1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPWidenRecipe *WidenRec,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPWidenGEPRecipe *WidenGEPRec,
502                 VPUser &Indices, unsigned UF, ElementCount VF,
503                 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant,
504                 VPTransformState &State);
505 
506   /// Vectorize a single first-order recurrence or pointer induction PHINode in
507   /// a block. This method handles the induction variable canonicalization. It
508   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
509   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
510                            VPTransformState &State);
511 
512   /// A helper function to scalarize a single Instruction in the innermost loop.
513   /// Generates a sequence of scalar instances for each lane between \p MinLane
514   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
515   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
516   /// Instr's operands.
517   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
518                             const VPIteration &Instance, bool IfPredicateInstr,
519                             VPTransformState &State);
520 
521   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
522   /// is provided, the integer induction variable will first be truncated to
523   /// the corresponding type.
524   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
525                              VPValue *Def, VPValue *CastDef,
526                              VPTransformState &State);
527 
528   /// Construct the vector value of a scalarized value \p V one lane at a time.
529   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
530                                  VPTransformState &State);
531 
532   /// Try to vectorize interleaved access group \p Group with the base address
533   /// given in \p Addr, optionally masking the vector operations if \p
534   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
535   /// values in the vectorized loop.
536   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
537                                 ArrayRef<VPValue *> VPDefs,
538                                 VPTransformState &State, VPValue *Addr,
539                                 ArrayRef<VPValue *> StoredValues,
540                                 VPValue *BlockInMask = nullptr);
541 
542   /// Vectorize Load and Store instructions with the base address given in \p
543   /// Addr, optionally masking the vector operations if \p BlockInMask is
544   /// non-null. Use \p State to translate given VPValues to IR values in the
545   /// vectorized loop.
546   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
547                                   VPValue *Def, VPValue *Addr,
548                                   VPValue *StoredValue, VPValue *BlockInMask,
549                                   bool ConsecutiveStride, bool Reverse);
550 
551   /// Set the debug location in the builder \p Ptr using the debug location in
552   /// \p V. If \p Ptr is None then it uses the class member's Builder.
553   void setDebugLocFromInst(const Value *V,
554                            Optional<IRBuilder<> *> CustomBuilder = None);
555 
556   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
557   void fixNonInductionPHIs(VPTransformState &State);
558 
559   /// Returns true if the reordering of FP operations is not allowed, but we are
560   /// able to vectorize with strict in-order reductions for the given RdxDesc.
561   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
562 
563   /// Create a broadcast instruction. This method generates a broadcast
564   /// instruction (shuffle) for loop invariant values and for the induction
565   /// value. If this is the induction variable then we extend it to N, N+1, ...
566   /// this is needed because each iteration in the loop corresponds to a SIMD
567   /// element.
568   virtual Value *getBroadcastInstrs(Value *V);
569 
570 protected:
571   friend class LoopVectorizationPlanner;
572 
573   /// A small list of PHINodes.
574   using PhiVector = SmallVector<PHINode *, 4>;
575 
576   /// A type for scalarized values in the new loop. Each value from the
577   /// original loop, when scalarized, is represented by UF x VF scalar values
578   /// in the new unrolled loop, where UF is the unroll factor and VF is the
579   /// vectorization factor.
580   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
581 
582   /// Set up the values of the IVs correctly when exiting the vector loop.
583   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
584                     Value *CountRoundDown, Value *EndValue,
585                     BasicBlock *MiddleBlock);
586 
587   /// Create a new induction variable inside L.
588   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
589                                    Value *Step, Instruction *DL);
590 
591   /// Handle all cross-iteration phis in the header.
592   void fixCrossIterationPHIs(VPTransformState &State);
593 
594   /// Create the exit value of first order recurrences in the middle block and
595   /// update their users.
596   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
597 
598   /// Create code for the loop exit value of the reduction.
599   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
600 
601   /// Clear NSW/NUW flags from reduction instructions if necessary.
602   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
603                                VPTransformState &State);
604 
605   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
606   /// means we need to add the appropriate incoming value from the middle
607   /// block as exiting edges from the scalar epilogue loop (if present) are
608   /// already in place, and we exit the vector loop exclusively to the middle
609   /// block.
610   void fixLCSSAPHIs(VPTransformState &State);
611 
612   /// Iteratively sink the scalarized operands of a predicated instruction into
613   /// the block that was created for it.
614   void sinkScalarOperands(Instruction *PredInst);
615 
616   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
617   /// represented as.
618   void truncateToMinimalBitwidths(VPTransformState &State);
619 
620   /// This function adds
621   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
622   /// to each vector element of Val. The sequence starts at StartIndex.
623   /// \p Opcode is relevant for FP induction variable.
624   virtual Value *
625   getStepVector(Value *Val, Value *StartIdx, Value *Step,
626                 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd);
627 
628   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
629   /// variable on which to base the steps, \p Step is the size of the step, and
630   /// \p EntryVal is the value from the original loop that maps to the steps.
631   /// Note that \p EntryVal doesn't have to be an induction variable - it
632   /// can also be a truncate instruction.
633   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
634                         const InductionDescriptor &ID, VPValue *Def,
635                         VPValue *CastDef, VPTransformState &State);
636 
637   /// Create a vector induction phi node based on an existing scalar one. \p
638   /// EntryVal is the value from the original loop that maps to the vector phi
639   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
640   /// truncate instruction, instead of widening the original IV, we widen a
641   /// version of the IV truncated to \p EntryVal's type.
642   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
643                                        Value *Step, Value *Start,
644                                        Instruction *EntryVal, VPValue *Def,
645                                        VPValue *CastDef,
646                                        VPTransformState &State);
647 
648   /// Returns true if an instruction \p I should be scalarized instead of
649   /// vectorized for the chosen vectorization factor.
650   bool shouldScalarizeInstruction(Instruction *I) const;
651 
652   /// Returns true if we should generate a scalar version of \p IV.
653   bool needsScalarInduction(Instruction *IV) const;
654 
655   /// If there is a cast involved in the induction variable \p ID, which should
656   /// be ignored in the vectorized loop body, this function records the
657   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
658   /// cast. We had already proved that the casted Phi is equal to the uncasted
659   /// Phi in the vectorized loop (under a runtime guard), and therefore
660   /// there is no need to vectorize the cast - the same value can be used in the
661   /// vector loop for both the Phi and the cast.
662   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
663   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
664   ///
665   /// \p EntryVal is the value from the original loop that maps to the vector
666   /// phi node and is used to distinguish what is the IV currently being
667   /// processed - original one (if \p EntryVal is a phi corresponding to the
668   /// original IV) or the "newly-created" one based on the proof mentioned above
669   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
670   /// latter case \p EntryVal is a TruncInst and we must not record anything for
671   /// that IV, but it's error-prone to expect callers of this routine to care
672   /// about that, hence this explicit parameter.
673   void recordVectorLoopValueForInductionCast(
674       const InductionDescriptor &ID, const Instruction *EntryVal,
675       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
676       unsigned Part, unsigned Lane = UINT_MAX);
677 
678   /// Generate a shuffle sequence that will reverse the vector Vec.
679   virtual Value *reverseVector(Value *Vec);
680 
681   /// Returns (and creates if needed) the original loop trip count.
682   Value *getOrCreateTripCount(Loop *NewLoop);
683 
684   /// Returns (and creates if needed) the trip count of the widened loop.
685   Value *getOrCreateVectorTripCount(Loop *NewLoop);
686 
687   /// Returns a bitcasted value to the requested vector type.
688   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
689   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
690                                 const DataLayout &DL);
691 
692   /// Emit a bypass check to see if the vector trip count is zero, including if
693   /// it overflows.
694   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
695 
696   /// Emit a bypass check to see if all of the SCEV assumptions we've
697   /// had to make are correct. Returns the block containing the checks or
698   /// nullptr if no checks have been added.
699   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
700 
701   /// Emit bypass checks to check any memory assumptions we may have made.
702   /// Returns the block containing the checks or nullptr if no checks have been
703   /// added.
704   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
705 
706   /// Compute the transformed value of Index at offset StartValue using step
707   /// StepValue.
708   /// For integer induction, returns StartValue + Index * StepValue.
709   /// For pointer induction, returns StartValue[Index * StepValue].
710   /// FIXME: The newly created binary instructions should contain nsw/nuw
711   /// flags, which can be found from the original scalar operations.
712   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
713                               const DataLayout &DL,
714                               const InductionDescriptor &ID) const;
715 
716   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
717   /// vector loop preheader, middle block and scalar preheader. Also
718   /// allocate a loop object for the new vector loop and return it.
