (S->getValueOperand()->getType()->isFloatTy()) 9881 Worklist.push_back(S); 9882 } 9883 } 9884 } 9885 9886 // Traverse the floating point stores upwards searching, for floating point 9887 // conversions. 9888 SmallPtrSet<const Instruction *, 4> Visited; 9889 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9890 while (!Worklist.empty()) { 9891 auto *I = Worklist.pop_back_val(); 9892 if (!L->contains(I)) 9893 continue; 9894 if (!Visited.insert(I).second) 9895 continue; 9896 9897 // Emit a remark if the floating point store required a floating 9898 // point conversion. 9899 // TODO: More work could be done to identify the root cause such as a 9900 // constant or a function return type and point the user to it. 9901 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9902 ORE->emit([&]() { 9903 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9904 I->getDebugLoc(), L->getHeader()) 9905 << "floating point conversion changes vector width. " 9906 << "Mixed floating point precision requires an up/down " 9907 << "cast that will negatively impact performance."; 9908 }); 9909 9910 for (Use &Op : I->operands()) 9911 if (auto *OpI = dyn_cast<Instruction>(Op)) 9912 Worklist.push_back(OpI); 9913 } 9914 } 9915 9916 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9917 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9918 !EnableLoopInterleaving), 9919 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9920 !EnableLoopVectorization) {} 9921 9922 bool LoopVectorizePass::processLoop(Loop *L) { 9923 assert((EnableVPlanNativePath || L->isInnermost()) && 9924 "VPlan-native path is not enabled. Only process inner loops."); 9925 9926 #ifndef NDEBUG 9927 const std::string DebugLocStr = getDebugLocString(L); 9928 #endif /* NDEBUG */ 9929 9930 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9931 << L->getHeader()->getParent()->getName() << "\" from " 9932 << DebugLocStr << "\n"); 9933 9934 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9935 9936 LLVM_DEBUG( 9937 dbgs() << "LV: Loop hints:" 9938 << " force=" 9939 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9940 ? "disabled" 9941 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9942 ? "enabled" 9943 : "?")) 9944 << " width=" << Hints.getWidth() 9945 << " interleave=" << Hints.getInterleave() << "\n"); 9946 9947 // Function containing loop 9948 Function *F = L->getHeader()->getParent(); 9949 9950 // Looking at the diagnostic output is the only way to determine if a loop 9951 // was vectorized (other than looking at the IR or machine code), so it 9952 // is important to generate an optimization remark for each loop. Most of 9953 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9954 // generated as OptimizationRemark and OptimizationRemarkMissed are 9955 // less verbose reporting vectorized loops and unvectorized loops that may 9956 // benefit from vectorization, respectively. 9957 9958 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9959 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9960 return false; 9961 } 9962 9963 PredicatedScalarEvolution PSE(*SE, *L); 9964 9965 // Check if it is legal to vectorize the loop. 9966 LoopVectorizationRequirements Requirements; 9967 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9968 &Requirements, &Hints, DB, AC, BFI, PSI); 9969 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9970 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9971 Hints.emitRemarkWithHints(); 9972 return false; 9973 } 9974 9975 // Check the function attributes and profiles to find out if this function 9976 // should be optimized for size. 9977 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9978 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9979 9980 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9981 // here. They may require CFG and instruction level transformations before 9982 // even evaluating whether vectorization is profitable. Since we cannot modify 9983 // the incoming IR, we need to build VPlan upfront in the vectorization 9984 // pipeline. 9985 if (!L->isInnermost()) 9986 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9987 ORE, BFI, PSI, Hints, Requirements); 9988 9989 assert(L->isInnermost() && "Inner loop expected."); 9990 9991 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9992 // count by optimizing for size, to minimize overheads. 9993 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9994 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9995 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9996 << "This loop is worth vectorizing only if no scalar " 9997 << "iteration overheads are incurred."); 9998 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9999 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10000 else { 10001 LLVM_DEBUG(dbgs() << "\n"); 10002 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10003 } 10004 } 10005 10006 // Check the function attributes to see if implicit floats are allowed. 