1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = VectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM) 399 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 400 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 401 Builder(PSE.getSE()->getContext()), 402 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 403 virtual ~InnerLoopVectorizer() = default; 404 405 /// Create a new empty loop. Unlink the old loop and connect the new one. 406 /// Return the pre-header block of the new loop. 407 BasicBlock *createVectorizedLoopSkeleton(); 408 409 /// Widen a single instruction within the innermost loop. 410 void widenInstruction(Instruction &I); 411 412 /// Widen a single call instruction within the innermost loop. 413 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 414 VPTransformState &State); 415 416 /// Widen a single select instruction within the innermost loop. 417 void widenSelectInstruction(SelectInst &I, bool InvariantCond); 418 419 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 420 void fixVectorizedLoop(); 421 422 // Return true if any runtime check is added. 423 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 424 425 /// A type for vectorized values in the new loop. Each value from the 426 /// original loop, when vectorized, is represented by UF vector values in the 427 /// new unrolled loop, where UF is the unroll factor. 428 using VectorParts = SmallVector<Value *, 2>; 429 430 /// Vectorize a single GetElementPtrInst based on information gathered and 431 /// decisions taken during planning. 432 void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF, 433 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant); 434 435 /// Vectorize a single PHINode in a block. This method handles the induction 436 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 437 /// arbitrary length vectors. 438 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 439 440 /// A helper function to scalarize a single Instruction in the innermost loop. 441 /// Generates a sequence of scalar instances for each lane between \p MinLane 442 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 443 /// inclusive.. 444 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 445 bool IfPredicateInstr); 446 447 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 448 /// is provided, the integer induction variable will first be truncated to 449 /// the corresponding type. 450 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 451 452 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 453 /// vector or scalar value on-demand if one is not yet available. When 454 /// vectorizing a loop, we visit the definition of an instruction before its 455 /// uses. When visiting the definition, we either vectorize or scalarize the 456 /// instruction, creating an entry for it in the corresponding map. (In some 457 /// cases, such as induction variables, we will create both vector and scalar 458 /// entries.) Then, as we encounter uses of the definition, we derive values 459 /// for each scalar or vector use unless such a value is already available. 460 /// For example, if we scalarize a definition and one of its uses is vector, 461 /// we build the required vector on-demand with an insertelement sequence 462 /// when visiting the use. Otherwise, if the use is scalar, we can use the 463 /// existing scalar definition. 464 /// 465 /// Return a value in the new loop corresponding to \p V from the original 466 /// loop at unroll index \p Part. If the value has already been vectorized, 467 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 468 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 469 /// a new vector value on-demand by inserting the scalar values into a vector 470 /// with an insertelement sequence. If the value has been neither vectorized 471 /// nor scalarized, it must be loop invariant, so we simply broadcast the 472 /// value into a vector. 473 Value *getOrCreateVectorValue(Value *V, unsigned Part); 474 475 /// Return a value in the new loop corresponding to \p V from the original 476 /// loop at unroll and vector indices \p Instance. If the value has been 477 /// vectorized but not scalarized, the necessary extractelement instruction 478 /// will be generated. 479 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 480 481 /// Construct the vector value of a scalarized value \p V one lane at a time. 482 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 483 484 /// Try to vectorize the interleaved access group that \p Instr belongs to 485 /// with the base address given in \p Addr, optionally masking the vector 486 /// operations if \p BlockInMask is non-null. Use \p State to translate given 487 /// VPValues to IR values in the vectorized loop. 488 void vectorizeInterleaveGroup(Instruction *Instr, VPTransformState &State, 489 VPValue *Addr, VPValue *BlockInMask = nullptr); 490 491 /// Vectorize Load and Store instructions with the base address given in \p 492 /// Addr, optionally masking the vector operations if \p BlockInMask is 493 /// non-null. Use \p State to translate given VPValues to IR values in the 494 /// vectorized loop. 495 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 496 VPValue *Addr, VPValue *StoredValue, 497 VPValue *BlockInMask); 498 499 /// Set the debug location in the builder using the debug location in 500 /// the instruction. 501 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 502 503 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 504 void fixNonInductionPHIs(void); 505 506 protected: 507 friend class LoopVectorizationPlanner; 508 509 /// A small list of PHINodes. 510 using PhiVector = SmallVector<PHINode *, 4>; 511 512 /// A type for scalarized values in the new loop. Each value from the 513 /// original loop, when scalarized, is represented by UF x VF scalar values 514 /// in the new unrolled loop, where UF is the unroll factor and VF is the 515 /// vectorization factor. 516 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 517 518 /// Set up the values of the IVs correctly when exiting the vector loop. 519 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 520 Value *CountRoundDown, Value *EndValue, 521 BasicBlock *MiddleBlock); 522 523 /// Create a new induction variable inside L. 524 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 525 Value *Step, Instruction *DL); 526 527 /// Handle all cross-iteration phis in the header. 528 void fixCrossIterationPHIs(); 529 530 /// Fix a first-order recurrence. This is the second phase of vectorizing 531 /// this phi node. 532 void fixFirstOrderRecurrence(PHINode *Phi); 533 534 /// Fix a reduction cross-iteration phi. This is the second phase of 535 /// vectorizing this phi node. 536 void fixReduction(PHINode *Phi); 537 538 /// Clear NSW/NUW flags from reduction instructions if necessary. 539 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 540 541 /// The Loop exit block may have single value PHI nodes with some 542 /// incoming value. While vectorizing we only handled real values 543 /// that were defined inside the loop and we should have one value for 544 /// each predecessor of its parent basic block. See PR14725. 545 void fixLCSSAPHIs(); 546 547 /// Iteratively sink the scalarized operands of a predicated instruction into 548 /// the block that was created for it. 549 void sinkScalarOperands(Instruction *PredInst); 550 551 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 552 /// represented as. 553 void truncateToMinimalBitwidths(); 554 555 /// Create a broadcast instruction. This method generates a broadcast 556 /// instruction (shuffle) for loop invariant values and for the induction 557 /// value. If this is the induction variable then we extend it to N, N+1, ... 558 /// this is needed because each iteration in the loop corresponds to a SIMD 559 /// element. 560 virtual Value *getBroadcastInstrs(Value *V); 561 562 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 563 /// to each vector element of Val. The sequence starts at StartIndex. 564 /// \p Opcode is relevant for FP induction variable. 565 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 566 Instruction::BinaryOps Opcode = 567 Instruction::BinaryOpsEnd); 568 569 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 570 /// variable on which to base the steps, \p Step is the size of the step, and 571 /// \p EntryVal is the value from the original loop that maps to the steps. 572 /// Note that \p EntryVal doesn't have to be an induction variable - it 573 /// can also be a truncate instruction. 574 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 575 const InductionDescriptor &ID); 576 577 /// Create a vector induction phi node based on an existing scalar one. \p 578 /// EntryVal is the value from the original loop that maps to the vector phi 579 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 580 /// truncate instruction, instead of widening the original IV, we widen a 581 /// version of the IV truncated to \p EntryVal's type. 582 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 583 Value *Step, Instruction *EntryVal); 584 585 /// Returns true if an instruction \p I should be scalarized instead of 586 /// vectorized for the chosen vectorization factor. 587 bool shouldScalarizeInstruction(Instruction *I) const; 588 589 /// Returns true if we should generate a scalar version of \p IV. 590 bool needsScalarInduction(Instruction *IV) const; 591 592 /// If there is a cast involved in the induction variable \p ID, which should 593 /// be ignored in the vectorized loop body, this function records the 594 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 595 /// cast. We had already proved that the casted Phi is equal to the uncasted 596 /// Phi in the vectorized loop (under a runtime guard), and therefore 597 /// there is no need to vectorize the cast - the same value can be used in the 598 /// vector loop for both the Phi and the cast. 599 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 600 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 601 /// 602 /// \p EntryVal is the value from the original loop that maps to the vector 603 /// phi node and is used to distinguish what is the IV currently being 604 /// processed - original one (if \p EntryVal is a phi corresponding to the 605 /// original IV) or the "newly-created" one based on the proof mentioned above 606 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 607 /// latter case \p EntryVal is a TruncInst and we must not record anything for 608 /// that IV, but it's error-prone to expect callers of this routine to care 609 /// about that, hence this explicit parameter. 610 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 611 const Instruction *EntryVal, 612 Value *VectorLoopValue, 613 unsigned Part, 614 unsigned Lane = UINT_MAX); 615 616 /// Generate a shuffle sequence that will reverse the vector Vec. 617 virtual Value *reverseVector(Value *Vec); 618 619 /// Returns (and creates if needed) the original loop trip count. 620 Value *getOrCreateTripCount(Loop *NewLoop); 621 622 /// Returns (and creates if needed) the trip count of the widened loop. 623 Value *getOrCreateVectorTripCount(Loop *NewLoop); 624 625 /// Returns a bitcasted value to the requested vector type. 626 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 627 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 628 const DataLayout &DL); 629 630 /// Emit a bypass check to see if the vector trip count is zero, including if 631 /// it overflows. 632 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 633 634 /// Emit a bypass check to see if all of the SCEV assumptions we've 635 /// had to make are correct. 636 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 637 638 /// Emit bypass checks to check any memory assumptions we may have made. 639 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 640 641 /// Compute the transformed value of Index at offset StartValue using step 642 /// StepValue. 643 /// For integer induction, returns StartValue + Index * StepValue. 644 /// For pointer induction, returns StartValue[Index * StepValue]. 645 /// FIXME: The newly created binary instructions should contain nsw/nuw 646 /// flags, which can be found from the original scalar operations. 647 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 648 const DataLayout &DL, 649 const InductionDescriptor &ID) const; 650 651 /// Add additional metadata to \p To that was not present on \p Orig. 652 /// 653 /// Currently this is used to add the noalias annotations based on the 654 /// inserted memchecks. Use this for instructions that are *cloned* into the 655 /// vector loop. 656 void addNewMetadata(Instruction *To, const Instruction *Orig); 657 658 /// Add metadata from one instruction to another. 659 /// 660 /// This includes both the original MDs from \p From and additional ones (\see 661 /// addNewMetadata). Use this for *newly created* instructions in the vector 662 /// loop. 663 void addMetadata(Instruction *To, Instruction *From); 664 665 /// Similar to the previous function but it adds the metadata to a 666 /// vector of instructions. 667 void addMetadata(ArrayRef<Value *> To, Instruction *From); 668 669 /// The original loop. 670 Loop *OrigLoop; 671 672 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 673 /// dynamic knowledge to simplify SCEV expressions and converts them to a 674 /// more usable form. 675 PredicatedScalarEvolution &PSE; 676 677 /// Loop Info. 678 LoopInfo *LI; 679 680 /// Dominator Tree. 681 DominatorTree *DT; 682 683 /// Alias Analysis. 684 AliasAnalysis *AA; 685 686 /// Target Library Info. 687 const TargetLibraryInfo *TLI; 688 689 /// Target Transform Info. 690 const TargetTransformInfo *TTI; 691 692 /// Assumption Cache. 693 AssumptionCache *AC; 694 695 /// Interface to emit optimization remarks. 696 OptimizationRemarkEmitter *ORE; 697 698 /// LoopVersioning. It's only set up (non-null) if memchecks were 699 /// used. 700 /// 701 /// This is currently only used to add no-alias metadata based on the 702 /// memchecks. The actually versioning is performed manually. 703 std::unique_ptr<LoopVersioning> LVer; 704 705 /// The vectorization SIMD factor to use. Each vector will have this many 706 /// vector elements. 707 unsigned VF; 708 709 /// The vectorization unroll factor to use. Each scalar is vectorized to this 710 /// many different vector instructions. 711 unsigned UF; 712 713 /// The builder that we use 714 IRBuilder<> Builder; 715 716 // --- Vectorization state --- 717 718 /// The vector-loop preheader. 719 BasicBlock *LoopVectorPreHeader; 720 721 /// The scalar-loop preheader. 722 BasicBlock *LoopScalarPreHeader; 723 724 /// Middle Block between the vector and the scalar. 725 BasicBlock *LoopMiddleBlock; 726 727 /// The ExitBlock of the scalar loop. 728 BasicBlock *LoopExitBlock; 729 730 /// The vector loop body. 731 BasicBlock *LoopVectorBody; 732 733 /// The scalar loop body. 734 BasicBlock *LoopScalarBody; 735 736 /// A list of all bypass blocks. The first block is the entry of the loop. 737 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 738 739 /// The new Induction variable which was added to the new block. 740 PHINode *Induction = nullptr; 741 742 /// The induction variable of the old basic block. 743 PHINode *OldInduction = nullptr; 744 745 /// Maps values from the original loop to their corresponding values in the 746 /// vectorized loop. A key value can map to either vector values, scalar 747 /// values or both kinds of values, depending on whether the key was 748 /// vectorized and scalarized. 749 VectorizerValueMap VectorLoopValueMap; 750 751 /// Store instructions that were predicated. 752 SmallVector<Instruction *, 4> PredicatedInstructions; 753 754 /// Trip count of the original loop. 755 Value *TripCount = nullptr; 756 757 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 758 Value *VectorTripCount = nullptr; 759 760 /// The legality analysis. 761 LoopVectorizationLegality *Legal; 762 763 /// The profitablity analysis. 764 LoopVectorizationCostModel *Cost; 765 766 // Record whether runtime checks are added. 767 bool AddedSafetyChecks = false; 768 769 // Holds the end values for each induction variable. We save the end values 770 // so we can later fix-up the external users of the induction variables. 771 DenseMap<PHINode *, Value *> IVEndValues; 772 773 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 774 // fixed up at the end of vector code generation. 775 SmallVector<PHINode *, 8> OrigPHIsToFix; 776 }; 777 778 class InnerLoopUnroller : public InnerLoopVectorizer { 779 public: 780 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 781 LoopInfo *LI, DominatorTree *DT, 782 const TargetLibraryInfo *TLI, 783 const TargetTransformInfo *TTI, AssumptionCache *AC, 784 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 785 LoopVectorizationLegality *LVL, 786 LoopVectorizationCostModel *CM) 787 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 788 UnrollFactor, LVL, CM) {} 789 790 private: 791 Value *getBroadcastInstrs(Value *V) override; 792 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 793 Instruction::BinaryOps Opcode = 794 Instruction::BinaryOpsEnd) override; 795 Value *reverseVector(Value *Vec) override; 796 }; 797 798 } // end namespace llvm 799 800 /// Look for a meaningful debug location on the instruction or it's 801 /// operands. 802 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 803 if (!I) 804 return I; 805 806 DebugLoc Empty; 807 if (I->getDebugLoc() != Empty) 808 return I; 809 810 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 811 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 812 if (OpInst->getDebugLoc() != Empty) 813 return OpInst; 814 } 815 816 return I; 817 } 818 819 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 820 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 821 const DILocation *DIL = Inst->getDebugLoc(); 822 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 823 !isa<DbgInfoIntrinsic>(Inst)) { 824 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 825 if (NewDIL) 826 B.SetCurrentDebugLocation(NewDIL.getValue()); 827 else 828 LLVM_DEBUG(dbgs() 829 << "Failed to create new discriminator: " 830 << DIL->getFilename() << " Line: " << DIL->getLine()); 831 } 832 else 833 B.SetCurrentDebugLocation(DIL); 834 } else 835 B.SetCurrentDebugLocation(DebugLoc()); 836 } 837 838 /// Write a record \p DebugMsg about vectorization failure to the debug 839 /// output stream. If \p I is passed, it is an instruction that prevents 840 /// vectorization. 841 #ifndef NDEBUG 842 static void debugVectorizationFailure(const StringRef DebugMsg, 843 Instruction *I) { 844 dbgs() << "LV: Not vectorizing: " << DebugMsg; 845 if (I != nullptr) 846 dbgs() << " " << *I; 847 else 848 dbgs() << '.'; 849 dbgs() << '\n'; 850 } 851 #endif 852 853 /// Create an analysis remark that explains why vectorization failed 854 /// 855 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 856 /// RemarkName is the identifier for the remark. If \p I is passed it is an 857 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 858 /// the location of the remark. \return the remark object that can be 859 /// streamed to. 860 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 861 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 862 Value *CodeRegion = TheLoop->getHeader(); 863 DebugLoc DL = TheLoop->getStartLoc(); 864 865 if (I) { 866 CodeRegion = I->getParent(); 867 // If there is no debug location attached to the instruction, revert back to 868 // using the loop's. 869 if (I->getDebugLoc()) 870 DL = I->getDebugLoc(); 871 } 872 873 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 874 R << "loop not vectorized: "; 875 return R; 876 } 877 878 namespace llvm { 879 880 void reportVectorizationFailure(const StringRef DebugMsg, 881 const StringRef OREMsg, const StringRef ORETag, 882 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 883 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 884 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 885 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 886 ORETag, TheLoop, I) << OREMsg); 887 } 888 889 } // end namespace llvm 890 891 #ifndef NDEBUG 892 /// \return string containing a file name and a line # for the given loop. 893 static std::string getDebugLocString(const Loop *L) { 894 std::string Result; 895 if (L) { 896 raw_string_ostream OS(Result); 897 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 898 LoopDbgLoc.print(OS); 899 else 900 // Just print the module name. 901 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 902 OS.flush(); 903 } 904 return Result; 905 } 906 #endif 907 908 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 909 const Instruction *Orig) { 910 // If the loop was versioned with memchecks, add the corresponding no-alias 911 // metadata. 912 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 913 LVer->annotateInstWithNoAlias(To, Orig); 914 } 915 916 void InnerLoopVectorizer::addMetadata(Instruction *To, 917 Instruction *From) { 918 propagateMetadata(To, From); 919 addNewMetadata(To, From); 920 } 921 922 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 923 Instruction *From) { 924 for (Value *V : To) { 925 if (Instruction *I = dyn_cast<Instruction>(V)) 926 addMetadata(I, From); 927 } 928 } 929 930 namespace llvm { 931 932 // Loop vectorization cost-model hints how the scalar epilogue loop should be 933 // lowered. 934 enum ScalarEpilogueLowering { 935 936 // The default: allowing scalar epilogues. 937 CM_ScalarEpilogueAllowed, 938 939 // Vectorization with OptForSize: don't allow epilogues. 940 CM_ScalarEpilogueNotAllowedOptSize, 941 942 // A special case of vectorisation with OptForSize: loops with a very small 943 // trip count are considered for vectorization under OptForSize, thereby 944 // making sure the cost of their loop body is dominant, free of runtime 945 // guards and scalar iteration overheads. 946 CM_ScalarEpilogueNotAllowedLowTripLoop, 947 948 // Loop hint predicate indicating an epilogue is undesired. 949 CM_ScalarEpilogueNotNeededUsePredicate 950 }; 951 952 /// LoopVectorizationCostModel - estimates the expected speedups due to 953 /// vectorization. 954 /// In many cases vectorization is not profitable. This can happen because of 955 /// a number of reasons. In this class we mainly attempt to predict the 956 /// expected speedup/slowdowns due to the supported instruction set. We use the 957 /// TargetTransformInfo to query the different backends for the cost of 958 /// different operations. 959 class LoopVectorizationCostModel { 960 public: 961 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 962 PredicatedScalarEvolution &PSE, LoopInfo *LI, 963 LoopVectorizationLegality *Legal, 964 const TargetTransformInfo &TTI, 965 const TargetLibraryInfo *TLI, DemandedBits *DB, 966 AssumptionCache *AC, 967 OptimizationRemarkEmitter *ORE, const Function *F, 968 const LoopVectorizeHints *Hints, 969 InterleavedAccessInfo &IAI) 970 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 971 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 972 Hints(Hints), InterleaveInfo(IAI) {} 973 974 /// \return An upper bound for the vectorization factor, or None if 975 /// vectorization and interleaving should be avoided up front. 976 Optional<unsigned> computeMaxVF(); 977 978 /// \return True if runtime checks are required for vectorization, and false 979 /// otherwise. 980 bool runtimeChecksRequired(); 981 982 /// \return The most profitable vectorization factor and the cost of that VF. 983 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 984 /// then this vectorization factor will be selected if vectorization is 985 /// possible. 986 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 987 988 /// Setup cost-based decisions for user vectorization factor. 989 void selectUserVectorizationFactor(unsigned UserVF) { 990 collectUniformsAndScalars(UserVF); 991 collectInstsToScalarize(UserVF); 992 } 993 994 /// \return The size (in bits) of the smallest and widest types in the code 995 /// that needs to be vectorized. We ignore values that remain scalar such as 996 /// 64 bit loop indices. 997 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 998 999 /// \return The desired interleave count. 1000 /// If interleave count has been specified by metadata it will be returned. 1001 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1002 /// are the selected vectorization factor and the cost of the selected VF. 1003 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1004 1005 /// Memory access instruction may be vectorized in more than one way. 1006 /// Form of instruction after vectorization depends on cost. 1007 /// This function takes cost-based decisions for Load/Store instructions 1008 /// and collects them in a map. This decisions map is used for building 1009 /// the lists of loop-uniform and loop-scalar instructions. 1010 /// The calculated cost is saved with widening decision in order to 1011 /// avoid redundant calculations. 1012 void setCostBasedWideningDecision(unsigned VF); 1013 1014 /// A struct that represents some properties of the register usage 1015 /// of a loop. 1016 struct RegisterUsage { 1017 /// Holds the number of loop invariant values that are used in the loop. 1018 /// The key is ClassID of target-provided register class. 1019 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1020 /// Holds the maximum number of concurrent live intervals in the loop. 1021 /// The key is ClassID of target-provided register class. 1022 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1023 }; 1024 1025 /// \return Returns information about the register usages of the loop for the 1026 /// given vectorization factors. 1027 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1028 1029 /// Collect values we want to ignore in the cost model. 1030 void collectValuesToIgnore(); 1031 1032 /// \returns The smallest bitwidth each instruction can be represented with. 1033 /// The vector equivalents of these instructions should be truncated to this 1034 /// type. 1035 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1036 return MinBWs; 1037 } 1038 1039 /// \returns True if it is more profitable to scalarize instruction \p I for 1040 /// vectorization factor \p VF. 1041 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1042 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1043 1044 // Cost model is not run in the VPlan-native path - return conservative 1045 // result until this changes. 1046 if (EnableVPlanNativePath) 1047 return false; 1048 1049 auto Scalars = InstsToScalarize.find(VF); 1050 assert(Scalars != InstsToScalarize.end() && 1051 "VF not yet analyzed for scalarization profitability"); 1052 return Scalars->second.find(I) != Scalars->second.end(); 1053 } 1054 1055 /// Returns true if \p I is known to be uniform after vectorization. 1056 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1057 if (VF == 1) 1058 return true; 1059 1060 // Cost model is not run in the VPlan-native path - return conservative 1061 // result until this changes. 1062 if (EnableVPlanNativePath) 1063 return false; 1064 1065 auto UniformsPerVF = Uniforms.find(VF); 1066 assert(UniformsPerVF != Uniforms.end() && 1067 "VF not yet analyzed for uniformity"); 1068 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1069 } 1070 1071 /// Returns true if \p I is known to be scalar after vectorization. 1072 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1073 if (VF == 1) 1074 return true; 1075 1076 // Cost model is not run in the VPlan-native path - return conservative 1077 // result until this changes. 1078 if (EnableVPlanNativePath) 1079 return false; 1080 1081 auto ScalarsPerVF = Scalars.find(VF); 1082 assert(ScalarsPerVF != Scalars.end() && 1083 "Scalar values are not calculated for VF"); 1084 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1085 } 1086 1087 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1088 /// for vectorization factor \p VF. 1089 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1090 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1091 !isProfitableToScalarize(I, VF) && 1092 !isScalarAfterVectorization(I, VF); 1093 } 1094 1095 /// Decision that was taken during cost calculation for memory instruction. 1096 enum InstWidening { 1097 CM_Unknown, 1098 CM_Widen, // For consecutive accesses with stride +1. 1099 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1100 CM_Interleave, 1101 CM_GatherScatter, 1102 CM_Scalarize 1103 }; 1104 1105 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1106 /// instruction \p I and vector width \p VF. 1107 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1108 unsigned Cost) { 1109 assert(VF >= 2 && "Expected VF >=2"); 1110 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1111 } 1112 1113 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1114 /// interleaving group \p Grp and vector width \p VF. 1115 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1116 InstWidening W, unsigned Cost) { 1117 assert(VF >= 2 && "Expected VF >=2"); 1118 /// Broadcast this decicion to all instructions inside the group. 1119 /// But the cost will be assigned to one instruction only. 1120 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1121 if (auto *I = Grp->getMember(i)) { 1122 if (Grp->getInsertPos() == I) 1123 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1124 else 1125 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1126 } 1127 } 1128 } 1129 1130 /// Return the cost model decision for the given instruction \p I and vector 1131 /// width \p VF. Return CM_Unknown if this instruction did not pass 1132 /// through the cost modeling. 1133 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1134 assert(VF >= 2 && "Expected VF >=2"); 1135 1136 // Cost model is not run in the VPlan-native path - return conservative 1137 // result until this changes. 1138 if (EnableVPlanNativePath) 1139 return CM_GatherScatter; 1140 1141 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1142 auto Itr = WideningDecisions.find(InstOnVF); 1143 if (Itr == WideningDecisions.end()) 1144 return CM_Unknown; 1145 return Itr->second.first; 1146 } 1147 1148 /// Return the vectorization cost for the given instruction \p I and vector 1149 /// width \p VF. 1150 unsigned getWideningCost(Instruction *I, unsigned VF) { 1151 assert(VF >= 2 && "Expected VF >=2"); 1152 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1153 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1154 "The cost is not calculated"); 1155 return WideningDecisions[InstOnVF].second; 1156 } 1157 1158 /// Return True if instruction \p I is an optimizable truncate whose operand 1159 /// is an induction variable. Such a truncate will be removed by adding a new 1160 /// induction variable with the destination type. 1161 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1162 // If the instruction is not a truncate, return false. 1163 auto *Trunc = dyn_cast<TruncInst>(I); 1164 if (!Trunc) 1165 return false; 1166 1167 // Get the source and destination types of the truncate. 1168 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1169 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1170 1171 // If the truncate is free for the given types, return false. Replacing a 1172 // free truncate with an induction variable would add an induction variable 1173 // update instruction to each iteration of the loop. We exclude from this 1174 // check the primary induction variable since it will need an update 1175 // instruction regardless. 1176 Value *Op = Trunc->getOperand(0); 1177 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1178 return false; 1179 1180 // If the truncated value is not an induction variable, return false. 1181 return Legal->isInductionPhi(Op); 1182 } 1183 1184 /// Collects the instructions to scalarize for each predicated instruction in 1185 /// the loop. 1186 void collectInstsToScalarize(unsigned VF); 1187 1188 /// Collect Uniform and Scalar values for the given \p VF. 1189 /// The sets depend on CM decision for Load/Store instructions 1190 /// that may be vectorized as interleave, gather-scatter or scalarized. 1191 void collectUniformsAndScalars(unsigned VF) { 1192 // Do the analysis once. 1193 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1194 return; 1195 setCostBasedWideningDecision(VF); 1196 collectLoopUniforms(VF); 1197 collectLoopScalars(VF); 1198 } 1199 1200 /// Returns true if the target machine supports masked store operation 1201 /// for the given \p DataType and kind of access to \p Ptr. 1202 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1203 return Legal->isConsecutivePtr(Ptr) && 1204 TTI.isLegalMaskedStore(DataType, Alignment); 1205 } 1206 1207 /// Returns true if the target machine supports masked load operation 1208 /// for the given \p DataType and kind of access to \p Ptr. 1209 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1210 return Legal->isConsecutivePtr(Ptr) && 1211 TTI.isLegalMaskedLoad(DataType, Alignment); 1212 } 1213 1214 /// Returns true if the target machine supports masked scatter operation 1215 /// for the given \p DataType. 1216 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) { 1217 return TTI.isLegalMaskedScatter(DataType, Alignment); 1218 } 1219 1220 /// Returns true if the target machine supports masked gather operation 1221 /// for the given \p DataType. 1222 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) { 1223 return TTI.isLegalMaskedGather(DataType, Alignment); 1224 } 1225 1226 /// Returns true if the target machine can represent \p V as a masked gather 1227 /// or scatter operation. 1228 bool isLegalGatherOrScatter(Value *V) { 1229 bool LI = isa<LoadInst>(V); 1230 bool SI = isa<StoreInst>(V); 1231 if (!LI && !SI) 1232 return false; 1233 auto *Ty = getMemInstValueType(V); 1234 MaybeAlign Align = getLoadStoreAlignment(V); 1235 return (LI && isLegalMaskedGather(Ty, Align)) || 1236 (SI && isLegalMaskedScatter(Ty, Align)); 1237 } 1238 1239 /// Returns true if \p I is an instruction that will be scalarized with 1240 /// predication. Such instructions include conditional stores and 1241 /// instructions that may divide by zero. 1242 /// If a non-zero VF has been calculated, we check if I will be scalarized 1243 /// predication for that VF. 1244 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1245 1246 // Returns true if \p I is an instruction that will be predicated either 1247 // through scalar predication or masked load/store or masked gather/scatter. 1248 // Superset of instructions that return true for isScalarWithPredication. 1249 bool isPredicatedInst(Instruction *I) { 1250 if (!blockNeedsPredication(I->getParent())) 1251 return false; 1252 // Loads and stores that need some form of masked operation are predicated 1253 // instructions. 1254 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1255 return Legal->isMaskRequired(I); 1256 return isScalarWithPredication(I); 1257 } 1258 1259 /// Returns true if \p I is a memory instruction with consecutive memory 1260 /// access that can be widened. 1261 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1262 1263 /// Returns true if \p I is a memory instruction in an interleaved-group 1264 /// of memory accesses that can be vectorized with wide vector loads/stores 1265 /// and shuffles. 1266 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1267 1268 /// Check if \p Instr belongs to any interleaved access group. 1269 bool isAccessInterleaved(Instruction *Instr) { 1270 return InterleaveInfo.isInterleaved(Instr); 1271 } 1272 1273 /// Get the interleaved access group that \p Instr belongs to. 1274 const InterleaveGroup<Instruction> * 1275 getInterleavedAccessGroup(Instruction *Instr) { 1276 return InterleaveInfo.getInterleaveGroup(Instr); 1277 } 1278 1279 /// Returns true if an interleaved group requires a scalar iteration 1280 /// to handle accesses with gaps, and there is nothing preventing us from 1281 /// creating a scalar epilogue. 1282 bool requiresScalarEpilogue() const { 1283 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1284 } 1285 1286 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1287 /// loop hint annotation. 1288 bool isScalarEpilogueAllowed() const { 1289 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1290 } 1291 1292 /// Returns true if all loop blocks should be masked to fold tail loop. 1293 bool foldTailByMasking() const { return FoldTailByMasking; } 1294 1295 bool blockNeedsPredication(BasicBlock *BB) { 1296 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1297 } 1298 1299 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1300 /// with factor VF. Return the cost of the instruction, including 1301 /// scalarization overhead if it's needed. 1302 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1303 1304 /// Estimate cost of a call instruction CI if it were vectorized with factor 1305 /// VF. Return the cost of the instruction, including scalarization overhead 1306 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1307 /// scalarized - 1308 /// i.e. either vector version isn't available, or is too expensive. 1309 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1310 1311 private: 1312 unsigned NumPredStores = 0; 1313 1314 /// \return An upper bound for the vectorization factor, larger than zero. 1315 /// One is returned if vectorization should best be avoided due to cost. 1316 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1317 1318 /// The vectorization cost is a combination of the cost itself and a boolean 1319 /// indicating whether any of the contributing operations will actually 1320 /// operate on 1321 /// vector values after type legalization in the backend. If this latter value 1322 /// is 1323 /// false, then all operations will be scalarized (i.e. no vectorization has 1324 /// actually taken place). 1325 using VectorizationCostTy = std::pair<unsigned, bool>; 1326 1327 /// Returns the expected execution cost. The unit of the cost does 1328 /// not matter because we use the 'cost' units to compare different 1329 /// vector widths. The cost that is returned is *not* normalized by 1330 /// the factor width. 1331 VectorizationCostTy expectedCost(unsigned VF); 1332 1333 /// Returns the execution time cost of an instruction for a given vector 1334 /// width. Vector width of one means scalar. 1335 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1336 1337 /// The cost-computation logic from getInstructionCost which provides 1338 /// the vector type as an output parameter. 