719   Loop *createVectorLoopSkeleton(StringRef Prefix);
720 
721   /// Create new phi nodes for the induction variables to resume iteration count
722   /// in the scalar epilogue, from where the vectorized loop left off (given by
723   /// \p VectorTripCount).
724   /// In cases where the loop skeleton is more complicated (eg. epilogue
725   /// vectorization) and the resume values can come from an additional bypass
726   /// block, the \p AdditionalBypass pair provides information about the bypass
727   /// block and the end value on the edge from bypass to this loop.
728   void createInductionResumeValues(
729       Loop *L, Value *VectorTripCount,
730       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
731 
732   /// Complete the loop skeleton by adding debug MDs, creating appropriate
733   /// conditional branches in the middle block, preparing the builder and
734   /// running the verifier. Take in the vector loop \p L as argument, and return
735   /// the preheader of the completed vector loop.
736   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
737 
738   /// Add additional metadata to \p To that was not present on \p Orig.
739   ///
740   /// Currently this is used to add the noalias annotations based on the
741   /// inserted memchecks.  Use this for instructions that are *cloned* into the
742   /// vector loop.
743   void addNewMetadata(Instruction *To, const Instruction *Orig);
744 
745   /// Add metadata from one instruction to another.
746   ///
747   /// This includes both the original MDs from \p From and additional ones (\see
748   /// addNewMetadata).  Use this for *newly created* instructions in the vector
749   /// loop.
750   void addMetadata(Instruction *To, Instruction *From);
751 
752   /// Similar to the previous function but it adds the metadata to a
753   /// vector of instructions.
754   void addMetadata(ArrayRef<Value *> To, Instruction *From);
755 
756   /// Collect poison-generating recipes that may generate a poison value that is
757   /// used after vectorization, even when their operands are not poison. Those
758   /// recipes meet the following conditions:
759   ///  * Contribute to the address computation of a recipe generating a widen
760   ///    memory load/store (VPWidenMemoryInstructionRecipe or
761   ///    VPInterleaveRecipe).
762   ///  * Such a widen memory load/store has at least one underlying Instruction
763   ///    that is in a basic block that needs predication and after vectorization
764   ///    the generated instruction won't be predicated.
765   void collectPoisonGeneratingRecipes(VPTransformState &State);
766 
767   /// Allow subclasses to override and print debug traces before/after vplan
768   /// execution, when trace information is requested.
769   virtual void printDebugTracesAtStart(){};
770   virtual void printDebugTracesAtEnd(){};
771 
772   /// The original loop.
773   Loop *OrigLoop;
774 
775   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
776   /// dynamic knowledge to simplify SCEV expressions and converts them to a
777   /// more usable form.
778   PredicatedScalarEvolution &PSE;
779 
780   /// Loop Info.
781   LoopInfo *LI;
782 
783   /// Dominator Tree.
784   DominatorTree *DT;
785 
786   /// Alias Analysis.
787   AAResults *AA;
788 
789   /// Target Library Info.
790   const TargetLibraryInfo *TLI;
791 
792   /// Target Transform Info.
793   const TargetTransformInfo *TTI;
794 
795   /// Assumption Cache.
796   AssumptionCache *AC;
797 
798   /// Interface to emit optimization remarks.
799   OptimizationRemarkEmitter *ORE;
800 
801   /// LoopVersioning.  It's only set up (non-null) if memchecks were
802   /// used.
803   ///
804   /// This is currently only used to add no-alias metadata based on the
805   /// memchecks.  The actually versioning is performed manually.
806   std::unique_ptr<LoopVersioning> LVer;
807 
808   /// The vectorization SIMD factor to use. Each vector will have this many
809   /// vector elements.
810   ElementCount VF;
811 
812   /// The vectorization unroll factor to use. Each scalar is vectorized to this
813   /// many different vector instructions.
814   unsigned UF;
815 
816   /// The builder that we use
817   IRBuilder<> Builder;
818 
819   // --- Vectorization state ---
820 
821   /// The vector-loop preheader.
822   BasicBlock *LoopVectorPreHeader;
823 
824   /// The scalar-loop preheader.
825   BasicBlock *LoopScalarPreHeader;
826 
827   /// Middle Block between the vector and the scalar.
828   BasicBlock *LoopMiddleBlock;
829 
830   /// The unique ExitBlock of the scalar loop if one exists.  Note that
831   /// there can be multiple exiting edges reaching this block.
832   BasicBlock *LoopExitBlock;
833 
834   /// The vector loop body.
835   BasicBlock *LoopVectorBody;
836 
837   /// The scalar loop body.
838   BasicBlock *LoopScalarBody;
839 
840   /// A list of all bypass blocks. The first block is the entry of the loop.
841   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
842 
843   /// The new Induction variable which was added to the new block.
844   PHINode *Induction = nullptr;
845 
846   /// The induction variable of the old basic block.
847   PHINode *OldInduction = nullptr;
848 
849   /// Store instructions that were predicated.
850   SmallVector<Instruction *, 4> PredicatedInstructions;
851 
852   /// Trip count of the original loop.
853   Value *TripCount = nullptr;
854 
855   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
856   Value *VectorTripCount = nullptr;
857 
858   /// The legality analysis.
859   LoopVectorizationLegality *Legal;
860 
861   /// The profitablity analysis.
862   LoopVectorizationCostModel *Cost;
863 
864   // Record whether runtime checks are added.
865   bool AddedSafetyChecks = false;
866 
867   // Holds the end values for each induction variable. We save the end values
868   // so we can later fix-up the external users of the induction variables.
869   DenseMap<PHINode *, Value *> IVEndValues;
870 
871   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
872   // fixed up at the end of vector code generation.
873   SmallVector<PHINode *, 8> OrigPHIsToFix;
874 
875   /// BFI and PSI are used to check for profile guided size optimizations.
876   BlockFrequencyInfo *BFI;
877   ProfileSummaryInfo *PSI;
878 
879   // Whether this loop should be optimized for size based on profile guided size
880   // optimizatios.
881   bool OptForSizeBasedOnProfile;
882 
883   /// Structure to hold information about generated runtime checks, responsible
884   /// for cleaning the checks, if vectorization turns out unprofitable.
885   GeneratedRTChecks &RTChecks;
886 };
887 
888 class InnerLoopUnroller : public InnerLoopVectorizer {
889 public:
890   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
891                     LoopInfo *LI, DominatorTree *DT,
892                     const TargetLibraryInfo *TLI,
893                     const TargetTransformInfo *TTI, AssumptionCache *AC,
894                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
895                     LoopVectorizationLegality *LVL,
896                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
897                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
898       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
899                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
900                             BFI, PSI, Check) {}
901 
902 private:
903   Value *getBroadcastInstrs(Value *V) override;
904   Value *getStepVector(
905       Value *Val, Value *StartIdx, Value *Step,
906       Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override;
907   Value *reverseVector(Value *Vec) override;
908 };
909 
910 /// Encapsulate information regarding vectorization of a loop and its epilogue.
911 /// This information is meant to be updated and used across two stages of
912 /// epilogue vectorization.
913 struct EpilogueLoopVectorizationInfo {
914   ElementCount MainLoopVF = ElementCount::getFixed(0);
915   unsigned MainLoopUF = 0;
916   ElementCount EpilogueVF = ElementCount::getFixed(0);
917   unsigned EpilogueUF = 0;
918   BasicBlock *MainLoopIterationCountCheck = nullptr;
919   BasicBlock *EpilogueIterationCountCheck = nullptr;
920   BasicBlock *SCEVSafetyCheck = nullptr;
921   BasicBlock *MemSafetyCheck = nullptr;
922   Value *TripCount = nullptr;
923   Value *VectorTripCount = nullptr;
924 
925   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
926                                 ElementCount EVF, unsigned EUF)
927       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
928     assert(EUF == 1 &&
929            "A high UF for the epilogue loop is likely not beneficial.");
930   }
931 };
932 
933 /// An extension of the inner loop vectorizer that creates a skeleton for a
934 /// vectorized loop that has its epilogue (residual) also vectorized.
935 /// The idea is to run the vplan on a given loop twice, firstly to setup the
936 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
937 /// from the first step and vectorize the epilogue.  This is achieved by
938 /// deriving two concrete strategy classes from this base class and invoking
939 /// them in succession from the loop vectorizer planner.
940 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
941 public:
942   InnerLoopAndEpilogueVectorizer(
943       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
944       DominatorTree *DT, const TargetLibraryInfo *TLI,
945       const TargetTransformInfo *TTI, AssumptionCache *AC,
946       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
947       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
948       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
949       GeneratedRTChecks &Checks)
950       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
951                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
952                             Checks),
953         EPI(EPI) {}
954 
955   // Override this function to handle the more complex control flow around the
956   // three loops.
