1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/EquivalenceClasses.h" 52 #include "llvm/ADT/Hashing.h" 53 #include "llvm/ADT/MapVector.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/AliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/LoopAccessAnalysis.h" 66 #include "llvm/Analysis/LoopInfo.h" 67 #include "llvm/Analysis/LoopIterator.h" 68 #include "llvm/Analysis/LoopPass.h" 69 #include "llvm/Analysis/ScalarEvolution.h" 70 #include "llvm/Analysis/ScalarEvolutionExpander.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetTransformInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfo.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/DiagnosticInfo.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/IRBuilder.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/IntrinsicInst.h" 84 #include "llvm/IR/LLVMContext.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/IR/ValueHandle.h" 90 #include "llvm/IR/Verifier.h" 91 #include "llvm/Pass.h" 92 #include "llvm/Support/BranchProbability.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Transforms/Scalar.h" 97 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include "llvm/Analysis/VectorUtils.h" 100 #include "llvm/Transforms/Utils/LoopUtils.h" 101 #include <algorithm> 102 #include <map> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define LV_NAME "loop-vectorize" 109 #define DEBUG_TYPE LV_NAME 110 111 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 112 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 113 114 static cl::opt<bool> 115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 116 cl::desc("Enable if-conversion during vectorization.")); 117 118 /// We don't vectorize loops with a known constant trip count below this number. 119 static cl::opt<unsigned> 120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 121 cl::Hidden, 122 cl::desc("Don't vectorize loops with a constant " 123 "trip count that is smaller than this " 124 "value.")); 125 126 /// This enables versioning on the strides of symbolically striding memory 127 /// accesses in code like the following. 128 /// for (i = 0; i < N; ++i) 129 /// A[i * Stride1] += B[i * Stride2] ... 130 /// 131 /// Will be roughly translated to 132 /// if (Stride1 == 1 && Stride2 == 1) { 133 /// for (i = 0; i < N; i+=4) 134 /// A[i:i+3] += ... 135 /// } else 136 /// ... 137 static cl::opt<bool> EnableMemAccessVersioning( 138 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 139 cl::desc("Enable symblic stride memory access versioning")); 140 141 static cl::opt<bool> EnableInterleavedMemAccesses( 142 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 143 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 144 145 /// Maximum factor for an interleaved memory access. 146 static cl::opt<unsigned> MaxInterleaveGroupFactor( 147 "max-interleave-group-factor", cl::Hidden, 148 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 149 cl::init(8)); 150 151 /// We don't unroll loops with a known constant trip count below this number. 152 static const unsigned TinyTripCountUnrollThreshold = 128; 153 154 static cl::opt<unsigned> ForceTargetNumScalarRegs( 155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's number of scalar registers.")); 157 158 static cl::opt<unsigned> ForceTargetNumVectorRegs( 159 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's number of vector registers.")); 161 162 /// Maximum vectorization interleave count. 163 static const unsigned MaxInterleaveFactor = 16; 164 165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's max interleave factor for " 168 "scalar loops.")); 169 170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 172 cl::desc("A flag that overrides the target's max interleave factor for " 173 "vectorized loops.")); 174 175 static cl::opt<unsigned> ForceTargetInstructionCost( 176 "force-target-instruction-cost", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's expected cost for " 178 "an instruction to a single constant value. Mostly " 179 "useful for getting consistent testing.")); 180 181 static cl::opt<unsigned> SmallLoopCost( 182 "small-loop-cost", cl::init(20), cl::Hidden, 183 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 184 185 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 187 cl::desc("Enable the use of the block frequency analysis to access PGO " 188 "heuristics minimizing code growth in cold regions and being more " 189 "aggressive in hot regions.")); 190 191 // Runtime unroll loops for load/store throughput. 192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 194 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 195 196 /// The number of stores in a loop that are allowed to need predication. 197 static cl::opt<unsigned> NumberOfStoresToPredicate( 198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 199 cl::desc("Max number of stores to be predicated behind an if.")); 200 201 static cl::opt<bool> EnableIndVarRegisterHeur( 202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 203 cl::desc("Count the induction variable only once when unrolling")); 204 205 static cl::opt<bool> EnableCondStoresVectorization( 206 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 207 cl::desc("Enable if predication of stores during vectorization.")); 208 209 static cl::opt<unsigned> MaxNestedScalarReductionUF( 210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 211 cl::desc("The maximum unroll factor to use when unrolling a scalar " 212 "reduction in a nested loop.")); 213 214 namespace { 215 216 // Forward declarations. 217 class LoopVectorizationLegality; 218 class LoopVectorizationCostModel; 219 class LoopVectorizeHints; 220 221 /// \brief This modifies LoopAccessReport to initialize message with 222 /// loop-vectorizer-specific part. 223 class VectorizationReport : public LoopAccessReport { 224 public: 225 VectorizationReport(Instruction *I = nullptr) 226 : LoopAccessReport("loop not vectorized: ", I) {} 227 228 /// \brief This allows promotion of the loop-access analysis report into the 229 /// loop-vectorizer report. It modifies the message to add the 230 /// loop-vectorizer-specific part of the message. 231 explicit VectorizationReport(const LoopAccessReport &R) 232 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 233 R.getInstr()) {} 234 }; 235 236 /// A helper function for converting Scalar types to vector types. 237 /// If the incoming type is void, we return void. If the VF is 1, we return 238 /// the scalar type. 239 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 240 if (Scalar->isVoidTy() || VF == 1) 241 return Scalar; 242 return VectorType::get(Scalar, VF); 243 } 244 245 /// InnerLoopVectorizer vectorizes loops which contain only one basic 246 /// block to a specified vectorization factor (VF). 247 /// This class performs the widening of scalars into vectors, or multiple 248 /// scalars. This class also implements the following features: 249 /// * It inserts an epilogue loop for handling loops that don't have iteration 250 /// counts that are known to be a multiple of the vectorization factor. 251 /// * It handles the code generation for reduction variables. 252 /// * Scalarization (implementation using scalars) of un-vectorizable 253 /// instructions. 254 /// InnerLoopVectorizer does not perform any vectorization-legality 255 /// checks, and relies on the caller to check for the different legality 256 /// aspects. The InnerLoopVectorizer relies on the 257 /// LoopVectorizationLegality class to provide information about the induction 258 /// and reduction variables that were found to a given vectorization factor. 259 class InnerLoopVectorizer { 260 public: 261 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 262 DominatorTree *DT, const TargetLibraryInfo *TLI, 263 const TargetTransformInfo *TTI, unsigned VecWidth, 264 unsigned UnrollFactor) 265 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 266 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 267 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 268 Legal(nullptr), AddedSafetyChecks(false) {} 269 270 // Perform the actual loop widening (vectorization). 271 void vectorize(LoopVectorizationLegality *L) { 272 Legal = L; 273 // Create a new empty loop. Unlink the old loop and connect the new one. 274 createEmptyLoop(); 275 // Widen each instruction in the old loop to a new one in the new loop. 276 // Use the Legality module to find the induction and reduction variables. 277 vectorizeLoop(); 278 // Register the new loop and update the analysis passes. 279 updateAnalysis(); 280 } 281 282 // Return true if any runtime check is added. 283 bool IsSafetyChecksAdded() { 284 return AddedSafetyChecks; 285 } 286 287 virtual ~InnerLoopVectorizer() {} 288 289 protected: 290 /// A small list of PHINodes. 291 typedef SmallVector<PHINode*, 4> PhiVector; 292 /// When we unroll loops we have multiple vector values for each scalar. 293 /// This data structure holds the unrolled and vectorized values that 294 /// originated from one scalar instruction. 295 typedef SmallVector<Value*, 2> VectorParts; 296 297 // When we if-convert we need to create edge masks. We have to cache values 298 // so that we don't end up with exponential recursion/IR. 299 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 300 VectorParts> EdgeMaskCache; 301 302 /// \brief Add checks for strides that were assumed to be 1. 303 /// 304 /// Returns the last check instruction and the first check instruction in the 305 /// pair as (first, last). 306 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 307 308 /// Create an empty loop, based on the loop ranges of the old loop. 309 void createEmptyLoop(); 310 /// Copy and widen the instructions from the old loop. 311 virtual void vectorizeLoop(); 312 313 /// \brief The Loop exit block may have single value PHI nodes where the 314 /// incoming value is 'Undef'. While vectorizing we only handled real values 315 /// that were defined inside the loop. Here we fix the 'undef case'. 316 /// See PR14725. 317 void fixLCSSAPHIs(); 318 319 /// A helper function that computes the predicate of the block BB, assuming 320 /// that the header block of the loop is set to True. It returns the *entry* 321 /// mask for the block BB. 322 VectorParts createBlockInMask(BasicBlock *BB); 323 /// A helper function that computes the predicate of the edge between SRC 324 /// and DST. 325 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 326 327 /// A helper function to vectorize a single BB within the innermost loop. 328 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 329 330 /// Vectorize a single PHINode in a block. This method handles the induction 331 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 332 /// arbitrary length vectors. 333 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 334 unsigned UF, unsigned VF, PhiVector *PV); 335 336 /// Insert the new loop to the loop hierarchy and pass manager 337 /// and update the analysis passes. 338 void updateAnalysis(); 339 340 /// This instruction is un-vectorizable. Implement it as a sequence 341 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 342 /// scalarized instruction behind an if block predicated on the control 343 /// dependence of the instruction. 344 virtual void scalarizeInstruction(Instruction *Instr, 345 bool IfPredicateStore=false); 346 347 /// Vectorize Load and Store instructions, 348 virtual void vectorizeMemoryInstruction(Instruction *Instr); 349 350 /// Create a broadcast instruction. This method generates a broadcast 351 /// instruction (shuffle) for loop invariant values and for the induction 352 /// value. If this is the induction variable then we extend it to N, N+1, ... 353 /// this is needed because each iteration in the loop corresponds to a SIMD 354 /// element. 355 virtual Value *getBroadcastInstrs(Value *V); 356 357 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 358 /// to each vector element of Val. The sequence starts at StartIndex. 359 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 360 361 /// When we go over instructions in the basic block we rely on previous 362 /// values within the current basic block or on loop invariant values. 363 /// When we widen (vectorize) values we place them in the map. If the values 364 /// are not within the map, they have to be loop invariant, so we simply 365 /// broadcast them into a vector. 366 VectorParts &getVectorValue(Value *V); 367 368 /// Try to vectorize the interleaved access group that \p Instr belongs to. 369 void vectorizeInterleaveGroup(Instruction *Instr); 370 371 /// Generate a shuffle sequence that will reverse the vector Vec. 372 virtual Value *reverseVector(Value *Vec); 373 374 /// This is a helper class that holds the vectorizer state. It maps scalar 375 /// instructions to vector instructions. When the code is 'unrolled' then 376 /// then a single scalar value is mapped to multiple vector parts. The parts 377 /// are stored in the VectorPart type. 378 struct ValueMap { 379 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 380 /// are mapped. 381 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 382 383 /// \return True if 'Key' is saved in the Value Map. 384 bool has(Value *Key) const { return MapStorage.count(Key); } 385 386 /// Initializes a new entry in the map. Sets all of the vector parts to the 387 /// save value in 'Val'. 388 /// \return A reference to a vector with splat values. 389 VectorParts &splat(Value *Key, Value *Val) { 390 VectorParts &Entry = MapStorage[Key]; 391 Entry.assign(UF, Val); 392 return Entry; 393 } 394 395 ///\return A reference to the value that is stored at 'Key'. 396 VectorParts &get(Value *Key) { 397 VectorParts &Entry = MapStorage[Key]; 398 if (Entry.empty()) 399 Entry.resize(UF); 400 assert(Entry.size() == UF); 401 return Entry; 402 } 403 404 private: 405 /// The unroll factor. Each entry in the map stores this number of vector 406 /// elements. 407 unsigned UF; 408 409 /// Map storage. We use std::map and not DenseMap because insertions to a 410 /// dense map invalidates its iterators. 411 std::map<Value *, VectorParts> MapStorage; 412 }; 413 414 /// The original loop. 415 Loop *OrigLoop; 416 /// Scev analysis to use. 417 ScalarEvolution *SE; 418 /// Loop Info. 419 LoopInfo *LI; 420 /// Dominator Tree. 421 DominatorTree *DT; 422 /// Alias Analysis. 423 AliasAnalysis *AA; 424 /// Target Library Info. 425 const TargetLibraryInfo *TLI; 426 /// Target Transform Info. 427 const TargetTransformInfo *TTI; 428 429 /// The vectorization SIMD factor to use. Each vector will have this many 430 /// vector elements. 431 unsigned VF; 432 433 protected: 434 /// The vectorization unroll factor to use. Each scalar is vectorized to this 435 /// many different vector instructions. 436 unsigned UF; 437 438 /// The builder that we use 439 IRBuilder<> Builder; 440 441 // --- Vectorization state --- 442 443 /// The vector-loop preheader. 444 BasicBlock *LoopVectorPreHeader; 445 /// The scalar-loop preheader. 446 BasicBlock *LoopScalarPreHeader; 447 /// Middle Block between the vector and the scalar. 448 BasicBlock *LoopMiddleBlock; 449 ///The ExitBlock of the scalar loop. 450 BasicBlock *LoopExitBlock; 451 ///The vector loop body. 452 SmallVector<BasicBlock *, 4> LoopVectorBody; 453 ///The scalar loop body. 454 BasicBlock *LoopScalarBody; 455 /// A list of all bypass blocks. The first block is the entry of the loop. 456 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 457 458 /// The new Induction variable which was added to the new block. 459 PHINode *Induction; 460 /// The induction variable of the old basic block. 461 PHINode *OldInduction; 462 /// Holds the extended (to the widest induction type) start index. 463 Value *ExtendedIdx; 464 /// Maps scalars to widened vectors. 465 ValueMap WidenMap; 466 EdgeMaskCache MaskCache; 467 468 LoopVectorizationLegality *Legal; 469 470 // Record whether runtime check is added. 471 bool AddedSafetyChecks; 472 }; 473 474 class InnerLoopUnroller : public InnerLoopVectorizer { 475 public: 476 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 477 DominatorTree *DT, const TargetLibraryInfo *TLI, 478 const TargetTransformInfo *TTI, unsigned UnrollFactor) 479 : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor) {} 480 481 private: 482 void scalarizeInstruction(Instruction *Instr, 483 bool IfPredicateStore = false) override; 484 void vectorizeMemoryInstruction(Instruction *Instr) override; 485 Value *getBroadcastInstrs(Value *V) override; 486 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 487 Value *reverseVector(Value *Vec) override; 488 }; 489 490 /// \brief Look for a meaningful debug location on the instruction or it's 491 /// operands. 492 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 493 if (!I) 494 return I; 495 496 DebugLoc Empty; 497 if (I->getDebugLoc() != Empty) 498 return I; 499 500 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 501 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 502 if (OpInst->getDebugLoc() != Empty) 503 return OpInst; 504 } 505 506 return I; 507 } 508 509 /// \brief Set the debug location in the builder using the debug location in the 510 /// instruction. 511 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 512 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 513 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 514 else 515 B.SetCurrentDebugLocation(DebugLoc()); 516 } 517 518 #ifndef NDEBUG 519 /// \return string containing a file name and a line # for the given loop. 520 static std::string getDebugLocString(const Loop *L) { 521 std::string Result; 522 if (L) { 523 raw_string_ostream OS(Result); 524 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 525 LoopDbgLoc.print(OS); 526 else 527 // Just print the module name. 528 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 529 OS.flush(); 530 } 531 return Result; 532 } 533 #endif 534 535 /// \brief Propagate known metadata from one instruction to another. 536 static void propagateMetadata(Instruction *To, const Instruction *From) { 537 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 538 From->getAllMetadataOtherThanDebugLoc(Metadata); 539 540 for (auto M : Metadata) { 541 unsigned Kind = M.first; 542 543 // These are safe to transfer (this is safe for TBAA, even when we 544 // if-convert, because should that metadata have had a control dependency 545 // on the condition, and thus actually aliased with some other 546 // non-speculated memory access when the condition was false, this would be 547 // caught by the runtime overlap checks). 548 if (Kind != LLVMContext::MD_tbaa && 549 Kind != LLVMContext::MD_alias_scope && 550 Kind != LLVMContext::MD_noalias && 551 Kind != LLVMContext::MD_fpmath) 552 continue; 553 554 To->setMetadata(Kind, M.second); 555 } 556 } 557 558 /// \brief Propagate known metadata from one instruction to a vector of others. 559 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 560 for (Value *V : To) 561 if (Instruction *I = dyn_cast<Instruction>(V)) 562 propagateMetadata(I, From); 563 } 564 565 /// \brief The group of interleaved loads/stores sharing the same stride and 566 /// close to each other. 567 /// 568 /// Each member in this group has an index starting from 0, and the largest 569 /// index should be less than interleaved factor, which is equal to the absolute 570 /// value of the access's stride. 571 /// 572 /// E.g. An interleaved load group of factor 4: 573 /// for (unsigned i = 0; i < 1024; i+=4) { 574 /// a = A[i]; // Member of index 0 575 /// b = A[i+1]; // Member of index 1 576 /// d = A[i+3]; // Member of index 3 577 /// ... 578 /// } 579 /// 580 /// An interleaved store group of factor 4: 581 /// for (unsigned i = 0; i < 1024; i+=4) { 582 /// ... 583 /// A[i] = a; // Member of index 0 584 /// A[i+1] = b; // Member of index 1 585 /// A[i+2] = c; // Member of index 2 586 /// A[i+3] = d; // Member of index 3 587 /// } 588 /// 589 /// Note: the interleaved load group could have gaps (missing members), but 590 /// the interleaved store group doesn't allow gaps. 591 class InterleaveGroup { 592 public: 593 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 594 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 595 assert(Align && "The alignment should be non-zero"); 596 597 Factor = std::abs(Stride); 598 assert(Factor > 1 && "Invalid interleave factor"); 599 600 Reverse = Stride < 0; 601 Members[0] = Instr; 602 } 603 604 bool isReverse() const { return Reverse; } 605 unsigned getFactor() const { return Factor; } 606 unsigned getAlignment() const { return Align; } 607 unsigned getNumMembers() const { return Members.size(); } 608 609 /// \brief Try to insert a new member \p Instr with index \p Index and 610 /// alignment \p NewAlign. The index is related to the leader and it could be 611 /// negative if it is the new leader. 612 /// 613 /// \returns false if the instruction doesn't belong to the group. 614 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 615 assert(NewAlign && "The new member's alignment should be non-zero"); 616 617 int Key = Index + SmallestKey; 618 619 // Skip if there is already a member with the same index. 620 if (Members.count(Key)) 621 return false; 622 623 if (Key > LargestKey) { 624 // The largest index is always less than the interleave factor. 625 if (Index >= static_cast<int>(Factor)) 626 return false; 627 628 LargestKey = Key; 629 } else if (Key < SmallestKey) { 630 // The largest index is always less than the interleave factor. 631 if (LargestKey - Key >= static_cast<int>(Factor)) 632 return false; 633 634 SmallestKey = Key; 635 } 636 637 // It's always safe to select the minimum alignment. 638 Align = std::min(Align, NewAlign); 639 Members[Key] = Instr; 640 return true; 641 } 642 643 /// \brief Get the member with the given index \p Index 644 /// 645 /// \returns nullptr if contains no such member. 646 Instruction *getMember(unsigned Index) const { 647 int Key = SmallestKey + Index; 648 if (!Members.count(Key)) 649 return nullptr; 650 651 return Members.find(Key)->second; 652 } 653 654 /// \brief Get the index for the given member. Unlike the key in the member 655 /// map, the index starts from 0. 656 unsigned getIndex(Instruction *Instr) const { 657 for (auto I : Members) 658 if (I.second == Instr) 659 return I.first - SmallestKey; 660 661 llvm_unreachable("InterleaveGroup contains no such member"); 662 } 663 664 Instruction *getInsertPos() const { return InsertPos; } 665 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 666 667 private: 668 unsigned Factor; // Interleave Factor. 669 bool Reverse; 670 unsigned Align; 671 DenseMap<int, Instruction *> Members; 672 int SmallestKey; 673 int LargestKey; 674 675 // To avoid breaking dependences, vectorized instructions of an interleave 676 // group should be inserted at either the first load or the last store in 677 // program order. 678 // 679 // E.g. %even = load i32 // Insert Position 680 // %add = add i32 %even // Use of %even 681 // %odd = load i32 682 // 683 // store i32 %even 684 // %odd = add i32 // Def of %odd 685 // store i32 %odd // Insert Position 686 Instruction *InsertPos; 687 }; 688 689 /// \brief Drive the analysis of interleaved memory accesses in the loop. 690 /// 691 /// Use this class to analyze interleaved accesses only when we can vectorize 692 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 693 /// on interleaved accesses is unsafe. 694 /// 695 /// The analysis collects interleave groups and records the relationships 696 /// between the member and the group in a map. 697 class InterleavedAccessInfo { 698 public: 699 InterleavedAccessInfo(ScalarEvolution *SE, Loop *L, DominatorTree *DT) 700 : SE(SE), TheLoop(L), DT(DT) {} 701 702 ~InterleavedAccessInfo() { 703 SmallSet<InterleaveGroup *, 4> DelSet; 704 // Avoid releasing a pointer twice. 705 for (auto &I : InterleaveGroupMap) 706 DelSet.insert(I.second); 707 for (auto *Ptr : DelSet) 708 delete Ptr; 709 } 710 711 /// \brief Analyze the interleaved accesses and collect them in interleave 712 /// groups. Substitute symbolic strides using \p Strides. 713 void analyzeInterleaving(const ValueToValueMap &Strides); 714 715 /// \brief Check if \p Instr belongs to any interleave group. 716 bool isInterleaved(Instruction *Instr) const { 717 return InterleaveGroupMap.count(Instr); 718 } 719 720 /// \brief Get the interleave group that \p Instr belongs to. 721 /// 722 /// \returns nullptr if doesn't have such group. 723 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 724 if (InterleaveGroupMap.count(Instr)) 725 return InterleaveGroupMap.find(Instr)->second; 726 return nullptr; 727 } 728 729 private: 730 ScalarEvolution *SE; 731 Loop *TheLoop; 732 DominatorTree *DT; 733 734 /// Holds the relationships between the members and the interleave group. 735 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 736 737 /// \brief The descriptor for a strided memory access. 738 struct StrideDescriptor { 739 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 740 unsigned Align) 741 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 742 743 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 744 745 int Stride; // The access's stride. It is negative for a reverse access. 746 const SCEV *Scev; // The scalar expression of this access 747 unsigned Size; // The size of the memory object. 748 unsigned Align; // The alignment of this access. 749 }; 750 751 /// \brief Create a new interleave group with the given instruction \p Instr, 752 /// stride \p Stride and alignment \p Align. 