1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 // There is a development effort going on to migrate loop vectorizer to the 30 // VPlan infrastructure and to introduce outer loop vectorization support (see 31 // docs/Proposal/VectorizationPlan.rst and 32 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 33 // purpose, we temporarily introduced the VPlan-native vectorization path: an 34 // alternative vectorization path that is natively implemented on top of the 35 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // The reduction-variable vectorization is based on the paper: 40 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 41 // 42 // Variable uniformity checks are inspired by: 43 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 44 // 45 // The interleaved access vectorization is based on the paper: 46 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 47 // Data for SIMD 48 // 49 // Other ideas/concepts are from: 50 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 51 // 52 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 53 // Vectorizing Compilers. 54 // 55 //===----------------------------------------------------------------------===// 56 57 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 58 #include "LoopVectorizationPlanner.h" 59 #include "VPRecipeBuilder.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanHCFGTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SetVector.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ScalarEvolution.h" 91 #include "llvm/Analysis/ScalarEvolutionExpander.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/VectorUtils.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/BasicBlock.h" 98 #include "llvm/IR/CFG.h" 99 #include "llvm/IR/Constant.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/DebugInfoMetadata.h" 103 #include "llvm/IR/DebugLoc.h" 104 #include "llvm/IR/DerivedTypes.h" 105 #include "llvm/IR/DiagnosticInfo.h" 106 #include "llvm/IR/Dominators.h" 107 #include "llvm/IR/Function.h" 108 #include "llvm/IR/IRBuilder.h" 109 #include "llvm/IR/InstrTypes.h" 110 #include "llvm/IR/Instruction.h" 111 #include "llvm/IR/Instructions.h" 112 #include "llvm/IR/IntrinsicInst.h" 113 #include "llvm/IR/Intrinsics.h" 114 #include "llvm/IR/LLVMContext.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/Type.h" 119 #include "llvm/IR/Use.h" 120 #include "llvm/IR/User.h" 121 #include "llvm/IR/Value.h" 122 #include "llvm/IR/ValueHandle.h" 123 #include "llvm/IR/Verifier.h" 124 #include "llvm/Pass.h" 125 #include "llvm/Support/Casting.h" 126 #include "llvm/Support/CommandLine.h" 127 #include "llvm/Support/Compiler.h" 128 #include "llvm/Support/Debug.h" 129 #include "llvm/Support/ErrorHandling.h" 130 #include "llvm/Support/MathExtras.h" 131 #include "llvm/Support/raw_ostream.h" 132 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 133 #include "llvm/Transforms/Utils/LoopSimplify.h" 134 #include "llvm/Transforms/Utils/LoopUtils.h" 135 #include "llvm/Transforms/Utils/LoopVersioning.h" 136 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 137 #include <algorithm> 138 #include <cassert> 139 #include <cstdint> 140 #include <cstdlib> 141 #include <functional> 142 #include <iterator> 143 #include <limits> 144 #include <memory> 145 #include <string> 146 #include <tuple> 147 #include <utility> 148 #include <vector> 149 150 using namespace llvm; 151 152 #define LV_NAME "loop-vectorize" 153 #define DEBUG_TYPE LV_NAME 154 155 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 156 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 157 158 /// Loops with a known constant trip count below this number are vectorized only 159 /// if no scalar iteration overheads are incurred. 160 static cl::opt<unsigned> TinyTripCountVectorThreshold( 161 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 162 cl::desc("Loops with a constant trip count that is smaller than this " 163 "value are vectorized only if no scalar iteration overheads " 164 "are incurred.")); 165 166 static cl::opt<bool> MaximizeBandwidth( 167 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 168 cl::desc("Maximize bandwidth when selecting vectorization factor which " 169 "will be determined by the smallest type in loop.")); 170 171 static cl::opt<bool> EnableInterleavedMemAccesses( 172 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 173 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 174 175 /// An interleave-group may need masking if it resides in a block that needs 176 /// predication, or in order to mask away gaps. 177 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 178 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 179 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 180 181 /// We don't interleave loops with a known constant trip count below this 182 /// number. 183 static const unsigned TinyTripCountInterleaveThreshold = 128; 184 185 static cl::opt<unsigned> ForceTargetNumScalarRegs( 186 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 187 cl::desc("A flag that overrides the target's number of scalar registers.")); 188 189 static cl::opt<unsigned> ForceTargetNumVectorRegs( 190 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 191 cl::desc("A flag that overrides the target's number of vector registers.")); 192 193 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 194 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 195 cl::desc("A flag that overrides the target's max interleave factor for " 196 "scalar loops.")); 197 198 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 199 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 200 cl::desc("A flag that overrides the target's max interleave factor for " 201 "vectorized loops.")); 202 203 static cl::opt<unsigned> ForceTargetInstructionCost( 204 "force-target-instruction-cost", cl::init(0), cl::Hidden, 205 cl::desc("A flag that overrides the target's expected cost for " 206 "an instruction to a single constant value. Mostly " 207 "useful for getting consistent testing.")); 208 209 static cl::opt<unsigned> SmallLoopCost( 210 "small-loop-cost", cl::init(20), cl::Hidden, 211 cl::desc( 212 "The cost of a loop that is considered 'small' by the interleaver.")); 213 214 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 215 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 216 cl::desc("Enable the use of the block frequency analysis to access PGO " 217 "heuristics minimizing code growth in cold regions and being more " 218 "aggressive in hot regions.")); 219 220 // Runtime interleave loops for load/store throughput. 221 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 222 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 223 cl::desc( 224 "Enable runtime interleaving until load/store ports are saturated")); 225 226 /// The number of stores in a loop that are allowed to need predication. 227 static cl::opt<unsigned> NumberOfStoresToPredicate( 228 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 229 cl::desc("Max number of stores to be predicated behind an if.")); 230 231 static cl::opt<bool> EnableIndVarRegisterHeur( 232 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 233 cl::desc("Count the induction variable only once when interleaving")); 234 235 static cl::opt<bool> EnableCondStoresVectorization( 236 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 237 cl::desc("Enable if predication of stores during vectorization.")); 238 239 static cl::opt<unsigned> MaxNestedScalarReductionIC( 240 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 241 cl::desc("The maximum interleave count to use when interleaving a scalar " 242 "reduction in a nested loop.")); 243 244 cl::opt<bool> EnableVPlanNativePath( 245 "enable-vplan-native-path", cl::init(false), cl::Hidden, 246 cl::desc("Enable VPlan-native vectorization path with " 247 "support for outer loop vectorization.")); 248 249 // This flag enables the stress testing of the VPlan H-CFG construction in the 250 // VPlan-native vectorization path. It must be used in conjuction with 251 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 252 // verification of the H-CFGs built. 253 static cl::opt<bool> VPlanBuildStressTest( 254 "vplan-build-stress-test", cl::init(false), cl::Hidden, 255 cl::desc( 256 "Build VPlan for every supported loop nest in the function and bail " 257 "out right after the build (stress test the VPlan H-CFG construction " 258 "in the VPlan-native vectorization path).")); 259 260 /// A helper function for converting Scalar types to vector types. 261 /// If the incoming type is void, we return void. If the VF is 1, we return 262 /// the scalar type. 263 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 264 if (Scalar->isVoidTy() || VF == 1) 265 return Scalar; 266 return VectorType::get(Scalar, VF); 267 } 268 269 /// A helper function that returns the type of loaded or stored value. 270 static Type *getMemInstValueType(Value *I) { 271 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 272 "Expected Load or Store instruction"); 273 if (auto *LI = dyn_cast<LoadInst>(I)) 274 return LI->getType(); 275 return cast<StoreInst>(I)->getValueOperand()->getType(); 276 } 277 278 /// A helper function that returns true if the given type is irregular. The 279 /// type is irregular if its allocated size doesn't equal the store size of an 280 /// element of the corresponding vector type at the given vectorization factor. 281 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 282 // Determine if an array of VF elements of type Ty is "bitcast compatible" 283 // with a <VF x Ty> vector. 284 if (VF > 1) { 285 auto *VectorTy = VectorType::get(Ty, VF); 286 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 287 } 288 289 // If the vectorization factor is one, we just check if an array of type Ty 290 // requires padding between elements. 291 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 292 } 293 294 /// A helper function that returns the reciprocal of the block probability of 295 /// predicated blocks. If we return X, we are assuming the predicated block 296 /// will execute once for every X iterations of the loop header. 297 /// 298 /// TODO: We should use actual block probability here, if available. Currently, 299 /// we always assume predicated blocks have a 50% chance of executing. 300 static unsigned getReciprocalPredBlockProb() { return 2; } 301 302 /// A helper function that adds a 'fast' flag to floating-point operations. 303 static Value *addFastMathFlag(Value *V) { 304 if (isa<FPMathOperator>(V)) { 305 FastMathFlags Flags; 306 Flags.setFast(); 307 cast<Instruction>(V)->setFastMathFlags(Flags); 308 } 309 return V; 310 } 311 312 /// A helper function that returns an integer or floating-point constant with 313 /// value C. 314 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 315 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 316 : ConstantFP::get(Ty, C); 317 } 318 319 namespace llvm { 320 321 /// InnerLoopVectorizer vectorizes loops which contain only one basic 322 /// block to a specified vectorization factor (VF). 323 /// This class performs the widening of scalars into vectors, or multiple 324 /// scalars. This class also implements the following features: 325 /// * It inserts an epilogue loop for handling loops that don't have iteration 326 /// counts that are known to be a multiple of the vectorization factor. 327 /// * It handles the code generation for reduction variables. 328 /// * Scalarization (implementation using scalars) of un-vectorizable 329 /// instructions. 330 /// InnerLoopVectorizer does not perform any vectorization-legality 331 /// checks, and relies on the caller to check for the different legality 332 /// aspects. The InnerLoopVectorizer relies on the 333 /// LoopVectorizationLegality class to provide information about the induction 334 /// and reduction variables that were found to a given vectorization factor. 335 class InnerLoopVectorizer { 336 public: 337 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 338 LoopInfo *LI, DominatorTree *DT, 339 const TargetLibraryInfo *TLI, 340 const TargetTransformInfo *TTI, AssumptionCache *AC, 341 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 342 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 343 LoopVectorizationCostModel *CM) 344 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 345 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 346 Builder(PSE.getSE()->getContext()), 347 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 348 virtual ~InnerLoopVectorizer() = default; 349 350 /// Create a new empty loop. Unlink the old loop and connect the new one. 351 /// Return the pre-header block of the new loop. 352 BasicBlock *createVectorizedLoopSkeleton(); 353 354 /// Widen a single instruction within the innermost loop. 355 void widenInstruction(Instruction &I); 356 357 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 358 void fixVectorizedLoop(); 359 360 // Return true if any runtime check is added. 361 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 362 363 /// A type for vectorized values in the new loop. Each value from the 364 /// original loop, when vectorized, is represented by UF vector values in the 365 /// new unrolled loop, where UF is the unroll factor. 366 using VectorParts = SmallVector<Value *, 2>; 367 368 /// Vectorize a single PHINode in a block. This method handles the induction 369 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 370 /// arbitrary length vectors. 371 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 372 373 /// A helper function to scalarize a single Instruction in the innermost loop. 374 /// Generates a sequence of scalar instances for each lane between \p MinLane 375 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 376 /// inclusive.. 377 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 378 bool IfPredicateInstr); 379 380 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 381 /// is provided, the integer induction variable will first be truncated to 382 /// the corresponding type. 383 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 384 385 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 386 /// vector or scalar value on-demand if one is not yet available. When 387 /// vectorizing a loop, we visit the definition of an instruction before its 388 /// uses. When visiting the definition, we either vectorize or scalarize the 389 /// instruction, creating an entry for it in the corresponding map. (In some 390 /// cases, such as induction variables, we will create both vector and scalar 391 /// entries.) Then, as we encounter uses of the definition, we derive values 392 /// for each scalar or vector use unless such a value is already available. 393 /// For example, if we scalarize a definition and one of its uses is vector, 394 /// we build the required vector on-demand with an insertelement sequence 395 /// when visiting the use. Otherwise, if the use is scalar, we can use the 396 /// existing scalar definition. 397 /// 398 /// Return a value in the new loop corresponding to \p V from the original 399 /// loop at unroll index \p Part. If the value has already been vectorized, 400 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 401 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 402 /// a new vector value on-demand by inserting the scalar values into a vector 403 /// with an insertelement sequence. If the value has been neither vectorized 404 /// nor scalarized, it must be loop invariant, so we simply broadcast the 405 /// value into a vector. 406 Value *getOrCreateVectorValue(Value *V, unsigned Part); 407 408 /// Return a value in the new loop corresponding to \p V from the original 409 /// loop at unroll and vector indices \p Instance. If the value has been 410 /// vectorized but not scalarized, the necessary extractelement instruction 411 /// will be generated. 412 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 413 414 /// Construct the vector value of a scalarized value \p V one lane at a time. 415 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 416 417 /// Try to vectorize the interleaved access group that \p Instr belongs to, 418 /// optionally masking the vector operations if \p BlockInMask is non-null. 419 void vectorizeInterleaveGroup(Instruction *Instr, 420 VectorParts *BlockInMask = nullptr); 421 422 /// Vectorize Load and Store instructions, optionally masking the vector 423 /// operations if \p BlockInMask is non-null. 424 void vectorizeMemoryInstruction(Instruction *Instr, 425 VectorParts *BlockInMask = nullptr); 426 427 /// Set the debug location in the builder using the debug location in 428 /// the instruction. 429 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 430 431 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 432 void fixNonInductionPHIs(void); 433 434 protected: 435 friend class LoopVectorizationPlanner; 436 437 /// A small list of PHINodes. 438 using PhiVector = SmallVector<PHINode *, 4>; 439 440 /// A type for scalarized values in the new loop. Each value from the 441 /// original loop, when scalarized, is represented by UF x VF scalar values 442 /// in the new unrolled loop, where UF is the unroll factor and VF is the 443 /// vectorization factor. 444 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 445 446 /// Set up the values of the IVs correctly when exiting the vector loop. 447 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 448 Value *CountRoundDown, Value *EndValue, 449 BasicBlock *MiddleBlock); 450 451 /// Create a new induction variable inside L. 452 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 453 Value *Step, Instruction *DL); 454 455 /// Handle all cross-iteration phis in the header. 456 void fixCrossIterationPHIs(); 457 458 /// Fix a first-order recurrence. This is the second phase of vectorizing 459 /// this phi node. 460 void fixFirstOrderRecurrence(PHINode *Phi); 461 462 /// Fix a reduction cross-iteration phi. This is the second phase of 463 /// vectorizing this phi node. 464 void fixReduction(PHINode *Phi); 465 466 /// The Loop exit block may have single value PHI nodes with some 467 /// incoming value. While vectorizing we only handled real values 468 /// that were defined inside the loop and we should have one value for 469 /// each predecessor of its parent basic block. See PR14725. 470 void fixLCSSAPHIs(); 471 472 /// Iteratively sink the scalarized operands of a predicated instruction into 473 /// the block that was created for it. 474 void sinkScalarOperands(Instruction *PredInst); 475 476 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 477 /// represented as. 478 void truncateToMinimalBitwidths(); 479 480 /// Insert the new loop to the loop hierarchy and pass manager 481 /// and update the analysis passes. 482 void updateAnalysis(); 483 484 /// Create a broadcast instruction. This method generates a broadcast 485 /// instruction (shuffle) for loop invariant values and for the induction 486 /// value. If this is the induction variable then we extend it to N, N+1, ... 487 /// this is needed because each iteration in the loop corresponds to a SIMD 488 /// element. 489 virtual Value *getBroadcastInstrs(Value *V); 490 491 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 492 /// to each vector element of Val. The sequence starts at StartIndex. 493 /// \p Opcode is relevant for FP induction variable. 494 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 495 Instruction::BinaryOps Opcode = 496 Instruction::BinaryOpsEnd); 497 498 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 499 /// variable on which to base the steps, \p Step is the size of the step, and 500 /// \p EntryVal is the value from the original loop that maps to the steps. 501 /// Note that \p EntryVal doesn't have to be an induction variable - it 502 /// can also be a truncate instruction. 503 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 504 const InductionDescriptor &ID); 505 506 /// Create a vector induction phi node based on an existing scalar one. \p 507 /// EntryVal is the value from the original loop that maps to the vector phi 508 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 509 /// truncate instruction, instead of widening the original IV, we widen a 510 /// version of the IV truncated to \p EntryVal's type. 511 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 512 Value *Step, Instruction *EntryVal); 513 514 /// Returns true if an instruction \p I should be scalarized instead of 515 /// vectorized for the chosen vectorization factor. 516 bool shouldScalarizeInstruction(Instruction *I) const; 517 518 /// Returns true if we should generate a scalar version of \p IV. 519 bool needsScalarInduction(Instruction *IV) const; 520 521 /// If there is a cast involved in the induction variable \p ID, which should 522 /// be ignored in the vectorized loop body, this function records the 523 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 524 /// cast. We had already proved that the casted Phi is equal to the uncasted 525 /// Phi in the vectorized loop (under a runtime guard), and therefore 526 /// there is no need to vectorize the cast - the same value can be used in the 527 /// vector loop for both the Phi and the cast. 528 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 529 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 530 /// 531 /// \p EntryVal is the value from the original loop that maps to the vector 532 /// phi node and is used to distinguish what is the IV currently being 533 /// processed - original one (if \p EntryVal is a phi corresponding to the 534 /// original IV) or the "newly-created" one based on the proof mentioned above 535 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 536 /// latter case \p EntryVal is a TruncInst and we must not record anything for 537 /// that IV, but it's error-prone to expect callers of this routine to care 538 /// about that, hence this explicit parameter. 539 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 540 const Instruction *EntryVal, 541 Value *VectorLoopValue, 542 unsigned Part, 543 unsigned Lane = UINT_MAX); 544 545 /// Generate a shuffle sequence that will reverse the vector Vec. 546 virtual Value *reverseVector(Value *Vec); 547 548 /// Returns (and creates if needed) the original loop trip count. 549 Value *getOrCreateTripCount(Loop *NewLoop); 550 551 /// Returns (and creates if needed) the trip count of the widened loop. 552 Value *getOrCreateVectorTripCount(Loop *NewLoop); 553 554 /// Returns a bitcasted value to the requested vector type. 555 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 556 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 557 const DataLayout &DL); 558 559 /// Emit a bypass check to see if the vector trip count is zero, including if 560 /// it overflows. 561 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 562 563 /// Emit a bypass check to see if all of the SCEV assumptions we've 564 /// had to make are correct. 565 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 566 567 /// Emit bypass checks to check any memory assumptions we may have made. 568 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 569 570 /// Compute the transformed value of Index at offset StartValue using step 571 /// StepValue. 572 /// For integer induction, returns StartValue + Index * StepValue. 573 /// For pointer induction, returns StartValue[Index * StepValue]. 574 /// FIXME: The newly created binary instructions should contain nsw/nuw 575 /// flags, which can be found from the original scalar operations. 576 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 577 const DataLayout &DL, 578 const InductionDescriptor &ID) const; 579 580 /// Add additional metadata to \p To that was not present on \p Orig. 581 /// 582 /// Currently this is used to add the noalias annotations based on the 583 /// inserted memchecks. Use this for instructions that are *cloned* into the 584 /// vector loop. 585 void addNewMetadata(Instruction *To, const Instruction *Orig); 586 587 /// Add metadata from one instruction to another. 588 /// 589 /// This includes both the original MDs from \p From and additional ones (\see 590 /// addNewMetadata). Use this for *newly created* instructions in the vector 591 /// loop. 592 void addMetadata(Instruction *To, Instruction *From); 593 594 /// Similar to the previous function but it adds the metadata to a 595 /// vector of instructions. 596 void addMetadata(ArrayRef<Value *> To, Instruction *From); 597 598 /// The original loop. 599 Loop *OrigLoop; 600 601 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 602 /// dynamic knowledge to simplify SCEV expressions and converts them to a 603 /// more usable form. 604 PredicatedScalarEvolution &PSE; 605 606 /// Loop Info. 607 LoopInfo *LI; 608 609 /// Dominator Tree. 610 DominatorTree *DT; 611 612 /// Alias Analysis. 613 AliasAnalysis *AA; 614 615 /// Target Library Info. 616 const TargetLibraryInfo *TLI; 617 618 /// Target Transform Info. 619 const TargetTransformInfo *TTI; 620 621 /// Assumption Cache. 622 AssumptionCache *AC; 623 624 /// Interface to emit optimization remarks. 625 OptimizationRemarkEmitter *ORE; 626 627 /// LoopVersioning. It's only set up (non-null) if memchecks were 628 /// used. 629 /// 630 /// This is currently only used to add no-alias metadata based on the 631 /// memchecks. The actually versioning is performed manually. 632 std::unique_ptr<LoopVersioning> LVer; 633 634 /// The vectorization SIMD factor to use. Each vector will have this many 635 /// vector elements. 636 unsigned VF; 637 638 /// The vectorization unroll factor to use. Each scalar is vectorized to this 639 /// many different vector instructions. 640 unsigned UF; 641 642 /// The builder that we use 643 IRBuilder<> Builder; 644 645 // --- Vectorization state --- 646 647 /// The vector-loop preheader. 648 BasicBlock *LoopVectorPreHeader; 649 650 /// The scalar-loop preheader. 651 BasicBlock *LoopScalarPreHeader; 652 653 /// Middle Block between the vector and the scalar. 654 BasicBlock *LoopMiddleBlock; 655 656 /// The ExitBlock of the scalar loop. 657 BasicBlock *LoopExitBlock; 658 659 /// The vector loop body. 660 BasicBlock *LoopVectorBody; 661 662 /// The scalar loop body. 663 BasicBlock *LoopScalarBody; 664 665 /// A list of all bypass blocks. The first block is the entry of the loop. 666 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 667 668 /// The new Induction variable which was added to the new block. 669 PHINode *Induction = nullptr; 670 671 /// The induction variable of the old basic block. 672 PHINode *OldInduction = nullptr; 673 674 /// Maps values from the original loop to their corresponding values in the 675 /// vectorized loop. A key value can map to either vector values, scalar 676 /// values or both kinds of values, depending on whether the key was 677 /// vectorized and scalarized. 678 VectorizerValueMap VectorLoopValueMap; 679 680 /// Store instructions that were predicated. 681 SmallVector<Instruction *, 4> PredicatedInstructions; 682 683 /// Trip count of the original loop. 684 Value *TripCount = nullptr; 685 686 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 687 Value *VectorTripCount = nullptr; 688 689 /// The legality analysis. 690 LoopVectorizationLegality *Legal; 691 692 /// The profitablity analysis. 693 LoopVectorizationCostModel *Cost; 694 695 // Record whether runtime checks are added. 696 bool AddedSafetyChecks = false; 697 698 // Holds the end values for each induction variable. We save the end values 699 // so we can later fix-up the external users of the induction variables. 700 DenseMap<PHINode *, Value *> IVEndValues; 701 702 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 703 // fixed up at the end of vector code generation. 704 SmallVector<PHINode *, 8> OrigPHIsToFix; 705 }; 706 707 class InnerLoopUnroller : public InnerLoopVectorizer { 708 public: 709 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 710 LoopInfo *LI, DominatorTree *DT, 711 const TargetLibraryInfo *TLI, 712 const TargetTransformInfo *TTI, AssumptionCache *AC, 713 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 714 LoopVectorizationLegality *LVL, 715 LoopVectorizationCostModel *CM) 716 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 717 UnrollFactor, LVL, CM) {} 718 719 private: 720 Value *getBroadcastInstrs(Value *V) override; 721 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 722 Instruction::BinaryOps Opcode = 723 Instruction::BinaryOpsEnd) override; 724 Value *reverseVector(Value *Vec) override; 725 }; 726 727 } // end namespace llvm 728 729 /// Look for a meaningful debug location on the instruction or it's 730 /// operands. 731 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 732 if (!I) 733 return I; 734 735 DebugLoc Empty; 736 if (I->getDebugLoc() != Empty) 737 return I; 738 739 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 740 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 741 if (OpInst->getDebugLoc() != Empty) 742 return OpInst; 743 } 744 745 return I; 746 } 747 748 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 749 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 750 const DILocation *DIL = Inst->getDebugLoc(); 751 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 752 !isa<DbgInfoIntrinsic>(Inst)) 753 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 754 else 755 B.SetCurrentDebugLocation(DIL); 756 } else 757 B.SetCurrentDebugLocation(DebugLoc()); 758 } 759 760 #ifndef NDEBUG 761 /// \return string containing a file name and a line # for the given loop. 762 static std::string getDebugLocString(const Loop *L) { 763 std::string Result; 764 if (L) { 765 raw_string_ostream OS(Result); 766 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 767 LoopDbgLoc.print(OS); 768 else 769 // Just print the module name. 770 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 771 OS.flush(); 772 } 773 return Result; 774 } 775 #endif 776 777 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 778 const Instruction *Orig) { 779 // If the loop was versioned with memchecks, add the corresponding no-alias 780 // metadata. 781 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 782 LVer->annotateInstWithNoAlias(To, Orig); 783 } 784 785 void InnerLoopVectorizer::addMetadata(Instruction *To, 786 Instruction *From) { 787 propagateMetadata(To, From); 788 addNewMetadata(To, From); 789 } 790 791 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 792 Instruction *From) { 793 for (Value *V : To) { 794 if (Instruction *I = dyn_cast<Instruction>(V)) 795 addMetadata(I, From); 796 } 797 } 798 799 static void emitMissedWarning(Function *F, Loop *L, 800 const LoopVectorizeHints &LH, 801 OptimizationRemarkEmitter *ORE) { 802 LH.emitRemarkWithHints(); 803 804 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 805 if (LH.getWidth() != 1) 806 ORE->emit(DiagnosticInfoOptimizationFailure( 807 DEBUG_TYPE, "FailedRequestedVectorization", 808 L->getStartLoc(), L->getHeader()) 809 << "loop not vectorized: " 810 << "failed explicitly specified loop vectorization"); 811 else if (LH.getInterleave() != 1) 812 ORE->emit(DiagnosticInfoOptimizationFailure( 813 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 814 L->getHeader()) 815 << "loop not interleaved: " 816 << "failed explicitly specified loop interleaving"); 817 } 818 } 819 820 namespace llvm { 821 822 /// LoopVectorizationCostModel - estimates the expected speedups due to 823 /// vectorization. 824 /// In many cases vectorization is not profitable. This can happen because of 825 /// a number of reasons. In this class we mainly attempt to predict the 826 /// expected speedup/slowdowns due to the supported instruction set. We use the 827 /// TargetTransformInfo to query the different backends for the cost of 828 /// different operations. 829 class LoopVectorizationCostModel { 830 public: 831 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 832 LoopInfo *LI, LoopVectorizationLegality *Legal, 833 const TargetTransformInfo &TTI, 834 const TargetLibraryInfo *TLI, DemandedBits *DB, 835 AssumptionCache *AC, 836 OptimizationRemarkEmitter *ORE, const Function *F, 837 const LoopVectorizeHints *Hints, 838 InterleavedAccessInfo &IAI) 839 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 840 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 841 842 /// \return An upper bound for the vectorization factor, or None if 843 /// vectorization should be avoided up front. 844 Optional<unsigned> computeMaxVF(bool OptForSize); 845 846 /// \return The most profitable vectorization factor and the cost of that VF. 847 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 848 /// then this vectorization factor will be selected if vectorization is 849 /// possible. 850 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 851 852 /// Setup cost-based decisions for user vectorization factor. 853 void selectUserVectorizationFactor(unsigned UserVF) { 854 collectUniformsAndScalars(UserVF); 855 collectInstsToScalarize(UserVF); 856 } 857 858 /// \return The size (in bits) of the smallest and widest types in the code 859 /// that needs to be vectorized. We ignore values that remain scalar such as 860 /// 64 bit loop indices. 861 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 862 863 /// \return The desired interleave count. 864 /// If interleave count has been specified by metadata it will be returned. 865 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 866 /// are the selected vectorization factor and the cost of the selected VF. 867 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 868 unsigned LoopCost); 869 870 /// Memory access instruction may be vectorized in more than one way. 871 /// Form of instruction after vectorization depends on cost. 872 /// This function takes cost-based decisions for Load/Store instructions 873 /// and collects them in a map. This decisions map is used for building 874 /// the lists of loop-uniform and loop-scalar instructions. 875 /// The calculated cost is saved with widening decision in order to 876 /// avoid redundant calculations. 877 void setCostBasedWideningDecision(unsigned VF); 878 879 /// A struct that represents some properties of the register usage 880 /// of a loop. 881 struct RegisterUsage { 882 /// Holds the number of loop invariant values that are used in the loop. 883 unsigned LoopInvariantRegs; 884 885 /// Holds the maximum number of concurrent live intervals in the loop. 886 unsigned MaxLocalUsers; 887 }; 888 889 /// \return Returns information about the register usages of the loop for the 890 /// given vectorization factors. 891 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 892 893 /// Collect values we want to ignore in the cost model. 894 void collectValuesToIgnore(); 895 896 /// \returns The smallest bitwidth each instruction can be represented with. 897 /// The vector equivalents of these instructions should be truncated to this 898 /// type. 899 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 900 return MinBWs; 901 } 902 903 /// \returns True if it is more profitable to scalarize instruction \p I for 904 /// vectorization factor \p VF. 905 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 906 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 907 908 // Cost model is not run in the VPlan-native path - return conservative 909 // result until this changes. 910 if (EnableVPlanNativePath) 911 return false; 912 913 auto Scalars = InstsToScalarize.find(VF); 914 assert(Scalars != InstsToScalarize.end() && 915 "VF not yet analyzed for scalarization profitability"); 916 return Scalars->second.find(I) != Scalars->second.end(); 917 } 918 919 /// Returns true if \p I is known to be uniform after vectorization. 920 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 921 if (VF == 1) 922 return true; 923 924 // Cost model is not run in the VPlan-native path - return conservative 925 // result until this changes. 926 if (EnableVPlanNativePath) 927 return false; 928 929 auto UniformsPerVF = Uniforms.find(VF); 930 assert(UniformsPerVF != Uniforms.end() && 931 "VF not yet analyzed for uniformity"); 932 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 933 } 934 935 /// Returns true if \p I is known to be scalar after vectorization. 936 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 937 if (VF == 1) 938 return true; 939 940 // Cost model is not run in the VPlan-native path - return conservative 941 // result until this changes. 942 if (EnableVPlanNativePath) 943 return false; 944 945 auto ScalarsPerVF = Scalars.find(VF); 946 assert(ScalarsPerVF != Scalars.end() && 947 "Scalar values are not calculated for VF"); 948 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 949 } 950 951 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 952 /// for vectorization factor \p VF. 953 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 954 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 955 !isProfitableToScalarize(I, VF) && 956 !isScalarAfterVectorization(I, VF); 957 } 958 959 /// Decision that was taken during cost calculation for memory instruction. 960 enum InstWidening { 961 CM_Unknown, 962 CM_Widen, // For consecutive accesses with stride +1. 963 CM_Widen_Reverse, // For consecutive accesses with stride -1. 