957   BasicBlock *createVectorizedLoopSkeleton() final override {
958     return createEpilogueVectorizedLoopSkeleton();
959   }
960 
961   /// The interface for creating a vectorized skeleton using one of two
962   /// different strategies, each corresponding to one execution of the vplan
963   /// as described above.
964   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
965 
966   /// Holds and updates state information required to vectorize the main loop
967   /// and its epilogue in two separate passes. This setup helps us avoid
968   /// regenerating and recomputing runtime safety checks. It also helps us to
969   /// shorten the iteration-count-check path length for the cases where the
970   /// iteration count of the loop is so small that the main vector loop is
971   /// completely skipped.
972   EpilogueLoopVectorizationInfo &EPI;
973 };
974 
975 /// A specialized derived class of inner loop vectorizer that performs
976 /// vectorization of *main* loops in the process of vectorizing loops and their
977 /// epilogues.
978 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
979 public:
980   EpilogueVectorizerMainLoop(
981       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
982       DominatorTree *DT, const TargetLibraryInfo *TLI,
983       const TargetTransformInfo *TTI, AssumptionCache *AC,
984       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
985       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
986       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
987       GeneratedRTChecks &Check)
988       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
989                                        EPI, LVL, CM, BFI, PSI, Check) {}
990   /// Implements the interface for creating a vectorized skeleton using the
991   /// *main loop* strategy (ie the first pass of vplan execution).
992   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
993 
994 protected:
995   /// Emits an iteration count bypass check once for the main loop (when \p
996   /// ForEpilogue is false) and once for the epilogue loop (when \p
997   /// ForEpilogue is true).
998   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
999                                              bool ForEpilogue);
1000   void printDebugTracesAtStart() override;
1001   void printDebugTracesAtEnd() override;
1002 };
1003 
1004 // A specialized derived class of inner loop vectorizer that performs
1005 // vectorization of *epilogue* loops in the process of vectorizing loops and
1006 // their epilogues.
1007 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
1008 public:
1009   EpilogueVectorizerEpilogueLoop(
1010       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1011       DominatorTree *DT, const TargetLibraryInfo *TLI,
1012       const TargetTransformInfo *TTI, AssumptionCache *AC,
1013       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1014       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1015       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1016       GeneratedRTChecks &Checks)
1017       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1018                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1019   /// Implements the interface for creating a vectorized skeleton using the
1020   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1021   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1022 
1023 protected:
1024   /// Emits an iteration count bypass check after the main vector loop has
1025   /// finished to see if there are any iterations left to execute by either
1026   /// the vector epilogue or the scalar epilogue.
1027   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1028                                                       BasicBlock *Bypass,
1029                                                       BasicBlock *Insert);
1030   void printDebugTracesAtStart() override;
1031   void printDebugTracesAtEnd() override;
1032 };
1033 } // end namespace llvm
1034 
1035 /// Look for a meaningful debug location on the instruction or it's
1036 /// operands.
1037 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1038   if (!I)
1039     return I;
1040 
1041   DebugLoc Empty;
1042   if (I->getDebugLoc() != Empty)
1043     return I;
1044 
1045   for (Use &Op : I->operands()) {
1046     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1047       if (OpInst->getDebugLoc() != Empty)
1048         return OpInst;
1049   }
1050 
1051   return I;
1052 }
1053 
1054 void InnerLoopVectorizer::setDebugLocFromInst(
1055     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1056   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1057   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1058     const DILocation *DIL = Inst->getDebugLoc();
1059 
1060     // When a FSDiscriminator is enabled, we don't need to add the multiply
1061     // factors to the discriminators.
1062     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1063         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1064       // FIXME: For scalable vectors, assume vscale=1.
1065       auto NewDIL =
1066           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1067       if (NewDIL)
1068         B->SetCurrentDebugLocation(NewDIL.getValue());
1069       else
1070         LLVM_DEBUG(dbgs()
1071                    << "Failed to create new discriminator: "
1072                    << DIL->getFilename() << " Line: " << DIL->getLine());
1073     } else
1074       B->SetCurrentDebugLocation(DIL);
1075   } else
1076     B->SetCurrentDebugLocation(DebugLoc());
1077 }
1078 
1079 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1080 /// is passed, the message relates to that particular instruction.
1081 #ifndef NDEBUG
1082 static void debugVectorizationMessage(const StringRef Prefix,
1083                                       const StringRef DebugMsg,
1084                                       Instruction *I) {
1085   dbgs() << "LV: " << Prefix << DebugMsg;
1086   if (I != nullptr)
1087     dbgs() << " " << *I;
1088   else
1089     dbgs() << '.';
1090   dbgs() << '\n';
1091 }
1092 #endif
1093 
1094 /// Create an analysis remark that explains why vectorization failed
1095 ///
1096 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1097 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1098 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1099 /// the location of the remark.  \return the remark object that can be
1100 /// streamed to.
1101 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1102     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1103   Value *CodeRegion = TheLoop->getHeader();
1104   DebugLoc DL = TheLoop->getStartLoc();
1105 
1106   if (I) {
1107     CodeRegion = I->getParent();
1108     // If there is no debug location attached to the instruction, revert back to
1109     // using the loop's.
1110     if (I->getDebugLoc())
1111       DL = I->getDebugLoc();
1112   }
1113 
1114   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1115 }
1116 
1117 /// Return a value for Step multiplied by VF.
1118 static Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1119                               int64_t Step) {
1120   assert(Ty->isIntegerTy() && "Expected an integer step");
1121   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1122   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1123 }
1124 
1125 namespace llvm {
1126 
1127 /// Return the runtime value for VF.
1128 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1129   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1130   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1131 }
1132 
1133 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1134   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1135   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1136   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1137   return B.CreateUIToFP(RuntimeVF, FTy);
1138 }
1139 
1140 void reportVectorizationFailure(const StringRef DebugMsg,
1141                                 const StringRef OREMsg, const StringRef ORETag,
1142                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1143                                 Instruction *I) {
1144   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1145   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1146   ORE->emit(
1147       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1148       << "loop not vectorized: " << OREMsg);
1149 }
1150 
1151 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1152                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1153                              Instruction *I) {
1154   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1155   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1156   ORE->emit(
1157       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1158       << Msg);
1159 }
1160 
1161 } // end namespace llvm
1162 
1163 #ifndef NDEBUG
1164 /// \return string containing a file name and a line # for the given loop.
1165 static std::string getDebugLocString(const Loop *L) {
1166   std::string Result;
1167   if (L) {
1168     raw_string_ostream OS(Result);
1169     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1170       LoopDbgLoc.print(OS);
1171     else
1172       // Just print the module name.
1173       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1174     OS.flush();
1175   }
1176   return Result;
1177 }
1178 #endif
1179 
1180 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1181                                          const Instruction *Orig) {
1182   // If the loop was versioned with memchecks, add the corresponding no-alias
1183   // metadata.
1184   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1185     LVer->annotateInstWithNoAlias(To, Orig);
1186 }
1187 
1188 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1189     VPTransformState &State) {
1190 
1191   // Collect recipes in the backward slice of `Root` that may generate a poison
1192   // value that is used after vectorization.
1193   SmallPtrSet<VPRecipeBase *, 16> Visited;
1194   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1195     SmallVector<VPRecipeBase *, 16> Worklist;
1196     Worklist.push_back(Root);
1197 
1198     // Traverse the backward slice of Root through its use-def chain.
1199     while (!Worklist.empty()) {
1200       VPRecipeBase *CurRec = Worklist.back();
1201       Worklist.pop_back();
1202 
1203       if (!Visited.insert(CurRec).second)
1204         continue;
1205 
1206       // Prune search if we find another recipe generating a widen memory
1207       // instruction. Widen memory instructions involved in address computation
1208       // will lead to gather/scatter instructions, which don't need to be
1209       // handled.
1210       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1211           isa<VPInterleaveRecipe>(CurRec))
1212         continue;
1213 
1214       // This recipe contributes to the address computation of a widen
1215       // load/store. Collect recipe if its underlying instruction has
1216       // poison-generating flags.
1217       Instruction *Instr = CurRec->getUnderlyingInstr();
1218       if (Instr && cast<Operator>(Instr)->hasPoisonGeneratingFlags())
1219         State.MayGeneratePoisonRecipes.insert(CurRec);
1220 
1221       // Add new definitions to the worklist.