1339 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1340 1341 /// Calculate vectorization cost of memory instruction \p I. 1342 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1343 1344 /// The cost computation for scalarized memory instruction. 1345 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1346 1347 /// The cost computation for interleaving group of memory instructions. 1348 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1349 1350 /// The cost computation for Gather/Scatter instruction. 1351 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1352 1353 /// The cost computation for widening instruction \p I with consecutive 1354 /// memory access. 1355 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1356 1357 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1358 /// Load: scalar load + broadcast. 1359 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1360 /// element) 1361 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1362 1363 /// Estimate the overhead of scalarizing an instruction. This is a 1364 /// convenience wrapper for the type-based getScalarizationOverhead API. 1365 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1366 1367 /// Returns whether the instruction is a load or store and will be a emitted 1368 /// as a vector operation. 1369 bool isConsecutiveLoadOrStore(Instruction *I); 1370 1371 /// Returns true if an artificially high cost for emulated masked memrefs 1372 /// should be used. 1373 bool useEmulatedMaskMemRefHack(Instruction *I); 1374 1375 /// Map of scalar integer values to the smallest bitwidth they can be legally 1376 /// represented as. The vector equivalents of these values should be truncated 1377 /// to this type. 1378 MapVector<Instruction *, uint64_t> MinBWs; 1379 1380 /// A type representing the costs for instructions if they were to be 1381 /// scalarized rather than vectorized. The entries are Instruction-Cost 1382 /// pairs. 1383 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1384 1385 /// A set containing all BasicBlocks that are known to present after 1386 /// vectorization as a predicated block. 1387 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1388 1389 /// Records whether it is allowed to have the original scalar loop execute at 1390 /// least once. This may be needed as a fallback loop in case runtime 1391 /// aliasing/dependence checks fail, or to handle the tail/remainder 1392 /// iterations when the trip count is unknown or doesn't divide by the VF, 1393 /// or as a peel-loop to handle gaps in interleave-groups. 1394 /// Under optsize and when the trip count is very small we don't allow any 1395 /// iterations to execute in the scalar loop. 1396 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1397 1398 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1399 bool FoldTailByMasking = false; 1400 1401 /// A map holding scalar costs for different vectorization factors. The 1402 /// presence of a cost for an instruction in the mapping indicates that the 1403 /// instruction will be scalarized when vectorizing with the associated 1404 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1405 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1406 1407 /// Holds the instructions known to be uniform after vectorization. 1408 /// The data is collected per VF. 1409 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1410 1411 /// Holds the instructions known to be scalar after vectorization. 1412 /// The data is collected per VF. 1413 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1414 1415 /// Holds the instructions (address computations) that are forced to be 1416 /// scalarized. 1417 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1418 1419 /// Returns the expected difference in cost from scalarizing the expression 1420 /// feeding a predicated instruction \p PredInst. The instructions to 1421 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1422 /// non-negative return value implies the expression will be scalarized. 1423 /// Currently, only single-use chains are considered for scalarization. 1424 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1425 unsigned VF); 1426 1427 /// Collect the instructions that are uniform after vectorization. An 1428 /// instruction is uniform if we represent it with a single scalar value in 1429 /// the vectorized loop corresponding to each vector iteration. Examples of 1430 /// uniform instructions include pointer operands of consecutive or 1431 /// interleaved memory accesses. Note that although uniformity implies an 1432 /// instruction will be scalar, the reverse is not true. In general, a 1433 /// scalarized instruction will be represented by VF scalar values in the 1434 /// vectorized loop, each corresponding to an iteration of the original 1435 /// scalar loop. 1436 void collectLoopUniforms(unsigned VF); 1437 1438 /// Collect the instructions that are scalar after vectorization. An 1439 /// instruction is scalar if it is known to be uniform or will be scalarized 1440 /// during vectorization. Non-uniform scalarized instructions will be 1441 /// represented by VF values in the vectorized loop, each corresponding to an 1442 /// iteration of the original scalar loop. 1443 void collectLoopScalars(unsigned VF); 1444 1445 /// Keeps cost model vectorization decision and cost for instructions. 1446 /// Right now it is used for memory instructions only. 1447 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1448 std::pair<InstWidening, unsigned>>; 1449 1450 DecisionList WideningDecisions; 1451 1452 /// Returns true if \p V is expected to be vectorized and it needs to be 1453 /// extracted. 1454 bool needsExtract(Value *V, unsigned VF) const { 1455 Instruction *I = dyn_cast<Instruction>(V); 1456 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1457 return false; 1458 1459 // Assume we can vectorize V (and hence we need extraction) if the 1460 // scalars are not computed yet. This can happen, because it is called 1461 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1462 // the scalars are collected. That should be a safe assumption in most 1463 // cases, because we check if the operands have vectorizable types 1464 // beforehand in LoopVectorizationLegality. 1465 return Scalars.find(VF) == Scalars.end() || 1466 !isScalarAfterVectorization(I, VF); 1467 }; 1468 1469 /// Returns a range containing only operands needing to be extracted. 1470 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1471 unsigned VF) { 1472 return SmallVector<Value *, 4>(make_filter_range( 1473 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1474 } 1475 1476 public: 1477 /// The loop that we evaluate. 1478 Loop *TheLoop; 1479 1480 /// Predicated scalar evolution analysis. 1481 PredicatedScalarEvolution &PSE; 1482 1483 /// Loop Info analysis. 1484 LoopInfo *LI; 1485 1486 /// Vectorization legality. 1487 LoopVectorizationLegality *Legal; 1488 1489 /// Vector target information. 1490 const TargetTransformInfo &TTI; 1491 1492 /// Target Library Info. 1493 const TargetLibraryInfo *TLI; 1494 1495 /// Demanded bits analysis. 1496 DemandedBits *DB; 1497 1498 /// Assumption cache. 1499 AssumptionCache *AC; 1500 1501 /// Interface to emit optimization remarks. 1502 OptimizationRemarkEmitter *ORE; 1503 1504 const Function *TheFunction; 1505 1506 /// Loop Vectorize Hint. 1507 const LoopVectorizeHints *Hints; 1508 1509 /// The interleave access information contains groups of interleaved accesses 1510 /// with the same stride and close to each other. 1511 InterleavedAccessInfo &InterleaveInfo; 1512 1513 /// Values to ignore in the cost model. 1514 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1515 1516 /// Values to ignore in the cost model when VF > 1. 1517 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1518 }; 1519 1520 } // end namespace llvm 1521 1522 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1523 // vectorization. The loop needs to be annotated with #pragma omp simd 1524 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1525 // vector length information is not provided, vectorization is not considered 1526 // explicit. Interleave hints are not allowed either. These limitations will be 1527 // relaxed in the future. 1528 // Please, note that we are currently forced to abuse the pragma 'clang 1529 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1530 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1531 // provides *explicit vectorization hints* (LV can bypass legal checks and 1532 // assume that vectorization is legal). However, both hints are implemented 1533 // using the same metadata (llvm.loop.vectorize, processed by 1534 // LoopVectorizeHints). This will be fixed in the future when the native IR 1535 // representation for pragma 'omp simd' is introduced. 1536 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1537 OptimizationRemarkEmitter *ORE) { 1538 assert(!OuterLp->empty() && "This is not an outer loop"); 1539 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1540 1541 // Only outer loops with an explicit vectorization hint are supported. 1542 // Unannotated outer loops are ignored. 1543 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1544 return false; 1545 1546 Function *Fn = OuterLp->getHeader()->getParent(); 1547 if (!Hints.allowVectorization(Fn, OuterLp, 1548 true /*VectorizeOnlyWhenForced*/)) { 1549 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1550 return false; 1551 } 1552 1553 if (Hints.getInterleave() > 1) { 1554 // TODO: Interleave support is future work. 1555 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1556 "outer loops.\n"); 1557 Hints.emitRemarkWithHints(); 1558 return false; 1559 } 1560 1561 return true; 1562 } 1563 1564 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1565 OptimizationRemarkEmitter *ORE, 1566 SmallVectorImpl<Loop *> &V) { 1567 // Collect inner loops and outer loops without irreducible control flow. For 1568 // now, only collect outer loops that have explicit vectorization hints. If we 1569 // are stress testing the VPlan H-CFG construction, we collect the outermost 1570 // loop of every loop nest. 1571 if (L.empty() || VPlanBuildStressTest || 1572 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1573 LoopBlocksRPO RPOT(&L); 1574 RPOT.perform(LI); 1575 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1576 V.push_back(&L); 1577 // TODO: Collect inner loops inside marked outer loops in case 1578 // vectorization fails for the outer loop. Do not invoke 1579 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1580 // already known to be reducible. We can use an inherited attribute for 1581 // that. 1582 return; 1583 } 1584 } 1585 for (Loop *InnerL : L) 1586 collectSupportedLoops(*InnerL, LI, ORE, V); 1587 } 1588 1589 namespace { 1590 1591 /// The LoopVectorize Pass. 1592 struct LoopVectorize : public FunctionPass { 1593 /// Pass identification, replacement for typeid 1594 static char ID; 1595 1596 LoopVectorizePass Impl; 1597 1598 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1599 bool VectorizeOnlyWhenForced = false) 1600 : FunctionPass(ID) { 1601 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1602 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1603 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1604 } 1605 1606 bool runOnFunction(Function &F) override { 1607 if (skipFunction(F)) 1608 return false; 1609 1610 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1611 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1612 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1613 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1614 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1615 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1616 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1617 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1618 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1619 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1620 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1621 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1622 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1623 1624 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1625 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1626 1627 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1628 GetLAA, *ORE, PSI); 1629 } 1630 1631 void getAnalysisUsage(AnalysisUsage &AU) const override { 1632 AU.addRequired<AssumptionCacheTracker>(); 1633 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1634 AU.addRequired<DominatorTreeWrapperPass>(); 1635 AU.addRequired<LoopInfoWrapperPass>(); 1636 AU.addRequired<ScalarEvolutionWrapperPass>(); 1637 AU.addRequired<TargetTransformInfoWrapperPass>(); 1638 AU.addRequired<AAResultsWrapperPass>(); 1639 AU.addRequired<LoopAccessLegacyAnalysis>(); 1640 AU.addRequired<DemandedBitsWrapperPass>(); 1641 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1642 AU.addRequired<InjectTLIMappingsLegacy>(); 1643 1644 // We currently do not preserve loopinfo/dominator analyses with outer loop 1645 // vectorization. Until this is addressed, mark these analyses as preserved 1646 // only for non-VPlan-native path. 1647 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1648 if (!EnableVPlanNativePath) { 1649 AU.addPreserved<LoopInfoWrapperPass>(); 1650 AU.addPreserved<DominatorTreeWrapperPass>(); 1651 } 1652 1653 AU.addPreserved<BasicAAWrapperPass>(); 1654 AU.addPreserved<GlobalsAAWrapperPass>(); 1655 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1656 } 1657 }; 1658 1659 } // end anonymous namespace 1660 1661 //===----------------------------------------------------------------------===// 1662 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1663 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1664 //===----------------------------------------------------------------------===// 1665 1666 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1667 // We need to place the broadcast of invariant variables outside the loop, 1668 // but only if it's proven safe to do so. Else, broadcast will be inside 1669 // vector loop body. 1670 Instruction *Instr = dyn_cast<Instruction>(V); 1671 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1672 (!Instr || 1673 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1674 // Place the code for broadcasting invariant variables in the new preheader. 1675 IRBuilder<>::InsertPointGuard Guard(Builder); 1676 if (SafeToHoist) 1677 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1678 1679 // Broadcast the scalar into all locations in the vector. 1680 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1681 1682 return Shuf; 1683 } 1684 1685 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1686 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1687 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1688 "Expected either an induction phi-node or a truncate of it!"); 1689 Value *Start = II.getStartValue(); 1690 1691 // Construct the initial value of the vector IV in the vector loop preheader 1692 auto CurrIP = Builder.saveIP(); 1693 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1694 if (isa<TruncInst>(EntryVal)) { 1695 assert(Start->getType()->isIntegerTy() && 1696 "Truncation requires an integer type"); 1697 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1698 Step = Builder.CreateTrunc(Step, TruncType); 1699 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1700 } 1701 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1702 Value *SteppedStart = 1703 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1704 1705 // We create vector phi nodes for both integer and floating-point induction 1706 // variables. Here, we determine the kind of arithmetic we will perform. 1707 Instruction::BinaryOps AddOp; 1708 Instruction::BinaryOps MulOp; 1709 if (Step->getType()->isIntegerTy()) { 1710 AddOp = Instruction::Add; 1711 MulOp = Instruction::Mul; 1712 } else { 1713 AddOp = II.getInductionOpcode(); 1714 MulOp = Instruction::FMul; 1715 } 1716 1717 // Multiply the vectorization factor by the step using integer or 1718 // floating-point arithmetic as appropriate. 1719 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1720 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1721 1722 // Create a vector splat to use in the induction update. 1723 // 1724 // FIXME: If the step is non-constant, we create the vector splat with 1725 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1726 // handle a constant vector splat. 1727 Value *SplatVF = 1728 isa<Constant>(Mul) 1729 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1730 : Builder.CreateVectorSplat(VF, Mul); 1731 Builder.restoreIP(CurrIP); 1732 1733 // We may need to add the step a number of times, depending on the unroll 1734 // factor. The last of those goes into the PHI. 1735 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1736 &*LoopVectorBody->getFirstInsertionPt()); 1737 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1738 Instruction *LastInduction = VecInd; 1739 for (unsigned Part = 0; Part < UF; ++Part) { 1740 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1741 1742 if (isa<TruncInst>(EntryVal)) 1743 addMetadata(LastInduction, EntryVal); 1744 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1745 1746 LastInduction = cast<Instruction>(addFastMathFlag( 1747 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1748 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1749 } 1750 1751 // Move the last step to the end of the latch block. This ensures consistent 1752 // placement of all induction updates. 1753 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1754 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1755 auto *ICmp = cast<Instruction>(Br->getCondition()); 1756 LastInduction->moveBefore(ICmp); 1757 LastInduction->setName("vec.ind.next"); 1758 1759 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1760 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1761 } 1762 1763 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1764 return Cost->isScalarAfterVectorization(I, VF) || 1765 Cost->isProfitableToScalarize(I, VF); 1766 } 1767 1768 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1769 if (shouldScalarizeInstruction(IV)) 1770 return true; 1771 auto isScalarInst = [&](User *U) -> bool { 1772 auto *I = cast<Instruction>(U); 1773 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1774 }; 1775 return llvm::any_of(IV->users(), isScalarInst); 1776 } 1777 1778 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1779 const InductionDescriptor &ID, const Instruction *EntryVal, 1780 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1781 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1782 "Expected either an induction phi-node or a truncate of it!"); 1783 1784 // This induction variable is not the phi from the original loop but the 1785 // newly-created IV based on the proof that casted Phi is equal to the 1786 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1787 // re-uses the same InductionDescriptor that original IV uses but we don't 1788 // have to do any recording in this case - that is done when original IV is 1789 // processed. 1790 if (isa<TruncInst>(EntryVal)) 1791 return; 1792 1793 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1794 if (Casts.empty()) 1795 return; 1796 // Only the first Cast instruction in the Casts vector is of interest. 1797 // The rest of the Casts (if exist) have no uses outside the 1798 // induction update chain itself. 1799 Instruction *CastInst = *Casts.begin(); 1800 if (Lane < UINT_MAX) 1801 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1802 else 1803 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1804 } 1805 1806 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1807 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1808 "Primary induction variable must have an integer type"); 1809 1810 auto II = Legal->getInductionVars().find(IV); 1811 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1812 1813 auto ID = II->second; 1814 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1815 1816 // The value from the original loop to which we are mapping the new induction 1817 // variable. 1818 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1819 1820 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1821 1822 // Generate code for the induction step. Note that induction steps are 1823 // required to be loop-invariant 1824 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1825 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1826 "Induction step should be loop invariant"); 1827 if (PSE.getSE()->isSCEVable(IV->getType())) { 1828 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1829 return Exp.expandCodeFor(Step, Step->getType(), 1830 LoopVectorPreHeader->getTerminator()); 1831 } 1832 return cast<SCEVUnknown>(Step)->getValue(); 1833 }; 1834 1835 // The scalar value to broadcast. This is derived from the canonical 1836 // induction variable. If a truncation type is given, truncate the canonical 1837 // induction variable and step. Otherwise, derive these values from the 1838 // induction descriptor. 1839 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1840 Value *ScalarIV = Induction; 1841 if (IV != OldInduction) { 1842 ScalarIV = IV->getType()->isIntegerTy() 1843 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1844 : Builder.CreateCast(Instruction::SIToFP, Induction, 1845 IV->getType()); 1846 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1847 ScalarIV->setName("offset.idx"); 1848 } 1849 if (Trunc) { 1850 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1851 assert(Step->getType()->isIntegerTy() && 1852 "Truncation requires an integer step"); 1853 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1854 Step = Builder.CreateTrunc(Step, TruncType); 1855 } 1856 return ScalarIV; 1857 }; 1858 1859 // Create the vector values from the scalar IV, in the absence of creating a 1860 // vector IV. 1861 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1862 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1863 for (unsigned Part = 0; Part < UF; ++Part) { 1864 Value *EntryPart = 1865 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1866 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1867 if (Trunc) 1868 addMetadata(EntryPart, Trunc); 1869 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1870 } 1871 }; 1872 1873 // Now do the actual transformations, and start with creating the step value. 1874 Value *Step = CreateStepValue(ID.getStep()); 1875 if (VF <= 1) { 1876 Value *ScalarIV = CreateScalarIV(Step); 1877 CreateSplatIV(ScalarIV, Step); 1878 return; 1879 } 1880 1881 // Determine if we want a scalar version of the induction variable. This is 1882 // true if the induction variable itself is not widened, or if it has at 1883 // least one user in the loop that is not widened. 1884 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1885 if (!NeedsScalarIV) { 1886 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1887 return; 1888 } 1889 1890 // Try to create a new independent vector induction variable. If we can't 1891 // create the phi node, we will splat the scalar induction variable in each 1892 // loop iteration. 1893 if (!shouldScalarizeInstruction(EntryVal)) { 1894 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1895 Value *ScalarIV = CreateScalarIV(Step); 1896 // Create scalar steps that can be used by instructions we will later 1897 // scalarize. Note that the addition of the scalar steps will not increase 1898 // the number of instructions in the loop in the common case prior to 1899 // InstCombine. We will be trading one vector extract for each scalar step. 1900 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1901 return; 1902 } 1903 1904 // If we haven't yet vectorized the induction variable, splat the scalar 1905 // induction variable, and build the necessary step vectors. 1906 // TODO: Don't do it unless the vectorized IV is really required. 1907 Value *ScalarIV = CreateScalarIV(Step); 1908 CreateSplatIV(ScalarIV, Step); 1909 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1910 } 1911 1912 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1913 Instruction::BinaryOps BinOp) { 1914 // Create and check the types. 1915 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1916 int VLen = Val->getType()->getVectorNumElements(); 1917 1918 Type *STy = Val->getType()->getScalarType(); 1919 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1920 "Induction Step must be an integer or FP"); 1921 assert(Step->getType() == STy && "Step has wrong type"); 1922 1923 SmallVector<Constant *, 8> Indices; 1924 1925 if (STy->isIntegerTy()) { 1926 // Create a vector of consecutive numbers from zero to VF. 1927 for (int i = 0; i < VLen; ++i) 1928 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1929 1930 // Add the consecutive indices to the vector value. 1931 Constant *Cv = ConstantVector::get(Indices); 1932 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1933 Step = Builder.CreateVectorSplat(VLen, Step); 1934 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1935 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1936 // which can be found from the original scalar operations. 1937 Step = Builder.CreateMul(Cv, Step); 1938 return Builder.CreateAdd(Val, Step, "induction"); 1939 } 1940 1941 // Floating point induction. 1942 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1943 "Binary Opcode should be specified for FP induction"); 1944 // Create a vector of consecutive numbers from zero to VF. 1945 for (int i = 0; i < VLen; ++i) 1946 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1947 1948 // Add the consecutive indices to the vector value. 1949 Constant *Cv = ConstantVector::get(Indices); 1950 1951 Step = Builder.CreateVectorSplat(VLen, Step); 1952 1953 // Floating point operations had to be 'fast' to enable the induction. 1954 FastMathFlags Flags; 1955 Flags.setFast(); 1956 1957 Value *MulOp = Builder.CreateFMul(Cv, Step); 1958 if (isa<Instruction>(MulOp)) 1959 // Have to check, MulOp may be a constant 1960 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1961 1962 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1963 if (isa<Instruction>(BOp)) 1964 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1965 return BOp; 1966 } 1967 1968 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1969 Instruction *EntryVal, 1970 const InductionDescriptor &ID) { 1971 // We shouldn't have to build scalar steps if we aren't vectorizing. 1972 assert(VF > 1 && "VF should be greater than one"); 1973 1974 // Get the value type and ensure it and the step have the same integer type. 1975 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1976 assert(ScalarIVTy == Step->getType() && 1977 "Val and Step should have the same type"); 1978 1979 // We build scalar steps for both integer and floating-point induction 1980 // variables. Here, we determine the kind of arithmetic we will perform. 1981 Instruction::BinaryOps AddOp; 1982 Instruction::BinaryOps MulOp; 1983 if (ScalarIVTy->isIntegerTy()) { 1984 AddOp = Instruction::Add; 1985 MulOp = Instruction::Mul; 1986 } else { 1987 AddOp = ID.getInductionOpcode(); 1988 MulOp = Instruction::FMul; 1989 } 1990 1991 // Determine the number of scalars we need to generate for each unroll 1992 // iteration. If EntryVal is uniform, we only need to generate the first 1993 // lane. Otherwise, we generate all VF values. 1994 unsigned Lanes = 1995 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1996 : VF; 1997 // Compute the scalar steps and save the results in VectorLoopValueMap. 1998 for (unsigned Part = 0; Part < UF; ++Part) { 1999 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2000 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2001 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2002 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2003 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2004 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2005 } 2006 } 2007 } 2008 2009 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2010 assert(V != Induction && "The new induction variable should not be used."); 2011 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2012 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2013 2014 // If we have a stride that is replaced by one, do it here. Defer this for 2015 // the VPlan-native path until we start running Legal checks in that path. 2016 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2017 V = ConstantInt::get(V->getType(), 1); 2018 2019 // If we have a vector mapped to this value, return it. 2020 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2021 return VectorLoopValueMap.getVectorValue(V, Part); 2022 2023 // If the value has not been vectorized, check if it has been scalarized 2024 // instead. If it has been scalarized, and we actually need the value in 2025 // vector form, we will construct the vector values on demand. 2026 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2027 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2028 2029 // If we've scalarized a value, that value should be an instruction. 2030 auto *I = cast<Instruction>(V); 2031 2032 // If we aren't vectorizing, we can just copy the scalar map values over to 2033 // the vector map. 2034 if (VF == 1) { 2035 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2036 return ScalarValue; 2037 } 2038 2039 // Get the last scalar instruction we generated for V and Part. If the value 2040 // is known to be uniform after vectorization, this corresponds to lane zero 2041 // of the Part unroll iteration. Otherwise, the last instruction is the one 2042 // we created for the last vector lane of the Part unroll iteration. 2043 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2044 auto *LastInst = cast<Instruction>( 2045 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2046 2047 // Set the insert point after the last scalarized instruction. This ensures 2048 // the insertelement sequence will directly follow the scalar definitions. 2049 auto OldIP = Builder.saveIP(); 2050 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2051 Builder.SetInsertPoint(&*NewIP); 2052 2053 // However, if we are vectorizing, we need to construct the vector values. 2054 // If the value is known to be uniform after vectorization, we can just 2055 // broadcast the scalar value corresponding to lane zero for each unroll 2056 // iteration. Otherwise, we construct the vector values using insertelement 2057 // instructions. Since the resulting vectors are stored in 2058 // VectorLoopValueMap, we will only generate the insertelements once. 2059 Value *VectorValue = nullptr; 2060 if (Cost->isUniformAfterVectorization(I, VF)) { 2061 VectorValue = getBroadcastInstrs(ScalarValue); 2062 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2063 } else { 2064 // Initialize packing with insertelements to start from undef. 2065 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2066 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2067 for (unsigned Lane = 0; Lane < VF; ++Lane) 2068 packScalarIntoVectorValue(V, {Part, Lane}); 2069 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2070 } 2071 Builder.restoreIP(OldIP); 2072 return VectorValue; 2073 } 2074 2075 // If this scalar is unknown, assume that it is a constant or that it is 2076 // loop invariant. Broadcast V and save the value for future uses. 2077 Value *B = getBroadcastInstrs(V); 2078 VectorLoopValueMap.setVectorValue(V, Part, B); 2079 return B; 2080 } 2081 2082 Value * 2083 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2084 const VPIteration &Instance) { 2085 // If the value is not an instruction contained in the loop, it should 2086 // already be scalar. 2087 if (OrigLoop->isLoopInvariant(V)) 2088 return V; 2089 2090 assert(Instance.Lane > 0 2091 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2092 : true && "Uniform values only have lane zero"); 2093 2094 // If the value from the original loop has not been vectorized, it is 2095 // represented by UF x VF scalar values in the new loop. Return the requested 2096 // scalar value. 2097 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2098 return VectorLoopValueMap.getScalarValue(V, Instance); 2099 2100 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2101 // for the given unroll part. If this entry is not a vector type (i.e., the 2102 // vectorization factor is one), there is no need to generate an 2103 // extractelement instruction. 2104 auto *U = getOrCreateVectorValue(V, Instance.Part); 2105 if (!U->getType()->isVectorTy()) { 2106 assert(VF == 1 && "Value not scalarized has non-vector type"); 2107 return U; 2108 } 2109 2110 // Otherwise, the value from the original loop has been vectorized and is 2111 // represented by UF vector values. Extract and return the requested scalar 2112 // value from the appropriate vector lane. 2113 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2114 } 2115 2116 void InnerLoopVectorizer::packScalarIntoVectorValue( 2117 Value *V, const VPIteration &Instance) { 2118 assert(V != Induction && "The new induction variable should not be used."); 2119 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2120 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2121 2122 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2123 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2124 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2125 Builder.getInt32(Instance.Lane)); 2126 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2127 } 2128 2129 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2130 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2131 SmallVector<Constant *, 8> ShuffleMask; 2132 for (unsigned i = 0; i < VF; ++i) 2133 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2134 2135 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2136 ConstantVector::get(ShuffleMask), 2137 "reverse"); 2138 } 2139 2140 // Return whether we allow using masked interleave-groups (for dealing with 2141 // strided loads/stores that reside in predicated blocks, or for dealing 2142 // with gaps). 2143 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2144 // If an override option has been passed in for interleaved accesses, use it. 2145 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2146 return EnableMaskedInterleavedMemAccesses; 2147 2148 return TTI.enableMaskedInterleavedAccessVectorization(); 2149 } 2150 2151 // Try to vectorize the interleave group that \p Instr belongs to. 2152 // 2153 // E.g. Translate following interleaved load group (factor = 3): 2154 // for (i = 0; i < N; i+=3) { 2155 // R = Pic[i]; // Member of index 0 2156 // G = Pic[i+1]; // Member of index 1 2157 // B = Pic[i+2]; // Member of index 2 2158 // ... // do something to R, G, B 2159 // } 2160 // To: 2161 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2162 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2163 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2164 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2165 // 2166 // Or translate following interleaved store group (factor = 3): 2167 // for (i = 0; i < N; i+=3) { 2168 // ... do something to R, G, B 2169 // Pic[i] = R; // Member of index 0 2170 // Pic[i+1] = G; // Member of index 1 2171 // Pic[i+2] = B; // Member of index 2 2172 // } 2173 // To: 2174 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2175 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2176 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2177 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2178 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2179 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2180 VPTransformState &State, 2181 VPValue *Addr, 2182 VPValue *BlockInMask) { 2183 const InterleaveGroup<Instruction> *Group = 2184 Cost->getInterleavedAccessGroup(Instr); 2185 assert(Group && "Fail to get an interleaved access group."); 2186 2187 // Skip if current instruction is not the insert position. 2188 if (Instr != Group->getInsertPos()) 2189 return; 2190 2191 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2192 2193 // Prepare for the vector type of the interleaved load/store. 2194 Type *ScalarTy = getMemInstValueType(Instr); 2195 unsigned InterleaveFactor = Group->getFactor(); 2196 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2197 2198 // Prepare for the new pointers. 2199 SmallVector<Value *, 2> AddrParts; 2200 unsigned Index = Group->getIndex(Instr); 2201 2202 // TODO: extend the masked interleaved-group support to reversed access. 2203 assert((!BlockInMask || !Group->isReverse()) && 2204 "Reversed masked interleave-group not supported."); 2205 2206 // If the group is reverse, adjust the index to refer to the last vector lane 2207 // instead of the first. We adjust the index from the first vector lane, 2208 // rather than directly getting the pointer for lane VF - 1, because the 2209 // pointer operand of the interleaved access is supposed to be uniform. For 2210 // uniform instructions, we're only required to generate a value for the 2211 // first vector lane in each unroll iteration. 2212 if (Group->isReverse()) 2213 Index += (VF - 1) * Group->getFactor(); 2214 2215 for (unsigned Part = 0; Part < UF; Part++) { 2216 Value *AddrPart = State.get(Addr, {Part, 0}); 2217 setDebugLocFromInst(Builder, AddrPart); 2218 2219 // Notice current instruction could be any index. Need to adjust the address 2220 // to the member of index 0. 2221 // 2222 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2223 // b = A[i]; // Member of index 0 2224 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2225 // 2226 // E.g. A[i+1] = a; // Member of index 1 2227 // A[i] = b; // Member of index 0 2228 // A[i+2] = c; // Member of index 2 (Current instruction) 2229 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2230 2231 bool InBounds = false; 2232 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2233 InBounds = gep->isInBounds(); 2234 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2235 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2236 2237 // Cast to the vector pointer type. 2238 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2239 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2240 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2241 } 2242 2243 setDebugLocFromInst(Builder, Instr); 2244 Value *UndefVec = UndefValue::get(VecTy); 2245 2246 Value *MaskForGaps = nullptr; 2247 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2248 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2249 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2250 } 2251 2252 // Vectorize the interleaved load group. 