964 CM_Interleave, 965 CM_GatherScatter, 966 CM_Scalarize 967 }; 968 969 /// Save vectorization decision \p W and \p Cost taken by the cost model for 970 /// instruction \p I and vector width \p VF. 971 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 972 unsigned Cost) { 973 assert(VF >= 2 && "Expected VF >=2"); 974 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 975 } 976 977 /// Save vectorization decision \p W and \p Cost taken by the cost model for 978 /// interleaving group \p Grp and vector width \p VF. 979 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 980 InstWidening W, unsigned Cost) { 981 assert(VF >= 2 && "Expected VF >=2"); 982 /// Broadcast this decicion to all instructions inside the group. 983 /// But the cost will be assigned to one instruction only. 984 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 985 if (auto *I = Grp->getMember(i)) { 986 if (Grp->getInsertPos() == I) 987 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 988 else 989 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 990 } 991 } 992 } 993 994 /// Return the cost model decision for the given instruction \p I and vector 995 /// width \p VF. Return CM_Unknown if this instruction did not pass 996 /// through the cost modeling. 997 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 998 assert(VF >= 2 && "Expected VF >=2"); 999 1000 // Cost model is not run in the VPlan-native path - return conservative 1001 // result until this changes. 1002 if (EnableVPlanNativePath) 1003 return CM_GatherScatter; 1004 1005 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1006 auto Itr = WideningDecisions.find(InstOnVF); 1007 if (Itr == WideningDecisions.end()) 1008 return CM_Unknown; 1009 return Itr->second.first; 1010 } 1011 1012 /// Return the vectorization cost for the given instruction \p I and vector 1013 /// width \p VF. 1014 unsigned getWideningCost(Instruction *I, unsigned VF) { 1015 assert(VF >= 2 && "Expected VF >=2"); 1016 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1017 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1018 "The cost is not calculated"); 1019 return WideningDecisions[InstOnVF].second; 1020 } 1021 1022 /// Return True if instruction \p I is an optimizable truncate whose operand 1023 /// is an induction variable. Such a truncate will be removed by adding a new 1024 /// induction variable with the destination type. 1025 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1026 // If the instruction is not a truncate, return false. 1027 auto *Trunc = dyn_cast<TruncInst>(I); 1028 if (!Trunc) 1029 return false; 1030 1031 // Get the source and destination types of the truncate. 1032 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1033 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1034 1035 // If the truncate is free for the given types, return false. Replacing a 1036 // free truncate with an induction variable would add an induction variable 1037 // update instruction to each iteration of the loop. We exclude from this 1038 // check the primary induction variable since it will need an update 1039 // instruction regardless. 1040 Value *Op = Trunc->getOperand(0); 1041 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1042 return false; 1043 1044 // If the truncated value is not an induction variable, return false. 1045 return Legal->isInductionPhi(Op); 1046 } 1047 1048 /// Collects the instructions to scalarize for each predicated instruction in 1049 /// the loop. 1050 void collectInstsToScalarize(unsigned VF); 1051 1052 /// Collect Uniform and Scalar values for the given \p VF. 1053 /// The sets depend on CM decision for Load/Store instructions 1054 /// that may be vectorized as interleave, gather-scatter or scalarized. 1055 void collectUniformsAndScalars(unsigned VF) { 1056 // Do the analysis once. 1057 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1058 return; 1059 setCostBasedWideningDecision(VF); 1060 collectLoopUniforms(VF); 1061 collectLoopScalars(VF); 1062 } 1063 1064 /// Returns true if the target machine supports masked store operation 1065 /// for the given \p DataType and kind of access to \p Ptr. 1066 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1067 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1068 } 1069 1070 /// Returns true if the target machine supports masked load operation 1071 /// for the given \p DataType and kind of access to \p Ptr. 1072 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1073 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1074 } 1075 1076 /// Returns true if the target machine supports masked scatter operation 1077 /// for the given \p DataType. 1078 bool isLegalMaskedScatter(Type *DataType) { 1079 return TTI.isLegalMaskedScatter(DataType); 1080 } 1081 1082 /// Returns true if the target machine supports masked gather operation 1083 /// for the given \p DataType. 1084 bool isLegalMaskedGather(Type *DataType) { 1085 return TTI.isLegalMaskedGather(DataType); 1086 } 1087 1088 /// Returns true if the target machine can represent \p V as a masked gather 1089 /// or scatter operation. 1090 bool isLegalGatherOrScatter(Value *V) { 1091 bool LI = isa<LoadInst>(V); 1092 bool SI = isa<StoreInst>(V); 1093 if (!LI && !SI) 1094 return false; 1095 auto *Ty = getMemInstValueType(V); 1096 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1097 } 1098 1099 /// Returns true if \p I is an instruction that will be scalarized with 1100 /// predication. Such instructions include conditional stores and 1101 /// instructions that may divide by zero. 1102 /// If a non-zero VF has been calculated, we check if I will be scalarized 1103 /// predication for that VF. 1104 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1105 1106 // Returns true if \p I is an instruction that will be predicated either 1107 // through scalar predication or masked load/store or masked gather/scatter. 1108 // Superset of instructions that return true for isScalarWithPredication. 1109 bool isPredicatedInst(Instruction *I) { 1110 if (!blockNeedsPredication(I->getParent())) 1111 return false; 1112 // Loads and stores that need some form of masked operation are predicated 1113 // instructions. 1114 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1115 return Legal->isMaskRequired(I); 1116 return isScalarWithPredication(I); 1117 } 1118 1119 /// Returns true if \p I is a memory instruction with consecutive memory 1120 /// access that can be widened. 1121 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1122 1123 /// Returns true if \p I is a memory instruction in an interleaved-group 1124 /// of memory accesses that can be vectorized with wide vector loads/stores 1125 /// and shuffles. 1126 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1127 1128 /// Check if \p Instr belongs to any interleaved access group. 1129 bool isAccessInterleaved(Instruction *Instr) { 1130 return InterleaveInfo.isInterleaved(Instr); 1131 } 1132 1133 /// Get the interleaved access group that \p Instr belongs to. 1134 const InterleaveGroup<Instruction> * 1135 getInterleavedAccessGroup(Instruction *Instr) { 1136 return InterleaveInfo.getInterleaveGroup(Instr); 1137 } 1138 1139 /// Returns true if an interleaved group requires a scalar iteration 1140 /// to handle accesses with gaps, and there is nothing preventing us from 1141 /// creating a scalar epilogue. 1142 bool requiresScalarEpilogue() const { 1143 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1144 } 1145 1146 /// Returns true if a scalar epilogue is not allowed due to optsize. 1147 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1148 1149 /// Returns true if all loop blocks should be masked to fold tail loop. 1150 bool foldTailByMasking() const { return FoldTailByMasking; } 1151 1152 bool blockNeedsPredication(BasicBlock *BB) { 1153 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1154 } 1155 1156 private: 1157 unsigned NumPredStores = 0; 1158 1159 /// \return An upper bound for the vectorization factor, larger than zero. 1160 /// One is returned if vectorization should best be avoided due to cost. 1161 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1162 1163 /// The vectorization cost is a combination of the cost itself and a boolean 1164 /// indicating whether any of the contributing operations will actually 1165 /// operate on 1166 /// vector values after type legalization in the backend. If this latter value 1167 /// is 1168 /// false, then all operations will be scalarized (i.e. no vectorization has 1169 /// actually taken place). 1170 using VectorizationCostTy = std::pair<unsigned, bool>; 1171 1172 /// Returns the expected execution cost. The unit of the cost does 1173 /// not matter because we use the 'cost' units to compare different 1174 /// vector widths. The cost that is returned is *not* normalized by 1175 /// the factor width. 1176 VectorizationCostTy expectedCost(unsigned VF); 1177 1178 /// Returns the execution time cost of an instruction for a given vector 1179 /// width. Vector width of one means scalar. 1180 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1181 1182 /// The cost-computation logic from getInstructionCost which provides 1183 /// the vector type as an output parameter. 1184 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1185 1186 /// Calculate vectorization cost of memory instruction \p I. 1187 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1188 1189 /// The cost computation for scalarized memory instruction. 1190 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1191 1192 /// The cost computation for interleaving group of memory instructions. 1193 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1194 1195 /// The cost computation for Gather/Scatter instruction. 1196 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1197 1198 /// The cost computation for widening instruction \p I with consecutive 1199 /// memory access. 1200 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1201 1202 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1203 /// Load: scalar load + broadcast. 1204 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1205 /// element) 1206 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1207 1208 /// Returns whether the instruction is a load or store and will be a emitted 1209 /// as a vector operation. 1210 bool isConsecutiveLoadOrStore(Instruction *I); 1211 1212 /// Returns true if an artificially high cost for emulated masked memrefs 1213 /// should be used. 1214 bool useEmulatedMaskMemRefHack(Instruction *I); 1215 1216 /// Create an analysis remark that explains why vectorization failed 1217 /// 1218 /// \p RemarkName is the identifier for the remark. \return the remark object 1219 /// that can be streamed to. 1220 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1221 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1222 RemarkName, TheLoop); 1223 } 1224 1225 /// Map of scalar integer values to the smallest bitwidth they can be legally 1226 /// represented as. The vector equivalents of these values should be truncated 1227 /// to this type. 1228 MapVector<Instruction *, uint64_t> MinBWs; 1229 1230 /// A type representing the costs for instructions if they were to be 1231 /// scalarized rather than vectorized. The entries are Instruction-Cost 1232 /// pairs. 1233 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1234 1235 /// A set containing all BasicBlocks that are known to present after 1236 /// vectorization as a predicated block. 1237 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1238 1239 /// Records whether it is allowed to have the original scalar loop execute at 1240 /// least once. This may be needed as a fallback loop in case runtime 1241 /// aliasing/dependence checks fail, or to handle the tail/remainder 1242 /// iterations when the trip count is unknown or doesn't divide by the VF, 1243 /// or as a peel-loop to handle gaps in interleave-groups. 1244 /// Under optsize and when the trip count is very small we don't allow any 1245 /// iterations to execute in the scalar loop. 1246 bool IsScalarEpilogueAllowed = true; 1247 1248 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1249 bool FoldTailByMasking = false; 1250 1251 /// A map holding scalar costs for different vectorization factors. The 1252 /// presence of a cost for an instruction in the mapping indicates that the 1253 /// instruction will be scalarized when vectorizing with the associated 1254 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1255 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1256 1257 /// Holds the instructions known to be uniform after vectorization. 1258 /// The data is collected per VF. 1259 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1260 1261 /// Holds the instructions known to be scalar after vectorization. 1262 /// The data is collected per VF. 1263 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1264 1265 /// Holds the instructions (address computations) that are forced to be 1266 /// scalarized. 1267 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1268 1269 /// Returns the expected difference in cost from scalarizing the expression 1270 /// feeding a predicated instruction \p PredInst. The instructions to 1271 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1272 /// non-negative return value implies the expression will be scalarized. 1273 /// Currently, only single-use chains are considered for scalarization. 1274 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1275 unsigned VF); 1276 1277 /// Collect the instructions that are uniform after vectorization. An 1278 /// instruction is uniform if we represent it with a single scalar value in 1279 /// the vectorized loop corresponding to each vector iteration. Examples of 1280 /// uniform instructions include pointer operands of consecutive or 1281 /// interleaved memory accesses. Note that although uniformity implies an 1282 /// instruction will be scalar, the reverse is not true. In general, a 1283 /// scalarized instruction will be represented by VF scalar values in the 1284 /// vectorized loop, each corresponding to an iteration of the original 1285 /// scalar loop. 1286 void collectLoopUniforms(unsigned VF); 1287 1288 /// Collect the instructions that are scalar after vectorization. An 1289 /// instruction is scalar if it is known to be uniform or will be scalarized 1290 /// during vectorization. Non-uniform scalarized instructions will be 1291 /// represented by VF values in the vectorized loop, each corresponding to an 1292 /// iteration of the original scalar loop. 1293 void collectLoopScalars(unsigned VF); 1294 1295 /// Keeps cost model vectorization decision and cost for instructions. 1296 /// Right now it is used for memory instructions only. 1297 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1298 std::pair<InstWidening, unsigned>>; 1299 1300 DecisionList WideningDecisions; 1301 1302 public: 1303 /// The loop that we evaluate. 1304 Loop *TheLoop; 1305 1306 /// Predicated scalar evolution analysis. 1307 PredicatedScalarEvolution &PSE; 1308 1309 /// Loop Info analysis. 1310 LoopInfo *LI; 1311 1312 /// Vectorization legality. 1313 LoopVectorizationLegality *Legal; 1314 1315 /// Vector target information. 1316 const TargetTransformInfo &TTI; 1317 1318 /// Target Library Info. 1319 const TargetLibraryInfo *TLI; 1320 1321 /// Demanded bits analysis. 1322 DemandedBits *DB; 1323 1324 /// Assumption cache. 1325 AssumptionCache *AC; 1326 1327 /// Interface to emit optimization remarks. 1328 OptimizationRemarkEmitter *ORE; 1329 1330 const Function *TheFunction; 1331 1332 /// Loop Vectorize Hint. 1333 const LoopVectorizeHints *Hints; 1334 1335 /// The interleave access information contains groups of interleaved accesses 1336 /// with the same stride and close to each other. 1337 InterleavedAccessInfo &InterleaveInfo; 1338 1339 /// Values to ignore in the cost model. 1340 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1341 1342 /// Values to ignore in the cost model when VF > 1. 1343 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1344 }; 1345 1346 } // end namespace llvm 1347 1348 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1349 // vectorization. The loop needs to be annotated with #pragma omp simd 1350 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1351 // vector length information is not provided, vectorization is not considered 1352 // explicit. Interleave hints are not allowed either. These limitations will be 1353 // relaxed in the future. 1354 // Please, note that we are currently forced to abuse the pragma 'clang 1355 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1356 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1357 // provides *explicit vectorization hints* (LV can bypass legal checks and 1358 // assume that vectorization is legal). However, both hints are implemented 1359 // using the same metadata (llvm.loop.vectorize, processed by 1360 // LoopVectorizeHints). This will be fixed in the future when the native IR 1361 // representation for pragma 'omp simd' is introduced. 1362 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1363 OptimizationRemarkEmitter *ORE) { 1364 assert(!OuterLp->empty() && "This is not an outer loop"); 1365 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1366 1367 // Only outer loops with an explicit vectorization hint are supported. 1368 // Unannotated outer loops are ignored. 1369 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1370 return false; 1371 1372 Function *Fn = OuterLp->getHeader()->getParent(); 1373 if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) { 1374 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1375 return false; 1376 } 1377 1378 if (!Hints.getWidth()) { 1379 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1380 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1381 return false; 1382 } 1383 1384 if (Hints.getInterleave() > 1) { 1385 // TODO: Interleave support is future work. 1386 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1387 "outer loops.\n"); 1388 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1389 return false; 1390 } 1391 1392 return true; 1393 } 1394 1395 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1396 OptimizationRemarkEmitter *ORE, 1397 SmallVectorImpl<Loop *> &V) { 1398 // Collect inner loops and outer loops without irreducible control flow. For 1399 // now, only collect outer loops that have explicit vectorization hints. If we 1400 // are stress testing the VPlan H-CFG construction, we collect the outermost 1401 // loop of every loop nest. 1402 if (L.empty() || VPlanBuildStressTest || 1403 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1404 LoopBlocksRPO RPOT(&L); 1405 RPOT.perform(LI); 1406 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1407 V.push_back(&L); 1408 // TODO: Collect inner loops inside marked outer loops in case 1409 // vectorization fails for the outer loop. Do not invoke 1410 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1411 // already known to be reducible. We can use an inherited attribute for 1412 // that. 1413 return; 1414 } 1415 } 1416 for (Loop *InnerL : L) 1417 collectSupportedLoops(*InnerL, LI, ORE, V); 1418 } 1419 1420 namespace { 1421 1422 /// The LoopVectorize Pass. 1423 struct LoopVectorize : public FunctionPass { 1424 /// Pass identification, replacement for typeid 1425 static char ID; 1426 1427 LoopVectorizePass Impl; 1428 1429 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1430 : FunctionPass(ID) { 1431 Impl.DisableUnrolling = NoUnrolling; 1432 Impl.AlwaysVectorize = AlwaysVectorize; 1433 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1434 } 1435 1436 bool runOnFunction(Function &F) override { 1437 if (skipFunction(F)) 1438 return false; 1439 1440 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1441 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1442 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1443 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1444 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1445 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1446 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1447 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1448 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1449 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1450 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1451 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1452 1453 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1454 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1455 1456 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1457 GetLAA, *ORE); 1458 } 1459 1460 void getAnalysisUsage(AnalysisUsage &AU) const override { 1461 AU.addRequired<AssumptionCacheTracker>(); 1462 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1463 AU.addRequired<DominatorTreeWrapperPass>(); 1464 AU.addRequired<LoopInfoWrapperPass>(); 1465 AU.addRequired<ScalarEvolutionWrapperPass>(); 1466 AU.addRequired<TargetTransformInfoWrapperPass>(); 1467 AU.addRequired<AAResultsWrapperPass>(); 1468 AU.addRequired<LoopAccessLegacyAnalysis>(); 1469 AU.addRequired<DemandedBitsWrapperPass>(); 1470 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1471 1472 // We currently do not preserve loopinfo/dominator analyses with outer loop 1473 // vectorization. Until this is addressed, mark these analyses as preserved 1474 // only for non-VPlan-native path. 1475 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1476 if (!EnableVPlanNativePath) { 1477 AU.addPreserved<LoopInfoWrapperPass>(); 1478 AU.addPreserved<DominatorTreeWrapperPass>(); 1479 } 1480 1481 AU.addPreserved<BasicAAWrapperPass>(); 1482 AU.addPreserved<GlobalsAAWrapperPass>(); 1483 } 1484 }; 1485 1486 } // end anonymous namespace 1487 1488 //===----------------------------------------------------------------------===// 1489 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1490 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1491 //===----------------------------------------------------------------------===// 1492 1493 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1494 // We need to place the broadcast of invariant variables outside the loop, 1495 // but only if it's proven safe to do so. Else, broadcast will be inside 1496 // vector loop body. 1497 Instruction *Instr = dyn_cast<Instruction>(V); 1498 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1499 (!Instr || 1500 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1501 // Place the code for broadcasting invariant variables in the new preheader. 1502 IRBuilder<>::InsertPointGuard Guard(Builder); 1503 if (SafeToHoist) 1504 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1505 1506 // Broadcast the scalar into all locations in the vector. 1507 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1508 1509 return Shuf; 1510 } 1511 1512 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1513 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1514 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1515 "Expected either an induction phi-node or a truncate of it!"); 1516 Value *Start = II.getStartValue(); 1517 1518 // Construct the initial value of the vector IV in the vector loop preheader 1519 auto CurrIP = Builder.saveIP(); 1520 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1521 if (isa<TruncInst>(EntryVal)) { 1522 assert(Start->getType()->isIntegerTy() && 1523 "Truncation requires an integer type"); 1524 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1525 Step = Builder.CreateTrunc(Step, TruncType); 1526 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1527 } 1528 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1529 Value *SteppedStart = 1530 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1531 1532 // We create vector phi nodes for both integer and floating-point induction 1533 // variables. Here, we determine the kind of arithmetic we will perform. 1534 Instruction::BinaryOps AddOp; 1535 Instruction::BinaryOps MulOp; 1536 if (Step->getType()->isIntegerTy()) { 1537 AddOp = Instruction::Add; 1538 MulOp = Instruction::Mul; 1539 } else { 1540 AddOp = II.getInductionOpcode(); 1541 MulOp = Instruction::FMul; 1542 } 1543 1544 // Multiply the vectorization factor by the step using integer or 1545 // floating-point arithmetic as appropriate. 1546 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1547 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1548 1549 // Create a vector splat to use in the induction update. 1550 // 1551 // FIXME: If the step is non-constant, we create the vector splat with 1552 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1553 // handle a constant vector splat. 1554 Value *SplatVF = isa<Constant>(Mul) 1555 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1556 : Builder.CreateVectorSplat(VF, Mul); 1557 Builder.restoreIP(CurrIP); 1558 1559 // We may need to add the step a number of times, depending on the unroll 1560 // factor. The last of those goes into the PHI. 1561 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1562 &*LoopVectorBody->getFirstInsertionPt()); 1563 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1564 Instruction *LastInduction = VecInd; 1565 for (unsigned Part = 0; Part < UF; ++Part) { 1566 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1567 1568 if (isa<TruncInst>(EntryVal)) 1569 addMetadata(LastInduction, EntryVal); 1570 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1571 1572 LastInduction = cast<Instruction>(addFastMathFlag( 1573 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1574 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1575 } 1576 1577 // Move the last step to the end of the latch block. This ensures consistent 1578 // placement of all induction updates. 1579 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1580 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1581 auto *ICmp = cast<Instruction>(Br->getCondition()); 1582 LastInduction->moveBefore(ICmp); 1583 LastInduction->setName("vec.ind.next"); 1584 1585 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1586 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1587 } 1588 1589 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1590 return Cost->isScalarAfterVectorization(I, VF) || 1591 Cost->isProfitableToScalarize(I, VF); 1592 } 1593 1594 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1595 if (shouldScalarizeInstruction(IV)) 1596 return true; 1597 auto isScalarInst = [&](User *U) -> bool { 1598 auto *I = cast<Instruction>(U); 1599 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1600 }; 1601 return llvm::any_of(IV->users(), isScalarInst); 1602 } 1603 1604 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1605 const InductionDescriptor &ID, const Instruction *EntryVal, 1606 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1607 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1608 "Expected either an induction phi-node or a truncate of it!"); 1609 1610 // This induction variable is not the phi from the original loop but the 1611 // newly-created IV based on the proof that casted Phi is equal to the 1612 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1613 // re-uses the same InductionDescriptor that original IV uses but we don't 1614 // have to do any recording in this case - that is done when original IV is 1615 // processed. 1616 if (isa<TruncInst>(EntryVal)) 1617 return; 1618 1619 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1620 if (Casts.empty()) 1621 return; 1622 // Only the first Cast instruction in the Casts vector is of interest. 1623 // The rest of the Casts (if exist) have no uses outside the 1624 // induction update chain itself. 1625 Instruction *CastInst = *Casts.begin(); 1626 if (Lane < UINT_MAX) 1627 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1628 else 1629 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1630 } 1631 1632 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1633 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1634 "Primary induction variable must have an integer type"); 1635 1636 auto II = Legal->getInductionVars()->find(IV); 1637 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1638 1639 auto ID = II->second; 1640 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1641 1642 // The scalar value to broadcast. This will be derived from the canonical 1643 // induction variable. 1644 Value *ScalarIV = nullptr; 1645 1646 // The value from the original loop to which we are mapping the new induction 1647 // variable. 1648 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1649 1650 // True if we have vectorized the induction variable. 1651 auto VectorizedIV = false; 1652 1653 // Determine if we want a scalar version of the induction variable. This is 1654 // true if the induction variable itself is not widened, or if it has at 1655 // least one user in the loop that is not widened. 1656 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1657 1658 // Generate code for the induction step. Note that induction steps are 1659 // required to be loop-invariant 1660 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1661 "Induction step should be loop invariant"); 1662 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1663 Value *Step = nullptr; 1664 if (PSE.getSE()->isSCEVable(IV->getType())) { 1665 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1666 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1667 LoopVectorPreHeader->getTerminator()); 1668 } else { 1669 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1670 } 1671 1672 // Try to create a new independent vector induction variable. If we can't 1673 // create the phi node, we will splat the scalar induction variable in each 1674 // loop iteration. 1675 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1676 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1677 VectorizedIV = true; 1678 } 1679 1680 // If we haven't yet vectorized the induction variable, or if we will create 1681 // a scalar one, we need to define the scalar induction variable and step 1682 // values. If we were given a truncation type, truncate the canonical 1683 // induction variable and step. Otherwise, derive these values from the 1684 // induction descriptor. 1685 if (!VectorizedIV || NeedsScalarIV) { 1686 ScalarIV = Induction; 1687 if (IV != OldInduction) { 1688 ScalarIV = IV->getType()->isIntegerTy() 1689 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1690 : Builder.CreateCast(Instruction::SIToFP, Induction, 1691 IV->getType()); 1692 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1693 ScalarIV->setName("offset.idx"); 1694 } 1695 if (Trunc) { 1696 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1697 assert(Step->getType()->isIntegerTy() && 1698 "Truncation requires an integer step"); 1699 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1700 Step = Builder.CreateTrunc(Step, TruncType); 1701 } 1702 } 1703 1704 // If we haven't yet vectorized the induction variable, splat the scalar 1705 // induction variable, and build the necessary step vectors. 1706 // TODO: Don't do it unless the vectorized IV is really required. 1707 if (!VectorizedIV) { 1708 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1709 for (unsigned Part = 0; Part < UF; ++Part) { 1710 Value *EntryPart = 1711 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1712 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1713 if (Trunc) 1714 addMetadata(EntryPart, Trunc); 1715 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1716 } 1717 } 1718 1719 // If an induction variable is only used for counting loop iterations or 1720 // calculating addresses, it doesn't need to be widened. Create scalar steps 1721 // that can be used by instructions we will later scalarize. Note that the 1722 // addition of the scalar steps will not increase the number of instructions 1723 // in the loop in the common case prior to InstCombine. We will be trading 1724 // one vector extract for each scalar step. 1725 if (NeedsScalarIV) 1726 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1727 } 1728 1729 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1730 Instruction::BinaryOps BinOp) { 1731 // Create and check the types. 1732 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1733 int VLen = Val->getType()->getVectorNumElements(); 1734 1735 Type *STy = Val->getType()->getScalarType(); 1736 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1737 "Induction Step must be an integer or FP"); 1738 assert(Step->getType() == STy && "Step has wrong type"); 1739 1740 SmallVector<Constant *, 8> Indices; 1741 1742 if (STy->isIntegerTy()) { 1743 // Create a vector of consecutive numbers from zero to VF. 1744 for (int i = 0; i < VLen; ++i) 1745 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1746 1747 // Add the consecutive indices to the vector value. 1748 Constant *Cv = ConstantVector::get(Indices); 1749 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1750 Step = Builder.CreateVectorSplat(VLen, Step); 1751 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1752 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1753 // which can be found from the original scalar operations. 1754 Step = Builder.CreateMul(Cv, Step); 1755 return Builder.CreateAdd(Val, Step, "induction"); 1756 } 1757 1758 // Floating point induction. 1759 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1760 "Binary Opcode should be specified for FP induction"); 1761 // Create a vector of consecutive numbers from zero to VF. 1762 for (int i = 0; i < VLen; ++i) 1763 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1764 1765 // Add the consecutive indices to the vector value. 1766 Constant *Cv = ConstantVector::get(Indices); 1767 1768 Step = Builder.CreateVectorSplat(VLen, Step); 1769 1770 // Floating point operations had to be 'fast' to enable the induction. 1771 FastMathFlags Flags; 1772 Flags.setFast(); 1773 1774 Value *MulOp = Builder.CreateFMul(Cv, Step); 1775 if (isa<Instruction>(MulOp)) 1776 // Have to check, MulOp may be a constant 1777 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1778 1779 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1780 if (isa<Instruction>(BOp)) 1781 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1782 return BOp; 1783 } 1784 1785 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1786 Instruction *EntryVal, 1787 const InductionDescriptor &ID) { 1788 // We shouldn't have to build scalar steps if we aren't vectorizing. 1789 assert(VF > 1 && "VF should be greater than one"); 1790 1791 // Get the value type and ensure it and the step have the same integer type. 1792 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1793 assert(ScalarIVTy == Step->getType() && 1794 "Val and Step should have the same type"); 1795 1796 // We build scalar steps for both integer and floating-point induction 1797 // variables. Here, we determine the kind of arithmetic we will perform. 1798 Instruction::BinaryOps AddOp; 1799 Instruction::BinaryOps MulOp; 1800 if (ScalarIVTy->isIntegerTy()) { 1801 AddOp = Instruction::Add; 1802 MulOp = Instruction::Mul; 1803 } else { 1804 AddOp = ID.getInductionOpcode(); 1805 MulOp = Instruction::FMul; 1806 } 1807 1808 // Determine the number of scalars we need to generate for each unroll 1809 // iteration. If EntryVal is uniform, we only need to generate the first 1810 // lane. Otherwise, we generate all VF values. 1811 unsigned Lanes = 1812 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1813 : VF; 1814 // Compute the scalar steps and save the results in VectorLoopValueMap. 1815 for (unsigned Part = 0; Part < UF; ++Part) { 1816 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1817 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1818 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1819 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1820 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1821 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1822 } 1823 } 1824 } 1825 1826 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1827 assert(V != Induction && "The new induction variable should not be used."); 1828 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1829 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1830 1831 // If we have a stride that is replaced by one, do it here. Defer this for 1832 // the VPlan-native path until we start running Legal checks in that path. 1833 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1834 V = ConstantInt::get(V->getType(), 1); 1835 1836 // If we have a vector mapped to this value, return it. 1837 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1838 return VectorLoopValueMap.getVectorValue(V, Part); 1839 1840 // If the value has not been vectorized, check if it has been scalarized 1841 // instead. If it has been scalarized, and we actually need the value in 1842 // vector form, we will construct the vector values on demand. 1843 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1844 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1845 1846 // If we've scalarized a value, that value should be an instruction. 1847 auto *I = cast<Instruction>(V); 1848 1849 // If we aren't vectorizing, we can just copy the scalar map values over to 1850 // the vector map. 1851 if (VF == 1) { 1852 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1853 return ScalarValue; 1854 } 1855 1856 // Get the last scalar instruction we generated for V and Part. If the value 1857 // is known to be uniform after vectorization, this corresponds to lane zero 1858 // of the Part unroll iteration. Otherwise, the last instruction is the one 1859 // we created for the last vector lane of the Part unroll iteration. 