1222       for (VPValue *operand : CurRec->operands())
1223         if (VPDef *OpDef = operand->getDef())
1224           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1225     }
1226   });
1227 
1228   // Traverse all the recipes in the VPlan and collect the poison-generating
1229   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1230   // VPInterleaveRecipe.
1231   auto Iter = depth_first(
1232       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1233   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1234     for (VPRecipeBase &Recipe : *VPBB) {
1235       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1236         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1237         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1238         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1239             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1240           collectPoisonGeneratingInstrsInBackwardSlice(
1241               cast<VPRecipeBase>(AddrDef));
1242       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1243         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1244         if (AddrDef) {
1245           // Check if any member of the interleave group needs predication.
1246           const InterleaveGroup<Instruction> *InterGroup =
1247               InterleaveRec->getInterleaveGroup();
1248           bool NeedPredication = false;
1249           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1250                I < NumMembers; ++I) {
1251             Instruction *Member = InterGroup->getMember(I);
1252             if (Member)
1253               NeedPredication |=
1254                   Legal->blockNeedsPredication(Member->getParent());
1255           }
1256 
1257           if (NeedPredication)
1258             collectPoisonGeneratingInstrsInBackwardSlice(
1259                 cast<VPRecipeBase>(AddrDef));
1260         }
1261       }
1262     }
1263   }
1264 }
1265 
1266 void InnerLoopVectorizer::addMetadata(Instruction *To,
1267                                       Instruction *From) {
1268   propagateMetadata(To, From);
1269   addNewMetadata(To, From);
1270 }
1271 
1272 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1273                                       Instruction *From) {
1274   for (Value *V : To) {
1275     if (Instruction *I = dyn_cast<Instruction>(V))
1276       addMetadata(I, From);
1277   }
1278 }
1279 
1280 namespace llvm {
1281 
1282 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1283 // lowered.
1284 enum ScalarEpilogueLowering {
1285 
1286   // The default: allowing scalar epilogues.
1287   CM_ScalarEpilogueAllowed,
1288 
1289   // Vectorization with OptForSize: don't allow epilogues.
1290   CM_ScalarEpilogueNotAllowedOptSize,
1291 
1292   // A special case of vectorisation with OptForSize: loops with a very small
1293   // trip count are considered for vectorization under OptForSize, thereby
1294   // making sure the cost of their loop body is dominant, free of runtime
1295   // guards and scalar iteration overheads.
1296   CM_ScalarEpilogueNotAllowedLowTripLoop,
1297 
1298   // Loop hint predicate indicating an epilogue is undesired.
1299   CM_ScalarEpilogueNotNeededUsePredicate,
1300 
1301   // Directive indicating we must either tail fold or not vectorize
1302   CM_ScalarEpilogueNotAllowedUsePredicate
1303 };
1304 
1305 /// ElementCountComparator creates a total ordering for ElementCount
1306 /// for the purposes of using it in a set structure.
1307 struct ElementCountComparator {
1308   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1309     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1310            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1311   }
1312 };
1313 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1314 
1315 /// LoopVectorizationCostModel - estimates the expected speedups due to
1316 /// vectorization.
1317 /// In many cases vectorization is not profitable. This can happen because of
1318 /// a number of reasons. In this class we mainly attempt to predict the
1319 /// expected speedup/slowdowns due to the supported instruction set. We use the
1320 /// TargetTransformInfo to query the different backends for the cost of
1321 /// different operations.
1322 class LoopVectorizationCostModel {
1323 public:
1324   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1325                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1326                              LoopVectorizationLegality *Legal,
1327                              const TargetTransformInfo &TTI,
1328                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1329                              AssumptionCache *AC,
1330                              OptimizationRemarkEmitter *ORE, const Function *F,
1331                              const LoopVectorizeHints *Hints,
1332                              InterleavedAccessInfo &IAI)
1333       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1334         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1335         Hints(Hints), InterleaveInfo(IAI) {}
1336 
1337   /// \return An upper bound for the vectorization factors (both fixed and
1338   /// scalable). If the factors are 0, vectorization and interleaving should be
1339   /// avoided up front.
1340   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1341 
1342   /// \return True if runtime checks are required for vectorization, and false
1343   /// otherwise.
1344   bool runtimeChecksRequired();
1345 
1346   /// \return The most profitable vectorization factor and the cost of that VF.
1347   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1348   /// then this vectorization factor will be selected if vectorization is
1349   /// possible.
1350   VectorizationFactor
1351   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1352 
1353   VectorizationFactor
1354   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1355                                     const LoopVectorizationPlanner &LVP);
1356 
1357   /// Setup cost-based decisions for user vectorization factor.
1358   /// \return true if the UserVF is a feasible VF to be chosen.
1359   bool selectUserVectorizationFactor(ElementCount UserVF) {
1360     collectUniformsAndScalars(UserVF);
1361     collectInstsToScalarize(UserVF);
1362     return expectedCost(UserVF).first.isValid();
1363   }
1364 
1365   /// \return The size (in bits) of the smallest and widest types in the code
1366   /// that needs to be vectorized. We ignore values that remain scalar such as
1367   /// 64 bit loop indices.
1368   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1369 
1370   /// \return The desired interleave count.
1371   /// If interleave count has been specified by metadata it will be returned.
1372   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1373   /// are the selected vectorization factor and the cost of the selected VF.
1374   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1375 
1376   /// Memory access instruction may be vectorized in more than one way.
1377   /// Form of instruction after vectorization depends on cost.
1378   /// This function takes cost-based decisions for Load/Store instructions
1379   /// and collects them in a map. This decisions map is used for building
1380   /// the lists of loop-uniform and loop-scalar instructions.
1381   /// The calculated cost is saved with widening decision in order to
1382   /// avoid redundant calculations.
1383   void setCostBasedWideningDecision(ElementCount VF);
1384 
1385   /// A struct that represents some properties of the register usage
1386   /// of a loop.
1387   struct RegisterUsage {
1388     /// Holds the number of loop invariant values that are used in the loop.
1389     /// The key is ClassID of target-provided register class.
1390     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1391     /// Holds the maximum number of concurrent live intervals in the loop.
1392     /// The key is ClassID of target-provided register class.
1393     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1394   };
1395 
1396   /// \return Returns information about the register usages of the loop for the
1397   /// given vectorization factors.
1398   SmallVector<RegisterUsage, 8>
1399   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1400 
1401   /// Collect values we want to ignore in the cost model.
1402   void collectValuesToIgnore();
1403 
1404   /// Collect all element types in the loop for which widening is needed.
1405   void collectElementTypesForWidening();
1406 
1407   /// Split reductions into those that happen in the loop, and those that happen
1408   /// outside. In loop reductions are collected into InLoopReductionChains.
1409   void collectInLoopReductions();
1410 
1411   /// Returns true if we should use strict in-order reductions for the given
1412   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1413   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1414   /// of FP operations.
1415   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1416     return !Hints->allowReordering() && RdxDesc.isOrdered();
1417   }
1418 
1419   /// \returns The smallest bitwidth each instruction can be represented with.
1420   /// The vector equivalents of these instructions should be truncated to this
1421   /// type.
1422   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1423     return MinBWs;
1424   }
1425 
1426   /// \returns True if it is more profitable to scalarize instruction \p I for
1427   /// vectorization factor \p VF.
1428   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1429     assert(VF.isVector() &&
1430            "Profitable to scalarize relevant only for VF > 1.");
1431 
1432     // Cost model is not run in the VPlan-native path - return conservative
1433     // result until this changes.
1434     if (EnableVPlanNativePath)
1435       return false;
1436 
1437     auto Scalars = InstsToScalarize.find(VF);
1438     assert(Scalars != InstsToScalarize.end() &&
1439            "VF not yet analyzed for scalarization profitability");
1440     return Scalars->second.find(I) != Scalars->second.end();
1441   }
1442 
1443   /// Returns true if \p I is known to be uniform after vectorization.
1444   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1445     if (VF.isScalar())
1446       return true;
1447 
1448     // Cost model is not run in the VPlan-native path - return conservative
1449     // result until this changes.
1450     if (EnableVPlanNativePath)
1451       return false;
1452 
1453     auto UniformsPerVF = Uniforms.find(VF);
1454     assert(UniformsPerVF != Uniforms.end() &&
1455            "VF not yet analyzed for uniformity");
1456     return UniformsPerVF->second.count(I);
1457   }
1458 
1459   /// Returns true if \p I is known to be scalar after vectorization.
1460   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1461     if (VF.isScalar())
1462       return true;
1463 
1464     // Cost model is not run in the VPlan-native path - return conservative
1465     // result until this changes.