753 /// 754 /// \returns the newly created interleave group. 755 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 756 unsigned Align) { 757 assert(!InterleaveGroupMap.count(Instr) && 758 "Already in an interleaved access group"); 759 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 760 return InterleaveGroupMap[Instr]; 761 } 762 763 /// \brief Release the group and remove all the relationships. 764 void releaseGroup(InterleaveGroup *Group) { 765 for (unsigned i = 0; i < Group->getFactor(); i++) 766 if (Instruction *Member = Group->getMember(i)) 767 InterleaveGroupMap.erase(Member); 768 769 delete Group; 770 } 771 772 /// \brief Collect all the accesses with a constant stride in program order. 773 void collectConstStridedAccesses( 774 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 775 const ValueToValueMap &Strides); 776 }; 777 778 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 779 /// to what vectorization factor. 780 /// This class does not look at the profitability of vectorization, only the 781 /// legality. This class has two main kinds of checks: 782 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 783 /// will change the order of memory accesses in a way that will change the 784 /// correctness of the program. 785 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 786 /// checks for a number of different conditions, such as the availability of a 787 /// single induction variable, that all types are supported and vectorize-able, 788 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 789 /// This class is also used by InnerLoopVectorizer for identifying 790 /// induction variable and the different reduction variables. 791 class LoopVectorizationLegality { 792 public: 793 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 794 TargetLibraryInfo *TLI, AliasAnalysis *AA, 795 Function *F, const TargetTransformInfo *TTI, 796 LoopAccessAnalysis *LAA) 797 : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F), 798 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(SE, L, DT), 799 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} 800 801 /// This enum represents the kinds of inductions that we support. 802 enum InductionKind { 803 IK_NoInduction, ///< Not an induction variable. 804 IK_IntInduction, ///< Integer induction variable. Step = C. 805 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). 806 }; 807 808 /// A struct for saving information about induction variables. 809 struct InductionInfo { 810 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) 811 : StartValue(Start), IK(K), StepValue(Step) { 812 assert(IK != IK_NoInduction && "Not an induction"); 813 assert(StartValue && "StartValue is null"); 814 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 815 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 816 "StartValue is not a pointer for pointer induction"); 817 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 818 "StartValue is not an integer for integer induction"); 819 assert(StepValue->getType()->isIntegerTy() && 820 "StepValue is not an integer"); 821 } 822 InductionInfo() 823 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} 824 825 /// Get the consecutive direction. Returns: 826 /// 0 - unknown or non-consecutive. 827 /// 1 - consecutive and increasing. 828 /// -1 - consecutive and decreasing. 829 int getConsecutiveDirection() const { 830 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 831 return StepValue->getSExtValue(); 832 return 0; 833 } 834 835 /// Compute the transformed value of Index at offset StartValue using step 836 /// StepValue. 837 /// For integer induction, returns StartValue + Index * StepValue. 838 /// For pointer induction, returns StartValue[Index * StepValue]. 839 /// FIXME: The newly created binary instructions should contain nsw/nuw 840 /// flags, which can be found from the original scalar operations. 841 Value *transform(IRBuilder<> &B, Value *Index) const { 842 switch (IK) { 843 case IK_IntInduction: 844 assert(Index->getType() == StartValue->getType() && 845 "Index type does not match StartValue type"); 846 if (StepValue->isMinusOne()) 847 return B.CreateSub(StartValue, Index); 848 if (!StepValue->isOne()) 849 Index = B.CreateMul(Index, StepValue); 850 return B.CreateAdd(StartValue, Index); 851 852 case IK_PtrInduction: 853 assert(Index->getType() == StepValue->getType() && 854 "Index type does not match StepValue type"); 855 if (StepValue->isMinusOne()) 856 Index = B.CreateNeg(Index); 857 else if (!StepValue->isOne()) 858 Index = B.CreateMul(Index, StepValue); 859 return B.CreateGEP(nullptr, StartValue, Index); 860 861 case IK_NoInduction: 862 return nullptr; 863 } 864 llvm_unreachable("invalid enum"); 865 } 866 867 /// Start value. 868 TrackingVH<Value> StartValue; 869 /// Induction kind. 870 InductionKind IK; 871 /// Step value. 872 ConstantInt *StepValue; 873 }; 874 875 /// ReductionList contains the reduction descriptors for all 876 /// of the reductions that were found in the loop. 877 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 878 879 /// InductionList saves induction variables and maps them to the 880 /// induction descriptor. 881 typedef MapVector<PHINode*, InductionInfo> InductionList; 882 883 /// Returns true if it is legal to vectorize this loop. 884 /// This does not mean that it is profitable to vectorize this 885 /// loop, only that it is legal to do so. 886 bool canVectorize(); 887 888 /// Returns the Induction variable. 889 PHINode *getInduction() { return Induction; } 890 891 /// Returns the reduction variables found in the loop. 892 ReductionList *getReductionVars() { return &Reductions; } 893 894 /// Returns the induction variables found in the loop. 895 InductionList *getInductionVars() { return &Inductions; } 896 897 /// Returns the widest induction type. 898 Type *getWidestInductionType() { return WidestIndTy; } 899 900 /// Returns True if V is an induction variable in this loop. 901 bool isInductionVariable(const Value *V); 902 903 /// Return true if the block BB needs to be predicated in order for the loop 904 /// to be vectorized. 905 bool blockNeedsPredication(BasicBlock *BB); 906 907 /// Check if this pointer is consecutive when vectorizing. This happens 908 /// when the last index of the GEP is the induction variable, or that the 909 /// pointer itself is an induction variable. 910 /// This check allows us to vectorize A[idx] into a wide load/store. 911 /// Returns: 912 /// 0 - Stride is unknown or non-consecutive. 913 /// 1 - Address is consecutive. 914 /// -1 - Address is consecutive, and decreasing. 915 int isConsecutivePtr(Value *Ptr); 916 917 /// Returns true if the value V is uniform within the loop. 918 bool isUniform(Value *V); 919 920 /// Returns true if this instruction will remain scalar after vectorization. 921 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 922 923 /// Returns the information that we collected about runtime memory check. 924 const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const { 925 return LAI->getRuntimePointerCheck(); 926 } 927 928 const LoopAccessInfo *getLAI() const { 929 return LAI; 930 } 931 932 /// \brief Check if \p Instr belongs to any interleaved access group. 933 bool isAccessInterleaved(Instruction *Instr) { 934 return InterleaveInfo.isInterleaved(Instr); 935 } 936 937 /// \brief Get the interleaved access group that \p Instr belongs to. 938 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 939 return InterleaveInfo.getInterleaveGroup(Instr); 940 } 941 942 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 943 944 bool hasStride(Value *V) { return StrideSet.count(V); } 945 bool mustCheckStrides() { return !StrideSet.empty(); } 946 SmallPtrSet<Value *, 8>::iterator strides_begin() { 947 return StrideSet.begin(); 948 } 949 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 950 951 /// Returns true if the target machine supports masked store operation 952 /// for the given \p DataType and kind of access to \p Ptr. 953 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 954 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 955 } 956 /// Returns true if the target machine supports masked load operation 957 /// for the given \p DataType and kind of access to \p Ptr. 958 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 959 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 960 } 961 /// Returns true if vector representation of the instruction \p I 962 /// requires mask. 963 bool isMaskRequired(const Instruction* I) { 964 return (MaskedOp.count(I) != 0); 965 } 966 unsigned getNumStores() const { 967 return LAI->getNumStores(); 968 } 969 unsigned getNumLoads() const { 970 return LAI->getNumLoads(); 971 } 972 unsigned getNumPredStores() const { 973 return NumPredStores; 974 } 975 private: 976 /// Check if a single basic block loop is vectorizable. 977 /// At this point we know that this is a loop with a constant trip count 978 /// and we only need to check individual instructions. 979 bool canVectorizeInstrs(); 980 981 /// When we vectorize loops we may change the order in which 982 /// we read and write from memory. This method checks if it is 983 /// legal to vectorize the code, considering only memory constrains. 984 /// Returns true if the loop is vectorizable 985 bool canVectorizeMemory(); 986 987 /// Return true if we can vectorize this loop using the IF-conversion 988 /// transformation. 989 bool canVectorizeWithIfConvert(); 990 991 /// Collect the variables that need to stay uniform after vectorization. 992 void collectLoopUniforms(); 993 994 /// Return true if all of the instructions in the block can be speculatively 995 /// executed. \p SafePtrs is a list of addresses that are known to be legal 996 /// and we know that we can read from them without segfault. 997 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 998 999 /// Returns the induction kind of Phi and record the step. This function may 1000 /// return NoInduction if the PHI is not an induction variable. 1001 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); 1002 1003 /// \brief Collect memory access with loop invariant strides. 1004 /// 1005 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1006 /// invariant. 1007 void collectStridedAccess(Value *LoadOrStoreInst); 1008 1009 /// Report an analysis message to assist the user in diagnosing loops that are 1010 /// not vectorized. These are handled as LoopAccessReport rather than 1011 /// VectorizationReport because the << operator of VectorizationReport returns 1012 /// LoopAccessReport. 1013 void emitAnalysis(const LoopAccessReport &Message) { 1014 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 1015 } 1016 1017 unsigned NumPredStores; 1018 1019 /// The loop that we evaluate. 1020 Loop *TheLoop; 1021 /// Scev analysis. 1022 ScalarEvolution *SE; 1023 /// Target Library Info. 1024 TargetLibraryInfo *TLI; 1025 /// Parent function 1026 Function *TheFunction; 1027 /// Target Transform Info 1028 const TargetTransformInfo *TTI; 1029 /// Dominator Tree. 1030 DominatorTree *DT; 1031 // LoopAccess analysis. 1032 LoopAccessAnalysis *LAA; 1033 // And the loop-accesses info corresponding to this loop. This pointer is 1034 // null until canVectorizeMemory sets it up. 1035 const LoopAccessInfo *LAI; 1036 1037 /// The interleave access information contains groups of interleaved accesses 1038 /// with the same stride and close to each other. 1039 InterleavedAccessInfo InterleaveInfo; 1040 1041 // --- vectorization state --- // 1042 1043 /// Holds the integer induction variable. This is the counter of the 1044 /// loop. 1045 PHINode *Induction; 1046 /// Holds the reduction variables. 1047 ReductionList Reductions; 1048 /// Holds all of the induction variables that we found in the loop. 1049 /// Notice that inductions don't need to start at zero and that induction 1050 /// variables can be pointers. 1051 InductionList Inductions; 1052 /// Holds the widest induction type encountered. 1053 Type *WidestIndTy; 1054 1055 /// Allowed outside users. This holds the reduction 1056 /// vars which can be accessed from outside the loop. 1057 SmallPtrSet<Value*, 4> AllowedExit; 1058 /// This set holds the variables which are known to be uniform after 1059 /// vectorization. 1060 SmallPtrSet<Instruction*, 4> Uniforms; 1061 1062 /// Can we assume the absence of NaNs. 1063 bool HasFunNoNaNAttr; 1064 1065 ValueToValueMap Strides; 1066 SmallPtrSet<Value *, 8> StrideSet; 1067 1068 /// While vectorizing these instructions we have to generate a 1069 /// call to the appropriate masked intrinsic 1070 SmallPtrSet<const Instruction*, 8> MaskedOp; 1071 }; 1072 1073 /// LoopVectorizationCostModel - estimates the expected speedups due to 1074 /// vectorization. 1075 /// In many cases vectorization is not profitable. This can happen because of 1076 /// a number of reasons. In this class we mainly attempt to predict the 1077 /// expected speedup/slowdowns due to the supported instruction set. We use the 1078 /// TargetTransformInfo to query the different backends for the cost of 1079 /// different operations. 1080 class LoopVectorizationCostModel { 1081 public: 1082 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1083 LoopVectorizationLegality *Legal, 1084 const TargetTransformInfo &TTI, 1085 const TargetLibraryInfo *TLI, AssumptionCache *AC, 1086 const Function *F, const LoopVectorizeHints *Hints) 1087 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), 1088 TheFunction(F), Hints(Hints) { 1089 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 1090 } 1091 1092 /// Information about vectorization costs 1093 struct VectorizationFactor { 1094 unsigned Width; // Vector width with best cost 1095 unsigned Cost; // Cost of the loop with that width 1096 }; 1097 /// \return The most profitable vectorization factor and the cost of that VF. 1098 /// This method checks every power of two up to VF. If UserVF is not ZERO 1099 /// then this vectorization factor will be selected if vectorization is 1100 /// possible. 1101 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1102 1103 /// \return The size (in bits) of the widest type in the code that 1104 /// needs to be vectorized. We ignore values that remain scalar such as 1105 /// 64 bit loop indices. 1106 unsigned getWidestType(); 1107 1108 /// \return The most profitable unroll factor. 1109 /// If UserUF is non-zero then this method finds the best unroll-factor 1110 /// based on register pressure and other parameters. 1111 /// VF and LoopCost are the selected vectorization factor and the cost of the 1112 /// selected VF. 1113 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 1114 1115 /// \brief A struct that represents some properties of the register usage 1116 /// of a loop. 1117 struct RegisterUsage { 1118 /// Holds the number of loop invariant values that are used in the loop. 1119 unsigned LoopInvariantRegs; 1120 /// Holds the maximum number of concurrent live intervals in the loop. 1121 unsigned MaxLocalUsers; 1122 /// Holds the number of instructions in the loop. 1123 unsigned NumInstructions; 1124 }; 1125 1126 /// \return information about the register usage of the loop. 1127 RegisterUsage calculateRegisterUsage(); 1128 1129 private: 1130 /// Returns the expected execution cost. The unit of the cost does 1131 /// not matter because we use the 'cost' units to compare different 1132 /// vector widths. The cost that is returned is *not* normalized by 1133 /// the factor width. 1134 unsigned expectedCost(unsigned VF); 1135 1136 /// Returns the execution time cost of an instruction for a given vector 1137 /// width. Vector width of one means scalar. 1138 unsigned getInstructionCost(Instruction *I, unsigned VF); 1139 1140 /// Returns whether the instruction is a load or store and will be a emitted 1141 /// as a vector operation. 1142 bool isConsecutiveLoadOrStore(Instruction *I); 1143 1144 /// Report an analysis message to assist the user in diagnosing loops that are 1145 /// not vectorized. These are handled as LoopAccessReport rather than 1146 /// VectorizationReport because the << operator of VectorizationReport returns 1147 /// LoopAccessReport. 1148 void emitAnalysis(const LoopAccessReport &Message) { 1149 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 1150 } 1151 1152 /// Values used only by @llvm.assume calls. 1153 SmallPtrSet<const Value *, 32> EphValues; 1154 1155 /// The loop that we evaluate. 1156 Loop *TheLoop; 1157 /// Scev analysis. 1158 ScalarEvolution *SE; 1159 /// Loop Info analysis. 1160 LoopInfo *LI; 1161 /// Vectorization legality. 1162 LoopVectorizationLegality *Legal; 1163 /// Vector target information. 1164 const TargetTransformInfo &TTI; 1165 /// Target Library Info. 1166 const TargetLibraryInfo *TLI; 1167 const Function *TheFunction; 1168 // Loop Vectorize Hint. 1169 const LoopVectorizeHints *Hints; 1170 }; 1171 1172 /// Utility class for getting and setting loop vectorizer hints in the form 1173 /// of loop metadata. 1174 /// This class keeps a number of loop annotations locally (as member variables) 1175 /// and can, upon request, write them back as metadata on the loop. It will 1176 /// initially scan the loop for existing metadata, and will update the local 1177 /// values based on information in the loop. 1178 /// We cannot write all values to metadata, as the mere presence of some info, 1179 /// for example 'force', means a decision has been made. So, we need to be 1180 /// careful NOT to add them if the user hasn't specifically asked so. 1181 class LoopVectorizeHints { 1182 enum HintKind { 1183 HK_WIDTH, 1184 HK_UNROLL, 1185 HK_FORCE 1186 }; 1187 1188 /// Hint - associates name and validation with the hint value. 1189 struct Hint { 1190 const char * Name; 1191 unsigned Value; // This may have to change for non-numeric values. 1192 HintKind Kind; 1193 1194 Hint(const char * Name, unsigned Value, HintKind Kind) 1195 : Name(Name), Value(Value), Kind(Kind) { } 1196 1197 bool validate(unsigned Val) { 1198 switch (Kind) { 1199 case HK_WIDTH: 1200 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1201 case HK_UNROLL: 1202 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1203 case HK_FORCE: 1204 return (Val <= 1); 1205 } 1206 return false; 1207 } 1208 }; 1209 1210 /// Vectorization width. 1211 Hint Width; 1212 /// Vectorization interleave factor. 1213 Hint Interleave; 1214 /// Vectorization forced 1215 Hint Force; 1216 1217 /// Return the loop metadata prefix. 1218 static StringRef Prefix() { return "llvm.loop."; } 1219 1220 public: 1221 enum ForceKind { 1222 FK_Undefined = -1, ///< Not selected. 1223 FK_Disabled = 0, ///< Forcing disabled. 1224 FK_Enabled = 1, ///< Forcing enabled. 1225 }; 1226 1227 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1228 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1229 HK_WIDTH), 1230 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1231 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1232 TheLoop(L) { 1233 // Populate values with existing loop metadata. 1234 getHintsFromMetadata(); 1235 1236 // force-vector-interleave overrides DisableInterleaving. 1237 if (VectorizerParams::isInterleaveForced()) 1238 Interleave.Value = VectorizerParams::VectorizationInterleave; 1239 1240 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1241 << "LV: Interleaving disabled by the pass manager\n"); 1242 } 1243 1244 /// Mark the loop L as already vectorized by setting the width to 1. 1245 void setAlreadyVectorized() { 1246 Width.Value = Interleave.Value = 1; 1247 Hint Hints[] = {Width, Interleave}; 1248 writeHintsToMetadata(Hints); 1249 } 1250 1251 /// Dumps all the hint information. 1252 std::string emitRemark() const { 1253 VectorizationReport R; 1254 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1255 R << "vectorization is explicitly disabled"; 1256 else { 1257 R << "use -Rpass-analysis=loop-vectorize for more info"; 1258 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1259 R << " (Force=true"; 1260 if (Width.Value != 0) 1261 R << ", Vector Width=" << Width.Value; 1262 if (Interleave.Value != 0) 1263 R << ", Interleave Count=" << Interleave.Value; 1264 R << ")"; 1265 } 1266 } 1267 1268 return R.str(); 1269 } 1270 1271 unsigned getWidth() const { return Width.Value; } 1272 unsigned getInterleave() const { return Interleave.Value; } 1273 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1274 1275 private: 1276 /// Find hints specified in the loop metadata and update local values. 1277 void getHintsFromMetadata() { 1278 MDNode *LoopID = TheLoop->getLoopID(); 1279 if (!LoopID) 1280 return; 1281 1282 // First operand should refer to the loop id itself. 1283 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1284 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1285 1286 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1287 const MDString *S = nullptr; 1288 SmallVector<Metadata *, 4> Args; 1289 1290 // The expected hint is either a MDString or a MDNode with the first 1291 // operand a MDString. 1292 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1293 if (!MD || MD->getNumOperands() == 0) 1294 continue; 1295 S = dyn_cast<MDString>(MD->getOperand(0)); 1296 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1297 Args.push_back(MD->getOperand(i)); 1298 } else { 1299 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1300 assert(Args.size() == 0 && "too many arguments for MDString"); 1301 } 1302 1303 if (!S) 1304 continue; 1305 1306 // Check if the hint starts with the loop metadata prefix. 1307 StringRef Name = S->getString(); 1308 if (Args.size() == 1) 1309 setHint(Name, Args[0]); 1310 } 1311 } 1312 1313 /// Checks string hint with one operand and set value if valid. 1314 void setHint(StringRef Name, Metadata *Arg) { 1315 if (!Name.startswith(Prefix())) 1316 return; 1317 Name = Name.substr(Prefix().size(), StringRef::npos); 1318 1319 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1320 if (!C) return; 1321 unsigned Val = C->getZExtValue(); 1322 1323 Hint *Hints[] = {&Width, &Interleave, &Force}; 1324 for (auto H : Hints) { 1325 if (Name == H->Name) { 1326 if (H->validate(Val)) 1327 H->Value = Val; 1328 else 1329 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1330 break; 1331 } 1332 } 1333 } 1334 1335 /// Create a new hint from name / value pair. 1336 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1337 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1338 Metadata *MDs[] = {MDString::get(Context, Name), 1339 ConstantAsMetadata::get( 1340 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1341 return MDNode::get(Context, MDs); 1342 } 1343 1344 /// Matches metadata with hint name. 1345 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1346 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1347 if (!Name) 1348 return false; 1349 1350 for (auto H : HintTypes) 1351 if (Name->getString().endswith(H.Name)) 1352 return true; 1353 return false; 1354 } 1355 1356 /// Sets current hints into loop metadata, keeping other values intact. 1357 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1358 if (HintTypes.size() == 0) 1359 return; 1360 1361 // Reserve the first element to LoopID (see below). 1362 SmallVector<Metadata *, 4> MDs(1); 1363 // If the loop already has metadata, then ignore the existing operands. 1364 MDNode *LoopID = TheLoop->getLoopID(); 1365 if (LoopID) { 1366 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1367 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1368 // If node in update list, ignore old value. 1369 if (!matchesHintMetadataName(Node, HintTypes)) 1370 MDs.push_back(Node); 1371 } 1372 } 1373 1374 // Now, add the missing hints. 1375 for (auto H : HintTypes) 1376 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1377 1378 // Replace current metadata node with new one. 1379 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1380 MDNode *NewLoopID = MDNode::get(Context, MDs); 1381 // Set operand 0 to refer to the loop id itself. 1382 NewLoopID->replaceOperandWith(0, NewLoopID); 1383 1384 TheLoop->setLoopID(NewLoopID); 1385 } 1386 1387 /// The loop these hints belong to. 1388 const Loop *TheLoop; 1389 }; 1390 1391 static void emitMissedWarning(Function *F, Loop *L, 1392 const LoopVectorizeHints &LH) { 1393 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1394 L->getStartLoc(), LH.emitRemark()); 1395 1396 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1397 if (LH.getWidth() != 1) 1398 emitLoopVectorizeWarning( 1399 F->getContext(), *F, L->getStartLoc(), 1400 "failed explicitly specified loop vectorization"); 1401 else if (LH.getInterleave() != 1) 1402 emitLoopInterleaveWarning( 1403 F->getContext(), *F, L->getStartLoc(), 1404 "failed explicitly specified loop interleaving"); 1405 } 1406 } 1407 1408 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1409 if (L.empty()) 1410 return V.push_back(&L); 1411 1412 for (Loop *InnerL : L) 1413 addInnerLoop(*InnerL, V); 1414 } 1415 1416 /// The LoopVectorize Pass. 1417 struct LoopVectorize : public FunctionPass { 1418 /// Pass identification, replacement for typeid 1419 static char ID; 1420 1421 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1422 : FunctionPass(ID), 1423 DisableUnrolling(NoUnrolling), 1424 AlwaysVectorize(AlwaysVectorize) { 1425 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1426 } 1427 1428 ScalarEvolution *SE; 1429 LoopInfo *LI; 1430 TargetTransformInfo *TTI; 1431 DominatorTree *DT; 1432 BlockFrequencyInfo *BFI; 1433 TargetLibraryInfo *TLI; 1434 AliasAnalysis *AA; 1435 AssumptionCache *AC; 1436 LoopAccessAnalysis *LAA; 1437 bool DisableUnrolling; 1438 bool AlwaysVectorize; 1439 1440 BlockFrequency ColdEntryFreq; 1441 1442 bool runOnFunction(Function &F) override { 1443 SE = &getAnalysis<ScalarEvolution>(); 1444 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1445 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1446 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1447 BFI = &getAnalysis<BlockFrequencyInfo>(); 1448 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1449 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1450 AA = &getAnalysis<AliasAnalysis>(); 1451 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1452 LAA = &getAnalysis<LoopAccessAnalysis>(); 1453 1454 // Compute some weights outside of the loop over the loops. Compute this 1455 // using a BranchProbability to re-use its scaling math. 1456 const BranchProbability ColdProb(1, 5); // 20% 1457 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1458 1459 // If the target claims to have no vector registers don't attempt 1460 // vectorization. 