1860 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1861 auto *LastInst = cast<Instruction>( 1862 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1863 1864 // Set the insert point after the last scalarized instruction. This ensures 1865 // the insertelement sequence will directly follow the scalar definitions. 1866 auto OldIP = Builder.saveIP(); 1867 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1868 Builder.SetInsertPoint(&*NewIP); 1869 1870 // However, if we are vectorizing, we need to construct the vector values. 1871 // If the value is known to be uniform after vectorization, we can just 1872 // broadcast the scalar value corresponding to lane zero for each unroll 1873 // iteration. Otherwise, we construct the vector values using insertelement 1874 // instructions. Since the resulting vectors are stored in 1875 // VectorLoopValueMap, we will only generate the insertelements once. 1876 Value *VectorValue = nullptr; 1877 if (Cost->isUniformAfterVectorization(I, VF)) { 1878 VectorValue = getBroadcastInstrs(ScalarValue); 1879 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1880 } else { 1881 // Initialize packing with insertelements to start from undef. 1882 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1883 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1884 for (unsigned Lane = 0; Lane < VF; ++Lane) 1885 packScalarIntoVectorValue(V, {Part, Lane}); 1886 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1887 } 1888 Builder.restoreIP(OldIP); 1889 return VectorValue; 1890 } 1891 1892 // If this scalar is unknown, assume that it is a constant or that it is 1893 // loop invariant. Broadcast V and save the value for future uses. 1894 Value *B = getBroadcastInstrs(V); 1895 VectorLoopValueMap.setVectorValue(V, Part, B); 1896 return B; 1897 } 1898 1899 Value * 1900 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1901 const VPIteration &Instance) { 1902 // If the value is not an instruction contained in the loop, it should 1903 // already be scalar. 1904 if (OrigLoop->isLoopInvariant(V)) 1905 return V; 1906 1907 assert(Instance.Lane > 0 1908 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1909 : true && "Uniform values only have lane zero"); 1910 1911 // If the value from the original loop has not been vectorized, it is 1912 // represented by UF x VF scalar values in the new loop. Return the requested 1913 // scalar value. 1914 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1915 return VectorLoopValueMap.getScalarValue(V, Instance); 1916 1917 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1918 // for the given unroll part. If this entry is not a vector type (i.e., the 1919 // vectorization factor is one), there is no need to generate an 1920 // extractelement instruction. 1921 auto *U = getOrCreateVectorValue(V, Instance.Part); 1922 if (!U->getType()->isVectorTy()) { 1923 assert(VF == 1 && "Value not scalarized has non-vector type"); 1924 return U; 1925 } 1926 1927 // Otherwise, the value from the original loop has been vectorized and is 1928 // represented by UF vector values. Extract and return the requested scalar 1929 // value from the appropriate vector lane. 1930 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1931 } 1932 1933 void InnerLoopVectorizer::packScalarIntoVectorValue( 1934 Value *V, const VPIteration &Instance) { 1935 assert(V != Induction && "The new induction variable should not be used."); 1936 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1937 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1938 1939 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1940 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1941 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1942 Builder.getInt32(Instance.Lane)); 1943 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1944 } 1945 1946 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1947 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1948 SmallVector<Constant *, 8> ShuffleMask; 1949 for (unsigned i = 0; i < VF; ++i) 1950 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1951 1952 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1953 ConstantVector::get(ShuffleMask), 1954 "reverse"); 1955 } 1956 1957 // Return whether we allow using masked interleave-groups (for dealing with 1958 // strided loads/stores that reside in predicated blocks, or for dealing 1959 // with gaps). 1960 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1961 // If an override option has been passed in for interleaved accesses, use it. 1962 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1963 return EnableMaskedInterleavedMemAccesses; 1964 1965 return TTI.enableMaskedInterleavedAccessVectorization(); 1966 } 1967 1968 // Try to vectorize the interleave group that \p Instr belongs to. 1969 // 1970 // E.g. Translate following interleaved load group (factor = 3): 1971 // for (i = 0; i < N; i+=3) { 1972 // R = Pic[i]; // Member of index 0 1973 // G = Pic[i+1]; // Member of index 1 1974 // B = Pic[i+2]; // Member of index 2 1975 // ... // do something to R, G, B 1976 // } 1977 // To: 1978 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 1979 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 1980 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 1981 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 1982 // 1983 // Or translate following interleaved store group (factor = 3): 1984 // for (i = 0; i < N; i+=3) { 1985 // ... do something to R, G, B 1986 // Pic[i] = R; // Member of index 0 1987 // Pic[i+1] = G; // Member of index 1 1988 // Pic[i+2] = B; // Member of index 2 1989 // } 1990 // To: 1991 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 1992 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 1993 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 1994 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 1995 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 1996 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 1997 VectorParts *BlockInMask) { 1998 const InterleaveGroup<Instruction> *Group = 1999 Cost->getInterleavedAccessGroup(Instr); 2000 assert(Group && "Fail to get an interleaved access group."); 2001 2002 // Skip if current instruction is not the insert position. 2003 if (Instr != Group->getInsertPos()) 2004 return; 2005 2006 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2007 Value *Ptr = getLoadStorePointerOperand(Instr); 2008 2009 // Prepare for the vector type of the interleaved load/store. 2010 Type *ScalarTy = getMemInstValueType(Instr); 2011 unsigned InterleaveFactor = Group->getFactor(); 2012 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2013 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2014 2015 // Prepare for the new pointers. 2016 setDebugLocFromInst(Builder, Ptr); 2017 SmallVector<Value *, 2> NewPtrs; 2018 unsigned Index = Group->getIndex(Instr); 2019 2020 VectorParts Mask; 2021 bool IsMaskForCondRequired = BlockInMask; 2022 if (IsMaskForCondRequired) { 2023 Mask = *BlockInMask; 2024 // TODO: extend the masked interleaved-group support to reversed access. 2025 assert(!Group->isReverse() && "Reversed masked interleave-group " 2026 "not supported."); 2027 } 2028 2029 // If the group is reverse, adjust the index to refer to the last vector lane 2030 // instead of the first. We adjust the index from the first vector lane, 2031 // rather than directly getting the pointer for lane VF - 1, because the 2032 // pointer operand of the interleaved access is supposed to be uniform. For 2033 // uniform instructions, we're only required to generate a value for the 2034 // first vector lane in each unroll iteration. 2035 if (Group->isReverse()) 2036 Index += (VF - 1) * Group->getFactor(); 2037 2038 bool InBounds = false; 2039 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2040 InBounds = gep->isInBounds(); 2041 2042 for (unsigned Part = 0; Part < UF; Part++) { 2043 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2044 2045 // Notice current instruction could be any index. Need to adjust the address 2046 // to the member of index 0. 2047 // 2048 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2049 // b = A[i]; // Member of index 0 2050 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2051 // 2052 // E.g. A[i+1] = a; // Member of index 1 2053 // A[i] = b; // Member of index 0 2054 // A[i+2] = c; // Member of index 2 (Current instruction) 2055 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2056 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2057 if (InBounds) 2058 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2059 2060 // Cast to the vector pointer type. 2061 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2062 } 2063 2064 setDebugLocFromInst(Builder, Instr); 2065 Value *UndefVec = UndefValue::get(VecTy); 2066 2067 Value *MaskForGaps = nullptr; 2068 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2069 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2070 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2071 } 2072 2073 // Vectorize the interleaved load group. 2074 if (isa<LoadInst>(Instr)) { 2075 // For each unroll part, create a wide load for the group. 2076 SmallVector<Value *, 2> NewLoads; 2077 for (unsigned Part = 0; Part < UF; Part++) { 2078 Instruction *NewLoad; 2079 if (IsMaskForCondRequired || MaskForGaps) { 2080 assert(useMaskedInterleavedAccesses(*TTI) && 2081 "masked interleaved groups are not allowed."); 2082 Value *GroupMask = MaskForGaps; 2083 if (IsMaskForCondRequired) { 2084 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2085 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2086 Value *ShuffledMask = Builder.CreateShuffleVector( 2087 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2088 GroupMask = MaskForGaps 2089 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2090 MaskForGaps) 2091 : ShuffledMask; 2092 } 2093 NewLoad = 2094 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2095 GroupMask, UndefVec, "wide.masked.vec"); 2096 } 2097 else 2098 NewLoad = Builder.CreateAlignedLoad(NewPtrs[Part], 2099 Group->getAlignment(), "wide.vec"); 2100 Group->addMetadata(NewLoad); 2101 NewLoads.push_back(NewLoad); 2102 } 2103 2104 // For each member in the group, shuffle out the appropriate data from the 2105 // wide loads. 2106 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2107 Instruction *Member = Group->getMember(I); 2108 2109 // Skip the gaps in the group. 2110 if (!Member) 2111 continue; 2112 2113 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2114 for (unsigned Part = 0; Part < UF; Part++) { 2115 Value *StridedVec = Builder.CreateShuffleVector( 2116 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2117 2118 // If this member has different type, cast the result type. 2119 if (Member->getType() != ScalarTy) { 2120 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2121 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2122 } 2123 2124 if (Group->isReverse()) 2125 StridedVec = reverseVector(StridedVec); 2126 2127 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2128 } 2129 } 2130 return; 2131 } 2132 2133 // The sub vector type for current instruction. 2134 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2135 2136 // Vectorize the interleaved store group. 2137 for (unsigned Part = 0; Part < UF; Part++) { 2138 // Collect the stored vector from each member. 2139 SmallVector<Value *, 4> StoredVecs; 2140 for (unsigned i = 0; i < InterleaveFactor; i++) { 2141 // Interleaved store group doesn't allow a gap, so each index has a member 2142 Instruction *Member = Group->getMember(i); 2143 assert(Member && "Fail to get a member from an interleaved store group"); 2144 2145 Value *StoredVec = getOrCreateVectorValue( 2146 cast<StoreInst>(Member)->getValueOperand(), Part); 2147 if (Group->isReverse()) 2148 StoredVec = reverseVector(StoredVec); 2149 2150 // If this member has different type, cast it to a unified type. 2151 2152 if (StoredVec->getType() != SubVT) 2153 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2154 2155 StoredVecs.push_back(StoredVec); 2156 } 2157 2158 // Concatenate all vectors into a wide vector. 2159 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2160 2161 // Interleave the elements in the wide vector. 2162 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2163 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2164 "interleaved.vec"); 2165 2166 Instruction *NewStoreInstr; 2167 if (IsMaskForCondRequired) { 2168 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2169 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2170 Value *ShuffledMask = Builder.CreateShuffleVector( 2171 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2172 NewStoreInstr = Builder.CreateMaskedStore( 2173 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2174 } 2175 else 2176 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2177 Group->getAlignment()); 2178 2179 Group->addMetadata(NewStoreInstr); 2180 } 2181 } 2182 2183 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2184 VectorParts *BlockInMask) { 2185 // Attempt to issue a wide load. 2186 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2187 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2188 2189 assert((LI || SI) && "Invalid Load/Store instruction"); 2190 2191 LoopVectorizationCostModel::InstWidening Decision = 2192 Cost->getWideningDecision(Instr, VF); 2193 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2194 "CM decision should be taken at this point"); 2195 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2196 return vectorizeInterleaveGroup(Instr); 2197 2198 Type *ScalarDataTy = getMemInstValueType(Instr); 2199 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2200 Value *Ptr = getLoadStorePointerOperand(Instr); 2201 unsigned Alignment = getLoadStoreAlignment(Instr); 2202 // An alignment of 0 means target abi alignment. We need to use the scalar's 2203 // target abi alignment in such a case. 2204 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2205 if (!Alignment) 2206 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2207 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2208 2209 // Determine if the pointer operand of the access is either consecutive or 2210 // reverse consecutive. 2211 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2212 bool ConsecutiveStride = 2213 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2214 bool CreateGatherScatter = 2215 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2216 2217 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2218 // gather/scatter. Otherwise Decision should have been to Scalarize. 2219 assert((ConsecutiveStride || CreateGatherScatter) && 2220 "The instruction should be scalarized"); 2221 2222 // Handle consecutive loads/stores. 2223 if (ConsecutiveStride) 2224 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2225 2226 VectorParts Mask; 2227 bool isMaskRequired = BlockInMask; 2228 if (isMaskRequired) 2229 Mask = *BlockInMask; 2230 2231 bool InBounds = false; 2232 if (auto *gep = dyn_cast<GetElementPtrInst>( 2233 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2234 InBounds = gep->isInBounds(); 2235 2236 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2237 // Calculate the pointer for the specific unroll-part. 2238 GetElementPtrInst *PartPtr = nullptr; 2239 2240 if (Reverse) { 2241 // If the address is consecutive but reversed, then the 2242 // wide store needs to start at the last vector element. 2243 PartPtr = cast<GetElementPtrInst>( 2244 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF))); 2245 PartPtr->setIsInBounds(InBounds); 2246 PartPtr = cast<GetElementPtrInst>( 2247 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF))); 2248 PartPtr->setIsInBounds(InBounds); 2249 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2250 Mask[Part] = reverseVector(Mask[Part]); 2251 } else { 2252 PartPtr = cast<GetElementPtrInst>( 2253 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF))); 2254 PartPtr->setIsInBounds(InBounds); 2255 } 2256 2257 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2258 }; 2259 2260 // Handle Stores: 2261 if (SI) { 2262 setDebugLocFromInst(Builder, SI); 2263 2264 for (unsigned Part = 0; Part < UF; ++Part) { 2265 Instruction *NewSI = nullptr; 2266 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2267 if (CreateGatherScatter) { 2268 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2269 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2270 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2271 MaskPart); 2272 } else { 2273 if (Reverse) { 2274 // If we store to reverse consecutive memory locations, then we need 2275 // to reverse the order of elements in the stored value. 2276 StoredVal = reverseVector(StoredVal); 2277 // We don't want to update the value in the map as it might be used in 2278 // another expression. So don't call resetVectorValue(StoredVal). 2279 } 2280 auto *VecPtr = CreateVecPtr(Part, Ptr); 2281 if (isMaskRequired) 2282 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2283 Mask[Part]); 2284 else 2285 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2286 } 2287 addMetadata(NewSI, SI); 2288 } 2289 return; 2290 } 2291 2292 // Handle loads. 2293 assert(LI && "Must have a load instruction"); 2294 setDebugLocFromInst(Builder, LI); 2295 for (unsigned Part = 0; Part < UF; ++Part) { 2296 Value *NewLI; 2297 if (CreateGatherScatter) { 2298 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2299 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2300 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2301 nullptr, "wide.masked.gather"); 2302 addMetadata(NewLI, LI); 2303 } else { 2304 auto *VecPtr = CreateVecPtr(Part, Ptr); 2305 if (isMaskRequired) 2306 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2307 UndefValue::get(DataTy), 2308 "wide.masked.load"); 2309 else 2310 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2311 2312 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2313 addMetadata(NewLI, LI); 2314 if (Reverse) 2315 NewLI = reverseVector(NewLI); 2316 } 2317 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2318 } 2319 } 2320 2321 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2322 const VPIteration &Instance, 2323 bool IfPredicateInstr) { 2324 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2325 2326 setDebugLocFromInst(Builder, Instr); 2327 2328 // Does this instruction return a value ? 2329 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2330 2331 Instruction *Cloned = Instr->clone(); 2332 if (!IsVoidRetTy) 2333 Cloned->setName(Instr->getName() + ".cloned"); 2334 2335 // Replace the operands of the cloned instructions with their scalar 2336 // equivalents in the new loop. 2337 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2338 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2339 Cloned->setOperand(op, NewOp); 2340 } 2341 addNewMetadata(Cloned, Instr); 2342 2343 // Place the cloned scalar in the new loop. 2344 Builder.Insert(Cloned); 2345 2346 // Add the cloned scalar to the scalar map entry. 2347 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2348 2349 // If we just cloned a new assumption, add it the assumption cache. 2350 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2351 if (II->getIntrinsicID() == Intrinsic::assume) 2352 AC->registerAssumption(II); 2353 2354 // End if-block. 2355 if (IfPredicateInstr) 2356 PredicatedInstructions.push_back(Cloned); 2357 } 2358 2359 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2360 Value *End, Value *Step, 2361 Instruction *DL) { 2362 BasicBlock *Header = L->getHeader(); 2363 BasicBlock *Latch = L->getLoopLatch(); 2364 // As we're just creating this loop, it's possible no latch exists 2365 // yet. If so, use the header as this will be a single block loop. 2366 if (!Latch) 2367 Latch = Header; 2368 2369 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2370 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2371 setDebugLocFromInst(Builder, OldInst); 2372 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2373 2374 Builder.SetInsertPoint(Latch->getTerminator()); 2375 setDebugLocFromInst(Builder, OldInst); 2376 2377 // Create i+1 and fill the PHINode. 2378 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2379 Induction->addIncoming(Start, L->getLoopPreheader()); 2380 Induction->addIncoming(Next, Latch); 2381 // Create the compare. 2382 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2383 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2384 2385 // Now we have two terminators. Remove the old one from the block. 2386 Latch->getTerminator()->eraseFromParent(); 2387 2388 return Induction; 2389 } 2390 2391 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2392 if (TripCount) 2393 return TripCount; 2394 2395 assert(L && "Create Trip Count for null loop."); 2396 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2397 // Find the loop boundaries. 2398 ScalarEvolution *SE = PSE.getSE(); 2399 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2400 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2401 "Invalid loop count"); 2402 2403 Type *IdxTy = Legal->getWidestInductionType(); 2404 assert(IdxTy && "No type for induction"); 2405 2406 // The exit count might have the type of i64 while the phi is i32. This can 2407 // happen if we have an induction variable that is sign extended before the 2408 // compare. The only way that we get a backedge taken count is that the 2409 // induction variable was signed and as such will not overflow. In such a case 2410 // truncation is legal. 2411 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2412 IdxTy->getPrimitiveSizeInBits()) 2413 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2414 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2415 2416 // Get the total trip count from the count by adding 1. 2417 const SCEV *ExitCount = SE->getAddExpr( 2418 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2419 2420 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2421 2422 // Expand the trip count and place the new instructions in the preheader. 2423 // Notice that the pre-header does not change, only the loop body. 2424 SCEVExpander Exp(*SE, DL, "induction"); 2425 2426 // Count holds the overall loop count (N). 2427 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2428 L->getLoopPreheader()->getTerminator()); 2429 2430 if (TripCount->getType()->isPointerTy()) 2431 TripCount = 2432 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2433 L->getLoopPreheader()->getTerminator()); 2434 2435 return TripCount; 2436 } 2437 2438 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2439 if (VectorTripCount) 2440 return VectorTripCount; 2441 2442 Value *TC = getOrCreateTripCount(L); 2443 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2444 2445 Type *Ty = TC->getType(); 2446 Constant *Step = ConstantInt::get(Ty, VF * UF); 2447 2448 // If the tail is to be folded by masking, round the number of iterations N 2449 // up to a multiple of Step instead of rounding down. This is done by first 2450 // adding Step-1 and then rounding down. Note that it's ok if this addition 2451 // overflows: the vector induction variable will eventually wrap to zero given 2452 // that it starts at zero and its Step is a power of two; the loop will then 2453 // exit, with the last early-exit vector comparison also producing all-true. 2454 if (Cost->foldTailByMasking()) { 2455 assert(isPowerOf2_32(VF * UF) && 2456 "VF*UF must be a power of 2 when folding tail by masking"); 2457 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2458 } 2459 2460 // Now we need to generate the expression for the part of the loop that the 2461 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2462 // iterations are not required for correctness, or N - Step, otherwise. Step 2463 // is equal to the vectorization factor (number of SIMD elements) times the 2464 // unroll factor (number of SIMD instructions). 2465 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2466 2467 // If there is a non-reversed interleaved group that may speculatively access 2468 // memory out-of-bounds, we need to ensure that there will be at least one 2469 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2470 // the trip count, we set the remainder to be equal to the step. If the step 2471 // does not evenly divide the trip count, no adjustment is necessary since 2472 // there will already be scalar iterations. Note that the minimum iterations 2473 // check ensures that N >= Step. 2474 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2475 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2476 R = Builder.CreateSelect(IsZero, Step, R); 2477 } 2478 2479 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2480 2481 return VectorTripCount; 2482 } 2483 2484 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2485 const DataLayout &DL) { 2486 // Verify that V is a vector type with same number of elements as DstVTy. 2487 unsigned VF = DstVTy->getNumElements(); 2488 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2489 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2490 Type *SrcElemTy = SrcVecTy->getElementType(); 2491 Type *DstElemTy = DstVTy->getElementType(); 2492 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2493 "Vector elements must have same size"); 2494 2495 // Do a direct cast if element types are castable. 2496 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2497 return Builder.CreateBitOrPointerCast(V, DstVTy); 2498 } 2499 // V cannot be directly casted to desired vector type. 2500 // May happen when V is a floating point vector but DstVTy is a vector of 2501 // pointers or vice-versa. Handle this using a two-step bitcast using an 2502 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2503 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2504 "Only one type should be a pointer type"); 2505 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2506 "Only one type should be a floating point type"); 2507 Type *IntTy = 2508 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2509 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2510 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2511 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2512 } 2513 2514 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2515 BasicBlock *Bypass) { 2516 Value *Count = getOrCreateTripCount(L); 2517 BasicBlock *BB = L->getLoopPreheader(); 2518 IRBuilder<> Builder(BB->getTerminator()); 2519 2520 // Generate code to check if the loop's trip count is less than VF * UF, or 2521 // equal to it in case a scalar epilogue is required; this implies that the 2522 // vector trip count is zero. This check also covers the case where adding one 2523 // to the backedge-taken count overflowed leading to an incorrect trip count 2524 // of zero. In this case we will also jump to the scalar loop. 2525 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2526 : ICmpInst::ICMP_ULT; 2527 2528 // If tail is to be folded, vector loop takes care of all iterations. 2529 Value *CheckMinIters = Builder.getFalse(); 2530 if (!Cost->foldTailByMasking()) 2531 CheckMinIters = Builder.CreateICmp( 2532 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2533 "min.iters.check"); 2534 2535 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2536 // Update dominator tree immediately if the generated block is a 2537 // LoopBypassBlock because SCEV expansions to generate loop bypass 2538 // checks may query it before the current function is finished. 2539 DT->addNewBlock(NewBB, BB); 2540 if (L->getParentLoop()) 2541 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2542 ReplaceInstWithInst(BB->getTerminator(), 2543 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2544 LoopBypassBlocks.push_back(BB); 2545 } 2546 2547 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2548 BasicBlock *BB = L->getLoopPreheader(); 2549 2550 // Generate the code to check that the SCEV assumptions that we made. 2551 // We want the new basic block to start at the first instruction in a 2552 // sequence of instructions that form a check. 2553 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2554 "scev.check"); 2555 Value *SCEVCheck = 2556 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2557 2558 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2559 if (C->isZero()) 2560 return; 2561 2562 assert(!Cost->foldTailByMasking() && 2563 "Cannot SCEV check stride or overflow when folding tail"); 2564 // Create a new block containing the stride check. 2565 BB->setName("vector.scevcheck"); 2566 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2567 // Update dominator tree immediately if the generated block is a 2568 // LoopBypassBlock because SCEV expansions to generate loop bypass 2569 // checks may query it before the current function is finished. 2570 DT->addNewBlock(NewBB, BB); 2571 if (L->getParentLoop()) 2572 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2573 ReplaceInstWithInst(BB->getTerminator(), 2574 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2575 LoopBypassBlocks.push_back(BB); 2576 AddedSafetyChecks = true; 2577 } 2578 2579 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2580 // VPlan-native path does not do any analysis for runtime checks currently. 2581 if (EnableVPlanNativePath) 2582 return; 2583 2584 BasicBlock *BB = L->getLoopPreheader(); 2585 2586 // Generate the code that checks in runtime if arrays overlap. We put the 2587 // checks into a separate block to make the more common case of few elements 2588 // faster. 2589 Instruction *FirstCheckInst; 2590 Instruction *MemRuntimeCheck; 2591 std::tie(FirstCheckInst, MemRuntimeCheck) = 2592 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2593 if (!MemRuntimeCheck) 2594 return; 2595 2596 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2597 // Create a new block containing the memory check. 2598 BB->setName("vector.memcheck"); 2599 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2600 // Update dominator tree immediately if the generated block is a 2601 // LoopBypassBlock because SCEV expansions to generate loop bypass 2602 // checks may query it before the current function is finished. 2603 DT->addNewBlock(NewBB, BB); 2604 if (L->getParentLoop()) 2605 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2606 ReplaceInstWithInst(BB->getTerminator(), 2607 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2608 LoopBypassBlocks.push_back(BB); 2609 AddedSafetyChecks = true; 2610 2611 // We currently don't use LoopVersioning for the actual loop cloning but we 2612 // still use it to add the noalias metadata. 2613 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2614 PSE.getSE()); 2615 LVer->prepareNoAliasMetadata(); 2616 } 2617 2618 Value *InnerLoopVectorizer::emitTransformedIndex( 2619 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2620 const InductionDescriptor &ID) const { 2621 2622 SCEVExpander Exp(*SE, DL, "induction"); 2623 auto Step = ID.getStep(); 2624 auto StartValue = ID.getStartValue(); 2625 assert(Index->getType() == Step->getType() && 2626 "Index type does not match StepValue type"); 2627 2628 // Note: the IR at this point is broken. We cannot use SE to create any new 2629 // SCEV and then expand it, hoping that SCEV's simplification will give us 2630 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2631 // lead to various SCEV crashes. So all we can do is to use builder and rely 2632 // on InstCombine for future simplifications. Here we handle some trivial 2633 // cases only. 2634 auto CreateAdd = [&B](Value *X, Value *Y) { 2635 assert(X->getType() == Y->getType() && "Types don't match!"); 2636 if (auto *CX = dyn_cast<ConstantInt>(X)) 2637 if (CX->isZero()) 2638 return Y; 2639 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2640 if (CY->isZero()) 2641 return X; 2642 return B.CreateAdd(X, Y); 2643 }; 2644 2645 auto CreateMul = [&B](Value *X, Value *Y) { 2646 assert(X->getType() == Y->getType() && "Types don't match!"); 2647 if (auto *CX = dyn_cast<ConstantInt>(X)) 2648 if (CX->isOne()) 2649 return Y; 2650 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2651 if (CY->isOne()) 2652 return X; 2653 return B.CreateMul(X, Y); 2654 }; 2655 2656 switch (ID.getKind()) { 2657 case InductionDescriptor::IK_IntInduction: { 2658 assert(Index->getType() == StartValue->getType() && 2659 "Index type does not match StartValue type"); 2660 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2661 return B.CreateSub(StartValue, Index); 2662 auto *Offset = CreateMul( 2663 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2664 return CreateAdd(StartValue, Offset); 2665 } 2666 case InductionDescriptor::IK_PtrInduction: { 2667 assert(isa<SCEVConstant>(Step) && 2668 "Expected constant step for pointer induction"); 2669 return B.CreateGEP( 2670 nullptr, StartValue, 2671 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2672 &*B.GetInsertPoint()))); 2673 } 2674 case InductionDescriptor::IK_FpInduction: { 2675 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2676 auto InductionBinOp = ID.getInductionBinOp(); 2677 assert(InductionBinOp && 2678 (InductionBinOp->getOpcode() == Instruction::FAdd || 2679 InductionBinOp->getOpcode() == Instruction::FSub) && 2680 "Original bin op should be defined for FP induction"); 2681 2682 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2683 2684 // Floating point operations had to be 'fast' to enable the induction. 2685 FastMathFlags Flags; 2686 Flags.setFast(); 2687 2688 Value *MulExp = B.CreateFMul(StepValue, Index); 2689 if (isa<Instruction>(MulExp)) 2690 // We have to check, the MulExp may be a constant. 2691 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2692 2693 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2694 "induction"); 2695 if (isa<Instruction>(BOp)) 2696 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2697 2698 return BOp; 2699 } 2700 case InductionDescriptor::IK_NoInduction: 2701 return nullptr; 2702 } 2703 llvm_unreachable("invalid enum"); 2704 } 2705 2706 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2707 /* 2708 In this function we generate a new loop. The new loop will contain 2709 the vectorized instructions while the old loop will continue to run the 2710 scalar remainder. 2711 2712 [ ] <-- loop iteration number check. 2713 / | 2714 / v 2715 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2716 | / | 2717 | / v 2718 || [ ] <-- vector pre header. 2719 |/ | 2720 | v 2721 | [ ] \ 2722 | [ ]_| <-- vector loop. 2723 | | 2724 | v 2725 | -[ ] <--- middle-block. 2726 | / | 2727 | / v 2728 -|- >[ ] <--- new preheader. 2729 | | 2730 | v 2731 | [ ] \ 2732 | [ ]_| <-- old scalar loop to handle remainder. 2733 \ | 2734 \ v 2735 >[ ] <-- exit block. 2736 ... 2737 */ 2738 2739 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2740 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2741 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2742 assert(VectorPH && "Invalid loop structure"); 2743 assert(ExitBlock && "Must have an exit block"); 2744 2745 // Some loops have a single integer induction variable, while other loops 2746 // don't. One example is c++ iterators that often have multiple pointer 2747 // induction variables. In the code below we also support a case where we 2748 // don't have a single induction variable. 2749 // 2750 // We try to obtain an induction variable from the original loop as hard 2751 // as possible. However if we don't find one that: 2752 // - is an integer 2753 // - counts from zero, stepping by one 2754 // - is the size of the widest induction variable type 2755 // then we create a new one. 2756 OldInduction = Legal->getPrimaryInduction(); 2757 Type *IdxTy = Legal->getWidestInductionType(); 2758 2759 // Split the single block loop into the two loop structure described above. 2760 BasicBlock *VecBody = 2761 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2762 BasicBlock *MiddleBlock = 2763 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2764 BasicBlock *ScalarPH = 2765 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2766 2767 // Create and register the new vector loop. 2768 Loop *Lp = LI->AllocateLoop(); 2769 Loop *ParentLoop = OrigLoop->getParentLoop(); 2770 2771 // Insert the new loop into the loop nest and register the new basic blocks 2772 // before calling any utilities such as SCEV that require valid LoopInfo. 2773 if (ParentLoop) { 2774 ParentLoop->addChildLoop(Lp); 2775 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2776 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2777 } else { 2778 LI->addTopLevelLoop(Lp); 2779 } 2780 Lp->addBasicBlockToLoop(VecBody, *LI); 2781 2782 // Find the loop boundaries. 2783 Value *Count = getOrCreateTripCount(Lp); 2784 2785 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2786 2787 // Now, compare the new count to zero. If it is zero skip the vector loop and 2788 // jump to the scalar loop. This check also covers the case where the 2789 // backedge-taken count is uint##_max: adding one to it will overflow leading 2790 // to an incorrect trip count of zero. In this (rare) case we will also jump 2791 // to the scalar loop. 2792 emitMinimumIterationCountCheck(Lp, ScalarPH); 2793 2794 // Generate the code to check any assumptions that we've made for SCEV 2795 // expressions. 2796 emitSCEVChecks(Lp, ScalarPH); 2797 2798 // Generate the code that checks in runtime if arrays overlap. We put the 2799 // checks into a separate block to make the more common case of few elements 2800 // faster. 