10007 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10008 // an integer loop and the vector instructions selected are purely integer 10009 // vector instructions? 10010 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10011 reportVectorizationFailure( 10012 "Can't vectorize when the NoImplicitFloat attribute is used", 10013 "loop not vectorized due to NoImplicitFloat attribute", 10014 "NoImplicitFloat", ORE, L); 10015 Hints.emitRemarkWithHints(); 10016 return false; 10017 } 10018 10019 // Check if the target supports potentially unsafe FP vectorization. 10020 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10021 // for the target we're vectorizing for, to make sure none of the 10022 // additional fp-math flags can help. 10023 if (Hints.isPotentiallyUnsafe() && 10024 TTI->isFPVectorizationPotentiallyUnsafe()) { 10025 reportVectorizationFailure( 10026 "Potentially unsafe FP op prevents vectorization", 10027 "loop not vectorized due to unsafe FP support.", 10028 "UnsafeFP", ORE, L); 10029 Hints.emitRemarkWithHints(); 10030 return false; 10031 } 10032 10033 if (!LVL.canVectorizeFPMath(EnableStrictReductions)) { 10034 ORE->emit([&]() { 10035 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10036 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10037 ExactFPMathInst->getDebugLoc(), 10038 ExactFPMathInst->getParent()) 10039 << "loop not vectorized: cannot prove it is safe to reorder " 10040 "floating-point operations"; 10041 }); 10042 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10043 "reorder floating-point operations\n"); 10044 Hints.emitRemarkWithHints(); 10045 return false; 10046 } 10047 10048 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10049 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10050 10051 // If an override option has been passed in for interleaved accesses, use it. 10052 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10053 UseInterleaved = EnableInterleavedMemAccesses; 10054 10055 // Analyze interleaved memory accesses. 10056 if (UseInterleaved) { 10057 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10058 } 10059 10060 // Use the cost model. 10061 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10062 F, &Hints, IAI); 10063 CM.collectValuesToIgnore(); 10064 10065 // Use the planner for vectorization. 10066 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10067 Requirements, ORE); 10068 10069 // Get user vectorization factor and interleave count. 10070 ElementCount UserVF = Hints.getWidth(); 10071 unsigned UserIC = Hints.getInterleave(); 10072 10073 // Plan how to best vectorize, return the best VF and its cost. 10074 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10075 10076 VectorizationFactor VF = VectorizationFactor::Disabled(); 10077 unsigned IC = 1; 10078 10079 if (MaybeVF) { 10080 VF = *MaybeVF; 10081 // Select the interleave count. 10082 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10083 } 10084 10085 // Identify the diagnostic messages that should be produced. 10086 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10087 bool VectorizeLoop = true, InterleaveLoop = true; 10088 if (VF.Width.isScalar()) { 10089 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10090 VecDiagMsg = std::make_pair( 10091 "VectorizationNotBeneficial", 10092 "the cost-model indicates that vectorization is not beneficial"); 10093 VectorizeLoop = false; 10094 } 10095 10096 if (!MaybeVF && UserIC > 1) { 10097 // Tell the user interleaving was avoided up-front, despite being explicitly 10098 // requested. 10099 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10100 "interleaving should be avoided up front\n"); 10101 IntDiagMsg = std::make_pair( 10102 "InterleavingAvoided", 10103 "Ignoring UserIC, because interleaving was avoided up front"); 10104 InterleaveLoop = false; 10105 } else if (IC == 1 && UserIC <= 1) { 10106 // Tell the user interleaving is not beneficial. 10107 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10108 IntDiagMsg = std::make_pair( 10109 "InterleavingNotBeneficial", 10110 "the cost-model indicates that interleaving is not beneficial"); 10111 InterleaveLoop = false; 10112 if (UserIC == 1) { 10113 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10114 IntDiagMsg.second += 10115 " and is explicitly disabled or interleave count is set to 1"; 10116 } 10117 } else if (IC > 1 && UserIC == 1) { 10118 // Tell the user interleaving is beneficial, but it explicitly disabled. 10119 LLVM_DEBUG( 10120 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10121 IntDiagMsg = std::make_pair( 10122 "InterleavingBeneficialButDisabled", 10123 "the cost-model indicates that interleaving is beneficial " 10124 "but is explicitly disabled or interleave count is set to 1"); 10125 InterleaveLoop = false; 10126 } 10127 10128 // Override IC if user provided an interleave count. 