1466     if (EnableVPlanNativePath)
1467       return false;
1468 
1469     auto ScalarsPerVF = Scalars.find(VF);
1470     assert(ScalarsPerVF != Scalars.end() &&
1471            "Scalar values are not calculated for VF");
1472     return ScalarsPerVF->second.count(I);
1473   }
1474 
1475   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1476   /// for vectorization factor \p VF.
1477   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1478     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1479            !isProfitableToScalarize(I, VF) &&
1480            !isScalarAfterVectorization(I, VF);
1481   }
1482 
1483   /// Decision that was taken during cost calculation for memory instruction.
1484   enum InstWidening {
1485     CM_Unknown,
1486     CM_Widen,         // For consecutive accesses with stride +1.
1487     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1488     CM_Interleave,
1489     CM_GatherScatter,
1490     CM_Scalarize
1491   };
1492 
1493   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1494   /// instruction \p I and vector width \p VF.
1495   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1496                            InstructionCost Cost) {
1497     assert(VF.isVector() && "Expected VF >=2");
1498     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1499   }
1500 
1501   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1502   /// interleaving group \p Grp and vector width \p VF.
1503   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1504                            ElementCount VF, InstWidening W,
1505                            InstructionCost Cost) {
1506     assert(VF.isVector() && "Expected VF >=2");
1507     /// Broadcast this decicion to all instructions inside the group.
1508     /// But the cost will be assigned to one instruction only.
1509     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1510       if (auto *I = Grp->getMember(i)) {
1511         if (Grp->getInsertPos() == I)
1512           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1513         else
1514           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1515       }
1516     }
1517   }
1518 
1519   /// Return the cost model decision for the given instruction \p I and vector
1520   /// width \p VF. Return CM_Unknown if this instruction did not pass
1521   /// through the cost modeling.
1522   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1523     assert(VF.isVector() && "Expected VF to be a vector VF");
1524     // Cost model is not run in the VPlan-native path - return conservative
1525     // result until this changes.
1526     if (EnableVPlanNativePath)
1527       return CM_GatherScatter;
1528 
1529     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1530     auto Itr = WideningDecisions.find(InstOnVF);
1531     if (Itr == WideningDecisions.end())
1532       return CM_Unknown;
1533     return Itr->second.first;
1534   }
1535 
1536   /// Return the vectorization cost for the given instruction \p I and vector
1537   /// width \p VF.
1538   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1539     assert(VF.isVector() && "Expected VF >=2");
1540     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1541     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1542            "The cost is not calculated");
1543     return WideningDecisions[InstOnVF].second;
1544   }
1545 
1546   /// Return True if instruction \p I is an optimizable truncate whose operand
1547   /// is an induction variable. Such a truncate will be removed by adding a new
1548   /// induction variable with the destination type.
1549   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1550     // If the instruction is not a truncate, return false.
1551     auto *Trunc = dyn_cast<TruncInst>(I);
1552     if (!Trunc)
1553       return false;
1554 
1555     // Get the source and destination types of the truncate.
1556     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1557     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1558 
1559     // If the truncate is free for the given types, return false. Replacing a
1560     // free truncate with an induction variable would add an induction variable
1561     // update instruction to each iteration of the loop. We exclude from this
1562     // check the primary induction variable since it will need an update
1563     // instruction regardless.
1564     Value *Op = Trunc->getOperand(0);
1565     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1566       return false;
1567 
1568     // If the truncated value is not an induction variable, return false.
1569     return Legal->isInductionPhi(Op);
1570   }
1571 
1572   /// Collects the instructions to scalarize for each predicated instruction in
1573   /// the loop.
1574   void collectInstsToScalarize(ElementCount VF);
1575 
1576   /// Collect Uniform and Scalar values for the given \p VF.
1577   /// The sets depend on CM decision for Load/Store instructions
1578   /// that may be vectorized as interleave, gather-scatter or scalarized.
1579   void collectUniformsAndScalars(ElementCount VF) {
1580     // Do the analysis once.
1581     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1582       return;
1583     setCostBasedWideningDecision(VF);
1584     collectLoopUniforms(VF);
1585     collectLoopScalars(VF);
1586   }
1587 
1588   /// Returns true if the target machine supports masked store operation
1589   /// for the given \p DataType and kind of access to \p Ptr.
1590   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1591     return Legal->isConsecutivePtr(DataType, Ptr) &&
1592            TTI.isLegalMaskedStore(DataType, Alignment);
1593   }
1594 
1595   /// Returns true if the target machine supports masked load operation
1596   /// for the given \p DataType and kind of access to \p Ptr.
1597   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1598     return Legal->isConsecutivePtr(DataType, Ptr) &&
1599            TTI.isLegalMaskedLoad(DataType, Alignment);
1600   }
1601 
1602   /// Returns true if the target machine can represent \p V as a masked gather
1603   /// or scatter operation.
1604   bool isLegalGatherOrScatter(Value *V) {
1605     bool LI = isa<LoadInst>(V);
1606     bool SI = isa<StoreInst>(V);
1607     if (!LI && !SI)
1608       return false;
1609     auto *Ty = getLoadStoreType(V);
1610     Align Align = getLoadStoreAlignment(V);
1611     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1612            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1613   }
1614 
1615   /// Returns true if the target machine supports all of the reduction
1616   /// variables found for the given VF.
1617   bool canVectorizeReductions(ElementCount VF) const {
1618     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1619       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1620       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1621     }));
1622   }
1623 
1624   /// Returns true if \p I is an instruction that will be scalarized with
1625   /// predication. Such instructions include conditional stores and
1626   /// instructions that may divide by zero.
1627   /// If a non-zero VF has been calculated, we check if I will be scalarized
1628   /// predication for that VF.
1629   bool isScalarWithPredication(Instruction *I) const;
1630 
1631   // Returns true if \p I is an instruction that will be predicated either
1632   // through scalar predication or masked load/store or masked gather/scatter.
1633   // Superset of instructions that return true for isScalarWithPredication.
1634   bool isPredicatedInst(Instruction *I) {
1635     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1636       return false;
1637     // Loads and stores that need some form of masked operation are predicated
1638     // instructions.
1639     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1640       return Legal->isMaskRequired(I);
1641     return isScalarWithPredication(I);
1642   }
1643 
1644   /// Returns true if \p I is a memory instruction with consecutive memory
1645   /// access that can be widened.
1646   bool
1647   memoryInstructionCanBeWidened(Instruction *I,
1648                                 ElementCount VF = ElementCount::getFixed(1));
1649 
1650   /// Returns true if \p I is a memory instruction in an interleaved-group
1651   /// of memory accesses that can be vectorized with wide vector loads/stores
1652   /// and shuffles.
1653   bool
1654   interleavedAccessCanBeWidened(Instruction *I,
1655                                 ElementCount VF = ElementCount::getFixed(1));
1656 
1657   /// Check if \p Instr belongs to any interleaved access group.
1658   bool isAccessInterleaved(Instruction *Instr) {
1659     return InterleaveInfo.isInterleaved(Instr);
1660   }
1661 
1662   /// Get the interleaved access group that \p Instr belongs to.
1663   const InterleaveGroup<Instruction> *
1664   getInterleavedAccessGroup(Instruction *Instr) {
1665     return InterleaveInfo.getInterleaveGroup(Instr);
1666   }
1667 
1668   /// Returns true if we're required to use a scalar epilogue for at least
1669   /// the final iteration of the original loop.
1670   bool requiresScalarEpilogue(ElementCount VF) const {
1671     if (!isScalarEpilogueAllowed())
1672       return false;
1673     // If we might exit from anywhere but the latch, must run the exiting
1674     // iteration in scalar form.
1675     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1676       return true;
1677     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1678   }
1679 
1680   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1681   /// loop hint annotation.
1682   bool isScalarEpilogueAllowed() const {
1683     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1684   }
1685 
1686   /// Returns true if all loop blocks should be masked to fold tail loop.
1687   bool foldTailByMasking() const { return FoldTailByMasking; }
1688 
1689   /// Returns true if the instructions in this block requires predication
1690   /// for any reason, e.g. because tail folding now requires a predicate
1691   /// or because the block in the original loop was predicated.
1692   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1693     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1694   }
1695 
1696   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1697   /// nodes to the chain of instructions representing the reductions. Uses a
1698   /// MapVector to ensure deterministic iteration order.
1699   using ReductionChainMap =
1700       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1701 
1702   /// Return the chain of instructions representing an inloop reduction.
1703   const ReductionChainMap &getInLoopReductionChains() const {
1704     return InLoopReductionChains;
1705   }
1706 
1707   /// Returns true if the Phi is part of an inloop reduction.