1461 if (!TTI->getNumberOfRegisters(true)) 1462 return false; 1463 1464 // Build up a worklist of inner-loops to vectorize. This is necessary as 1465 // the act of vectorizing or partially unrolling a loop creates new loops 1466 // and can invalidate iterators across the loops. 1467 SmallVector<Loop *, 8> Worklist; 1468 1469 for (Loop *L : *LI) 1470 addInnerLoop(*L, Worklist); 1471 1472 LoopsAnalyzed += Worklist.size(); 1473 1474 // Now walk the identified inner loops. 1475 bool Changed = false; 1476 while (!Worklist.empty()) 1477 Changed |= processLoop(Worklist.pop_back_val()); 1478 1479 // Process each loop nest in the function. 1480 return Changed; 1481 } 1482 1483 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1484 SmallVector<Metadata *, 4> MDs; 1485 // Reserve first location for self reference to the LoopID metadata node. 1486 MDs.push_back(nullptr); 1487 bool IsUnrollMetadata = false; 1488 MDNode *LoopID = L->getLoopID(); 1489 if (LoopID) { 1490 // First find existing loop unrolling disable metadata. 1491 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1492 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1493 if (MD) { 1494 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1495 IsUnrollMetadata = 1496 S && S->getString().startswith("llvm.loop.unroll.disable"); 1497 } 1498 MDs.push_back(LoopID->getOperand(i)); 1499 } 1500 } 1501 1502 if (!IsUnrollMetadata) { 1503 // Add runtime unroll disable metadata. 1504 LLVMContext &Context = L->getHeader()->getContext(); 1505 SmallVector<Metadata *, 1> DisableOperands; 1506 DisableOperands.push_back( 1507 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1508 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1509 MDs.push_back(DisableNode); 1510 MDNode *NewLoopID = MDNode::get(Context, MDs); 1511 // Set operand 0 to refer to the loop id itself. 1512 NewLoopID->replaceOperandWith(0, NewLoopID); 1513 L->setLoopID(NewLoopID); 1514 } 1515 } 1516 1517 bool processLoop(Loop *L) { 1518 assert(L->empty() && "Only process inner loops."); 1519 1520 #ifndef NDEBUG 1521 const std::string DebugLocStr = getDebugLocString(L); 1522 #endif /* NDEBUG */ 1523 1524 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1525 << L->getHeader()->getParent()->getName() << "\" from " 1526 << DebugLocStr << "\n"); 1527 1528 LoopVectorizeHints Hints(L, DisableUnrolling); 1529 1530 DEBUG(dbgs() << "LV: Loop hints:" 1531 << " force=" 1532 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1533 ? "disabled" 1534 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1535 ? "enabled" 1536 : "?")) << " width=" << Hints.getWidth() 1537 << " unroll=" << Hints.getInterleave() << "\n"); 1538 1539 // Function containing loop 1540 Function *F = L->getHeader()->getParent(); 1541 1542 // Looking at the diagnostic output is the only way to determine if a loop 1543 // was vectorized (other than looking at the IR or machine code), so it 1544 // is important to generate an optimization remark for each loop. Most of 1545 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1546 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1547 // less verbose reporting vectorized loops and unvectorized loops that may 1548 // benefit from vectorization, respectively. 1549 1550 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1551 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1552 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1553 L->getStartLoc(), Hints.emitRemark()); 1554 return false; 1555 } 1556 1557 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1558 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1559 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1560 L->getStartLoc(), Hints.emitRemark()); 1561 return false; 1562 } 1563 1564 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1565 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1566 emitOptimizationRemarkAnalysis( 1567 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1568 "loop not vectorized: vector width and interleave count are " 1569 "explicitly set to 1"); 1570 return false; 1571 } 1572 1573 // Check the loop for a trip count threshold: 1574 // do not vectorize loops with a tiny trip count. 1575 const unsigned TC = SE->getSmallConstantTripCount(L); 1576 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1577 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1578 << "This loop is not worth vectorizing."); 1579 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1580 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1581 else { 1582 DEBUG(dbgs() << "\n"); 1583 emitOptimizationRemarkAnalysis( 1584 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1585 "vectorization is not beneficial and is not explicitly forced"); 1586 return false; 1587 } 1588 } 1589 1590 // Check if it is legal to vectorize the loop. 1591 LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA); 1592 if (!LVL.canVectorize()) { 1593 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1594 emitMissedWarning(F, L, Hints); 1595 return false; 1596 } 1597 1598 // Use the cost model. 1599 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, AC, F, &Hints); 1600 1601 // Check the function attributes to find out if this function should be 1602 // optimized for size. 1603 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1604 F->hasFnAttribute(Attribute::OptimizeForSize); 1605 1606 // Compute the weighted frequency of this loop being executed and see if it 1607 // is less than 20% of the function entry baseline frequency. Note that we 1608 // always have a canonical loop here because we think we *can* vectoriez. 1609 // FIXME: This is hidden behind a flag due to pervasive problems with 1610 // exactly what block frequency models. 1611 if (LoopVectorizeWithBlockFrequency) { 1612 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1613 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1614 LoopEntryFreq < ColdEntryFreq) 1615 OptForSize = true; 1616 } 1617 1618 // Check the function attributes to see if implicit floats are allowed.a 1619 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1620 // an integer loop and the vector instructions selected are purely integer 1621 // vector instructions? 1622 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1623 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1624 "attribute is used.\n"); 1625 emitOptimizationRemarkAnalysis( 1626 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1627 "loop not vectorized due to NoImplicitFloat attribute"); 1628 emitMissedWarning(F, L, Hints); 1629 return false; 1630 } 1631 1632 // Select the optimal vectorization factor. 1633 const LoopVectorizationCostModel::VectorizationFactor VF = 1634 CM.selectVectorizationFactor(OptForSize); 1635 1636 // Select the unroll factor. 1637 const unsigned UF = 1638 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1639 1640 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1641 << DebugLocStr << '\n'); 1642 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1643 1644 if (VF.Width == 1) { 1645 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1646 1647 if (UF == 1) { 1648 emitOptimizationRemarkAnalysis( 1649 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1650 "not beneficial to vectorize and user disabled interleaving"); 1651 return false; 1652 } 1653 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1654 1655 // Report the unrolling decision. 1656 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1657 Twine("unrolled with interleaving factor " + 1658 Twine(UF) + 1659 " (vectorization not beneficial)")); 1660 1661 // We decided not to vectorize, but we may want to unroll. 1662 1663 InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, UF); 1664 Unroller.vectorize(&LVL); 1665 } else { 1666 // If we decided that it is *legal* to vectorize the loop then do it. 1667 InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, UF); 1668 LB.vectorize(&LVL); 1669 ++LoopsVectorized; 1670 1671 // Add metadata to disable runtime unrolling scalar loop when there's no 1672 // runtime check about strides and memory. Because at this situation, 1673 // scalar loop is rarely used not worthy to be unrolled. 1674 if (!LB.IsSafetyChecksAdded()) 1675 AddRuntimeUnrollDisableMetaData(L); 1676 1677 // Report the vectorization decision. 1678 emitOptimizationRemark( 1679 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1680 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1681 ", unrolling interleave factor: " + Twine(UF) + ")"); 1682 } 1683 1684 // Mark the loop as already vectorized to avoid vectorizing again. 1685 Hints.setAlreadyVectorized(); 1686 1687 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1688 return true; 1689 } 1690 1691 void getAnalysisUsage(AnalysisUsage &AU) const override { 1692 AU.addRequired<AssumptionCacheTracker>(); 1693 AU.addRequiredID(LoopSimplifyID); 1694 AU.addRequiredID(LCSSAID); 1695 AU.addRequired<BlockFrequencyInfo>(); 1696 AU.addRequired<DominatorTreeWrapperPass>(); 1697 AU.addRequired<LoopInfoWrapperPass>(); 1698 AU.addRequired<ScalarEvolution>(); 1699 AU.addRequired<TargetTransformInfoWrapperPass>(); 1700 AU.addRequired<AliasAnalysis>(); 1701 AU.addRequired<LoopAccessAnalysis>(); 1702 AU.addPreserved<LoopInfoWrapperPass>(); 1703 AU.addPreserved<DominatorTreeWrapperPass>(); 1704 AU.addPreserved<AliasAnalysis>(); 1705 } 1706 1707 }; 1708 1709 } // end anonymous namespace 1710 1711 //===----------------------------------------------------------------------===// 1712 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1713 // LoopVectorizationCostModel. 1714 //===----------------------------------------------------------------------===// 1715 1716 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1717 // We need to place the broadcast of invariant variables outside the loop. 1718 Instruction *Instr = dyn_cast<Instruction>(V); 1719 bool NewInstr = 1720 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1721 Instr->getParent()) != LoopVectorBody.end()); 1722 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1723 1724 // Place the code for broadcasting invariant variables in the new preheader. 1725 IRBuilder<>::InsertPointGuard Guard(Builder); 1726 if (Invariant) 1727 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1728 1729 // Broadcast the scalar into all locations in the vector. 1730 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1731 1732 return Shuf; 1733 } 1734 1735 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1736 Value *Step) { 1737 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1738 assert(Val->getType()->getScalarType()->isIntegerTy() && 1739 "Elem must be an integer"); 1740 assert(Step->getType() == Val->getType()->getScalarType() && 1741 "Step has wrong type"); 1742 // Create the types. 1743 Type *ITy = Val->getType()->getScalarType(); 1744 VectorType *Ty = cast<VectorType>(Val->getType()); 1745 int VLen = Ty->getNumElements(); 1746 SmallVector<Constant*, 8> Indices; 1747 1748 // Create a vector of consecutive numbers from zero to VF. 1749 for (int i = 0; i < VLen; ++i) 1750 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1751 1752 // Add the consecutive indices to the vector value. 1753 Constant *Cv = ConstantVector::get(Indices); 1754 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1755 Step = Builder.CreateVectorSplat(VLen, Step); 1756 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1757 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1758 // which can be found from the original scalar operations. 1759 Step = Builder.CreateMul(Cv, Step); 1760 return Builder.CreateAdd(Val, Step, "induction"); 1761 } 1762 1763 /// \brief Find the operand of the GEP that should be checked for consecutive 1764 /// stores. This ignores trailing indices that have no effect on the final 1765 /// pointer. 1766 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 1767 const DataLayout &DL = Gep->getModule()->getDataLayout(); 1768 unsigned LastOperand = Gep->getNumOperands() - 1; 1769 unsigned GEPAllocSize = DL.getTypeAllocSize( 1770 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1771 1772 // Walk backwards and try to peel off zeros. 1773 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1774 // Find the type we're currently indexing into. 1775 gep_type_iterator GEPTI = gep_type_begin(Gep); 1776 std::advance(GEPTI, LastOperand - 1); 1777 1778 // If it's a type with the same allocation size as the result of the GEP we 1779 // can peel off the zero index. 1780 if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize) 1781 break; 1782 --LastOperand; 1783 } 1784 1785 return LastOperand; 1786 } 1787 1788 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1789 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1790 // Make sure that the pointer does not point to structs. 1791 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1792 return 0; 1793 1794 // If this value is a pointer induction variable we know it is consecutive. 1795 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1796 if (Phi && Inductions.count(Phi)) { 1797 InductionInfo II = Inductions[Phi]; 1798 return II.getConsecutiveDirection(); 1799 } 1800 1801 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1802 if (!Gep) 1803 return 0; 1804 1805 unsigned NumOperands = Gep->getNumOperands(); 1806 Value *GpPtr = Gep->getPointerOperand(); 1807 // If this GEP value is a consecutive pointer induction variable and all of 1808 // the indices are constant then we know it is consecutive. We can 1809 Phi = dyn_cast<PHINode>(GpPtr); 1810 if (Phi && Inductions.count(Phi)) { 1811 1812 // Make sure that the pointer does not point to structs. 1813 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1814 if (GepPtrType->getElementType()->isAggregateType()) 1815 return 0; 1816 1817 // Make sure that all of the index operands are loop invariant. 1818 for (unsigned i = 1; i < NumOperands; ++i) 1819 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1820 return 0; 1821 1822 InductionInfo II = Inductions[Phi]; 1823 return II.getConsecutiveDirection(); 1824 } 1825 1826 unsigned InductionOperand = getGEPInductionOperand(Gep); 1827 1828 // Check that all of the gep indices are uniform except for our induction 1829 // operand. 1830 for (unsigned i = 0; i != NumOperands; ++i) 1831 if (i != InductionOperand && 1832 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1833 return 0; 1834 1835 // We can emit wide load/stores only if the last non-zero index is the 1836 // induction variable. 1837 const SCEV *Last = nullptr; 1838 if (!Strides.count(Gep)) 1839 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1840 else { 1841 // Because of the multiplication by a stride we can have a s/zext cast. 1842 // We are going to replace this stride by 1 so the cast is safe to ignore. 1843 // 1844 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1845 // %0 = trunc i64 %indvars.iv to i32 1846 // %mul = mul i32 %0, %Stride1 1847 // %idxprom = zext i32 %mul to i64 << Safe cast. 1848 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1849 // 1850 Last = replaceSymbolicStrideSCEV(SE, Strides, 1851 Gep->getOperand(InductionOperand), Gep); 1852 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1853 Last = 1854 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1855 ? C->getOperand() 1856 : Last; 1857 } 1858 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1859 const SCEV *Step = AR->getStepRecurrence(*SE); 1860 1861 // The memory is consecutive because the last index is consecutive 1862 // and all other indices are loop invariant. 1863 if (Step->isOne()) 1864 return 1; 1865 if (Step->isAllOnesValue()) 1866 return -1; 1867 } 1868 1869 return 0; 1870 } 1871 1872 bool LoopVectorizationLegality::isUniform(Value *V) { 1873 return LAI->isUniform(V); 1874 } 1875 1876 InnerLoopVectorizer::VectorParts& 1877 InnerLoopVectorizer::getVectorValue(Value *V) { 1878 assert(V != Induction && "The new induction variable should not be used."); 1879 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1880 1881 // If we have a stride that is replaced by one, do it here. 1882 if (Legal->hasStride(V)) 1883 V = ConstantInt::get(V->getType(), 1); 1884 1885 // If we have this scalar in the map, return it. 1886 if (WidenMap.has(V)) 1887 return WidenMap.get(V); 1888 1889 // If this scalar is unknown, assume that it is a constant or that it is 1890 // loop invariant. Broadcast V and save the value for future uses. 1891 Value *B = getBroadcastInstrs(V); 1892 return WidenMap.splat(V, B); 1893 } 1894 1895 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1896 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1897 SmallVector<Constant*, 8> ShuffleMask; 1898 for (unsigned i = 0; i < VF; ++i) 1899 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1900 1901 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1902 ConstantVector::get(ShuffleMask), 1903 "reverse"); 1904 } 1905 1906 // Get a mask to interleave \p NumVec vectors into a wide vector. 1907 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 1908 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 1909 // <0, 4, 1, 5, 2, 6, 3, 7> 1910 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 1911 unsigned NumVec) { 1912 SmallVector<Constant *, 16> Mask; 1913 for (unsigned i = 0; i < VF; i++) 1914 for (unsigned j = 0; j < NumVec; j++) 1915 Mask.push_back(Builder.getInt32(j * VF + i)); 1916 1917 return ConstantVector::get(Mask); 1918 } 1919 1920 // Get the strided mask starting from index \p Start. 1921 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 1922 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 1923 unsigned Stride, unsigned VF) { 1924 SmallVector<Constant *, 16> Mask; 1925 for (unsigned i = 0; i < VF; i++) 1926 Mask.push_back(Builder.getInt32(Start + i * Stride)); 1927 1928 return ConstantVector::get(Mask); 1929 } 1930 1931 // Get a mask of two parts: The first part consists of sequential integers 1932 // starting from 0, The second part consists of UNDEFs. 1933 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 1934 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 1935 unsigned NumUndef) { 1936 SmallVector<Constant *, 16> Mask; 1937 for (unsigned i = 0; i < NumInt; i++) 1938 Mask.push_back(Builder.getInt32(i)); 1939 1940 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 1941 for (unsigned i = 0; i < NumUndef; i++) 1942 Mask.push_back(Undef); 1943 1944 return ConstantVector::get(Mask); 1945 } 1946 1947 // Concatenate two vectors with the same element type. The 2nd vector should 1948 // not have more elements than the 1st vector. If the 2nd vector has less 1949 // elements, extend it with UNDEFs. 1950 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 1951 Value *V2) { 1952 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 1953 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 1954 assert(VecTy1 && VecTy2 && 1955 VecTy1->getScalarType() == VecTy2->getScalarType() && 1956 "Expect two vectors with the same element type"); 1957 1958 unsigned NumElts1 = VecTy1->getNumElements(); 1959 unsigned NumElts2 = VecTy2->getNumElements(); 1960 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 1961 1962 if (NumElts1 > NumElts2) { 1963 // Extend with UNDEFs. 1964 Constant *ExtMask = 1965 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 1966 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 1967 } 1968 1969 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 1970 return Builder.CreateShuffleVector(V1, V2, Mask); 1971 } 1972 1973 // Concatenate vectors in the given list. All vectors have the same type. 1974 static Value *ConcatenateVectors(IRBuilder<> &Builder, 1975 ArrayRef<Value *> InputList) { 1976 unsigned NumVec = InputList.size(); 1977 assert(NumVec > 1 && "Should be at least two vectors"); 1978 1979 SmallVector<Value *, 8> ResList; 1980 ResList.append(InputList.begin(), InputList.end()); 1981 do { 1982 SmallVector<Value *, 8> TmpList; 1983 for (unsigned i = 0; i < NumVec - 1; i += 2) { 1984 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 1985 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 1986 "Only the last vector may have a different type"); 1987 1988 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 1989 } 1990 1991 // Push the last vector if the total number of vectors is odd. 1992 if (NumVec % 2 != 0) 1993 TmpList.push_back(ResList[NumVec - 1]); 1994 1995 ResList = TmpList; 1996 NumVec = ResList.size(); 1997 } while (NumVec > 1); 1998 1999 return ResList[0]; 2000 } 2001 2002 // Try to vectorize the interleave group that \p Instr belongs to. 2003 // 2004 // E.g. Translate following interleaved load group (factor = 3): 2005 // for (i = 0; i < N; i+=3) { 2006 // R = Pic[i]; // Member of index 0 2007 // G = Pic[i+1]; // Member of index 1 2008 // B = Pic[i+2]; // Member of index 2 2009 // ... // do something to R, G, B 2010 // } 2011 // To: 2012 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2013 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2014 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2015 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2016 // 2017 // Or translate following interleaved store group (factor = 3): 2018 // for (i = 0; i < N; i+=3) { 2019 // ... do something to R, G, B 2020 // Pic[i] = R; // Member of index 0 2021 // Pic[i+1] = G; // Member of index 1 2022 // Pic[i+2] = B; // Member of index 2 2023 // } 2024 // To: 2025 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2026 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2027 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2028 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2029 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2030 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2031 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2032 assert(Group && "Fail to get an interleaved access group."); 2033 2034 // Skip if current instruction is not the insert position. 2035 if (Instr != Group->getInsertPos()) 2036 return; 2037 2038 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2039 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2040 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2041 2042 // Prepare for the vector type of the interleaved load/store. 2043 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2044 unsigned InterleaveFactor = Group->getFactor(); 2045 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2046 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2047 2048 // Prepare for the new pointers. 2049 setDebugLocFromInst(Builder, Ptr); 2050 VectorParts &PtrParts = getVectorValue(Ptr); 2051 SmallVector<Value *, 2> NewPtrs; 2052 unsigned Index = Group->getIndex(Instr); 2053 for (unsigned Part = 0; Part < UF; Part++) { 2054 // Extract the pointer for current instruction from the pointer vector. A 2055 // reverse access uses the pointer in the last lane. 2056 Value *NewPtr = Builder.CreateExtractElement( 2057 PtrParts[Part], 2058 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2059 2060 // Notice current instruction could be any index. Need to adjust the address 2061 // to the member of index 0. 2062 // 2063 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2064 // b = A[i]; // Member of index 0 2065 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2066 // 2067 // E.g. A[i+1] = a; // Member of index 1 2068 // A[i] = b; // Member of index 0 2069 // A[i+2] = c; // Member of index 2 (Current instruction) 2070 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2071 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2072 2073 // Cast to the vector pointer type. 2074 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2075 } 2076 2077 setDebugLocFromInst(Builder, Instr); 2078 Value *UndefVec = UndefValue::get(VecTy); 2079 2080 // Vectorize the interleaved load group. 2081 if (LI) { 2082 for (unsigned Part = 0; Part < UF; Part++) { 2083 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2084 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2085 2086 for (unsigned i = 0; i < InterleaveFactor; i++) { 2087 Instruction *Member = Group->getMember(i); 2088 2089 // Skip the gaps in the group. 