2253 if (isa<LoadInst>(Instr)) { 2254 // For each unroll part, create a wide load for the group. 2255 SmallVector<Value *, 2> NewLoads; 2256 for (unsigned Part = 0; Part < UF; Part++) { 2257 Instruction *NewLoad; 2258 if (BlockInMask || MaskForGaps) { 2259 assert(useMaskedInterleavedAccesses(*TTI) && 2260 "masked interleaved groups are not allowed."); 2261 Value *GroupMask = MaskForGaps; 2262 if (BlockInMask) { 2263 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2264 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2265 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2266 Value *ShuffledMask = Builder.CreateShuffleVector( 2267 BlockInMaskPart, Undefs, RepMask, "interleaved.mask"); 2268 GroupMask = MaskForGaps 2269 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2270 MaskForGaps) 2271 : ShuffledMask; 2272 } 2273 NewLoad = 2274 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2275 GroupMask, UndefVec, "wide.masked.vec"); 2276 } 2277 else 2278 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2279 Group->getAlign(), "wide.vec"); 2280 Group->addMetadata(NewLoad); 2281 NewLoads.push_back(NewLoad); 2282 } 2283 2284 // For each member in the group, shuffle out the appropriate data from the 2285 // wide loads. 2286 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2287 Instruction *Member = Group->getMember(I); 2288 2289 // Skip the gaps in the group. 2290 if (!Member) 2291 continue; 2292 2293 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2294 for (unsigned Part = 0; Part < UF; Part++) { 2295 Value *StridedVec = Builder.CreateShuffleVector( 2296 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2297 2298 // If this member has different type, cast the result type. 2299 if (Member->getType() != ScalarTy) { 2300 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2301 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2302 } 2303 2304 if (Group->isReverse()) 2305 StridedVec = reverseVector(StridedVec); 2306 2307 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2308 } 2309 } 2310 return; 2311 } 2312 2313 // The sub vector type for current instruction. 2314 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2315 2316 // Vectorize the interleaved store group. 2317 for (unsigned Part = 0; Part < UF; Part++) { 2318 // Collect the stored vector from each member. 2319 SmallVector<Value *, 4> StoredVecs; 2320 for (unsigned i = 0; i < InterleaveFactor; i++) { 2321 // Interleaved store group doesn't allow a gap, so each index has a member 2322 Instruction *Member = Group->getMember(i); 2323 assert(Member && "Fail to get a member from an interleaved store group"); 2324 2325 Value *StoredVec = getOrCreateVectorValue( 2326 cast<StoreInst>(Member)->getValueOperand(), Part); 2327 if (Group->isReverse()) 2328 StoredVec = reverseVector(StoredVec); 2329 2330 // If this member has different type, cast it to a unified type. 2331 2332 if (StoredVec->getType() != SubVT) 2333 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2334 2335 StoredVecs.push_back(StoredVec); 2336 } 2337 2338 // Concatenate all vectors into a wide vector. 2339 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2340 2341 // Interleave the elements in the wide vector. 2342 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2343 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2344 "interleaved.vec"); 2345 2346 Instruction *NewStoreInstr; 2347 if (BlockInMask) { 2348 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2349 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2350 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2351 Value *ShuffledMask = Builder.CreateShuffleVector( 2352 BlockInMaskPart, Undefs, RepMask, "interleaved.mask"); 2353 NewStoreInstr = Builder.CreateMaskedStore( 2354 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2355 } 2356 else 2357 NewStoreInstr = 2358 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2359 2360 Group->addMetadata(NewStoreInstr); 2361 } 2362 } 2363 2364 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2365 VPTransformState &State, 2366 VPValue *Addr, 2367 VPValue *StoredValue, 2368 VPValue *BlockInMask) { 2369 // Attempt to issue a wide load. 2370 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2371 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2372 2373 assert((LI || SI) && "Invalid Load/Store instruction"); 2374 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2375 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2376 2377 LoopVectorizationCostModel::InstWidening Decision = 2378 Cost->getWideningDecision(Instr, VF); 2379 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2380 "CM decision should be taken at this point"); 2381 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2382 return vectorizeInterleaveGroup(Instr, State, Addr, BlockInMask); 2383 2384 Type *ScalarDataTy = getMemInstValueType(Instr); 2385 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2386 // An alignment of 0 means target abi alignment. We need to use the scalar's 2387 // target abi alignment in such a case. 2388 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2389 const Align Alignment = 2390 DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy); 2391 2392 // Determine if the pointer operand of the access is either consecutive or 2393 // reverse consecutive. 2394 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2395 bool ConsecutiveStride = 2396 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2397 bool CreateGatherScatter = 2398 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2399 2400 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2401 // gather/scatter. Otherwise Decision should have been to Scalarize. 2402 assert((ConsecutiveStride || CreateGatherScatter) && 2403 "The instruction should be scalarized"); 2404 (void)ConsecutiveStride; 2405 2406 VectorParts BlockInMaskParts(UF); 2407 bool isMaskRequired = BlockInMask; 2408 if (isMaskRequired) 2409 for (unsigned Part = 0; Part < UF; ++Part) 2410 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2411 2412 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2413 // Calculate the pointer for the specific unroll-part. 2414 GetElementPtrInst *PartPtr = nullptr; 2415 2416 bool InBounds = false; 2417 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2418 InBounds = gep->isInBounds(); 2419 2420 if (Reverse) { 2421 // If the address is consecutive but reversed, then the 2422 // wide store needs to start at the last vector element. 2423 PartPtr = cast<GetElementPtrInst>( 2424 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2425 PartPtr->setIsInBounds(InBounds); 2426 PartPtr = cast<GetElementPtrInst>( 2427 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2428 PartPtr->setIsInBounds(InBounds); 2429 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2430 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2431 } else { 2432 PartPtr = cast<GetElementPtrInst>( 2433 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2434 PartPtr->setIsInBounds(InBounds); 2435 } 2436 2437 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2438 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2439 }; 2440 2441 // Handle Stores: 2442 if (SI) { 2443 setDebugLocFromInst(Builder, SI); 2444 2445 for (unsigned Part = 0; Part < UF; ++Part) { 2446 Instruction *NewSI = nullptr; 2447 Value *StoredVal = State.get(StoredValue, Part); 2448 if (CreateGatherScatter) { 2449 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2450 Value *VectorGep = State.get(Addr, Part); 2451 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2452 MaskPart); 2453 } else { 2454 if (Reverse) { 2455 // If we store to reverse consecutive memory locations, then we need 2456 // to reverse the order of elements in the stored value. 2457 StoredVal = reverseVector(StoredVal); 2458 // We don't want to update the value in the map as it might be used in 2459 // another expression. So don't call resetVectorValue(StoredVal). 2460 } 2461 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2462 if (isMaskRequired) 2463 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2464 BlockInMaskParts[Part]); 2465 else 2466 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2467 } 2468 addMetadata(NewSI, SI); 2469 } 2470 return; 2471 } 2472 2473 // Handle loads. 2474 assert(LI && "Must have a load instruction"); 2475 setDebugLocFromInst(Builder, LI); 2476 for (unsigned Part = 0; Part < UF; ++Part) { 2477 Value *NewLI; 2478 if (CreateGatherScatter) { 2479 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2480 Value *VectorGep = State.get(Addr, Part); 2481 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2482 nullptr, "wide.masked.gather"); 2483 addMetadata(NewLI, LI); 2484 } else { 2485 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2486 if (isMaskRequired) 2487 NewLI = Builder.CreateMaskedLoad( 2488 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2489 "wide.masked.load"); 2490 else 2491 NewLI = 2492 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2493 2494 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2495 addMetadata(NewLI, LI); 2496 if (Reverse) 2497 NewLI = reverseVector(NewLI); 2498 } 2499 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2500 } 2501 } 2502 2503 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2504 const VPIteration &Instance, 2505 bool IfPredicateInstr) { 2506 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2507 2508 setDebugLocFromInst(Builder, Instr); 2509 2510 // Does this instruction return a value ? 2511 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2512 2513 Instruction *Cloned = Instr->clone(); 2514 if (!IsVoidRetTy) 2515 Cloned->setName(Instr->getName() + ".cloned"); 2516 2517 // Replace the operands of the cloned instructions with their scalar 2518 // equivalents in the new loop. 2519 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2520 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2521 Cloned->setOperand(op, NewOp); 2522 } 2523 addNewMetadata(Cloned, Instr); 2524 2525 // Place the cloned scalar in the new loop. 2526 Builder.Insert(Cloned); 2527 2528 // Add the cloned scalar to the scalar map entry. 2529 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2530 2531 // If we just cloned a new assumption, add it the assumption cache. 2532 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2533 if (II->getIntrinsicID() == Intrinsic::assume) 2534 AC->registerAssumption(II); 2535 2536 // End if-block. 2537 if (IfPredicateInstr) 2538 PredicatedInstructions.push_back(Cloned); 2539 } 2540 2541 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2542 Value *End, Value *Step, 2543 Instruction *DL) { 2544 BasicBlock *Header = L->getHeader(); 2545 BasicBlock *Latch = L->getLoopLatch(); 2546 // As we're just creating this loop, it's possible no latch exists 2547 // yet. If so, use the header as this will be a single block loop. 2548 if (!Latch) 2549 Latch = Header; 2550 2551 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2552 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2553 setDebugLocFromInst(Builder, OldInst); 2554 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2555 2556 Builder.SetInsertPoint(Latch->getTerminator()); 2557 setDebugLocFromInst(Builder, OldInst); 2558 2559 // Create i+1 and fill the PHINode. 2560 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2561 Induction->addIncoming(Start, L->getLoopPreheader()); 2562 Induction->addIncoming(Next, Latch); 2563 // Create the compare. 2564 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2565 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2566 2567 // Now we have two terminators. Remove the old one from the block. 2568 Latch->getTerminator()->eraseFromParent(); 2569 2570 return Induction; 2571 } 2572 2573 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2574 if (TripCount) 2575 return TripCount; 2576 2577 assert(L && "Create Trip Count for null loop."); 2578 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2579 // Find the loop boundaries. 2580 ScalarEvolution *SE = PSE.getSE(); 2581 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2582 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2583 "Invalid loop count"); 2584 2585 Type *IdxTy = Legal->getWidestInductionType(); 2586 assert(IdxTy && "No type for induction"); 2587 2588 // The exit count might have the type of i64 while the phi is i32. This can 2589 // happen if we have an induction variable that is sign extended before the 2590 // compare. The only way that we get a backedge taken count is that the 2591 // induction variable was signed and as such will not overflow. In such a case 2592 // truncation is legal. 2593 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2594 IdxTy->getPrimitiveSizeInBits()) 2595 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2596 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2597 2598 // Get the total trip count from the count by adding 1. 2599 const SCEV *ExitCount = SE->getAddExpr( 2600 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2601 2602 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2603 2604 // Expand the trip count and place the new instructions in the preheader. 2605 // Notice that the pre-header does not change, only the loop body. 2606 SCEVExpander Exp(*SE, DL, "induction"); 2607 2608 // Count holds the overall loop count (N). 2609 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2610 L->getLoopPreheader()->getTerminator()); 2611 2612 if (TripCount->getType()->isPointerTy()) 2613 TripCount = 2614 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2615 L->getLoopPreheader()->getTerminator()); 2616 2617 return TripCount; 2618 } 2619 2620 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2621 if (VectorTripCount) 2622 return VectorTripCount; 2623 2624 Value *TC = getOrCreateTripCount(L); 2625 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2626 2627 Type *Ty = TC->getType(); 2628 Constant *Step = ConstantInt::get(Ty, VF * UF); 2629 2630 // If the tail is to be folded by masking, round the number of iterations N 2631 // up to a multiple of Step instead of rounding down. This is done by first 2632 // adding Step-1 and then rounding down. Note that it's ok if this addition 2633 // overflows: the vector induction variable will eventually wrap to zero given 2634 // that it starts at zero and its Step is a power of two; the loop will then 2635 // exit, with the last early-exit vector comparison also producing all-true. 2636 if (Cost->foldTailByMasking()) { 2637 assert(isPowerOf2_32(VF * UF) && 2638 "VF*UF must be a power of 2 when folding tail by masking"); 2639 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2640 } 2641 2642 // Now we need to generate the expression for the part of the loop that the 2643 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2644 // iterations are not required for correctness, or N - Step, otherwise. Step 2645 // is equal to the vectorization factor (number of SIMD elements) times the 2646 // unroll factor (number of SIMD instructions). 2647 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2648 2649 // If there is a non-reversed interleaved group that may speculatively access 2650 // memory out-of-bounds, we need to ensure that there will be at least one 2651 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2652 // the trip count, we set the remainder to be equal to the step. If the step 2653 // does not evenly divide the trip count, no adjustment is necessary since 2654 // there will already be scalar iterations. Note that the minimum iterations 2655 // check ensures that N >= Step. 2656 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2657 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2658 R = Builder.CreateSelect(IsZero, Step, R); 2659 } 2660 2661 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2662 2663 return VectorTripCount; 2664 } 2665 2666 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2667 const DataLayout &DL) { 2668 // Verify that V is a vector type with same number of elements as DstVTy. 2669 unsigned VF = DstVTy->getNumElements(); 2670 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2671 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2672 Type *SrcElemTy = SrcVecTy->getElementType(); 2673 Type *DstElemTy = DstVTy->getElementType(); 2674 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2675 "Vector elements must have same size"); 2676 2677 // Do a direct cast if element types are castable. 2678 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2679 return Builder.CreateBitOrPointerCast(V, DstVTy); 2680 } 2681 // V cannot be directly casted to desired vector type. 2682 // May happen when V is a floating point vector but DstVTy is a vector of 2683 // pointers or vice-versa. Handle this using a two-step bitcast using an 2684 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2685 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2686 "Only one type should be a pointer type"); 2687 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2688 "Only one type should be a floating point type"); 2689 Type *IntTy = 2690 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2691 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2692 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2693 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2694 } 2695 2696 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2697 BasicBlock *Bypass) { 2698 Value *Count = getOrCreateTripCount(L); 2699 // Reuse existing vector loop preheader for TC checks. 2700 // Note that new preheader block is generated for vector loop. 2701 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2702 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2703 2704 // Generate code to check if the loop's trip count is less than VF * UF, or 2705 // equal to it in case a scalar epilogue is required; this implies that the 2706 // vector trip count is zero. This check also covers the case where adding one 2707 // to the backedge-taken count overflowed leading to an incorrect trip count 2708 // of zero. In this case we will also jump to the scalar loop. 2709 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2710 : ICmpInst::ICMP_ULT; 2711 2712 // If tail is to be folded, vector loop takes care of all iterations. 2713 Value *CheckMinIters = Builder.getFalse(); 2714 if (!Cost->foldTailByMasking()) 2715 CheckMinIters = Builder.CreateICmp( 2716 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2717 "min.iters.check"); 2718 2719 // Create new preheader for vector loop. 2720 LoopVectorPreHeader = 2721 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2722 "vector.ph"); 2723 2724 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2725 DT->getNode(Bypass)->getIDom()) && 2726 "TC check is expected to dominate Bypass"); 2727 2728 // Update dominator for Bypass & LoopExit. 2729 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2730 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2731 2732 ReplaceInstWithInst( 2733 TCCheckBlock->getTerminator(), 2734 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2735 LoopBypassBlocks.push_back(TCCheckBlock); 2736 } 2737 2738 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2739 // Reuse existing vector loop preheader for SCEV checks. 2740 // Note that new preheader block is generated for vector loop. 2741 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2742 2743 // Generate the code to check that the SCEV assumptions that we made. 2744 // We want the new basic block to start at the first instruction in a 2745 // sequence of instructions that form a check. 2746 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2747 "scev.check"); 2748 Value *SCEVCheck = Exp.expandCodeForPredicate( 2749 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2750 2751 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2752 if (C->isZero()) 2753 return; 2754 2755 assert(!SCEVCheckBlock->getParent()->hasOptSize() && 2756 "Cannot SCEV check stride or overflow when optimizing for size"); 2757 2758 SCEVCheckBlock->setName("vector.scevcheck"); 2759 // Create new preheader for vector loop. 2760 LoopVectorPreHeader = 2761 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2762 nullptr, "vector.ph"); 2763 2764 // Update dominator only if this is first RT check. 2765 if (LoopBypassBlocks.empty()) { 2766 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2767 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2768 } 2769 2770 ReplaceInstWithInst( 2771 SCEVCheckBlock->getTerminator(), 2772 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2773 LoopBypassBlocks.push_back(SCEVCheckBlock); 2774 AddedSafetyChecks = true; 2775 } 2776 2777 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2778 // VPlan-native path does not do any analysis for runtime checks currently. 2779 if (EnableVPlanNativePath) 2780 return; 2781 2782 // Reuse existing vector loop preheader for runtime memory checks. 2783 // Note that new preheader block is generated for vector loop. 2784 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2785 2786 // Generate the code that checks in runtime if arrays overlap. We put the 2787 // checks into a separate block to make the more common case of few elements 2788 // faster. 2789 Instruction *FirstCheckInst; 2790 Instruction *MemRuntimeCheck; 2791 std::tie(FirstCheckInst, MemRuntimeCheck) = 2792 Legal->getLAI()->addRuntimeChecks(MemCheckBlock->getTerminator()); 2793 if (!MemRuntimeCheck) 2794 return; 2795 2796 if (MemCheckBlock->getParent()->hasOptSize()) { 2797 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2798 "Cannot emit memory checks when optimizing for size, unless forced " 2799 "to vectorize."); 2800 ORE->emit([&]() { 2801 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2802 L->getStartLoc(), L->getHeader()) 2803 << "Code-size may be reduced by not forcing " 2804 "vectorization, or by source-code modifications " 2805 "eliminating the need for runtime checks " 2806 "(e.g., adding 'restrict')."; 2807 }); 2808 } 2809 2810 MemCheckBlock->setName("vector.memcheck"); 2811 // Create new preheader for vector loop. 2812 LoopVectorPreHeader = 2813 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2814 "vector.ph"); 2815 2816 // Update dominator only if this is first RT check. 2817 if (LoopBypassBlocks.empty()) { 2818 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2819 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2820 } 2821 2822 ReplaceInstWithInst( 2823 MemCheckBlock->getTerminator(), 2824 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2825 LoopBypassBlocks.push_back(MemCheckBlock); 2826 AddedSafetyChecks = true; 2827 2828 // We currently don't use LoopVersioning for the actual loop cloning but we 2829 // still use it to add the noalias metadata. 2830 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2831 PSE.getSE()); 2832 LVer->prepareNoAliasMetadata(); 2833 } 2834 2835 Value *InnerLoopVectorizer::emitTransformedIndex( 2836 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2837 const InductionDescriptor &ID) const { 2838 2839 SCEVExpander Exp(*SE, DL, "induction"); 2840 auto Step = ID.getStep(); 2841 auto StartValue = ID.getStartValue(); 2842 assert(Index->getType() == Step->getType() && 2843 "Index type does not match StepValue type"); 2844 2845 // Note: the IR at this point is broken. We cannot use SE to create any new 2846 // SCEV and then expand it, hoping that SCEV's simplification will give us 2847 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2848 // lead to various SCEV crashes. So all we can do is to use builder and rely 2849 // on InstCombine for future simplifications. Here we handle some trivial 2850 // cases only. 2851 auto CreateAdd = [&B](Value *X, Value *Y) { 2852 assert(X->getType() == Y->getType() && "Types don't match!"); 2853 if (auto *CX = dyn_cast<ConstantInt>(X)) 2854 if (CX->isZero()) 2855 return Y; 2856 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2857 if (CY->isZero()) 2858 return X; 2859 return B.CreateAdd(X, Y); 2860 }; 2861 2862 auto CreateMul = [&B](Value *X, Value *Y) { 2863 assert(X->getType() == Y->getType() && "Types don't match!"); 2864 if (auto *CX = dyn_cast<ConstantInt>(X)) 2865 if (CX->isOne()) 2866 return Y; 2867 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2868 if (CY->isOne()) 2869 return X; 2870 return B.CreateMul(X, Y); 2871 }; 2872 2873 switch (ID.getKind()) { 2874 case InductionDescriptor::IK_IntInduction: { 2875 assert(Index->getType() == StartValue->getType() && 2876 "Index type does not match StartValue type"); 2877 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2878 return B.CreateSub(StartValue, Index); 2879 auto *Offset = CreateMul( 2880 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2881 return CreateAdd(StartValue, Offset); 2882 } 2883 case InductionDescriptor::IK_PtrInduction: { 2884 assert(isa<SCEVConstant>(Step) && 2885 "Expected constant step for pointer induction"); 2886 return B.CreateGEP( 2887 StartValue->getType()->getPointerElementType(), StartValue, 2888 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2889 &*B.GetInsertPoint()))); 2890 } 2891 case InductionDescriptor::IK_FpInduction: { 2892 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2893 auto InductionBinOp = ID.getInductionBinOp(); 2894 assert(InductionBinOp && 2895 (InductionBinOp->getOpcode() == Instruction::FAdd || 2896 InductionBinOp->getOpcode() == Instruction::FSub) && 2897 "Original bin op should be defined for FP induction"); 2898 2899 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2900 2901 // Floating point operations had to be 'fast' to enable the induction. 2902 FastMathFlags Flags; 2903 Flags.setFast(); 2904 2905 Value *MulExp = B.CreateFMul(StepValue, Index); 2906 if (isa<Instruction>(MulExp)) 2907 // We have to check, the MulExp may be a constant. 2908 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2909 2910 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2911 "induction"); 2912 if (isa<Instruction>(BOp)) 2913 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2914 2915 return BOp; 2916 } 2917 case InductionDescriptor::IK_NoInduction: 2918 return nullptr; 2919 } 2920 llvm_unreachable("invalid enum"); 2921 } 2922 2923 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2924 /* 2925 In this function we generate a new loop. The new loop will contain 2926 the vectorized instructions while the old loop will continue to run the 2927 scalar remainder. 2928 2929 [ ] <-- loop iteration number check. 2930 / | 2931 / v 2932 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2933 | / | 2934 | / v 2935 || [ ] <-- vector pre header. 2936 |/ | 2937 | v 2938 | [ ] \ 2939 | [ ]_| <-- vector loop. 2940 | | 2941 | v 2942 | -[ ] <--- middle-block. 2943 | / | 2944 | / v 2945 -|- >[ ] <--- new preheader. 2946 | | 2947 | v 2948 | [ ] \ 2949 | [ ]_| <-- old scalar loop to handle remainder. 2950 \ | 2951 \ v 2952 >[ ] <-- exit block. 2953 ... 2954 */ 2955 2956 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2957 2958 // Some loops have a single integer induction variable, while other loops 2959 // don't. One example is c++ iterators that often have multiple pointer 2960 // induction variables. In the code below we also support a case where we 2961 // don't have a single induction variable. 2962 // 2963 // We try to obtain an induction variable from the original loop as hard 2964 // as possible. However if we don't find one that: 2965 // - is an integer 2966 // - counts from zero, stepping by one 2967 // - is the size of the widest induction variable type 2968 // then we create a new one. 2969 OldInduction = Legal->getPrimaryInduction(); 2970 Type *IdxTy = Legal->getWidestInductionType(); 2971 2972 // Split the single block loop into the two loop structure described above. 2973 LoopScalarBody = OrigLoop->getHeader(); 2974 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2975 LoopExitBlock = OrigLoop->getExitBlock(); 2976 assert(LoopExitBlock && "Must have an exit block"); 2977 assert(LoopVectorPreHeader && "Invalid loop structure"); 2978 2979 LoopMiddleBlock = 2980 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2981 LI, nullptr, "middle.block"); 2982 LoopScalarPreHeader = 2983 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 2984 nullptr, "scalar.ph"); 2985 // We intentionally don't let SplitBlock to update LoopInfo since 2986 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 2987 // LoopVectorBody is explicitly added to the correct place few lines later. 2988 LoopVectorBody = 2989 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2990 nullptr, nullptr, "vector.body"); 2991 2992 // Update dominator for loop exit. 2993 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 2994 2995 // Create and register the new vector loop. 2996 Loop *Lp = LI->AllocateLoop(); 2997 Loop *ParentLoop = OrigLoop->getParentLoop(); 2998 2999 // Insert the new loop into the loop nest and register the new basic blocks 3000 // before calling any utilities such as SCEV that require valid LoopInfo. 3001 if (ParentLoop) { 3002 ParentLoop->addChildLoop(Lp); 3003 } else { 3004 LI->addTopLevelLoop(Lp); 3005 } 3006 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3007 3008 // Find the loop boundaries. 3009 Value *Count = getOrCreateTripCount(Lp); 3010 3011 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3012 3013 // Now, compare the new count to zero. If it is zero skip the vector loop and 3014 // jump to the scalar loop. This check also covers the case where the 3015 // backedge-taken count is uint##_max: adding one to it will overflow leading 3016 // to an incorrect trip count of zero. In this (rare) case we will also jump 3017 // to the scalar loop. 3018 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3019 3020 // Generate the code to check any assumptions that we've made for SCEV 3021 // expressions. 3022 emitSCEVChecks(Lp, LoopScalarPreHeader); 3023 3024 // Generate the code that checks in runtime if arrays overlap. We put the 3025 // checks into a separate block to make the more common case of few elements 3026 // faster. 3027 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3028 3029 // Generate the induction variable. 3030 // The loop step is equal to the vectorization factor (num of SIMD elements) 3031 // times the unroll factor (num of SIMD instructions). 3032 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3033 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3034 Induction = 3035 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3036 getDebugLocFromInstOrOperands(OldInduction)); 3037 3038 // We are going to resume the execution of the scalar loop. 3039 // Go over all of the induction variables that we found and fix the 3040 // PHIs that are left in the scalar version of the loop. 3041 // The starting values of PHI nodes depend on the counter of the last 3042 // iteration in the vectorized loop. 3043 // If we come from a bypass edge then we need to start from the original 3044 // start value. 3045 3046 // This variable saves the new starting index for the scalar loop. It is used 3047 // to test if there are any tail iterations left once the vector loop has 3048 // completed. 3049 for (auto &InductionEntry : Legal->getInductionVars()) { 3050 PHINode *OrigPhi = InductionEntry.first; 3051 InductionDescriptor II = InductionEntry.second; 3052 3053 // Create phi nodes to merge from the backedge-taken check block. 3054 PHINode *BCResumeVal = 3055 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3056 LoopScalarPreHeader->getTerminator()); 3057 // Copy original phi DL over to the new one. 3058 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3059 Value *&EndValue = IVEndValues[OrigPhi]; 3060 if (OrigPhi == OldInduction) { 3061 // We know what the end value is. 3062 EndValue = CountRoundDown; 3063 } else { 3064 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3065 Type *StepType = II.getStep()->getType(); 3066 Instruction::CastOps CastOp = 3067 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3068 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3069 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3070 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3071 EndValue->setName("ind.end"); 3072 } 3073 3074 // The new PHI merges the original incoming value, in case of a bypass, 3075 // or the value at the end of the vectorized loop. 3076 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3077 3078 // Fix the scalar body counter (PHI node). 3079 // The old induction's phi node in the scalar body needs the truncated 3080 // value. 3081 for (BasicBlock *BB : LoopBypassBlocks) 3082 BCResumeVal->addIncoming(II.getStartValue(), BB); 3083 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3084 } 3085 3086 // We need the OrigLoop (scalar loop part) latch terminator to help 3087 // produce correct debug info for the middle block BB instructions. 3088 // The legality check stage guarantees that the loop will have a single 3089 // latch. 3090 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3091 "Scalar loop latch terminator isn't a branch"); 3092 BranchInst *ScalarLatchBr = 3093 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3094 3095 // Add a check in the middle block to see if we have completed 3096 // all of the iterations in the first vector loop. 3097 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3098 // If tail is to be folded, we know we don't need to run the remainder. 3099 Value *CmpN = Builder.getTrue(); 3100 if (!Cost->foldTailByMasking()) { 3101 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3102 CountRoundDown, "cmp.n", 3103 LoopMiddleBlock->getTerminator()); 3104 3105 // Here we use the same DebugLoc as the scalar loop latch branch instead 3106 // of the corresponding compare because they may have ended up with 3107 // different line numbers and we want to avoid awkward line stepping while 3108 // debugging. Eg. if the compare has got a line number inside the loop. 3109 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3110 } 3111 3112 BranchInst *BrInst = 3113 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3114 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3115 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3116 3117 // Get ready to start creating new instructions into the vectorized body. 3118 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3119 "Inconsistent vector loop preheader"); 3120 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3121 3122 Optional<MDNode *> VectorizedLoopID = 3123 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3124 LLVMLoopVectorizeFollowupVectorized}); 3125 if (VectorizedLoopID.hasValue()) { 3126 Lp->setLoopID(VectorizedLoopID.getValue()); 3127 3128 // Do not setAlreadyVectorized if loop attributes have been defined 3129 // explicitly. 3130 return LoopVectorPreHeader; 3131 } 3132 3133 // Keep all loop hints from the original loop on the vector loop (we'll 3134 // replace the vectorizer-specific hints below). 3135 if (MDNode *LID = OrigLoop->getLoopID()) 3136 Lp->setLoopID(LID); 3137 3138 LoopVectorizeHints Hints(Lp, true, *ORE); 3139 Hints.setAlreadyVectorized(); 3140 3141 #ifdef EXPENSIVE_CHECKS 3142 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3143 LI->verify(*DT); 3144 #endif 3145 3146 return LoopVectorPreHeader; 3147 } 3148 3149 // Fix up external users of the induction variable. At this point, we are 3150 // in LCSSA form, with all external PHIs that use the IV having one input value, 3151 // coming from the remainder loop. We need those PHIs to also have a correct 3152 // value for the IV when arriving directly from the middle block. 3153 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3154 const InductionDescriptor &II, 3155 Value *CountRoundDown, Value *EndValue, 3156 BasicBlock *MiddleBlock) { 3157 // There are two kinds of external IV usages - those that use the value 3158 // computed in the last iteration (the PHI) and those that use the penultimate 3159 // value (the value that feeds into the phi from the loop latch). 3160 // We allow both, but they, obviously, have different values. 3161 3162 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3163 3164 DenseMap<Value *, Value *> MissingVals; 3165 3166 // An external user of the last iteration's value should see the value that 3167 // the remainder loop uses to initialize its own IV. 3168 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3169 for (User *U : PostInc->users()) { 3170 Instruction *UI = cast<Instruction>(U); 3171 if (!OrigLoop->contains(UI)) { 3172 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3173 MissingVals[UI] = EndValue; 3174 } 3175 } 3176 3177 // An external user of the penultimate value need to see EndValue - Step. 3178 // The simplest way to get this is to recompute it from the constituent SCEVs, 3179 // that is Start + (Step * (CRD - 1)). 3180 for (User *U : OrigPhi->users()) { 3181 auto *UI = cast<Instruction>(U); 3182 if (!OrigLoop->contains(UI)) { 3183 const DataLayout &DL = 3184 OrigLoop->getHeader()->getModule()->getDataLayout(); 3185 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3186 3187 IRBuilder<> B(MiddleBlock->getTerminator()); 3188 Value *CountMinusOne = B.CreateSub( 3189 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3190 Value *CMO = 3191 !II.getStep()->getType()->isIntegerTy() 3192 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3193 II.getStep()->getType()) 3194 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3195 CMO->setName("cast.cmo"); 3196 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3197 Escape->setName("ind.escape"); 3198 MissingVals[UI] = Escape; 3199 } 3200 } 3201 3202 for (auto &I : MissingVals) { 3203 PHINode *PHI = cast<PHINode>(I.first); 3204 // One corner case we have to handle is two IVs "chasing" each-other, 3205 // that is %IV2 = phi [...], [ %IV1, %latch ] 3206 // In this case, if IV1 has an external use, we need to avoid adding both 3207 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3208 // don't already have an incoming value for the middle block. 