1708   bool isInLoopReduction(PHINode *Phi) const {
1709     return InLoopReductionChains.count(Phi);
1710   }
1711 
1712   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1713   /// with factor VF.  Return the cost of the instruction, including
1714   /// scalarization overhead if it's needed.
1715   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1716 
1717   /// Estimate cost of a call instruction CI if it were vectorized with factor
1718   /// VF. Return the cost of the instruction, including scalarization overhead
1719   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1720   /// scalarized -
1721   /// i.e. either vector version isn't available, or is too expensive.
1722   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1723                                     bool &NeedToScalarize) const;
1724 
1725   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1726   /// that of B.
1727   bool isMoreProfitable(const VectorizationFactor &A,
1728                         const VectorizationFactor &B) const;
1729 
1730   /// Invalidates decisions already taken by the cost model.
1731   void invalidateCostModelingDecisions() {
1732     WideningDecisions.clear();
1733     Uniforms.clear();
1734     Scalars.clear();
1735   }
1736 
1737 private:
1738   unsigned NumPredStores = 0;
1739 
1740   /// \return An upper bound for the vectorization factors for both
1741   /// fixed and scalable vectorization, where the minimum-known number of
1742   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1743   /// disabled or unsupported, then the scalable part will be equal to
1744   /// ElementCount::getScalable(0).
1745   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1746                                            ElementCount UserVF);
1747 
1748   /// \return the maximized element count based on the targets vector
1749   /// registers and the loop trip-count, but limited to a maximum safe VF.
1750   /// This is a helper function of computeFeasibleMaxVF.
1751   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1752   /// issue that occurred on one of the buildbots which cannot be reproduced
1753   /// without having access to the properietary compiler (see comments on
1754   /// D98509). The issue is currently under investigation and this workaround
1755   /// will be removed as soon as possible.
1756   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1757                                        unsigned SmallestType,
1758                                        unsigned WidestType,
1759                                        const ElementCount &MaxSafeVF);
1760 
1761   /// \return the maximum legal scalable VF, based on the safe max number
1762   /// of elements.
1763   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1764 
1765   /// The vectorization cost is a combination of the cost itself and a boolean
1766   /// indicating whether any of the contributing operations will actually
1767   /// operate on vector values after type legalization in the backend. If this
1768   /// latter value is false, then all operations will be scalarized (i.e. no
1769   /// vectorization has actually taken place).
1770   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1771 
1772   /// Returns the expected execution cost. The unit of the cost does
1773   /// not matter because we use the 'cost' units to compare different
1774   /// vector widths. The cost that is returned is *not* normalized by
1775   /// the factor width. If \p Invalid is not nullptr, this function
1776   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1777   /// each instruction that has an Invalid cost for the given VF.
1778   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1779   VectorizationCostTy
1780   expectedCost(ElementCount VF,
1781                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1782 
1783   /// Returns the execution time cost of an instruction for a given vector
1784   /// width. Vector width of one means scalar.
1785   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1786 
1787   /// The cost-computation logic from getInstructionCost which provides
1788   /// the vector type as an output parameter.
1789   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1790                                      Type *&VectorTy);
1791 
1792   /// Return the cost of instructions in an inloop reduction pattern, if I is
1793   /// part of that pattern.
1794   Optional<InstructionCost>
1795   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1796                           TTI::TargetCostKind CostKind);
1797 
1798   /// Calculate vectorization cost of memory instruction \p I.
1799   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1800 
1801   /// The cost computation for scalarized memory instruction.
1802   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1803 
1804   /// The cost computation for interleaving group of memory instructions.
1805   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1806 
1807   /// The cost computation for Gather/Scatter instruction.
1808   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1809 
1810   /// The cost computation for widening instruction \p I with consecutive
1811   /// memory access.
1812   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1813 
1814   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1815   /// Load: scalar load + broadcast.
1816   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1817   /// element)
1818   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1819 
1820   /// Estimate the overhead of scalarizing an instruction. This is a
1821   /// convenience wrapper for the type-based getScalarizationOverhead API.
1822   InstructionCost getScalarizationOverhead(Instruction *I,
1823                                            ElementCount VF) const;
1824 
1825   /// Returns whether the instruction is a load or store and will be a emitted
1826   /// as a vector operation.
1827   bool isConsecutiveLoadOrStore(Instruction *I);
1828 
1829   /// Returns true if an artificially high cost for emulated masked memrefs
1830   /// should be used.
1831   bool useEmulatedMaskMemRefHack(Instruction *I);
1832 
1833   /// Map of scalar integer values to the smallest bitwidth they can be legally
1834   /// represented as. The vector equivalents of these values should be truncated
1835   /// to this type.
1836   MapVector<Instruction *, uint64_t> MinBWs;
1837 
1838   /// A type representing the costs for instructions if they were to be
1839   /// scalarized rather than vectorized. The entries are Instruction-Cost
1840   /// pairs.
1841   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1842 
1843   /// A set containing all BasicBlocks that are known to present after
1844   /// vectorization as a predicated block.
1845   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1846 
1847   /// Records whether it is allowed to have the original scalar loop execute at
1848   /// least once. This may be needed as a fallback loop in case runtime
1849   /// aliasing/dependence checks fail, or to handle the tail/remainder
1850   /// iterations when the trip count is unknown or doesn't divide by the VF,
1851   /// or as a peel-loop to handle gaps in interleave-groups.
1852   /// Under optsize and when the trip count is very small we don't allow any
1853   /// iterations to execute in the scalar loop.
1854   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1855 
1856   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1857   bool FoldTailByMasking = false;
1858 
1859   /// A map holding scalar costs for different vectorization factors. The
1860   /// presence of a cost for an instruction in the mapping indicates that the
1861   /// instruction will be scalarized when vectorizing with the associated
1862   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1863   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1864 
1865   /// Holds the instructions known to be uniform after vectorization.
1866   /// The data is collected per VF.
1867   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1868 
1869   /// Holds the instructions known to be scalar after vectorization.
1870   /// The data is collected per VF.
1871   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1872 
1873   /// Holds the instructions (address computations) that are forced to be
1874   /// scalarized.
1875   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1876 
1877   /// PHINodes of the reductions that should be expanded in-loop along with
1878   /// their associated chains of reduction operations, in program order from top
1879   /// (PHI) to bottom
1880   ReductionChainMap InLoopReductionChains;
1881 
1882   /// A Map of inloop reduction operations and their immediate chain operand.
1883   /// FIXME: This can be removed once reductions can be costed correctly in
1884   /// vplan. This was added to allow quick lookup to the inloop operations,
1885   /// without having to loop through InLoopReductionChains.
1886   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1887 
1888   /// Returns the expected difference in cost from scalarizing the expression
1889   /// feeding a predicated instruction \p PredInst. The instructions to
1890   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1891   /// non-negative return value implies the expression will be scalarized.
1892   /// Currently, only single-use chains are considered for scalarization.
1893   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1894                               ElementCount VF);
1895 
1896   /// Collect the instructions that are uniform after vectorization. An
1897   /// instruction is uniform if we represent it with a single scalar value in
1898   /// the vectorized loop corresponding to each vector iteration. Examples of
1899   /// uniform instructions include pointer operands of consecutive or
1900   /// interleaved memory accesses. Note that although uniformity implies an
1901   /// instruction will be scalar, the reverse is not true. In general, a
1902   /// scalarized instruction will be represented by VF scalar values in the
1903   /// vectorized loop, each corresponding to an iteration of the original
1904   /// scalar loop.
1905   void collectLoopUniforms(ElementCount VF);
1906 
1907   /// Collect the instructions that are scalar after vectorization. An
1908   /// instruction is scalar if it is known to be uniform or will be scalarized
1909   /// during vectorization. Non-uniform scalarized instructions will be
1910   /// represented by VF values in the vectorized loop, each corresponding to an
1911   /// iteration of the original scalar loop.
1912   void collectLoopScalars(ElementCount VF);
1913 
1914   /// Keeps cost model vectorization decision and cost for instructions.
1915   /// Right now it is used for memory instructions only.
1916   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1917                                 std::pair<InstWidening, InstructionCost>>;
1918 
1919   DecisionList WideningDecisions;
1920 
1921   /// Returns true if \p V is expected to be vectorized and it needs to be
1922   /// extracted.
1923   bool needsExtract(Value *V, ElementCount VF) const {
1924     Instruction *I = dyn_cast<Instruction>(V);
1925     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1926         TheLoop->isLoopInvariant(I))
1927       return false;
1928 
1929     // Assume we can vectorize V (and hence we need extraction) if the
1930     // scalars are not computed yet. This can happen, because it is called
1931     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1932     // the scalars are collected. That should be a safe assumption in most
1933     // cases, because we check if the operands have vectorizable types
1934     // beforehand in LoopVectorizationLegality.