2801 emitMemRuntimeChecks(Lp, ScalarPH); 2802 2803 // Generate the induction variable. 2804 // The loop step is equal to the vectorization factor (num of SIMD elements) 2805 // times the unroll factor (num of SIMD instructions). 2806 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2807 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2808 Induction = 2809 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2810 getDebugLocFromInstOrOperands(OldInduction)); 2811 2812 // We are going to resume the execution of the scalar loop. 2813 // Go over all of the induction variables that we found and fix the 2814 // PHIs that are left in the scalar version of the loop. 2815 // The starting values of PHI nodes depend on the counter of the last 2816 // iteration in the vectorized loop. 2817 // If we come from a bypass edge then we need to start from the original 2818 // start value. 2819 2820 // This variable saves the new starting index for the scalar loop. It is used 2821 // to test if there are any tail iterations left once the vector loop has 2822 // completed. 2823 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2824 for (auto &InductionEntry : *List) { 2825 PHINode *OrigPhi = InductionEntry.first; 2826 InductionDescriptor II = InductionEntry.second; 2827 2828 // Create phi nodes to merge from the backedge-taken check block. 2829 PHINode *BCResumeVal = PHINode::Create( 2830 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2831 // Copy original phi DL over to the new one. 2832 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2833 Value *&EndValue = IVEndValues[OrigPhi]; 2834 if (OrigPhi == OldInduction) { 2835 // We know what the end value is. 2836 EndValue = CountRoundDown; 2837 } else { 2838 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2839 Type *StepType = II.getStep()->getType(); 2840 Instruction::CastOps CastOp = 2841 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2842 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2843 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2844 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2845 EndValue->setName("ind.end"); 2846 } 2847 2848 // The new PHI merges the original incoming value, in case of a bypass, 2849 // or the value at the end of the vectorized loop. 2850 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2851 2852 // Fix the scalar body counter (PHI node). 2853 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2854 2855 // The old induction's phi node in the scalar body needs the truncated 2856 // value. 2857 for (BasicBlock *BB : LoopBypassBlocks) 2858 BCResumeVal->addIncoming(II.getStartValue(), BB); 2859 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2860 } 2861 2862 // Add a check in the middle block to see if we have completed 2863 // all of the iterations in the first vector loop. 2864 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2865 // If tail is to be folded, we know we don't need to run the remainder. 2866 Value *CmpN = Builder.getTrue(); 2867 if (!Cost->foldTailByMasking()) 2868 CmpN = 2869 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2870 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2871 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2872 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2873 2874 // Get ready to start creating new instructions into the vectorized body. 2875 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2876 2877 // Save the state. 2878 LoopVectorPreHeader = Lp->getLoopPreheader(); 2879 LoopScalarPreHeader = ScalarPH; 2880 LoopMiddleBlock = MiddleBlock; 2881 LoopExitBlock = ExitBlock; 2882 LoopVectorBody = VecBody; 2883 LoopScalarBody = OldBasicBlock; 2884 2885 // Keep all loop hints from the original loop on the vector loop (we'll 2886 // replace the vectorizer-specific hints below). 2887 if (MDNode *LID = OrigLoop->getLoopID()) 2888 Lp->setLoopID(LID); 2889 2890 LoopVectorizeHints Hints(Lp, true, *ORE); 2891 Hints.setAlreadyVectorized(); 2892 2893 return LoopVectorPreHeader; 2894 } 2895 2896 // Fix up external users of the induction variable. At this point, we are 2897 // in LCSSA form, with all external PHIs that use the IV having one input value, 2898 // coming from the remainder loop. We need those PHIs to also have a correct 2899 // value for the IV when arriving directly from the middle block. 2900 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2901 const InductionDescriptor &II, 2902 Value *CountRoundDown, Value *EndValue, 2903 BasicBlock *MiddleBlock) { 2904 // There are two kinds of external IV usages - those that use the value 2905 // computed in the last iteration (the PHI) and those that use the penultimate 2906 // value (the value that feeds into the phi from the loop latch). 2907 // We allow both, but they, obviously, have different values. 2908 2909 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2910 2911 DenseMap<Value *, Value *> MissingVals; 2912 2913 // An external user of the last iteration's value should see the value that 2914 // the remainder loop uses to initialize its own IV. 2915 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2916 for (User *U : PostInc->users()) { 2917 Instruction *UI = cast<Instruction>(U); 2918 if (!OrigLoop->contains(UI)) { 2919 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2920 MissingVals[UI] = EndValue; 2921 } 2922 } 2923 2924 // An external user of the penultimate value need to see EndValue - Step. 2925 // The simplest way to get this is to recompute it from the constituent SCEVs, 2926 // that is Start + (Step * (CRD - 1)). 2927 for (User *U : OrigPhi->users()) { 2928 auto *UI = cast<Instruction>(U); 2929 if (!OrigLoop->contains(UI)) { 2930 const DataLayout &DL = 2931 OrigLoop->getHeader()->getModule()->getDataLayout(); 2932 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2933 2934 IRBuilder<> B(MiddleBlock->getTerminator()); 2935 Value *CountMinusOne = B.CreateSub( 2936 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2937 Value *CMO = 2938 !II.getStep()->getType()->isIntegerTy() 2939 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 2940 II.getStep()->getType()) 2941 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 2942 CMO->setName("cast.cmo"); 2943 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 2944 Escape->setName("ind.escape"); 2945 MissingVals[UI] = Escape; 2946 } 2947 } 2948 2949 for (auto &I : MissingVals) { 2950 PHINode *PHI = cast<PHINode>(I.first); 2951 // One corner case we have to handle is two IVs "chasing" each-other, 2952 // that is %IV2 = phi [...], [ %IV1, %latch ] 2953 // In this case, if IV1 has an external use, we need to avoid adding both 2954 // "last value of IV1" and "penultimate value of IV2". So, verify that we 2955 // don't already have an incoming value for the middle block. 2956 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 2957 PHI->addIncoming(I.second, MiddleBlock); 2958 } 2959 } 2960 2961 namespace { 2962 2963 struct CSEDenseMapInfo { 2964 static bool canHandle(const Instruction *I) { 2965 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2966 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2967 } 2968 2969 static inline Instruction *getEmptyKey() { 2970 return DenseMapInfo<Instruction *>::getEmptyKey(); 2971 } 2972 2973 static inline Instruction *getTombstoneKey() { 2974 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2975 } 2976 2977 static unsigned getHashValue(const Instruction *I) { 2978 assert(canHandle(I) && "Unknown instruction!"); 2979 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2980 I->value_op_end())); 2981 } 2982 2983 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 2984 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2985 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2986 return LHS == RHS; 2987 return LHS->isIdenticalTo(RHS); 2988 } 2989 }; 2990 2991 } // end anonymous namespace 2992 2993 ///Perform cse of induction variable instructions. 2994 static void cse(BasicBlock *BB) { 2995 // Perform simple cse. 2996 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2997 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2998 Instruction *In = &*I++; 2999 3000 if (!CSEDenseMapInfo::canHandle(In)) 3001 continue; 3002 3003 // Check if we can replace this instruction with any of the 3004 // visited instructions. 3005 if (Instruction *V = CSEMap.lookup(In)) { 3006 In->replaceAllUsesWith(V); 3007 In->eraseFromParent(); 3008 continue; 3009 } 3010 3011 CSEMap[In] = In; 3012 } 3013 } 3014 3015 /// Estimate the overhead of scalarizing an instruction. This is a 3016 /// convenience wrapper for the type-based getScalarizationOverhead API. 3017 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3018 const TargetTransformInfo &TTI) { 3019 if (VF == 1) 3020 return 0; 3021 3022 unsigned Cost = 0; 3023 Type *RetTy = ToVectorTy(I->getType(), VF); 3024 if (!RetTy->isVoidTy() && 3025 (!isa<LoadInst>(I) || 3026 !TTI.supportsEfficientVectorElementLoadStore())) 3027 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3028 3029 // Some targets keep addresses scalar. 3030 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 3031 return Cost; 3032 3033 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3034 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3035 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3036 } 3037 else if (!isa<StoreInst>(I) || 3038 !TTI.supportsEfficientVectorElementLoadStore()) { 3039 SmallVector<const Value *, 4> Operands(I->operand_values()); 3040 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3041 } 3042 3043 return Cost; 3044 } 3045 3046 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3047 // Return the cost of the instruction, including scalarization overhead if it's 3048 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3049 // i.e. either vector version isn't available, or is too expensive. 3050 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3051 const TargetTransformInfo &TTI, 3052 const TargetLibraryInfo *TLI, 3053 bool &NeedToScalarize) { 3054 Function *F = CI->getCalledFunction(); 3055 StringRef FnName = CI->getCalledFunction()->getName(); 3056 Type *ScalarRetTy = CI->getType(); 3057 SmallVector<Type *, 4> Tys, ScalarTys; 3058 for (auto &ArgOp : CI->arg_operands()) 3059 ScalarTys.push_back(ArgOp->getType()); 3060 3061 // Estimate cost of scalarized vector call. The source operands are assumed 3062 // to be vectors, so we need to extract individual elements from there, 3063 // execute VF scalar calls, and then gather the result into the vector return 3064 // value. 3065 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3066 if (VF == 1) 3067 return ScalarCallCost; 3068 3069 // Compute corresponding vector type for return value and arguments. 3070 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3071 for (Type *ScalarTy : ScalarTys) 3072 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3073 3074 // Compute costs of unpacking argument values for the scalar calls and 3075 // packing the return values to a vector. 3076 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3077 3078 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3079 3080 // If we can't emit a vector call for this function, then the currently found 3081 // cost is the cost we need to return. 3082 NeedToScalarize = true; 3083 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3084 return Cost; 3085 3086 // If the corresponding vector cost is cheaper, return its cost. 3087 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3088 if (VectorCallCost < Cost) { 3089 NeedToScalarize = false; 3090 return VectorCallCost; 3091 } 3092 return Cost; 3093 } 3094 3095 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3096 // factor VF. Return the cost of the instruction, including scalarization 3097 // overhead if it's needed. 3098 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3099 const TargetTransformInfo &TTI, 3100 const TargetLibraryInfo *TLI) { 3101 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3102 assert(ID && "Expected intrinsic call!"); 3103 3104 FastMathFlags FMF; 3105 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3106 FMF = FPMO->getFastMathFlags(); 3107 3108 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3109 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3110 } 3111 3112 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3113 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3114 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3115 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3116 } 3117 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3118 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3119 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3120 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3121 } 3122 3123 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3124 // For every instruction `I` in MinBWs, truncate the operands, create a 3125 // truncated version of `I` and reextend its result. InstCombine runs 3126 // later and will remove any ext/trunc pairs. 3127 SmallPtrSet<Value *, 4> Erased; 3128 for (const auto &KV : Cost->getMinimalBitwidths()) { 3129 // If the value wasn't vectorized, we must maintain the original scalar 3130 // type. The absence of the value from VectorLoopValueMap indicates that it 3131 // wasn't vectorized. 3132 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3133 continue; 3134 for (unsigned Part = 0; Part < UF; ++Part) { 3135 Value *I = getOrCreateVectorValue(KV.first, Part); 3136 if (Erased.find(I) != Erased.end() || I->use_empty() || 3137 !isa<Instruction>(I)) 3138 continue; 3139 Type *OriginalTy = I->getType(); 3140 Type *ScalarTruncatedTy = 3141 IntegerType::get(OriginalTy->getContext(), KV.second); 3142 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3143 OriginalTy->getVectorNumElements()); 3144 if (TruncatedTy == OriginalTy) 3145 continue; 3146 3147 IRBuilder<> B(cast<Instruction>(I)); 3148 auto ShrinkOperand = [&](Value *V) -> Value * { 3149 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3150 if (ZI->getSrcTy() == TruncatedTy) 3151 return ZI->getOperand(0); 3152 return B.CreateZExtOrTrunc(V, TruncatedTy); 3153 }; 3154 3155 // The actual instruction modification depends on the instruction type, 3156 // unfortunately. 3157 Value *NewI = nullptr; 3158 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3159 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3160 ShrinkOperand(BO->getOperand(1))); 3161 3162 // Any wrapping introduced by shrinking this operation shouldn't be 3163 // considered undefined behavior. So, we can't unconditionally copy 3164 // arithmetic wrapping flags to NewI. 3165 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3166 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3167 NewI = 3168 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3169 ShrinkOperand(CI->getOperand(1))); 3170 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3171 NewI = B.CreateSelect(SI->getCondition(), 3172 ShrinkOperand(SI->getTrueValue()), 3173 ShrinkOperand(SI->getFalseValue())); 3174 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3175 switch (CI->getOpcode()) { 3176 default: 3177 llvm_unreachable("Unhandled cast!"); 3178 case Instruction::Trunc: 3179 NewI = ShrinkOperand(CI->getOperand(0)); 3180 break; 3181 case Instruction::SExt: 3182 NewI = B.CreateSExtOrTrunc( 3183 CI->getOperand(0), 3184 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3185 break; 3186 case Instruction::ZExt: 3187 NewI = B.CreateZExtOrTrunc( 3188 CI->getOperand(0), 3189 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3190 break; 3191 } 3192 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3193 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3194 auto *O0 = B.CreateZExtOrTrunc( 3195 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3196 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3197 auto *O1 = B.CreateZExtOrTrunc( 3198 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3199 3200 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3201 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3202 // Don't do anything with the operands, just extend the result. 3203 continue; 3204 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3205 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3206 auto *O0 = B.CreateZExtOrTrunc( 3207 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3208 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3209 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3210 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3211 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3212 auto *O0 = B.CreateZExtOrTrunc( 3213 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3214 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3215 } else { 3216 // If we don't know what to do, be conservative and don't do anything. 3217 continue; 3218 } 3219 3220 // Lastly, extend the result. 3221 NewI->takeName(cast<Instruction>(I)); 3222 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3223 I->replaceAllUsesWith(Res); 3224 cast<Instruction>(I)->eraseFromParent(); 3225 Erased.insert(I); 3226 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3227 } 3228 } 3229 3230 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3231 for (const auto &KV : Cost->getMinimalBitwidths()) { 3232 // If the value wasn't vectorized, we must maintain the original scalar 3233 // type. The absence of the value from VectorLoopValueMap indicates that it 3234 // wasn't vectorized. 3235 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3236 continue; 3237 for (unsigned Part = 0; Part < UF; ++Part) { 3238 Value *I = getOrCreateVectorValue(KV.first, Part); 3239 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3240 if (Inst && Inst->use_empty()) { 3241 Value *NewI = Inst->getOperand(0); 3242 Inst->eraseFromParent(); 3243 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3244 } 3245 } 3246 } 3247 } 3248 3249 void InnerLoopVectorizer::fixVectorizedLoop() { 3250 // Insert truncates and extends for any truncated instructions as hints to 3251 // InstCombine. 3252 if (VF > 1) 3253 truncateToMinimalBitwidths(); 3254 3255 // Fix widened non-induction PHIs by setting up the PHI operands. 3256 if (OrigPHIsToFix.size()) { 3257 assert(EnableVPlanNativePath && 3258 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3259 fixNonInductionPHIs(); 3260 } 3261 3262 // At this point every instruction in the original loop is widened to a 3263 // vector form. Now we need to fix the recurrences in the loop. These PHI 3264 // nodes are currently empty because we did not want to introduce cycles. 3265 // This is the second stage of vectorizing recurrences. 3266 fixCrossIterationPHIs(); 3267 3268 // Update the dominator tree. 3269 // 3270 // FIXME: After creating the structure of the new loop, the dominator tree is 3271 // no longer up-to-date, and it remains that way until we update it 3272 // here. An out-of-date dominator tree is problematic for SCEV, 3273 // because SCEVExpander uses it to guide code generation. The 3274 // vectorizer use SCEVExpanders in several places. Instead, we should 3275 // keep the dominator tree up-to-date as we go. 3276 updateAnalysis(); 3277 3278 // Fix-up external users of the induction variables. 3279 for (auto &Entry : *Legal->getInductionVars()) 3280 fixupIVUsers(Entry.first, Entry.second, 3281 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3282 IVEndValues[Entry.first], LoopMiddleBlock); 3283 3284 fixLCSSAPHIs(); 3285 for (Instruction *PI : PredicatedInstructions) 3286 sinkScalarOperands(&*PI); 3287 3288 // Remove redundant induction instructions. 3289 cse(LoopVectorBody); 3290 } 3291 3292 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3293 // In order to support recurrences we need to be able to vectorize Phi nodes. 3294 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3295 // stage #2: We now need to fix the recurrences by adding incoming edges to 3296 // the currently empty PHI nodes. At this point every instruction in the 3297 // original loop is widened to a vector form so we can use them to construct 3298 // the incoming edges. 3299 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3300 // Handle first-order recurrences and reductions that need to be fixed. 3301 if (Legal->isFirstOrderRecurrence(&Phi)) 3302 fixFirstOrderRecurrence(&Phi); 3303 else if (Legal->isReductionVariable(&Phi)) 3304 fixReduction(&Phi); 3305 } 3306 } 3307 3308 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3309 // This is the second phase of vectorizing first-order recurrences. An 3310 // overview of the transformation is described below. Suppose we have the 3311 // following loop. 3312 // 3313 // for (int i = 0; i < n; ++i) 3314 // b[i] = a[i] - a[i - 1]; 3315 // 3316 // There is a first-order recurrence on "a". For this loop, the shorthand 3317 // scalar IR looks like: 3318 // 3319 // scalar.ph: 3320 // s_init = a[-1] 3321 // br scalar.body 3322 // 3323 // scalar.body: 3324 // i = phi [0, scalar.ph], [i+1, scalar.body] 3325 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3326 // s2 = a[i] 3327 // b[i] = s2 - s1 3328 // br cond, scalar.body, ... 3329 // 3330 // In this example, s1 is a recurrence because it's value depends on the 3331 // previous iteration. In the first phase of vectorization, we created a 3332 // temporary value for s1. We now complete the vectorization and produce the 3333 // shorthand vector IR shown below (for VF = 4, UF = 1). 3334 // 3335 // vector.ph: 3336 // v_init = vector(..., ..., ..., a[-1]) 3337 // br vector.body 3338 // 3339 // vector.body 3340 // i = phi [0, vector.ph], [i+4, vector.body] 3341 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3342 // v2 = a[i, i+1, i+2, i+3]; 3343 // v3 = vector(v1(3), v2(0, 1, 2)) 3344 // b[i, i+1, i+2, i+3] = v2 - v3 3345 // br cond, vector.body, middle.block 3346 // 3347 // middle.block: 3348 // x = v2(3) 3349 // br scalar.ph 3350 // 3351 // scalar.ph: 3352 // s_init = phi [x, middle.block], [a[-1], otherwise] 3353 // br scalar.body 3354 // 3355 // After execution completes the vector loop, we extract the next value of 3356 // the recurrence (x) to use as the initial value in the scalar loop. 3357 3358 // Get the original loop preheader and single loop latch. 3359 auto *Preheader = OrigLoop->getLoopPreheader(); 3360 auto *Latch = OrigLoop->getLoopLatch(); 3361 3362 // Get the initial and previous values of the scalar recurrence. 3363 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3364 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3365 3366 // Create a vector from the initial value. 3367 auto *VectorInit = ScalarInit; 3368 if (VF > 1) { 3369 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3370 VectorInit = Builder.CreateInsertElement( 3371 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3372 Builder.getInt32(VF - 1), "vector.recur.init"); 3373 } 3374 3375 // We constructed a temporary phi node in the first phase of vectorization. 3376 // This phi node will eventually be deleted. 3377 Builder.SetInsertPoint( 3378 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3379 3380 // Create a phi node for the new recurrence. The current value will either be 3381 // the initial value inserted into a vector or loop-varying vector value. 3382 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3383 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3384 3385 // Get the vectorized previous value of the last part UF - 1. It appears last 3386 // among all unrolled iterations, due to the order of their construction. 3387 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3388 3389 // Set the insertion point after the previous value if it is an instruction. 3390 // Note that the previous value may have been constant-folded so it is not 3391 // guaranteed to be an instruction in the vector loop. Also, if the previous 3392 // value is a phi node, we should insert after all the phi nodes to avoid 3393 // breaking basic block verification. 3394 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3395 isa<PHINode>(PreviousLastPart)) 3396 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3397 else 3398 Builder.SetInsertPoint( 3399 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3400 3401 // We will construct a vector for the recurrence by combining the values for 3402 // the current and previous iterations. This is the required shuffle mask. 3403 SmallVector<Constant *, 8> ShuffleMask(VF); 3404 ShuffleMask[0] = Builder.getInt32(VF - 1); 3405 for (unsigned I = 1; I < VF; ++I) 3406 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3407 3408 // The vector from which to take the initial value for the current iteration 3409 // (actual or unrolled). Initially, this is the vector phi node. 3410 Value *Incoming = VecPhi; 3411 3412 // Shuffle the current and previous vector and update the vector parts. 3413 for (unsigned Part = 0; Part < UF; ++Part) { 3414 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3415 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3416 auto *Shuffle = 3417 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3418 ConstantVector::get(ShuffleMask)) 3419 : Incoming; 3420 PhiPart->replaceAllUsesWith(Shuffle); 3421 cast<Instruction>(PhiPart)->eraseFromParent(); 3422 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3423 Incoming = PreviousPart; 3424 } 3425 3426 // Fix the latch value of the new recurrence in the vector loop. 3427 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3428 3429 // Extract the last vector element in the middle block. This will be the 3430 // initial value for the recurrence when jumping to the scalar loop. 3431 auto *ExtractForScalar = Incoming; 3432 if (VF > 1) { 3433 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3434 ExtractForScalar = Builder.CreateExtractElement( 3435 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3436 } 3437 // Extract the second last element in the middle block if the 3438 // Phi is used outside the loop. We need to extract the phi itself 3439 // and not the last element (the phi update in the current iteration). This 3440 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3441 // when the scalar loop is not run at all. 3442 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3443 if (VF > 1) 3444 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3445 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3446 // When loop is unrolled without vectorizing, initialize 3447 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3448 // `Incoming`. This is analogous to the vectorized case above: extracting the 3449 // second last element when VF > 1. 3450 else if (UF > 1) 3451 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3452 3453 // Fix the initial value of the original recurrence in the scalar loop. 3454 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3455 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3456 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3457 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3458 Start->addIncoming(Incoming, BB); 3459 } 3460 3461 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3462 Phi->setName("scalar.recur"); 3463 3464 // Finally, fix users of the recurrence outside the loop. The users will need 3465 // either the last value of the scalar recurrence or the last value of the 3466 // vector recurrence we extracted in the middle block. Since the loop is in 3467 // LCSSA form, we just need to find all the phi nodes for the original scalar 3468 // recurrence in the exit block, and then add an edge for the middle block. 3469 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3470 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3471 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3472 } 3473 } 3474 } 3475 3476 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3477 Constant *Zero = Builder.getInt32(0); 3478 3479 // Get it's reduction variable descriptor. 3480 assert(Legal->isReductionVariable(Phi) && 3481 "Unable to find the reduction variable"); 3482 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3483 3484 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3485 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3486 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3487 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3488 RdxDesc.getMinMaxRecurrenceKind(); 3489 setDebugLocFromInst(Builder, ReductionStartValue); 3490 3491 // We need to generate a reduction vector from the incoming scalar. 3492 // To do so, we need to generate the 'identity' vector and override 3493 // one of the elements with the incoming scalar reduction. We need 3494 // to do it in the vector-loop preheader. 3495 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3496 3497 // This is the vector-clone of the value that leaves the loop. 3498 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3499 3500 // Find the reduction identity variable. Zero for addition, or, xor, 3501 // one for multiplication, -1 for And. 3502 Value *Identity; 3503 Value *VectorStart; 3504 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3505 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3506 // MinMax reduction have the start value as their identify. 3507 if (VF == 1) { 3508 VectorStart = Identity = ReductionStartValue; 3509 } else { 3510 VectorStart = Identity = 3511 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3512 } 3513 } else { 3514 // Handle other reduction kinds: 3515 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3516 RK, VecTy->getScalarType()); 3517 if (VF == 1) { 3518 Identity = Iden; 3519 // This vector is the Identity vector where the first element is the 3520 // incoming scalar reduction. 3521 VectorStart = ReductionStartValue; 3522 } else { 3523 Identity = ConstantVector::getSplat(VF, Iden); 3524 3525 // This vector is the Identity vector where the first element is the 3526 // incoming scalar reduction. 3527 VectorStart = 3528 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3529 } 3530 } 3531 3532 // Fix the vector-loop phi. 3533 3534 // Reductions do not have to start at zero. They can start with 3535 // any loop invariant values. 3536 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3537 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3538 for (unsigned Part = 0; Part < UF; ++Part) { 3539 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3540 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3541 // Make sure to add the reduction stat value only to the 3542 // first unroll part. 3543 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3544 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3545 cast<PHINode>(VecRdxPhi) 3546 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3547 } 3548 3549 // Before each round, move the insertion point right between 3550 // the PHIs and the values we are going to write. 3551 // This allows us to write both PHINodes and the extractelement 3552 // instructions. 3553 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3554 3555 setDebugLocFromInst(Builder, LoopExitInst); 3556 3557 // If the vector reduction can be performed in a smaller type, we truncate 3558 // then extend the loop exit value to enable InstCombine to evaluate the 3559 // entire expression in the smaller type. 3560 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3561 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3562 Builder.SetInsertPoint( 3563 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3564 VectorParts RdxParts(UF); 3565 for (unsigned Part = 0; Part < UF; ++Part) { 3566 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3567 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3568 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3569 : Builder.CreateZExt(Trunc, VecTy); 3570 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3571 UI != RdxParts[Part]->user_end();) 3572 if (*UI != Trunc) { 3573 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3574 RdxParts[Part] = Extnd; 3575 } else { 3576 ++UI; 3577 } 3578 } 3579 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3580 for (unsigned Part = 0; Part < UF; ++Part) { 3581 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3582 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3583 } 3584 } 3585 3586 // Reduce all of the unrolled parts into a single vector. 3587 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3588 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3589 setDebugLocFromInst(Builder, ReducedPartRdx); 3590 for (unsigned Part = 1; Part < UF; ++Part) { 3591 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3592 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3593 // Floating point operations had to be 'fast' to enable the reduction. 3594 ReducedPartRdx = addFastMathFlag( 3595 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3596 ReducedPartRdx, "bin.rdx")); 3597 else 3598 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3599 RdxPart); 3600 } 3601 3602 if (VF > 1) { 3603 bool NoNaN = Legal->hasFunNoNaNAttr(); 3604 ReducedPartRdx = 3605 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3606 // If the reduction can be performed in a smaller type, we need to extend 3607 // the reduction to the wider type before we branch to the original loop. 3608 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3609 ReducedPartRdx = 3610 RdxDesc.isSigned() 3611 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3612 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3613 } 3614 3615 // Create a phi node that merges control-flow from the backedge-taken check 3616 // block and the middle block. 3617 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3618 LoopScalarPreHeader->getTerminator()); 3619 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3620 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3621 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3622 3623 // Now, we need to fix the users of the reduction variable 3624 // inside and outside of the scalar remainder loop. 3625 // We know that the loop is in LCSSA form. We need to update the 3626 // PHI nodes in the exit blocks. 3627 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3628 // All PHINodes need to have a single entry edge, or two if 3629 // we already fixed them. 3630 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3631 3632 // We found a reduction value exit-PHI. Update it with the 3633 // incoming bypass edge. 3634 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3635 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3636 } // end of the LCSSA phi scan. 3637 3638 // Fix the scalar loop reduction variable with the incoming reduction sum 3639 // from the vector body and from the backedge value. 3640 int IncomingEdgeBlockIdx = 3641 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3642 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3643 // Pick the other block. 3644 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3645 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3646 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3647 } 3648 3649 void InnerLoopVectorizer::fixLCSSAPHIs() { 3650 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3651 if (LCSSAPhi.getNumIncomingValues() == 1) { 3652 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3653 // Non-instruction incoming values will have only one value. 3654 unsigned LastLane = 0; 3655 if (isa<Instruction>(IncomingValue)) 3656 LastLane = Cost->isUniformAfterVectorization( 3657 cast<Instruction>(IncomingValue), VF) 3658 ? 0 3659 : VF - 1; 3660 // Can be a loop invariant incoming value or the last scalar value to be 3661 // extracted from the vectorized loop. 3662 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3663 Value *lastIncomingValue = 3664 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3665 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3666 } 3667 } 3668 } 3669 3670 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3671 // The basic block and loop containing the predicated instruction. 3672 auto *PredBB = PredInst->getParent(); 3673 auto *VectorLoop = LI->getLoopFor(PredBB); 3674 3675 // Initialize a worklist with the operands of the predicated instruction. 3676 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3677 3678 // Holds instructions that we need to analyze again. An instruction may be 3679 // reanalyzed if we don't yet know if we can sink it or not. 3680 SmallVector<Instruction *, 8> InstsToReanalyze; 3681 3682 // Returns true if a given use occurs in the predicated block. Phi nodes use 3683 // their operands in their corresponding predecessor blocks. 3684 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3685 auto *I = cast<Instruction>(U.getUser()); 3686 BasicBlock *BB = I->getParent(); 3687 if (auto *Phi = dyn_cast<PHINode>(I)) 3688 BB = Phi->getIncomingBlock( 3689 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3690 return BB == PredBB; 3691 }; 3692 3693 // Iteratively sink the scalarized operands of the predicated instruction 3694 // into the block we created for it. When an instruction is sunk, it's 3695 // operands are then added to the worklist. The algorithm ends after one pass 3696 // through the worklist doesn't sink a single instruction. 3697 bool Changed; 3698 do { 3699 // Add the instructions that need to be reanalyzed to the worklist, and 3700 // reset the changed indicator. 