2090 if (!Member) 2091 continue; 2092 2093 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2094 Value *StridedVec = Builder.CreateShuffleVector( 2095 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2096 2097 // If this member has different type, cast the result type. 2098 if (Member->getType() != ScalarTy) { 2099 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2100 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2101 } 2102 2103 VectorParts &Entry = WidenMap.get(Member); 2104 Entry[Part] = 2105 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2106 } 2107 2108 propagateMetadata(NewLoadInstr, Instr); 2109 } 2110 return; 2111 } 2112 2113 // The sub vector type for current instruction. 2114 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2115 2116 // Vectorize the interleaved store group. 2117 for (unsigned Part = 0; Part < UF; Part++) { 2118 // Collect the stored vector from each member. 2119 SmallVector<Value *, 4> StoredVecs; 2120 for (unsigned i = 0; i < InterleaveFactor; i++) { 2121 // Interleaved store group doesn't allow a gap, so each index has a member 2122 Instruction *Member = Group->getMember(i); 2123 assert(Member && "Fail to get a member from an interleaved store group"); 2124 2125 Value *StoredVec = 2126 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2127 if (Group->isReverse()) 2128 StoredVec = reverseVector(StoredVec); 2129 2130 // If this member has different type, cast it to an unified type. 2131 if (StoredVec->getType() != SubVT) 2132 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2133 2134 StoredVecs.push_back(StoredVec); 2135 } 2136 2137 // Concatenate all vectors into a wide vector. 2138 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2139 2140 // Interleave the elements in the wide vector. 2141 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2142 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2143 "interleaved.vec"); 2144 2145 Instruction *NewStoreInstr = 2146 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2147 propagateMetadata(NewStoreInstr, Instr); 2148 } 2149 } 2150 2151 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2152 // Attempt to issue a wide load. 2153 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2154 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2155 2156 assert((LI || SI) && "Invalid Load/Store instruction"); 2157 2158 // Try to vectorize the interleave group if this access is interleaved. 2159 if (Legal->isAccessInterleaved(Instr)) 2160 return vectorizeInterleaveGroup(Instr); 2161 2162 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2163 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2164 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2165 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2166 // An alignment of 0 means target abi alignment. We need to use the scalar's 2167 // target abi alignment in such a case. 2168 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2169 if (!Alignment) 2170 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2171 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2172 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2173 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2174 2175 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2176 !Legal->isMaskRequired(SI)) 2177 return scalarizeInstruction(Instr, true); 2178 2179 if (ScalarAllocatedSize != VectorElementSize) 2180 return scalarizeInstruction(Instr); 2181 2182 // If the pointer is loop invariant or if it is non-consecutive, 2183 // scalarize the load. 2184 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2185 bool Reverse = ConsecutiveStride < 0; 2186 bool UniformLoad = LI && Legal->isUniform(Ptr); 2187 if (!ConsecutiveStride || UniformLoad) 2188 return scalarizeInstruction(Instr); 2189 2190 Constant *Zero = Builder.getInt32(0); 2191 VectorParts &Entry = WidenMap.get(Instr); 2192 2193 // Handle consecutive loads/stores. 2194 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 2195 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2196 setDebugLocFromInst(Builder, Gep); 2197 Value *PtrOperand = Gep->getPointerOperand(); 2198 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2199 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2200 2201 // Create the new GEP with the new induction variable. 2202 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2203 Gep2->setOperand(0, FirstBasePtr); 2204 Gep2->setName("gep.indvar.base"); 2205 Ptr = Builder.Insert(Gep2); 2206 } else if (Gep) { 2207 setDebugLocFromInst(Builder, Gep); 2208 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 2209 OrigLoop) && "Base ptr must be invariant"); 2210 2211 // The last index does not have to be the induction. It can be 2212 // consecutive and be a function of the index. For example A[I+1]; 2213 unsigned NumOperands = Gep->getNumOperands(); 2214 unsigned InductionOperand = getGEPInductionOperand(Gep); 2215 // Create the new GEP with the new induction variable. 2216 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2217 2218 for (unsigned i = 0; i < NumOperands; ++i) { 2219 Value *GepOperand = Gep->getOperand(i); 2220 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2221 2222 // Update last index or loop invariant instruction anchored in loop. 2223 if (i == InductionOperand || 2224 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2225 assert((i == InductionOperand || 2226 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 2227 "Must be last index or loop invariant"); 2228 2229 VectorParts &GEPParts = getVectorValue(GepOperand); 2230 Value *Index = GEPParts[0]; 2231 Index = Builder.CreateExtractElement(Index, Zero); 2232 Gep2->setOperand(i, Index); 2233 Gep2->setName("gep.indvar.idx"); 2234 } 2235 } 2236 Ptr = Builder.Insert(Gep2); 2237 } else { 2238 // Use the induction element ptr. 2239 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2240 setDebugLocFromInst(Builder, Ptr); 2241 VectorParts &PtrVal = getVectorValue(Ptr); 2242 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2243 } 2244 2245 VectorParts Mask = createBlockInMask(Instr->getParent()); 2246 // Handle Stores: 2247 if (SI) { 2248 assert(!Legal->isUniform(SI->getPointerOperand()) && 2249 "We do not allow storing to uniform addresses"); 2250 setDebugLocFromInst(Builder, SI); 2251 // We don't want to update the value in the map as it might be used in 2252 // another expression. So don't use a reference type for "StoredVal". 2253 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2254 2255 for (unsigned Part = 0; Part < UF; ++Part) { 2256 // Calculate the pointer for the specific unroll-part. 2257 Value *PartPtr = 2258 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2259 2260 if (Reverse) { 2261 // If we store to reverse consecutive memory locations then we need 2262 // to reverse the order of elements in the stored value. 2263 StoredVal[Part] = reverseVector(StoredVal[Part]); 2264 // If the address is consecutive but reversed, then the 2265 // wide store needs to start at the last vector element. 2266 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2267 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2268 Mask[Part] = reverseVector(Mask[Part]); 2269 } 2270 2271 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2272 DataTy->getPointerTo(AddressSpace)); 2273 2274 Instruction *NewSI; 2275 if (Legal->isMaskRequired(SI)) 2276 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2277 Mask[Part]); 2278 else 2279 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2280 propagateMetadata(NewSI, SI); 2281 } 2282 return; 2283 } 2284 2285 // Handle loads. 2286 assert(LI && "Must have a load instruction"); 2287 setDebugLocFromInst(Builder, LI); 2288 for (unsigned Part = 0; Part < UF; ++Part) { 2289 // Calculate the pointer for the specific unroll-part. 2290 Value *PartPtr = 2291 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2292 2293 if (Reverse) { 2294 // If the address is consecutive but reversed, then the 2295 // wide load needs to start at the last vector element. 2296 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2297 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2298 Mask[Part] = reverseVector(Mask[Part]); 2299 } 2300 2301 Instruction* NewLI; 2302 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2303 DataTy->getPointerTo(AddressSpace)); 2304 if (Legal->isMaskRequired(LI)) 2305 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2306 UndefValue::get(DataTy), 2307 "wide.masked.load"); 2308 else 2309 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2310 propagateMetadata(NewLI, LI); 2311 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2312 } 2313 } 2314 2315 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 2316 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2317 // Holds vector parameters or scalars, in case of uniform vals. 2318 SmallVector<VectorParts, 4> Params; 2319 2320 setDebugLocFromInst(Builder, Instr); 2321 2322 // Find all of the vectorized parameters. 2323 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2324 Value *SrcOp = Instr->getOperand(op); 2325 2326 // If we are accessing the old induction variable, use the new one. 2327 if (SrcOp == OldInduction) { 2328 Params.push_back(getVectorValue(SrcOp)); 2329 continue; 2330 } 2331 2332 // Try using previously calculated values. 2333 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2334 2335 // If the src is an instruction that appeared earlier in the basic block 2336 // then it should already be vectorized. 2337 if (SrcInst && OrigLoop->contains(SrcInst)) { 2338 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2339 // The parameter is a vector value from earlier. 2340 Params.push_back(WidenMap.get(SrcInst)); 2341 } else { 2342 // The parameter is a scalar from outside the loop. Maybe even a constant. 2343 VectorParts Scalars; 2344 Scalars.append(UF, SrcOp); 2345 Params.push_back(Scalars); 2346 } 2347 } 2348 2349 assert(Params.size() == Instr->getNumOperands() && 2350 "Invalid number of operands"); 2351 2352 // Does this instruction return a value ? 2353 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2354 2355 Value *UndefVec = IsVoidRetTy ? nullptr : 2356 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2357 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2358 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2359 2360 Instruction *InsertPt = Builder.GetInsertPoint(); 2361 BasicBlock *IfBlock = Builder.GetInsertBlock(); 2362 BasicBlock *CondBlock = nullptr; 2363 2364 VectorParts Cond; 2365 Loop *VectorLp = nullptr; 2366 if (IfPredicateStore) { 2367 assert(Instr->getParent()->getSinglePredecessor() && 2368 "Only support single predecessor blocks"); 2369 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2370 Instr->getParent()); 2371 VectorLp = LI->getLoopFor(IfBlock); 2372 assert(VectorLp && "Must have a loop for this block"); 2373 } 2374 2375 // For each vector unroll 'part': 2376 for (unsigned Part = 0; Part < UF; ++Part) { 2377 // For each scalar that we create: 2378 for (unsigned Width = 0; Width < VF; ++Width) { 2379 2380 // Start if-block. 2381 Value *Cmp = nullptr; 2382 if (IfPredicateStore) { 2383 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2384 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 2385 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 2386 LoopVectorBody.push_back(CondBlock); 2387 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 2388 // Update Builder with newly created basic block. 2389 Builder.SetInsertPoint(InsertPt); 2390 } 2391 2392 Instruction *Cloned = Instr->clone(); 2393 if (!IsVoidRetTy) 2394 Cloned->setName(Instr->getName() + ".cloned"); 2395 // Replace the operands of the cloned instructions with extracted scalars. 2396 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2397 Value *Op = Params[op][Part]; 2398 // Param is a vector. Need to extract the right lane. 2399 if (Op->getType()->isVectorTy()) 2400 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2401 Cloned->setOperand(op, Op); 2402 } 2403 2404 // Place the cloned scalar in the new loop. 2405 Builder.Insert(Cloned); 2406 2407 // If the original scalar returns a value we need to place it in a vector 2408 // so that future users will be able to use it. 2409 if (!IsVoidRetTy) 2410 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2411 Builder.getInt32(Width)); 2412 // End if-block. 2413 if (IfPredicateStore) { 2414 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2415 LoopVectorBody.push_back(NewIfBlock); 2416 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 2417 Builder.SetInsertPoint(InsertPt); 2418 ReplaceInstWithInst(IfBlock->getTerminator(), 2419 BranchInst::Create(CondBlock, NewIfBlock, Cmp)); 2420 IfBlock = NewIfBlock; 2421 } 2422 } 2423 } 2424 } 2425 2426 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2427 Instruction *Loc) { 2428 if (FirstInst) 2429 return FirstInst; 2430 if (Instruction *I = dyn_cast<Instruction>(V)) 2431 return I->getParent() == Loc->getParent() ? I : nullptr; 2432 return nullptr; 2433 } 2434 2435 std::pair<Instruction *, Instruction *> 2436 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2437 Instruction *tnullptr = nullptr; 2438 if (!Legal->mustCheckStrides()) 2439 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2440 2441 IRBuilder<> ChkBuilder(Loc); 2442 2443 // Emit checks. 2444 Value *Check = nullptr; 2445 Instruction *FirstInst = nullptr; 2446 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2447 SE = Legal->strides_end(); 2448 SI != SE; ++SI) { 2449 Value *Ptr = stripIntegerCast(*SI); 2450 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2451 "stride.chk"); 2452 // Store the first instruction we create. 2453 FirstInst = getFirstInst(FirstInst, C, Loc); 2454 if (Check) 2455 Check = ChkBuilder.CreateOr(Check, C); 2456 else 2457 Check = C; 2458 } 2459 2460 // We have to do this trickery because the IRBuilder might fold the check to a 2461 // constant expression in which case there is no Instruction anchored in a 2462 // the block. 2463 LLVMContext &Ctx = Loc->getContext(); 2464 Instruction *TheCheck = 2465 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2466 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2467 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2468 2469 return std::make_pair(FirstInst, TheCheck); 2470 } 2471 2472 void InnerLoopVectorizer::createEmptyLoop() { 2473 /* 2474 In this function we generate a new loop. The new loop will contain 2475 the vectorized instructions while the old loop will continue to run the 2476 scalar remainder. 2477 2478 [ ] <-- Back-edge taken count overflow check. 2479 / | 2480 / v 2481 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2482 | / | 2483 | / v 2484 || [ ] <-- vector pre header. 2485 || | 2486 || v 2487 || [ ] \ 2488 || [ ]_| <-- vector loop. 2489 || | 2490 | \ v 2491 | >[ ] <--- middle-block. 2492 | / | 2493 | / v 2494 -|- >[ ] <--- new preheader. 2495 | | 2496 | v 2497 | [ ] \ 2498 | [ ]_| <-- old scalar loop to handle remainder. 2499 \ | 2500 \ v 2501 >[ ] <-- exit block. 2502 ... 2503 */ 2504 2505 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2506 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2507 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2508 assert(VectorPH && "Invalid loop structure"); 2509 assert(ExitBlock && "Must have an exit block"); 2510 2511 // Some loops have a single integer induction variable, while other loops 2512 // don't. One example is c++ iterators that often have multiple pointer 2513 // induction variables. In the code below we also support a case where we 2514 // don't have a single induction variable. 2515 OldInduction = Legal->getInduction(); 2516 Type *IdxTy = Legal->getWidestInductionType(); 2517 2518 // Find the loop boundaries. 2519 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2520 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2521 2522 // The exit count might have the type of i64 while the phi is i32. This can 2523 // happen if we have an induction variable that is sign extended before the 2524 // compare. The only way that we get a backedge taken count is that the 2525 // induction variable was signed and as such will not overflow. In such a case 2526 // truncation is legal. 2527 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2528 IdxTy->getPrimitiveSizeInBits()) 2529 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2530 2531 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2532 // Get the total trip count from the count by adding 1. 2533 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2534 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2535 2536 const DataLayout &DL = OldBasicBlock->getModule()->getDataLayout(); 2537 2538 // Expand the trip count and place the new instructions in the preheader. 2539 // Notice that the pre-header does not change, only the loop body. 2540 SCEVExpander Exp(*SE, DL, "induction"); 2541 2542 // We need to test whether the backedge-taken count is uint##_max. Adding one 2543 // to it will cause overflow and an incorrect loop trip count in the vector 2544 // body. In case of overflow we want to directly jump to the scalar remainder 2545 // loop. 2546 Value *BackedgeCount = 2547 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2548 VectorPH->getTerminator()); 2549 if (BackedgeCount->getType()->isPointerTy()) 2550 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2551 "backedge.ptrcnt.to.int", 2552 VectorPH->getTerminator()); 2553 Instruction *CheckBCOverflow = 2554 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2555 Constant::getAllOnesValue(BackedgeCount->getType()), 2556 "backedge.overflow", VectorPH->getTerminator()); 2557 2558 // The loop index does not have to start at Zero. Find the original start 2559 // value from the induction PHI node. If we don't have an induction variable 2560 // then we know that it starts at zero. 2561 Builder.SetInsertPoint(VectorPH->getTerminator()); 2562 Value *StartIdx = ExtendedIdx = 2563 OldInduction 2564 ? Builder.CreateZExt(OldInduction->getIncomingValueForBlock(VectorPH), 2565 IdxTy) 2566 : ConstantInt::get(IdxTy, 0); 2567 2568 // Count holds the overall loop count (N). 2569 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2570 VectorPH->getTerminator()); 2571 2572 LoopBypassBlocks.push_back(VectorPH); 2573 2574 // Split the single block loop into the two loop structure described above. 2575 BasicBlock *VecBody = 2576 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2577 BasicBlock *MiddleBlock = 2578 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2579 BasicBlock *ScalarPH = 2580 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2581 2582 // Create and register the new vector loop. 2583 Loop* Lp = new Loop(); 2584 Loop *ParentLoop = OrigLoop->getParentLoop(); 2585 2586 // Insert the new loop into the loop nest and register the new basic blocks 2587 // before calling any utilities such as SCEV that require valid LoopInfo. 2588 if (ParentLoop) { 2589 ParentLoop->addChildLoop(Lp); 2590 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2591 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2592 } else { 2593 LI->addTopLevelLoop(Lp); 2594 } 2595 Lp->addBasicBlockToLoop(VecBody, *LI); 2596 2597 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2598 // inside the loop. 2599 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2600 2601 // Generate the induction variable. 2602 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2603 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2604 // The loop step is equal to the vectorization factor (num of SIMD elements) 2605 // times the unroll factor (num of SIMD instructions). 2606 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2607 2608 // Generate code to check that the loop's trip count that we computed by 2609 // adding one to the backedge-taken count will not overflow. 2610 BasicBlock *NewVectorPH = 2611 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "overflow.checked"); 2612 if (ParentLoop) 2613 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2614 ReplaceInstWithInst( 2615 VectorPH->getTerminator(), 2616 BranchInst::Create(ScalarPH, NewVectorPH, CheckBCOverflow)); 2617 VectorPH = NewVectorPH; 2618 2619 // This is the IR builder that we use to add all of the logic for bypassing 2620 // the new vector loop. 2621 IRBuilder<> BypassBuilder(VectorPH->getTerminator()); 2622 setDebugLocFromInst(BypassBuilder, 2623 getDebugLocFromInstOrOperands(OldInduction)); 2624 2625 // We may need to extend the index in case there is a type mismatch. 2626 // We know that the count starts at zero and does not overflow. 2627 if (Count->getType() != IdxTy) { 2628 // The exit count can be of pointer type. Convert it to the correct 2629 // integer type. 2630 if (ExitCount->getType()->isPointerTy()) 2631 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2632 else 2633 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2634 } 2635 2636 // Add the start index to the loop count to get the new end index. 2637 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2638 2639 // Now we need to generate the expression for N - (N % VF), which is 2640 // the part that the vectorized body will execute. 2641 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2642 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2643 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2644 "end.idx.rnd.down"); 2645 2646 // Now, compare the new count to zero. If it is zero skip the vector loop and 2647 // jump to the scalar loop. 2648 Value *Cmp = 2649 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2650 NewVectorPH = 2651 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph"); 2652 if (ParentLoop) 2653 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2654 LoopBypassBlocks.push_back(VectorPH); 2655 ReplaceInstWithInst(VectorPH->getTerminator(), 2656 BranchInst::Create(MiddleBlock, NewVectorPH, Cmp)); 2657 VectorPH = NewVectorPH; 2658 2659 // Generate the code to check that the strides we assumed to be one are really 2660 // one. We want the new basic block to start at the first instruction in a 2661 // sequence of instructions that form a check. 2662 Instruction *StrideCheck; 2663 Instruction *FirstCheckInst; 2664 std::tie(FirstCheckInst, StrideCheck) = 2665 addStrideCheck(VectorPH->getTerminator()); 2666 if (StrideCheck) { 2667 AddedSafetyChecks = true; 2668 // Create a new block containing the stride check. 2669 VectorPH->setName("vector.stridecheck"); 2670 NewVectorPH = 2671 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph"); 2672 if (ParentLoop) 2673 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2674 LoopBypassBlocks.push_back(VectorPH); 2675 2676 // Replace the branch into the memory check block with a conditional branch 2677 // for the "few elements case". 2678 ReplaceInstWithInst( 2679 VectorPH->getTerminator(), 2680 BranchInst::Create(MiddleBlock, NewVectorPH, StrideCheck)); 2681 2682 VectorPH = NewVectorPH; 2683 } 2684 2685 // Generate the code that checks in runtime if arrays overlap. We put the 2686 // checks into a separate block to make the more common case of few elements 2687 // faster. 2688 Instruction *MemRuntimeCheck; 2689 std::tie(FirstCheckInst, MemRuntimeCheck) = 2690 Legal->getLAI()->addRuntimeCheck(VectorPH->getTerminator()); 2691 if (MemRuntimeCheck) { 2692 AddedSafetyChecks = true; 2693 // Create a new block containing the memory check. 2694 VectorPH->setName("vector.memcheck"); 2695 NewVectorPH = 2696 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph"); 2697 if (ParentLoop) 2698 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2699 LoopBypassBlocks.push_back(VectorPH); 2700 2701 // Replace the branch into the memory check block with a conditional branch 2702 // for the "few elements case". 2703 ReplaceInstWithInst( 2704 VectorPH->getTerminator(), 2705 BranchInst::Create(MiddleBlock, NewVectorPH, MemRuntimeCheck)); 2706 2707 VectorPH = NewVectorPH; 2708 } 2709 2710 // We are going to resume the execution of the scalar loop. 2711 // Go over all of the induction variables that we found and fix the 2712 // PHIs that are left in the scalar version of the loop. 2713 // The starting values of PHI nodes depend on the counter of the last 2714 // iteration in the vectorized loop. 2715 // If we come from a bypass edge then we need to start from the original 2716 // start value. 2717 2718 // This variable saves the new starting index for the scalar loop. 2719 PHINode *ResumeIndex = nullptr; 2720 LoopVectorizationLegality::InductionList::iterator I, E; 2721 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2722 // Set builder to point to last bypass block. 2723 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2724 for (I = List->begin(), E = List->end(); I != E; ++I) { 2725 PHINode *OrigPhi = I->first; 2726 LoopVectorizationLegality::InductionInfo II = I->second; 2727 2728 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2729 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2730 MiddleBlock->getTerminator()); 2731 // We might have extended the type of the induction variable but we need a 2732 // truncated version for the scalar loop. 2733 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2734 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2735 MiddleBlock->getTerminator()) : nullptr; 2736 2737 // Create phi nodes to merge from the backedge-taken check block. 