3209 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3210 PHI->addIncoming(I.second, MiddleBlock); 3211 } 3212 } 3213 3214 namespace { 3215 3216 struct CSEDenseMapInfo { 3217 static bool canHandle(const Instruction *I) { 3218 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3219 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3220 } 3221 3222 static inline Instruction *getEmptyKey() { 3223 return DenseMapInfo<Instruction *>::getEmptyKey(); 3224 } 3225 3226 static inline Instruction *getTombstoneKey() { 3227 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3228 } 3229 3230 static unsigned getHashValue(const Instruction *I) { 3231 assert(canHandle(I) && "Unknown instruction!"); 3232 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3233 I->value_op_end())); 3234 } 3235 3236 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3237 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3238 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3239 return LHS == RHS; 3240 return LHS->isIdenticalTo(RHS); 3241 } 3242 }; 3243 3244 } // end anonymous namespace 3245 3246 ///Perform cse of induction variable instructions. 3247 static void cse(BasicBlock *BB) { 3248 // Perform simple cse. 3249 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3250 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3251 Instruction *In = &*I++; 3252 3253 if (!CSEDenseMapInfo::canHandle(In)) 3254 continue; 3255 3256 // Check if we can replace this instruction with any of the 3257 // visited instructions. 3258 if (Instruction *V = CSEMap.lookup(In)) { 3259 In->replaceAllUsesWith(V); 3260 In->eraseFromParent(); 3261 continue; 3262 } 3263 3264 CSEMap[In] = In; 3265 } 3266 } 3267 3268 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3269 unsigned VF, 3270 bool &NeedToScalarize) { 3271 Function *F = CI->getCalledFunction(); 3272 Type *ScalarRetTy = CI->getType(); 3273 SmallVector<Type *, 4> Tys, ScalarTys; 3274 for (auto &ArgOp : CI->arg_operands()) 3275 ScalarTys.push_back(ArgOp->getType()); 3276 3277 // Estimate cost of scalarized vector call. The source operands are assumed 3278 // to be vectors, so we need to extract individual elements from there, 3279 // execute VF scalar calls, and then gather the result into the vector return 3280 // value. 3281 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3282 if (VF == 1) 3283 return ScalarCallCost; 3284 3285 // Compute corresponding vector type for return value and arguments. 3286 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3287 for (Type *ScalarTy : ScalarTys) 3288 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3289 3290 // Compute costs of unpacking argument values for the scalar calls and 3291 // packing the return values to a vector. 3292 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3293 3294 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3295 3296 // If we can't emit a vector call for this function, then the currently found 3297 // cost is the cost we need to return. 3298 NeedToScalarize = true; 3299 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3300 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3301 3302 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3303 return Cost; 3304 3305 // If the corresponding vector cost is cheaper, return its cost. 3306 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3307 if (VectorCallCost < Cost) { 3308 NeedToScalarize = false; 3309 return VectorCallCost; 3310 } 3311 return Cost; 3312 } 3313 3314 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3315 unsigned VF) { 3316 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3317 assert(ID && "Expected intrinsic call!"); 3318 3319 FastMathFlags FMF; 3320 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3321 FMF = FPMO->getFastMathFlags(); 3322 3323 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3324 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF, CI); 3325 } 3326 3327 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3328 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3329 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3330 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3331 } 3332 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3333 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3334 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3335 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3336 } 3337 3338 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3339 // For every instruction `I` in MinBWs, truncate the operands, create a 3340 // truncated version of `I` and reextend its result. InstCombine runs 3341 // later and will remove any ext/trunc pairs. 3342 SmallPtrSet<Value *, 4> Erased; 3343 for (const auto &KV : Cost->getMinimalBitwidths()) { 3344 // If the value wasn't vectorized, we must maintain the original scalar 3345 // type. The absence of the value from VectorLoopValueMap indicates that it 3346 // wasn't vectorized. 3347 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3348 continue; 3349 for (unsigned Part = 0; Part < UF; ++Part) { 3350 Value *I = getOrCreateVectorValue(KV.first, Part); 3351 if (Erased.find(I) != Erased.end() || I->use_empty() || 3352 !isa<Instruction>(I)) 3353 continue; 3354 Type *OriginalTy = I->getType(); 3355 Type *ScalarTruncatedTy = 3356 IntegerType::get(OriginalTy->getContext(), KV.second); 3357 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3358 OriginalTy->getVectorNumElements()); 3359 if (TruncatedTy == OriginalTy) 3360 continue; 3361 3362 IRBuilder<> B(cast<Instruction>(I)); 3363 auto ShrinkOperand = [&](Value *V) -> Value * { 3364 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3365 if (ZI->getSrcTy() == TruncatedTy) 3366 return ZI->getOperand(0); 3367 return B.CreateZExtOrTrunc(V, TruncatedTy); 3368 }; 3369 3370 // The actual instruction modification depends on the instruction type, 3371 // unfortunately. 3372 Value *NewI = nullptr; 3373 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3374 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3375 ShrinkOperand(BO->getOperand(1))); 3376 3377 // Any wrapping introduced by shrinking this operation shouldn't be 3378 // considered undefined behavior. So, we can't unconditionally copy 3379 // arithmetic wrapping flags to NewI. 3380 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3381 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3382 NewI = 3383 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3384 ShrinkOperand(CI->getOperand(1))); 3385 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3386 NewI = B.CreateSelect(SI->getCondition(), 3387 ShrinkOperand(SI->getTrueValue()), 3388 ShrinkOperand(SI->getFalseValue())); 3389 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3390 switch (CI->getOpcode()) { 3391 default: 3392 llvm_unreachable("Unhandled cast!"); 3393 case Instruction::Trunc: 3394 NewI = ShrinkOperand(CI->getOperand(0)); 3395 break; 3396 case Instruction::SExt: 3397 NewI = B.CreateSExtOrTrunc( 3398 CI->getOperand(0), 3399 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3400 break; 3401 case Instruction::ZExt: 3402 NewI = B.CreateZExtOrTrunc( 3403 CI->getOperand(0), 3404 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3405 break; 3406 } 3407 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3408 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3409 auto *O0 = B.CreateZExtOrTrunc( 3410 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3411 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3412 auto *O1 = B.CreateZExtOrTrunc( 3413 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3414 3415 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3416 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3417 // Don't do anything with the operands, just extend the result. 3418 continue; 3419 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3420 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3421 auto *O0 = B.CreateZExtOrTrunc( 3422 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3423 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3424 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3425 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3426 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3427 auto *O0 = B.CreateZExtOrTrunc( 3428 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3429 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3430 } else { 3431 // If we don't know what to do, be conservative and don't do anything. 3432 continue; 3433 } 3434 3435 // Lastly, extend the result. 3436 NewI->takeName(cast<Instruction>(I)); 3437 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3438 I->replaceAllUsesWith(Res); 3439 cast<Instruction>(I)->eraseFromParent(); 3440 Erased.insert(I); 3441 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3442 } 3443 } 3444 3445 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3446 for (const auto &KV : Cost->getMinimalBitwidths()) { 3447 // If the value wasn't vectorized, we must maintain the original scalar 3448 // type. The absence of the value from VectorLoopValueMap indicates that it 3449 // wasn't vectorized. 3450 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3451 continue; 3452 for (unsigned Part = 0; Part < UF; ++Part) { 3453 Value *I = getOrCreateVectorValue(KV.first, Part); 3454 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3455 if (Inst && Inst->use_empty()) { 3456 Value *NewI = Inst->getOperand(0); 3457 Inst->eraseFromParent(); 3458 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3459 } 3460 } 3461 } 3462 } 3463 3464 void InnerLoopVectorizer::fixVectorizedLoop() { 3465 // Insert truncates and extends for any truncated instructions as hints to 3466 // InstCombine. 3467 if (VF > 1) 3468 truncateToMinimalBitwidths(); 3469 3470 // Fix widened non-induction PHIs by setting up the PHI operands. 3471 if (OrigPHIsToFix.size()) { 3472 assert(EnableVPlanNativePath && 3473 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3474 fixNonInductionPHIs(); 3475 } 3476 3477 // At this point every instruction in the original loop is widened to a 3478 // vector form. Now we need to fix the recurrences in the loop. These PHI 3479 // nodes are currently empty because we did not want to introduce cycles. 3480 // This is the second stage of vectorizing recurrences. 3481 fixCrossIterationPHIs(); 3482 3483 // Forget the original basic block. 3484 PSE.getSE()->forgetLoop(OrigLoop); 3485 3486 // Fix-up external users of the induction variables. 3487 for (auto &Entry : Legal->getInductionVars()) 3488 fixupIVUsers(Entry.first, Entry.second, 3489 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3490 IVEndValues[Entry.first], LoopMiddleBlock); 3491 3492 fixLCSSAPHIs(); 3493 for (Instruction *PI : PredicatedInstructions) 3494 sinkScalarOperands(&*PI); 3495 3496 // Remove redundant induction instructions. 3497 cse(LoopVectorBody); 3498 3499 // Set/update profile weights for the vector and remainder loops as original 3500 // loop iterations are now distributed among them. Note that original loop 3501 // represented by LoopScalarBody becomes remainder loop after vectorization. 3502 // 3503 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3504 // end up getting slightly roughened result but that should be OK since 3505 // profile is not inherently precise anyway. Note also possible bypass of 3506 // vector code caused by legality checks is ignored, assigning all the weight 3507 // to the vector loop, optimistically. 3508 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3509 LI->getLoopFor(LoopVectorBody), 3510 LI->getLoopFor(LoopScalarBody), VF * UF); 3511 } 3512 3513 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3514 // In order to support recurrences we need to be able to vectorize Phi nodes. 3515 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3516 // stage #2: We now need to fix the recurrences by adding incoming edges to 3517 // the currently empty PHI nodes. At this point every instruction in the 3518 // original loop is widened to a vector form so we can use them to construct 3519 // the incoming edges. 3520 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3521 // Handle first-order recurrences and reductions that need to be fixed. 3522 if (Legal->isFirstOrderRecurrence(&Phi)) 3523 fixFirstOrderRecurrence(&Phi); 3524 else if (Legal->isReductionVariable(&Phi)) 3525 fixReduction(&Phi); 3526 } 3527 } 3528 3529 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3530 // This is the second phase of vectorizing first-order recurrences. An 3531 // overview of the transformation is described below. Suppose we have the 3532 // following loop. 3533 // 3534 // for (int i = 0; i < n; ++i) 3535 // b[i] = a[i] - a[i - 1]; 3536 // 3537 // There is a first-order recurrence on "a". For this loop, the shorthand 3538 // scalar IR looks like: 3539 // 3540 // scalar.ph: 3541 // s_init = a[-1] 3542 // br scalar.body 3543 // 3544 // scalar.body: 3545 // i = phi [0, scalar.ph], [i+1, scalar.body] 3546 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3547 // s2 = a[i] 3548 // b[i] = s2 - s1 3549 // br cond, scalar.body, ... 3550 // 3551 // In this example, s1 is a recurrence because it's value depends on the 3552 // previous iteration. In the first phase of vectorization, we created a 3553 // temporary value for s1. We now complete the vectorization and produce the 3554 // shorthand vector IR shown below (for VF = 4, UF = 1). 3555 // 3556 // vector.ph: 3557 // v_init = vector(..., ..., ..., a[-1]) 3558 // br vector.body 3559 // 3560 // vector.body 3561 // i = phi [0, vector.ph], [i+4, vector.body] 3562 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3563 // v2 = a[i, i+1, i+2, i+3]; 3564 // v3 = vector(v1(3), v2(0, 1, 2)) 3565 // b[i, i+1, i+2, i+3] = v2 - v3 3566 // br cond, vector.body, middle.block 3567 // 3568 // middle.block: 3569 // x = v2(3) 3570 // br scalar.ph 3571 // 3572 // scalar.ph: 3573 // s_init = phi [x, middle.block], [a[-1], otherwise] 3574 // br scalar.body 3575 // 3576 // After execution completes the vector loop, we extract the next value of 3577 // the recurrence (x) to use as the initial value in the scalar loop. 3578 3579 // Get the original loop preheader and single loop latch. 3580 auto *Preheader = OrigLoop->getLoopPreheader(); 3581 auto *Latch = OrigLoop->getLoopLatch(); 3582 3583 // Get the initial and previous values of the scalar recurrence. 3584 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3585 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3586 3587 // Create a vector from the initial value. 3588 auto *VectorInit = ScalarInit; 3589 if (VF > 1) { 3590 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3591 VectorInit = Builder.CreateInsertElement( 3592 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3593 Builder.getInt32(VF - 1), "vector.recur.init"); 3594 } 3595 3596 // We constructed a temporary phi node in the first phase of vectorization. 3597 // This phi node will eventually be deleted. 3598 Builder.SetInsertPoint( 3599 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3600 3601 // Create a phi node for the new recurrence. The current value will either be 3602 // the initial value inserted into a vector or loop-varying vector value. 3603 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3604 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3605 3606 // Get the vectorized previous value of the last part UF - 1. It appears last 3607 // among all unrolled iterations, due to the order of their construction. 3608 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3609 3610 // Find and set the insertion point after the previous value if it is an 3611 // instruction. 3612 BasicBlock::iterator InsertPt; 3613 // Note that the previous value may have been constant-folded so it is not 3614 // guaranteed to be an instruction in the vector loop. 3615 // FIXME: Loop invariant values do not form recurrences. We should deal with 3616 // them earlier. 3617 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3618 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3619 else { 3620 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3621 if (isa<PHINode>(PreviousLastPart)) 3622 // If the previous value is a phi node, we should insert after all the phi 3623 // nodes in the block containing the PHI to avoid breaking basic block 3624 // verification. Note that the basic block may be different to 3625 // LoopVectorBody, in case we predicate the loop. 3626 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3627 else 3628 InsertPt = ++PreviousInst->getIterator(); 3629 } 3630 Builder.SetInsertPoint(&*InsertPt); 3631 3632 // We will construct a vector for the recurrence by combining the values for 3633 // the current and previous iterations. This is the required shuffle mask. 3634 SmallVector<Constant *, 8> ShuffleMask(VF); 3635 ShuffleMask[0] = Builder.getInt32(VF - 1); 3636 for (unsigned I = 1; I < VF; ++I) 3637 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3638 3639 // The vector from which to take the initial value for the current iteration 3640 // (actual or unrolled). Initially, this is the vector phi node. 3641 Value *Incoming = VecPhi; 3642 3643 // Shuffle the current and previous vector and update the vector parts. 3644 for (unsigned Part = 0; Part < UF; ++Part) { 3645 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3646 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3647 auto *Shuffle = 3648 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3649 ConstantVector::get(ShuffleMask)) 3650 : Incoming; 3651 PhiPart->replaceAllUsesWith(Shuffle); 3652 cast<Instruction>(PhiPart)->eraseFromParent(); 3653 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3654 Incoming = PreviousPart; 3655 } 3656 3657 // Fix the latch value of the new recurrence in the vector loop. 3658 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3659 3660 // Extract the last vector element in the middle block. This will be the 3661 // initial value for the recurrence when jumping to the scalar loop. 3662 auto *ExtractForScalar = Incoming; 3663 if (VF > 1) { 3664 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3665 ExtractForScalar = Builder.CreateExtractElement( 3666 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3667 } 3668 // Extract the second last element in the middle block if the 3669 // Phi is used outside the loop. We need to extract the phi itself 3670 // and not the last element (the phi update in the current iteration). This 3671 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3672 // when the scalar loop is not run at all. 3673 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3674 if (VF > 1) 3675 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3676 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3677 // When loop is unrolled without vectorizing, initialize 3678 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3679 // `Incoming`. This is analogous to the vectorized case above: extracting the 3680 // second last element when VF > 1. 3681 else if (UF > 1) 3682 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3683 3684 // Fix the initial value of the original recurrence in the scalar loop. 3685 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3686 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3687 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3688 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3689 Start->addIncoming(Incoming, BB); 3690 } 3691 3692 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3693 Phi->setName("scalar.recur"); 3694 3695 // Finally, fix users of the recurrence outside the loop. The users will need 3696 // either the last value of the scalar recurrence or the last value of the 3697 // vector recurrence we extracted in the middle block. Since the loop is in 3698 // LCSSA form, we just need to find all the phi nodes for the original scalar 3699 // recurrence in the exit block, and then add an edge for the middle block. 3700 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3701 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3702 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3703 } 3704 } 3705 } 3706 3707 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3708 Constant *Zero = Builder.getInt32(0); 3709 3710 // Get it's reduction variable descriptor. 3711 assert(Legal->isReductionVariable(Phi) && 3712 "Unable to find the reduction variable"); 3713 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3714 3715 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3716 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3717 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3718 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3719 RdxDesc.getMinMaxRecurrenceKind(); 3720 setDebugLocFromInst(Builder, ReductionStartValue); 3721 3722 // We need to generate a reduction vector from the incoming scalar. 3723 // To do so, we need to generate the 'identity' vector and override 3724 // one of the elements with the incoming scalar reduction. We need 3725 // to do it in the vector-loop preheader. 3726 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3727 3728 // This is the vector-clone of the value that leaves the loop. 3729 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3730 3731 // Find the reduction identity variable. Zero for addition, or, xor, 3732 // one for multiplication, -1 for And. 3733 Value *Identity; 3734 Value *VectorStart; 3735 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3736 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3737 // MinMax reduction have the start value as their identify. 3738 if (VF == 1) { 3739 VectorStart = Identity = ReductionStartValue; 3740 } else { 3741 VectorStart = Identity = 3742 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3743 } 3744 } else { 3745 // Handle other reduction kinds: 3746 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3747 RK, VecTy->getScalarType()); 3748 if (VF == 1) { 3749 Identity = Iden; 3750 // This vector is the Identity vector where the first element is the 3751 // incoming scalar reduction. 3752 VectorStart = ReductionStartValue; 3753 } else { 3754 Identity = ConstantVector::getSplat({VF, false}, Iden); 3755 3756 // This vector is the Identity vector where the first element is the 3757 // incoming scalar reduction. 3758 VectorStart = 3759 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3760 } 3761 } 3762 3763 // Wrap flags are in general invalid after vectorization, clear them. 3764 clearReductionWrapFlags(RdxDesc); 3765 3766 // Fix the vector-loop phi. 3767 3768 // Reductions do not have to start at zero. They can start with 3769 // any loop invariant values. 3770 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3771 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3772 3773 for (unsigned Part = 0; Part < UF; ++Part) { 3774 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3775 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3776 // Make sure to add the reduction start value only to the 3777 // first unroll part. 3778 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3779 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3780 cast<PHINode>(VecRdxPhi) 3781 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3782 } 3783 3784 // Before each round, move the insertion point right between 3785 // the PHIs and the values we are going to write. 3786 // This allows us to write both PHINodes and the extractelement 3787 // instructions. 3788 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3789 3790 setDebugLocFromInst(Builder, LoopExitInst); 3791 3792 // If tail is folded by masking, the vector value to leave the loop should be 3793 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3794 // instead of the former. 3795 if (Cost->foldTailByMasking()) { 3796 for (unsigned Part = 0; Part < UF; ++Part) { 3797 Value *VecLoopExitInst = 3798 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3799 Value *Sel = nullptr; 3800 for (User *U : VecLoopExitInst->users()) { 3801 if (isa<SelectInst>(U)) { 3802 assert(!Sel && "Reduction exit feeding two selects"); 3803 Sel = U; 3804 } else 3805 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3806 } 3807 assert(Sel && "Reduction exit feeds no select"); 3808 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3809 } 3810 } 3811 3812 // If the vector reduction can be performed in a smaller type, we truncate 3813 // then extend the loop exit value to enable InstCombine to evaluate the 3814 // entire expression in the smaller type. 3815 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3816 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3817 Builder.SetInsertPoint( 3818 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3819 VectorParts RdxParts(UF); 3820 for (unsigned Part = 0; Part < UF; ++Part) { 3821 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3822 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3823 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3824 : Builder.CreateZExt(Trunc, VecTy); 3825 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3826 UI != RdxParts[Part]->user_end();) 3827 if (*UI != Trunc) { 3828 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3829 RdxParts[Part] = Extnd; 3830 } else { 3831 ++UI; 3832 } 3833 } 3834 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3835 for (unsigned Part = 0; Part < UF; ++Part) { 3836 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3837 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3838 } 3839 } 3840 3841 // Reduce all of the unrolled parts into a single vector. 3842 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3843 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3844 3845 // The middle block terminator has already been assigned a DebugLoc here (the 3846 // OrigLoop's single latch terminator). We want the whole middle block to 3847 // appear to execute on this line because: (a) it is all compiler generated, 3848 // (b) these instructions are always executed after evaluating the latch 3849 // conditional branch, and (c) other passes may add new predecessors which 3850 // terminate on this line. This is the easiest way to ensure we don't 3851 // accidentally cause an extra step back into the loop while debugging. 3852 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3853 for (unsigned Part = 1; Part < UF; ++Part) { 3854 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3855 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3856 // Floating point operations had to be 'fast' to enable the reduction. 3857 ReducedPartRdx = addFastMathFlag( 3858 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3859 ReducedPartRdx, "bin.rdx"), 3860 RdxDesc.getFastMathFlags()); 3861 else 3862 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3863 RdxPart); 3864 } 3865 3866 if (VF > 1) { 3867 bool NoNaN = Legal->hasFunNoNaNAttr(); 3868 ReducedPartRdx = 3869 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3870 // If the reduction can be performed in a smaller type, we need to extend 3871 // the reduction to the wider type before we branch to the original loop. 3872 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3873 ReducedPartRdx = 3874 RdxDesc.isSigned() 3875 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3876 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3877 } 3878 3879 // Create a phi node that merges control-flow from the backedge-taken check 3880 // block and the middle block. 3881 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3882 LoopScalarPreHeader->getTerminator()); 3883 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3884 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3885 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3886 3887 // Now, we need to fix the users of the reduction variable 3888 // inside and outside of the scalar remainder loop. 3889 // We know that the loop is in LCSSA form. We need to update the 3890 // PHI nodes in the exit blocks. 3891 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3892 // All PHINodes need to have a single entry edge, or two if 3893 // we already fixed them. 3894 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3895 3896 // We found a reduction value exit-PHI. Update it with the 3897 // incoming bypass edge. 3898 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3899 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3900 } // end of the LCSSA phi scan. 3901 3902 // Fix the scalar loop reduction variable with the incoming reduction sum 3903 // from the vector body and from the backedge value. 3904 int IncomingEdgeBlockIdx = 3905 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3906 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3907 // Pick the other block. 3908 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3909 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3910 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3911 } 3912 3913 void InnerLoopVectorizer::clearReductionWrapFlags( 3914 RecurrenceDescriptor &RdxDesc) { 3915 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3916 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3917 RK != RecurrenceDescriptor::RK_IntegerMult) 3918 return; 3919 3920 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3921 assert(LoopExitInstr && "null loop exit instruction"); 3922 SmallVector<Instruction *, 8> Worklist; 3923 SmallPtrSet<Instruction *, 8> Visited; 3924 Worklist.push_back(LoopExitInstr); 3925 Visited.insert(LoopExitInstr); 3926 3927 while (!Worklist.empty()) { 3928 Instruction *Cur = Worklist.pop_back_val(); 3929 if (isa<OverflowingBinaryOperator>(Cur)) 3930 for (unsigned Part = 0; Part < UF; ++Part) { 3931 Value *V = getOrCreateVectorValue(Cur, Part); 3932 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3933 } 3934 3935 for (User *U : Cur->users()) { 3936 Instruction *UI = cast<Instruction>(U); 3937 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3938 Visited.insert(UI).second) 3939 Worklist.push_back(UI); 3940 } 3941 } 3942 } 3943 3944 void InnerLoopVectorizer::fixLCSSAPHIs() { 3945 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3946 if (LCSSAPhi.getNumIncomingValues() == 1) { 3947 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3948 // Non-instruction incoming values will have only one value. 3949 unsigned LastLane = 0; 3950 if (isa<Instruction>(IncomingValue)) 3951 LastLane = Cost->isUniformAfterVectorization( 3952 cast<Instruction>(IncomingValue), VF) 3953 ? 0 3954 : VF - 1; 3955 // Can be a loop invariant incoming value or the last scalar value to be 3956 // extracted from the vectorized loop. 3957 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3958 Value *lastIncomingValue = 3959 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3960 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3961 } 3962 } 3963 } 3964 3965 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3966 // The basic block and loop containing the predicated instruction. 3967 auto *PredBB = PredInst->getParent(); 3968 auto *VectorLoop = LI->getLoopFor(PredBB); 3969 3970 // Initialize a worklist with the operands of the predicated instruction. 3971 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3972 3973 // Holds instructions that we need to analyze again. An instruction may be 3974 // reanalyzed if we don't yet know if we can sink it or not. 3975 SmallVector<Instruction *, 8> InstsToReanalyze; 3976 3977 // Returns true if a given use occurs in the predicated block. Phi nodes use 3978 // their operands in their corresponding predecessor blocks. 3979 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3980 auto *I = cast<Instruction>(U.getUser()); 3981 BasicBlock *BB = I->getParent(); 3982 if (auto *Phi = dyn_cast<PHINode>(I)) 3983 BB = Phi->getIncomingBlock( 3984 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3985 return BB == PredBB; 3986 }; 3987 3988 // Iteratively sink the scalarized operands of the predicated instruction 3989 // into the block we created for it. When an instruction is sunk, it's 3990 // operands are then added to the worklist. The algorithm ends after one pass 3991 // through the worklist doesn't sink a single instruction. 3992 bool Changed; 3993 do { 3994 // Add the instructions that need to be reanalyzed to the worklist, and 3995 // reset the changed indicator. 3996 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3997 InstsToReanalyze.clear(); 3998 Changed = false; 3999 4000 while (!Worklist.empty()) { 4001 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4002 4003 // We can't sink an instruction if it is a phi node, is already in the 4004 // predicated block, is not in the loop, or may have side effects. 4005 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4006 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4007 continue; 4008 4009 // It's legal to sink the instruction if all its uses occur in the 4010 // predicated block. Otherwise, there's nothing to do yet, and we may 4011 // need to reanalyze the instruction. 4012 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4013 InstsToReanalyze.push_back(I); 4014 continue; 4015 } 4016 4017 // Move the instruction to the beginning of the predicated block, and add 4018 // it's operands to the worklist. 4019 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4020 Worklist.insert(I->op_begin(), I->op_end()); 4021 4022 // The sinking may have enabled other instructions to be sunk, so we will 4023 // need to iterate. 4024 Changed = true; 4025 } 4026 } while (Changed); 4027 } 4028 4029 void InnerLoopVectorizer::fixNonInductionPHIs() { 4030 for (PHINode *OrigPhi : OrigPHIsToFix) { 4031 PHINode *NewPhi = 4032 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4033 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4034 4035 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4036 predecessors(OrigPhi->getParent())); 4037 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4038 predecessors(NewPhi->getParent())); 4039 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4040 "Scalar and Vector BB should have the same number of predecessors"); 4041 4042 // The insertion point in Builder may be invalidated by the time we get 4043 // here. Force the Builder insertion point to something valid so that we do 4044 // not run into issues during insertion point restore in 4045 // getOrCreateVectorValue calls below. 4046 Builder.SetInsertPoint(NewPhi); 4047 4048 // The predecessor order is preserved and we can rely on mapping between 4049 // scalar and vector block predecessors. 4050 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4051 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4052 4053 // When looking up the new scalar/vector values to fix up, use incoming 4054 // values from original phi. 4055 Value *ScIncV = 4056 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4057 4058 // Scalar incoming value may need a broadcast 4059 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4060 NewPhi->addIncoming(NewIncV, NewPredBB); 4061 } 4062 } 4063 } 4064 4065 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF, 4066 unsigned VF, bool IsPtrLoopInvariant, 4067 SmallBitVector &IsIndexLoopInvariant) { 4068 // Construct a vector GEP by widening the operands of the scalar GEP as 4069 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4070 // results in a vector of pointers when at least one operand of the GEP 4071 // is vector-typed. Thus, to keep the representation compact, we only use 4072 // vector-typed operands for loop-varying values. 4073 4074 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4075 // If we are vectorizing, but the GEP has only loop-invariant operands, 4076 // the GEP we build (by only using vector-typed operands for 4077 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4078 // produce a vector of pointers, we need to either arbitrarily pick an 4079 // operand to broadcast, or broadcast a clone of the original GEP. 4080 // Here, we broadcast a clone of the original. 4081 // 4082 // TODO: If at some point we decide to scalarize instructions having 4083 // loop-invariant operands, this special case will no longer be 4084 // required. We would add the scalarization decision to 4085 // collectLoopScalars() and teach getVectorValue() to broadcast 4086 // the lane-zero scalar value. 4087 auto *Clone = Builder.Insert(GEP->clone()); 4088 for (unsigned Part = 0; Part < UF; ++Part) { 4089 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4090 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4091 addMetadata(EntryPart, GEP); 4092 } 4093 } else { 4094 // If the GEP has at least one loop-varying operand, we are sure to 4095 // produce a vector of pointers. But if we are only unrolling, we want 4096 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4097 // produce with the code below will be scalar (if VF == 1) or vector 4098 // (otherwise). Note that for the unroll-only case, we still maintain 4099 // values in the vector mapping with initVector, as we do for other 4100 // instructions. 4101 for (unsigned Part = 0; Part < UF; ++Part) { 4102 // The pointer operand of the new GEP. If it's loop-invariant, we 4103 // won't broadcast it. 4104 auto *Ptr = IsPtrLoopInvariant 4105 ? GEP->getPointerOperand() 4106 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4107 4108 // Collect all the indices for the new GEP. If any index is 4109 // loop-invariant, we won't broadcast it. 4110 SmallVector<Value *, 4> Indices; 4111 for (auto Index : enumerate(GEP->indices())) { 4112 Value *User = Index.value().get(); 4113 if (IsIndexLoopInvariant[Index.index()]) 4114 Indices.push_back(User); 4115 else 4116 Indices.push_back(getOrCreateVectorValue(User, Part)); 4117 } 4118 4119 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4120 // but it should be a vector, otherwise. 4121 auto *NewGEP = 4122 GEP->isInBounds() 4123 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4124 Indices) 4125 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4126 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4127 "NewGEP is not a pointer vector"); 4128 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4129 addMetadata(NewGEP, GEP); 4130 } 4131 } 4132 } 4133 4134 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4135 unsigned VF) { 4136 PHINode *P = cast<PHINode>(PN); 4137 if (EnableVPlanNativePath) { 4138 // Currently we enter here in the VPlan-native path for non-induction 4139 // PHIs where all control flow is uniform. We simply widen these PHIs. 4140 // Create a vector phi with no operands - the vector phi operands will be 4141 // set at the end of vector code generation. 