3701 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3702 InstsToReanalyze.clear(); 3703 Changed = false; 3704 3705 while (!Worklist.empty()) { 3706 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3707 3708 // We can't sink an instruction if it is a phi node, is already in the 3709 // predicated block, is not in the loop, or may have side effects. 3710 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3711 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3712 continue; 3713 3714 // It's legal to sink the instruction if all its uses occur in the 3715 // predicated block. Otherwise, there's nothing to do yet, and we may 3716 // need to reanalyze the instruction. 3717 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3718 InstsToReanalyze.push_back(I); 3719 continue; 3720 } 3721 3722 // Move the instruction to the beginning of the predicated block, and add 3723 // it's operands to the worklist. 3724 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3725 Worklist.insert(I->op_begin(), I->op_end()); 3726 3727 // The sinking may have enabled other instructions to be sunk, so we will 3728 // need to iterate. 3729 Changed = true; 3730 } 3731 } while (Changed); 3732 } 3733 3734 void InnerLoopVectorizer::fixNonInductionPHIs() { 3735 for (PHINode *OrigPhi : OrigPHIsToFix) { 3736 PHINode *NewPhi = 3737 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3738 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3739 3740 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3741 predecessors(OrigPhi->getParent())); 3742 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3743 predecessors(NewPhi->getParent())); 3744 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3745 "Scalar and Vector BB should have the same number of predecessors"); 3746 3747 // The insertion point in Builder may be invalidated by the time we get 3748 // here. Force the Builder insertion point to something valid so that we do 3749 // not run into issues during insertion point restore in 3750 // getOrCreateVectorValue calls below. 3751 Builder.SetInsertPoint(NewPhi); 3752 3753 // The predecessor order is preserved and we can rely on mapping between 3754 // scalar and vector block predecessors. 3755 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3756 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3757 3758 // When looking up the new scalar/vector values to fix up, use incoming 3759 // values from original phi. 3760 Value *ScIncV = 3761 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3762 3763 // Scalar incoming value may need a broadcast 3764 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3765 NewPhi->addIncoming(NewIncV, NewPredBB); 3766 } 3767 } 3768 } 3769 3770 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3771 unsigned VF) { 3772 PHINode *P = cast<PHINode>(PN); 3773 if (EnableVPlanNativePath) { 3774 // Currently we enter here in the VPlan-native path for non-induction 3775 // PHIs where all control flow is uniform. We simply widen these PHIs. 3776 // Create a vector phi with no operands - the vector phi operands will be 3777 // set at the end of vector code generation. 3778 Type *VecTy = 3779 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3780 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3781 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3782 OrigPHIsToFix.push_back(P); 3783 3784 return; 3785 } 3786 3787 assert(PN->getParent() == OrigLoop->getHeader() && 3788 "Non-header phis should have been handled elsewhere"); 3789 3790 // In order to support recurrences we need to be able to vectorize Phi nodes. 3791 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3792 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3793 // this value when we vectorize all of the instructions that use the PHI. 3794 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3795 for (unsigned Part = 0; Part < UF; ++Part) { 3796 // This is phase one of vectorizing PHIs. 3797 Type *VecTy = 3798 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3799 Value *EntryPart = PHINode::Create( 3800 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3801 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3802 } 3803 return; 3804 } 3805 3806 setDebugLocFromInst(Builder, P); 3807 3808 // This PHINode must be an induction variable. 3809 // Make sure that we know about it. 3810 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3811 3812 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3813 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3814 3815 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3816 // which can be found from the original scalar operations. 3817 switch (II.getKind()) { 3818 case InductionDescriptor::IK_NoInduction: 3819 llvm_unreachable("Unknown induction"); 3820 case InductionDescriptor::IK_IntInduction: 3821 case InductionDescriptor::IK_FpInduction: 3822 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3823 case InductionDescriptor::IK_PtrInduction: { 3824 // Handle the pointer induction variable case. 3825 assert(P->getType()->isPointerTy() && "Unexpected type."); 3826 // This is the normalized GEP that starts counting at zero. 3827 Value *PtrInd = Induction; 3828 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3829 // Determine the number of scalars we need to generate for each unroll 3830 // iteration. If the instruction is uniform, we only need to generate the 3831 // first lane. Otherwise, we generate all VF values. 3832 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3833 // These are the scalar results. Notice that we don't generate vector GEPs 3834 // because scalar GEPs result in better code. 3835 for (unsigned Part = 0; Part < UF; ++Part) { 3836 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3837 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3838 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3839 Value *SclrGep = 3840 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3841 SclrGep->setName("next.gep"); 3842 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3843 } 3844 } 3845 return; 3846 } 3847 } 3848 } 3849 3850 /// A helper function for checking whether an integer division-related 3851 /// instruction may divide by zero (in which case it must be predicated if 3852 /// executed conditionally in the scalar code). 3853 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3854 /// Non-zero divisors that are non compile-time constants will not be 3855 /// converted into multiplication, so we will still end up scalarizing 3856 /// the division, but can do so w/o predication. 3857 static bool mayDivideByZero(Instruction &I) { 3858 assert((I.getOpcode() == Instruction::UDiv || 3859 I.getOpcode() == Instruction::SDiv || 3860 I.getOpcode() == Instruction::URem || 3861 I.getOpcode() == Instruction::SRem) && 3862 "Unexpected instruction"); 3863 Value *Divisor = I.getOperand(1); 3864 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3865 return !CInt || CInt->isZero(); 3866 } 3867 3868 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3869 switch (I.getOpcode()) { 3870 case Instruction::Br: 3871 case Instruction::PHI: 3872 llvm_unreachable("This instruction is handled by a different recipe."); 3873 case Instruction::GetElementPtr: { 3874 // Construct a vector GEP by widening the operands of the scalar GEP as 3875 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3876 // results in a vector of pointers when at least one operand of the GEP 3877 // is vector-typed. Thus, to keep the representation compact, we only use 3878 // vector-typed operands for loop-varying values. 3879 auto *GEP = cast<GetElementPtrInst>(&I); 3880 3881 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3882 // If we are vectorizing, but the GEP has only loop-invariant operands, 3883 // the GEP we build (by only using vector-typed operands for 3884 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3885 // produce a vector of pointers, we need to either arbitrarily pick an 3886 // operand to broadcast, or broadcast a clone of the original GEP. 3887 // Here, we broadcast a clone of the original. 3888 // 3889 // TODO: If at some point we decide to scalarize instructions having 3890 // loop-invariant operands, this special case will no longer be 3891 // required. We would add the scalarization decision to 3892 // collectLoopScalars() and teach getVectorValue() to broadcast 3893 // the lane-zero scalar value. 3894 auto *Clone = Builder.Insert(GEP->clone()); 3895 for (unsigned Part = 0; Part < UF; ++Part) { 3896 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3897 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3898 addMetadata(EntryPart, GEP); 3899 } 3900 } else { 3901 // If the GEP has at least one loop-varying operand, we are sure to 3902 // produce a vector of pointers. But if we are only unrolling, we want 3903 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3904 // produce with the code below will be scalar (if VF == 1) or vector 3905 // (otherwise). Note that for the unroll-only case, we still maintain 3906 // values in the vector mapping with initVector, as we do for other 3907 // instructions. 3908 for (unsigned Part = 0; Part < UF; ++Part) { 3909 // The pointer operand of the new GEP. If it's loop-invariant, we 3910 // won't broadcast it. 3911 auto *Ptr = 3912 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3913 ? GEP->getPointerOperand() 3914 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3915 3916 // Collect all the indices for the new GEP. If any index is 3917 // loop-invariant, we won't broadcast it. 3918 SmallVector<Value *, 4> Indices; 3919 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3920 if (OrigLoop->isLoopInvariant(U.get())) 3921 Indices.push_back(U.get()); 3922 else 3923 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3924 } 3925 3926 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3927 // but it should be a vector, otherwise. 3928 auto *NewGEP = GEP->isInBounds() 3929 ? Builder.CreateInBoundsGEP(Ptr, Indices) 3930 : Builder.CreateGEP(Ptr, Indices); 3931 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3932 "NewGEP is not a pointer vector"); 3933 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3934 addMetadata(NewGEP, GEP); 3935 } 3936 } 3937 3938 break; 3939 } 3940 case Instruction::UDiv: 3941 case Instruction::SDiv: 3942 case Instruction::SRem: 3943 case Instruction::URem: 3944 case Instruction::Add: 3945 case Instruction::FAdd: 3946 case Instruction::Sub: 3947 case Instruction::FSub: 3948 case Instruction::Mul: 3949 case Instruction::FMul: 3950 case Instruction::FDiv: 3951 case Instruction::FRem: 3952 case Instruction::Shl: 3953 case Instruction::LShr: 3954 case Instruction::AShr: 3955 case Instruction::And: 3956 case Instruction::Or: 3957 case Instruction::Xor: { 3958 // Just widen binops. 3959 auto *BinOp = cast<BinaryOperator>(&I); 3960 setDebugLocFromInst(Builder, BinOp); 3961 3962 for (unsigned Part = 0; Part < UF; ++Part) { 3963 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3964 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3965 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3966 3967 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3968 VecOp->copyIRFlags(BinOp); 3969 3970 // Use this vector value for all users of the original instruction. 3971 VectorLoopValueMap.setVectorValue(&I, Part, V); 3972 addMetadata(V, BinOp); 3973 } 3974 3975 break; 3976 } 3977 case Instruction::Select: { 3978 // Widen selects. 3979 // If the selector is loop invariant we can create a select 3980 // instruction with a scalar condition. Otherwise, use vector-select. 3981 auto *SE = PSE.getSE(); 3982 bool InvariantCond = 3983 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 3984 setDebugLocFromInst(Builder, &I); 3985 3986 // The condition can be loop invariant but still defined inside the 3987 // loop. This means that we can't just use the original 'cond' value. 3988 // We have to take the 'vectorized' value and pick the first lane. 3989 // Instcombine will make this a no-op. 3990 3991 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 3992 3993 for (unsigned Part = 0; Part < UF; ++Part) { 3994 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 3995 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 3996 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 3997 Value *Sel = 3998 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 3999 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4000 addMetadata(Sel, &I); 4001 } 4002 4003 break; 4004 } 4005 4006 case Instruction::ICmp: 4007 case Instruction::FCmp: { 4008 // Widen compares. Generate vector compares. 4009 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4010 auto *Cmp = dyn_cast<CmpInst>(&I); 4011 setDebugLocFromInst(Builder, Cmp); 4012 for (unsigned Part = 0; Part < UF; ++Part) { 4013 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4014 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4015 Value *C = nullptr; 4016 if (FCmp) { 4017 // Propagate fast math flags. 4018 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4019 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4020 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4021 } else { 4022 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4023 } 4024 VectorLoopValueMap.setVectorValue(&I, Part, C); 4025 addMetadata(C, &I); 4026 } 4027 4028 break; 4029 } 4030 4031 case Instruction::ZExt: 4032 case Instruction::SExt: 4033 case Instruction::FPToUI: 4034 case Instruction::FPToSI: 4035 case Instruction::FPExt: 4036 case Instruction::PtrToInt: 4037 case Instruction::IntToPtr: 4038 case Instruction::SIToFP: 4039 case Instruction::UIToFP: 4040 case Instruction::Trunc: 4041 case Instruction::FPTrunc: 4042 case Instruction::BitCast: { 4043 auto *CI = dyn_cast<CastInst>(&I); 4044 setDebugLocFromInst(Builder, CI); 4045 4046 /// Vectorize casts. 4047 Type *DestTy = 4048 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4049 4050 for (unsigned Part = 0; Part < UF; ++Part) { 4051 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4052 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4053 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4054 addMetadata(Cast, &I); 4055 } 4056 break; 4057 } 4058 4059 case Instruction::Call: { 4060 // Ignore dbg intrinsics. 4061 if (isa<DbgInfoIntrinsic>(I)) 4062 break; 4063 setDebugLocFromInst(Builder, &I); 4064 4065 Module *M = I.getParent()->getParent()->getParent(); 4066 auto *CI = cast<CallInst>(&I); 4067 4068 StringRef FnName = CI->getCalledFunction()->getName(); 4069 Function *F = CI->getCalledFunction(); 4070 Type *RetTy = ToVectorTy(CI->getType(), VF); 4071 SmallVector<Type *, 4> Tys; 4072 for (Value *ArgOperand : CI->arg_operands()) 4073 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4074 4075 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4076 4077 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4078 // version of the instruction. 4079 // Is it beneficial to perform intrinsic call compared to lib call? 4080 bool NeedToScalarize; 4081 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4082 bool UseVectorIntrinsic = 4083 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4084 assert((UseVectorIntrinsic || !NeedToScalarize) && 4085 "Instruction should be scalarized elsewhere."); 4086 4087 for (unsigned Part = 0; Part < UF; ++Part) { 4088 SmallVector<Value *, 4> Args; 4089 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4090 Value *Arg = CI->getArgOperand(i); 4091 // Some intrinsics have a scalar argument - don't replace it with a 4092 // vector. 4093 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4094 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4095 Args.push_back(Arg); 4096 } 4097 4098 Function *VectorF; 4099 if (UseVectorIntrinsic) { 4100 // Use vector version of the intrinsic. 4101 Type *TysForDecl[] = {CI->getType()}; 4102 if (VF > 1) 4103 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4104 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4105 } else { 4106 // Use vector version of the library call. 4107 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4108 assert(!VFnName.empty() && "Vector function name is empty."); 4109 VectorF = M->getFunction(VFnName); 4110 if (!VectorF) { 4111 // Generate a declaration 4112 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4113 VectorF = 4114 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4115 VectorF->copyAttributesFrom(F); 4116 } 4117 } 4118 assert(VectorF && "Can't create vector function."); 4119 4120 SmallVector<OperandBundleDef, 1> OpBundles; 4121 CI->getOperandBundlesAsDefs(OpBundles); 4122 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4123 4124 if (isa<FPMathOperator>(V)) 4125 V->copyFastMathFlags(CI); 4126 4127 VectorLoopValueMap.setVectorValue(&I, Part, V); 4128 addMetadata(V, &I); 4129 } 4130 4131 break; 4132 } 4133 4134 default: 4135 // This instruction is not vectorized by simple widening. 4136 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4137 llvm_unreachable("Unhandled instruction!"); 4138 } // end of switch. 4139 } 4140 4141 void InnerLoopVectorizer::updateAnalysis() { 4142 // Forget the original basic block. 4143 PSE.getSE()->forgetLoop(OrigLoop); 4144 4145 // DT is not kept up-to-date for outer loop vectorization 4146 if (EnableVPlanNativePath) 4147 return; 4148 4149 // Update the dominator tree information. 4150 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4151 "Entry does not dominate exit."); 4152 4153 DT->addNewBlock(LoopMiddleBlock, 4154 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4155 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4156 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4157 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4158 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4159 } 4160 4161 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4162 // We should not collect Scalars more than once per VF. Right now, this 4163 // function is called from collectUniformsAndScalars(), which already does 4164 // this check. Collecting Scalars for VF=1 does not make any sense. 4165 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4166 "This function should not be visited twice for the same VF"); 4167 4168 SmallSetVector<Instruction *, 8> Worklist; 4169 4170 // These sets are used to seed the analysis with pointers used by memory 4171 // accesses that will remain scalar. 4172 SmallSetVector<Instruction *, 8> ScalarPtrs; 4173 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4174 4175 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4176 // The pointer operands of loads and stores will be scalar as long as the 4177 // memory access is not a gather or scatter operation. The value operand of a 4178 // store will remain scalar if the store is scalarized. 4179 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4180 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4181 assert(WideningDecision != CM_Unknown && 4182 "Widening decision should be ready at this moment"); 4183 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4184 if (Ptr == Store->getValueOperand()) 4185 return WideningDecision == CM_Scalarize; 4186 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4187 "Ptr is neither a value or pointer operand"); 4188 return WideningDecision != CM_GatherScatter; 4189 }; 4190 4191 // A helper that returns true if the given value is a bitcast or 4192 // getelementptr instruction contained in the loop. 4193 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4194 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4195 isa<GetElementPtrInst>(V)) && 4196 !TheLoop->isLoopInvariant(V); 4197 }; 4198 4199 // A helper that evaluates a memory access's use of a pointer. If the use 4200 // will be a scalar use, and the pointer is only used by memory accesses, we 4201 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4202 // PossibleNonScalarPtrs. 4203 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4204 // We only care about bitcast and getelementptr instructions contained in 4205 // the loop. 4206 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4207 return; 4208 4209 // If the pointer has already been identified as scalar (e.g., if it was 4210 // also identified as uniform), there's nothing to do. 4211 auto *I = cast<Instruction>(Ptr); 4212 if (Worklist.count(I)) 4213 return; 4214 4215 // If the use of the pointer will be a scalar use, and all users of the 4216 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4217 // place the pointer in PossibleNonScalarPtrs. 4218 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4219 return isa<LoadInst>(U) || isa<StoreInst>(U); 4220 })) 4221 ScalarPtrs.insert(I); 4222 else 4223 PossibleNonScalarPtrs.insert(I); 4224 }; 4225 4226 // We seed the scalars analysis with three classes of instructions: (1) 4227 // instructions marked uniform-after-vectorization, (2) bitcast and 4228 // getelementptr instructions used by memory accesses requiring a scalar use, 4229 // and (3) pointer induction variables and their update instructions (we 4230 // currently only scalarize these). 4231 // 4232 // (1) Add to the worklist all instructions that have been identified as 4233 // uniform-after-vectorization. 4234 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4235 4236 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4237 // memory accesses requiring a scalar use. The pointer operands of loads and 4238 // stores will be scalar as long as the memory accesses is not a gather or 4239 // scatter operation. The value operand of a store will remain scalar if the 4240 // store is scalarized. 4241 for (auto *BB : TheLoop->blocks()) 4242 for (auto &I : *BB) { 4243 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4244 evaluatePtrUse(Load, Load->getPointerOperand()); 4245 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4246 evaluatePtrUse(Store, Store->getPointerOperand()); 4247 evaluatePtrUse(Store, Store->getValueOperand()); 4248 } 4249 } 4250 for (auto *I : ScalarPtrs) 4251 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4252 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4253 Worklist.insert(I); 4254 } 4255 4256 // (3) Add to the worklist all pointer induction variables and their update 4257 // instructions. 4258 // 4259 // TODO: Once we are able to vectorize pointer induction variables we should 4260 // no longer insert them into the worklist here. 4261 auto *Latch = TheLoop->getLoopLatch(); 4262 for (auto &Induction : *Legal->getInductionVars()) { 4263 auto *Ind = Induction.first; 4264 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4265 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4266 continue; 4267 Worklist.insert(Ind); 4268 Worklist.insert(IndUpdate); 4269 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4270 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4271 << "\n"); 4272 } 4273 4274 // Insert the forced scalars. 4275 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4276 // induction variable when the PHI user is scalarized. 4277 auto ForcedScalar = ForcedScalars.find(VF); 4278 if (ForcedScalar != ForcedScalars.end()) 4279 for (auto *I : ForcedScalar->second) 4280 Worklist.insert(I); 4281 4282 // Expand the worklist by looking through any bitcasts and getelementptr 4283 // instructions we've already identified as scalar. This is similar to the 4284 // expansion step in collectLoopUniforms(); however, here we're only 4285 // expanding to include additional bitcasts and getelementptr instructions. 4286 unsigned Idx = 0; 4287 while (Idx != Worklist.size()) { 4288 Instruction *Dst = Worklist[Idx++]; 4289 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4290 continue; 4291 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4292 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4293 auto *J = cast<Instruction>(U); 4294 return !TheLoop->contains(J) || Worklist.count(J) || 4295 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4296 isScalarUse(J, Src)); 4297 })) { 4298 Worklist.insert(Src); 4299 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4300 } 4301 } 4302 4303 // An induction variable will remain scalar if all users of the induction 4304 // variable and induction variable update remain scalar. 4305 for (auto &Induction : *Legal->getInductionVars()) { 4306 auto *Ind = Induction.first; 4307 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4308 4309 // We already considered pointer induction variables, so there's no reason 4310 // to look at their users again. 4311 // 4312 // TODO: Once we are able to vectorize pointer induction variables we 4313 // should no longer skip over them here. 4314 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4315 continue; 4316 4317 // Determine if all users of the induction variable are scalar after 4318 // vectorization. 4319 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4320 auto *I = cast<Instruction>(U); 4321 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4322 }); 4323 if (!ScalarInd) 4324 continue; 4325 4326 // Determine if all users of the induction variable update instruction are 4327 // scalar after vectorization. 4328 auto ScalarIndUpdate = 4329 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4330 auto *I = cast<Instruction>(U); 4331 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4332 }); 4333 if (!ScalarIndUpdate) 4334 continue; 4335 4336 // The induction variable and its update instruction will remain scalar. 4337 Worklist.insert(Ind); 4338 Worklist.insert(IndUpdate); 4339 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4340 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4341 << "\n"); 4342 } 4343 4344 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4345 } 4346 4347 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4348 if (!blockNeedsPredication(I->getParent())) 4349 return false; 4350 switch(I->getOpcode()) { 4351 default: 4352 break; 4353 case Instruction::Load: 4354 case Instruction::Store: { 4355 if (!Legal->isMaskRequired(I)) 4356 return false; 4357 auto *Ptr = getLoadStorePointerOperand(I); 4358 auto *Ty = getMemInstValueType(I); 4359 // We have already decided how to vectorize this instruction, get that 4360 // result. 4361 if (VF > 1) { 4362 InstWidening WideningDecision = getWideningDecision(I, VF); 4363 assert(WideningDecision != CM_Unknown && 4364 "Widening decision should be ready at this moment"); 4365 return WideningDecision == CM_Scalarize; 4366 } 4367 return isa<LoadInst>(I) ? 4368 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4369 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4370 } 4371 case Instruction::UDiv: 4372 case Instruction::SDiv: 4373 case Instruction::SRem: 4374 case Instruction::URem: 4375 return mayDivideByZero(*I); 4376 } 4377 return false; 4378 } 4379 4380 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4381 unsigned VF) { 4382 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4383 assert(getWideningDecision(I, VF) == CM_Unknown && 4384 "Decision should not be set yet."); 4385 auto *Group = getInterleavedAccessGroup(I); 4386 assert(Group && "Must have a group."); 4387 4388 // Check if masking is required. 4389 // A Group may need masking for one of two reasons: it resides in a block that 4390 // needs predication, or it was decided to use masking to deal with gaps. 4391 bool PredicatedAccessRequiresMasking = 4392 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4393 bool AccessWithGapsRequiresMasking = 4394 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4395 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4396 return true; 4397 4398 // If masked interleaving is required, we expect that the user/target had 4399 // enabled it, because otherwise it either wouldn't have been created or 4400 // it should have been invalidated by the CostModel. 4401 assert(useMaskedInterleavedAccesses(TTI) && 4402 "Masked interleave-groups for predicated accesses are not enabled."); 4403 4404 auto *Ty = getMemInstValueType(I); 4405 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4406 : TTI.isLegalMaskedStore(Ty); 4407 } 4408 4409 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4410 unsigned VF) { 4411 // Get and ensure we have a valid memory instruction. 4412 LoadInst *LI = dyn_cast<LoadInst>(I); 4413 StoreInst *SI = dyn_cast<StoreInst>(I); 4414 assert((LI || SI) && "Invalid memory instruction"); 4415 4416 auto *Ptr = getLoadStorePointerOperand(I); 4417 4418 // In order to be widened, the pointer should be consecutive, first of all. 4419 if (!Legal->isConsecutivePtr(Ptr)) 4420 return false; 4421 4422 // If the instruction is a store located in a predicated block, it will be 4423 // scalarized. 4424 if (isScalarWithPredication(I)) 4425 return false; 4426 4427 // If the instruction's allocated size doesn't equal it's type size, it 4428 // requires padding and will be scalarized. 4429 auto &DL = I->getModule()->getDataLayout(); 4430 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4431 if (hasIrregularType(ScalarTy, DL, VF)) 4432 return false; 4433 4434 return true; 4435 } 4436 4437 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4438 // We should not collect Uniforms more than once per VF. Right now, 4439 // this function is called from collectUniformsAndScalars(), which 4440 // already does this check. Collecting Uniforms for VF=1 does not make any 4441 // sense. 4442 4443 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4444 "This function should not be visited twice for the same VF"); 4445 4446 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4447 // not analyze again. Uniforms.count(VF) will return 1. 4448 Uniforms[VF].clear(); 4449 4450 // We now know that the loop is vectorizable! 4451 // Collect instructions inside the loop that will remain uniform after 4452 // vectorization. 4453 4454 // Global values, params and instructions outside of current loop are out of 4455 // scope. 4456 auto isOutOfScope = [&](Value *V) -> bool { 4457 Instruction *I = dyn_cast<Instruction>(V); 4458 return (!I || !TheLoop->contains(I)); 4459 }; 4460 4461 SetVector<Instruction *> Worklist; 4462 BasicBlock *Latch = TheLoop->getLoopLatch(); 4463 4464 // Start with the conditional branch. If the branch condition is an 4465 // instruction contained in the loop that is only used by the branch, it is 4466 // uniform. 4467 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4468 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4469 Worklist.insert(Cmp); 4470 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4471 } 4472 4473 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4474 // are pointers that are treated like consecutive pointers during 4475 // vectorization. The pointer operands of interleaved accesses are an 4476 // example. 4477 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4478 4479 // Holds pointer operands of instructions that are possibly non-uniform. 4480 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4481 4482 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4483 InstWidening WideningDecision = getWideningDecision(I, VF); 4484 assert(WideningDecision != CM_Unknown && 4485 "Widening decision should be ready at this moment"); 4486 4487 return (WideningDecision == CM_Widen || 4488 WideningDecision == CM_Widen_Reverse || 4489 WideningDecision == CM_Interleave); 4490 }; 4491 // Iterate over the instructions in the loop, and collect all 4492 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4493 // that a consecutive-like pointer operand will be scalarized, we collect it 4494 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4495 // getelementptr instruction can be used by both vectorized and scalarized 4496 // memory instructions. For example, if a loop loads and stores from the same 4497 // location, but the store is conditional, the store will be scalarized, and 4498 // the getelementptr won't remain uniform. 4499 for (auto *BB : TheLoop->blocks()) 4500 for (auto &I : *BB) { 4501 // If there's no pointer operand, there's nothing to do. 4502 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4503 if (!Ptr) 4504 continue; 4505 4506 // True if all users of Ptr are memory accesses that have Ptr as their 4507 // pointer operand. 4508 auto UsersAreMemAccesses = 4509 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4510 return getLoadStorePointerOperand(U) == Ptr; 4511 }); 4512 4513 // Ensure the memory instruction will not be scalarized or used by 4514 // gather/scatter, making its pointer operand non-uniform. If the pointer 4515 // operand is used by any instruction other than a memory access, we 4516 // conservatively assume the pointer operand may be non-uniform. 4517 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4518 PossibleNonUniformPtrs.insert(Ptr); 4519 4520 // If the memory instruction will be vectorized and its pointer operand 4521 // is consecutive-like, or interleaving - the pointer operand should 4522 // remain uniform. 4523 else 4524 ConsecutiveLikePtrs.insert(Ptr); 4525 } 4526 4527 // Add to the Worklist all consecutive and consecutive-like pointers that 4528 // aren't also identified as possibly non-uniform. 4529 for (auto *V : ConsecutiveLikePtrs) 4530 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4531 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4532 Worklist.insert(V); 4533 } 4534 4535 // Expand Worklist in topological order: whenever a new instruction 4536 // is added , its users should be already inside Worklist. It ensures 4537 // a uniform instruction will only be used by uniform instructions. 4538 unsigned idx = 0; 4539 while (idx != Worklist.size()) { 4540 Instruction *I = Worklist[idx++]; 4541 4542 for (auto OV : I->operand_values()) { 4543 // isOutOfScope operands cannot be uniform instructions. 4544 if (isOutOfScope(OV)) 4545 continue; 4546 // First order recurrence Phi's should typically be considered 4547 // non-uniform. 4548 auto *OP = dyn_cast<PHINode>(OV); 4549 if (OP && Legal->isFirstOrderRecurrence(OP)) 4550 continue; 4551 // If all the users of the operand are uniform, then add the 4552 // operand into the uniform worklist. 4553 auto *OI = cast<Instruction>(OV); 4554 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4555 auto *J = cast<Instruction>(U); 4556 return Worklist.count(J) || 4557 (OI == getLoadStorePointerOperand(J) && 4558 isUniformDecision(J, VF)); 4559 })) { 4560 Worklist.insert(OI); 4561 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4562 } 4563 } 4564 } 4565 4566 // Returns true if Ptr is the pointer operand of a memory access instruction 4567 // I, and I is known to not require scalarization. 4568 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4569 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4570 }; 4571 4572 // For an instruction to be added into Worklist above, all its users inside 4573 // the loop should also be in Worklist. However, this condition cannot be 4574 // true for phi nodes that form a cyclic dependence. We must process phi 4575 // nodes separately. An induction variable will remain uniform if all users 4576 // of the induction variable and induction variable update remain uniform. 4577 // The code below handles both pointer and non-pointer induction variables. 4578 for (auto &Induction : *Legal->getInductionVars()) { 4579 auto *Ind = Induction.first; 4580 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4581 4582 // Determine if all users of the induction variable are uniform after 4583 // vectorization. 4584 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4585 auto *I = cast<Instruction>(U); 4586 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4587 isVectorizedMemAccessUse(I, Ind); 4588 }); 4589 if (!UniformInd) 4590 continue; 4591 4592 // Determine if all users of the induction variable update instruction are 4593 // uniform after vectorization. 4594 auto UniformIndUpdate = 4595 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4596 auto *I = cast<Instruction>(U); 4597 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4598 isVectorizedMemAccessUse(I, IndUpdate); 4599 }); 4600 if (!UniformIndUpdate) 4601 continue; 4602 4603 // The induction variable and its update instruction will remain uniform. 4604 Worklist.insert(Ind); 4605 Worklist.insert(IndUpdate); 4606 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4607 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4608 << "\n"); 4609 } 4610 4611 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4612 } 4613 4614 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4615 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4616 // TODO: It may by useful to do since it's still likely to be dynamically 4617 // uniform if the target can skip. 4618 LLVM_DEBUG( 4619 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4620 4621 ORE->emit( 4622 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4623 << "runtime pointer checks needed. Not enabled for divergent target"); 4624 4625 return None; 4626 } 4627 4628 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4629 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4630 return computeFeasibleMaxVF(OptForSize, TC); 4631 4632 if (Legal->getRuntimePointerChecking()->Need) { 4633 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4634 << "runtime pointer checks needed. Enable vectorization of this " 4635 "loop with '#pragma clang loop vectorize(enable)' when " 4636 "compiling with -Os/-Oz"); 4637 LLVM_DEBUG( 4638 dbgs() 4639 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4640 return None; 4641 } 4642 4643 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4644 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4645 << "runtime SCEV checks needed. Enable vectorization of this " 4646 "loop with '#pragma clang loop vectorize(enable)' when " 4647 "compiling with -Os/-Oz"); 4648 LLVM_DEBUG( 4649 dbgs() 4650 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4651 return None; 4652 } 4653 4654 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4655 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4656 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4657 << "runtime stride == 1 checks needed. Enable vectorization of " 4658 "this loop with '#pragma clang loop vectorize(enable)' when " 4659 "compiling with -Os/-Oz"); 4660 LLVM_DEBUG( 4661 dbgs() 4662 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4663 return None; 4664 } 4665 4666 // If we optimize the program for size, avoid creating the tail loop. 4667 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4668 4669 if (TC == 1) { 4670 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4671 << "loop trip count is one, irrelevant for vectorization"); 4672 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4673 return None; 4674 } 4675 4676 // Record that scalar epilogue is not allowed. 