2738 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2739 ScalarPH->getTerminator()); 2740 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2741 2742 PHINode *BCTruncResumeVal = nullptr; 2743 if (OrigPhi == OldInduction) { 2744 BCTruncResumeVal = 2745 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2746 ScalarPH->getTerminator()); 2747 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2748 } 2749 2750 Value *EndValue = nullptr; 2751 switch (II.IK) { 2752 case LoopVectorizationLegality::IK_NoInduction: 2753 llvm_unreachable("Unknown induction"); 2754 case LoopVectorizationLegality::IK_IntInduction: { 2755 // Handle the integer induction counter. 2756 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2757 2758 // We have the canonical induction variable. 2759 if (OrigPhi == OldInduction) { 2760 // Create a truncated version of the resume value for the scalar loop, 2761 // we might have promoted the type to a larger width. 2762 EndValue = 2763 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2764 // The new PHI merges the original incoming value, in case of a bypass, 2765 // or the value at the end of the vectorized loop. 2766 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2767 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2768 TruncResumeVal->addIncoming(EndValue, VecBody); 2769 2770 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2771 2772 // We know what the end value is. 2773 EndValue = IdxEndRoundDown; 2774 // We also know which PHI node holds it. 2775 ResumeIndex = ResumeVal; 2776 break; 2777 } 2778 2779 // Not the canonical induction variable - add the vector loop count to the 2780 // start value. 2781 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2782 II.StartValue->getType(), 2783 "cast.crd"); 2784 EndValue = II.transform(BypassBuilder, CRD); 2785 EndValue->setName("ind.end"); 2786 break; 2787 } 2788 case LoopVectorizationLegality::IK_PtrInduction: { 2789 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2790 II.StepValue->getType(), 2791 "cast.crd"); 2792 EndValue = II.transform(BypassBuilder, CRD); 2793 EndValue->setName("ptr.ind.end"); 2794 break; 2795 } 2796 }// end of case 2797 2798 // The new PHI merges the original incoming value, in case of a bypass, 2799 // or the value at the end of the vectorized loop. 2800 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2801 if (OrigPhi == OldInduction) 2802 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2803 else 2804 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2805 } 2806 ResumeVal->addIncoming(EndValue, VecBody); 2807 2808 // Fix the scalar body counter (PHI node). 2809 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2810 2811 // The old induction's phi node in the scalar body needs the truncated 2812 // value. 2813 if (OrigPhi == OldInduction) { 2814 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2815 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2816 } else { 2817 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2818 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2819 } 2820 } 2821 2822 // If we are generating a new induction variable then we also need to 2823 // generate the code that calculates the exit value. This value is not 2824 // simply the end of the counter because we may skip the vectorized body 2825 // in case of a runtime check. 2826 if (!OldInduction){ 2827 assert(!ResumeIndex && "Unexpected resume value found"); 2828 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2829 MiddleBlock->getTerminator()); 2830 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2831 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2832 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2833 } 2834 2835 // Make sure that we found the index where scalar loop needs to continue. 2836 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2837 "Invalid resume Index"); 2838 2839 // Add a check in the middle block to see if we have completed 2840 // all of the iterations in the first vector loop. 2841 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2842 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2843 ResumeIndex, "cmp.n", 2844 MiddleBlock->getTerminator()); 2845 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2846 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2847 2848 // Create i+1 and fill the PHINode. 2849 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2850 Induction->addIncoming(StartIdx, VectorPH); 2851 Induction->addIncoming(NextIdx, VecBody); 2852 // Create the compare. 2853 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2854 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2855 2856 // Now we have two terminators. Remove the old one from the block. 2857 VecBody->getTerminator()->eraseFromParent(); 2858 2859 // Get ready to start creating new instructions into the vectorized body. 2860 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2861 2862 // Save the state. 2863 LoopVectorPreHeader = VectorPH; 2864 LoopScalarPreHeader = ScalarPH; 2865 LoopMiddleBlock = MiddleBlock; 2866 LoopExitBlock = ExitBlock; 2867 LoopVectorBody.push_back(VecBody); 2868 LoopScalarBody = OldBasicBlock; 2869 2870 LoopVectorizeHints Hints(Lp, true); 2871 Hints.setAlreadyVectorized(); 2872 } 2873 2874 namespace { 2875 struct CSEDenseMapInfo { 2876 static bool canHandle(Instruction *I) { 2877 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2878 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2879 } 2880 static inline Instruction *getEmptyKey() { 2881 return DenseMapInfo<Instruction *>::getEmptyKey(); 2882 } 2883 static inline Instruction *getTombstoneKey() { 2884 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2885 } 2886 static unsigned getHashValue(Instruction *I) { 2887 assert(canHandle(I) && "Unknown instruction!"); 2888 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2889 I->value_op_end())); 2890 } 2891 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2892 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2893 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2894 return LHS == RHS; 2895 return LHS->isIdenticalTo(RHS); 2896 } 2897 }; 2898 } 2899 2900 /// \brief Check whether this block is a predicated block. 2901 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2902 /// = ...; " blocks. We start with one vectorized basic block. For every 2903 /// conditional block we split this vectorized block. Therefore, every second 2904 /// block will be a predicated one. 2905 static bool isPredicatedBlock(unsigned BlockNum) { 2906 return BlockNum % 2; 2907 } 2908 2909 ///\brief Perform cse of induction variable instructions. 2910 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2911 // Perform simple cse. 2912 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2913 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2914 BasicBlock *BB = BBs[i]; 2915 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2916 Instruction *In = I++; 2917 2918 if (!CSEDenseMapInfo::canHandle(In)) 2919 continue; 2920 2921 // Check if we can replace this instruction with any of the 2922 // visited instructions. 2923 if (Instruction *V = CSEMap.lookup(In)) { 2924 In->replaceAllUsesWith(V); 2925 In->eraseFromParent(); 2926 continue; 2927 } 2928 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2929 // ...;" blocks for predicated stores. Every second block is a predicated 2930 // block. 2931 if (isPredicatedBlock(i)) 2932 continue; 2933 2934 CSEMap[In] = In; 2935 } 2936 } 2937 } 2938 2939 /// \brief Adds a 'fast' flag to floating point operations. 2940 static Value *addFastMathFlag(Value *V) { 2941 if (isa<FPMathOperator>(V)){ 2942 FastMathFlags Flags; 2943 Flags.setUnsafeAlgebra(); 2944 cast<Instruction>(V)->setFastMathFlags(Flags); 2945 } 2946 return V; 2947 } 2948 2949 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 2950 /// the result needs to be inserted and/or extracted from vectors. 2951 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 2952 const TargetTransformInfo &TTI) { 2953 if (Ty->isVoidTy()) 2954 return 0; 2955 2956 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 2957 unsigned Cost = 0; 2958 2959 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 2960 if (Insert) 2961 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 2962 if (Extract) 2963 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 2964 } 2965 2966 return Cost; 2967 } 2968 2969 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 2970 // Return the cost of the instruction, including scalarization overhead if it's 2971 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 2972 // i.e. either vector version isn't available, or is too expensive. 2973 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 2974 const TargetTransformInfo &TTI, 2975 const TargetLibraryInfo *TLI, 2976 bool &NeedToScalarize) { 2977 Function *F = CI->getCalledFunction(); 2978 StringRef FnName = CI->getCalledFunction()->getName(); 2979 Type *ScalarRetTy = CI->getType(); 2980 SmallVector<Type *, 4> Tys, ScalarTys; 2981 for (auto &ArgOp : CI->arg_operands()) 2982 ScalarTys.push_back(ArgOp->getType()); 2983 2984 // Estimate cost of scalarized vector call. The source operands are assumed 2985 // to be vectors, so we need to extract individual elements from there, 2986 // execute VF scalar calls, and then gather the result into the vector return 2987 // value. 2988 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 2989 if (VF == 1) 2990 return ScalarCallCost; 2991 2992 // Compute corresponding vector type for return value and arguments. 2993 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 2994 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 2995 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 2996 2997 // Compute costs of unpacking argument values for the scalar calls and 2998 // packing the return values to a vector. 2999 unsigned ScalarizationCost = 3000 getScalarizationOverhead(RetTy, true, false, TTI); 3001 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3002 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3003 3004 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3005 3006 // If we can't emit a vector call for this function, then the currently found 3007 // cost is the cost we need to return. 3008 NeedToScalarize = true; 3009 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3010 return Cost; 3011 3012 // If the corresponding vector cost is cheaper, return its cost. 3013 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3014 if (VectorCallCost < Cost) { 3015 NeedToScalarize = false; 3016 return VectorCallCost; 3017 } 3018 return Cost; 3019 } 3020 3021 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3022 // factor VF. Return the cost of the instruction, including scalarization 3023 // overhead if it's needed. 3024 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3025 const TargetTransformInfo &TTI, 3026 const TargetLibraryInfo *TLI) { 3027 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3028 assert(ID && "Expected intrinsic call!"); 3029 3030 Type *RetTy = ToVectorTy(CI->getType(), VF); 3031 SmallVector<Type *, 4> Tys; 3032 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3033 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3034 3035 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 3036 } 3037 3038 void InnerLoopVectorizer::vectorizeLoop() { 3039 //===------------------------------------------------===// 3040 // 3041 // Notice: any optimization or new instruction that go 3042 // into the code below should be also be implemented in 3043 // the cost-model. 3044 // 3045 //===------------------------------------------------===// 3046 Constant *Zero = Builder.getInt32(0); 3047 3048 // In order to support reduction variables we need to be able to vectorize 3049 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 3050 // stages. First, we create a new vector PHI node with no incoming edges. 3051 // We use this value when we vectorize all of the instructions that use the 3052 // PHI. Next, after all of the instructions in the block are complete we 3053 // add the new incoming edges to the PHI. At this point all of the 3054 // instructions in the basic block are vectorized, so we can use them to 3055 // construct the PHI. 3056 PhiVector RdxPHIsToFix; 3057 3058 // Scan the loop in a topological order to ensure that defs are vectorized 3059 // before users. 3060 LoopBlocksDFS DFS(OrigLoop); 3061 DFS.perform(LI); 3062 3063 // Vectorize all of the blocks in the original loop. 3064 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3065 be = DFS.endRPO(); bb != be; ++bb) 3066 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 3067 3068 // At this point every instruction in the original loop is widened to 3069 // a vector form. We are almost done. Now, we need to fix the PHI nodes 3070 // that we vectorized. The PHI nodes are currently empty because we did 3071 // not want to introduce cycles. Notice that the remaining PHI nodes 3072 // that we need to fix are reduction variables. 3073 3074 // Create the 'reduced' values for each of the induction vars. 3075 // The reduced values are the vector values that we scalarize and combine 3076 // after the loop is finished. 3077 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 3078 it != e; ++it) { 3079 PHINode *RdxPhi = *it; 3080 assert(RdxPhi && "Unable to recover vectorized PHI"); 3081 3082 // Find the reduction variable descriptor. 3083 assert(Legal->getReductionVars()->count(RdxPhi) && 3084 "Unable to find the reduction variable"); 3085 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; 3086 3087 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3088 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3089 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3090 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3091 RdxDesc.getMinMaxRecurrenceKind(); 3092 setDebugLocFromInst(Builder, ReductionStartValue); 3093 3094 // We need to generate a reduction vector from the incoming scalar. 3095 // To do so, we need to generate the 'identity' vector and override 3096 // one of the elements with the incoming scalar reduction. We need 3097 // to do it in the vector-loop preheader. 3098 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3099 3100 // This is the vector-clone of the value that leaves the loop. 3101 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3102 Type *VecTy = VectorExit[0]->getType(); 3103 3104 // Find the reduction identity variable. Zero for addition, or, xor, 3105 // one for multiplication, -1 for And. 3106 Value *Identity; 3107 Value *VectorStart; 3108 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3109 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3110 // MinMax reduction have the start value as their identify. 3111 if (VF == 1) { 3112 VectorStart = Identity = ReductionStartValue; 3113 } else { 3114 VectorStart = Identity = 3115 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3116 } 3117 } else { 3118 // Handle other reduction kinds: 3119 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3120 RK, VecTy->getScalarType()); 3121 if (VF == 1) { 3122 Identity = Iden; 3123 // This vector is the Identity vector where the first element is the 3124 // incoming scalar reduction. 3125 VectorStart = ReductionStartValue; 3126 } else { 3127 Identity = ConstantVector::getSplat(VF, Iden); 3128 3129 // This vector is the Identity vector where the first element is the 3130 // incoming scalar reduction. 3131 VectorStart = 3132 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3133 } 3134 } 3135 3136 // Fix the vector-loop phi. 3137 3138 // Reductions do not have to start at zero. They can start with 3139 // any loop invariant values. 3140 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 3141 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3142 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 3143 VectorParts &Val = getVectorValue(LoopVal); 3144 for (unsigned part = 0; part < UF; ++part) { 3145 // Make sure to add the reduction stat value only to the 3146 // first unroll part. 3147 Value *StartVal = (part == 0) ? VectorStart : Identity; 3148 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3149 LoopVectorPreHeader); 3150 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3151 LoopVectorBody.back()); 3152 } 3153 3154 // Before each round, move the insertion point right between 3155 // the PHIs and the values we are going to write. 3156 // This allows us to write both PHINodes and the extractelement 3157 // instructions. 3158 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 3159 3160 VectorParts RdxParts; 3161 setDebugLocFromInst(Builder, LoopExitInst); 3162 for (unsigned part = 0; part < UF; ++part) { 3163 // This PHINode contains the vectorized reduction variable, or 3164 // the initial value vector, if we bypass the vector loop. 3165 VectorParts &RdxExitVal = getVectorValue(LoopExitInst); 3166 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 3167 Value *StartVal = (part == 0) ? VectorStart : Identity; 3168 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3169 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 3170 NewPhi->addIncoming(RdxExitVal[part], 3171 LoopVectorBody.back()); 3172 RdxParts.push_back(NewPhi); 3173 } 3174 3175 // Reduce all of the unrolled parts into a single vector. 3176 Value *ReducedPartRdx = RdxParts[0]; 3177 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3178 setDebugLocFromInst(Builder, ReducedPartRdx); 3179 for (unsigned part = 1; part < UF; ++part) { 3180 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3181 // Floating point operations had to be 'fast' to enable the reduction. 3182 ReducedPartRdx = addFastMathFlag( 3183 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3184 ReducedPartRdx, "bin.rdx")); 3185 else 3186 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3187 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3188 } 3189 3190 if (VF > 1) { 3191 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3192 // and vector ops, reducing the set of values being computed by half each 3193 // round. 3194 assert(isPowerOf2_32(VF) && 3195 "Reduction emission only supported for pow2 vectors!"); 3196 Value *TmpVec = ReducedPartRdx; 3197 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3198 for (unsigned i = VF; i != 1; i >>= 1) { 3199 // Move the upper half of the vector to the lower half. 3200 for (unsigned j = 0; j != i/2; ++j) 3201 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3202 3203 // Fill the rest of the mask with undef. 3204 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3205 UndefValue::get(Builder.getInt32Ty())); 3206 3207 Value *Shuf = 3208 Builder.CreateShuffleVector(TmpVec, 3209 UndefValue::get(TmpVec->getType()), 3210 ConstantVector::get(ShuffleMask), 3211 "rdx.shuf"); 3212 3213 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3214 // Floating point operations had to be 'fast' to enable the reduction. 3215 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3216 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3217 else 3218 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3219 TmpVec, Shuf); 3220 } 3221 3222 // The result is in the first element of the vector. 3223 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3224 Builder.getInt32(0)); 3225 } 3226 3227 // Create a phi node that merges control-flow from the backedge-taken check 3228 // block and the middle block. 3229 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 3230 LoopScalarPreHeader->getTerminator()); 3231 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[0]); 3232 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3233 3234 // Now, we need to fix the users of the reduction variable 3235 // inside and outside of the scalar remainder loop. 3236 // We know that the loop is in LCSSA form. We need to update the 3237 // PHI nodes in the exit blocks. 3238 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3239 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3240 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3241 if (!LCSSAPhi) break; 3242 3243 // All PHINodes need to have a single entry edge, or two if 3244 // we already fixed them. 3245 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3246 3247 // We found our reduction value exit-PHI. Update it with the 3248 // incoming bypass edge. 3249 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3250 // Add an edge coming from the bypass. 3251 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3252 break; 3253 } 3254 }// end of the LCSSA phi scan. 3255 3256 // Fix the scalar loop reduction variable with the incoming reduction sum 3257 // from the vector body and from the backedge value. 3258 int IncomingEdgeBlockIdx = 3259 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3260 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3261 // Pick the other block. 3262 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3263 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3264 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3265 }// end of for each redux variable. 3266 3267 fixLCSSAPHIs(); 3268 3269 // Remove redundant induction instructions. 3270 cse(LoopVectorBody); 3271 } 3272 3273 void InnerLoopVectorizer::fixLCSSAPHIs() { 3274 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3275 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3276 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3277 if (!LCSSAPhi) break; 3278 if (LCSSAPhi->getNumIncomingValues() == 1) 3279 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3280 LoopMiddleBlock); 3281 } 3282 } 3283 3284 InnerLoopVectorizer::VectorParts 3285 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3286 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3287 "Invalid edge"); 3288 3289 // Look for cached value. 3290 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3291 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3292 if (ECEntryIt != MaskCache.end()) 3293 return ECEntryIt->second; 3294 3295 VectorParts SrcMask = createBlockInMask(Src); 3296 3297 // The terminator has to be a branch inst! 3298 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3299 assert(BI && "Unexpected terminator found"); 3300 3301 if (BI->isConditional()) { 3302 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3303 3304 if (BI->getSuccessor(0) != Dst) 3305 for (unsigned part = 0; part < UF; ++part) 3306 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3307 3308 for (unsigned part = 0; part < UF; ++part) 3309 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3310 3311 MaskCache[Edge] = EdgeMask; 3312 return EdgeMask; 3313 } 3314 3315 MaskCache[Edge] = SrcMask; 3316 return SrcMask; 3317 } 3318 3319 InnerLoopVectorizer::VectorParts 3320 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3321 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3322 3323 // Loop incoming mask is all-one. 3324 if (OrigLoop->getHeader() == BB) { 3325 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3326 return getVectorValue(C); 3327 } 3328 3329 // This is the block mask. We OR all incoming edges, and with zero. 3330 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3331 VectorParts BlockMask = getVectorValue(Zero); 3332 3333 // For each pred: 3334 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3335 VectorParts EM = createEdgeMask(*it, BB); 3336 for (unsigned part = 0; part < UF; ++part) 3337 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3338 } 3339 3340 return BlockMask; 3341 } 3342 3343 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3344 InnerLoopVectorizer::VectorParts &Entry, 3345 unsigned UF, unsigned VF, PhiVector *PV) { 3346 PHINode* P = cast<PHINode>(PN); 3347 // Handle reduction variables: 3348 if (Legal->getReductionVars()->count(P)) { 3349 for (unsigned part = 0; part < UF; ++part) { 3350 // This is phase one of vectorizing PHIs. 3351 Type *VecTy = (VF == 1) ? PN->getType() : 3352 VectorType::get(PN->getType(), VF); 3353 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3354 LoopVectorBody.back()-> getFirstInsertionPt()); 3355 } 3356 PV->push_back(P); 3357 return; 3358 } 3359 3360 setDebugLocFromInst(Builder, P); 3361 // Check for PHI nodes that are lowered to vector selects. 3362 if (P->getParent() != OrigLoop->getHeader()) { 3363 // We know that all PHIs in non-header blocks are converted into 3364 // selects, so we don't have to worry about the insertion order and we 3365 // can just use the builder. 3366 // At this point we generate the predication tree. There may be 3367 // duplications since this is a simple recursive scan, but future 3368 // optimizations will clean it up. 3369 3370 unsigned NumIncoming = P->getNumIncomingValues(); 3371 3372 // Generate a sequence of selects of the form: 3373 // SELECT(Mask3, In3, 3374 // SELECT(Mask2, In2, 3375 // ( ...))) 3376 for (unsigned In = 0; In < NumIncoming; In++) { 3377 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3378 P->getParent()); 3379 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3380 3381 for (unsigned part = 0; part < UF; ++part) { 3382 // We might have single edge PHIs (blocks) - use an identity 3383 // 'select' for the first PHI operand. 3384 if (In == 0) 3385 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3386 In0[part]); 3387 else 3388 // Select between the current value and the previous incoming edge 3389 // based on the incoming mask. 3390 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3391 Entry[part], "predphi"); 3392 } 3393 } 3394 return; 3395 } 3396 3397 // This PHINode must be an induction variable. 3398 // Make sure that we know about it. 3399 assert(Legal->getInductionVars()->count(P) && 3400 "Not an induction variable"); 3401 3402 LoopVectorizationLegality::InductionInfo II = 3403 Legal->getInductionVars()->lookup(P); 3404 3405 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3406 // which can be found from the original scalar operations. 