4142 Type *VecTy = 4143 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4144 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4145 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4146 OrigPHIsToFix.push_back(P); 4147 4148 return; 4149 } 4150 4151 assert(PN->getParent() == OrigLoop->getHeader() && 4152 "Non-header phis should have been handled elsewhere"); 4153 4154 // In order to support recurrences we need to be able to vectorize Phi nodes. 4155 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4156 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4157 // this value when we vectorize all of the instructions that use the PHI. 4158 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4159 for (unsigned Part = 0; Part < UF; ++Part) { 4160 // This is phase one of vectorizing PHIs. 4161 Type *VecTy = 4162 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4163 Value *EntryPart = PHINode::Create( 4164 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4165 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4166 } 4167 return; 4168 } 4169 4170 setDebugLocFromInst(Builder, P); 4171 4172 // This PHINode must be an induction variable. 4173 // Make sure that we know about it. 4174 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4175 4176 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4177 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4178 4179 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4180 // which can be found from the original scalar operations. 4181 switch (II.getKind()) { 4182 case InductionDescriptor::IK_NoInduction: 4183 llvm_unreachable("Unknown induction"); 4184 case InductionDescriptor::IK_IntInduction: 4185 case InductionDescriptor::IK_FpInduction: 4186 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4187 case InductionDescriptor::IK_PtrInduction: { 4188 // Handle the pointer induction variable case. 4189 assert(P->getType()->isPointerTy() && "Unexpected type."); 4190 // This is the normalized GEP that starts counting at zero. 4191 Value *PtrInd = Induction; 4192 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4193 // Determine the number of scalars we need to generate for each unroll 4194 // iteration. If the instruction is uniform, we only need to generate the 4195 // first lane. Otherwise, we generate all VF values. 4196 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4197 // These are the scalar results. Notice that we don't generate vector GEPs 4198 // because scalar GEPs result in better code. 4199 for (unsigned Part = 0; Part < UF; ++Part) { 4200 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4201 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4202 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4203 Value *SclrGep = 4204 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4205 SclrGep->setName("next.gep"); 4206 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4207 } 4208 } 4209 return; 4210 } 4211 } 4212 } 4213 4214 /// A helper function for checking whether an integer division-related 4215 /// instruction may divide by zero (in which case it must be predicated if 4216 /// executed conditionally in the scalar code). 4217 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4218 /// Non-zero divisors that are non compile-time constants will not be 4219 /// converted into multiplication, so we will still end up scalarizing 4220 /// the division, but can do so w/o predication. 4221 static bool mayDivideByZero(Instruction &I) { 4222 assert((I.getOpcode() == Instruction::UDiv || 4223 I.getOpcode() == Instruction::SDiv || 4224 I.getOpcode() == Instruction::URem || 4225 I.getOpcode() == Instruction::SRem) && 4226 "Unexpected instruction"); 4227 Value *Divisor = I.getOperand(1); 4228 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4229 return !CInt || CInt->isZero(); 4230 } 4231 4232 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4233 switch (I.getOpcode()) { 4234 case Instruction::Call: 4235 case Instruction::Br: 4236 case Instruction::PHI: 4237 case Instruction::GetElementPtr: 4238 case Instruction::Select: 4239 llvm_unreachable("This instruction is handled by a different recipe."); 4240 case Instruction::UDiv: 4241 case Instruction::SDiv: 4242 case Instruction::SRem: 4243 case Instruction::URem: 4244 case Instruction::Add: 4245 case Instruction::FAdd: 4246 case Instruction::Sub: 4247 case Instruction::FSub: 4248 case Instruction::FNeg: 4249 case Instruction::Mul: 4250 case Instruction::FMul: 4251 case Instruction::FDiv: 4252 case Instruction::FRem: 4253 case Instruction::Shl: 4254 case Instruction::LShr: 4255 case Instruction::AShr: 4256 case Instruction::And: 4257 case Instruction::Or: 4258 case Instruction::Xor: { 4259 // Just widen unops and binops. 4260 setDebugLocFromInst(Builder, &I); 4261 4262 for (unsigned Part = 0; Part < UF; ++Part) { 4263 SmallVector<Value *, 2> Ops; 4264 for (Value *Op : I.operands()) 4265 Ops.push_back(getOrCreateVectorValue(Op, Part)); 4266 4267 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4268 4269 if (auto *VecOp = dyn_cast<Instruction>(V)) 4270 VecOp->copyIRFlags(&I); 4271 4272 // Use this vector value for all users of the original instruction. 4273 VectorLoopValueMap.setVectorValue(&I, Part, V); 4274 addMetadata(V, &I); 4275 } 4276 4277 break; 4278 } 4279 case Instruction::ICmp: 4280 case Instruction::FCmp: { 4281 // Widen compares. Generate vector compares. 4282 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4283 auto *Cmp = cast<CmpInst>(&I); 4284 setDebugLocFromInst(Builder, Cmp); 4285 for (unsigned Part = 0; Part < UF; ++Part) { 4286 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4287 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4288 Value *C = nullptr; 4289 if (FCmp) { 4290 // Propagate fast math flags. 4291 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4292 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4293 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4294 } else { 4295 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4296 } 4297 VectorLoopValueMap.setVectorValue(&I, Part, C); 4298 addMetadata(C, &I); 4299 } 4300 4301 break; 4302 } 4303 4304 case Instruction::ZExt: 4305 case Instruction::SExt: 4306 case Instruction::FPToUI: 4307 case Instruction::FPToSI: 4308 case Instruction::FPExt: 4309 case Instruction::PtrToInt: 4310 case Instruction::IntToPtr: 4311 case Instruction::SIToFP: 4312 case Instruction::UIToFP: 4313 case Instruction::Trunc: 4314 case Instruction::FPTrunc: 4315 case Instruction::BitCast: { 4316 auto *CI = cast<CastInst>(&I); 4317 setDebugLocFromInst(Builder, CI); 4318 4319 /// Vectorize casts. 4320 Type *DestTy = 4321 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4322 4323 for (unsigned Part = 0; Part < UF; ++Part) { 4324 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4325 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4326 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4327 addMetadata(Cast, &I); 4328 } 4329 break; 4330 } 4331 default: 4332 // This instruction is not vectorized by simple widening. 4333 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4334 llvm_unreachable("Unhandled instruction!"); 4335 } // end of switch. 4336 } 4337 4338 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4339 VPTransformState &State) { 4340 assert(!isa<DbgInfoIntrinsic>(I) && 4341 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4342 setDebugLocFromInst(Builder, &I); 4343 4344 Module *M = I.getParent()->getParent()->getParent(); 4345 auto *CI = cast<CallInst>(&I); 4346 4347 SmallVector<Type *, 4> Tys; 4348 for (Value *ArgOperand : CI->arg_operands()) 4349 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4350 4351 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4352 4353 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4354 // version of the instruction. 4355 // Is it beneficial to perform intrinsic call compared to lib call? 4356 bool NeedToScalarize = false; 4357 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4358 bool UseVectorIntrinsic = 4359 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4360 assert((UseVectorIntrinsic || !NeedToScalarize) && 4361 "Instruction should be scalarized elsewhere."); 4362 4363 for (unsigned Part = 0; Part < UF; ++Part) { 4364 SmallVector<Value *, 4> Args; 4365 for (auto &I : enumerate(ArgOperands.operands())) { 4366 // Some intrinsics have a scalar argument - don't replace it with a 4367 // vector. 4368 Value *Arg; 4369 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4370 Arg = State.get(I.value(), Part); 4371 else 4372 Arg = State.get(I.value(), {0, 0}); 4373 Args.push_back(Arg); 4374 } 4375 4376 Function *VectorF; 4377 if (UseVectorIntrinsic) { 4378 // Use vector version of the intrinsic. 4379 Type *TysForDecl[] = {CI->getType()}; 4380 if (VF > 1) 4381 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4382 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4383 } else { 4384 // Use vector version of the function call. 4385 const VFShape Shape = 4386 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4387 #ifndef NDEBUG 4388 const SmallVector<VFInfo, 8> Infos = VFDatabase::getMappings(*CI); 4389 assert(std::find_if(Infos.begin(), Infos.end(), 4390 [&Shape](const VFInfo &Info) { 4391 return Info.Shape == Shape; 4392 }) != Infos.end() && 4393 "Vector function shape is missing from the database."); 4394 #endif 4395 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4396 } 4397 assert(VectorF && "Can't create vector function."); 4398 4399 SmallVector<OperandBundleDef, 1> OpBundles; 4400 CI->getOperandBundlesAsDefs(OpBundles); 4401 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4402 4403 if (isa<FPMathOperator>(V)) 4404 V->copyFastMathFlags(CI); 4405 4406 VectorLoopValueMap.setVectorValue(&I, Part, V); 4407 addMetadata(V, &I); 4408 } 4409 } 4410 4411 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4412 bool InvariantCond) { 4413 setDebugLocFromInst(Builder, &I); 4414 4415 // The condition can be loop invariant but still defined inside the 4416 // loop. This means that we can't just use the original 'cond' value. 4417 // We have to take the 'vectorized' value and pick the first lane. 4418 // Instcombine will make this a no-op. 4419 4420 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4421 4422 for (unsigned Part = 0; Part < UF; ++Part) { 4423 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4424 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4425 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4426 Value *Sel = 4427 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4428 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4429 addMetadata(Sel, &I); 4430 } 4431 } 4432 4433 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4434 // We should not collect Scalars more than once per VF. Right now, this 4435 // function is called from collectUniformsAndScalars(), which already does 4436 // this check. Collecting Scalars for VF=1 does not make any sense. 4437 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4438 "This function should not be visited twice for the same VF"); 4439 4440 SmallSetVector<Instruction *, 8> Worklist; 4441 4442 // These sets are used to seed the analysis with pointers used by memory 4443 // accesses that will remain scalar. 4444 SmallSetVector<Instruction *, 8> ScalarPtrs; 4445 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4446 4447 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4448 // The pointer operands of loads and stores will be scalar as long as the 4449 // memory access is not a gather or scatter operation. The value operand of a 4450 // store will remain scalar if the store is scalarized. 4451 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4452 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4453 assert(WideningDecision != CM_Unknown && 4454 "Widening decision should be ready at this moment"); 4455 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4456 if (Ptr == Store->getValueOperand()) 4457 return WideningDecision == CM_Scalarize; 4458 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4459 "Ptr is neither a value or pointer operand"); 4460 return WideningDecision != CM_GatherScatter; 4461 }; 4462 4463 // A helper that returns true if the given value is a bitcast or 4464 // getelementptr instruction contained in the loop. 4465 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4466 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4467 isa<GetElementPtrInst>(V)) && 4468 !TheLoop->isLoopInvariant(V); 4469 }; 4470 4471 // A helper that evaluates a memory access's use of a pointer. If the use 4472 // will be a scalar use, and the pointer is only used by memory accesses, we 4473 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4474 // PossibleNonScalarPtrs. 4475 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4476 // We only care about bitcast and getelementptr instructions contained in 4477 // the loop. 4478 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4479 return; 4480 4481 // If the pointer has already been identified as scalar (e.g., if it was 4482 // also identified as uniform), there's nothing to do. 4483 auto *I = cast<Instruction>(Ptr); 4484 if (Worklist.count(I)) 4485 return; 4486 4487 // If the use of the pointer will be a scalar use, and all users of the 4488 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4489 // place the pointer in PossibleNonScalarPtrs. 4490 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4491 return isa<LoadInst>(U) || isa<StoreInst>(U); 4492 })) 4493 ScalarPtrs.insert(I); 4494 else 4495 PossibleNonScalarPtrs.insert(I); 4496 }; 4497 4498 // We seed the scalars analysis with three classes of instructions: (1) 4499 // instructions marked uniform-after-vectorization, (2) bitcast and 4500 // getelementptr instructions used by memory accesses requiring a scalar use, 4501 // and (3) pointer induction variables and their update instructions (we 4502 // currently only scalarize these). 4503 // 4504 // (1) Add to the worklist all instructions that have been identified as 4505 // uniform-after-vectorization. 4506 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4507 4508 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4509 // memory accesses requiring a scalar use. The pointer operands of loads and 4510 // stores will be scalar as long as the memory accesses is not a gather or 4511 // scatter operation. The value operand of a store will remain scalar if the 4512 // store is scalarized. 4513 for (auto *BB : TheLoop->blocks()) 4514 for (auto &I : *BB) { 4515 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4516 evaluatePtrUse(Load, Load->getPointerOperand()); 4517 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4518 evaluatePtrUse(Store, Store->getPointerOperand()); 4519 evaluatePtrUse(Store, Store->getValueOperand()); 4520 } 4521 } 4522 for (auto *I : ScalarPtrs) 4523 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4524 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4525 Worklist.insert(I); 4526 } 4527 4528 // (3) Add to the worklist all pointer induction variables and their update 4529 // instructions. 4530 // 4531 // TODO: Once we are able to vectorize pointer induction variables we should 4532 // no longer insert them into the worklist here. 4533 auto *Latch = TheLoop->getLoopLatch(); 4534 for (auto &Induction : Legal->getInductionVars()) { 4535 auto *Ind = Induction.first; 4536 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4537 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4538 continue; 4539 Worklist.insert(Ind); 4540 Worklist.insert(IndUpdate); 4541 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4542 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4543 << "\n"); 4544 } 4545 4546 // Insert the forced scalars. 4547 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4548 // induction variable when the PHI user is scalarized. 4549 auto ForcedScalar = ForcedScalars.find(VF); 4550 if (ForcedScalar != ForcedScalars.end()) 4551 for (auto *I : ForcedScalar->second) 4552 Worklist.insert(I); 4553 4554 // Expand the worklist by looking through any bitcasts and getelementptr 4555 // instructions we've already identified as scalar. This is similar to the 4556 // expansion step in collectLoopUniforms(); however, here we're only 4557 // expanding to include additional bitcasts and getelementptr instructions. 4558 unsigned Idx = 0; 4559 while (Idx != Worklist.size()) { 4560 Instruction *Dst = Worklist[Idx++]; 4561 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4562 continue; 4563 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4564 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4565 auto *J = cast<Instruction>(U); 4566 return !TheLoop->contains(J) || Worklist.count(J) || 4567 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4568 isScalarUse(J, Src)); 4569 })) { 4570 Worklist.insert(Src); 4571 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4572 } 4573 } 4574 4575 // An induction variable will remain scalar if all users of the induction 4576 // variable and induction variable update remain scalar. 4577 for (auto &Induction : Legal->getInductionVars()) { 4578 auto *Ind = Induction.first; 4579 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4580 4581 // We already considered pointer induction variables, so there's no reason 4582 // to look at their users again. 4583 // 4584 // TODO: Once we are able to vectorize pointer induction variables we 4585 // should no longer skip over them here. 4586 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4587 continue; 4588 4589 // Determine if all users of the induction variable are scalar after 4590 // vectorization. 4591 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4592 auto *I = cast<Instruction>(U); 4593 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4594 }); 4595 if (!ScalarInd) 4596 continue; 4597 4598 // Determine if all users of the induction variable update instruction are 4599 // scalar after vectorization. 4600 auto ScalarIndUpdate = 4601 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4602 auto *I = cast<Instruction>(U); 4603 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4604 }); 4605 if (!ScalarIndUpdate) 4606 continue; 4607 4608 // The induction variable and its update instruction will remain scalar. 4609 Worklist.insert(Ind); 4610 Worklist.insert(IndUpdate); 4611 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4612 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4613 << "\n"); 4614 } 4615 4616 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4617 } 4618 4619 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4620 if (!blockNeedsPredication(I->getParent())) 4621 return false; 4622 switch(I->getOpcode()) { 4623 default: 4624 break; 4625 case Instruction::Load: 4626 case Instruction::Store: { 4627 if (!Legal->isMaskRequired(I)) 4628 return false; 4629 auto *Ptr = getLoadStorePointerOperand(I); 4630 auto *Ty = getMemInstValueType(I); 4631 // We have already decided how to vectorize this instruction, get that 4632 // result. 4633 if (VF > 1) { 4634 InstWidening WideningDecision = getWideningDecision(I, VF); 4635 assert(WideningDecision != CM_Unknown && 4636 "Widening decision should be ready at this moment"); 4637 return WideningDecision == CM_Scalarize; 4638 } 4639 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4640 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4641 isLegalMaskedGather(Ty, Alignment)) 4642 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4643 isLegalMaskedScatter(Ty, Alignment)); 4644 } 4645 case Instruction::UDiv: 4646 case Instruction::SDiv: 4647 case Instruction::SRem: 4648 case Instruction::URem: 4649 return mayDivideByZero(*I); 4650 } 4651 return false; 4652 } 4653 4654 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4655 unsigned VF) { 4656 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4657 assert(getWideningDecision(I, VF) == CM_Unknown && 4658 "Decision should not be set yet."); 4659 auto *Group = getInterleavedAccessGroup(I); 4660 assert(Group && "Must have a group."); 4661 4662 // If the instruction's allocated size doesn't equal it's type size, it 4663 // requires padding and will be scalarized. 4664 auto &DL = I->getModule()->getDataLayout(); 4665 auto *ScalarTy = getMemInstValueType(I); 4666 if (hasIrregularType(ScalarTy, DL, VF)) 4667 return false; 4668 4669 // Check if masking is required. 4670 // A Group may need masking for one of two reasons: it resides in a block that 4671 // needs predication, or it was decided to use masking to deal with gaps. 4672 bool PredicatedAccessRequiresMasking = 4673 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4674 bool AccessWithGapsRequiresMasking = 4675 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4676 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4677 return true; 4678 4679 // If masked interleaving is required, we expect that the user/target had 4680 // enabled it, because otherwise it either wouldn't have been created or 4681 // it should have been invalidated by the CostModel. 4682 assert(useMaskedInterleavedAccesses(TTI) && 4683 "Masked interleave-groups for predicated accesses are not enabled."); 4684 4685 auto *Ty = getMemInstValueType(I); 4686 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4687 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4688 : TTI.isLegalMaskedStore(Ty, Alignment); 4689 } 4690 4691 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4692 unsigned VF) { 4693 // Get and ensure we have a valid memory instruction. 4694 LoadInst *LI = dyn_cast<LoadInst>(I); 4695 StoreInst *SI = dyn_cast<StoreInst>(I); 4696 assert((LI || SI) && "Invalid memory instruction"); 4697 4698 auto *Ptr = getLoadStorePointerOperand(I); 4699 4700 // In order to be widened, the pointer should be consecutive, first of all. 4701 if (!Legal->isConsecutivePtr(Ptr)) 4702 return false; 4703 4704 // If the instruction is a store located in a predicated block, it will be 4705 // scalarized. 4706 if (isScalarWithPredication(I)) 4707 return false; 4708 4709 // If the instruction's allocated size doesn't equal it's type size, it 4710 // requires padding and will be scalarized. 4711 auto &DL = I->getModule()->getDataLayout(); 4712 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4713 if (hasIrregularType(ScalarTy, DL, VF)) 4714 return false; 4715 4716 return true; 4717 } 4718 4719 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4720 // We should not collect Uniforms more than once per VF. Right now, 4721 // this function is called from collectUniformsAndScalars(), which 4722 // already does this check. Collecting Uniforms for VF=1 does not make any 4723 // sense. 4724 4725 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4726 "This function should not be visited twice for the same VF"); 4727 4728 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4729 // not analyze again. Uniforms.count(VF) will return 1. 4730 Uniforms[VF].clear(); 4731 4732 // We now know that the loop is vectorizable! 4733 // Collect instructions inside the loop that will remain uniform after 4734 // vectorization. 4735 4736 // Global values, params and instructions outside of current loop are out of 4737 // scope. 4738 auto isOutOfScope = [&](Value *V) -> bool { 4739 Instruction *I = dyn_cast<Instruction>(V); 4740 return (!I || !TheLoop->contains(I)); 4741 }; 4742 4743 SetVector<Instruction *> Worklist; 4744 BasicBlock *Latch = TheLoop->getLoopLatch(); 4745 4746 // Instructions that are scalar with predication must not be considered 4747 // uniform after vectorization, because that would create an erroneous 4748 // replicating region where only a single instance out of VF should be formed. 4749 // TODO: optimize such seldom cases if found important, see PR40816. 4750 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4751 if (isScalarWithPredication(I, VF)) { 4752 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4753 << *I << "\n"); 4754 return; 4755 } 4756 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4757 Worklist.insert(I); 4758 }; 4759 4760 // Start with the conditional branch. If the branch condition is an 4761 // instruction contained in the loop that is only used by the branch, it is 4762 // uniform. 4763 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4764 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4765 addToWorklistIfAllowed(Cmp); 4766 4767 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4768 // are pointers that are treated like consecutive pointers during 4769 // vectorization. The pointer operands of interleaved accesses are an 4770 // example. 4771 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4772 4773 // Holds pointer operands of instructions that are possibly non-uniform. 4774 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4775 4776 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4777 InstWidening WideningDecision = getWideningDecision(I, VF); 4778 assert(WideningDecision != CM_Unknown && 4779 "Widening decision should be ready at this moment"); 4780 4781 return (WideningDecision == CM_Widen || 4782 WideningDecision == CM_Widen_Reverse || 4783 WideningDecision == CM_Interleave); 4784 }; 4785 // Iterate over the instructions in the loop, and collect all 4786 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4787 // that a consecutive-like pointer operand will be scalarized, we collect it 4788 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4789 // getelementptr instruction can be used by both vectorized and scalarized 4790 // memory instructions. For example, if a loop loads and stores from the same 4791 // location, but the store is conditional, the store will be scalarized, and 4792 // the getelementptr won't remain uniform. 4793 for (auto *BB : TheLoop->blocks()) 4794 for (auto &I : *BB) { 4795 // If there's no pointer operand, there's nothing to do. 4796 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4797 if (!Ptr) 4798 continue; 4799 4800 // True if all users of Ptr are memory accesses that have Ptr as their 4801 // pointer operand. 4802 auto UsersAreMemAccesses = 4803 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4804 return getLoadStorePointerOperand(U) == Ptr; 4805 }); 4806 4807 // Ensure the memory instruction will not be scalarized or used by 4808 // gather/scatter, making its pointer operand non-uniform. If the pointer 4809 // operand is used by any instruction other than a memory access, we 4810 // conservatively assume the pointer operand may be non-uniform. 4811 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4812 PossibleNonUniformPtrs.insert(Ptr); 4813 4814 // If the memory instruction will be vectorized and its pointer operand 4815 // is consecutive-like, or interleaving - the pointer operand should 4816 // remain uniform. 4817 else 4818 ConsecutiveLikePtrs.insert(Ptr); 4819 } 4820 4821 // Add to the Worklist all consecutive and consecutive-like pointers that 4822 // aren't also identified as possibly non-uniform. 4823 for (auto *V : ConsecutiveLikePtrs) 4824 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) 4825 addToWorklistIfAllowed(V); 4826 4827 // Expand Worklist in topological order: whenever a new instruction 4828 // is added , its users should be already inside Worklist. It ensures 4829 // a uniform instruction will only be used by uniform instructions. 4830 unsigned idx = 0; 4831 while (idx != Worklist.size()) { 4832 Instruction *I = Worklist[idx++]; 4833 4834 for (auto OV : I->operand_values()) { 4835 // isOutOfScope operands cannot be uniform instructions. 4836 if (isOutOfScope(OV)) 4837 continue; 4838 // First order recurrence Phi's should typically be considered 4839 // non-uniform. 4840 auto *OP = dyn_cast<PHINode>(OV); 4841 if (OP && Legal->isFirstOrderRecurrence(OP)) 4842 continue; 4843 // If all the users of the operand are uniform, then add the 4844 // operand into the uniform worklist. 4845 auto *OI = cast<Instruction>(OV); 4846 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4847 auto *J = cast<Instruction>(U); 4848 return Worklist.count(J) || 4849 (OI == getLoadStorePointerOperand(J) && 4850 isUniformDecision(J, VF)); 4851 })) 4852 addToWorklistIfAllowed(OI); 4853 } 4854 } 4855 4856 // Returns true if Ptr is the pointer operand of a memory access instruction 4857 // I, and I is known to not require scalarization. 4858 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4859 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4860 }; 4861 4862 // For an instruction to be added into Worklist above, all its users inside 4863 // the loop should also be in Worklist. However, this condition cannot be 4864 // true for phi nodes that form a cyclic dependence. We must process phi 4865 // nodes separately. An induction variable will remain uniform if all users 4866 // of the induction variable and induction variable update remain uniform. 4867 // The code below handles both pointer and non-pointer induction variables. 4868 for (auto &Induction : Legal->getInductionVars()) { 4869 auto *Ind = Induction.first; 4870 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4871 4872 // Determine if all users of the induction variable are uniform after 4873 // vectorization. 4874 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4875 auto *I = cast<Instruction>(U); 4876 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4877 isVectorizedMemAccessUse(I, Ind); 4878 }); 4879 if (!UniformInd) 4880 continue; 4881 4882 // Determine if all users of the induction variable update instruction are 4883 // uniform after vectorization. 4884 auto UniformIndUpdate = 4885 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4886 auto *I = cast<Instruction>(U); 4887 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4888 isVectorizedMemAccessUse(I, IndUpdate); 4889 }); 4890 if (!UniformIndUpdate) 4891 continue; 4892 4893 // The induction variable and its update instruction will remain uniform. 4894 addToWorklistIfAllowed(Ind); 4895 addToWorklistIfAllowed(IndUpdate); 4896 } 4897 4898 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4899 } 4900 4901 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4902 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4903 4904 if (Legal->getRuntimePointerChecking()->Need) { 4905 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4906 "runtime pointer checks needed. Enable vectorization of this " 4907 "loop with '#pragma clang loop vectorize(enable)' when " 4908 "compiling with -Os/-Oz", 4909 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4910 return true; 4911 } 4912 4913 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4914 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4915 "runtime SCEV checks needed. Enable vectorization of this " 4916 "loop with '#pragma clang loop vectorize(enable)' when " 4917 "compiling with -Os/-Oz", 4918 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4919 return true; 4920 } 4921 4922 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4923 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4924 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4925 "runtime stride == 1 checks needed. Enable vectorization of " 4926 "this loop with '#pragma clang loop vectorize(enable)' when " 4927 "compiling with -Os/-Oz", 4928 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4929 return true; 4930 } 4931 4932 return false; 4933 } 4934 4935 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4936 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4937 // TODO: It may by useful to do since it's still likely to be dynamically 4938 // uniform if the target can skip. 4939 reportVectorizationFailure( 4940 "Not inserting runtime ptr check for divergent target", 4941 "runtime pointer checks needed. Not enabled for divergent target", 4942 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4943 return None; 4944 } 4945 4946 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4947 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4948 if (TC == 1) { 4949 reportVectorizationFailure("Single iteration (non) loop", 4950 "loop trip count is one, irrelevant for vectorization", 4951 "SingleIterationLoop", ORE, TheLoop); 4952 return None; 4953 } 4954 4955 switch (ScalarEpilogueStatus) { 4956 case CM_ScalarEpilogueAllowed: 4957 return computeFeasibleMaxVF(TC); 4958 case CM_ScalarEpilogueNotNeededUsePredicate: 4959 LLVM_DEBUG( 4960 dbgs() << "LV: vector predicate hint/switch found.\n" 4961 << "LV: Not allowing scalar epilogue, creating predicated " 4962 << "vector loop.\n"); 4963 break; 4964 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4965 // fallthrough as a special case of OptForSize 4966 case CM_ScalarEpilogueNotAllowedOptSize: 4967 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4968 LLVM_DEBUG( 4969 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4970 else 4971 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4972 << "count.\n"); 4973 4974 // Bail if runtime checks are required, which are not good when optimising 4975 // for size. 4976 if (runtimeChecksRequired()) 4977 return None; 4978 break; 4979 } 4980 4981 // Now try the tail folding 4982 4983 // Invalidate interleave groups that require an epilogue if we can't mask 4984 // the interleave-group. 4985 if (!useMaskedInterleavedAccesses(TTI)) 4986 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4987 4988 unsigned MaxVF = computeFeasibleMaxVF(TC); 4989 if (TC > 0 && TC % MaxVF == 0) { 4990 // Accept MaxVF if we do not have a tail. 4991 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4992 return MaxVF; 4993 } 4994 4995 // If we don't know the precise trip count, or if the trip count that we 4996 // found modulo the vectorization factor is not zero, try to fold the tail 4997 // by masking. 4998 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4999 if (Legal->prepareToFoldTailByMasking()) { 5000 FoldTailByMasking = true; 5001 return MaxVF; 5002 } 5003 5004 if (TC == 0) { 5005 reportVectorizationFailure( 5006 "Unable to calculate the loop count due to complex control flow", 5007 "unable to calculate the loop count due to complex control flow", 5008 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5009 return None; 5010 } 5011 5012 reportVectorizationFailure( 5013 "Cannot optimize for size and vectorize at the same time.", 5014 "cannot optimize for size and vectorize at the same time. " 5015 "Enable vectorization of this loop with '#pragma clang loop " 5016 "vectorize(enable)' when compiling with -Os/-Oz", 5017 "NoTailLoopWithOptForSize", ORE, TheLoop); 5018 return None; 5019 } 5020 5021 unsigned 5022 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5023 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5024 unsigned SmallestType, WidestType; 5025 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5026 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5027 5028 // Get the maximum safe dependence distance in bits computed by LAA. 5029 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5030 // the memory accesses that is most restrictive (involved in the smallest 5031 // dependence distance). 5032 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5033 5034 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5035 5036 unsigned MaxVectorSize = WidestRegister / WidestType; 5037 5038 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5039 << " / " << WidestType << " bits.\n"); 5040 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5041 << WidestRegister << " bits.\n"); 5042 5043 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5044 " into one vector!"); 5045 if (MaxVectorSize == 0) { 5046 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5047 MaxVectorSize = 1; 5048 return MaxVectorSize; 5049 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5050 isPowerOf2_32(ConstTripCount)) { 5051 // We need to clamp the VF to be the ConstTripCount. There is no point in 5052 // choosing a higher viable VF as done in the loop below. 5053 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5054 << ConstTripCount << "\n"); 5055 MaxVectorSize = ConstTripCount; 5056 return MaxVectorSize; 5057 } 5058 5059 unsigned MaxVF = MaxVectorSize; 5060 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5061 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5062 // Collect all viable vectorization factors larger than the default MaxVF 5063 // (i.e. MaxVectorSize). 5064 SmallVector<unsigned, 8> VFs; 5065 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5066 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5067 VFs.push_back(VS); 5068 5069 // For each VF calculate its register usage. 5070 auto RUs = calculateRegisterUsage(VFs); 5071 5072 // Select the largest VF which doesn't require more registers than existing 5073 // ones. 5074 for (int i = RUs.size() - 1; i >= 0; --i) { 5075 bool Selected = true; 5076 for (auto& pair : RUs[i].MaxLocalUsers) { 5077 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5078 if (pair.second > TargetNumRegisters) 5079 Selected = false; 5080 } 5081 if (Selected) { 5082 MaxVF = VFs[i]; 5083 break; 5084 } 5085 } 5086 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5087 if (MaxVF < MinVF) { 5088 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5089 << ") with target's minimum: " << MinVF << '\n'); 5090 MaxVF = MinVF; 5091 } 5092 } 5093 } 5094 return MaxVF; 5095 } 5096 5097 VectorizationFactor 5098 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5099 float Cost = expectedCost(1).first; 5100 const float ScalarCost = Cost; 5101 unsigned Width = 1; 5102 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5103 5104 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5105 if (ForceVectorization && MaxVF > 1) { 5106 // Ignore scalar width, because the user explicitly wants vectorization. 5107 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5108 // evaluation. 5109 Cost = std::numeric_limits<float>::max(); 5110 } 5111 5112 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5113 // Notice that the vector loop needs to be executed less times, so 5114 // we need to divide the cost of the vector loops by the width of 5115 // the vector elements. 5116 VectorizationCostTy C = expectedCost(i); 5117 float VectorCost = C.first / (float)i; 5118 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5119 << " costs: " << (int)VectorCost << ".\n"); 5120 if (!C.second && !ForceVectorization) { 5121 LLVM_DEBUG( 5122 dbgs() << "LV: Not considering vector loop of width " << i 5123 << " because it will not generate any vector instructions.