1935     return Scalars.find(VF) == Scalars.end() ||
1936            !isScalarAfterVectorization(I, VF);
1937   };
1938 
1939   /// Returns a range containing only operands needing to be extracted.
1940   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1941                                                    ElementCount VF) const {
1942     return SmallVector<Value *, 4>(make_filter_range(
1943         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1944   }
1945 
1946   /// Determines if we have the infrastructure to vectorize loop \p L and its
1947   /// epilogue, assuming the main loop is vectorized by \p VF.
1948   bool isCandidateForEpilogueVectorization(const Loop &L,
1949                                            const ElementCount VF) const;
1950 
1951   /// Returns true if epilogue vectorization is considered profitable, and
1952   /// false otherwise.
1953   /// \p VF is the vectorization factor chosen for the original loop.
1954   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1955 
1956 public:
1957   /// The loop that we evaluate.
1958   Loop *TheLoop;
1959 
1960   /// Predicated scalar evolution analysis.
1961   PredicatedScalarEvolution &PSE;
1962 
1963   /// Loop Info analysis.
1964   LoopInfo *LI;
1965 
1966   /// Vectorization legality.
1967   LoopVectorizationLegality *Legal;
1968 
1969   /// Vector target information.
1970   const TargetTransformInfo &TTI;
1971 
1972   /// Target Library Info.
1973   const TargetLibraryInfo *TLI;
1974 
1975   /// Demanded bits analysis.
1976   DemandedBits *DB;
1977 
1978   /// Assumption cache.
1979   AssumptionCache *AC;
1980 
1981   /// Interface to emit optimization remarks.
1982   OptimizationRemarkEmitter *ORE;
1983 
1984   const Function *TheFunction;
1985 
1986   /// Loop Vectorize Hint.
1987   const LoopVectorizeHints *Hints;
1988 
1989   /// The interleave access information contains groups of interleaved accesses
1990   /// with the same stride and close to each other.
1991   InterleavedAccessInfo &InterleaveInfo;
1992 
1993   /// Values to ignore in the cost model.
1994   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1995 
1996   /// Values to ignore in the cost model when VF > 1.
1997   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1998 
1999   /// All element types found in the loop.
2000   SmallPtrSet<Type *, 16> ElementTypesInLoop;
2001 
2002   /// Profitable vector factors.
2003   SmallVector<VectorizationFactor, 8> ProfitableVFs;
2004 };
2005 } // end namespace llvm
2006 
2007 /// Helper struct to manage generating runtime checks for vectorization.
2008 ///
2009 /// The runtime checks are created up-front in temporary blocks to allow better
2010 /// estimating the cost and un-linked from the existing IR. After deciding to
2011 /// vectorize, the checks are moved back. If deciding not to vectorize, the
2012 /// temporary blocks are completely removed.
2013 class GeneratedRTChecks {
2014   /// Basic block which contains the generated SCEV checks, if any.
2015   BasicBlock *SCEVCheckBlock = nullptr;
2016 
2017   /// The value representing the result of the generated SCEV checks. If it is
2018   /// nullptr, either no SCEV checks have been generated or they have been used.
2019   Value *SCEVCheckCond = nullptr;
2020 
2021   /// Basic block which contains the generated memory runtime checks, if any.
2022   BasicBlock *MemCheckBlock = nullptr;
2023 
2024   /// The value representing the result of the generated memory runtime checks.
2025   /// If it is nullptr, either no memory runtime checks have been generated or
2026   /// they have been used.
2027   Value *MemRuntimeCheckCond = nullptr;
2028 
2029   DominatorTree *DT;
2030   LoopInfo *LI;
2031 
2032   SCEVExpander SCEVExp;
2033   SCEVExpander MemCheckExp;
2034 
2035 public:
2036   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
2037                     const DataLayout &DL)
2038       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
2039         MemCheckExp(SE, DL, "scev.check") {}
2040 
2041   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
2042   /// accurately estimate the cost of the runtime checks. The blocks are
2043   /// un-linked from the IR and is added back during vector code generation. If
2044   /// there is no vector code generation, the check blocks are removed
2045   /// completely.
2046   void Create(Loop *L, const LoopAccessInfo &LAI,
2047               const SCEVUnionPredicate &UnionPred) {
2048 
2049     BasicBlock *LoopHeader = L->getHeader();
2050     BasicBlock *Preheader = L->getLoopPreheader();
2051 
2052     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2053     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2054     // may be used by SCEVExpander. The blocks will be un-linked from their
2055     // predecessors and removed from LI & DT at the end of the function.
2056     if (!UnionPred.isAlwaysTrue()) {
2057       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2058                                   nullptr, "vector.scevcheck");
2059 
2060       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2061           &UnionPred, SCEVCheckBlock->getTerminator());
2062     }
2063 
2064     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2065     if (RtPtrChecking.Need) {
2066       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2067       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2068                                  "vector.memcheck");
2069 
2070       MemRuntimeCheckCond =
2071           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2072                            RtPtrChecking.getChecks(), MemCheckExp);
2073       assert(MemRuntimeCheckCond &&
2074              "no RT checks generated although RtPtrChecking "
2075              "claimed checks are required");
2076     }
2077 
2078     if (!MemCheckBlock && !SCEVCheckBlock)
2079       return;
2080 
2081     // Unhook the temporary block with the checks, update various places
2082     // accordingly.
2083     if (SCEVCheckBlock)
2084       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2085     if (MemCheckBlock)
2086       MemCheckBlock->replaceAllUsesWith(Preheader);
2087 
2088     if (SCEVCheckBlock) {
2089       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2090       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2091       Preheader->getTerminator()->eraseFromParent();
2092     }
2093     if (MemCheckBlock) {
2094       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2095       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2096       Preheader->getTerminator()->eraseFromParent();
2097     }
2098 
2099     DT->changeImmediateDominator(LoopHeader, Preheader);
2100     if (MemCheckBlock) {
2101       DT->eraseNode(MemCheckBlock);
2102       LI->removeBlock(MemCheckBlock);
2103     }
2104     if (SCEVCheckBlock) {
2105       DT->eraseNode(SCEVCheckBlock);
2106       LI->removeBlock(SCEVCheckBlock);
2107     }
2108   }
2109 
2110   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2111   /// unused.
2112   ~GeneratedRTChecks() {
2113     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2114     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2115     if (!SCEVCheckCond)
2116       SCEVCleaner.markResultUsed();
2117 
2118     if (!MemRuntimeCheckCond)
2119       MemCheckCleaner.markResultUsed();
2120 
2121     if (MemRuntimeCheckCond) {
2122       auto &SE = *MemCheckExp.getSE();
2123       // Memory runtime check generation creates compares that use expanded
2124       // values. Remove them before running the SCEVExpanderCleaners.
2125       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2126         if (MemCheckExp.isInsertedInstruction(&I))
2127           continue;
2128         SE.forgetValue(&I);
2129         I.eraseFromParent();
2130       }
2131     }
2132     MemCheckCleaner.cleanup();
2133     SCEVCleaner.cleanup();
2134 
2135     if (SCEVCheckCond)
2136       SCEVCheckBlock->eraseFromParent();
2137     if (MemRuntimeCheckCond)
2138       MemCheckBlock->eraseFromParent();
2139   }
2140 
2141   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2142   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2143   /// depending on the generated condition.
2144   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2145                              BasicBlock *LoopVectorPreHeader,
2146                              BasicBlock *LoopExitBlock) {
2147     if (!SCEVCheckCond)
2148       return nullptr;
2149     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2150       if (C->isZero())
2151         return nullptr;
2152 
2153     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2154 
2155     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2156     // Create new preheader for vector loop.
2157     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2158       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2159 
2160     SCEVCheckBlock->getTerminator()->eraseFromParent();
2161     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2162     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2163                                                 SCEVCheckBlock);
2164 
2165     DT->addNewBlock(SCEVCheckBlock, Pred);
2166     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2167 
2168     ReplaceInstWithInst(
2169         SCEVCheckBlock->getTerminator(),
2170         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2171     // Mark the check as used, to prevent it from being removed during cleanup.
2172     SCEVCheckCond = nullptr;
2173     return SCEVCheckBlock;
2174   }
2175 
2176   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2177   /// the branches to branch to the vector preheader or \p Bypass, depending on
2178   /// the generated condition.
2179   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2180                                    BasicBlock *LoopVectorPreHeader) {
2181     // Check if we generated code that checks in runtime if arrays overlap.