3407 switch (II.IK) { 3408 case LoopVectorizationLegality::IK_NoInduction: 3409 llvm_unreachable("Unknown induction"); 3410 case LoopVectorizationLegality::IK_IntInduction: { 3411 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3412 Type *PhiTy = P->getType(); 3413 Value *Broadcasted; 3414 if (P == OldInduction) { 3415 // Handle the canonical induction variable. We might have had to 3416 // extend the type. 3417 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3418 } else { 3419 // Handle other induction variables that are now based on the 3420 // canonical one. 3421 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3422 "normalized.idx"); 3423 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3424 Broadcasted = II.transform(Builder, NormalizedIdx); 3425 Broadcasted->setName("offset.idx"); 3426 } 3427 Broadcasted = getBroadcastInstrs(Broadcasted); 3428 // After broadcasting the induction variable we need to make the vector 3429 // consecutive by adding 0, 1, 2, etc. 3430 for (unsigned part = 0; part < UF; ++part) 3431 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); 3432 return; 3433 } 3434 case LoopVectorizationLegality::IK_PtrInduction: 3435 // Handle the pointer induction variable case. 3436 assert(P->getType()->isPointerTy() && "Unexpected type."); 3437 // This is the normalized GEP that starts counting at zero. 3438 Value *NormalizedIdx = 3439 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); 3440 NormalizedIdx = 3441 Builder.CreateSExtOrTrunc(NormalizedIdx, II.StepValue->getType()); 3442 // This is the vector of results. Notice that we don't generate 3443 // vector geps because scalar geps result in better code. 3444 for (unsigned part = 0; part < UF; ++part) { 3445 if (VF == 1) { 3446 int EltIndex = part; 3447 Constant *Idx = ConstantInt::get(NormalizedIdx->getType(), EltIndex); 3448 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3449 Value *SclrGep = II.transform(Builder, GlobalIdx); 3450 SclrGep->setName("next.gep"); 3451 Entry[part] = SclrGep; 3452 continue; 3453 } 3454 3455 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3456 for (unsigned int i = 0; i < VF; ++i) { 3457 int EltIndex = i + part * VF; 3458 Constant *Idx = ConstantInt::get(NormalizedIdx->getType(), EltIndex); 3459 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3460 Value *SclrGep = II.transform(Builder, GlobalIdx); 3461 SclrGep->setName("next.gep"); 3462 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3463 Builder.getInt32(i), 3464 "insert.gep"); 3465 } 3466 Entry[part] = VecVal; 3467 } 3468 return; 3469 } 3470 } 3471 3472 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3473 // For each instruction in the old loop. 3474 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3475 VectorParts &Entry = WidenMap.get(it); 3476 switch (it->getOpcode()) { 3477 case Instruction::Br: 3478 // Nothing to do for PHIs and BR, since we already took care of the 3479 // loop control flow instructions. 3480 continue; 3481 case Instruction::PHI: { 3482 // Vectorize PHINodes. 3483 widenPHIInstruction(it, Entry, UF, VF, PV); 3484 continue; 3485 }// End of PHI. 3486 3487 case Instruction::Add: 3488 case Instruction::FAdd: 3489 case Instruction::Sub: 3490 case Instruction::FSub: 3491 case Instruction::Mul: 3492 case Instruction::FMul: 3493 case Instruction::UDiv: 3494 case Instruction::SDiv: 3495 case Instruction::FDiv: 3496 case Instruction::URem: 3497 case Instruction::SRem: 3498 case Instruction::FRem: 3499 case Instruction::Shl: 3500 case Instruction::LShr: 3501 case Instruction::AShr: 3502 case Instruction::And: 3503 case Instruction::Or: 3504 case Instruction::Xor: { 3505 // Just widen binops. 3506 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3507 setDebugLocFromInst(Builder, BinOp); 3508 VectorParts &A = getVectorValue(it->getOperand(0)); 3509 VectorParts &B = getVectorValue(it->getOperand(1)); 3510 3511 // Use this vector value for all users of the original instruction. 3512 for (unsigned Part = 0; Part < UF; ++Part) { 3513 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3514 3515 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3516 VecOp->copyIRFlags(BinOp); 3517 3518 Entry[Part] = V; 3519 } 3520 3521 propagateMetadata(Entry, it); 3522 break; 3523 } 3524 case Instruction::Select: { 3525 // Widen selects. 3526 // If the selector is loop invariant we can create a select 3527 // instruction with a scalar condition. Otherwise, use vector-select. 3528 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3529 OrigLoop); 3530 setDebugLocFromInst(Builder, it); 3531 3532 // The condition can be loop invariant but still defined inside the 3533 // loop. This means that we can't just use the original 'cond' value. 3534 // We have to take the 'vectorized' value and pick the first lane. 3535 // Instcombine will make this a no-op. 3536 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3537 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3538 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3539 3540 Value *ScalarCond = (VF == 1) ? Cond[0] : 3541 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3542 3543 for (unsigned Part = 0; Part < UF; ++Part) { 3544 Entry[Part] = Builder.CreateSelect( 3545 InvariantCond ? ScalarCond : Cond[Part], 3546 Op0[Part], 3547 Op1[Part]); 3548 } 3549 3550 propagateMetadata(Entry, it); 3551 break; 3552 } 3553 3554 case Instruction::ICmp: 3555 case Instruction::FCmp: { 3556 // Widen compares. Generate vector compares. 3557 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3558 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3559 setDebugLocFromInst(Builder, it); 3560 VectorParts &A = getVectorValue(it->getOperand(0)); 3561 VectorParts &B = getVectorValue(it->getOperand(1)); 3562 for (unsigned Part = 0; Part < UF; ++Part) { 3563 Value *C = nullptr; 3564 if (FCmp) 3565 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3566 else 3567 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3568 Entry[Part] = C; 3569 } 3570 3571 propagateMetadata(Entry, it); 3572 break; 3573 } 3574 3575 case Instruction::Store: 3576 case Instruction::Load: 3577 vectorizeMemoryInstruction(it); 3578 break; 3579 case Instruction::ZExt: 3580 case Instruction::SExt: 3581 case Instruction::FPToUI: 3582 case Instruction::FPToSI: 3583 case Instruction::FPExt: 3584 case Instruction::PtrToInt: 3585 case Instruction::IntToPtr: 3586 case Instruction::SIToFP: 3587 case Instruction::UIToFP: 3588 case Instruction::Trunc: 3589 case Instruction::FPTrunc: 3590 case Instruction::BitCast: { 3591 CastInst *CI = dyn_cast<CastInst>(it); 3592 setDebugLocFromInst(Builder, it); 3593 /// Optimize the special case where the source is the induction 3594 /// variable. Notice that we can only optimize the 'trunc' case 3595 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3596 /// c. other casts depend on pointer size. 3597 if (CI->getOperand(0) == OldInduction && 3598 it->getOpcode() == Instruction::Trunc) { 3599 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3600 CI->getType()); 3601 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3602 LoopVectorizationLegality::InductionInfo II = 3603 Legal->getInductionVars()->lookup(OldInduction); 3604 Constant *Step = 3605 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); 3606 for (unsigned Part = 0; Part < UF; ++Part) 3607 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3608 propagateMetadata(Entry, it); 3609 break; 3610 } 3611 /// Vectorize casts. 3612 Type *DestTy = (VF == 1) ? CI->getType() : 3613 VectorType::get(CI->getType(), VF); 3614 3615 VectorParts &A = getVectorValue(it->getOperand(0)); 3616 for (unsigned Part = 0; Part < UF; ++Part) 3617 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3618 propagateMetadata(Entry, it); 3619 break; 3620 } 3621 3622 case Instruction::Call: { 3623 // Ignore dbg intrinsics. 3624 if (isa<DbgInfoIntrinsic>(it)) 3625 break; 3626 setDebugLocFromInst(Builder, it); 3627 3628 Module *M = BB->getParent()->getParent(); 3629 CallInst *CI = cast<CallInst>(it); 3630 3631 StringRef FnName = CI->getCalledFunction()->getName(); 3632 Function *F = CI->getCalledFunction(); 3633 Type *RetTy = ToVectorTy(CI->getType(), VF); 3634 SmallVector<Type *, 4> Tys; 3635 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3636 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3637 3638 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3639 if (ID && 3640 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 3641 ID == Intrinsic::lifetime_start)) { 3642 scalarizeInstruction(it); 3643 break; 3644 } 3645 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3646 // version of the instruction. 3647 // Is it beneficial to perform intrinsic call compared to lib call? 3648 bool NeedToScalarize; 3649 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3650 bool UseVectorIntrinsic = 3651 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3652 if (!UseVectorIntrinsic && NeedToScalarize) { 3653 scalarizeInstruction(it); 3654 break; 3655 } 3656 3657 for (unsigned Part = 0; Part < UF; ++Part) { 3658 SmallVector<Value *, 4> Args; 3659 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3660 Value *Arg = CI->getArgOperand(i); 3661 // Some intrinsics have a scalar argument - don't replace it with a 3662 // vector. 3663 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 3664 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 3665 Arg = VectorArg[Part]; 3666 } 3667 Args.push_back(Arg); 3668 } 3669 3670 Function *VectorF; 3671 if (UseVectorIntrinsic) { 3672 // Use vector version of the intrinsic. 3673 Type *TysForDecl[] = {CI->getType()}; 3674 if (VF > 1) 3675 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3676 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3677 } else { 3678 // Use vector version of the library call. 3679 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3680 assert(!VFnName.empty() && "Vector function name is empty."); 3681 VectorF = M->getFunction(VFnName); 3682 if (!VectorF) { 3683 // Generate a declaration 3684 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3685 VectorF = 3686 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3687 VectorF->copyAttributesFrom(F); 3688 } 3689 } 3690 assert(VectorF && "Can't create vector function."); 3691 Entry[Part] = Builder.CreateCall(VectorF, Args); 3692 } 3693 3694 propagateMetadata(Entry, it); 3695 break; 3696 } 3697 3698 default: 3699 // All other instructions are unsupported. Scalarize them. 3700 scalarizeInstruction(it); 3701 break; 3702 }// end of switch. 3703 }// end of for_each instr. 3704 } 3705 3706 void InnerLoopVectorizer::updateAnalysis() { 3707 // Forget the original basic block. 3708 SE->forgetLoop(OrigLoop); 3709 3710 // Update the dominator tree information. 3711 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3712 "Entry does not dominate exit."); 3713 3714 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3715 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3716 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3717 3718 // Due to if predication of stores we might create a sequence of "if(pred) 3719 // a[i] = ...; " blocks. 3720 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3721 if (i == 0) 3722 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3723 else if (isPredicatedBlock(i)) { 3724 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3725 } else { 3726 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3727 } 3728 } 3729 3730 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3731 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3732 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3733 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3734 3735 DEBUG(DT->verifyDomTree()); 3736 } 3737 3738 /// \brief Check whether it is safe to if-convert this phi node. 3739 /// 3740 /// Phi nodes with constant expressions that can trap are not safe to if 3741 /// convert. 3742 static bool canIfConvertPHINodes(BasicBlock *BB) { 3743 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3744 PHINode *Phi = dyn_cast<PHINode>(I); 3745 if (!Phi) 3746 return true; 3747 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3748 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3749 if (C->canTrap()) 3750 return false; 3751 } 3752 return true; 3753 } 3754 3755 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3756 if (!EnableIfConversion) { 3757 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3758 return false; 3759 } 3760 3761 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3762 3763 // A list of pointers that we can safely read and write to. 3764 SmallPtrSet<Value *, 8> SafePointes; 3765 3766 // Collect safe addresses. 3767 for (Loop::block_iterator BI = TheLoop->block_begin(), 3768 BE = TheLoop->block_end(); BI != BE; ++BI) { 3769 BasicBlock *BB = *BI; 3770 3771 if (blockNeedsPredication(BB)) 3772 continue; 3773 3774 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3775 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3776 SafePointes.insert(LI->getPointerOperand()); 3777 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3778 SafePointes.insert(SI->getPointerOperand()); 3779 } 3780 } 3781 3782 // Collect the blocks that need predication. 3783 BasicBlock *Header = TheLoop->getHeader(); 3784 for (Loop::block_iterator BI = TheLoop->block_begin(), 3785 BE = TheLoop->block_end(); BI != BE; ++BI) { 3786 BasicBlock *BB = *BI; 3787 3788 // We don't support switch statements inside loops. 3789 if (!isa<BranchInst>(BB->getTerminator())) { 3790 emitAnalysis(VectorizationReport(BB->getTerminator()) 3791 << "loop contains a switch statement"); 3792 return false; 3793 } 3794 3795 // We must be able to predicate all blocks that need to be predicated. 3796 if (blockNeedsPredication(BB)) { 3797 if (!blockCanBePredicated(BB, SafePointes)) { 3798 emitAnalysis(VectorizationReport(BB->getTerminator()) 3799 << "control flow cannot be substituted for a select"); 3800 return false; 3801 } 3802 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3803 emitAnalysis(VectorizationReport(BB->getTerminator()) 3804 << "control flow cannot be substituted for a select"); 3805 return false; 3806 } 3807 } 3808 3809 // We can if-convert this loop. 3810 return true; 3811 } 3812 3813 bool LoopVectorizationLegality::canVectorize() { 3814 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3815 // be canonicalized. 3816 if (!TheLoop->getLoopPreheader()) { 3817 emitAnalysis( 3818 VectorizationReport() << 3819 "loop control flow is not understood by vectorizer"); 3820 return false; 3821 } 3822 3823 // We can only vectorize innermost loops. 3824 if (!TheLoop->getSubLoopsVector().empty()) { 3825 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 3826 return false; 3827 } 3828 3829 // We must have a single backedge. 3830 if (TheLoop->getNumBackEdges() != 1) { 3831 emitAnalysis( 3832 VectorizationReport() << 3833 "loop control flow is not understood by vectorizer"); 3834 return false; 3835 } 3836 3837 // We must have a single exiting block. 3838 if (!TheLoop->getExitingBlock()) { 3839 emitAnalysis( 3840 VectorizationReport() << 3841 "loop control flow is not understood by vectorizer"); 3842 return false; 3843 } 3844 3845 // We only handle bottom-tested loops, i.e. loop in which the condition is 3846 // checked at the end of each iteration. With that we can assume that all 3847 // instructions in the loop are executed the same number of times. 3848 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3849 emitAnalysis( 3850 VectorizationReport() << 3851 "loop control flow is not understood by vectorizer"); 3852 return false; 3853 } 3854 3855 // We need to have a loop header. 3856 DEBUG(dbgs() << "LV: Found a loop: " << 3857 TheLoop->getHeader()->getName() << '\n'); 3858 3859 // Check if we can if-convert non-single-bb loops. 3860 unsigned NumBlocks = TheLoop->getNumBlocks(); 3861 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3862 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3863 return false; 3864 } 3865 3866 // ScalarEvolution needs to be able to find the exit count. 3867 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3868 if (ExitCount == SE->getCouldNotCompute()) { 3869 emitAnalysis(VectorizationReport() << 3870 "could not determine number of loop iterations"); 3871 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3872 return false; 3873 } 3874 3875 // Check if we can vectorize the instructions and CFG in this loop. 3876 if (!canVectorizeInstrs()) { 3877 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3878 return false; 3879 } 3880 3881 // Go over each instruction and look at memory deps. 3882 if (!canVectorizeMemory()) { 3883 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3884 return false; 3885 } 3886 3887 // Collect all of the variables that remain uniform after vectorization. 3888 collectLoopUniforms(); 3889 3890 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3891 (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" : 3892 "") 3893 <<"!\n"); 3894 3895 // Analyze interleaved memory accesses. 3896 if (EnableInterleavedMemAccesses) 3897 InterleaveInfo.analyzeInterleaving(Strides); 3898 3899 // Okay! We can vectorize. At this point we don't have any other mem analysis 3900 // which may limit our maximum vectorization factor, so just return true with 3901 // no restrictions. 3902 return true; 3903 } 3904 3905 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3906 if (Ty->isPointerTy()) 3907 return DL.getIntPtrType(Ty); 3908 3909 // It is possible that char's or short's overflow when we ask for the loop's 3910 // trip count, work around this by changing the type size. 3911 if (Ty->getScalarSizeInBits() < 32) 3912 return Type::getInt32Ty(Ty->getContext()); 3913 3914 return Ty; 3915 } 3916 3917 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3918 Ty0 = convertPointerToIntegerType(DL, Ty0); 3919 Ty1 = convertPointerToIntegerType(DL, Ty1); 3920 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3921 return Ty0; 3922 return Ty1; 3923 } 3924 3925 /// \brief Check that the instruction has outside loop users and is not an 3926 /// identified reduction variable. 3927 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3928 SmallPtrSetImpl<Value *> &Reductions) { 3929 // Reduction instructions are allowed to have exit users. All other 3930 // instructions must not have external users. 3931 if (!Reductions.count(Inst)) 3932 //Check that all of the users of the loop are inside the BB. 3933 for (User *U : Inst->users()) { 3934 Instruction *UI = cast<Instruction>(U); 3935 // This user may be a reduction exit value. 3936 if (!TheLoop->contains(UI)) { 3937 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3938 return true; 3939 } 3940 } 3941 return false; 3942 } 3943 3944 bool LoopVectorizationLegality::canVectorizeInstrs() { 3945 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3946 BasicBlock *Header = TheLoop->getHeader(); 3947 3948 // Look for the attribute signaling the absence of NaNs. 3949 Function &F = *Header->getParent(); 3950 const DataLayout &DL = F.getParent()->getDataLayout(); 3951 if (F.hasFnAttribute("no-nans-fp-math")) 3952 HasFunNoNaNAttr = 3953 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 3954 3955 // For each block in the loop. 3956 for (Loop::block_iterator bb = TheLoop->block_begin(), 3957 be = TheLoop->block_end(); bb != be; ++bb) { 3958 3959 // Scan the instructions in the block and look for hazards. 3960 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3961 ++it) { 3962 3963 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3964 Type *PhiTy = Phi->getType(); 3965 // Check that this PHI type is allowed. 3966 if (!PhiTy->isIntegerTy() && 3967 !PhiTy->isFloatingPointTy() && 3968 !PhiTy->isPointerTy()) { 3969 emitAnalysis(VectorizationReport(it) 3970 << "loop control flow is not understood by vectorizer"); 3971 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3972 return false; 3973 } 3974 3975 // If this PHINode is not in the header block, then we know that we 3976 // can convert it to select during if-conversion. No need to check if 3977 // the PHIs in this block are induction or reduction variables. 3978 if (*bb != Header) { 3979 // Check that this instruction has no outside users or is an 3980 // identified reduction value with an outside user. 3981 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3982 continue; 3983 emitAnalysis(VectorizationReport(it) << 3984 "value could not be identified as " 3985 "an induction or reduction variable"); 3986 return false; 3987 } 3988 3989 // We only allow if-converted PHIs with exactly two incoming values. 3990 if (Phi->getNumIncomingValues() != 2) { 3991 emitAnalysis(VectorizationReport(it) 3992 << "control flow not understood by vectorizer"); 3993 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3994 return false; 3995 } 3996 3997 // This is the value coming from the preheader. 3998 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3999 ConstantInt *StepValue = nullptr; 4000 // Check if this is an induction variable. 4001 InductionKind IK = isInductionVariable(Phi, StepValue); 4002 4003 if (IK_NoInduction != IK) { 4004 // Get the widest type. 4005 if (!WidestIndTy) 4006 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4007 else 4008 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4009 4010 // Int inductions are special because we only allow one IV. 4011 if (IK == IK_IntInduction && StepValue->isOne()) { 4012 // Use the phi node with the widest type as induction. Use the last 4013 // one if there are multiple (no good reason for doing this other 4014 // than it is expedient). 4015 if (!Induction || PhiTy == WidestIndTy) 4016 Induction = Phi; 4017 } 4018 4019 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4020 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); 4021 4022 // Until we explicitly handle the case of an induction variable with 4023 // an outside loop user we have to give up vectorizing this loop. 4024 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 4025 emitAnalysis(VectorizationReport(it) << 4026 "use of induction value outside of the " 4027 "loop is not handled by vectorizer"); 4028 return false; 4029 } 4030 4031 continue; 4032 } 4033 4034 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, 4035 Reductions[Phi])) { 4036 AllowedExit.insert(Reductions[Phi].getLoopExitInstr()); 4037 continue; 4038 } 4039 4040 emitAnalysis(VectorizationReport(it) << 4041 "value that could not be identified as " 4042 "reduction is used outside the loop"); 4043 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4044 return false; 4045 }// end of PHI handling 4046 4047 // We handle calls that: 4048 // * Are debug info intrinsics. 4049 // * Have a mapping to an IR intrinsic. 4050 // * Have a vector version available. 4051 CallInst *CI = dyn_cast<CallInst>(it); 4052 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4053 !(CI->getCalledFunction() && TLI && 4054 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4055 emitAnalysis(VectorizationReport(it) << 4056 "call instruction cannot be vectorized"); 4057 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4058 return false; 4059 } 4060 4061 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4062 // second argument is the same (i.e. loop invariant) 4063 if (CI && 4064 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 4065 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 4066 emitAnalysis(VectorizationReport(it) 4067 << "intrinsic instruction cannot be vectorized"); 4068 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4069 return false; 4070 } 4071 } 4072 4073 // Check that the instruction return type is vectorizable. 4074 // Also, we can't vectorize extractelement instructions. 4075 if ((!VectorType::isValidElementType(it->getType()) && 4076 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4077 emitAnalysis(VectorizationReport(it) 4078 << "instruction return type cannot be vectorized"); 4079 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4080 return false; 4081 } 4082 4083 // Check that the stored type is vectorizable. 4084 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4085 Type *T = ST->getValueOperand()->getType(); 4086 if (!VectorType::isValidElementType(T)) { 4087 emitAnalysis(VectorizationReport(ST) << 4088 "store instruction cannot be vectorized"); 4089 return false; 4090 } 4091 if (EnableMemAccessVersioning) 4092 collectStridedAccess(ST); 4093 } 4094 4095 if (EnableMemAccessVersioning) 4096 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 4097 collectStridedAccess(LI); 4098 4099 // Reduction instructions are allowed to have exit users. 4100 // All other instructions must not have external users. 4101 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 4102 emitAnalysis(VectorizationReport(it) << 4103 "value cannot be used outside the loop"); 4104 return false; 4105 } 4106 4107 } // next instr. 4108 4109 } 4110 4111 if (!Induction) { 4112 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4113 if (Inductions.empty()) { 4114 emitAnalysis(VectorizationReport() 4115 << "loop induction variable could not be identified"); 4116 return false; 4117 } 4118 } 4119 4120 return true; 4121 } 4122 4123 ///\brief Remove GEPs whose indices but the last one are loop invariant and 4124 /// return the induction operand of the gep pointer. 