10129 IC = UserIC > 0 ? UserIC : IC; 10130 10131 // Emit diagnostic messages, if any. 10132 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10133 if (!VectorizeLoop && !InterleaveLoop) { 10134 // Do not vectorize or interleaving the loop. 10135 ORE->emit([&]() { 10136 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10137 L->getStartLoc(), L->getHeader()) 10138 << VecDiagMsg.second; 10139 }); 10140 ORE->emit([&]() { 10141 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10142 L->getStartLoc(), L->getHeader()) 10143 << IntDiagMsg.second; 10144 }); 10145 return false; 10146 } else if (!VectorizeLoop && InterleaveLoop) { 10147 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10148 ORE->emit([&]() { 10149 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10150 L->getStartLoc(), L->getHeader()) 10151 << VecDiagMsg.second; 10152 }); 10153 } else if (VectorizeLoop && !InterleaveLoop) { 10154 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10155 << ") in " << DebugLocStr << '\n'); 10156 ORE->emit([&]() { 10157 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10158 L->getStartLoc(), L->getHeader()) 10159 << IntDiagMsg.second; 10160 }); 10161 } else if (VectorizeLoop && InterleaveLoop) { 10162 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10163 << ") in " << DebugLocStr << '\n'); 10164 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10165 } 10166 10167 bool DisableRuntimeUnroll = false; 10168 MDNode *OrigLoopID = L->getLoopID(); 10169 { 10170 // Optimistically generate runtime checks. Drop them if they turn out to not 10171 // be profitable. Limit the scope of Checks, so the cleanup happens 10172 // immediately after vector codegeneration is done. 10173 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10174 F->getParent()->getDataLayout()); 10175 if (!VF.Width.isScalar() || IC > 1) 10176 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10177 LVP.setBestPlan(VF.Width, IC); 10178 10179 using namespace ore; 10180 if (!VectorizeLoop) { 10181 assert(IC > 1 && "interleave count should not be 1 or 0"); 10182 // If we decided that it is not legal to vectorize the loop, then 10183 // interleave it. 10184 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10185 &CM, BFI, PSI, Checks); 10186 LVP.executePlan(Unroller, DT); 10187 10188 ORE->emit([&]() { 10189 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10190 L->getHeader()) 10191 << "interleaved loop (interleaved count: " 10192 << NV("InterleaveCount", IC) << ")"; 10193 }); 10194 } else { 10195 // If we decided that it is *legal* to vectorize the loop, then do it. 10196 10197 // Consider vectorizing the epilogue too if it's profitable. 10198 VectorizationFactor EpilogueVF = 10199 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10200 if (EpilogueVF.Width.isVector()) { 10201 10202 // The first pass vectorizes the main loop and creates a scalar epilogue 10203 // to be vectorized by executing the plan (potentially with a different 10204 // factor) again shortly afterwards. 10205 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10206 EpilogueVF.Width.getKnownMinValue(), 10207 1); 10208 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10209 EPI, &LVL, &CM, BFI, PSI, Checks); 10210 10211 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10212 LVP.executePlan(MainILV, DT); 10213 ++LoopsVectorized; 10214 10215 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10216 formLCSSARecursively(*L, *DT, LI, SE); 10217 10218 // Second pass vectorizes the epilogue and adjusts the control flow 10219 // edges from the first pass. 10220 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10221 EPI.MainLoopVF = EPI.EpilogueVF; 10222 EPI.MainLoopUF = EPI.EpilogueUF; 10223 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10224 ORE, EPI, &LVL, &CM, BFI, PSI, 10225 Checks); 10226 LVP.executePlan(EpilogILV, DT); 10227 ++LoopsEpilogueVectorized; 10228 10229 if (!MainILV.areSafetyChecksAdded()) 10230 DisableRuntimeUnroll = true; 10231 } else { 10232 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10233 &LVL, &CM, BFI, PSI, Checks); 10234 LVP.executePlan(LB, DT); 10235 ++LoopsVectorized; 10236 10237 // Add metadata to disable runtime unrolling a scalar loop when there 10238 // are no runtime checks about strides and memory. A scalar loop that is 10239 // rarely used is not worth unrolling. 10240 if (!LB.areSafetyChecksAdded()) 10241 DisableRuntimeUnroll = true; 10242 } 10243 // Report the vectorization decision. 