\n"); 5124 continue; 5125 } 5126 if (VectorCost < Cost) { 5127 Cost = VectorCost; 5128 Width = i; 5129 } 5130 } 5131 5132 if (!EnableCondStoresVectorization && NumPredStores) { 5133 reportVectorizationFailure("There are conditional stores.", 5134 "store that is conditionally executed prevents vectorization", 5135 "ConditionalStore", ORE, TheLoop); 5136 Width = 1; 5137 Cost = ScalarCost; 5138 } 5139 5140 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5141 << "LV: Vectorization seems to be not beneficial, " 5142 << "but was forced by a user.\n"); 5143 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5144 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5145 return Factor; 5146 } 5147 5148 std::pair<unsigned, unsigned> 5149 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5150 unsigned MinWidth = -1U; 5151 unsigned MaxWidth = 8; 5152 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5153 5154 // For each block. 5155 for (BasicBlock *BB : TheLoop->blocks()) { 5156 // For each instruction in the loop. 5157 for (Instruction &I : BB->instructionsWithoutDebug()) { 5158 Type *T = I.getType(); 5159 5160 // Skip ignored values. 5161 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5162 continue; 5163 5164 // Only examine Loads, Stores and PHINodes. 5165 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5166 continue; 5167 5168 // Examine PHI nodes that are reduction variables. Update the type to 5169 // account for the recurrence type. 5170 if (auto *PN = dyn_cast<PHINode>(&I)) { 5171 if (!Legal->isReductionVariable(PN)) 5172 continue; 5173 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5174 T = RdxDesc.getRecurrenceType(); 5175 } 5176 5177 // Examine the stored values. 5178 if (auto *ST = dyn_cast<StoreInst>(&I)) 5179 T = ST->getValueOperand()->getType(); 5180 5181 // Ignore loaded pointer types and stored pointer types that are not 5182 // vectorizable. 5183 // 5184 // FIXME: The check here attempts to predict whether a load or store will 5185 // be vectorized. We only know this for certain after a VF has 5186 // been selected. Here, we assume that if an access can be 5187 // vectorized, it will be. We should also look at extending this 5188 // optimization to non-pointer types. 5189 // 5190 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5191 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5192 continue; 5193 5194 MinWidth = std::min(MinWidth, 5195 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5196 MaxWidth = std::max(MaxWidth, 5197 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5198 } 5199 } 5200 5201 return {MinWidth, MaxWidth}; 5202 } 5203 5204 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5205 unsigned LoopCost) { 5206 // -- The interleave heuristics -- 5207 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5208 // There are many micro-architectural considerations that we can't predict 5209 // at this level. For example, frontend pressure (on decode or fetch) due to 5210 // code size, or the number and capabilities of the execution ports. 5211 // 5212 // We use the following heuristics to select the interleave count: 5213 // 1. If the code has reductions, then we interleave to break the cross 5214 // iteration dependency. 5215 // 2. If the loop is really small, then we interleave to reduce the loop 5216 // overhead. 5217 // 3. We don't interleave if we think that we will spill registers to memory 5218 // due to the increased register pressure. 5219 5220 if (!isScalarEpilogueAllowed()) 5221 return 1; 5222 5223 // We used the distance for the interleave count. 5224 if (Legal->getMaxSafeDepDistBytes() != -1U) 5225 return 1; 5226 5227 // Do not interleave loops with a relatively small known or estimated trip 5228 // count. 5229 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5230 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5231 return 1; 5232 5233 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5234 // We divide by these constants so assume that we have at least one 5235 // instruction that uses at least one register. 5236 for (auto& pair : R.MaxLocalUsers) { 5237 pair.second = std::max(pair.second, 1U); 5238 } 5239 5240 // We calculate the interleave count using the following formula. 5241 // Subtract the number of loop invariants from the number of available 5242 // registers. These registers are used by all of the interleaved instances. 5243 // Next, divide the remaining registers by the number of registers that is 5244 // required by the loop, in order to estimate how many parallel instances 5245 // fit without causing spills. All of this is rounded down if necessary to be 5246 // a power of two. We want power of two interleave count to simplify any 5247 // addressing operations or alignment considerations. 5248 // We also want power of two interleave counts to ensure that the induction 5249 // variable of the vector loop wraps to zero, when tail is folded by masking; 5250 // this currently happens when OptForSize, in which case IC is set to 1 above. 5251 unsigned IC = UINT_MAX; 5252 5253 for (auto& pair : R.MaxLocalUsers) { 5254 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5255 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5256 << " registers of " 5257 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5258 if (VF == 1) { 5259 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5260 TargetNumRegisters = ForceTargetNumScalarRegs; 5261 } else { 5262 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5263 TargetNumRegisters = ForceTargetNumVectorRegs; 5264 } 5265 unsigned MaxLocalUsers = pair.second; 5266 unsigned LoopInvariantRegs = 0; 5267 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5268 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5269 5270 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5271 // Don't count the induction variable as interleaved. 5272 if (EnableIndVarRegisterHeur) { 5273 TmpIC = 5274 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5275 std::max(1U, (MaxLocalUsers - 1))); 5276 } 5277 5278 IC = std::min(IC, TmpIC); 5279 } 5280 5281 // Clamp the interleave ranges to reasonable counts. 5282 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5283 5284 // Check if the user has overridden the max. 5285 if (VF == 1) { 5286 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5287 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5288 } else { 5289 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5290 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5291 } 5292 5293 // If trip count is known or estimated compile time constant, limit the 5294 // interleave count to be less than the trip count divided by VF. 5295 if (BestKnownTC) { 5296 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5297 } 5298 5299 // If we did not calculate the cost for VF (because the user selected the VF) 5300 // then we calculate the cost of VF here. 5301 if (LoopCost == 0) 5302 LoopCost = expectedCost(VF).first; 5303 5304 assert(LoopCost && "Non-zero loop cost expected"); 5305 5306 // Clamp the calculated IC to be between the 1 and the max interleave count 5307 // that the target and trip count allows. 5308 if (IC > MaxInterleaveCount) 5309 IC = MaxInterleaveCount; 5310 else if (IC < 1) 5311 IC = 1; 5312 5313 // Interleave if we vectorized this loop and there is a reduction that could 5314 // benefit from interleaving. 5315 if (VF > 1 && !Legal->getReductionVars().empty()) { 5316 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5317 return IC; 5318 } 5319 5320 // Note that if we've already vectorized the loop we will have done the 5321 // runtime check and so interleaving won't require further checks. 5322 bool InterleavingRequiresRuntimePointerCheck = 5323 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5324 5325 // We want to interleave small loops in order to reduce the loop overhead and 5326 // potentially expose ILP opportunities. 5327 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5328 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5329 // We assume that the cost overhead is 1 and we use the cost model 5330 // to estimate the cost of the loop and interleave until the cost of the 5331 // loop overhead is about 5% of the cost of the loop. 5332 unsigned SmallIC = 5333 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5334 5335 // Interleave until store/load ports (estimated by max interleave count) are 5336 // saturated. 5337 unsigned NumStores = Legal->getNumStores(); 5338 unsigned NumLoads = Legal->getNumLoads(); 5339 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5340 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5341 5342 // If we have a scalar reduction (vector reductions are already dealt with 5343 // by this point), we can increase the critical path length if the loop 5344 // we're interleaving is inside another loop. Limit, by default to 2, so the 5345 // critical path only gets increased by one reduction operation. 5346 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5347 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5348 SmallIC = std::min(SmallIC, F); 5349 StoresIC = std::min(StoresIC, F); 5350 LoadsIC = std::min(LoadsIC, F); 5351 } 5352 5353 if (EnableLoadStoreRuntimeInterleave && 5354 std::max(StoresIC, LoadsIC) > SmallIC) { 5355 LLVM_DEBUG( 5356 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5357 return std::max(StoresIC, LoadsIC); 5358 } 5359 5360 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5361 return SmallIC; 5362 } 5363 5364 // Interleave if this is a large loop (small loops are already dealt with by 5365 // this point) that could benefit from interleaving. 5366 bool HasReductions = !Legal->getReductionVars().empty(); 5367 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5368 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5369 return IC; 5370 } 5371 5372 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5373 return 1; 5374 } 5375 5376 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5377 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5378 // This function calculates the register usage by measuring the highest number 5379 // of values that are alive at a single location. Obviously, this is a very 5380 // rough estimation. We scan the loop in a topological order in order and 5381 // assign a number to each instruction. We use RPO to ensure that defs are 5382 // met before their users. We assume that each instruction that has in-loop 5383 // users starts an interval. We record every time that an in-loop value is 5384 // used, so we have a list of the first and last occurrences of each 5385 // instruction. Next, we transpose this data structure into a multi map that 5386 // holds the list of intervals that *end* at a specific location. This multi 5387 // map allows us to perform a linear search. We scan the instructions linearly 5388 // and record each time that a new interval starts, by placing it in a set. 5389 // If we find this value in the multi-map then we remove it from the set. 5390 // The max register usage is the maximum size of the set. 5391 // We also search for instructions that are defined outside the loop, but are 5392 // used inside the loop. We need this number separately from the max-interval 5393 // usage number because when we unroll, loop-invariant values do not take 5394 // more register. 5395 LoopBlocksDFS DFS(TheLoop); 5396 DFS.perform(LI); 5397 5398 RegisterUsage RU; 5399 5400 // Each 'key' in the map opens a new interval. The values 5401 // of the map are the index of the 'last seen' usage of the 5402 // instruction that is the key. 5403 using IntervalMap = DenseMap<Instruction *, unsigned>; 5404 5405 // Maps instruction to its index. 5406 SmallVector<Instruction *, 64> IdxToInstr; 5407 // Marks the end of each interval. 5408 IntervalMap EndPoint; 5409 // Saves the list of instruction indices that are used in the loop. 5410 SmallPtrSet<Instruction *, 8> Ends; 5411 // Saves the list of values that are used in the loop but are 5412 // defined outside the loop, such as arguments and constants. 5413 SmallPtrSet<Value *, 8> LoopInvariants; 5414 5415 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5416 for (Instruction &I : BB->instructionsWithoutDebug()) { 5417 IdxToInstr.push_back(&I); 5418 5419 // Save the end location of each USE. 5420 for (Value *U : I.operands()) { 5421 auto *Instr = dyn_cast<Instruction>(U); 5422 5423 // Ignore non-instruction values such as arguments, constants, etc. 5424 if (!Instr) 5425 continue; 5426 5427 // If this instruction is outside the loop then record it and continue. 5428 if (!TheLoop->contains(Instr)) { 5429 LoopInvariants.insert(Instr); 5430 continue; 5431 } 5432 5433 // Overwrite previous end points. 5434 EndPoint[Instr] = IdxToInstr.size(); 5435 Ends.insert(Instr); 5436 } 5437 } 5438 } 5439 5440 // Saves the list of intervals that end with the index in 'key'. 5441 using InstrList = SmallVector<Instruction *, 2>; 5442 DenseMap<unsigned, InstrList> TransposeEnds; 5443 5444 // Transpose the EndPoints to a list of values that end at each index. 5445 for (auto &Interval : EndPoint) 5446 TransposeEnds[Interval.second].push_back(Interval.first); 5447 5448 SmallPtrSet<Instruction *, 8> OpenIntervals; 5449 5450 // Get the size of the widest register. 5451 unsigned MaxSafeDepDist = -1U; 5452 if (Legal->getMaxSafeDepDistBytes() != -1U) 5453 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5454 unsigned WidestRegister = 5455 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5456 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5457 5458 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5459 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5460 5461 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5462 5463 // A lambda that gets the register usage for the given type and VF. 5464 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5465 if (Ty->isTokenTy()) 5466 return 0U; 5467 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5468 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5469 }; 5470 5471 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5472 Instruction *I = IdxToInstr[i]; 5473 5474 // Remove all of the instructions that end at this location. 5475 InstrList &List = TransposeEnds[i]; 5476 for (Instruction *ToRemove : List) 5477 OpenIntervals.erase(ToRemove); 5478 5479 // Ignore instructions that are never used within the loop. 5480 if (Ends.find(I) == Ends.end()) 5481 continue; 5482 5483 // Skip ignored values. 5484 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5485 continue; 5486 5487 // For each VF find the maximum usage of registers. 5488 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5489 // Count the number of live intervals. 5490 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5491 5492 if (VFs[j] == 1) { 5493 for (auto Inst : OpenIntervals) { 5494 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5495 if (RegUsage.find(ClassID) == RegUsage.end()) 5496 RegUsage[ClassID] = 1; 5497 else 5498 RegUsage[ClassID] += 1; 5499 } 5500 } else { 5501 collectUniformsAndScalars(VFs[j]); 5502 for (auto Inst : OpenIntervals) { 5503 // Skip ignored values for VF > 1. 5504 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end()) 5505 continue; 5506 if (isScalarAfterVectorization(Inst, VFs[j])) { 5507 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5508 if (RegUsage.find(ClassID) == RegUsage.end()) 5509 RegUsage[ClassID] = 1; 5510 else 5511 RegUsage[ClassID] += 1; 5512 } else { 5513 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5514 if (RegUsage.find(ClassID) == RegUsage.end()) 5515 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5516 else 5517 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5518 } 5519 } 5520 } 5521 5522 for (auto& pair : RegUsage) { 5523 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5524 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5525 else 5526 MaxUsages[j][pair.first] = pair.second; 5527 } 5528 } 5529 5530 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5531 << OpenIntervals.size() << '\n'); 5532 5533 // Add the current instruction to the list of open intervals. 5534 OpenIntervals.insert(I); 5535 } 5536 5537 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5538 SmallMapVector<unsigned, unsigned, 4> Invariant; 5539 5540 for (auto Inst : LoopInvariants) { 5541 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5542 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5543 if (Invariant.find(ClassID) == Invariant.end()) 5544 Invariant[ClassID] = Usage; 5545 else 5546 Invariant[ClassID] += Usage; 5547 } 5548 5549 LLVM_DEBUG({ 5550 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5551 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5552 << " item\n"; 5553 for (const auto &pair : MaxUsages[i]) { 5554 dbgs() << "LV(REG): RegisterClass: " 5555 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5556 << " registers\n"; 5557 } 5558 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5559 << " item\n"; 5560 for (const auto &pair : Invariant) { 5561 dbgs() << "LV(REG): RegisterClass: " 5562 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5563 << " registers\n"; 5564 } 5565 }); 5566 5567 RU.LoopInvariantRegs = Invariant; 5568 RU.MaxLocalUsers = MaxUsages[i]; 5569 RUs[i] = RU; 5570 } 5571 5572 return RUs; 5573 } 5574 5575 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5576 // TODO: Cost model for emulated masked load/store is completely 5577 // broken. This hack guides the cost model to use an artificially 5578 // high enough value to practically disable vectorization with such 5579 // operations, except where previously deployed legality hack allowed 5580 // using very low cost values. This is to avoid regressions coming simply 5581 // from moving "masked load/store" check from legality to cost model. 5582 // Masked Load/Gather emulation was previously never allowed. 5583 // Limited number of Masked Store/Scatter emulation was allowed. 5584 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5585 return isa<LoadInst>(I) || 5586 (isa<StoreInst>(I) && 5587 NumPredStores > NumberOfStoresToPredicate); 5588 } 5589 5590 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5591 // If we aren't vectorizing the loop, or if we've already collected the 5592 // instructions to scalarize, there's nothing to do. Collection may already 5593 // have occurred if we have a user-selected VF and are now computing the 5594 // expected cost for interleaving. 5595 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5596 return; 5597 5598 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5599 // not profitable to scalarize any instructions, the presence of VF in the 5600 // map will indicate that we've analyzed it already. 5601 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5602 5603 // Find all the instructions that are scalar with predication in the loop and 5604 // determine if it would be better to not if-convert the blocks they are in. 5605 // If so, we also record the instructions to scalarize. 5606 for (BasicBlock *BB : TheLoop->blocks()) { 5607 if (!blockNeedsPredication(BB)) 5608 continue; 5609 for (Instruction &I : *BB) 5610 if (isScalarWithPredication(&I)) { 5611 ScalarCostsTy ScalarCosts; 5612 // Do not apply discount logic if hacked cost is needed 5613 // for emulated masked memrefs. 5614 if (!useEmulatedMaskMemRefHack(&I) && 5615 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5616 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5617 // Remember that BB will remain after vectorization. 5618 PredicatedBBsAfterVectorization.insert(BB); 5619 } 5620 } 5621 } 5622 5623 int LoopVectorizationCostModel::computePredInstDiscount( 5624 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5625 unsigned VF) { 5626 assert(!isUniformAfterVectorization(PredInst, VF) && 5627 "Instruction marked uniform-after-vectorization will be predicated"); 5628 5629 // Initialize the discount to zero, meaning that the scalar version and the 5630 // vector version cost the same. 5631 int Discount = 0; 5632 5633 // Holds instructions to analyze. The instructions we visit are mapped in 5634 // ScalarCosts. Those instructions are the ones that would be scalarized if 5635 // we find that the scalar version costs less. 5636 SmallVector<Instruction *, 8> Worklist; 5637 5638 // Returns true if the given instruction can be scalarized. 5639 auto canBeScalarized = [&](Instruction *I) -> bool { 5640 // We only attempt to scalarize instructions forming a single-use chain 5641 // from the original predicated block that would otherwise be vectorized. 5642 // Although not strictly necessary, we give up on instructions we know will 5643 // already be scalar to avoid traversing chains that are unlikely to be 5644 // beneficial. 5645 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5646 isScalarAfterVectorization(I, VF)) 5647 return false; 5648 5649 // If the instruction is scalar with predication, it will be analyzed 5650 // separately. We ignore it within the context of PredInst. 5651 if (isScalarWithPredication(I)) 5652 return false; 5653 5654 // If any of the instruction's operands are uniform after vectorization, 5655 // the instruction cannot be scalarized. This prevents, for example, a 5656 // masked load from being scalarized. 5657 // 5658 // We assume we will only emit a value for lane zero of an instruction 5659 // marked uniform after vectorization, rather than VF identical values. 5660 // Thus, if we scalarize an instruction that uses a uniform, we would 5661 // create uses of values corresponding to the lanes we aren't emitting code 5662 // for. This behavior can be changed by allowing getScalarValue to clone 5663 // the lane zero values for uniforms rather than asserting. 5664 for (Use &U : I->operands()) 5665 if (auto *J = dyn_cast<Instruction>(U.get())) 5666 if (isUniformAfterVectorization(J, VF)) 5667 return false; 5668 5669 // Otherwise, we can scalarize the instruction. 5670 return true; 5671 }; 5672 5673 // Compute the expected cost discount from scalarizing the entire expression 5674 // feeding the predicated instruction. We currently only consider expressions 5675 // that are single-use instruction chains. 5676 Worklist.push_back(PredInst); 5677 while (!Worklist.empty()) { 5678 Instruction *I = Worklist.pop_back_val(); 5679 5680 // If we've already analyzed the instruction, there's nothing to do. 5681 if (ScalarCosts.find(I) != ScalarCosts.end()) 5682 continue; 5683 5684 // Compute the cost of the vector instruction. Note that this cost already 5685 // includes the scalarization overhead of the predicated instruction. 5686 unsigned VectorCost = getInstructionCost(I, VF).first; 5687 5688 // Compute the cost of the scalarized instruction. This cost is the cost of 5689 // the instruction as if it wasn't if-converted and instead remained in the 5690 // predicated block. We will scale this cost by block probability after 5691 // computing the scalarization overhead. 5692 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5693 5694 // Compute the scalarization overhead of needed insertelement instructions 5695 // and phi nodes. 5696 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5697 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5698 true, false); 5699 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5700 } 5701 5702 // Compute the scalarization overhead of needed extractelement 5703 // instructions. For each of the instruction's operands, if the operand can 5704 // be scalarized, add it to the worklist; otherwise, account for the 5705 // overhead. 5706 for (Use &U : I->operands()) 5707 if (auto *J = dyn_cast<Instruction>(U.get())) { 5708 assert(VectorType::isValidElementType(J->getType()) && 5709 "Instruction has non-scalar type"); 5710 if (canBeScalarized(J)) 5711 Worklist.push_back(J); 5712 else if (needsExtract(J, VF)) 5713 ScalarCost += TTI.getScalarizationOverhead( 5714 ToVectorTy(J->getType(),VF), false, true); 5715 } 5716 5717 // Scale the total scalar cost by block probability. 5718 ScalarCost /= getReciprocalPredBlockProb(); 5719 5720 // Compute the discount. A non-negative discount means the vector version 5721 // of the instruction costs more, and scalarizing would be beneficial. 5722 Discount += VectorCost - ScalarCost; 5723 ScalarCosts[I] = ScalarCost; 5724 } 5725 5726 return Discount; 5727 } 5728 5729 LoopVectorizationCostModel::VectorizationCostTy 5730 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5731 VectorizationCostTy Cost; 5732 5733 // For each block. 5734 for (BasicBlock *BB : TheLoop->blocks()) { 5735 VectorizationCostTy BlockCost; 5736 5737 // For each instruction in the old loop. 5738 for (Instruction &I : BB->instructionsWithoutDebug()) { 5739 // Skip ignored values. 5740 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5741 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5742 continue; 5743 5744 VectorizationCostTy C = getInstructionCost(&I, VF); 5745 5746 // Check if we should override the cost. 5747 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5748 C.first = ForceTargetInstructionCost; 5749 5750 BlockCost.first += C.first; 5751 BlockCost.second |= C.second; 5752 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5753 << " for VF " << VF << " For instruction: " << I 5754 << '\n'); 5755 } 5756 5757 // If we are vectorizing a predicated block, it will have been 5758 // if-converted. This means that the block's instructions (aside from 5759 // stores and instructions that may divide by zero) will now be 5760 // unconditionally executed. For the scalar case, we may not always execute 5761 // the predicated block. Thus, scale the block's cost by the probability of 5762 // executing it. 5763 if (VF == 1 && blockNeedsPredication(BB)) 5764 BlockCost.first /= getReciprocalPredBlockProb(); 5765 5766 Cost.first += BlockCost.first; 5767 Cost.second |= BlockCost.second; 5768 } 5769 5770 return Cost; 5771 } 5772 5773 /// Gets Address Access SCEV after verifying that the access pattern 5774 /// is loop invariant except the induction variable dependence. 5775 /// 5776 /// This SCEV can be sent to the Target in order to estimate the address 5777 /// calculation cost. 5778 static const SCEV *getAddressAccessSCEV( 5779 Value *Ptr, 5780 LoopVectorizationLegality *Legal, 5781 PredicatedScalarEvolution &PSE, 5782 const Loop *TheLoop) { 5783 5784 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5785 if (!Gep) 5786 return nullptr; 5787 5788 // We are looking for a gep with all loop invariant indices except for one 5789 // which should be an induction variable. 5790 auto SE = PSE.getSE(); 5791 unsigned NumOperands = Gep->getNumOperands(); 5792 for (unsigned i = 1; i < NumOperands; ++i) { 5793 Value *Opd = Gep->getOperand(i); 5794 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5795 !Legal->isInductionVariable(Opd)) 5796 return nullptr; 5797 } 5798 5799 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5800 return PSE.getSCEV(Ptr); 5801 } 5802 5803 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5804 return Legal->hasStride(I->getOperand(0)) || 5805 Legal->hasStride(I->getOperand(1)); 5806 } 5807 5808 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5809 unsigned VF) { 5810 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5811 Type *ValTy = getMemInstValueType(I); 5812 auto SE = PSE.getSE(); 5813 5814 unsigned AS = getLoadStoreAddressSpace(I); 5815 Value *Ptr = getLoadStorePointerOperand(I); 5816 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5817 5818 // Figure out whether the access is strided and get the stride value 5819 // if it's known in compile time 5820 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5821 5822 // Get the cost of the scalar memory instruction and address computation. 5823 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5824 5825 // Don't pass *I here, since it is scalar but will actually be part of a 5826 // vectorized loop where the user of it is a vectorized instruction. 5827 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5828 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5829 Alignment, AS); 5830 5831 // Get the overhead of the extractelement and insertelement instructions 5832 // we might create due to scalarization. 5833 Cost += getScalarizationOverhead(I, VF); 5834 5835 // If we have a predicated store, it may not be executed for each vector 5836 // lane. Scale the cost by the probability of executing the predicated 5837 // block. 5838 if (isPredicatedInst(I)) { 5839 Cost /= getReciprocalPredBlockProb(); 5840 5841 if (useEmulatedMaskMemRefHack(I)) 5842 // Artificially setting to a high enough value to practically disable 5843 // vectorization with such operations. 5844 Cost = 3000000; 5845 } 5846 5847 return Cost; 5848 } 5849 5850 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5851 unsigned VF) { 5852 Type *ValTy = getMemInstValueType(I); 5853 Type *VectorTy = ToVectorTy(ValTy, VF); 5854 Value *Ptr = getLoadStorePointerOperand(I); 5855 unsigned AS = getLoadStoreAddressSpace(I); 5856 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5857 5858 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5859 "Stride should be 1 or -1 for consecutive memory access"); 5860 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5861 unsigned Cost = 0; 5862 if (Legal->isMaskRequired(I)) 5863 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, 5864 Alignment ? Alignment->value() : 0, AS); 5865 else 5866 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5867 5868 bool Reverse = ConsecutiveStride < 0; 5869 if (Reverse) 5870 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5871 return Cost; 5872 } 5873 5874 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5875 unsigned VF) { 5876 Type *ValTy = getMemInstValueType(I); 5877 Type *VectorTy = ToVectorTy(ValTy, VF); 5878 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5879 unsigned AS = getLoadStoreAddressSpace(I); 5880 if (isa<LoadInst>(I)) { 5881 return TTI.getAddressComputationCost(ValTy) + 5882 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5883 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5884 } 5885 StoreInst *SI = cast<StoreInst>(I); 5886 5887 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5888 return TTI.getAddressComputationCost(ValTy) + 5889 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5890 (isLoopInvariantStoreValue 5891 ? 0 5892 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5893 VF - 1)); 5894 } 5895 5896 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5897 unsigned VF) { 5898 Type *ValTy = getMemInstValueType(I); 5899 Type *VectorTy = ToVectorTy(ValTy, VF); 5900 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5901 Value *Ptr = getLoadStorePointerOperand(I); 5902 5903 return TTI.getAddressComputationCost(VectorTy) + 5904 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5905 Legal->isMaskRequired(I), 5906 Alignment ? Alignment->value() : 0, I); 5907 } 5908 5909 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5910 unsigned VF) { 5911 Type *ValTy = getMemInstValueType(I); 5912 Type *VectorTy = ToVectorTy(ValTy, VF); 5913 unsigned AS = getLoadStoreAddressSpace(I); 5914 5915 auto Group = getInterleavedAccessGroup(I); 5916 assert(Group && "Fail to get an interleaved access group."); 5917 5918 unsigned InterleaveFactor = Group->getFactor(); 5919 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5920 5921 // Holds the indices of existing members in an interleaved load group. 5922 // An interleaved store group doesn't need this as it doesn't allow gaps. 5923 SmallVector<unsigned, 4> Indices; 5924 if (isa<LoadInst>(I)) { 5925 for (unsigned i = 0; i < InterleaveFactor; i++) 5926 if (Group->getMember(i)) 5927 Indices.push_back(i); 5928 } 5929 5930 // Calculate the cost of the whole interleaved group. 5931 bool UseMaskForGaps = 5932 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5933 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5934 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5935 Group->getAlign().value(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5936 5937 if (Group->isReverse()) { 5938 // TODO: Add support for reversed masked interleaved access. 5939 assert(!Legal->isMaskRequired(I) && 5940 "Reverse masked interleaved access not supported."); 5941 Cost += Group->getNumMembers() * 5942 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5943 } 5944 return Cost; 5945 } 5946 5947 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5948 unsigned VF) { 5949 // Calculate scalar cost only. Vectorization cost should be ready at this 5950 // moment. 5951 if (VF == 1) { 5952 Type *ValTy = getMemInstValueType(I); 5953 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5954 unsigned AS = getLoadStoreAddressSpace(I); 5955 5956 return TTI.getAddressComputationCost(ValTy) + 5957 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5958 } 5959 return getWideningCost(I, VF); 5960 } 5961 5962 LoopVectorizationCostModel::VectorizationCostTy 5963 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5964 // If we know that this instruction will remain uniform, check the cost of 5965 // the scalar version. 5966 if (isUniformAfterVectorization(I, VF)) 5967 VF = 1; 5968 5969 if (VF > 1 && isProfitableToScalarize(I, VF)) 5970 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5971 5972 // Forced scalars do not have any scalarization overhead. 5973 auto ForcedScalar = ForcedScalars.find(VF); 5974 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5975 auto InstSet = ForcedScalar->second; 5976 if (InstSet.find(I) != InstSet.end()) 5977 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5978 } 5979 5980 Type *VectorTy; 5981 unsigned C = getInstructionCost(I, VF, VectorTy); 5982 5983 bool TypeNotScalarized = 5984 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5985 return VectorizationCostTy(C, TypeNotScalarized); 5986 } 5987 5988 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5989 unsigned VF) { 5990 5991 if (VF == 1) 5992 return 0; 5993 5994 unsigned Cost = 0; 5995 Type *RetTy = ToVectorTy(I->getType(), VF); 5996 if (!RetTy->isVoidTy() && 5997 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5998 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5999 6000 // Some targets keep addresses scalar. 6001 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6002 return Cost; 6003 6004 // Some targets support efficient element stores. 6005 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6006 return Cost; 6007 6008 // Collect operands to consider. 6009 CallInst *CI = dyn_cast<CallInst>(I); 6010 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6011 6012 // Skip operands that do not require extraction/scalarization and do not incur 6013 // any overhead. 6014 return Cost + TTI.getOperandsScalarizationOverhead( 6015 filterExtractingOperands(Ops, VF), VF); 6016 } 6017 6018 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6019 if (VF == 1) 6020 return; 6021 NumPredStores = 0; 6022 for (BasicBlock *BB : TheLoop->blocks()) { 6023 // For each instruction in the old loop. 6024 for (Instruction &I : *BB) { 6025 Value *Ptr = getLoadStorePointerOperand(&I); 6026 if (!Ptr) 6027 continue; 6028 6029 // TODO: We should generate better code and update the cost model for 6030 // predicated uniform stores. Today they are treated as any other 6031 // predicated store (see added test cases in 6032 // invariant-store-vectorization.ll). 6033 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6034 NumPredStores++; 6035 6036 if (Legal->isUniform(Ptr) && 6037 // Conditional loads and stores should be scalarized and predicated. 6038 // isScalarWithPredication cannot be used here since masked 6039 // gather/scatters are not considered scalar with predication. 6040 !Legal->blockNeedsPredication(I.getParent())) { 6041 // TODO: Avoid replicating loads and stores instead of 6042 // relying on instcombine to remove them. 6043 // Load: Scalar load + broadcast 6044 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6045 unsigned Cost = getUniformMemOpCost(&I, VF); 6046 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6047 continue; 6048 } 6049 6050 // We assume that widening is the best solution when possible. 6051 if (memoryInstructionCanBeWidened(&I, VF)) { 6052 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6053 int ConsecutiveStride = 6054 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6055 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6056 "Expected consecutive stride."); 6057 InstWidening Decision = 6058 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6059 setWideningDecision(&I, VF, Decision, Cost); 6060 continue; 6061 } 6062 6063 // Choose between Interleaving, Gather/Scatter or Scalarization. 6064 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6065 unsigned NumAccesses = 1; 6066 if (isAccessInterleaved(&I)) { 6067 auto Group = getInterleavedAccessGroup(&I); 6068 assert(Group && "Fail to get an interleaved access group."); 6069 6070 // Make one decision for the whole group. 6071 if (getWideningDecision(&I, VF) != CM_Unknown) 6072 continue; 6073 6074 NumAccesses = Group->getNumMembers(); 6075 if (interleavedAccessCanBeWidened(&I, VF)) 6076 InterleaveCost = getInterleaveGroupCost(&I, VF); 6077 } 6078 6079 unsigned GatherScatterCost = 6080 isLegalGatherOrScatter(&I) 6081 ? getGatherScatterCost(&I, VF) * NumAccesses 6082 : std::numeric_limits<unsigned>::max(); 6083 6084 unsigned ScalarizationCost = 6085 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6086 6087 // Choose better solution for the current VF, 6088 // write down this decision and use it during vectorization. 6089 unsigned Cost; 6090 InstWidening Decision; 6091 if (InterleaveCost <= GatherScatterCost && 6092 InterleaveCost < ScalarizationCost) { 6093 Decision = CM_Interleave; 6094 Cost = InterleaveCost; 6095 } else if (GatherScatterCost < ScalarizationCost) { 6096 Decision = CM_GatherScatter; 6097 Cost = GatherScatterCost; 6098 } else { 6099 Decision = CM_Scalarize; 6100 Cost = ScalarizationCost; 6101 } 6102 // If the instructions belongs to an interleave group, the whole group 6103 // receives the same decision. The whole group receives the cost, but 6104 // the cost will actually be assigned to one instruction. 