4125 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 4126 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4127 if (!GEP) 4128 return Ptr; 4129 4130 unsigned InductionOperand = getGEPInductionOperand(GEP); 4131 4132 // Check that all of the gep indices are uniform except for our induction 4133 // operand. 4134 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 4135 if (i != InductionOperand && 4136 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 4137 return Ptr; 4138 return GEP->getOperand(InductionOperand); 4139 } 4140 4141 ///\brief Look for a cast use of the passed value. 4142 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 4143 Value *UniqueCast = nullptr; 4144 for (User *U : Ptr->users()) { 4145 CastInst *CI = dyn_cast<CastInst>(U); 4146 if (CI && CI->getType() == Ty) { 4147 if (!UniqueCast) 4148 UniqueCast = CI; 4149 else 4150 return nullptr; 4151 } 4152 } 4153 return UniqueCast; 4154 } 4155 4156 ///\brief Get the stride of a pointer access in a loop. 4157 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 4158 /// pointer to the Value, or null otherwise. 4159 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 4160 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4161 if (!PtrTy || PtrTy->isAggregateType()) 4162 return nullptr; 4163 4164 // Try to remove a gep instruction to make the pointer (actually index at this 4165 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 4166 // pointer, otherwise, we are analyzing the index. 4167 Value *OrigPtr = Ptr; 4168 4169 // The size of the pointer access. 4170 int64_t PtrAccessSize = 1; 4171 4172 Ptr = stripGetElementPtr(Ptr, SE, Lp); 4173 const SCEV *V = SE->getSCEV(Ptr); 4174 4175 if (Ptr != OrigPtr) 4176 // Strip off casts. 4177 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 4178 V = C->getOperand(); 4179 4180 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 4181 if (!S) 4182 return nullptr; 4183 4184 V = S->getStepRecurrence(*SE); 4185 if (!V) 4186 return nullptr; 4187 4188 // Strip off the size of access multiplication if we are still analyzing the 4189 // pointer. 4190 if (OrigPtr == Ptr) { 4191 const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout(); 4192 DL.getTypeAllocSize(PtrTy->getElementType()); 4193 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 4194 if (M->getOperand(0)->getSCEVType() != scConstant) 4195 return nullptr; 4196 4197 const APInt &APStepVal = 4198 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 4199 4200 // Huge step value - give up. 4201 if (APStepVal.getBitWidth() > 64) 4202 return nullptr; 4203 4204 int64_t StepVal = APStepVal.getSExtValue(); 4205 if (PtrAccessSize != StepVal) 4206 return nullptr; 4207 V = M->getOperand(1); 4208 } 4209 } 4210 4211 // Strip off casts. 4212 Type *StripedOffRecurrenceCast = nullptr; 4213 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 4214 StripedOffRecurrenceCast = C->getType(); 4215 V = C->getOperand(); 4216 } 4217 4218 // Look for the loop invariant symbolic value. 4219 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 4220 if (!U) 4221 return nullptr; 4222 4223 Value *Stride = U->getValue(); 4224 if (!Lp->isLoopInvariant(Stride)) 4225 return nullptr; 4226 4227 // If we have stripped off the recurrence cast we have to make sure that we 4228 // return the value that is used in this loop so that we can replace it later. 4229 if (StripedOffRecurrenceCast) 4230 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 4231 4232 return Stride; 4233 } 4234 4235 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4236 Value *Ptr = nullptr; 4237 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4238 Ptr = LI->getPointerOperand(); 4239 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4240 Ptr = SI->getPointerOperand(); 4241 else 4242 return; 4243 4244 Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop); 4245 if (!Stride) 4246 return; 4247 4248 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4249 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4250 Strides[Ptr] = Stride; 4251 StrideSet.insert(Stride); 4252 } 4253 4254 void LoopVectorizationLegality::collectLoopUniforms() { 4255 // We now know that the loop is vectorizable! 4256 // Collect variables that will remain uniform after vectorization. 4257 std::vector<Value*> Worklist; 4258 BasicBlock *Latch = TheLoop->getLoopLatch(); 4259 4260 // Start with the conditional branch and walk up the block. 4261 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4262 4263 // Also add all consecutive pointer values; these values will be uniform 4264 // after vectorization (and subsequent cleanup) and, until revectorization is 4265 // supported, all dependencies must also be uniform. 4266 for (Loop::block_iterator B = TheLoop->block_begin(), 4267 BE = TheLoop->block_end(); B != BE; ++B) 4268 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4269 I != IE; ++I) 4270 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 4271 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4272 4273 while (!Worklist.empty()) { 4274 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4275 Worklist.pop_back(); 4276 4277 // Look at instructions inside this loop. 4278 // Stop when reaching PHI nodes. 4279 // TODO: we need to follow values all over the loop, not only in this block. 4280 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4281 continue; 4282 4283 // This is a known uniform. 4284 Uniforms.insert(I); 4285 4286 // Insert all operands. 4287 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4288 } 4289 } 4290 4291 bool LoopVectorizationLegality::canVectorizeMemory() { 4292 LAI = &LAA->getInfo(TheLoop, Strides); 4293 auto &OptionalReport = LAI->getReport(); 4294 if (OptionalReport) 4295 emitAnalysis(VectorizationReport(*OptionalReport)); 4296 if (!LAI->canVectorizeMemory()) 4297 return false; 4298 4299 if (LAI->hasStoreToLoopInvariantAddress()) { 4300 emitAnalysis( 4301 VectorizationReport() 4302 << "write to a loop invariant address could not be vectorized"); 4303 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4304 return false; 4305 } 4306 4307 if (LAI->getNumRuntimePointerChecks() > 4308 VectorizerParams::RuntimeMemoryCheckThreshold) { 4309 emitAnalysis(VectorizationReport() 4310 << LAI->getNumRuntimePointerChecks() << " exceeds limit of " 4311 << VectorizerParams::RuntimeMemoryCheckThreshold 4312 << " dependent memory operations checked at runtime"); 4313 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 4314 return false; 4315 } 4316 return true; 4317 } 4318 4319 LoopVectorizationLegality::InductionKind 4320 LoopVectorizationLegality::isInductionVariable(PHINode *Phi, 4321 ConstantInt *&StepValue) { 4322 if (!isInductionPHI(Phi, SE, StepValue)) 4323 return IK_NoInduction; 4324 4325 Type *PhiTy = Phi->getType(); 4326 // Found an Integer induction variable. 4327 if (PhiTy->isIntegerTy()) 4328 return IK_IntInduction; 4329 // Found an Pointer induction variable. 4330 return IK_PtrInduction; 4331 } 4332 4333 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4334 Value *In0 = const_cast<Value*>(V); 4335 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4336 if (!PN) 4337 return false; 4338 4339 return Inductions.count(PN); 4340 } 4341 4342 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4343 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4344 } 4345 4346 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4347 SmallPtrSetImpl<Value *> &SafePtrs) { 4348 4349 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4350 // Check that we don't have a constant expression that can trap as operand. 4351 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4352 OI != OE; ++OI) { 4353 if (Constant *C = dyn_cast<Constant>(*OI)) 4354 if (C->canTrap()) 4355 return false; 4356 } 4357 // We might be able to hoist the load. 4358 if (it->mayReadFromMemory()) { 4359 LoadInst *LI = dyn_cast<LoadInst>(it); 4360 if (!LI) 4361 return false; 4362 if (!SafePtrs.count(LI->getPointerOperand())) { 4363 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4364 MaskedOp.insert(LI); 4365 continue; 4366 } 4367 return false; 4368 } 4369 } 4370 4371 // We don't predicate stores at the moment. 4372 if (it->mayWriteToMemory()) { 4373 StoreInst *SI = dyn_cast<StoreInst>(it); 4374 // We only support predication of stores in basic blocks with one 4375 // predecessor. 4376 if (!SI) 4377 return false; 4378 4379 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4380 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4381 4382 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4383 !isSinglePredecessor) { 4384 // Build a masked store if it is legal for the target, otherwise scalarize 4385 // the block. 4386 bool isLegalMaskedOp = 4387 isLegalMaskedStore(SI->getValueOperand()->getType(), 4388 SI->getPointerOperand()); 4389 if (isLegalMaskedOp) { 4390 --NumPredStores; 4391 MaskedOp.insert(SI); 4392 continue; 4393 } 4394 return false; 4395 } 4396 } 4397 if (it->mayThrow()) 4398 return false; 4399 4400 // The instructions below can trap. 4401 switch (it->getOpcode()) { 4402 default: continue; 4403 case Instruction::UDiv: 4404 case Instruction::SDiv: 4405 case Instruction::URem: 4406 case Instruction::SRem: 4407 return false; 4408 } 4409 } 4410 4411 return true; 4412 } 4413 4414 void InterleavedAccessInfo::collectConstStridedAccesses( 4415 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4416 const ValueToValueMap &Strides) { 4417 // Holds load/store instructions in program order. 4418 SmallVector<Instruction *, 16> AccessList; 4419 4420 for (auto *BB : TheLoop->getBlocks()) { 4421 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4422 4423 for (auto &I : *BB) { 4424 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4425 continue; 4426 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4427 if (IsPred) 4428 return; 4429 4430 AccessList.push_back(&I); 4431 } 4432 } 4433 4434 if (AccessList.empty()) 4435 return; 4436 4437 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4438 for (auto I : AccessList) { 4439 LoadInst *LI = dyn_cast<LoadInst>(I); 4440 StoreInst *SI = dyn_cast<StoreInst>(I); 4441 4442 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4443 int Stride = isStridedPtr(SE, Ptr, TheLoop, Strides); 4444 4445 // The factor of the corresponding interleave group. 4446 unsigned Factor = std::abs(Stride); 4447 4448 // Ignore the access if the factor is too small or too large. 4449 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 4450 continue; 4451 4452 const SCEV *Scev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4453 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4454 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4455 4456 // An alignment of 0 means target ABI alignment. 4457 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4458 if (!Align) 4459 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4460 4461 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 4462 } 4463 } 4464 4465 // Analyze interleaved accesses and collect them into interleave groups. 4466 // 4467 // Notice that the vectorization on interleaved groups will change instruction 4468 // orders and may break dependences. But the memory dependence check guarantees 4469 // that there is no overlap between two pointers of different strides, element 4470 // sizes or underlying bases. 4471 // 4472 // For pointers sharing the same stride, element size and underlying base, no 4473 // need to worry about Read-After-Write dependences and Write-After-Read 4474 // dependences. 4475 // 4476 // E.g. The RAW dependence: A[i] = a; 4477 // b = A[i]; 4478 // This won't exist as it is a store-load forwarding conflict, which has 4479 // already been checked and forbidden in the dependence check. 4480 // 4481 // E.g. The WAR dependence: a = A[i]; // (1) 4482 // A[i] = b; // (2) 4483 // The store group of (2) is always inserted at or below (2), and the load group 4484 // of (1) is always inserted at or above (1). The dependence is safe. 4485 void InterleavedAccessInfo::analyzeInterleaving( 4486 const ValueToValueMap &Strides) { 4487 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4488 4489 // Holds all the stride accesses. 4490 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 4491 collectConstStridedAccesses(StrideAccesses, Strides); 4492 4493 if (StrideAccesses.empty()) 4494 return; 4495 4496 // Holds all interleaved store groups temporarily. 4497 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4498 4499 // Search the load-load/write-write pair B-A in bottom-up order and try to 4500 // insert B into the interleave group of A according to 3 rules: 4501 // 1. A and B have the same stride. 4502 // 2. A and B have the same memory object size. 4503 // 3. B belongs to the group according to the distance. 4504 // 4505 // The bottom-up order can avoid breaking the Write-After-Write dependences 4506 // between two pointers of the same base. 4507 // E.g. A[i] = a; (1) 4508 // A[i] = b; (2) 4509 // A[i+1] = c (3) 4510 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 4511 // above (1), which guarantees that (1) is always above (2). 4512 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 4513 ++I) { 4514 Instruction *A = I->first; 4515 StrideDescriptor DesA = I->second; 4516 4517 InterleaveGroup *Group = getInterleaveGroup(A); 4518 if (!Group) { 4519 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 4520 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 4521 } 4522 4523 if (A->mayWriteToMemory()) 4524 StoreGroups.insert(Group); 4525 4526 for (auto II = std::next(I); II != E; ++II) { 4527 Instruction *B = II->first; 4528 StrideDescriptor DesB = II->second; 4529 4530 // Ignore if B is already in a group or B is a different memory operation. 4531 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 4532 continue; 4533 4534 // Check the rule 1 and 2. 4535 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 4536 continue; 4537 4538 // Calculate the distance and prepare for the rule 3. 4539 const SCEVConstant *DistToA = 4540 dyn_cast<SCEVConstant>(SE->getMinusSCEV(DesB.Scev, DesA.Scev)); 4541 if (!DistToA) 4542 continue; 4543 4544 int DistanceToA = DistToA->getValue()->getValue().getSExtValue(); 4545 4546 // Skip if the distance is not multiple of size as they are not in the 4547 // same group. 4548 if (DistanceToA % static_cast<int>(DesA.Size)) 4549 continue; 4550 4551 // The index of B is the index of A plus the related index to A. 4552 int IndexB = 4553 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 4554 4555 // Try to insert B into the group. 4556 if (Group->insertMember(B, IndexB, DesB.Align)) { 4557 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 4558 << " into the interleave group with" << *A << '\n'); 4559 InterleaveGroupMap[B] = Group; 4560 4561 // Set the first load in program order as the insert position. 4562 if (B->mayReadFromMemory()) 4563 Group->setInsertPos(B); 4564 } 4565 } // Iteration on instruction B 4566 } // Iteration on instruction A 4567 4568 // Remove interleaved store groups with gaps. 4569 for (InterleaveGroup *Group : StoreGroups) 4570 if (Group->getNumMembers() != Group->getFactor()) 4571 releaseGroup(Group); 4572 } 4573 4574 LoopVectorizationCostModel::VectorizationFactor 4575 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4576 // Width 1 means no vectorize 4577 VectorizationFactor Factor = { 1U, 0U }; 4578 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4579 emitAnalysis(VectorizationReport() << 4580 "runtime pointer checks needed. Enable vectorization of this " 4581 "loop with '#pragma clang loop vectorize(enable)' when " 4582 "compiling with -Os"); 4583 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4584 return Factor; 4585 } 4586 4587 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4588 emitAnalysis(VectorizationReport() << 4589 "store that is conditionally executed prevents vectorization"); 4590 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4591 return Factor; 4592 } 4593 4594 // Find the trip count. 4595 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4596 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4597 4598 unsigned WidestType = getWidestType(); 4599 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4600 unsigned MaxSafeDepDist = -1U; 4601 if (Legal->getMaxSafeDepDistBytes() != -1U) 4602 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4603 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4604 WidestRegister : MaxSafeDepDist); 4605 unsigned MaxVectorSize = WidestRegister / WidestType; 4606 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4607 DEBUG(dbgs() << "LV: The Widest register is: " 4608 << WidestRegister << " bits.\n"); 4609 4610 if (MaxVectorSize == 0) { 4611 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4612 MaxVectorSize = 1; 4613 } 4614 4615 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4616 " into one vector!"); 4617 4618 unsigned VF = MaxVectorSize; 4619 4620 // If we optimize the program for size, avoid creating the tail loop. 4621 if (OptForSize) { 4622 // If we are unable to calculate the trip count then don't try to vectorize. 4623 if (TC < 2) { 4624 emitAnalysis 4625 (VectorizationReport() << 4626 "unable to calculate the loop count due to complex control flow"); 4627 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4628 return Factor; 4629 } 4630 4631 // Find the maximum SIMD width that can fit within the trip count. 4632 VF = TC % MaxVectorSize; 4633 4634 if (VF == 0) 4635 VF = MaxVectorSize; 4636 else { 4637 // If the trip count that we found modulo the vectorization factor is not 4638 // zero then we require a tail. 4639 emitAnalysis(VectorizationReport() << 4640 "cannot optimize for size and vectorize at the " 4641 "same time. Enable vectorization of this loop " 4642 "with '#pragma clang loop vectorize(enable)' " 4643 "when compiling with -Os"); 4644 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4645 return Factor; 4646 } 4647 } 4648 4649 int UserVF = Hints->getWidth(); 4650 if (UserVF != 0) { 4651 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4652 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4653 4654 Factor.Width = UserVF; 4655 return Factor; 4656 } 4657 4658 float Cost = expectedCost(1); 4659 #ifndef NDEBUG 4660 const float ScalarCost = Cost; 4661 #endif /* NDEBUG */ 4662 unsigned Width = 1; 4663 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4664 4665 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4666 // Ignore scalar width, because the user explicitly wants vectorization. 4667 if (ForceVectorization && VF > 1) { 4668 Width = 2; 4669 Cost = expectedCost(Width) / (float)Width; 4670 } 4671 4672 for (unsigned i=2; i <= VF; i*=2) { 4673 // Notice that the vector loop needs to be executed less times, so 4674 // we need to divide the cost of the vector loops by the width of 4675 // the vector elements. 4676 float VectorCost = expectedCost(i) / (float)i; 4677 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4678 (int)VectorCost << ".\n"); 4679 if (VectorCost < Cost) { 4680 Cost = VectorCost; 4681 Width = i; 4682 } 4683 } 4684 4685 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4686 << "LV: Vectorization seems to be not beneficial, " 4687 << "but was forced by a user.\n"); 4688 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4689 Factor.Width = Width; 4690 Factor.Cost = Width * Cost; 4691 return Factor; 4692 } 4693 4694 unsigned LoopVectorizationCostModel::getWidestType() { 4695 unsigned MaxWidth = 8; 4696 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4697 4698 // For each block. 4699 for (Loop::block_iterator bb = TheLoop->block_begin(), 4700 be = TheLoop->block_end(); bb != be; ++bb) { 4701 BasicBlock *BB = *bb; 4702 4703 // For each instruction in the loop. 4704 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4705 Type *T = it->getType(); 4706 4707 // Ignore ephemeral values. 4708 if (EphValues.count(it)) 4709 continue; 4710 4711 // Only examine Loads, Stores and PHINodes. 4712 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4713 continue; 4714 4715 // Examine PHI nodes that are reduction variables. 4716 if (PHINode *PN = dyn_cast<PHINode>(it)) 4717 if (!Legal->getReductionVars()->count(PN)) 4718 continue; 4719 4720 // Examine the stored values. 4721 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4722 T = ST->getValueOperand()->getType(); 4723 4724 // Ignore loaded pointer types and stored pointer types that are not 4725 // consecutive. However, we do want to take consecutive stores/loads of 4726 // pointer vectors into account. 4727 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4728 continue; 4729 4730 MaxWidth = std::max(MaxWidth, 4731 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4732 } 4733 } 4734 4735 return MaxWidth; 4736 } 4737 4738 unsigned 4739 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4740 unsigned VF, 4741 unsigned LoopCost) { 4742 4743 // -- The unroll heuristics -- 4744 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4745 // There are many micro-architectural considerations that we can't predict 4746 // at this level. For example, frontend pressure (on decode or fetch) due to 4747 // code size, or the number and capabilities of the execution ports. 4748 // 4749 // We use the following heuristics to select the unroll factor: 4750 // 1. If the code has reductions, then we unroll in order to break the cross 4751 // iteration dependency. 4752 // 2. If the loop is really small, then we unroll in order to reduce the loop 4753 // overhead. 4754 // 3. We don't unroll if we think that we will spill registers to memory due 4755 // to the increased register pressure. 4756 4757 // Use the user preference, unless 'auto' is selected. 4758 int UserUF = Hints->getInterleave(); 4759 if (UserUF != 0) 4760 return UserUF; 4761 4762 // When we optimize for size, we don't unroll. 4763 if (OptForSize) 4764 return 1; 4765 4766 // We used the distance for the unroll factor. 4767 if (Legal->getMaxSafeDepDistBytes() != -1U) 4768 return 1; 4769 4770 // Do not unroll loops with a relatively small trip count. 4771 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4772 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4773 return 1; 4774 4775 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4776 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4777 " registers\n"); 4778 4779 if (VF == 1) { 4780 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4781 TargetNumRegisters = ForceTargetNumScalarRegs; 4782 } else { 4783 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4784 TargetNumRegisters = ForceTargetNumVectorRegs; 4785 } 4786 4787 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4788 // We divide by these constants so assume that we have at least one 4789 // instruction that uses at least one register. 4790 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4791 R.NumInstructions = std::max(R.NumInstructions, 1U); 4792 4793 // We calculate the unroll factor using the following formula. 4794 // Subtract the number of loop invariants from the number of available 4795 // registers. These registers are used by all of the unrolled instances. 4796 // Next, divide the remaining registers by the number of registers that is 4797 // required by the loop, in order to estimate how many parallel instances 4798 // fit without causing spills. All of this is rounded down if necessary to be 4799 // a power of two. We want power of two unroll factors to simplify any 4800 // addressing operations or alignment considerations. 4801 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4802 R.MaxLocalUsers); 4803 4804 // Don't count the induction variable as unrolled. 4805 if (EnableIndVarRegisterHeur) 4806 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4807 std::max(1U, (R.MaxLocalUsers - 1))); 4808 4809 // Clamp the unroll factor ranges to reasonable factors. 4810 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(VF); 4811 4812 // Check if the user has overridden the unroll max. 4813 if (VF == 1) { 4814 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4815 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 4816 } else { 4817 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4818 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 4819 } 4820 4821 // If we did not calculate the cost for VF (because the user selected the VF) 4822 // then we calculate the cost of VF here. 4823 if (LoopCost == 0) 4824 LoopCost = expectedCost(VF); 4825 4826 // Clamp the calculated UF to be between the 1 and the max unroll factor 4827 // that the target allows. 4828 if (UF > MaxInterleaveSize) 4829 UF = MaxInterleaveSize; 4830 else if (UF < 1) 4831 UF = 1; 4832 4833 // Unroll if we vectorized this loop and there is a reduction that could 4834 // benefit from unrolling. 4835 if (VF > 1 && Legal->getReductionVars()->size()) { 4836 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4837 return UF; 4838 } 4839 4840 // Note that if we've already vectorized the loop we will have done the 4841 // runtime check and so unrolling won't require further checks. 4842 bool UnrollingRequiresRuntimePointerCheck = 4843 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 4844 4845 // We want to unroll small loops in order to reduce the loop overhead and 4846 // potentially expose ILP opportunities. 