4677 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4678 4679 IsScalarEpilogueAllowed = !OptForSize; 4680 4681 // We don't create an epilogue when optimizing for size. 4682 // Invalidate interleave groups that require an epilogue if we can't mask 4683 // the interleave-group. 4684 if (!useMaskedInterleavedAccesses(TTI)) 4685 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4686 4687 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4688 4689 if (TC > 0 && TC % MaxVF == 0) { 4690 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4691 return MaxVF; 4692 } 4693 4694 // If we don't know the precise trip count, or if the trip count that we 4695 // found modulo the vectorization factor is not zero, try to fold the tail 4696 // by masking. 4697 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4698 if (Legal->canFoldTailByMasking()) { 4699 FoldTailByMasking = true; 4700 return MaxVF; 4701 } 4702 4703 if (TC == 0) { 4704 ORE->emit( 4705 createMissedAnalysis("UnknownLoopCountComplexCFG") 4706 << "unable to calculate the loop count due to complex control flow"); 4707 return None; 4708 } 4709 4710 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4711 << "cannot optimize for size and vectorize at the same time. " 4712 "Enable vectorization of this loop with '#pragma clang loop " 4713 "vectorize(enable)' when compiling with -Os/-Oz"); 4714 return None; 4715 } 4716 4717 unsigned 4718 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4719 unsigned ConstTripCount) { 4720 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4721 unsigned SmallestType, WidestType; 4722 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4723 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4724 4725 // Get the maximum safe dependence distance in bits computed by LAA. 4726 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4727 // the memory accesses that is most restrictive (involved in the smallest 4728 // dependence distance). 4729 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4730 4731 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4732 4733 unsigned MaxVectorSize = WidestRegister / WidestType; 4734 4735 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4736 << " / " << WidestType << " bits.\n"); 4737 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4738 << WidestRegister << " bits.\n"); 4739 4740 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4741 " into one vector!"); 4742 if (MaxVectorSize == 0) { 4743 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4744 MaxVectorSize = 1; 4745 return MaxVectorSize; 4746 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4747 isPowerOf2_32(ConstTripCount)) { 4748 // We need to clamp the VF to be the ConstTripCount. There is no point in 4749 // choosing a higher viable VF as done in the loop below. 4750 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4751 << ConstTripCount << "\n"); 4752 MaxVectorSize = ConstTripCount; 4753 return MaxVectorSize; 4754 } 4755 4756 unsigned MaxVF = MaxVectorSize; 4757 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4758 (MaximizeBandwidth && !OptForSize)) { 4759 // Collect all viable vectorization factors larger than the default MaxVF 4760 // (i.e. MaxVectorSize). 4761 SmallVector<unsigned, 8> VFs; 4762 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4763 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4764 VFs.push_back(VS); 4765 4766 // For each VF calculate its register usage. 4767 auto RUs = calculateRegisterUsage(VFs); 4768 4769 // Select the largest VF which doesn't require more registers than existing 4770 // ones. 4771 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4772 for (int i = RUs.size() - 1; i >= 0; --i) { 4773 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4774 MaxVF = VFs[i]; 4775 break; 4776 } 4777 } 4778 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4779 if (MaxVF < MinVF) { 4780 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4781 << ") with target's minimum: " << MinVF << '\n'); 4782 MaxVF = MinVF; 4783 } 4784 } 4785 } 4786 return MaxVF; 4787 } 4788 4789 VectorizationFactor 4790 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4791 float Cost = expectedCost(1).first; 4792 const float ScalarCost = Cost; 4793 unsigned Width = 1; 4794 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4795 4796 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4797 if (ForceVectorization && MaxVF > 1) { 4798 // Ignore scalar width, because the user explicitly wants vectorization. 4799 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4800 // evaluation. 4801 Cost = std::numeric_limits<float>::max(); 4802 } 4803 4804 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4805 // Notice that the vector loop needs to be executed less times, so 4806 // we need to divide the cost of the vector loops by the width of 4807 // the vector elements. 4808 VectorizationCostTy C = expectedCost(i); 4809 float VectorCost = C.first / (float)i; 4810 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4811 << " costs: " << (int)VectorCost << ".\n"); 4812 if (!C.second && !ForceVectorization) { 4813 LLVM_DEBUG( 4814 dbgs() << "LV: Not considering vector loop of width " << i 4815 << " because it will not generate any vector instructions.\n"); 4816 continue; 4817 } 4818 if (VectorCost < Cost) { 4819 Cost = VectorCost; 4820 Width = i; 4821 } 4822 } 4823 4824 if (!EnableCondStoresVectorization && NumPredStores) { 4825 ORE->emit(createMissedAnalysis("ConditionalStore") 4826 << "store that is conditionally executed prevents vectorization"); 4827 LLVM_DEBUG( 4828 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4829 Width = 1; 4830 Cost = ScalarCost; 4831 } 4832 4833 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4834 << "LV: Vectorization seems to be not beneficial, " 4835 << "but was forced by a user.\n"); 4836 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4837 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4838 return Factor; 4839 } 4840 4841 std::pair<unsigned, unsigned> 4842 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4843 unsigned MinWidth = -1U; 4844 unsigned MaxWidth = 8; 4845 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4846 4847 // For each block. 4848 for (BasicBlock *BB : TheLoop->blocks()) { 4849 // For each instruction in the loop. 4850 for (Instruction &I : BB->instructionsWithoutDebug()) { 4851 Type *T = I.getType(); 4852 4853 // Skip ignored values. 4854 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4855 continue; 4856 4857 // Only examine Loads, Stores and PHINodes. 4858 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4859 continue; 4860 4861 // Examine PHI nodes that are reduction variables. Update the type to 4862 // account for the recurrence type. 4863 if (auto *PN = dyn_cast<PHINode>(&I)) { 4864 if (!Legal->isReductionVariable(PN)) 4865 continue; 4866 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4867 T = RdxDesc.getRecurrenceType(); 4868 } 4869 4870 // Examine the stored values. 4871 if (auto *ST = dyn_cast<StoreInst>(&I)) 4872 T = ST->getValueOperand()->getType(); 4873 4874 // Ignore loaded pointer types and stored pointer types that are not 4875 // vectorizable. 4876 // 4877 // FIXME: The check here attempts to predict whether a load or store will 4878 // be vectorized. We only know this for certain after a VF has 4879 // been selected. Here, we assume that if an access can be 4880 // vectorized, it will be. We should also look at extending this 4881 // optimization to non-pointer types. 4882 // 4883 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4884 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4885 continue; 4886 4887 MinWidth = std::min(MinWidth, 4888 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4889 MaxWidth = std::max(MaxWidth, 4890 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4891 } 4892 } 4893 4894 return {MinWidth, MaxWidth}; 4895 } 4896 4897 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4898 unsigned VF, 4899 unsigned LoopCost) { 4900 // -- The interleave heuristics -- 4901 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4902 // There are many micro-architectural considerations that we can't predict 4903 // at this level. For example, frontend pressure (on decode or fetch) due to 4904 // code size, or the number and capabilities of the execution ports. 4905 // 4906 // We use the following heuristics to select the interleave count: 4907 // 1. If the code has reductions, then we interleave to break the cross 4908 // iteration dependency. 4909 // 2. If the loop is really small, then we interleave to reduce the loop 4910 // overhead. 4911 // 3. We don't interleave if we think that we will spill registers to memory 4912 // due to the increased register pressure. 4913 4914 // When we optimize for size, we don't interleave. 4915 if (OptForSize) 4916 return 1; 4917 4918 // We used the distance for the interleave count. 4919 if (Legal->getMaxSafeDepDistBytes() != -1U) 4920 return 1; 4921 4922 // Do not interleave loops with a relatively small trip count. 4923 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4924 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4925 return 1; 4926 4927 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4928 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4929 << " registers\n"); 4930 4931 if (VF == 1) { 4932 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4933 TargetNumRegisters = ForceTargetNumScalarRegs; 4934 } else { 4935 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4936 TargetNumRegisters = ForceTargetNumVectorRegs; 4937 } 4938 4939 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4940 // We divide by these constants so assume that we have at least one 4941 // instruction that uses at least one register. 4942 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4943 4944 // We calculate the interleave count using the following formula. 4945 // Subtract the number of loop invariants from the number of available 4946 // registers. These registers are used by all of the interleaved instances. 4947 // Next, divide the remaining registers by the number of registers that is 4948 // required by the loop, in order to estimate how many parallel instances 4949 // fit without causing spills. All of this is rounded down if necessary to be 4950 // a power of two. We want power of two interleave count to simplify any 4951 // addressing operations or alignment considerations. 4952 // We also want power of two interleave counts to ensure that the induction 4953 // variable of the vector loop wraps to zero, when tail is folded by masking; 4954 // this currently happens when OptForSize, in which case IC is set to 1 above. 4955 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4956 R.MaxLocalUsers); 4957 4958 // Don't count the induction variable as interleaved. 4959 if (EnableIndVarRegisterHeur) 4960 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4961 std::max(1U, (R.MaxLocalUsers - 1))); 4962 4963 // Clamp the interleave ranges to reasonable counts. 4964 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4965 4966 // Check if the user has overridden the max. 4967 if (VF == 1) { 4968 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4969 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4970 } else { 4971 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4972 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4973 } 4974 4975 // If we did not calculate the cost for VF (because the user selected the VF) 4976 // then we calculate the cost of VF here. 4977 if (LoopCost == 0) 4978 LoopCost = expectedCost(VF).first; 4979 4980 // Clamp the calculated IC to be between the 1 and the max interleave count 4981 // that the target allows. 4982 if (IC > MaxInterleaveCount) 4983 IC = MaxInterleaveCount; 4984 else if (IC < 1) 4985 IC = 1; 4986 4987 // Interleave if we vectorized this loop and there is a reduction that could 4988 // benefit from interleaving. 4989 if (VF > 1 && !Legal->getReductionVars()->empty()) { 4990 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 4991 return IC; 4992 } 4993 4994 // Note that if we've already vectorized the loop we will have done the 4995 // runtime check and so interleaving won't require further checks. 4996 bool InterleavingRequiresRuntimePointerCheck = 4997 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 4998 4999 // We want to interleave small loops in order to reduce the loop overhead and 5000 // potentially expose ILP opportunities. 5001 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5002 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5003 // We assume that the cost overhead is 1 and we use the cost model 5004 // to estimate the cost of the loop and interleave until the cost of the 5005 // loop overhead is about 5% of the cost of the loop. 5006 unsigned SmallIC = 5007 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5008 5009 // Interleave until store/load ports (estimated by max interleave count) are 5010 // saturated. 5011 unsigned NumStores = Legal->getNumStores(); 5012 unsigned NumLoads = Legal->getNumLoads(); 5013 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5014 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5015 5016 // If we have a scalar reduction (vector reductions are already dealt with 5017 // by this point), we can increase the critical path length if the loop 5018 // we're interleaving is inside another loop. Limit, by default to 2, so the 5019 // critical path only gets increased by one reduction operation. 5020 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5021 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5022 SmallIC = std::min(SmallIC, F); 5023 StoresIC = std::min(StoresIC, F); 5024 LoadsIC = std::min(LoadsIC, F); 5025 } 5026 5027 if (EnableLoadStoreRuntimeInterleave && 5028 std::max(StoresIC, LoadsIC) > SmallIC) { 5029 LLVM_DEBUG( 5030 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5031 return std::max(StoresIC, LoadsIC); 5032 } 5033 5034 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5035 return SmallIC; 5036 } 5037 5038 // Interleave if this is a large loop (small loops are already dealt with by 5039 // this point) that could benefit from interleaving. 5040 bool HasReductions = !Legal->getReductionVars()->empty(); 5041 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5042 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5043 return IC; 5044 } 5045 5046 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5047 return 1; 5048 } 5049 5050 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5051 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5052 // This function calculates the register usage by measuring the highest number 5053 // of values that are alive at a single location. Obviously, this is a very 5054 // rough estimation. We scan the loop in a topological order in order and 5055 // assign a number to each instruction. We use RPO to ensure that defs are 5056 // met before their users. We assume that each instruction that has in-loop 5057 // users starts an interval. We record every time that an in-loop value is 5058 // used, so we have a list of the first and last occurrences of each 5059 // instruction. Next, we transpose this data structure into a multi map that 5060 // holds the list of intervals that *end* at a specific location. This multi 5061 // map allows us to perform a linear search. We scan the instructions linearly 5062 // and record each time that a new interval starts, by placing it in a set. 5063 // If we find this value in the multi-map then we remove it from the set. 5064 // The max register usage is the maximum size of the set. 5065 // We also search for instructions that are defined outside the loop, but are 5066 // used inside the loop. We need this number separately from the max-interval 5067 // usage number because when we unroll, loop-invariant values do not take 5068 // more register. 5069 LoopBlocksDFS DFS(TheLoop); 5070 DFS.perform(LI); 5071 5072 RegisterUsage RU; 5073 5074 // Each 'key' in the map opens a new interval. The values 5075 // of the map are the index of the 'last seen' usage of the 5076 // instruction that is the key. 5077 using IntervalMap = DenseMap<Instruction *, unsigned>; 5078 5079 // Maps instruction to its index. 5080 SmallVector<Instruction *, 64> IdxToInstr; 5081 // Marks the end of each interval. 5082 IntervalMap EndPoint; 5083 // Saves the list of instruction indices that are used in the loop. 5084 SmallPtrSet<Instruction *, 8> Ends; 5085 // Saves the list of values that are used in the loop but are 5086 // defined outside the loop, such as arguments and constants. 5087 SmallPtrSet<Value *, 8> LoopInvariants; 5088 5089 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5090 for (Instruction &I : BB->instructionsWithoutDebug()) { 5091 IdxToInstr.push_back(&I); 5092 5093 // Save the end location of each USE. 5094 for (Value *U : I.operands()) { 5095 auto *Instr = dyn_cast<Instruction>(U); 5096 5097 // Ignore non-instruction values such as arguments, constants, etc. 5098 if (!Instr) 5099 continue; 5100 5101 // If this instruction is outside the loop then record it and continue. 5102 if (!TheLoop->contains(Instr)) { 5103 LoopInvariants.insert(Instr); 5104 continue; 5105 } 5106 5107 // Overwrite previous end points. 5108 EndPoint[Instr] = IdxToInstr.size(); 5109 Ends.insert(Instr); 5110 } 5111 } 5112 } 5113 5114 // Saves the list of intervals that end with the index in 'key'. 5115 using InstrList = SmallVector<Instruction *, 2>; 5116 DenseMap<unsigned, InstrList> TransposeEnds; 5117 5118 // Transpose the EndPoints to a list of values that end at each index. 5119 for (auto &Interval : EndPoint) 5120 TransposeEnds[Interval.second].push_back(Interval.first); 5121 5122 SmallPtrSet<Instruction *, 8> OpenIntervals; 5123 5124 // Get the size of the widest register. 5125 unsigned MaxSafeDepDist = -1U; 5126 if (Legal->getMaxSafeDepDistBytes() != -1U) 5127 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5128 unsigned WidestRegister = 5129 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5130 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5131 5132 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5133 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5134 5135 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5136 5137 // A lambda that gets the register usage for the given type and VF. 5138 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5139 if (Ty->isTokenTy()) 5140 return 0U; 5141 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5142 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5143 }; 5144 5145 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5146 Instruction *I = IdxToInstr[i]; 5147 5148 // Remove all of the instructions that end at this location. 5149 InstrList &List = TransposeEnds[i]; 5150 for (Instruction *ToRemove : List) 5151 OpenIntervals.erase(ToRemove); 5152 5153 // Ignore instructions that are never used within the loop. 5154 if (Ends.find(I) == Ends.end()) 5155 continue; 5156 5157 // Skip ignored values. 5158 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5159 continue; 5160 5161 // For each VF find the maximum usage of registers. 5162 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5163 if (VFs[j] == 1) { 5164 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5165 continue; 5166 } 5167 collectUniformsAndScalars(VFs[j]); 5168 // Count the number of live intervals. 5169 unsigned RegUsage = 0; 5170 for (auto Inst : OpenIntervals) { 5171 // Skip ignored values for VF > 1. 5172 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5173 isScalarAfterVectorization(Inst, VFs[j])) 5174 continue; 5175 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5176 } 5177 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5178 } 5179 5180 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5181 << OpenIntervals.size() << '\n'); 5182 5183 // Add the current instruction to the list of open intervals. 5184 OpenIntervals.insert(I); 5185 } 5186 5187 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5188 unsigned Invariant = 0; 5189 if (VFs[i] == 1) 5190 Invariant = LoopInvariants.size(); 5191 else { 5192 for (auto Inst : LoopInvariants) 5193 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5194 } 5195 5196 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5197 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5198 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5199 << '\n'); 5200 5201 RU.LoopInvariantRegs = Invariant; 5202 RU.MaxLocalUsers = MaxUsages[i]; 5203 RUs[i] = RU; 5204 } 5205 5206 return RUs; 5207 } 5208 5209 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5210 // TODO: Cost model for emulated masked load/store is completely 5211 // broken. This hack guides the cost model to use an artificially 5212 // high enough value to practically disable vectorization with such 5213 // operations, except where previously deployed legality hack allowed 5214 // using very low cost values. This is to avoid regressions coming simply 5215 // from moving "masked load/store" check from legality to cost model. 5216 // Masked Load/Gather emulation was previously never allowed. 5217 // Limited number of Masked Store/Scatter emulation was allowed. 5218 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5219 return isa<LoadInst>(I) || 5220 (isa<StoreInst>(I) && 5221 NumPredStores > NumberOfStoresToPredicate); 5222 } 5223 5224 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5225 // If we aren't vectorizing the loop, or if we've already collected the 5226 // instructions to scalarize, there's nothing to do. Collection may already 5227 // have occurred if we have a user-selected VF and are now computing the 5228 // expected cost for interleaving. 5229 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5230 return; 5231 5232 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5233 // not profitable to scalarize any instructions, the presence of VF in the 5234 // map will indicate that we've analyzed it already. 5235 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5236 5237 // Find all the instructions that are scalar with predication in the loop and 5238 // determine if it would be better to not if-convert the blocks they are in. 5239 // If so, we also record the instructions to scalarize. 5240 for (BasicBlock *BB : TheLoop->blocks()) { 5241 if (!blockNeedsPredication(BB)) 5242 continue; 5243 for (Instruction &I : *BB) 5244 if (isScalarWithPredication(&I)) { 5245 ScalarCostsTy ScalarCosts; 5246 // Do not apply discount logic if hacked cost is needed 5247 // for emulated masked memrefs. 5248 if (!useEmulatedMaskMemRefHack(&I) && 5249 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5250 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5251 // Remember that BB will remain after vectorization. 5252 PredicatedBBsAfterVectorization.insert(BB); 5253 } 5254 } 5255 } 5256 5257 int LoopVectorizationCostModel::computePredInstDiscount( 5258 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5259 unsigned VF) { 5260 assert(!isUniformAfterVectorization(PredInst, VF) && 5261 "Instruction marked uniform-after-vectorization will be predicated"); 5262 5263 // Initialize the discount to zero, meaning that the scalar version and the 5264 // vector version cost the same. 5265 int Discount = 0; 5266 5267 // Holds instructions to analyze. The instructions we visit are mapped in 5268 // ScalarCosts. Those instructions are the ones that would be scalarized if 5269 // we find that the scalar version costs less. 5270 SmallVector<Instruction *, 8> Worklist; 5271 5272 // Returns true if the given instruction can be scalarized. 5273 auto canBeScalarized = [&](Instruction *I) -> bool { 5274 // We only attempt to scalarize instructions forming a single-use chain 5275 // from the original predicated block that would otherwise be vectorized. 5276 // Although not strictly necessary, we give up on instructions we know will 5277 // already be scalar to avoid traversing chains that are unlikely to be 5278 // beneficial. 5279 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5280 isScalarAfterVectorization(I, VF)) 5281 return false; 5282 5283 // If the instruction is scalar with predication, it will be analyzed 5284 // separately. We ignore it within the context of PredInst. 5285 if (isScalarWithPredication(I)) 5286 return false; 5287 5288 // If any of the instruction's operands are uniform after vectorization, 5289 // the instruction cannot be scalarized. This prevents, for example, a 5290 // masked load from being scalarized. 5291 // 5292 // We assume we will only emit a value for lane zero of an instruction 5293 // marked uniform after vectorization, rather than VF identical values. 5294 // Thus, if we scalarize an instruction that uses a uniform, we would 5295 // create uses of values corresponding to the lanes we aren't emitting code 5296 // for. This behavior can be changed by allowing getScalarValue to clone 5297 // the lane zero values for uniforms rather than asserting. 5298 for (Use &U : I->operands()) 5299 if (auto *J = dyn_cast<Instruction>(U.get())) 5300 if (isUniformAfterVectorization(J, VF)) 5301 return false; 5302 5303 // Otherwise, we can scalarize the instruction. 5304 return true; 5305 }; 5306 5307 // Returns true if an operand that cannot be scalarized must be extracted 5308 // from a vector. We will account for this scalarization overhead below. Note 5309 // that the non-void predicated instructions are placed in their own blocks, 5310 // and their return values are inserted into vectors. Thus, an extract would 5311 // still be required. 5312 auto needsExtract = [&](Instruction *I) -> bool { 5313 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5314 }; 5315 5316 // Compute the expected cost discount from scalarizing the entire expression 5317 // feeding the predicated instruction. We currently only consider expressions 5318 // that are single-use instruction chains. 5319 Worklist.push_back(PredInst); 5320 while (!Worklist.empty()) { 5321 Instruction *I = Worklist.pop_back_val(); 5322 5323 // If we've already analyzed the instruction, there's nothing to do. 5324 if (ScalarCosts.find(I) != ScalarCosts.end()) 5325 continue; 5326 5327 // Compute the cost of the vector instruction. Note that this cost already 5328 // includes the scalarization overhead of the predicated instruction. 5329 unsigned VectorCost = getInstructionCost(I, VF).first; 5330 5331 // Compute the cost of the scalarized instruction. This cost is the cost of 5332 // the instruction as if it wasn't if-converted and instead remained in the 5333 // predicated block. We will scale this cost by block probability after 5334 // computing the scalarization overhead. 5335 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5336 5337 // Compute the scalarization overhead of needed insertelement instructions 5338 // and phi nodes. 5339 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5340 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5341 true, false); 5342 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5343 } 5344 5345 // Compute the scalarization overhead of needed extractelement 5346 // instructions. For each of the instruction's operands, if the operand can 5347 // be scalarized, add it to the worklist; otherwise, account for the 5348 // overhead. 5349 for (Use &U : I->operands()) 5350 if (auto *J = dyn_cast<Instruction>(U.get())) { 5351 assert(VectorType::isValidElementType(J->getType()) && 5352 "Instruction has non-scalar type"); 5353 if (canBeScalarized(J)) 5354 Worklist.push_back(J); 5355 else if (needsExtract(J)) 5356 ScalarCost += TTI.getScalarizationOverhead( 5357 ToVectorTy(J->getType(),VF), false, true); 5358 } 5359 5360 // Scale the total scalar cost by block probability. 5361 ScalarCost /= getReciprocalPredBlockProb(); 5362 5363 // Compute the discount. A non-negative discount means the vector version 5364 // of the instruction costs more, and scalarizing would be beneficial. 5365 Discount += VectorCost - ScalarCost; 5366 ScalarCosts[I] = ScalarCost; 5367 } 5368 5369 return Discount; 5370 } 5371 5372 LoopVectorizationCostModel::VectorizationCostTy 5373 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5374 VectorizationCostTy Cost; 5375 5376 // For each block. 5377 for (BasicBlock *BB : TheLoop->blocks()) { 5378 VectorizationCostTy BlockCost; 5379 5380 // For each instruction in the old loop. 5381 for (Instruction &I : BB->instructionsWithoutDebug()) { 5382 // Skip ignored values. 5383 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5384 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5385 continue; 5386 5387 VectorizationCostTy C = getInstructionCost(&I, VF); 5388 5389 // Check if we should override the cost. 5390 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5391 C.first = ForceTargetInstructionCost; 5392 5393 BlockCost.first += C.first; 5394 BlockCost.second |= C.second; 5395 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5396 << " for VF " << VF << " For instruction: " << I 5397 << '\n'); 5398 } 5399 5400 // If we are vectorizing a predicated block, it will have been 5401 // if-converted. This means that the block's instructions (aside from 5402 // stores and instructions that may divide by zero) will now be 5403 // unconditionally executed. For the scalar case, we may not always execute 5404 // the predicated block. Thus, scale the block's cost by the probability of 5405 // executing it. 5406 if (VF == 1 && blockNeedsPredication(BB)) 5407 BlockCost.first /= getReciprocalPredBlockProb(); 5408 5409 Cost.first += BlockCost.first; 5410 Cost.second |= BlockCost.second; 5411 } 5412 5413 return Cost; 5414 } 5415 5416 /// Gets Address Access SCEV after verifying that the access pattern 5417 /// is loop invariant except the induction variable dependence. 5418 /// 5419 /// This SCEV can be sent to the Target in order to estimate the address 5420 /// calculation cost. 5421 static const SCEV *getAddressAccessSCEV( 5422 Value *Ptr, 5423 LoopVectorizationLegality *Legal, 5424 PredicatedScalarEvolution &PSE, 5425 const Loop *TheLoop) { 5426 5427 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5428 if (!Gep) 5429 return nullptr; 5430 5431 // We are looking for a gep with all loop invariant indices except for one 5432 // which should be an induction variable. 5433 auto SE = PSE.getSE(); 5434 unsigned NumOperands = Gep->getNumOperands(); 5435 for (unsigned i = 1; i < NumOperands; ++i) { 5436 Value *Opd = Gep->getOperand(i); 5437 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5438 !Legal->isInductionVariable(Opd)) 5439 return nullptr; 5440 } 5441 5442 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5443 return PSE.getSCEV(Ptr); 5444 } 5445 5446 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5447 return Legal->hasStride(I->getOperand(0)) || 5448 Legal->hasStride(I->getOperand(1)); 5449 } 5450 5451 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5452 unsigned VF) { 5453 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5454 Type *ValTy = getMemInstValueType(I); 5455 auto SE = PSE.getSE(); 5456 5457 unsigned Alignment = getLoadStoreAlignment(I); 5458 unsigned AS = getLoadStoreAddressSpace(I); 5459 Value *Ptr = getLoadStorePointerOperand(I); 5460 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5461 5462 // Figure out whether the access is strided and get the stride value 5463 // if it's known in compile time 5464 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5465 5466 // Get the cost of the scalar memory instruction and address computation. 5467 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5468 5469 // Don't pass *I here, since it is scalar but will actually be part of a 5470 // vectorized loop where the user of it is a vectorized instruction. 5471 Cost += VF * 5472 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5473 AS); 5474 5475 // Get the overhead of the extractelement and insertelement instructions 5476 // we might create due to scalarization. 5477 Cost += getScalarizationOverhead(I, VF, TTI); 5478 5479 // If we have a predicated store, it may not be executed for each vector 5480 // lane. Scale the cost by the probability of executing the predicated 5481 // block. 5482 if (isPredicatedInst(I)) { 5483 Cost /= getReciprocalPredBlockProb(); 5484 5485 if (useEmulatedMaskMemRefHack(I)) 5486 // Artificially setting to a high enough value to practically disable 5487 // vectorization with such operations. 5488 Cost = 3000000; 5489 } 5490 5491 return Cost; 5492 } 5493 5494 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5495 unsigned VF) { 5496 Type *ValTy = getMemInstValueType(I); 5497 Type *VectorTy = ToVectorTy(ValTy, VF); 5498 unsigned Alignment = getLoadStoreAlignment(I); 5499 Value *Ptr = getLoadStorePointerOperand(I); 5500 unsigned AS = getLoadStoreAddressSpace(I); 5501 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5502 5503 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5504 "Stride should be 1 or -1 for consecutive memory access"); 5505 unsigned Cost = 0; 5506 if (Legal->isMaskRequired(I)) 5507 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5508 else 5509 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5510 5511 bool Reverse = ConsecutiveStride < 0; 5512 if (Reverse) 5513 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5514 return Cost; 5515 } 5516 5517 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5518 unsigned VF) { 5519 Type *ValTy = getMemInstValueType(I); 5520 Type *VectorTy = ToVectorTy(ValTy, VF); 5521 unsigned Alignment = getLoadStoreAlignment(I); 5522 unsigned AS = getLoadStoreAddressSpace(I); 5523 if (isa<LoadInst>(I)) { 5524 return TTI.getAddressComputationCost(ValTy) + 5525 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5526 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5527 } 5528 StoreInst *SI = cast<StoreInst>(I); 5529 5530 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5531 return TTI.getAddressComputationCost(ValTy) + 5532 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5533 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5534 Instruction::ExtractElement, 5535 VectorTy, VF - 1)); 5536 } 5537 5538 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5539 unsigned VF) { 5540 Type *ValTy = getMemInstValueType(I); 5541 Type *VectorTy = ToVectorTy(ValTy, VF); 5542 unsigned Alignment = getLoadStoreAlignment(I); 5543 Value *Ptr = getLoadStorePointerOperand(I); 5544 5545 return TTI.getAddressComputationCost(VectorTy) + 5546 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5547 Legal->isMaskRequired(I), Alignment); 5548 } 5549 5550 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5551 unsigned VF) { 5552 Type *ValTy = getMemInstValueType(I); 5553 Type *VectorTy = ToVectorTy(ValTy, VF); 5554 unsigned AS = getLoadStoreAddressSpace(I); 5555 5556 auto Group = getInterleavedAccessGroup(I); 5557 assert(Group && "Fail to get an interleaved access group."); 5558 5559 unsigned InterleaveFactor = Group->getFactor(); 5560 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5561 5562 // Holds the indices of existing members in an interleaved load group. 5563 // An interleaved store group doesn't need this as it doesn't allow gaps. 5564 SmallVector<unsigned, 4> Indices; 5565 if (isa<LoadInst>(I)) { 5566 for (unsigned i = 0; i < InterleaveFactor; i++) 5567 if (Group->getMember(i)) 5568 Indices.push_back(i); 5569 } 5570 5571 // Calculate the cost of the whole interleaved group. 5572 bool UseMaskForGaps = 5573 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5574 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5575 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5576 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5577 5578 if (Group->isReverse()) { 5579 // TODO: Add support for reversed masked interleaved access. 5580 assert(!Legal->isMaskRequired(I) && 5581 "Reverse masked interleaved access not supported."); 5582 Cost += Group->getNumMembers() * 5583 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5584 } 5585 return Cost; 5586 } 5587 5588 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5589 unsigned VF) { 5590 // Calculate scalar cost only. Vectorization cost should be ready at this 5591 // moment. 