6105 if (auto Group = getInterleavedAccessGroup(&I)) 6106 setWideningDecision(Group, VF, Decision, Cost); 6107 else 6108 setWideningDecision(&I, VF, Decision, Cost); 6109 } 6110 } 6111 6112 // Make sure that any load of address and any other address computation 6113 // remains scalar unless there is gather/scatter support. This avoids 6114 // inevitable extracts into address registers, and also has the benefit of 6115 // activating LSR more, since that pass can't optimize vectorized 6116 // addresses. 6117 if (TTI.prefersVectorizedAddressing()) 6118 return; 6119 6120 // Start with all scalar pointer uses. 6121 SmallPtrSet<Instruction *, 8> AddrDefs; 6122 for (BasicBlock *BB : TheLoop->blocks()) 6123 for (Instruction &I : *BB) { 6124 Instruction *PtrDef = 6125 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6126 if (PtrDef && TheLoop->contains(PtrDef) && 6127 getWideningDecision(&I, VF) != CM_GatherScatter) 6128 AddrDefs.insert(PtrDef); 6129 } 6130 6131 // Add all instructions used to generate the addresses. 6132 SmallVector<Instruction *, 4> Worklist; 6133 for (auto *I : AddrDefs) 6134 Worklist.push_back(I); 6135 while (!Worklist.empty()) { 6136 Instruction *I = Worklist.pop_back_val(); 6137 for (auto &Op : I->operands()) 6138 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6139 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6140 AddrDefs.insert(InstOp).second) 6141 Worklist.push_back(InstOp); 6142 } 6143 6144 for (auto *I : AddrDefs) { 6145 if (isa<LoadInst>(I)) { 6146 // Setting the desired widening decision should ideally be handled in 6147 // by cost functions, but since this involves the task of finding out 6148 // if the loaded register is involved in an address computation, it is 6149 // instead changed here when we know this is the case. 6150 InstWidening Decision = getWideningDecision(I, VF); 6151 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6152 // Scalarize a widened load of address. 6153 setWideningDecision(I, VF, CM_Scalarize, 6154 (VF * getMemoryInstructionCost(I, 1))); 6155 else if (auto Group = getInterleavedAccessGroup(I)) { 6156 // Scalarize an interleave group of address loads. 6157 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6158 if (Instruction *Member = Group->getMember(I)) 6159 setWideningDecision(Member, VF, CM_Scalarize, 6160 (VF * getMemoryInstructionCost(Member, 1))); 6161 } 6162 } 6163 } else 6164 // Make sure I gets scalarized and a cost estimate without 6165 // scalarization overhead. 6166 ForcedScalars[VF].insert(I); 6167 } 6168 } 6169 6170 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6171 unsigned VF, 6172 Type *&VectorTy) { 6173 Type *RetTy = I->getType(); 6174 if (canTruncateToMinimalBitwidth(I, VF)) 6175 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6176 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6177 auto SE = PSE.getSE(); 6178 6179 // TODO: We need to estimate the cost of intrinsic calls. 6180 switch (I->getOpcode()) { 6181 case Instruction::GetElementPtr: 6182 // We mark this instruction as zero-cost because the cost of GEPs in 6183 // vectorized code depends on whether the corresponding memory instruction 6184 // is scalarized or not. Therefore, we handle GEPs with the memory 6185 // instruction cost. 6186 return 0; 6187 case Instruction::Br: { 6188 // In cases of scalarized and predicated instructions, there will be VF 6189 // predicated blocks in the vectorized loop. Each branch around these 6190 // blocks requires also an extract of its vector compare i1 element. 6191 bool ScalarPredicatedBB = false; 6192 BranchInst *BI = cast<BranchInst>(I); 6193 if (VF > 1 && BI->isConditional() && 6194 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6195 PredicatedBBsAfterVectorization.end() || 6196 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6197 PredicatedBBsAfterVectorization.end())) 6198 ScalarPredicatedBB = true; 6199 6200 if (ScalarPredicatedBB) { 6201 // Return cost for branches around scalarized and predicated blocks. 6202 Type *Vec_i1Ty = 6203 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6204 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6205 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6206 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6207 // The back-edge branch will remain, as will all scalar branches. 6208 return TTI.getCFInstrCost(Instruction::Br); 6209 else 6210 // This branch will be eliminated by if-conversion. 6211 return 0; 6212 // Note: We currently assume zero cost for an unconditional branch inside 6213 // a predicated block since it will become a fall-through, although we 6214 // may decide in the future to call TTI for all branches. 6215 } 6216 case Instruction::PHI: { 6217 auto *Phi = cast<PHINode>(I); 6218 6219 // First-order recurrences are replaced by vector shuffles inside the loop. 6220 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6221 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6222 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6223 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 6224 6225 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6226 // converted into select instructions. We require N - 1 selects per phi 6227 // node, where N is the number of incoming values. 6228 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6229 return (Phi->getNumIncomingValues() - 1) * 6230 TTI.getCmpSelInstrCost( 6231 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6232 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6233 6234 return TTI.getCFInstrCost(Instruction::PHI); 6235 } 6236 case Instruction::UDiv: 6237 case Instruction::SDiv: 6238 case Instruction::URem: 6239 case Instruction::SRem: 6240 // If we have a predicated instruction, it may not be executed for each 6241 // vector lane. Get the scalarization cost and scale this amount by the 6242 // probability of executing the predicated block. If the instruction is not 6243 // predicated, we fall through to the next case. 6244 if (VF > 1 && isScalarWithPredication(I)) { 6245 unsigned Cost = 0; 6246 6247 // These instructions have a non-void type, so account for the phi nodes 6248 // that we will create. This cost is likely to be zero. The phi node 6249 // cost, if any, should be scaled by the block probability because it 6250 // models a copy at the end of each predicated block. 6251 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6252 6253 // The cost of the non-predicated instruction. 6254 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6255 6256 // The cost of insertelement and extractelement instructions needed for 6257 // scalarization. 6258 Cost += getScalarizationOverhead(I, VF); 6259 6260 // Scale the cost by the probability of executing the predicated blocks. 6261 // This assumes the predicated block for each vector lane is equally 6262 // likely. 6263 return Cost / getReciprocalPredBlockProb(); 6264 } 6265 LLVM_FALLTHROUGH; 6266 case Instruction::Add: 6267 case Instruction::FAdd: 6268 case Instruction::Sub: 6269 case Instruction::FSub: 6270 case Instruction::Mul: 6271 case Instruction::FMul: 6272 case Instruction::FDiv: 6273 case Instruction::FRem: 6274 case Instruction::Shl: 6275 case Instruction::LShr: 6276 case Instruction::AShr: 6277 case Instruction::And: 6278 case Instruction::Or: 6279 case Instruction::Xor: { 6280 // Since we will replace the stride by 1 the multiplication should go away. 6281 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6282 return 0; 6283 // Certain instructions can be cheaper to vectorize if they have a constant 6284 // second vector operand. One example of this are shifts on x86. 6285 Value *Op2 = I->getOperand(1); 6286 TargetTransformInfo::OperandValueProperties Op2VP; 6287 TargetTransformInfo::OperandValueKind Op2VK = 6288 TTI.getOperandInfo(Op2, Op2VP); 6289 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6290 Op2VK = TargetTransformInfo::OK_UniformValue; 6291 6292 SmallVector<const Value *, 4> Operands(I->operand_values()); 6293 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6294 return N * TTI.getArithmeticInstrCost( 6295 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6296 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6297 } 6298 case Instruction::FNeg: { 6299 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6300 return N * TTI.getArithmeticInstrCost( 6301 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6302 TargetTransformInfo::OK_AnyValue, 6303 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6304 I->getOperand(0), I); 6305 } 6306 case Instruction::Select: { 6307 SelectInst *SI = cast<SelectInst>(I); 6308 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6309 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6310 Type *CondTy = SI->getCondition()->getType(); 6311 if (!ScalarCond) 6312 CondTy = VectorType::get(CondTy, VF); 6313 6314 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6315 } 6316 case Instruction::ICmp: 6317 case Instruction::FCmp: { 6318 Type *ValTy = I->getOperand(0)->getType(); 6319 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6320 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6321 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6322 VectorTy = ToVectorTy(ValTy, VF); 6323 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6324 } 6325 case Instruction::Store: 6326 case Instruction::Load: { 6327 unsigned Width = VF; 6328 if (Width > 1) { 6329 InstWidening Decision = getWideningDecision(I, Width); 6330 assert(Decision != CM_Unknown && 6331 "CM decision should be taken at this point"); 6332 if (Decision == CM_Scalarize) 6333 Width = 1; 6334 } 6335 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6336 return getMemoryInstructionCost(I, VF); 6337 } 6338 case Instruction::ZExt: 6339 case Instruction::SExt: 6340 case Instruction::FPToUI: 6341 case Instruction::FPToSI: 6342 case Instruction::FPExt: 6343 case Instruction::PtrToInt: 6344 case Instruction::IntToPtr: 6345 case Instruction::SIToFP: 6346 case Instruction::UIToFP: 6347 case Instruction::Trunc: 6348 case Instruction::FPTrunc: 6349 case Instruction::BitCast: { 6350 // We optimize the truncation of induction variables having constant 6351 // integer steps. The cost of these truncations is the same as the scalar 6352 // operation. 6353 if (isOptimizableIVTruncate(I, VF)) { 6354 auto *Trunc = cast<TruncInst>(I); 6355 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6356 Trunc->getSrcTy(), Trunc); 6357 } 6358 6359 Type *SrcScalarTy = I->getOperand(0)->getType(); 6360 Type *SrcVecTy = 6361 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6362 if (canTruncateToMinimalBitwidth(I, VF)) { 6363 // This cast is going to be shrunk. This may remove the cast or it might 6364 // turn it into slightly different cast. For example, if MinBW == 16, 6365 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6366 // 6367 // Calculate the modified src and dest types. 6368 Type *MinVecTy = VectorTy; 6369 if (I->getOpcode() == Instruction::Trunc) { 6370 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6371 VectorTy = 6372 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6373 } else if (I->getOpcode() == Instruction::ZExt || 6374 I->getOpcode() == Instruction::SExt) { 6375 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6376 VectorTy = 6377 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6378 } 6379 } 6380 6381 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6382 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6383 } 6384 case Instruction::Call: { 6385 bool NeedToScalarize; 6386 CallInst *CI = cast<CallInst>(I); 6387 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6388 if (getVectorIntrinsicIDForCall(CI, TLI)) 6389 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6390 return CallCost; 6391 } 6392 default: 6393 // The cost of executing VF copies of the scalar instruction. This opcode 6394 // is unknown. Assume that it is the same as 'mul'. 6395 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6396 getScalarizationOverhead(I, VF); 6397 } // end of switch. 6398 } 6399 6400 char LoopVectorize::ID = 0; 6401 6402 static const char lv_name[] = "Loop Vectorization"; 6403 6404 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6405 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6406 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6407 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6408 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6409 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6410 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6411 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6412 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6413 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6414 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6415 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6416 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6417 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6418 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6419 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6420 6421 namespace llvm { 6422 6423 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6424 6425 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6426 bool VectorizeOnlyWhenForced) { 6427 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6428 } 6429 6430 } // end namespace llvm 6431 6432 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6433 // Check if the pointer operand of a load or store instruction is 6434 // consecutive. 6435 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6436 return Legal->isConsecutivePtr(Ptr); 6437 return false; 6438 } 6439 6440 void LoopVectorizationCostModel::collectValuesToIgnore() { 6441 // Ignore ephemeral values. 6442 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6443 6444 // Ignore type-promoting instructions we identified during reduction 6445 // detection. 6446 for (auto &Reduction : Legal->getReductionVars()) { 6447 RecurrenceDescriptor &RedDes = Reduction.second; 6448 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6449 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6450 } 6451 // Ignore type-casting instructions we identified during induction 6452 // detection. 6453 for (auto &Induction : Legal->getInductionVars()) { 6454 InductionDescriptor &IndDes = Induction.second; 6455 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6456 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6457 } 6458 } 6459 6460 // TODO: we could return a pair of values that specify the max VF and 6461 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6462 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6463 // doesn't have a cost model that can choose which plan to execute if 6464 // more than one is generated. 6465 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6466 LoopVectorizationCostModel &CM) { 6467 unsigned WidestType; 6468 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6469 return WidestVectorRegBits / WidestType; 6470 } 6471 6472 VectorizationFactor 6473 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6474 unsigned VF = UserVF; 6475 // Outer loop handling: They may require CFG and instruction level 6476 // transformations before even evaluating whether vectorization is profitable. 6477 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6478 // the vectorization pipeline. 6479 if (!OrigLoop->empty()) { 6480 // If the user doesn't provide a vectorization factor, determine a 6481 // reasonable one. 6482 if (!UserVF) { 6483 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6484 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6485 6486 // Make sure we have a VF > 1 for stress testing. 6487 if (VPlanBuildStressTest && VF < 2) { 6488 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6489 << "overriding computed VF.\n"); 6490 VF = 4; 6491 } 6492 } 6493 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6494 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6495 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6496 << " to build VPlans.\n"); 6497 buildVPlans(VF, VF); 6498 6499 // For VPlan build stress testing, we bail out after VPlan construction. 6500 if (VPlanBuildStressTest) 6501 return VectorizationFactor::Disabled(); 6502 6503 return {VF, 0}; 6504 } 6505 6506 LLVM_DEBUG( 6507 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6508 "VPlan-native path.\n"); 6509 return VectorizationFactor::Disabled(); 6510 } 6511 6512 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6513 assert(OrigLoop->empty() && "Inner loop expected."); 6514 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6515 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6516 return None; 6517 6518 // Invalidate interleave groups if all blocks of loop will be predicated. 6519 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6520 !useMaskedInterleavedAccesses(*TTI)) { 6521 LLVM_DEBUG( 6522 dbgs() 6523 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6524 "which requires masked-interleaved support.\n"); 6525 CM.InterleaveInfo.reset(); 6526 } 6527 6528 if (UserVF) { 6529 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6530 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6531 // Collect the instructions (and their associated costs) that will be more 6532 // profitable to scalarize. 6533 CM.selectUserVectorizationFactor(UserVF); 6534 buildVPlansWithVPRecipes(UserVF, UserVF); 6535 LLVM_DEBUG(printPlans(dbgs())); 6536 return {{UserVF, 0}}; 6537 } 6538 6539 unsigned MaxVF = MaybeMaxVF.getValue(); 6540 assert(MaxVF != 0 && "MaxVF is zero."); 6541 6542 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6543 // Collect Uniform and Scalar instructions after vectorization with VF. 6544 CM.collectUniformsAndScalars(VF); 6545 6546 // Collect the instructions (and their associated costs) that will be more 6547 // profitable to scalarize. 6548 if (VF > 1) 6549 CM.collectInstsToScalarize(VF); 6550 } 6551 6552 buildVPlansWithVPRecipes(1, MaxVF); 6553 LLVM_DEBUG(printPlans(dbgs())); 6554 if (MaxVF == 1) 6555 return VectorizationFactor::Disabled(); 6556 6557 // Select the optimal vectorization factor. 6558 return CM.selectVectorizationFactor(MaxVF); 6559 } 6560 6561 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6562 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6563 << '\n'); 6564 BestVF = VF; 6565 BestUF = UF; 6566 6567 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6568 return !Plan->hasVF(VF); 6569 }); 6570 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6571 } 6572 6573 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6574 DominatorTree *DT) { 6575 // Perform the actual loop transformation. 6576 6577 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6578 VPCallbackILV CallbackILV(ILV); 6579 6580 VPTransformState State{BestVF, BestUF, LI, 6581 DT, ILV.Builder, ILV.VectorLoopValueMap, 6582 &ILV, CallbackILV}; 6583 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6584 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6585 State.CanonicalIV = ILV.Induction; 6586 6587 //===------------------------------------------------===// 6588 // 6589 // Notice: any optimization or new instruction that go 6590 // into the code below should also be implemented in 6591 // the cost-model. 6592 // 6593 //===------------------------------------------------===// 6594 6595 // 2. Copy and widen instructions from the old loop into the new loop. 6596 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6597 VPlans.front()->execute(&State); 6598 6599 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6600 // predication, updating analyses. 6601 ILV.fixVectorizedLoop(); 6602 } 6603 6604 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6605 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6606 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6607 6608 // We create new control-flow for the vectorized loop, so the original 6609 // condition will be dead after vectorization if it's only used by the 6610 // branch. 6611 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6612 if (Cmp && Cmp->hasOneUse()) 6613 DeadInstructions.insert(Cmp); 6614 6615 // We create new "steps" for induction variable updates to which the original 6616 // induction variables map. An original update instruction will be dead if 6617 // all its users except the induction variable are dead. 6618 for (auto &Induction : Legal->getInductionVars()) { 6619 PHINode *Ind = Induction.first; 6620 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6621 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6622 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6623 DeadInstructions.end(); 6624 })) 6625 DeadInstructions.insert(IndUpdate); 6626 6627 // We record as "Dead" also the type-casting instructions we had identified 6628 // during induction analysis. We don't need any handling for them in the 6629 // vectorized loop because we have proven that, under a proper runtime 6630 // test guarding the vectorized loop, the value of the phi, and the casted 6631 // value of the phi, are the same. The last instruction in this casting chain 6632 // will get its scalar/vector/widened def from the scalar/vector/widened def 6633 // of the respective phi node. Any other casts in the induction def-use chain 6634 // have no other uses outside the phi update chain, and will be ignored. 6635 InductionDescriptor &IndDes = Induction.second; 6636 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6637 DeadInstructions.insert(Casts.begin(), Casts.end()); 6638 } 6639 } 6640 6641 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6642 6643 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6644 6645 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6646 Instruction::BinaryOps BinOp) { 6647 // When unrolling and the VF is 1, we only need to add a simple scalar. 6648 Type *Ty = Val->getType(); 6649 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6650 6651 if (Ty->isFloatingPointTy()) { 6652 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6653 6654 // Floating point operations had to be 'fast' to enable the unrolling. 6655 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6656 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6657 } 6658 Constant *C = ConstantInt::get(Ty, StartIdx); 6659 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6660 } 6661 6662 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6663 SmallVector<Metadata *, 4> MDs; 6664 // Reserve first location for self reference to the LoopID metadata node. 6665 MDs.push_back(nullptr); 6666 bool IsUnrollMetadata = false; 6667 MDNode *LoopID = L->getLoopID(); 6668 if (LoopID) { 6669 // First find existing loop unrolling disable metadata. 6670 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6671 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6672 if (MD) { 6673 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6674 IsUnrollMetadata = 6675 S && S->getString().startswith("llvm.loop.unroll.disable"); 6676 } 6677 MDs.push_back(LoopID->getOperand(i)); 6678 } 6679 } 6680 6681 if (!IsUnrollMetadata) { 6682 // Add runtime unroll disable metadata. 6683 LLVMContext &Context = L->getHeader()->getContext(); 6684 SmallVector<Metadata *, 1> DisableOperands; 6685 DisableOperands.push_back( 6686 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6687 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6688 MDs.push_back(DisableNode); 6689 MDNode *NewLoopID = MDNode::get(Context, MDs); 6690 // Set operand 0 to refer to the loop id itself. 6691 NewLoopID->replaceOperandWith(0, NewLoopID); 6692 L->setLoopID(NewLoopID); 6693 } 6694 } 6695 6696 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6697 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6698 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6699 bool PredicateAtRangeStart = Predicate(Range.Start); 6700 6701 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6702 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6703 Range.End = TmpVF; 6704 break; 6705 } 6706 6707 return PredicateAtRangeStart; 6708 } 6709 6710 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6711 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6712 /// of VF's starting at a given VF and extending it as much as possible. Each 6713 /// vectorization decision can potentially shorten this sub-range during 6714 /// buildVPlan(). 6715 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6716 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6717 VFRange SubRange = {VF, MaxVF + 1}; 6718 VPlans.push_back(buildVPlan(SubRange)); 6719 VF = SubRange.End; 6720 } 6721 } 6722 6723 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6724 VPlanPtr &Plan) { 6725 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6726 6727 // Look for cached value. 6728 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6729 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6730 if (ECEntryIt != EdgeMaskCache.end()) 6731 return ECEntryIt->second; 6732 6733 VPValue *SrcMask = createBlockInMask(Src, Plan); 6734 6735 // The terminator has to be a branch inst! 6736 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6737 assert(BI && "Unexpected terminator found"); 6738 6739 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6740 return EdgeMaskCache[Edge] = SrcMask; 6741 6742 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6743 assert(EdgeMask && "No Edge Mask found for condition"); 6744 6745 if (BI->getSuccessor(0) != Dst) 6746 EdgeMask = Builder.createNot(EdgeMask); 6747 6748 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6749 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6750 6751 return EdgeMaskCache[Edge] = EdgeMask; 6752 } 6753 6754 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6755 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6756 6757 // Look for cached value. 6758 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6759 if (BCEntryIt != BlockMaskCache.end()) 6760 return BCEntryIt->second; 6761 6762 // All-one mask is modelled as no-mask following the convention for masked 6763 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6764 VPValue *BlockMask = nullptr; 6765 6766 if (OrigLoop->getHeader() == BB) { 6767 if (!CM.blockNeedsPredication(BB)) 6768 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6769 6770 // Introduce the early-exit compare IV <= BTC to form header block mask. 6771 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6772 // Start by constructing the desired canonical IV. 6773 VPValue *IV = nullptr; 6774 if (Legal->getPrimaryInduction()) 6775 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6776 else { 6777 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6778 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6779 IV = IVRecipe->getVPValue(); 6780 } 6781 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6782 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6783 return BlockMaskCache[BB] = BlockMask; 6784 } 6785 6786 // This is the block mask. We OR all incoming edges. 6787 for (auto *Predecessor : predecessors(BB)) { 6788 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6789 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6790 return BlockMaskCache[BB] = EdgeMask; 6791 6792 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6793 BlockMask = EdgeMask; 6794 continue; 6795 } 6796 6797 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6798 } 6799 6800 return BlockMaskCache[BB] = BlockMask; 6801 } 6802 6803 VPWidenMemoryInstructionRecipe * 6804 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6805 VPlanPtr &Plan) { 6806 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6807 return nullptr; 6808 6809 auto willWiden = [&](unsigned VF) -> bool { 6810 if (VF == 1) 6811 return false; 6812 LoopVectorizationCostModel::InstWidening Decision = 6813 CM.getWideningDecision(I, VF); 6814 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6815 "CM decision should be taken at this point."); 6816 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6817 return true; 6818 if (CM.isScalarAfterVectorization(I, VF) || 6819 CM.isProfitableToScalarize(I, VF)) 6820 return false; 6821 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6822 }; 6823 6824 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6825 return nullptr; 6826 6827 VPValue *Mask = nullptr; 6828 if (Legal->isMaskRequired(I)) 6829 Mask = createBlockInMask(I->getParent(), Plan); 6830 6831 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6832 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6833 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6834 6835 StoreInst *Store = cast<StoreInst>(I); 6836 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6837 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6838 } 6839 6840 VPWidenIntOrFpInductionRecipe * 6841 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6842 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6843 // Check if this is an integer or fp induction. If so, build the recipe that 6844 // produces its scalar and vector values. 6845 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6846 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6847 II.getKind() == InductionDescriptor::IK_FpInduction) 6848 return new VPWidenIntOrFpInductionRecipe(Phi); 6849 6850 return nullptr; 6851 } 6852 6853 // Optimize the special case where the source is a constant integer 6854 // induction variable. Notice that we can only optimize the 'trunc' case 6855 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6856 // (c) other casts depend on pointer size. 6857 6858 // Determine whether \p K is a truncation based on an induction variable that 6859 // can be optimized. 6860 auto isOptimizableIVTruncate = 6861 [&](Instruction *K) -> std::function<bool(unsigned)> { 6862 return 6863 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6864 }; 6865 6866 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6867 isOptimizableIVTruncate(I), Range)) 6868 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6869 cast<TruncInst>(I)); 6870 return nullptr; 6871 } 6872 6873 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6874 PHINode *Phi = dyn_cast<PHINode>(I); 6875 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6876 return nullptr; 6877 6878 // We know that all PHIs in non-header blocks are converted into selects, so 6879 // we don't have to worry about the insertion order and we can just use the 6880 // builder. At this point we generate the predication tree. There may be 6881 // duplications since this is a simple recursive scan, but future 6882 // optimizations will clean it up. 6883 6884 SmallVector<VPValue *, 2> Operands; 6885 unsigned NumIncoming = Phi->getNumIncomingValues(); 6886 for (unsigned In = 0; In < NumIncoming; In++) { 6887 VPValue *EdgeMask = 6888 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6889 assert((EdgeMask || NumIncoming == 1) && 6890 "Multiple predecessors with one having a full mask"); 6891 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 6892 if (EdgeMask) 6893 Operands.push_back(EdgeMask); 6894 } 6895 return new VPBlendRecipe(Phi, Operands); 6896 } 6897 6898 VPWidenCallRecipe * 6899 VPRecipeBuilder::tryToWidenCall(Instruction *I, VFRange &Range, VPlan &Plan) { 6900 6901 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6902 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6903 6904 CallInst *CI = dyn_cast<CallInst>(I); 6905 if (IsPredicated || !CI) 6906 return nullptr; 6907 6908 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6909 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6910 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6911 return nullptr; 6912 6913 auto willWiden = [&](unsigned VF) -> bool { 6914 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6915 // The following case may be scalarized depending on the VF. 6916 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6917 // version of the instruction. 6918 // Is it beneficial to perform intrinsic call compared to lib call? 6919 bool NeedToScalarize = false; 6920 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6921 bool UseVectorIntrinsic = 6922 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6923 return UseVectorIntrinsic || !NeedToScalarize; 6924 }; 6925 6926 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6927 return nullptr; 6928 6929 // Success: widen this call. 6930 auto VPValues = map_range(CI->arg_operands(), [&Plan](Value *Op) { 6931 return Plan.getOrAddVPValue(Op); 6932 }); 6933 6934 return new VPWidenCallRecipe(*CI, VPValues); 6935 } 6936 6937 VPWidenSelectRecipe *VPRecipeBuilder::tryToWidenSelect(Instruction *I, 6938 VFRange &Range) { 6939 auto *SI = dyn_cast<SelectInst>(I); 6940 if (!SI) 6941 return nullptr; 6942 6943 // SI should be widened, unless it is scalar after vectorization, 6944 // scalarization is profitable or it is predicated. 6945 auto willWiden = [this, SI](unsigned VF) -> bool { 6946 return !CM.isScalarAfterVectorization(SI, VF) && 6947 !CM.isProfitableToScalarize(SI, VF) && 6948 !CM.isScalarWithPredication(SI, VF); 6949 }; 6950 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6951 return nullptr; 6952 6953 auto *SE = PSE.getSE(); 6954 bool InvariantCond = 6955 SE->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 6956 // Success: widen this instruction. 6957 return new VPWidenSelectRecipe(*SI, InvariantCond); 6958 } 6959 6960 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VFRange &Range) { 6961 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6962 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6963 6964 if (IsPredicated) 6965 return nullptr; 6966 6967 auto IsVectorizableOpcode = [](unsigned Opcode) { 6968 switch (Opcode) { 6969 case Instruction::Add: 6970 case Instruction::And: 6971 case Instruction::AShr: 6972 case Instruction::BitCast: 6973 case Instruction::Br: 6974 case Instruction::FAdd: 6975 case Instruction::FCmp: 6976 case Instruction::FDiv: 6977 case Instruction::FMul: 6978 case Instruction::FNeg: 6979 case Instruction::FPExt: 6980 case Instruction::FPToSI: 6981 case Instruction::FPToUI: 6982 case Instruction::FPTrunc: 6983 case Instruction::FRem: 6984 case Instruction::FSub: 6985 case Instruction::ICmp: 6986 case Instruction::IntToPtr: 6987 case Instruction::Load: 6988 case Instruction::LShr: 6989 case Instruction::Mul: 6990 case Instruction::Or: 6991 case Instruction::PHI: 6992 case Instruction::PtrToInt: 6993 case Instruction::SDiv: 6994 case Instruction::Select: 6995 case Instruction::SExt: 6996 case Instruction::Shl: 6997 case Instruction::SIToFP: 6998 case Instruction::SRem: 6999 case Instruction::Store: 7000 case Instruction::Sub: 7001 case Instruction::Trunc: 7002 case Instruction::UDiv: 7003 case Instruction::UIToFP: 7004 case Instruction::URem: 7005 case Instruction::Xor: 7006 case Instruction::ZExt: 7007 return true; 7008 } 7009 return false; 7010 }; 7011 7012 if (!IsVectorizableOpcode(I->getOpcode())) 7013 return nullptr; 7014 7015 auto willWiden = [&](unsigned VF) -> bool { 7016 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 7017 CM.isProfitableToScalarize(I, VF))) 7018 return false; 7019 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 7020 assert(CM.getWideningDecision(I, VF) == 7021 LoopVectorizationCostModel::CM_Scalarize && 7022 "Memory widening decisions should have been taken care by now"); 7023 return false; 7024 } 7025 return true; 7026 }; 7027 7028 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7029 return nullptr; 7030 7031 // Success: widen this instruction. 7032 return new VPWidenRecipe(*I); 7033 } 7034 7035 VPBasicBlock *VPRecipeBuilder::handleReplication( 7036 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7037 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7038 VPlanPtr &Plan) { 7039 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7040 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7041 Range); 7042 7043 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7044 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7045 7046 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7047 setRecipe(I, Recipe); 7048 7049 // Find if I uses a predicated instruction. If so, it will use its scalar 7050 // value. Avoid hoisting the insert-element which packs the scalar value into 7051 // a vector value, as that happens iff all users use the vector value. 7052 for (auto &Op : I->operands()) 7053 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7054 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7055 PredInst2Recipe[PredInst]->setAlsoPack(false); 7056 7057 // Finalize the recipe for Instr, first if it is not predicated. 7058 if (!IsPredicated) { 7059 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7060 VPBB->appendRecipe(Recipe); 7061 return VPBB; 7062 } 7063 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7064 assert(VPBB->getSuccessors().empty() && 7065 "VPBB has successors when handling predicated replication."); 7066 // Record predicated instructions for above packing optimizations. 7067 PredInst2Recipe[I] = Recipe; 7068 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7069 VPBlockUtils::insertBlockAfter(Region, VPBB); 7070 auto *RegSucc = new VPBasicBlock(); 7071 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7072 return RegSucc; 7073 } 7074 7075 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7076 VPRecipeBase *PredRecipe, 7077 VPlanPtr &Plan) { 7078 // Instructions marked for predication are replicated and placed under an 7079 // if-then construct to prevent side-effects. 7080 7081 // Generate recipes to compute the block mask for this region. 7082 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7083 7084 // Build the triangular if-then region. 7085 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7086 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7087 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7088 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7089 auto *PHIRecipe = 7090 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7091 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7092 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7093 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7094 7095 // Note: first set Entry as region entry and then connect successors starting 7096 // from it in order, to propagate the "parent" of each VPBasicBlock. 7097 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7098 VPBlockUtils::connectBlocks(Pred, Exit); 7099 7100 return Region; 7101 } 7102 7103 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 7104 VPlanPtr &Plan, VPBasicBlock *VPBB) { 7105 VPRecipeBase *Recipe = nullptr; 7106 7107 // First, check for specific widening recipes that deal with calls, memory 7108 // operations, inductions and Phi nodes. 