4847 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4848 if (!UnrollingRequiresRuntimePointerCheck && 4849 LoopCost < SmallLoopCost) { 4850 // We assume that the cost overhead is 1 and we use the cost model 4851 // to estimate the cost of the loop and unroll until the cost of the 4852 // loop overhead is about 5% of the cost of the loop. 4853 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4854 4855 // Unroll until store/load ports (estimated by max unroll factor) are 4856 // saturated. 4857 unsigned NumStores = Legal->getNumStores(); 4858 unsigned NumLoads = Legal->getNumLoads(); 4859 unsigned StoresUF = UF / (NumStores ? NumStores : 1); 4860 unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1); 4861 4862 // If we have a scalar reduction (vector reductions are already dealt with 4863 // by this point), we can increase the critical path length if the loop 4864 // we're unrolling is inside another loop. Limit, by default to 2, so the 4865 // critical path only gets increased by one reduction operation. 4866 if (Legal->getReductionVars()->size() && 4867 TheLoop->getLoopDepth() > 1) { 4868 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 4869 SmallUF = std::min(SmallUF, F); 4870 StoresUF = std::min(StoresUF, F); 4871 LoadsUF = std::min(LoadsUF, F); 4872 } 4873 4874 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 4875 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 4876 return std::max(StoresUF, LoadsUF); 4877 } 4878 4879 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4880 return SmallUF; 4881 } 4882 4883 // Unroll if this is a large loop (small loops are already dealt with by this 4884 // point) that could benefit from interleaved unrolling. 4885 bool HasReductions = (Legal->getReductionVars()->size() > 0); 4886 if (TTI.enableAggressiveInterleaving(HasReductions)) { 4887 DEBUG(dbgs() << "LV: Unrolling to expose ILP.\n"); 4888 return UF; 4889 } 4890 4891 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4892 return 1; 4893 } 4894 4895 LoopVectorizationCostModel::RegisterUsage 4896 LoopVectorizationCostModel::calculateRegisterUsage() { 4897 // This function calculates the register usage by measuring the highest number 4898 // of values that are alive at a single location. Obviously, this is a very 4899 // rough estimation. We scan the loop in a topological order in order and 4900 // assign a number to each instruction. We use RPO to ensure that defs are 4901 // met before their users. We assume that each instruction that has in-loop 4902 // users starts an interval. We record every time that an in-loop value is 4903 // used, so we have a list of the first and last occurrences of each 4904 // instruction. Next, we transpose this data structure into a multi map that 4905 // holds the list of intervals that *end* at a specific location. This multi 4906 // map allows us to perform a linear search. We scan the instructions linearly 4907 // and record each time that a new interval starts, by placing it in a set. 4908 // If we find this value in the multi-map then we remove it from the set. 4909 // The max register usage is the maximum size of the set. 4910 // We also search for instructions that are defined outside the loop, but are 4911 // used inside the loop. We need this number separately from the max-interval 4912 // usage number because when we unroll, loop-invariant values do not take 4913 // more register. 4914 LoopBlocksDFS DFS(TheLoop); 4915 DFS.perform(LI); 4916 4917 RegisterUsage R; 4918 R.NumInstructions = 0; 4919 4920 // Each 'key' in the map opens a new interval. The values 4921 // of the map are the index of the 'last seen' usage of the 4922 // instruction that is the key. 4923 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4924 // Maps instruction to its index. 4925 DenseMap<unsigned, Instruction*> IdxToInstr; 4926 // Marks the end of each interval. 4927 IntervalMap EndPoint; 4928 // Saves the list of instruction indices that are used in the loop. 4929 SmallSet<Instruction*, 8> Ends; 4930 // Saves the list of values that are used in the loop but are 4931 // defined outside the loop, such as arguments and constants. 4932 SmallPtrSet<Value*, 8> LoopInvariants; 4933 4934 unsigned Index = 0; 4935 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4936 be = DFS.endRPO(); bb != be; ++bb) { 4937 R.NumInstructions += (*bb)->size(); 4938 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4939 ++it) { 4940 Instruction *I = it; 4941 IdxToInstr[Index++] = I; 4942 4943 // Save the end location of each USE. 4944 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4945 Value *U = I->getOperand(i); 4946 Instruction *Instr = dyn_cast<Instruction>(U); 4947 4948 // Ignore non-instruction values such as arguments, constants, etc. 4949 if (!Instr) continue; 4950 4951 // If this instruction is outside the loop then record it and continue. 4952 if (!TheLoop->contains(Instr)) { 4953 LoopInvariants.insert(Instr); 4954 continue; 4955 } 4956 4957 // Overwrite previous end points. 4958 EndPoint[Instr] = Index; 4959 Ends.insert(Instr); 4960 } 4961 } 4962 } 4963 4964 // Saves the list of intervals that end with the index in 'key'. 4965 typedef SmallVector<Instruction*, 2> InstrList; 4966 DenseMap<unsigned, InstrList> TransposeEnds; 4967 4968 // Transpose the EndPoints to a list of values that end at each index. 4969 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4970 it != e; ++it) 4971 TransposeEnds[it->second].push_back(it->first); 4972 4973 SmallSet<Instruction*, 8> OpenIntervals; 4974 unsigned MaxUsage = 0; 4975 4976 4977 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4978 for (unsigned int i = 0; i < Index; ++i) { 4979 Instruction *I = IdxToInstr[i]; 4980 // Ignore instructions that are never used within the loop. 4981 if (!Ends.count(I)) continue; 4982 4983 // Ignore ephemeral values. 4984 if (EphValues.count(I)) 4985 continue; 4986 4987 // Remove all of the instructions that end at this location. 4988 InstrList &List = TransposeEnds[i]; 4989 for (unsigned int j=0, e = List.size(); j < e; ++j) 4990 OpenIntervals.erase(List[j]); 4991 4992 // Count the number of live interals. 4993 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4994 4995 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4996 OpenIntervals.size() << '\n'); 4997 4998 // Add the current instruction to the list of open intervals. 4999 OpenIntervals.insert(I); 5000 } 5001 5002 unsigned Invariant = LoopInvariants.size(); 5003 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5004 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5005 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5006 5007 R.LoopInvariantRegs = Invariant; 5008 R.MaxLocalUsers = MaxUsage; 5009 return R; 5010 } 5011 5012 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5013 unsigned Cost = 0; 5014 5015 // For each block. 5016 for (Loop::block_iterator bb = TheLoop->block_begin(), 5017 be = TheLoop->block_end(); bb != be; ++bb) { 5018 unsigned BlockCost = 0; 5019 BasicBlock *BB = *bb; 5020 5021 // For each instruction in the old loop. 5022 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5023 // Skip dbg intrinsics. 5024 if (isa<DbgInfoIntrinsic>(it)) 5025 continue; 5026 5027 // Ignore ephemeral values. 5028 if (EphValues.count(it)) 5029 continue; 5030 5031 unsigned C = getInstructionCost(it, VF); 5032 5033 // Check if we should override the cost. 5034 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5035 C = ForceTargetInstructionCost; 5036 5037 BlockCost += C; 5038 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5039 VF << " For instruction: " << *it << '\n'); 5040 } 5041 5042 // We assume that if-converted blocks have a 50% chance of being executed. 5043 // When the code is scalar then some of the blocks are avoided due to CF. 5044 // When the code is vectorized we execute all code paths. 5045 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5046 BlockCost /= 2; 5047 5048 Cost += BlockCost; 5049 } 5050 5051 return Cost; 5052 } 5053 5054 /// \brief Check whether the address computation for a non-consecutive memory 5055 /// access looks like an unlikely candidate for being merged into the indexing 5056 /// mode. 5057 /// 5058 /// We look for a GEP which has one index that is an induction variable and all 5059 /// other indices are loop invariant. If the stride of this access is also 5060 /// within a small bound we decide that this address computation can likely be 5061 /// merged into the addressing mode. 5062 /// In all other cases, we identify the address computation as complex. 5063 static bool isLikelyComplexAddressComputation(Value *Ptr, 5064 LoopVectorizationLegality *Legal, 5065 ScalarEvolution *SE, 5066 const Loop *TheLoop) { 5067 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5068 if (!Gep) 5069 return true; 5070 5071 // We are looking for a gep with all loop invariant indices except for one 5072 // which should be an induction variable. 5073 unsigned NumOperands = Gep->getNumOperands(); 5074 for (unsigned i = 1; i < NumOperands; ++i) { 5075 Value *Opd = Gep->getOperand(i); 5076 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5077 !Legal->isInductionVariable(Opd)) 5078 return true; 5079 } 5080 5081 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5082 // can likely be merged into the address computation. 5083 unsigned MaxMergeDistance = 64; 5084 5085 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5086 if (!AddRec) 5087 return true; 5088 5089 // Check the step is constant. 5090 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5091 // Calculate the pointer stride and check if it is consecutive. 5092 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5093 if (!C) 5094 return true; 5095 5096 const APInt &APStepVal = C->getValue()->getValue(); 5097 5098 // Huge step value - give up. 5099 if (APStepVal.getBitWidth() > 64) 5100 return true; 5101 5102 int64_t StepVal = APStepVal.getSExtValue(); 5103 5104 return StepVal > MaxMergeDistance; 5105 } 5106 5107 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5108 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5109 return true; 5110 return false; 5111 } 5112 5113 unsigned 5114 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5115 // If we know that this instruction will remain uniform, check the cost of 5116 // the scalar version. 5117 if (Legal->isUniformAfterVectorization(I)) 5118 VF = 1; 5119 5120 Type *RetTy = I->getType(); 5121 Type *VectorTy = ToVectorTy(RetTy, VF); 5122 5123 // TODO: We need to estimate the cost of intrinsic calls. 5124 switch (I->getOpcode()) { 5125 case Instruction::GetElementPtr: 5126 // We mark this instruction as zero-cost because the cost of GEPs in 5127 // vectorized code depends on whether the corresponding memory instruction 5128 // is scalarized or not. Therefore, we handle GEPs with the memory 5129 // instruction cost. 5130 return 0; 5131 case Instruction::Br: { 5132 return TTI.getCFInstrCost(I->getOpcode()); 5133 } 5134 case Instruction::PHI: 5135 //TODO: IF-converted IFs become selects. 5136 return 0; 5137 case Instruction::Add: 5138 case Instruction::FAdd: 5139 case Instruction::Sub: 5140 case Instruction::FSub: 5141 case Instruction::Mul: 5142 case Instruction::FMul: 5143 case Instruction::UDiv: 5144 case Instruction::SDiv: 5145 case Instruction::FDiv: 5146 case Instruction::URem: 5147 case Instruction::SRem: 5148 case Instruction::FRem: 5149 case Instruction::Shl: 5150 case Instruction::LShr: 5151 case Instruction::AShr: 5152 case Instruction::And: 5153 case Instruction::Or: 5154 case Instruction::Xor: { 5155 // Since we will replace the stride by 1 the multiplication should go away. 5156 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5157 return 0; 5158 // Certain instructions can be cheaper to vectorize if they have a constant 5159 // second vector operand. One example of this are shifts on x86. 5160 TargetTransformInfo::OperandValueKind Op1VK = 5161 TargetTransformInfo::OK_AnyValue; 5162 TargetTransformInfo::OperandValueKind Op2VK = 5163 TargetTransformInfo::OK_AnyValue; 5164 TargetTransformInfo::OperandValueProperties Op1VP = 5165 TargetTransformInfo::OP_None; 5166 TargetTransformInfo::OperandValueProperties Op2VP = 5167 TargetTransformInfo::OP_None; 5168 Value *Op2 = I->getOperand(1); 5169 5170 // Check for a splat of a constant or for a non uniform vector of constants. 5171 if (isa<ConstantInt>(Op2)) { 5172 ConstantInt *CInt = cast<ConstantInt>(Op2); 5173 if (CInt && CInt->getValue().isPowerOf2()) 5174 Op2VP = TargetTransformInfo::OP_PowerOf2; 5175 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5176 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5177 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5178 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5179 if (SplatValue) { 5180 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5181 if (CInt && CInt->getValue().isPowerOf2()) 5182 Op2VP = TargetTransformInfo::OP_PowerOf2; 5183 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5184 } 5185 } 5186 5187 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5188 Op1VP, Op2VP); 5189 } 5190 case Instruction::Select: { 5191 SelectInst *SI = cast<SelectInst>(I); 5192 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5193 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5194 Type *CondTy = SI->getCondition()->getType(); 5195 if (!ScalarCond) 5196 CondTy = VectorType::get(CondTy, VF); 5197 5198 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5199 } 5200 case Instruction::ICmp: 5201 case Instruction::FCmp: { 5202 Type *ValTy = I->getOperand(0)->getType(); 5203 VectorTy = ToVectorTy(ValTy, VF); 5204 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5205 } 5206 case Instruction::Store: 5207 case Instruction::Load: { 5208 StoreInst *SI = dyn_cast<StoreInst>(I); 5209 LoadInst *LI = dyn_cast<LoadInst>(I); 5210 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5211 LI->getType()); 5212 VectorTy = ToVectorTy(ValTy, VF); 5213 5214 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5215 unsigned AS = SI ? SI->getPointerAddressSpace() : 5216 LI->getPointerAddressSpace(); 5217 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5218 // We add the cost of address computation here instead of with the gep 5219 // instruction because only here we know whether the operation is 5220 // scalarized. 5221 if (VF == 1) 5222 return TTI.getAddressComputationCost(VectorTy) + 5223 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5224 5225 // For an interleaved access, calculate the total cost of the whole 5226 // interleave group. 5227 if (Legal->isAccessInterleaved(I)) { 5228 auto Group = Legal->getInterleavedAccessGroup(I); 5229 assert(Group && "Fail to get an interleaved access group."); 5230 5231 // Only calculate the cost once at the insert position. 5232 if (Group->getInsertPos() != I) 5233 return 0; 5234 5235 unsigned InterleaveFactor = Group->getFactor(); 5236 Type *WideVecTy = 5237 VectorType::get(VectorTy->getVectorElementType(), 5238 VectorTy->getVectorNumElements() * InterleaveFactor); 5239 5240 // Holds the indices of existing members in an interleaved load group. 5241 // An interleaved store group doesn't need this as it dones't allow gaps. 5242 SmallVector<unsigned, 4> Indices; 5243 if (LI) { 5244 for (unsigned i = 0; i < InterleaveFactor; i++) 5245 if (Group->getMember(i)) 5246 Indices.push_back(i); 5247 } 5248 5249 // Calculate the cost of the whole interleaved group. 5250 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5251 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5252 Group->getAlignment(), AS); 5253 5254 if (Group->isReverse()) 5255 Cost += 5256 Group->getNumMembers() * 5257 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5258 5259 // FIXME: The interleaved load group with a huge gap could be even more 5260 // expensive than scalar operations. Then we could ignore such group and 5261 // use scalar operations instead. 5262 return Cost; 5263 } 5264 5265 // Scalarized loads/stores. 5266 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5267 bool Reverse = ConsecutiveStride < 0; 5268 const DataLayout &DL = I->getModule()->getDataLayout(); 5269 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5270 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5271 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5272 bool IsComplexComputation = 5273 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5274 unsigned Cost = 0; 5275 // The cost of extracting from the value vector and pointer vector. 5276 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5277 for (unsigned i = 0; i < VF; ++i) { 5278 // The cost of extracting the pointer operand. 5279 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5280 // In case of STORE, the cost of ExtractElement from the vector. 5281 // In case of LOAD, the cost of InsertElement into the returned 5282 // vector. 5283 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5284 Instruction::InsertElement, 5285 VectorTy, i); 5286 } 5287 5288 // The cost of the scalar loads/stores. 5289 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5290 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5291 Alignment, AS); 5292 return Cost; 5293 } 5294 5295 // Wide load/stores. 5296 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5297 if (Legal->isMaskRequired(I)) 5298 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5299 AS); 5300 else 5301 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5302 5303 if (Reverse) 5304 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5305 VectorTy, 0); 5306 return Cost; 5307 } 5308 case Instruction::ZExt: 5309 case Instruction::SExt: 5310 case Instruction::FPToUI: 5311 case Instruction::FPToSI: 5312 case Instruction::FPExt: 5313 case Instruction::PtrToInt: 5314 case Instruction::IntToPtr: 5315 case Instruction::SIToFP: 5316 case Instruction::UIToFP: 5317 case Instruction::Trunc: 5318 case Instruction::FPTrunc: 5319 case Instruction::BitCast: { 5320 // We optimize the truncation of induction variable. 5321 // The cost of these is the same as the scalar operation. 5322 if (I->getOpcode() == Instruction::Trunc && 5323 Legal->isInductionVariable(I->getOperand(0))) 5324 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5325 I->getOperand(0)->getType()); 5326 5327 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5328 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5329 } 5330 case Instruction::Call: { 5331 bool NeedToScalarize; 5332 CallInst *CI = cast<CallInst>(I); 5333 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5334 if (getIntrinsicIDForCall(CI, TLI)) 5335 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5336 return CallCost; 5337 } 5338 default: { 5339 // We are scalarizing the instruction. Return the cost of the scalar 5340 // instruction, plus the cost of insert and extract into vector 5341 // elements, times the vector width. 5342 unsigned Cost = 0; 5343 5344 if (!RetTy->isVoidTy() && VF != 1) { 5345 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5346 VectorTy); 5347 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5348 VectorTy); 5349 5350 // The cost of inserting the results plus extracting each one of the 5351 // operands. 5352 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5353 } 5354 5355 // The cost of executing VF copies of the scalar instruction. This opcode 5356 // is unknown. Assume that it is the same as 'mul'. 5357 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5358 return Cost; 5359 } 5360 }// end of switch. 5361 } 5362 5363 char LoopVectorize::ID = 0; 5364 static const char lv_name[] = "Loop Vectorization"; 5365 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5366 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5367 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5368 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5369 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5370 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5371 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5372 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5373 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5374 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5375 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5376 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5377 5378 namespace llvm { 5379 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5380 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5381 } 5382 } 5383 5384 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5385 // Check for a store. 5386 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5387 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5388 5389 // Check for a load. 5390 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5391 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5392 5393 return false; 5394 } 5395 5396 5397 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5398 bool IfPredicateStore) { 5399 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5400 // Holds vector parameters or scalars, in case of uniform vals. 5401 SmallVector<VectorParts, 4> Params; 5402 5403 setDebugLocFromInst(Builder, Instr); 5404 5405 // Find all of the vectorized parameters. 5406 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5407 Value *SrcOp = Instr->getOperand(op); 5408 5409 // If we are accessing the old induction variable, use the new one. 5410 if (SrcOp == OldInduction) { 5411 Params.push_back(getVectorValue(SrcOp)); 5412 continue; 5413 } 5414 5415 // Try using previously calculated values. 5416 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5417 5418 // If the src is an instruction that appeared earlier in the basic block 5419 // then it should already be vectorized. 5420 if (SrcInst && OrigLoop->contains(SrcInst)) { 5421 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5422 // The parameter is a vector value from earlier. 5423 Params.push_back(WidenMap.get(SrcInst)); 5424 } else { 5425 // The parameter is a scalar from outside the loop. Maybe even a constant. 5426 VectorParts Scalars; 5427 Scalars.append(UF, SrcOp); 5428 Params.push_back(Scalars); 5429 } 5430 } 5431 5432 assert(Params.size() == Instr->getNumOperands() && 5433 "Invalid number of operands"); 5434 5435 // Does this instruction return a value ? 5436 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5437 5438 Value *UndefVec = IsVoidRetTy ? nullptr : 5439 UndefValue::get(Instr->getType()); 5440 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5441 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5442 5443 Instruction *InsertPt = Builder.GetInsertPoint(); 5444 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5445 BasicBlock *CondBlock = nullptr; 5446 5447 VectorParts Cond; 5448 Loop *VectorLp = nullptr; 5449 if (IfPredicateStore) { 5450 assert(Instr->getParent()->getSinglePredecessor() && 5451 "Only support single predecessor blocks"); 5452 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5453 Instr->getParent()); 5454 VectorLp = LI->getLoopFor(IfBlock); 5455 assert(VectorLp && "Must have a loop for this block"); 5456 } 5457 5458 // For each vector unroll 'part': 5459 for (unsigned Part = 0; Part < UF; ++Part) { 5460 // For each scalar that we create: 5461 5462 // Start an "if (pred) a[i] = ..." block. 5463 Value *Cmp = nullptr; 5464 if (IfPredicateStore) { 5465 if (Cond[Part]->getType()->isVectorTy()) 5466 Cond[Part] = 5467 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5468 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5469 ConstantInt::get(Cond[Part]->getType(), 1)); 5470 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5471 LoopVectorBody.push_back(CondBlock); 5472 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 5473 // Update Builder with newly created basic block. 5474 Builder.SetInsertPoint(InsertPt); 5475 } 5476 5477 Instruction *Cloned = Instr->clone(); 5478 if (!IsVoidRetTy) 5479 Cloned->setName(Instr->getName() + ".cloned"); 5480 // Replace the operands of the cloned instructions with extracted scalars. 5481 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5482 Value *Op = Params[op][Part]; 5483 Cloned->setOperand(op, Op); 5484 } 5485 5486 // Place the cloned scalar in the new loop. 5487 Builder.Insert(Cloned); 5488 5489 // If the original scalar returns a value we need to place it in a vector 5490 // so that future users will be able to use it. 5491 if (!IsVoidRetTy) 5492 VecResults[Part] = Cloned; 5493 5494 // End if-block. 5495 if (IfPredicateStore) { 5496 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5497 LoopVectorBody.push_back(NewIfBlock); 5498 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 5499 Builder.SetInsertPoint(InsertPt); 5500 ReplaceInstWithInst(IfBlock->getTerminator(), 5501 BranchInst::Create(CondBlock, NewIfBlock, Cmp)); 5502 IfBlock = NewIfBlock; 5503 } 5504 } 5505 } 5506 5507 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5508 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5509 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5510 5511 return scalarizeInstruction(Instr, IfPredicateStore); 5512 } 5513 5514 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5515 return Vec; 5516 } 5517 5518 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5519 return V; 5520 } 5521 5522 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5523 // When unrolling and the VF is 1, we only need to add a simple scalar. 5524 Type *ITy = Val->getType(); 5525 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5526 Constant *C = ConstantInt::get(ITy, StartIdx); 5527 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5528 } 5529