5592 if (VF == 1) { 5593 Type *ValTy = getMemInstValueType(I); 5594 unsigned Alignment = getLoadStoreAlignment(I); 5595 unsigned AS = getLoadStoreAddressSpace(I); 5596 5597 return TTI.getAddressComputationCost(ValTy) + 5598 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5599 } 5600 return getWideningCost(I, VF); 5601 } 5602 5603 LoopVectorizationCostModel::VectorizationCostTy 5604 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5605 // If we know that this instruction will remain uniform, check the cost of 5606 // the scalar version. 5607 if (isUniformAfterVectorization(I, VF)) 5608 VF = 1; 5609 5610 if (VF > 1 && isProfitableToScalarize(I, VF)) 5611 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5612 5613 // Forced scalars do not have any scalarization overhead. 5614 auto ForcedScalar = ForcedScalars.find(VF); 5615 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5616 auto InstSet = ForcedScalar->second; 5617 if (InstSet.find(I) != InstSet.end()) 5618 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5619 } 5620 5621 Type *VectorTy; 5622 unsigned C = getInstructionCost(I, VF, VectorTy); 5623 5624 bool TypeNotScalarized = 5625 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5626 return VectorizationCostTy(C, TypeNotScalarized); 5627 } 5628 5629 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5630 if (VF == 1) 5631 return; 5632 NumPredStores = 0; 5633 for (BasicBlock *BB : TheLoop->blocks()) { 5634 // For each instruction in the old loop. 5635 for (Instruction &I : *BB) { 5636 Value *Ptr = getLoadStorePointerOperand(&I); 5637 if (!Ptr) 5638 continue; 5639 5640 // TODO: We should generate better code and update the cost model for 5641 // predicated uniform stores. Today they are treated as any other 5642 // predicated store (see added test cases in 5643 // invariant-store-vectorization.ll). 5644 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5645 NumPredStores++; 5646 5647 if (Legal->isUniform(Ptr) && 5648 // Conditional loads and stores should be scalarized and predicated. 5649 // isScalarWithPredication cannot be used here since masked 5650 // gather/scatters are not considered scalar with predication. 5651 !Legal->blockNeedsPredication(I.getParent())) { 5652 // TODO: Avoid replicating loads and stores instead of 5653 // relying on instcombine to remove them. 5654 // Load: Scalar load + broadcast 5655 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5656 unsigned Cost = getUniformMemOpCost(&I, VF); 5657 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5658 continue; 5659 } 5660 5661 // We assume that widening is the best solution when possible. 5662 if (memoryInstructionCanBeWidened(&I, VF)) { 5663 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5664 int ConsecutiveStride = 5665 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5666 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5667 "Expected consecutive stride."); 5668 InstWidening Decision = 5669 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5670 setWideningDecision(&I, VF, Decision, Cost); 5671 continue; 5672 } 5673 5674 // Choose between Interleaving, Gather/Scatter or Scalarization. 5675 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5676 unsigned NumAccesses = 1; 5677 if (isAccessInterleaved(&I)) { 5678 auto Group = getInterleavedAccessGroup(&I); 5679 assert(Group && "Fail to get an interleaved access group."); 5680 5681 // Make one decision for the whole group. 5682 if (getWideningDecision(&I, VF) != CM_Unknown) 5683 continue; 5684 5685 NumAccesses = Group->getNumMembers(); 5686 if (interleavedAccessCanBeWidened(&I, VF)) 5687 InterleaveCost = getInterleaveGroupCost(&I, VF); 5688 } 5689 5690 unsigned GatherScatterCost = 5691 isLegalGatherOrScatter(&I) 5692 ? getGatherScatterCost(&I, VF) * NumAccesses 5693 : std::numeric_limits<unsigned>::max(); 5694 5695 unsigned ScalarizationCost = 5696 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5697 5698 // Choose better solution for the current VF, 5699 // write down this decision and use it during vectorization. 5700 unsigned Cost; 5701 InstWidening Decision; 5702 if (InterleaveCost <= GatherScatterCost && 5703 InterleaveCost < ScalarizationCost) { 5704 Decision = CM_Interleave; 5705 Cost = InterleaveCost; 5706 } else if (GatherScatterCost < ScalarizationCost) { 5707 Decision = CM_GatherScatter; 5708 Cost = GatherScatterCost; 5709 } else { 5710 Decision = CM_Scalarize; 5711 Cost = ScalarizationCost; 5712 } 5713 // If the instructions belongs to an interleave group, the whole group 5714 // receives the same decision. The whole group receives the cost, but 5715 // the cost will actually be assigned to one instruction. 5716 if (auto Group = getInterleavedAccessGroup(&I)) 5717 setWideningDecision(Group, VF, Decision, Cost); 5718 else 5719 setWideningDecision(&I, VF, Decision, Cost); 5720 } 5721 } 5722 5723 // Make sure that any load of address and any other address computation 5724 // remains scalar unless there is gather/scatter support. This avoids 5725 // inevitable extracts into address registers, and also has the benefit of 5726 // activating LSR more, since that pass can't optimize vectorized 5727 // addresses. 5728 if (TTI.prefersVectorizedAddressing()) 5729 return; 5730 5731 // Start with all scalar pointer uses. 5732 SmallPtrSet<Instruction *, 8> AddrDefs; 5733 for (BasicBlock *BB : TheLoop->blocks()) 5734 for (Instruction &I : *BB) { 5735 Instruction *PtrDef = 5736 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5737 if (PtrDef && TheLoop->contains(PtrDef) && 5738 getWideningDecision(&I, VF) != CM_GatherScatter) 5739 AddrDefs.insert(PtrDef); 5740 } 5741 5742 // Add all instructions used to generate the addresses. 5743 SmallVector<Instruction *, 4> Worklist; 5744 for (auto *I : AddrDefs) 5745 Worklist.push_back(I); 5746 while (!Worklist.empty()) { 5747 Instruction *I = Worklist.pop_back_val(); 5748 for (auto &Op : I->operands()) 5749 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5750 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5751 AddrDefs.insert(InstOp).second) 5752 Worklist.push_back(InstOp); 5753 } 5754 5755 for (auto *I : AddrDefs) { 5756 if (isa<LoadInst>(I)) { 5757 // Setting the desired widening decision should ideally be handled in 5758 // by cost functions, but since this involves the task of finding out 5759 // if the loaded register is involved in an address computation, it is 5760 // instead changed here when we know this is the case. 5761 InstWidening Decision = getWideningDecision(I, VF); 5762 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5763 // Scalarize a widened load of address. 5764 setWideningDecision(I, VF, CM_Scalarize, 5765 (VF * getMemoryInstructionCost(I, 1))); 5766 else if (auto Group = getInterleavedAccessGroup(I)) { 5767 // Scalarize an interleave group of address loads. 5768 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5769 if (Instruction *Member = Group->getMember(I)) 5770 setWideningDecision(Member, VF, CM_Scalarize, 5771 (VF * getMemoryInstructionCost(Member, 1))); 5772 } 5773 } 5774 } else 5775 // Make sure I gets scalarized and a cost estimate without 5776 // scalarization overhead. 5777 ForcedScalars[VF].insert(I); 5778 } 5779 } 5780 5781 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5782 unsigned VF, 5783 Type *&VectorTy) { 5784 Type *RetTy = I->getType(); 5785 if (canTruncateToMinimalBitwidth(I, VF)) 5786 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5787 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5788 auto SE = PSE.getSE(); 5789 5790 // TODO: We need to estimate the cost of intrinsic calls. 5791 switch (I->getOpcode()) { 5792 case Instruction::GetElementPtr: 5793 // We mark this instruction as zero-cost because the cost of GEPs in 5794 // vectorized code depends on whether the corresponding memory instruction 5795 // is scalarized or not. Therefore, we handle GEPs with the memory 5796 // instruction cost. 5797 return 0; 5798 case Instruction::Br: { 5799 // In cases of scalarized and predicated instructions, there will be VF 5800 // predicated blocks in the vectorized loop. Each branch around these 5801 // blocks requires also an extract of its vector compare i1 element. 5802 bool ScalarPredicatedBB = false; 5803 BranchInst *BI = cast<BranchInst>(I); 5804 if (VF > 1 && BI->isConditional() && 5805 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5806 PredicatedBBsAfterVectorization.end() || 5807 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5808 PredicatedBBsAfterVectorization.end())) 5809 ScalarPredicatedBB = true; 5810 5811 if (ScalarPredicatedBB) { 5812 // Return cost for branches around scalarized and predicated blocks. 5813 Type *Vec_i1Ty = 5814 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5815 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5816 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5817 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5818 // The back-edge branch will remain, as will all scalar branches. 5819 return TTI.getCFInstrCost(Instruction::Br); 5820 else 5821 // This branch will be eliminated by if-conversion. 5822 return 0; 5823 // Note: We currently assume zero cost for an unconditional branch inside 5824 // a predicated block since it will become a fall-through, although we 5825 // may decide in the future to call TTI for all branches. 5826 } 5827 case Instruction::PHI: { 5828 auto *Phi = cast<PHINode>(I); 5829 5830 // First-order recurrences are replaced by vector shuffles inside the loop. 5831 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5832 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5833 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5834 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5835 5836 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5837 // converted into select instructions. We require N - 1 selects per phi 5838 // node, where N is the number of incoming values. 5839 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5840 return (Phi->getNumIncomingValues() - 1) * 5841 TTI.getCmpSelInstrCost( 5842 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5843 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5844 5845 return TTI.getCFInstrCost(Instruction::PHI); 5846 } 5847 case Instruction::UDiv: 5848 case Instruction::SDiv: 5849 case Instruction::URem: 5850 case Instruction::SRem: 5851 // If we have a predicated instruction, it may not be executed for each 5852 // vector lane. Get the scalarization cost and scale this amount by the 5853 // probability of executing the predicated block. If the instruction is not 5854 // predicated, we fall through to the next case. 5855 if (VF > 1 && isScalarWithPredication(I)) { 5856 unsigned Cost = 0; 5857 5858 // These instructions have a non-void type, so account for the phi nodes 5859 // that we will create. This cost is likely to be zero. The phi node 5860 // cost, if any, should be scaled by the block probability because it 5861 // models a copy at the end of each predicated block. 5862 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5863 5864 // The cost of the non-predicated instruction. 5865 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5866 5867 // The cost of insertelement and extractelement instructions needed for 5868 // scalarization. 5869 Cost += getScalarizationOverhead(I, VF, TTI); 5870 5871 // Scale the cost by the probability of executing the predicated blocks. 5872 // This assumes the predicated block for each vector lane is equally 5873 // likely. 5874 return Cost / getReciprocalPredBlockProb(); 5875 } 5876 LLVM_FALLTHROUGH; 5877 case Instruction::Add: 5878 case Instruction::FAdd: 5879 case Instruction::Sub: 5880 case Instruction::FSub: 5881 case Instruction::Mul: 5882 case Instruction::FMul: 5883 case Instruction::FDiv: 5884 case Instruction::FRem: 5885 case Instruction::Shl: 5886 case Instruction::LShr: 5887 case Instruction::AShr: 5888 case Instruction::And: 5889 case Instruction::Or: 5890 case Instruction::Xor: { 5891 // Since we will replace the stride by 1 the multiplication should go away. 5892 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5893 return 0; 5894 // Certain instructions can be cheaper to vectorize if they have a constant 5895 // second vector operand. One example of this are shifts on x86. 5896 Value *Op2 = I->getOperand(1); 5897 TargetTransformInfo::OperandValueProperties Op2VP; 5898 TargetTransformInfo::OperandValueKind Op2VK = 5899 TTI.getOperandInfo(Op2, Op2VP); 5900 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5901 Op2VK = TargetTransformInfo::OK_UniformValue; 5902 5903 SmallVector<const Value *, 4> Operands(I->operand_values()); 5904 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5905 return N * TTI.getArithmeticInstrCost( 5906 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5907 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5908 } 5909 case Instruction::Select: { 5910 SelectInst *SI = cast<SelectInst>(I); 5911 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5912 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5913 Type *CondTy = SI->getCondition()->getType(); 5914 if (!ScalarCond) 5915 CondTy = VectorType::get(CondTy, VF); 5916 5917 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5918 } 5919 case Instruction::ICmp: 5920 case Instruction::FCmp: { 5921 Type *ValTy = I->getOperand(0)->getType(); 5922 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5923 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5924 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5925 VectorTy = ToVectorTy(ValTy, VF); 5926 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5927 } 5928 case Instruction::Store: 5929 case Instruction::Load: { 5930 unsigned Width = VF; 5931 if (Width > 1) { 5932 InstWidening Decision = getWideningDecision(I, Width); 5933 assert(Decision != CM_Unknown && 5934 "CM decision should be taken at this point"); 5935 if (Decision == CM_Scalarize) 5936 Width = 1; 5937 } 5938 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 5939 return getMemoryInstructionCost(I, VF); 5940 } 5941 case Instruction::ZExt: 5942 case Instruction::SExt: 5943 case Instruction::FPToUI: 5944 case Instruction::FPToSI: 5945 case Instruction::FPExt: 5946 case Instruction::PtrToInt: 5947 case Instruction::IntToPtr: 5948 case Instruction::SIToFP: 5949 case Instruction::UIToFP: 5950 case Instruction::Trunc: 5951 case Instruction::FPTrunc: 5952 case Instruction::BitCast: { 5953 // We optimize the truncation of induction variables having constant 5954 // integer steps. The cost of these truncations is the same as the scalar 5955 // operation. 5956 if (isOptimizableIVTruncate(I, VF)) { 5957 auto *Trunc = cast<TruncInst>(I); 5958 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 5959 Trunc->getSrcTy(), Trunc); 5960 } 5961 5962 Type *SrcScalarTy = I->getOperand(0)->getType(); 5963 Type *SrcVecTy = 5964 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 5965 if (canTruncateToMinimalBitwidth(I, VF)) { 5966 // This cast is going to be shrunk. This may remove the cast or it might 5967 // turn it into slightly different cast. For example, if MinBW == 16, 5968 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5969 // 5970 // Calculate the modified src and dest types. 5971 Type *MinVecTy = VectorTy; 5972 if (I->getOpcode() == Instruction::Trunc) { 5973 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5974 VectorTy = 5975 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5976 } else if (I->getOpcode() == Instruction::ZExt || 5977 I->getOpcode() == Instruction::SExt) { 5978 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 5979 VectorTy = 5980 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5981 } 5982 } 5983 5984 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5985 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 5986 } 5987 case Instruction::Call: { 5988 bool NeedToScalarize; 5989 CallInst *CI = cast<CallInst>(I); 5990 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5991 if (getVectorIntrinsicIDForCall(CI, TLI)) 5992 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5993 return CallCost; 5994 } 5995 default: 5996 // The cost of executing VF copies of the scalar instruction. This opcode 5997 // is unknown. Assume that it is the same as 'mul'. 5998 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 5999 getScalarizationOverhead(I, VF, TTI); 6000 } // end of switch. 6001 } 6002 6003 char LoopVectorize::ID = 0; 6004 6005 static const char lv_name[] = "Loop Vectorization"; 6006 6007 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6008 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6009 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6010 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6011 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6012 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6013 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6014 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6015 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6016 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6017 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6018 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6019 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6020 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6021 6022 namespace llvm { 6023 6024 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6025 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6026 } 6027 6028 } // end namespace llvm 6029 6030 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6031 // Check if the pointer operand of a load or store instruction is 6032 // consecutive. 6033 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6034 return Legal->isConsecutivePtr(Ptr); 6035 return false; 6036 } 6037 6038 void LoopVectorizationCostModel::collectValuesToIgnore() { 6039 // Ignore ephemeral values. 6040 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6041 6042 // Ignore type-promoting instructions we identified during reduction 6043 // detection. 6044 for (auto &Reduction : *Legal->getReductionVars()) { 6045 RecurrenceDescriptor &RedDes = Reduction.second; 6046 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6047 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6048 } 6049 // Ignore type-casting instructions we identified during induction 6050 // detection. 6051 for (auto &Induction : *Legal->getInductionVars()) { 6052 InductionDescriptor &IndDes = Induction.second; 6053 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6054 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6055 } 6056 } 6057 6058 VectorizationFactor 6059 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6060 unsigned UserVF) { 6061 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6062 const VectorizationFactor NoVectorization = {1U, 0U}; 6063 6064 // Outer loop handling: They may require CFG and instruction level 6065 // transformations before even evaluating whether vectorization is profitable. 6066 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6067 // the vectorization pipeline. 6068 if (!OrigLoop->empty()) { 6069 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 6070 // This won't be necessary when UserVF is not required in the VPlan-native 6071 // path. 6072 if (VPlanBuildStressTest && !UserVF) 6073 UserVF = 4; 6074 6075 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6076 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6077 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6078 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6079 buildVPlans(UserVF, UserVF); 6080 6081 // For VPlan build stress testing, we bail out after VPlan construction. 6082 if (VPlanBuildStressTest) 6083 return NoVectorization; 6084 6085 return {UserVF, 0}; 6086 } 6087 6088 LLVM_DEBUG( 6089 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6090 "VPlan-native path.\n"); 6091 return NoVectorization; 6092 } 6093 6094 VectorizationFactor 6095 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 6096 assert(OrigLoop->empty() && "Inner loop expected."); 6097 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6098 const VectorizationFactor NoVectorization = {1U, 0U}; 6099 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6100 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 6101 return NoVectorization; 6102 6103 // Invalidate interleave groups if all blocks of loop will be predicated. 6104 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6105 !useMaskedInterleavedAccesses(*TTI)) { 6106 LLVM_DEBUG( 6107 dbgs() 6108 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6109 "which requires masked-interleaved support.\n"); 6110 CM.InterleaveInfo.reset(); 6111 } 6112 6113 if (UserVF) { 6114 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6115 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6116 // Collect the instructions (and their associated costs) that will be more 6117 // profitable to scalarize. 6118 CM.selectUserVectorizationFactor(UserVF); 6119 buildVPlansWithVPRecipes(UserVF, UserVF); 6120 LLVM_DEBUG(printPlans(dbgs())); 6121 return {UserVF, 0}; 6122 } 6123 6124 unsigned MaxVF = MaybeMaxVF.getValue(); 6125 assert(MaxVF != 0 && "MaxVF is zero."); 6126 6127 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6128 // Collect Uniform and Scalar instructions after vectorization with VF. 6129 CM.collectUniformsAndScalars(VF); 6130 6131 // Collect the instructions (and their associated costs) that will be more 6132 // profitable to scalarize. 6133 if (VF > 1) 6134 CM.collectInstsToScalarize(VF); 6135 } 6136 6137 buildVPlansWithVPRecipes(1, MaxVF); 6138 LLVM_DEBUG(printPlans(dbgs())); 6139 if (MaxVF == 1) 6140 return NoVectorization; 6141 6142 // Select the optimal vectorization factor. 6143 return CM.selectVectorizationFactor(MaxVF); 6144 } 6145 6146 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6147 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6148 << '\n'); 6149 BestVF = VF; 6150 BestUF = UF; 6151 6152 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6153 return !Plan->hasVF(VF); 6154 }); 6155 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6156 } 6157 6158 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6159 DominatorTree *DT) { 6160 // Perform the actual loop transformation. 6161 6162 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6163 VPCallbackILV CallbackILV(ILV); 6164 6165 VPTransformState State{BestVF, BestUF, LI, 6166 DT, ILV.Builder, ILV.VectorLoopValueMap, 6167 &ILV, CallbackILV}; 6168 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6169 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6170 6171 //===------------------------------------------------===// 6172 // 6173 // Notice: any optimization or new instruction that go 6174 // into the code below should also be implemented in 6175 // the cost-model. 6176 // 6177 //===------------------------------------------------===// 6178 6179 // 2. Copy and widen instructions from the old loop into the new loop. 6180 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6181 VPlans.front()->execute(&State); 6182 6183 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6184 // predication, updating analyses. 6185 ILV.fixVectorizedLoop(); 6186 } 6187 6188 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6189 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6190 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6191 6192 // We create new control-flow for the vectorized loop, so the original 6193 // condition will be dead after vectorization if it's only used by the 6194 // branch. 6195 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6196 if (Cmp && Cmp->hasOneUse()) 6197 DeadInstructions.insert(Cmp); 6198 6199 // We create new "steps" for induction variable updates to which the original 6200 // induction variables map. An original update instruction will be dead if 6201 // all its users except the induction variable are dead. 6202 for (auto &Induction : *Legal->getInductionVars()) { 6203 PHINode *Ind = Induction.first; 6204 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6205 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6206 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6207 DeadInstructions.end(); 6208 })) 6209 DeadInstructions.insert(IndUpdate); 6210 6211 // We record as "Dead" also the type-casting instructions we had identified 6212 // during induction analysis. We don't need any handling for them in the 6213 // vectorized loop because we have proven that, under a proper runtime 6214 // test guarding the vectorized loop, the value of the phi, and the casted 6215 // value of the phi, are the same. The last instruction in this casting chain 6216 // will get its scalar/vector/widened def from the scalar/vector/widened def 6217 // of the respective phi node. Any other casts in the induction def-use chain 6218 // have no other uses outside the phi update chain, and will be ignored. 6219 InductionDescriptor &IndDes = Induction.second; 6220 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6221 DeadInstructions.insert(Casts.begin(), Casts.end()); 6222 } 6223 } 6224 6225 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6226 6227 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6228 6229 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6230 Instruction::BinaryOps BinOp) { 6231 // When unrolling and the VF is 1, we only need to add a simple scalar. 6232 Type *Ty = Val->getType(); 6233 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6234 6235 if (Ty->isFloatingPointTy()) { 6236 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6237 6238 // Floating point operations had to be 'fast' to enable the unrolling. 6239 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6240 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6241 } 6242 Constant *C = ConstantInt::get(Ty, StartIdx); 6243 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6244 } 6245 6246 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6247 SmallVector<Metadata *, 4> MDs; 6248 // Reserve first location for self reference to the LoopID metadata node. 6249 MDs.push_back(nullptr); 6250 bool IsUnrollMetadata = false; 6251 MDNode *LoopID = L->getLoopID(); 6252 if (LoopID) { 6253 // First find existing loop unrolling disable metadata. 6254 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6255 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6256 if (MD) { 6257 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6258 IsUnrollMetadata = 6259 S && S->getString().startswith("llvm.loop.unroll.disable"); 6260 } 6261 MDs.push_back(LoopID->getOperand(i)); 6262 } 6263 } 6264 6265 if (!IsUnrollMetadata) { 6266 // Add runtime unroll disable metadata. 6267 LLVMContext &Context = L->getHeader()->getContext(); 6268 SmallVector<Metadata *, 1> DisableOperands; 6269 DisableOperands.push_back( 6270 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6271 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6272 MDs.push_back(DisableNode); 6273 MDNode *NewLoopID = MDNode::get(Context, MDs); 6274 // Set operand 0 to refer to the loop id itself. 6275 NewLoopID->replaceOperandWith(0, NewLoopID); 6276 L->setLoopID(NewLoopID); 6277 } 6278 } 6279 6280 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6281 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6282 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6283 bool PredicateAtRangeStart = Predicate(Range.Start); 6284 6285 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6286 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6287 Range.End = TmpVF; 6288 break; 6289 } 6290 6291 return PredicateAtRangeStart; 6292 } 6293 6294 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6295 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6296 /// of VF's starting at a given VF and extending it as much as possible. Each 6297 /// vectorization decision can potentially shorten this sub-range during 6298 /// buildVPlan(). 6299 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6300 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6301 VFRange SubRange = {VF, MaxVF + 1}; 6302 VPlans.push_back(buildVPlan(SubRange)); 6303 VF = SubRange.End; 6304 } 6305 } 6306 6307 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6308 VPlanPtr &Plan) { 6309 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6310 6311 // Look for cached value. 6312 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6313 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6314 if (ECEntryIt != EdgeMaskCache.end()) 6315 return ECEntryIt->second; 6316 6317 VPValue *SrcMask = createBlockInMask(Src, Plan); 6318 6319 // The terminator has to be a branch inst! 6320 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6321 assert(BI && "Unexpected terminator found"); 6322 6323 if (!BI->isConditional()) 6324 return EdgeMaskCache[Edge] = SrcMask; 6325 6326 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6327 assert(EdgeMask && "No Edge Mask found for condition"); 6328 6329 if (BI->getSuccessor(0) != Dst) 6330 EdgeMask = Builder.createNot(EdgeMask); 6331 6332 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6333 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6334 6335 return EdgeMaskCache[Edge] = EdgeMask; 6336 } 6337 6338 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6339 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6340 6341 // Look for cached value. 6342 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6343 if (BCEntryIt != BlockMaskCache.end()) 6344 return BCEntryIt->second; 6345 6346 // All-one mask is modelled as no-mask following the convention for masked 6347 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6348 VPValue *BlockMask = nullptr; 6349 6350 if (OrigLoop->getHeader() == BB) { 6351 if (!CM.blockNeedsPredication(BB)) 6352 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6353 6354 // Introduce the early-exit compare IV <= BTC to form header block mask. 6355 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6356 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6357 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6358 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6359 return BlockMaskCache[BB] = BlockMask; 6360 } 6361 6362 // This is the block mask. We OR all incoming edges. 6363 for (auto *Predecessor : predecessors(BB)) { 6364 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6365 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6366 return BlockMaskCache[BB] = EdgeMask; 6367 6368 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6369 BlockMask = EdgeMask; 6370 continue; 6371 } 6372 6373 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6374 } 6375 6376 return BlockMaskCache[BB] = BlockMask; 6377 } 6378 6379 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6380 VFRange &Range, 6381 VPlanPtr &Plan) { 6382 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6383 if (!IG) 6384 return nullptr; 6385 6386 // Now check if IG is relevant for VF's in the given range. 6387 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6388 return [=](unsigned VF) -> bool { 6389 return (VF >= 2 && // Query is illegal for VF == 1 6390 CM.getWideningDecision(I, VF) == 6391 LoopVectorizationCostModel::CM_Interleave); 6392 }; 6393 }; 6394 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6395 return nullptr; 6396 6397 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6398 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6399 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6400 assert(I == IG->getInsertPos() && 6401 "Generating a recipe for an adjunct member of an interleave group"); 6402 6403 VPValue *Mask = nullptr; 6404 if (Legal->isMaskRequired(I)) 6405 Mask = createBlockInMask(I->getParent(), Plan); 6406 6407 return new VPInterleaveRecipe(IG, Mask); 6408 } 6409 6410 VPWidenMemoryInstructionRecipe * 6411 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6412 VPlanPtr &Plan) { 6413 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6414 return nullptr; 6415 6416 auto willWiden = [&](unsigned VF) -> bool { 6417 if (VF == 1) 6418 return false; 6419 if (CM.isScalarAfterVectorization(I, VF) || 6420 CM.isProfitableToScalarize(I, VF)) 6421 return false; 6422 LoopVectorizationCostModel::InstWidening Decision = 6423 CM.getWideningDecision(I, VF); 6424 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6425 "CM decision should be taken at this point."); 6426 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6427 "Interleave memory opportunity should be caught earlier."); 6428 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6429 }; 6430 6431 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6432 return nullptr; 6433 6434 VPValue *Mask = nullptr; 6435 if (Legal->isMaskRequired(I)) 6436 Mask = createBlockInMask(I->getParent(), Plan); 6437 6438 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6439 } 6440 6441 VPWidenIntOrFpInductionRecipe * 6442 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6443 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6444 // Check if this is an integer or fp induction. If so, build the recipe that 6445 // produces its scalar and vector values. 6446 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6447 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6448 II.getKind() == InductionDescriptor::IK_FpInduction) 6449 return new VPWidenIntOrFpInductionRecipe(Phi); 6450 6451 return nullptr; 6452 } 6453 6454 // Optimize the special case where the source is a constant integer 6455 // induction variable. Notice that we can only optimize the 'trunc' case 6456 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6457 // (c) other casts depend on pointer size. 6458 6459 // Determine whether \p K is a truncation based on an induction variable that 6460 // can be optimized. 6461 auto isOptimizableIVTruncate = 6462 [&](Instruction *K) -> std::function<bool(unsigned)> { 6463 return 6464 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6465 }; 6466 6467 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6468 isOptimizableIVTruncate(I), Range)) 6469 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6470 cast<TruncInst>(I)); 6471 return nullptr; 6472 } 6473 6474 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6475 PHINode *Phi = dyn_cast<PHINode>(I); 6476 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6477 return nullptr; 6478 6479 // We know that all PHIs in non-header blocks are converted into selects, so 6480 // we don't have to worry about the insertion order and we can just use the 6481 // builder. At this point we generate the predication tree. There may be 6482 // duplications since this is a simple recursive scan, but future 6483 // optimizations will clean it up. 6484 6485 SmallVector<VPValue *, 2> Masks; 6486 unsigned NumIncoming = Phi->getNumIncomingValues(); 6487 for (unsigned In = 0; In < NumIncoming; In++) { 6488 VPValue *EdgeMask = 6489 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6490 assert((EdgeMask || NumIncoming == 1) && 6491 "Multiple predecessors with one having a full mask"); 6492 if (EdgeMask) 6493 Masks.push_back(EdgeMask); 6494 } 6495 return new VPBlendRecipe(Phi, Masks); 6496 } 6497 6498 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6499 VFRange &Range) { 6500 6501 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6502 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6503 6504 if (IsPredicated) 6505 return false; 6506 6507 auto IsVectorizableOpcode = [](unsigned Opcode) { 6508 switch (Opcode) { 6509 case Instruction::Add: 6510 case Instruction::And: 6511 case Instruction::AShr: 6512 case Instruction::BitCast: 6513 case Instruction::Br: 6514 case Instruction::Call: 6515 case Instruction::FAdd: 6516 case Instruction::FCmp: 6517 case Instruction::FDiv: 6518 case Instruction::FMul: 6519 case Instruction::FPExt: 6520 case Instruction::FPToSI: 6521 case Instruction::FPToUI: 6522 case Instruction::FPTrunc: 6523 case Instruction::FRem: 6524 case Instruction::FSub: 6525 case Instruction::GetElementPtr: 6526 case Instruction::ICmp: 6527 case Instruction::IntToPtr: 6528 case Instruction::Load: 6529 case Instruction::LShr: 6530 case Instruction::Mul: 6531 case Instruction::Or: 6532 case Instruction::PHI: 6533 case Instruction::PtrToInt: 6534 case Instruction::SDiv: 6535 case Instruction::Select: 6536 case Instruction::SExt: 6537 case Instruction::Shl: 6538 case Instruction::SIToFP: 6539 case Instruction::SRem: 6540 case Instruction::Store: 6541 case Instruction::Sub: 6542 case Instruction::Trunc: 6543 case Instruction::UDiv: 6544 case Instruction::UIToFP: 6545 case Instruction::URem: 6546 case Instruction::Xor: 6547 case Instruction::ZExt: 6548 return true; 6549 } 6550 return false; 6551 }; 6552 6553 if (!IsVectorizableOpcode(I->getOpcode())) 6554 return false; 6555 6556 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6557 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6558 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6559 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6560 return false; 6561 } 6562 6563 auto willWiden = [&](unsigned VF) -> bool { 6564 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6565 CM.isProfitableToScalarize(I, VF))) 6566 return false; 6567 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6568 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6569 // The following case may be scalarized depending on the VF. 6570 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6571 // version of the instruction. 