7109 if ((Recipe = tryToWidenCall(Instr, Range, *Plan)) || 7110 (Recipe = tryToWidenMemory(Instr, Range, Plan)) || 7111 (Recipe = tryToWidenSelect(Instr, Range)) || 7112 (Recipe = tryToOptimizeInduction(Instr, Range)) || 7113 (Recipe = tryToBlend(Instr, Plan)) || 7114 (isa<PHINode>(Instr) && 7115 (Recipe = new VPWidenPHIRecipe(cast<PHINode>(Instr))))) { 7116 setRecipe(Instr, Recipe); 7117 VPBB->appendRecipe(Recipe); 7118 return true; 7119 } 7120 7121 // Handle GEP widening. 7122 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 7123 auto Scalarize = [&](unsigned VF) { 7124 return CM.isScalarWithPredication(Instr, VF) || 7125 CM.isScalarAfterVectorization(Instr, VF) || 7126 CM.isProfitableToScalarize(Instr, VF); 7127 }; 7128 if (LoopVectorizationPlanner::getDecisionAndClampRange(Scalarize, Range)) 7129 return false; 7130 VPWidenGEPRecipe *Recipe = new VPWidenGEPRecipe(GEP, OrigLoop); 7131 setRecipe(Instr, Recipe); 7132 VPBB->appendRecipe(Recipe); 7133 return true; 7134 } 7135 7136 // Check if Instr is to be widened by a general VPWidenRecipe, after 7137 // having first checked for specific widening recipes. 7138 if ((Recipe = tryToWiden(Instr, Range))) { 7139 setRecipe(Instr, Recipe); 7140 VPBB->appendRecipe(Recipe); 7141 return true; 7142 } 7143 7144 return false; 7145 } 7146 7147 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7148 unsigned MaxVF) { 7149 assert(OrigLoop->empty() && "Inner loop expected."); 7150 7151 // Collect conditions feeding internal conditional branches; they need to be 7152 // represented in VPlan for it to model masking. 7153 SmallPtrSet<Value *, 1> NeedDef; 7154 7155 auto *Latch = OrigLoop->getLoopLatch(); 7156 for (BasicBlock *BB : OrigLoop->blocks()) { 7157 if (BB == Latch) 7158 continue; 7159 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7160 if (Branch && Branch->isConditional()) 7161 NeedDef.insert(Branch->getCondition()); 7162 } 7163 7164 // If the tail is to be folded by masking, the primary induction variable, if 7165 // exists needs to be represented in VPlan for it to model early-exit masking. 7166 // Also, both the Phi and the live-out instruction of each reduction are 7167 // required in order to introduce a select between them in VPlan. 7168 if (CM.foldTailByMasking()) { 7169 if (Legal->getPrimaryInduction()) 7170 NeedDef.insert(Legal->getPrimaryInduction()); 7171 for (auto &Reduction : Legal->getReductionVars()) { 7172 NeedDef.insert(Reduction.first); 7173 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7174 } 7175 } 7176 7177 // Collect instructions from the original loop that will become trivially dead 7178 // in the vectorized loop. We don't need to vectorize these instructions. For 7179 // example, original induction update instructions can become dead because we 7180 // separately emit induction "steps" when generating code for the new loop. 7181 // Similarly, we create a new latch condition when setting up the structure 7182 // of the new loop, so the old one can become dead. 7183 SmallPtrSet<Instruction *, 4> DeadInstructions; 7184 collectTriviallyDeadInstructions(DeadInstructions); 7185 7186 // Add assume instructions we need to drop to DeadInstructions, to prevent 7187 // them from being added to the VPlan. 7188 // TODO: We only need to drop assumes in blocks that get flattend. If the 7189 // control flow is preserved, we should keep them. 7190 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7191 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7192 7193 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7194 // Dead instructions do not need sinking. Remove them from SinkAfter. 7195 for (Instruction *I : DeadInstructions) 7196 SinkAfter.erase(I); 7197 7198 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7199 VFRange SubRange = {VF, MaxVF + 1}; 7200 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7201 DeadInstructions, SinkAfter)); 7202 VF = SubRange.End; 7203 } 7204 } 7205 7206 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7207 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7208 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7209 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7210 7211 // Hold a mapping from predicated instructions to their recipes, in order to 7212 // fix their AlsoPack behavior if a user is determined to replicate and use a 7213 // scalar instead of vector value. 7214 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7215 7216 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7217 7218 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7219 7220 // --------------------------------------------------------------------------- 7221 // Pre-construction: record ingredients whose recipes we'll need to further 7222 // process after constructing the initial VPlan. 7223 // --------------------------------------------------------------------------- 7224 7225 // Mark instructions we'll need to sink later and their targets as 7226 // ingredients whose recipe we'll need to record. 7227 for (auto &Entry : SinkAfter) { 7228 RecipeBuilder.recordRecipeOf(Entry.first); 7229 RecipeBuilder.recordRecipeOf(Entry.second); 7230 } 7231 7232 // For each interleave group which is relevant for this (possibly trimmed) 7233 // Range, add it to the set of groups to be later applied to the VPlan and add 7234 // placeholders for its members' Recipes which we'll be replacing with a 7235 // single VPInterleaveRecipe. 7236 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7237 auto applyIG = [IG, this](unsigned VF) -> bool { 7238 return (VF >= 2 && // Query is illegal for VF == 1 7239 CM.getWideningDecision(IG->getInsertPos(), VF) == 7240 LoopVectorizationCostModel::CM_Interleave); 7241 }; 7242 if (!getDecisionAndClampRange(applyIG, Range)) 7243 continue; 7244 InterleaveGroups.insert(IG); 7245 for (unsigned i = 0; i < IG->getFactor(); i++) 7246 if (Instruction *Member = IG->getMember(i)) 7247 RecipeBuilder.recordRecipeOf(Member); 7248 }; 7249 7250 // --------------------------------------------------------------------------- 7251 // Build initial VPlan: Scan the body of the loop in a topological order to 7252 // visit each basic block after having visited its predecessor basic blocks. 7253 // --------------------------------------------------------------------------- 7254 7255 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7256 auto Plan = std::make_unique<VPlan>(); 7257 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7258 Plan->setEntry(VPBB); 7259 7260 // Represent values that will have defs inside VPlan. 7261 for (Value *V : NeedDef) 7262 Plan->addVPValue(V); 7263 7264 // Scan the body of the loop in a topological order to visit each basic block 7265 // after having visited its predecessor basic blocks. 7266 LoopBlocksDFS DFS(OrigLoop); 7267 DFS.perform(LI); 7268 7269 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7270 // Relevant instructions from basic block BB will be grouped into VPRecipe 7271 // ingredients and fill a new VPBasicBlock. 7272 unsigned VPBBsForBB = 0; 7273 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7274 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7275 VPBB = FirstVPBBForBB; 7276 Builder.setInsertPoint(VPBB); 7277 7278 // Introduce each ingredient into VPlan. 7279 // TODO: Model and preserve debug instrinsics in VPlan. 7280 for (Instruction &I : BB->instructionsWithoutDebug()) { 7281 Instruction *Instr = &I; 7282 7283 // First filter out irrelevant instructions, to ensure no recipes are 7284 // built for them. 7285 if (isa<BranchInst>(Instr) || 7286 DeadInstructions.find(Instr) != DeadInstructions.end()) 7287 continue; 7288 7289 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7290 continue; 7291 7292 // Otherwise, if all widening options failed, Instruction is to be 7293 // replicated. This may create a successor for VPBB. 7294 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7295 Instr, Range, VPBB, PredInst2Recipe, Plan); 7296 if (NextVPBB != VPBB) { 7297 VPBB = NextVPBB; 7298 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7299 : ""); 7300 } 7301 } 7302 } 7303 7304 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7305 // may also be empty, such as the last one VPBB, reflecting original 7306 // basic-blocks with no recipes. 7307 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7308 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7309 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7310 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7311 delete PreEntry; 7312 7313 // --------------------------------------------------------------------------- 7314 // Transform initial VPlan: Apply previously taken decisions, in order, to 7315 // bring the VPlan to its final state. 7316 // --------------------------------------------------------------------------- 7317 7318 // Apply Sink-After legal constraints. 7319 for (auto &Entry : SinkAfter) { 7320 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7321 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7322 Sink->moveAfter(Target); 7323 } 7324 7325 // Interleave memory: for each Interleave Group we marked earlier as relevant 7326 // for this VPlan, replace the Recipes widening its memory instructions with a 7327 // single VPInterleaveRecipe at its insertion point. 7328 for (auto IG : InterleaveGroups) { 7329 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7330 RecipeBuilder.getRecipe(IG->getInsertPos())); 7331 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7332 ->insertBefore(Recipe); 7333 7334 for (unsigned i = 0; i < IG->getFactor(); ++i) 7335 if (Instruction *Member = IG->getMember(i)) { 7336 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7337 } 7338 } 7339 7340 // Finally, if tail is folded by masking, introduce selects between the phi 7341 // and the live-out instruction of each reduction, at the end of the latch. 7342 if (CM.foldTailByMasking()) { 7343 Builder.setInsertPoint(VPBB); 7344 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7345 for (auto &Reduction : Legal->getReductionVars()) { 7346 VPValue *Phi = Plan->getVPValue(Reduction.first); 7347 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7348 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7349 } 7350 } 7351 7352 std::string PlanName; 7353 raw_string_ostream RSO(PlanName); 7354 unsigned VF = Range.Start; 7355 Plan->addVF(VF); 7356 RSO << "Initial VPlan for VF={" << VF; 7357 for (VF *= 2; VF < Range.End; VF *= 2) { 7358 Plan->addVF(VF); 7359 RSO << "," << VF; 7360 } 7361 RSO << "},UF>=1"; 7362 RSO.flush(); 7363 Plan->setName(PlanName); 7364 7365 return Plan; 7366 } 7367 7368 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7369 // Outer loop handling: They may require CFG and instruction level 7370 // transformations before even evaluating whether vectorization is profitable. 7371 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7372 // the vectorization pipeline. 7373 assert(!OrigLoop->empty()); 7374 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7375 7376 // Create new empty VPlan 7377 auto Plan = std::make_unique<VPlan>(); 7378 7379 // Build hierarchical CFG 7380 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7381 HCFGBuilder.buildHierarchicalCFG(); 7382 7383 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7384 Plan->addVF(VF); 7385 7386 if (EnableVPlanPredication) { 7387 VPlanPredicator VPP(*Plan); 7388 VPP.predicate(); 7389 7390 // Avoid running transformation to recipes until masked code generation in 7391 // VPlan-native path is in place. 7392 return Plan; 7393 } 7394 7395 SmallPtrSet<Instruction *, 1> DeadInstructions; 7396 VPlanTransforms::VPInstructionsToVPRecipes( 7397 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7398 return Plan; 7399 } 7400 7401 Value* LoopVectorizationPlanner::VPCallbackILV:: 7402 getOrCreateVectorValues(Value *V, unsigned Part) { 7403 return ILV.getOrCreateVectorValue(V, Part); 7404 } 7405 7406 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7407 Value *V, const VPIteration &Instance) { 7408 return ILV.getOrCreateScalarValue(V, Instance); 7409 } 7410 7411 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7412 VPSlotTracker &SlotTracker) const { 7413 O << " +\n" 7414 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7415 IG->getInsertPos()->printAsOperand(O, false); 7416 O << ", "; 7417 getAddr()->printAsOperand(O, SlotTracker); 7418 VPValue *Mask = getMask(); 7419 if (Mask) { 7420 O << ", "; 7421 Mask->printAsOperand(O, SlotTracker); 7422 } 7423 O << "\\l\""; 7424 for (unsigned i = 0; i < IG->getFactor(); ++i) 7425 if (Instruction *I = IG->getMember(i)) 7426 O << " +\n" 7427 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7428 } 7429 7430 void VPWidenCallRecipe::execute(VPTransformState &State) { 7431 State.ILV->widenCallInstruction(Ingredient, User, State); 7432 } 7433 7434 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7435 State.ILV->widenSelectInstruction(Ingredient, InvariantCond); 7436 } 7437 7438 void VPWidenRecipe::execute(VPTransformState &State) { 7439 State.ILV->widenInstruction(Ingredient); 7440 } 7441 7442 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7443 State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant, 7444 IsIndexLoopInvariant); 7445 } 7446 7447 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7448 assert(!State.Instance && "Int or FP induction being replicated."); 7449 State.ILV->widenIntOrFpInduction(IV, Trunc); 7450 } 7451 7452 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7453 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7454 } 7455 7456 void VPBlendRecipe::execute(VPTransformState &State) { 7457 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7458 // We know that all PHIs in non-header blocks are converted into 7459 // selects, so we don't have to worry about the insertion order and we 7460 // can just use the builder. 7461 // At this point we generate the predication tree. There may be 7462 // duplications since this is a simple recursive scan, but future 7463 // optimizations will clean it up. 7464 7465 unsigned NumIncoming = getNumIncomingValues(); 7466 7467 // Generate a sequence of selects of the form: 7468 // SELECT(Mask3, In3, 7469 // SELECT(Mask2, In2, 7470 // ( ...))) 7471 InnerLoopVectorizer::VectorParts Entry(State.UF); 7472 for (unsigned In = 0; In < NumIncoming; ++In) { 7473 for (unsigned Part = 0; Part < State.UF; ++Part) { 7474 // We might have single edge PHIs (blocks) - use an identity 7475 // 'select' for the first PHI operand. 7476 Value *In0 = State.get(getIncomingValue(In), Part); 7477 if (In == 0) 7478 Entry[Part] = In0; // Initialize with the first incoming value. 7479 else { 7480 // Select between the current value and the previous incoming edge 7481 // based on the incoming mask. 7482 Value *Cond = State.get(getMask(In), Part); 7483 Entry[Part] = 7484 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7485 } 7486 } 7487 } 7488 for (unsigned Part = 0; Part < State.UF; ++Part) 7489 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7490 } 7491 7492 void VPInterleaveRecipe::execute(VPTransformState &State) { 7493 assert(!State.Instance && "Interleave group being replicated."); 7494 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), State, getAddr(), 7495 getMask()); 7496 } 7497 7498 void VPReplicateRecipe::execute(VPTransformState &State) { 7499 if (State.Instance) { // Generate a single instance. 7500 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7501 // Insert scalar instance packing it into a vector. 7502 if (AlsoPack && State.VF > 1) { 7503 // If we're constructing lane 0, initialize to start from undef. 7504 if (State.Instance->Lane == 0) { 7505 Value *Undef = 7506 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7507 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7508 } 7509 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7510 } 7511 return; 7512 } 7513 7514 // Generate scalar instances for all VF lanes of all UF parts, unless the 7515 // instruction is uniform inwhich case generate only the first lane for each 7516 // of the UF parts. 7517 unsigned EndLane = IsUniform ? 1 : State.VF; 7518 for (unsigned Part = 0; Part < State.UF; ++Part) 7519 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7520 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7521 } 7522 7523 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7524 assert(State.Instance && "Branch on Mask works only on single instance."); 7525 7526 unsigned Part = State.Instance->Part; 7527 unsigned Lane = State.Instance->Lane; 7528 7529 Value *ConditionBit = nullptr; 7530 if (!User) // Block in mask is all-one. 7531 ConditionBit = State.Builder.getTrue(); 7532 else { 7533 VPValue *BlockInMask = User->getOperand(0); 7534 ConditionBit = State.get(BlockInMask, Part); 7535 if (ConditionBit->getType()->isVectorTy()) 7536 ConditionBit = State.Builder.CreateExtractElement( 7537 ConditionBit, State.Builder.getInt32(Lane)); 7538 } 7539 7540 // Replace the temporary unreachable terminator with a new conditional branch, 7541 // whose two destinations will be set later when they are created. 7542 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7543 assert(isa<UnreachableInst>(CurrentTerminator) && 7544 "Expected to replace unreachable terminator with conditional branch."); 7545 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7546 CondBr->setSuccessor(0, nullptr); 7547 ReplaceInstWithInst(CurrentTerminator, CondBr); 7548 } 7549 7550 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7551 assert(State.Instance && "Predicated instruction PHI works per instance."); 7552 Instruction *ScalarPredInst = cast<Instruction>( 7553 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7554 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7555 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7556 assert(PredicatingBB && "Predicated block has no single predecessor."); 7557 7558 // By current pack/unpack logic we need to generate only a single phi node: if 7559 // a vector value for the predicated instruction exists at this point it means 7560 // the instruction has vector users only, and a phi for the vector value is 7561 // needed. In this case the recipe of the predicated instruction is marked to 7562 // also do that packing, thereby "hoisting" the insert-element sequence. 7563 // Otherwise, a phi node for the scalar value is needed. 7564 unsigned Part = State.Instance->Part; 7565 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7566 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7567 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7568 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7569 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7570 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7571 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7572 } else { 7573 Type *PredInstType = PredInst->getType(); 7574 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7575 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7576 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7577 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7578 } 7579 } 7580 7581 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7582 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7583 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7584 getMask()); 7585 } 7586 7587 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7588 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7589 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7590 // for predication. 7591 static ScalarEpilogueLowering getScalarEpilogueLowering( 7592 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7593 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7594 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7595 LoopVectorizationLegality &LVL) { 7596 bool OptSize = 7597 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7598 PGSOQueryType::IRPass); 7599 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7600 // don't look at hints or options, and don't request a scalar epilogue. 7601 if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) 7602 return CM_ScalarEpilogueNotAllowedOptSize; 7603 7604 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7605 !PreferPredicateOverEpilog; 7606 7607 // 2) Next, if disabling predication is requested on the command line, honour 7608 // this and request a scalar epilogue. 7609 if (PredicateOptDisabled) 7610 return CM_ScalarEpilogueAllowed; 7611 7612 // 3) and 4) look if enabling predication is requested on the command line, 7613 // with a loop hint, or if the TTI hook indicates this is profitable, request 7614 // predication . 7615 if (PreferPredicateOverEpilog || 7616 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7617 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7618 LVL.getLAI()) && 7619 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7620 return CM_ScalarEpilogueNotNeededUsePredicate; 7621 7622 return CM_ScalarEpilogueAllowed; 7623 } 7624 7625 // Process the loop in the VPlan-native vectorization path. This path builds 7626 // VPlan upfront in the vectorization pipeline, which allows to apply 7627 // VPlan-to-VPlan transformations from the very beginning without modifying the 7628 // input LLVM IR. 7629 static bool processLoopInVPlanNativePath( 7630 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7631 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7632 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7633 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7634 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7635 7636 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7637 Function *F = L->getHeader()->getParent(); 7638 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7639 7640 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7641 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7642 7643 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7644 &Hints, IAI); 7645 // Use the planner for outer loop vectorization. 7646 // TODO: CM is not used at this point inside the planner. Turn CM into an 7647 // optional argument if we don't need it in the future. 7648 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7649 7650 // Get user vectorization factor. 7651 const unsigned UserVF = Hints.getWidth(); 7652 7653 // Plan how to best vectorize, return the best VF and its cost. 7654 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7655 7656 // If we are stress testing VPlan builds, do not attempt to generate vector 7657 // code. Masked vector code generation support will follow soon. 7658 // Also, do not attempt to vectorize if no vector code will be produced. 7659 if (VPlanBuildStressTest || EnableVPlanPredication || 7660 VectorizationFactor::Disabled() == VF) 7661 return false; 7662 7663 LVP.setBestPlan(VF.Width, 1); 7664 7665 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7666 &CM); 7667 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7668 << L->getHeader()->getParent()->getName() << "\"\n"); 7669 LVP.executePlan(LB, DT); 7670 7671 // Mark the loop as already vectorized to avoid vectorizing again. 7672 Hints.setAlreadyVectorized(); 7673 7674 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7675 return true; 7676 } 7677 7678 bool LoopVectorizePass::processLoop(Loop *L) { 7679 assert((EnableVPlanNativePath || L->empty()) && 7680 "VPlan-native path is not enabled. Only process inner loops."); 7681 7682 #ifndef NDEBUG 7683 const std::string DebugLocStr = getDebugLocString(L); 7684 #endif /* NDEBUG */ 7685 7686 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7687 << L->getHeader()->getParent()->getName() << "\" from " 7688 << DebugLocStr << "\n"); 7689 7690 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7691 7692 LLVM_DEBUG( 7693 dbgs() << "LV: Loop hints:" 7694 << " force=" 7695 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7696 ? "disabled" 7697 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7698 ? "enabled" 7699 : "?")) 7700 << " width=" << Hints.getWidth() 7701 << " unroll=" << Hints.getInterleave() << "\n"); 7702 7703 // Function containing loop 7704 Function *F = L->getHeader()->getParent(); 7705 7706 // Looking at the diagnostic output is the only way to determine if a loop 7707 // was vectorized (other than looking at the IR or machine code), so it 7708 // is important to generate an optimization remark for each loop. Most of 7709 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7710 // generated as OptimizationRemark and OptimizationRemarkMissed are 7711 // less verbose reporting vectorized loops and unvectorized loops that may 7712 // benefit from vectorization, respectively. 7713 7714 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7715 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7716 return false; 7717 } 7718 7719 PredicatedScalarEvolution PSE(*SE, *L); 7720 7721 // Check if it is legal to vectorize the loop. 7722 LoopVectorizationRequirements Requirements(*ORE); 7723 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7724 &Requirements, &Hints, DB, AC); 7725 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7726 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7727 Hints.emitRemarkWithHints(); 7728 return false; 7729 } 7730 7731 // Check the function attributes and profiles to find out if this function 7732 // should be optimized for size. 7733 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7734 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7735 7736 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7737 // here. They may require CFG and instruction level transformations before 7738 // even evaluating whether vectorization is profitable. Since we cannot modify 7739 // the incoming IR, we need to build VPlan upfront in the vectorization 7740 // pipeline. 7741 if (!L->empty()) 7742 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7743 ORE, BFI, PSI, Hints); 7744 7745 assert(L->empty() && "Inner loop expected."); 7746 7747 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7748 // count by optimizing for size, to minimize overheads. 7749 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7750 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7751 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7752 << "This loop is worth vectorizing only if no scalar " 7753 << "iteration overheads are incurred."); 7754 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7755 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7756 else { 7757 LLVM_DEBUG(dbgs() << "\n"); 7758 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7759 } 7760 } 7761 7762 // Check the function attributes to see if implicit floats are allowed. 7763 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7764 // an integer loop and the vector instructions selected are purely integer 7765 // vector instructions? 7766 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7767 reportVectorizationFailure( 7768 "Can't vectorize when the NoImplicitFloat attribute is used", 7769 "loop not vectorized due to NoImplicitFloat attribute", 7770 "NoImplicitFloat", ORE, L); 7771 Hints.emitRemarkWithHints(); 7772 return false; 7773 } 7774 7775 // Check if the target supports potentially unsafe FP vectorization. 7776 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7777 // for the target we're vectorizing for, to make sure none of the 7778 // additional fp-math flags can help. 7779 if (Hints.isPotentiallyUnsafe() && 7780 TTI->isFPVectorizationPotentiallyUnsafe()) { 7781 reportVectorizationFailure( 7782 "Potentially unsafe FP op prevents vectorization", 7783 "loop not vectorized due to unsafe FP support.", 7784 "UnsafeFP", ORE, L); 7785 Hints.emitRemarkWithHints(); 7786 return false; 7787 } 7788 7789 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7790 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7791 7792 // If an override option has been passed in for interleaved accesses, use it. 7793 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7794 UseInterleaved = EnableInterleavedMemAccesses; 7795 7796 // Analyze interleaved memory accesses. 7797 if (UseInterleaved) { 7798 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7799 } 7800 7801 // Use the cost model. 7802 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7803 F, &Hints, IAI); 7804 CM.collectValuesToIgnore(); 7805 7806 // Use the planner for vectorization. 7807 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7808 7809 // Get user vectorization factor. 7810 unsigned UserVF = Hints.getWidth(); 7811 7812 // Plan how to best vectorize, return the best VF and its cost. 7813 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7814 7815 VectorizationFactor VF = VectorizationFactor::Disabled(); 7816 unsigned IC = 1; 7817 unsigned UserIC = Hints.getInterleave(); 7818 7819 if (MaybeVF) { 7820 VF = *MaybeVF; 7821 // Select the interleave count. 7822 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7823 } 7824 7825 // Identify the diagnostic messages that should be produced. 7826 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7827 bool VectorizeLoop = true, InterleaveLoop = true; 7828 if (Requirements.doesNotMeet(F, L, Hints)) { 7829 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7830 "requirements.\n"); 7831 Hints.emitRemarkWithHints(); 7832 return false; 7833 } 7834 7835 if (VF.Width == 1) { 7836 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7837 VecDiagMsg = std::make_pair( 7838 "VectorizationNotBeneficial", 7839 "the cost-model indicates that vectorization is not beneficial"); 7840 VectorizeLoop = false; 7841 } 7842 7843 if (!MaybeVF && UserIC > 1) { 7844 // Tell the user interleaving was avoided up-front, despite being explicitly 7845 // requested. 7846 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7847 "interleaving should be avoided up front\n"); 7848 IntDiagMsg = std::make_pair( 7849 "InterleavingAvoided", 7850 "Ignoring UserIC, because interleaving was avoided up front"); 7851 InterleaveLoop = false; 7852 } else if (IC == 1 && UserIC <= 1) { 7853 // Tell the user interleaving is not beneficial. 7854 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7855 IntDiagMsg = std::make_pair( 7856 "InterleavingNotBeneficial", 7857 "the cost-model indicates that interleaving is not beneficial"); 7858 InterleaveLoop = false; 7859 if (UserIC == 1) { 7860 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7861 IntDiagMsg.second += 7862 " and is explicitly disabled or interleave count is set to 1"; 7863 } 7864 } else if (IC > 1 && UserIC == 1) { 7865 // Tell the user interleaving is beneficial, but it explicitly disabled. 7866 LLVM_DEBUG( 7867 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7868 IntDiagMsg = std::make_pair( 7869 "InterleavingBeneficialButDisabled", 7870 "the cost-model indicates that interleaving is beneficial " 7871 "but is explicitly disabled or interleave count is set to 1"); 7872 InterleaveLoop = false; 7873 } 7874 7875 // Override IC if user provided an interleave count. 7876 IC = UserIC > 0 ? UserIC : IC; 7877 7878 // Emit diagnostic messages, if any. 7879 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7880 if (!VectorizeLoop && !InterleaveLoop) { 7881 // Do not vectorize or interleaving the loop. 7882 ORE->emit([&]() { 7883 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7884 L->getStartLoc(), L->getHeader()) 7885 << VecDiagMsg.second; 7886 }); 7887 ORE->emit([&]() { 7888 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7889 L->getStartLoc(), L->getHeader()) 7890 << IntDiagMsg.second; 7891 }); 7892 return false; 7893 } else if (!VectorizeLoop && InterleaveLoop) { 7894 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7895 ORE->emit([&]() { 7896 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7897 L->getStartLoc(), L->getHeader()) 7898 << VecDiagMsg.second; 7899 }); 7900 } else if (VectorizeLoop && !InterleaveLoop) { 7901 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7902 << ") in " << DebugLocStr << '\n'); 7903 ORE->emit([&]() { 7904 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7905 L->getStartLoc(), L->getHeader()) 7906 << IntDiagMsg.second; 7907 }); 7908 } else if (VectorizeLoop && InterleaveLoop) { 7909 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7910 << ") in " << DebugLocStr << '\n'); 7911 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7912 } 7913 7914 LVP.setBestPlan(VF.Width, IC); 7915 7916 using namespace ore; 7917 bool DisableRuntimeUnroll = false; 7918 MDNode *OrigLoopID = L->getLoopID(); 7919 7920 if (!VectorizeLoop) { 7921 assert(IC > 1 && "interleave count should not be 1 or 0"); 7922 // If we decided that it is not legal to vectorize the loop, then 7923 // interleave it. 7924 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7925 &CM); 7926 LVP.executePlan(Unroller, DT); 7927 7928 ORE->emit([&]() { 7929 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7930 L->getHeader()) 7931 << "interleaved loop (interleaved count: " 7932 << NV("InterleaveCount", IC) << ")"; 7933 }); 7934 } else { 7935 // If we decided that it is *legal* to vectorize the loop, then do it. 7936 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7937 &LVL, &CM); 7938 LVP.executePlan(LB, DT); 7939 ++LoopsVectorized; 7940 7941 // Add metadata to disable runtime unrolling a scalar loop when there are 7942 // no runtime checks about strides and memory. A scalar loop that is 7943 // rarely used is not worth unrolling. 7944 if (!LB.areSafetyChecksAdded()) 7945 DisableRuntimeUnroll = true; 7946 7947 // Report the vectorization decision. 7948 ORE->emit([&]() { 7949 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7950 L->getHeader()) 7951 << "vectorized loop (vectorization width: " 7952 << NV("VectorizationFactor", VF.Width) 7953 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7954 }); 7955 } 7956 7957 Optional<MDNode *> RemainderLoopID = 7958 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7959 LLVMLoopVectorizeFollowupEpilogue}); 7960 if (RemainderLoopID.hasValue()) { 7961 L->setLoopID(RemainderLoopID.getValue()); 7962 } else { 7963 if (DisableRuntimeUnroll) 7964 AddRuntimeUnrollDisableMetaData(L); 7965 7966 // Mark the loop as already vectorized to avoid vectorizing again. 7967 Hints.setAlreadyVectorized(); 7968 } 7969 7970 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7971 return true; 7972 } 7973 7974 bool LoopVectorizePass::runImpl( 7975 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7976 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7977 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7978 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7979 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7980 SE = &SE_; 7981 LI = &LI_; 7982 TTI = &TTI_; 7983 DT = &DT_; 7984 BFI = &BFI_; 7985 TLI = TLI_; 7986 AA = &AA_; 7987 AC = &AC_; 7988 GetLAA = &GetLAA_; 7989 DB = &DB_; 7990 ORE = &ORE_; 7991 PSI = PSI_; 7992 7993 // Don't attempt if 7994 // 1. the target claims to have no vector registers, and 7995 // 2. interleaving won't help ILP. 7996 // 7997 // The second condition is necessary because, even if the target has no 7998 // vector registers, loop vectorization may still enable scalar 7999 // interleaving. 8000 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8001 TTI->getMaxInterleaveFactor(1) < 2) 8002 return false; 8003 8004 bool Changed = false; 8005 8006 // The vectorizer requires loops to be in simplified form. 8007 // Since simplification may add new inner loops, it has to run before the 8008 // legality and profitability checks. This means running the loop vectorizer 8009 // will simplify all loops, regardless of whether anything end up being 8010 // vectorized. 8011 for (auto &L : *LI) 8012 Changed |= 8013 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8014 8015 // Build up a worklist of inner-loops to vectorize. This is necessary as 8016 // the act of vectorizing or partially unrolling a loop creates new loops 8017 // and can invalidate iterators across the loops. 8018 SmallVector<Loop *, 8> Worklist; 8019 8020 for (Loop *L : *LI) 8021 collectSupportedLoops(*L, LI, ORE, Worklist); 8022 8023 LoopsAnalyzed += Worklist.size(); 8024 8025 // Now walk the identified inner loops. 8026 while (!Worklist.empty()) { 8027 Loop *L = Worklist.pop_back_val(); 8028 8029 // For the inner loops we actually process, form LCSSA to simplify the 8030 // transform. 8031 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8032 8033 Changed |= processLoop(L); 8034 } 8035 8036 // Process each loop nest in the function. 8037 return Changed; 8038 } 8039 8040 PreservedAnalyses LoopVectorizePass::run(Function &F, 8041 FunctionAnalysisManager &AM) { 8042 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8043 auto &LI = AM.getResult<LoopAnalysis>(F); 8044 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8045 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8046 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8047 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8048 auto &AA = AM.getResult<AAManager>(F); 8049 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8050 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8051 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8052 MemorySSA *MSSA = EnableMSSALoopDependency 8053 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8054 : nullptr; 8055 8056 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8057 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8058 [&](Loop &L) -> const LoopAccessInfo & { 8059 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8060 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8061 }; 8062 const ModuleAnalysisManager &MAM = 8063 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 8064 ProfileSummaryInfo *PSI = 8065 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8066 bool Changed = 8067 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8068 if (!Changed) 8069 return PreservedAnalyses::all(); 8070 PreservedAnalyses PA; 8071 8072 // We currently do not preserve loopinfo/dominator analyses with outer loop 8073 // vectorization. Until this is addressed, mark these analyses as preserved 8074 // only for non-VPlan-native path. 8075 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8076 if (!EnableVPlanNativePath) { 8077 PA.preserve<LoopAnalysis>(); 8078 PA.preserve<DominatorTreeAnalysis>(); 8079 } 8080 PA.preserve<BasicAA>(); 8081 PA.preserve<GlobalsAA>(); 8082 return PA; 8083 } 8084