10244 ORE->emit([&]() { 10245 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10246 L->getHeader()) 10247 << "vectorized loop (vectorization width: " 10248 << NV("VectorizationFactor", VF.Width) 10249 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10250 }); 10251 } 10252 10253 if (ORE->allowExtraAnalysis(LV_NAME)) 10254 checkMixedPrecision(L, ORE); 10255 } 10256 10257 Optional<MDNode *> RemainderLoopID = 10258 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10259 LLVMLoopVectorizeFollowupEpilogue}); 10260 if (RemainderLoopID.hasValue()) { 10261 L->setLoopID(RemainderLoopID.getValue()); 10262 } else { 10263 if (DisableRuntimeUnroll) 10264 AddRuntimeUnrollDisableMetaData(L); 10265 10266 // Mark the loop as already vectorized to avoid vectorizing again. 10267 Hints.setAlreadyVectorized(); 10268 } 10269 10270 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10271 return true; 10272 } 10273 10274 LoopVectorizeResult LoopVectorizePass::runImpl( 10275 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10276 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10277 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10278 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10279 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10280 SE = &SE_; 10281 LI = &LI_; 10282 TTI = &TTI_; 10283 DT = &DT_; 10284 BFI = &BFI_; 10285 TLI = TLI_; 10286 AA = &AA_; 10287 AC = &AC_; 10288 GetLAA = &GetLAA_; 10289 DB = &DB_; 10290 ORE = &ORE_; 10291 PSI = PSI_; 10292 10293 // Don't attempt if 10294 // 1. the target claims to have no vector registers, and 10295 // 2. interleaving won't help ILP. 10296 // 10297 // The second condition is necessary because, even if the target has no 10298 // vector registers, loop vectorization may still enable scalar 10299 // interleaving. 10300 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10301 TTI->getMaxInterleaveFactor(1) < 2) 10302 return LoopVectorizeResult(false, false); 10303 10304 bool Changed = false, CFGChanged = false; 10305 10306 // The vectorizer requires loops to be in simplified form. 10307 // Since simplification may add new inner loops, it has to run before the 10308 // legality and profitability checks. This means running the loop vectorizer 10309 // will simplify all loops, regardless of whether anything end up being 10310 // vectorized. 10311 for (auto &L : *LI) 10312 Changed |= CFGChanged |= 10313 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10314 10315 // Build up a worklist of inner-loops to vectorize. This is necessary as 10316 // the act of vectorizing or partially unrolling a loop creates new loops 10317 // and can invalidate iterators across the loops. 10318 SmallVector<Loop *, 8> Worklist; 10319 10320 for (Loop *L : *LI) 10321 collectSupportedLoops(*L, LI, ORE, Worklist); 10322 10323 LoopsAnalyzed += Worklist.size(); 10324 10325 // Now walk the identified inner loops. 10326 while (!Worklist.empty()) { 10327 Loop *L = Worklist.pop_back_val(); 10328 10329 // For the inner loops we actually process, form LCSSA to simplify the 10330 // transform. 10331 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10332 10333 Changed |= CFGChanged |= processLoop(L); 10334 } 10335 10336 // Process each loop nest in the function. 10337 return LoopVectorizeResult(Changed, CFGChanged); 10338 } 10339 10340 PreservedAnalyses LoopVectorizePass::run(Function &F, 10341 FunctionAnalysisManager &AM) { 10342 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10343 auto &LI = AM.getResult<LoopAnalysis>(F); 10344 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10345 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10346 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10347 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10348 auto &AA = AM.getResult<AAManager>(F); 10349 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10350 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10351 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10352 MemorySSA *MSSA = EnableMSSALoopDependency 10353 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10354 : nullptr; 10355 10356 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10357 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10358 [&](Loop &L) -> const LoopAccessInfo & { 10359 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10360 TLI, TTI, nullptr, MSSA}; 10361 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10362 }; 10363 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10364 ProfileSummaryInfo *PSI = 10365 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10366 LoopVectorizeResult Result = 10367 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10368 if (!Result.MadeAnyChange) 10369 return PreservedAnalyses::all(); 10370 PreservedAnalyses PA; 10371 10372 // We currently do not preserve loopinfo/dominator analyses with outer loop 10373 // vectorization. Until this is addressed, mark these analyses as preserved 10374 // only for non-VPlan-native path. 10375 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10376 if (!EnableVPlanNativePath) { 10377 PA.preserve<LoopAnalysis>(); 10378 PA.preserve<DominatorTreeAnalysis>(); 10379 } 10380 if (!Result.MadeCFGChange) 10381 PA.preserveSet<CFGAnalyses>(); 10382 return PA; 10383 } 10384