6572 // Is it beneficial to perform intrinsic call compared to lib call? 6573 bool NeedToScalarize; 6574 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6575 bool UseVectorIntrinsic = 6576 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6577 return UseVectorIntrinsic || !NeedToScalarize; 6578 } 6579 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6580 assert(CM.getWideningDecision(I, VF) == 6581 LoopVectorizationCostModel::CM_Scalarize && 6582 "Memory widening decisions should have been taken care by now"); 6583 return false; 6584 } 6585 return true; 6586 }; 6587 6588 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6589 return false; 6590 6591 // Success: widen this instruction. We optimize the common case where 6592 // consecutive instructions can be represented by a single recipe. 6593 if (!VPBB->empty()) { 6594 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6595 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6596 return true; 6597 } 6598 6599 VPBB->appendRecipe(new VPWidenRecipe(I)); 6600 return true; 6601 } 6602 6603 VPBasicBlock *VPRecipeBuilder::handleReplication( 6604 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6605 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6606 VPlanPtr &Plan) { 6607 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6608 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6609 Range); 6610 6611 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6612 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6613 6614 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6615 6616 // Find if I uses a predicated instruction. If so, it will use its scalar 6617 // value. Avoid hoisting the insert-element which packs the scalar value into 6618 // a vector value, as that happens iff all users use the vector value. 6619 for (auto &Op : I->operands()) 6620 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6621 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6622 PredInst2Recipe[PredInst]->setAlsoPack(false); 6623 6624 // Finalize the recipe for Instr, first if it is not predicated. 6625 if (!IsPredicated) { 6626 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6627 VPBB->appendRecipe(Recipe); 6628 return VPBB; 6629 } 6630 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6631 assert(VPBB->getSuccessors().empty() && 6632 "VPBB has successors when handling predicated replication."); 6633 // Record predicated instructions for above packing optimizations. 6634 PredInst2Recipe[I] = Recipe; 6635 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6636 VPBlockUtils::insertBlockAfter(Region, VPBB); 6637 auto *RegSucc = new VPBasicBlock(); 6638 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6639 return RegSucc; 6640 } 6641 6642 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6643 VPRecipeBase *PredRecipe, 6644 VPlanPtr &Plan) { 6645 // Instructions marked for predication are replicated and placed under an 6646 // if-then construct to prevent side-effects. 6647 6648 // Generate recipes to compute the block mask for this region. 6649 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6650 6651 // Build the triangular if-then region. 6652 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6653 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6654 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6655 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6656 auto *PHIRecipe = 6657 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6658 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6659 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6660 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6661 6662 // Note: first set Entry as region entry and then connect successors starting 6663 // from it in order, to propagate the "parent" of each VPBasicBlock. 6664 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6665 VPBlockUtils::connectBlocks(Pred, Exit); 6666 6667 return Region; 6668 } 6669 6670 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6671 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6672 VPRecipeBase *Recipe = nullptr; 6673 // Check if Instr should belong to an interleave memory recipe, or already 6674 // does. In the latter case Instr is irrelevant. 6675 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6676 VPBB->appendRecipe(Recipe); 6677 return true; 6678 } 6679 6680 // Check if Instr is a memory operation that should be widened. 6681 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6682 VPBB->appendRecipe(Recipe); 6683 return true; 6684 } 6685 6686 // Check if Instr should form some PHI recipe. 6687 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6688 VPBB->appendRecipe(Recipe); 6689 return true; 6690 } 6691 if ((Recipe = tryToBlend(Instr, Plan))) { 6692 VPBB->appendRecipe(Recipe); 6693 return true; 6694 } 6695 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6696 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6697 return true; 6698 } 6699 6700 // Check if Instr is to be widened by a general VPWidenRecipe, after 6701 // having first checked for specific widening recipes that deal with 6702 // Interleave Groups, Inductions and Phi nodes. 6703 if (tryToWiden(Instr, VPBB, Range)) 6704 return true; 6705 6706 return false; 6707 } 6708 6709 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6710 unsigned MaxVF) { 6711 assert(OrigLoop->empty() && "Inner loop expected."); 6712 6713 // Collect conditions feeding internal conditional branches; they need to be 6714 // represented in VPlan for it to model masking. 6715 SmallPtrSet<Value *, 1> NeedDef; 6716 6717 auto *Latch = OrigLoop->getLoopLatch(); 6718 for (BasicBlock *BB : OrigLoop->blocks()) { 6719 if (BB == Latch) 6720 continue; 6721 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6722 if (Branch && Branch->isConditional()) 6723 NeedDef.insert(Branch->getCondition()); 6724 } 6725 6726 // If the tail is to be folded by masking, the primary induction variable 6727 // needs to be represented in VPlan for it to model early-exit masking. 6728 if (CM.foldTailByMasking()) 6729 NeedDef.insert(Legal->getPrimaryInduction()); 6730 6731 // Collect instructions from the original loop that will become trivially dead 6732 // in the vectorized loop. We don't need to vectorize these instructions. For 6733 // example, original induction update instructions can become dead because we 6734 // separately emit induction "steps" when generating code for the new loop. 6735 // Similarly, we create a new latch condition when setting up the structure 6736 // of the new loop, so the old one can become dead. 6737 SmallPtrSet<Instruction *, 4> DeadInstructions; 6738 collectTriviallyDeadInstructions(DeadInstructions); 6739 6740 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6741 VFRange SubRange = {VF, MaxVF + 1}; 6742 VPlans.push_back( 6743 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6744 VF = SubRange.End; 6745 } 6746 } 6747 6748 LoopVectorizationPlanner::VPlanPtr 6749 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6750 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6751 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6752 // Hold a mapping from predicated instructions to their recipes, in order to 6753 // fix their AlsoPack behavior if a user is determined to replicate and use a 6754 // scalar instead of vector value. 6755 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6756 6757 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6758 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6759 6760 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6761 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6762 auto Plan = llvm::make_unique<VPlan>(VPBB); 6763 6764 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6765 // Represent values that will have defs inside VPlan. 6766 for (Value *V : NeedDef) 6767 Plan->addVPValue(V); 6768 6769 // Scan the body of the loop in a topological order to visit each basic block 6770 // after having visited its predecessor basic blocks. 6771 LoopBlocksDFS DFS(OrigLoop); 6772 DFS.perform(LI); 6773 6774 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6775 // Relevant instructions from basic block BB will be grouped into VPRecipe 6776 // ingredients and fill a new VPBasicBlock. 6777 unsigned VPBBsForBB = 0; 6778 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6779 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6780 VPBB = FirstVPBBForBB; 6781 Builder.setInsertPoint(VPBB); 6782 6783 std::vector<Instruction *> Ingredients; 6784 6785 // Organize the ingredients to vectorize from current basic block in the 6786 // right order. 6787 for (Instruction &I : BB->instructionsWithoutDebug()) { 6788 Instruction *Instr = &I; 6789 6790 // First filter out irrelevant instructions, to ensure no recipes are 6791 // built for them. 6792 if (isa<BranchInst>(Instr) || 6793 DeadInstructions.find(Instr) != DeadInstructions.end()) 6794 continue; 6795 6796 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6797 // member of the IG, do not construct any Recipe for it. 6798 const InterleaveGroup<Instruction> *IG = 6799 CM.getInterleavedAccessGroup(Instr); 6800 if (IG && Instr != IG->getInsertPos() && 6801 Range.Start >= 2 && // Query is illegal for VF == 1 6802 CM.getWideningDecision(Instr, Range.Start) == 6803 LoopVectorizationCostModel::CM_Interleave) { 6804 auto SinkCandidate = SinkAfterInverse.find(Instr); 6805 if (SinkCandidate != SinkAfterInverse.end()) 6806 Ingredients.push_back(SinkCandidate->second); 6807 continue; 6808 } 6809 6810 // Move instructions to handle first-order recurrences, step 1: avoid 6811 // handling this instruction until after we've handled the instruction it 6812 // should follow. 6813 auto SAIt = SinkAfter.find(Instr); 6814 if (SAIt != SinkAfter.end()) { 6815 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6816 << *SAIt->second 6817 << " to vectorize a 1st order recurrence.\n"); 6818 SinkAfterInverse[SAIt->second] = Instr; 6819 continue; 6820 } 6821 6822 Ingredients.push_back(Instr); 6823 6824 // Move instructions to handle first-order recurrences, step 2: push the 6825 // instruction to be sunk at its insertion point. 6826 auto SAInvIt = SinkAfterInverse.find(Instr); 6827 if (SAInvIt != SinkAfterInverse.end()) 6828 Ingredients.push_back(SAInvIt->second); 6829 } 6830 6831 // Introduce each ingredient into VPlan. 6832 for (Instruction *Instr : Ingredients) { 6833 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6834 continue; 6835 6836 // Otherwise, if all widening options failed, Instruction is to be 6837 // replicated. This may create a successor for VPBB. 6838 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6839 Instr, Range, VPBB, PredInst2Recipe, Plan); 6840 if (NextVPBB != VPBB) { 6841 VPBB = NextVPBB; 6842 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6843 : ""); 6844 } 6845 } 6846 } 6847 6848 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6849 // may also be empty, such as the last one VPBB, reflecting original 6850 // basic-blocks with no recipes. 6851 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6852 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6853 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6854 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6855 delete PreEntry; 6856 6857 std::string PlanName; 6858 raw_string_ostream RSO(PlanName); 6859 unsigned VF = Range.Start; 6860 Plan->addVF(VF); 6861 RSO << "Initial VPlan for VF={" << VF; 6862 for (VF *= 2; VF < Range.End; VF *= 2) { 6863 Plan->addVF(VF); 6864 RSO << "," << VF; 6865 } 6866 RSO << "},UF>=1"; 6867 RSO.flush(); 6868 Plan->setName(PlanName); 6869 6870 return Plan; 6871 } 6872 6873 LoopVectorizationPlanner::VPlanPtr 6874 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6875 // Outer loop handling: They may require CFG and instruction level 6876 // transformations before even evaluating whether vectorization is profitable. 6877 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6878 // the vectorization pipeline. 6879 assert(!OrigLoop->empty()); 6880 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6881 6882 // Create new empty VPlan 6883 auto Plan = llvm::make_unique<VPlan>(); 6884 6885 // Build hierarchical CFG 6886 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6887 HCFGBuilder.buildHierarchicalCFG(); 6888 6889 SmallPtrSet<Instruction *, 1> DeadInstructions; 6890 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6891 Plan, Legal->getInductionVars(), DeadInstructions); 6892 6893 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6894 Plan->addVF(VF); 6895 6896 return Plan; 6897 } 6898 6899 Value* LoopVectorizationPlanner::VPCallbackILV:: 6900 getOrCreateVectorValues(Value *V, unsigned Part) { 6901 return ILV.getOrCreateVectorValue(V, Part); 6902 } 6903 6904 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6905 O << " +\n" 6906 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6907 IG->getInsertPos()->printAsOperand(O, false); 6908 if (User) { 6909 O << ", "; 6910 User->getOperand(0)->printAsOperand(O); 6911 } 6912 O << "\\l\""; 6913 for (unsigned i = 0; i < IG->getFactor(); ++i) 6914 if (Instruction *I = IG->getMember(i)) 6915 O << " +\n" 6916 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 6917 } 6918 6919 void VPWidenRecipe::execute(VPTransformState &State) { 6920 for (auto &Instr : make_range(Begin, End)) 6921 State.ILV->widenInstruction(Instr); 6922 } 6923 6924 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 6925 assert(!State.Instance && "Int or FP induction being replicated."); 6926 State.ILV->widenIntOrFpInduction(IV, Trunc); 6927 } 6928 6929 void VPWidenPHIRecipe::execute(VPTransformState &State) { 6930 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 6931 } 6932 6933 void VPBlendRecipe::execute(VPTransformState &State) { 6934 State.ILV->setDebugLocFromInst(State.Builder, Phi); 6935 // We know that all PHIs in non-header blocks are converted into 6936 // selects, so we don't have to worry about the insertion order and we 6937 // can just use the builder. 6938 // At this point we generate the predication tree. There may be 6939 // duplications since this is a simple recursive scan, but future 6940 // optimizations will clean it up. 6941 6942 unsigned NumIncoming = Phi->getNumIncomingValues(); 6943 6944 assert((User || NumIncoming == 1) && 6945 "Multiple predecessors with predecessors having a full mask"); 6946 // Generate a sequence of selects of the form: 6947 // SELECT(Mask3, In3, 6948 // SELECT(Mask2, In2, 6949 // ( ...))) 6950 InnerLoopVectorizer::VectorParts Entry(State.UF); 6951 for (unsigned In = 0; In < NumIncoming; ++In) { 6952 for (unsigned Part = 0; Part < State.UF; ++Part) { 6953 // We might have single edge PHIs (blocks) - use an identity 6954 // 'select' for the first PHI operand. 6955 Value *In0 = 6956 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 6957 if (In == 0) 6958 Entry[Part] = In0; // Initialize with the first incoming value. 6959 else { 6960 // Select between the current value and the previous incoming edge 6961 // based on the incoming mask. 6962 Value *Cond = State.get(User->getOperand(In), Part); 6963 Entry[Part] = 6964 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 6965 } 6966 } 6967 } 6968 for (unsigned Part = 0; Part < State.UF; ++Part) 6969 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 6970 } 6971 6972 void VPInterleaveRecipe::execute(VPTransformState &State) { 6973 assert(!State.Instance && "Interleave group being replicated."); 6974 if (!User) 6975 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 6976 6977 // Last (and currently only) operand is a mask. 6978 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 6979 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 6980 for (unsigned Part = 0; Part < State.UF; ++Part) 6981 MaskValues[Part] = State.get(Mask, Part); 6982 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 6983 } 6984 6985 void VPReplicateRecipe::execute(VPTransformState &State) { 6986 if (State.Instance) { // Generate a single instance. 6987 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 6988 // Insert scalar instance packing it into a vector. 6989 if (AlsoPack && State.VF > 1) { 6990 // If we're constructing lane 0, initialize to start from undef. 6991 if (State.Instance->Lane == 0) { 6992 Value *Undef = 6993 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 6994 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 6995 } 6996 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 6997 } 6998 return; 6999 } 7000 7001 // Generate scalar instances for all VF lanes of all UF parts, unless the 7002 // instruction is uniform inwhich case generate only the first lane for each 7003 // of the UF parts. 7004 unsigned EndLane = IsUniform ? 1 : State.VF; 7005 for (unsigned Part = 0; Part < State.UF; ++Part) 7006 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7007 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7008 } 7009 7010 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7011 assert(State.Instance && "Branch on Mask works only on single instance."); 7012 7013 unsigned Part = State.Instance->Part; 7014 unsigned Lane = State.Instance->Lane; 7015 7016 Value *ConditionBit = nullptr; 7017 if (!User) // Block in mask is all-one. 7018 ConditionBit = State.Builder.getTrue(); 7019 else { 7020 VPValue *BlockInMask = User->getOperand(0); 7021 ConditionBit = State.get(BlockInMask, Part); 7022 if (ConditionBit->getType()->isVectorTy()) 7023 ConditionBit = State.Builder.CreateExtractElement( 7024 ConditionBit, State.Builder.getInt32(Lane)); 7025 } 7026 7027 // Replace the temporary unreachable terminator with a new conditional branch, 7028 // whose two destinations will be set later when they are created. 7029 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7030 assert(isa<UnreachableInst>(CurrentTerminator) && 7031 "Expected to replace unreachable terminator with conditional branch."); 7032 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7033 CondBr->setSuccessor(0, nullptr); 7034 ReplaceInstWithInst(CurrentTerminator, CondBr); 7035 } 7036 7037 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7038 assert(State.Instance && "Predicated instruction PHI works per instance."); 7039 Instruction *ScalarPredInst = cast<Instruction>( 7040 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7041 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7042 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7043 assert(PredicatingBB && "Predicated block has no single predecessor."); 7044 7045 // By current pack/unpack logic we need to generate only a single phi node: if 7046 // a vector value for the predicated instruction exists at this point it means 7047 // the instruction has vector users only, and a phi for the vector value is 7048 // needed. In this case the recipe of the predicated instruction is marked to 7049 // also do that packing, thereby "hoisting" the insert-element sequence. 7050 // Otherwise, a phi node for the scalar value is needed. 7051 unsigned Part = State.Instance->Part; 7052 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7053 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7054 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7055 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7056 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7057 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7058 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7059 } else { 7060 Type *PredInstType = PredInst->getType(); 7061 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7062 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7063 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7064 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7065 } 7066 } 7067 7068 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7069 if (!User) 7070 return State.ILV->vectorizeMemoryInstruction(&Instr); 7071 7072 // Last (and currently only) operand is a mask. 7073 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7074 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7075 for (unsigned Part = 0; Part < State.UF; ++Part) 7076 MaskValues[Part] = State.get(Mask, Part); 7077 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7078 } 7079 7080 // Process the loop in the VPlan-native vectorization path. This path builds 7081 // VPlan upfront in the vectorization pipeline, which allows to apply 7082 // VPlan-to-VPlan transformations from the very beginning without modifying the 7083 // input LLVM IR. 7084 static bool processLoopInVPlanNativePath( 7085 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7086 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7087 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7088 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7089 7090 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7091 Function *F = L->getHeader()->getParent(); 7092 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7093 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7094 &Hints, IAI); 7095 // Use the planner for outer loop vectorization. 7096 // TODO: CM is not used at this point inside the planner. Turn CM into an 7097 // optional argument if we don't need it in the future. 7098 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7099 7100 // Get user vectorization factor. 7101 unsigned UserVF = Hints.getWidth(); 7102 7103 // Check the function attributes to find out if this function should be 7104 // optimized for size. 7105 bool OptForSize = 7106 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7107 7108 // Plan how to best vectorize, return the best VF and its cost. 7109 VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7110 7111 // If we are stress testing VPlan builds, do not attempt to generate vector 7112 // code. 7113 if (VPlanBuildStressTest) 7114 return false; 7115 7116 LVP.setBestPlan(VF.Width, 1); 7117 7118 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, UserVF, 1, LVL, 7119 &CM); 7120 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7121 << L->getHeader()->getParent()->getName() << "\"\n"); 7122 LVP.executePlan(LB, DT); 7123 7124 // Mark the loop as already vectorized to avoid vectorizing again. 7125 Hints.setAlreadyVectorized(); 7126 7127 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7128 return true; 7129 } 7130 7131 bool LoopVectorizePass::processLoop(Loop *L) { 7132 assert((EnableVPlanNativePath || L->empty()) && 7133 "VPlan-native path is not enabled. Only process inner loops."); 7134 7135 #ifndef NDEBUG 7136 const std::string DebugLocStr = getDebugLocString(L); 7137 #endif /* NDEBUG */ 7138 7139 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7140 << L->getHeader()->getParent()->getName() << "\" from " 7141 << DebugLocStr << "\n"); 7142 7143 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7144 7145 LLVM_DEBUG( 7146 dbgs() << "LV: Loop hints:" 7147 << " force=" 7148 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7149 ? "disabled" 7150 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7151 ? "enabled" 7152 : "?")) 7153 << " width=" << Hints.getWidth() 7154 << " unroll=" << Hints.getInterleave() << "\n"); 7155 7156 // Function containing loop 7157 Function *F = L->getHeader()->getParent(); 7158 7159 // Looking at the diagnostic output is the only way to determine if a loop 7160 // was vectorized (other than looking at the IR or machine code), so it 7161 // is important to generate an optimization remark for each loop. Most of 7162 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7163 // generated as OptimizationRemark and OptimizationRemarkMissed are 7164 // less verbose reporting vectorized loops and unvectorized loops that may 7165 // benefit from vectorization, respectively. 7166 7167 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7168 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7169 return false; 7170 } 7171 7172 PredicatedScalarEvolution PSE(*SE, *L); 7173 7174 // Check if it is legal to vectorize the loop. 7175 LoopVectorizationRequirements Requirements(*ORE); 7176 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7177 &Requirements, &Hints, DB, AC); 7178 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7179 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7180 emitMissedWarning(F, L, Hints, ORE); 7181 return false; 7182 } 7183 7184 // Check the function attributes to find out if this function should be 7185 // optimized for size. 7186 bool OptForSize = 7187 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7188 7189 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7190 // here. They may require CFG and instruction level transformations before 7191 // even evaluating whether vectorization is profitable. Since we cannot modify 7192 // the incoming IR, we need to build VPlan upfront in the vectorization 7193 // pipeline. 7194 if (!L->empty()) 7195 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7196 ORE, Hints); 7197 7198 assert(L->empty() && "Inner loop expected."); 7199 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7200 // count by optimizing for size, to minimize overheads. 7201 // Prefer constant trip counts over profile data, over upper bound estimate. 7202 unsigned ExpectedTC = 0; 7203 bool HasExpectedTC = false; 7204 if (const SCEVConstant *ConstExits = 7205 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7206 const APInt &ExitsCount = ConstExits->getAPInt(); 7207 // We are interested in small values for ExpectedTC. Skip over those that 7208 // can't fit an unsigned. 7209 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7210 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7211 HasExpectedTC = true; 7212 } 7213 } 7214 // ExpectedTC may be large because it's bound by a variable. Check 7215 // profiling information to validate we should vectorize. 7216 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7217 auto EstimatedTC = getLoopEstimatedTripCount(L); 7218 if (EstimatedTC) { 7219 ExpectedTC = *EstimatedTC; 7220 HasExpectedTC = true; 7221 } 7222 } 7223 if (!HasExpectedTC) { 7224 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7225 HasExpectedTC = (ExpectedTC > 0); 7226 } 7227 7228 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7229 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7230 << "This loop is worth vectorizing only if no scalar " 7231 << "iteration overheads are incurred."); 7232 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7233 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7234 else { 7235 LLVM_DEBUG(dbgs() << "\n"); 7236 // Loops with a very small trip count are considered for vectorization 7237 // under OptForSize, thereby making sure the cost of their loop body is 7238 // dominant, free of runtime guards and scalar iteration overheads. 7239 OptForSize = true; 7240 } 7241 } 7242 7243 // Check the function attributes to see if implicit floats are allowed. 7244 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7245 // an integer loop and the vector instructions selected are purely integer 7246 // vector instructions? 7247 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7248 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7249 "attribute is used.\n"); 7250 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7251 "NoImplicitFloat", L) 7252 << "loop not vectorized due to NoImplicitFloat attribute"); 7253 emitMissedWarning(F, L, Hints, ORE); 7254 return false; 7255 } 7256 7257 // Check if the target supports potentially unsafe FP vectorization. 7258 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7259 // for the target we're vectorizing for, to make sure none of the 7260 // additional fp-math flags can help. 7261 if (Hints.isPotentiallyUnsafe() && 7262 TTI->isFPVectorizationPotentiallyUnsafe()) { 7263 LLVM_DEBUG( 7264 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7265 ORE->emit( 7266 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7267 << "loop not vectorized due to unsafe FP support."); 7268 emitMissedWarning(F, L, Hints, ORE); 7269 return false; 7270 } 7271 7272 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7273 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7274 7275 // If an override option has been passed in for interleaved accesses, use it. 7276 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7277 UseInterleaved = EnableInterleavedMemAccesses; 7278 7279 // Analyze interleaved memory accesses. 7280 if (UseInterleaved) { 7281 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7282 } 7283 7284 // Use the cost model. 7285 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7286 &Hints, IAI); 7287 CM.collectValuesToIgnore(); 7288 7289 // Use the planner for vectorization. 7290 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7291 7292 // Get user vectorization factor. 7293 unsigned UserVF = Hints.getWidth(); 7294 7295 // Plan how to best vectorize, return the best VF and its cost. 7296 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 7297 7298 // Select the interleave count. 7299 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7300 7301 // Get user interleave count. 7302 unsigned UserIC = Hints.getInterleave(); 7303 7304 // Identify the diagnostic messages that should be produced. 7305 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7306 bool VectorizeLoop = true, InterleaveLoop = true; 7307 if (Requirements.doesNotMeet(F, L, Hints)) { 7308 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7309 "requirements.\n"); 7310 emitMissedWarning(F, L, Hints, ORE); 7311 return false; 7312 } 7313 7314 if (VF.Width == 1) { 7315 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7316 VecDiagMsg = std::make_pair( 7317 "VectorizationNotBeneficial", 7318 "the cost-model indicates that vectorization is not beneficial"); 7319 VectorizeLoop = false; 7320 } 7321 7322 if (IC == 1 && UserIC <= 1) { 7323 // Tell the user interleaving is not beneficial. 7324 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7325 IntDiagMsg = std::make_pair( 7326 "InterleavingNotBeneficial", 7327 "the cost-model indicates that interleaving is not beneficial"); 7328 InterleaveLoop = false; 7329 if (UserIC == 1) { 7330 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7331 IntDiagMsg.second += 7332 " and is explicitly disabled or interleave count is set to 1"; 7333 } 7334 } else if (IC > 1 && UserIC == 1) { 7335 // Tell the user interleaving is beneficial, but it explicitly disabled. 7336 LLVM_DEBUG( 7337 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7338 IntDiagMsg = std::make_pair( 7339 "InterleavingBeneficialButDisabled", 7340 "the cost-model indicates that interleaving is beneficial " 7341 "but is explicitly disabled or interleave count is set to 1"); 7342 InterleaveLoop = false; 7343 } 7344 7345 // Override IC if user provided an interleave count. 7346 IC = UserIC > 0 ? UserIC : IC; 7347 7348 // Emit diagnostic messages, if any. 7349 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7350 if (!VectorizeLoop && !InterleaveLoop) { 7351 // Do not vectorize or interleaving the loop. 7352 ORE->emit([&]() { 7353 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7354 L->getStartLoc(), L->getHeader()) 7355 << VecDiagMsg.second; 7356 }); 7357 ORE->emit([&]() { 7358 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7359 L->getStartLoc(), L->getHeader()) 7360 << IntDiagMsg.second; 7361 }); 7362 return false; 7363 } else if (!VectorizeLoop && InterleaveLoop) { 7364 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7365 ORE->emit([&]() { 7366 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7367 L->getStartLoc(), L->getHeader()) 7368 << VecDiagMsg.second; 7369 }); 7370 } else if (VectorizeLoop && !InterleaveLoop) { 7371 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7372 << ") in " << DebugLocStr << '\n'); 7373 ORE->emit([&]() { 7374 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7375 L->getStartLoc(), L->getHeader()) 7376 << IntDiagMsg.second; 7377 }); 7378 } else if (VectorizeLoop && InterleaveLoop) { 7379 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7380 << ") in " << DebugLocStr << '\n'); 7381 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7382 } 7383 7384 LVP.setBestPlan(VF.Width, IC); 7385 7386 using namespace ore; 7387 7388 if (!VectorizeLoop) { 7389 assert(IC > 1 && "interleave count should not be 1 or 0"); 7390 // If we decided that it is not legal to vectorize the loop, then 7391 // interleave it. 7392 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7393 &CM); 7394 LVP.executePlan(Unroller, DT); 7395 7396 ORE->emit([&]() { 7397 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7398 L->getHeader()) 7399 << "interleaved loop (interleaved count: " 7400 << NV("InterleaveCount", IC) << ")"; 7401 }); 7402 } else { 7403 // If we decided that it is *legal* to vectorize the loop, then do it. 7404 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7405 &LVL, &CM); 7406 LVP.executePlan(LB, DT); 7407 ++LoopsVectorized; 7408 7409 // Add metadata to disable runtime unrolling a scalar loop when there are 7410 // no runtime checks about strides and memory. A scalar loop that is 7411 // rarely used is not worth unrolling. 7412 if (!LB.areSafetyChecksAdded()) 7413 AddRuntimeUnrollDisableMetaData(L); 7414 7415 // Report the vectorization decision. 7416 ORE->emit([&]() { 7417 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7418 L->getHeader()) 7419 << "vectorized loop (vectorization width: " 7420 << NV("VectorizationFactor", VF.Width) 7421 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7422 }); 7423 } 7424 7425 // Mark the loop as already vectorized to avoid vectorizing again. 7426 Hints.setAlreadyVectorized(); 7427 7428 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7429 return true; 7430 } 7431 7432 bool LoopVectorizePass::runImpl( 7433 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7434 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7435 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7436 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7437 OptimizationRemarkEmitter &ORE_) { 7438 SE = &SE_; 7439 LI = &LI_; 7440 TTI = &TTI_; 7441 DT = &DT_; 7442 BFI = &BFI_; 7443 TLI = TLI_; 7444 AA = &AA_; 7445 AC = &AC_; 7446 GetLAA = &GetLAA_; 7447 DB = &DB_; 7448 ORE = &ORE_; 7449 7450 // Don't attempt if 7451 // 1. the target claims to have no vector registers, and 7452 // 2. interleaving won't help ILP. 7453 // 7454 // The second condition is necessary because, even if the target has no 7455 // vector registers, loop vectorization may still enable scalar 7456 // interleaving. 7457 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7458 return false; 7459 7460 bool Changed = false; 7461 7462 // The vectorizer requires loops to be in simplified form. 7463 // Since simplification may add new inner loops, it has to run before the 7464 // legality and profitability checks. This means running the loop vectorizer 7465 // will simplify all loops, regardless of whether anything end up being 7466 // vectorized. 7467 for (auto &L : *LI) 7468 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7469 7470 // Build up a worklist of inner-loops to vectorize. This is necessary as 7471 // the act of vectorizing or partially unrolling a loop creates new loops 7472 // and can invalidate iterators across the loops. 7473 SmallVector<Loop *, 8> Worklist; 7474 7475 for (Loop *L : *LI) 7476 collectSupportedLoops(*L, LI, ORE, Worklist); 7477 7478 LoopsAnalyzed += Worklist.size(); 7479 7480 // Now walk the identified inner loops. 7481 while (!Worklist.empty()) { 7482 Loop *L = Worklist.pop_back_val(); 7483 7484 // For the inner loops we actually process, form LCSSA to simplify the 7485 // transform. 7486 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7487 7488 Changed |= processLoop(L); 7489 } 7490 7491 // Process each loop nest in the function. 7492 return Changed; 7493 } 7494 7495 PreservedAnalyses LoopVectorizePass::run(Function &F, 7496 FunctionAnalysisManager &AM) { 7497 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7498 auto &LI = AM.getResult<LoopAnalysis>(F); 7499 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7500 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7501 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7502 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7503 auto &AA = AM.getResult<AAManager>(F); 7504 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7505 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7506 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7507 7508 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7509 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7510 [&](Loop &L) -> const LoopAccessInfo & { 7511 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 7512 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7513 }; 7514 bool Changed = 7515 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7516 if (!Changed) 7517 return PreservedAnalyses::all(); 7518 PreservedAnalyses PA; 7519 7520 // We currently do not preserve loopinfo/dominator analyses with outer loop 7521 // vectorization. Until this is addressed, mark these analyses as preserved 7522 // only for non-VPlan-native path. 7523 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7524 if (!EnableVPlanNativePath) { 7525 PA.preserve<LoopAnalysis>(); 7526 PA.preserve<DominatorTreeAnalysis>(); 7527 } 7528 PA.preserve<BasicAA>(); 7529 PA.preserve<GlobalsAA>(); 7530 return PA; 7531 } 7532