2182     if (!MemRuntimeCheckCond)
2183       return nullptr;
2184 
2185     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2186     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2187                                                 MemCheckBlock);
2188 
2189     DT->addNewBlock(MemCheckBlock, Pred);
2190     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2191     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2192 
2193     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2194       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2195 
2196     ReplaceInstWithInst(
2197         MemCheckBlock->getTerminator(),
2198         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2199     MemCheckBlock->getTerminator()->setDebugLoc(
2200         Pred->getTerminator()->getDebugLoc());
2201 
2202     // Mark the check as used, to prevent it from being removed during cleanup.
2203     MemRuntimeCheckCond = nullptr;
2204     return MemCheckBlock;
2205   }
2206 };
2207 
2208 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2209 // vectorization. The loop needs to be annotated with #pragma omp simd
2210 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2211 // vector length information is not provided, vectorization is not considered
2212 // explicit. Interleave hints are not allowed either. These limitations will be
2213 // relaxed in the future.
2214 // Please, note that we are currently forced to abuse the pragma 'clang
2215 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2216 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2217 // provides *explicit vectorization hints* (LV can bypass legal checks and
2218 // assume that vectorization is legal). However, both hints are implemented
2219 // using the same metadata (llvm.loop.vectorize, processed by
2220 // LoopVectorizeHints). This will be fixed in the future when the native IR
2221 // representation for pragma 'omp simd' is introduced.
2222 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2223                                    OptimizationRemarkEmitter *ORE) {
2224   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2225   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2226 
2227   // Only outer loops with an explicit vectorization hint are supported.
2228   // Unannotated outer loops are ignored.
2229   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2230     return false;
2231 
2232   Function *Fn = OuterLp->getHeader()->getParent();
2233   if (!Hints.allowVectorization(Fn, OuterLp,
2234                                 true /*VectorizeOnlyWhenForced*/)) {
2235     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2236     return false;
2237   }
2238 
2239   if (Hints.getInterleave() > 1) {
2240     // TODO: Interleave support is future work.
2241     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2242                          "outer loops.\n");
2243     Hints.emitRemarkWithHints();
2244     return false;
2245   }
2246 
2247   return true;
2248 }
2249 
2250 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2251                                   OptimizationRemarkEmitter *ORE,
2252                                   SmallVectorImpl<Loop *> &V) {
2253   // Collect inner loops and outer loops without irreducible control flow. For
2254   // now, only collect outer loops that have explicit vectorization hints. If we
2255   // are stress testing the VPlan H-CFG construction, we collect the outermost
2256   // loop of every loop nest.
2257   if (L.isInnermost() || VPlanBuildStressTest ||
2258       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2259     LoopBlocksRPO RPOT(&L);
2260     RPOT.perform(LI);
2261     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2262       V.push_back(&L);
2263       // TODO: Collect inner loops inside marked outer loops in case
2264       // vectorization fails for the outer loop. Do not invoke
2265       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2266       // already known to be reducible. We can use an inherited attribute for
2267       // that.
2268       return;
2269     }
2270   }
2271   for (Loop *InnerL : L)
2272     collectSupportedLoops(*InnerL, LI, ORE, V);
2273 }
2274 
2275 namespace {
2276 
2277 /// The LoopVectorize Pass.
2278 struct LoopVectorize : public FunctionPass {
2279   /// Pass identification, replacement for typeid
2280   static char ID;
2281 
2282   LoopVectorizePass Impl;
2283 
2284   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2285                          bool VectorizeOnlyWhenForced = false)
2286       : FunctionPass(ID),
2287         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2288     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2289   }
2290 
2291   bool runOnFunction(Function &F) override {
2292     if (skipFunction(F))
2293       return false;
2294 
2295     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2296     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2297     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2298     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2299     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2300     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2301     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2302     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2303     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2304     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2305     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2306     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2307     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2308 
2309     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2310         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2311 
2312     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2313                         GetLAA, *ORE, PSI).MadeAnyChange;
2314   }
2315 
2316   void getAnalysisUsage(AnalysisUsage &AU) const override {
2317     AU.addRequired<AssumptionCacheTracker>();
2318     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2319     AU.addRequired<DominatorTreeWrapperPass>();
2320     AU.addRequired<LoopInfoWrapperPass>();
2321     AU.addRequired<ScalarEvolutionWrapperPass>();
2322     AU.addRequired<TargetTransformInfoWrapperPass>();
2323     AU.addRequired<AAResultsWrapperPass>();
2324     AU.addRequired<LoopAccessLegacyAnalysis>();
2325     AU.addRequired<DemandedBitsWrapperPass>();
2326     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2327     AU.addRequired<InjectTLIMappingsLegacy>();
2328 
2329     // We currently do not preserve loopinfo/dominator analyses with outer loop
2330     // vectorization. Until this is addressed, mark these analyses as preserved
2331     // only for non-VPlan-native path.
2332     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2333     if (!EnableVPlanNativePath) {
2334       AU.addPreserved<LoopInfoWrapperPass>();
2335       AU.addPreserved<DominatorTreeWrapperPass>();
2336     }
2337 
2338     AU.addPreserved<BasicAAWrapperPass>();
2339     AU.addPreserved<GlobalsAAWrapperPass>();
2340     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2341   }
2342 };
2343 
2344 } // end anonymous namespace
2345 
2346 //===----------------------------------------------------------------------===//
2347 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2348 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2349 //===----------------------------------------------------------------------===//
2350 
2351 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2352   // We need to place the broadcast of invariant variables outside the loop,
2353   // but only if it's proven safe to do so. Else, broadcast will be inside
2354   // vector loop body.
2355   Instruction *Instr = dyn_cast<Instruction>(V);
2356   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2357                      (!Instr ||
2358                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2359   // Place the code for broadcasting invariant variables in the new preheader.
2360   IRBuilder<>::InsertPointGuard Guard(Builder);
2361   if (SafeToHoist)
2362     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2363 
2364   // Broadcast the scalar into all locations in the vector.
2365   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2366 
2367   return Shuf;
2368 }
2369 
2370 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2371     const InductionDescriptor &II, Value *Step, Value *Start,
2372     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2373     VPTransformState &State) {
2374   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2375          "Expected either an induction phi-node or a truncate of it!");
2376 
2377   // Construct the initial value of the vector IV in the vector loop preheader
2378   auto CurrIP = Builder.saveIP();
2379   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2380   if (isa<TruncInst>(EntryVal)) {
2381     assert(Start->getType()->isIntegerTy() &&
2382            "Truncation requires an integer type");
2383     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2384     Step = Builder.CreateTrunc(Step, TruncType);
2385     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2386   }
2387 
2388   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2389   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2390   Value *SteppedStart =
2391       getStepVector(SplatStart, Zero, Step, II.getInductionOpcode());
2392 
2393   // We create vector phi nodes for both integer and floating-point induction
2394   // variables. Here, we determine the kind of arithmetic we will perform.
2395   Instruction::BinaryOps AddOp;
2396   Instruction::BinaryOps MulOp;
2397   if (Step->getType()->isIntegerTy()) {
2398     AddOp = Instruction::Add;
2399     MulOp = Instruction::Mul;
2400   } else {
2401     AddOp = II.getInductionOpcode();
2402     MulOp = Instruction::FMul;
2403   }
2404 
2405   // Multiply the vectorization factor by the step using integer or
2406   // floating-point arithmetic as appropriate.
2407   Type *StepType = Step->getType();
2408   Value *RuntimeVF;
2409   if (Step->getType()->isFloatingPointTy())
2410     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF);
2411   else
2412     RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2413   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2414 
2415   // Create a vector splat to use in the induction update.
2416   //
2417   // FIXME: If the step is non-constant, we create the vector splat with
2418   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2419   //        handle a constant vector splat.
2420   Value *SplatVF = isa<Constant>(Mul)
2421                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2422                        : Builder.CreateVectorSplat(VF, Mul);
2423   Builder.restoreIP(CurrIP);
2424 
2425   // We may need to add the step a number of times, depending on the unroll
2426   // factor. The last of those goes into the PHI.
2427   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2428                                     &*LoopVectorBody->getFirstInsertionPt());
2429   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2430   Instruction *LastInduction = VecInd;
2431   for (unsigned Part = 0; Part < UF; ++Part) {
2432     State.set(Def, LastInduction, Part);
2433 
2434     if (isa<TruncInst>(EntryVal))
2435       addMetadata(LastInduction, EntryVal);
2436     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2437                                           State, Part);
2438 
2439     LastInduction = cast<Instruction>(
2440         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2441     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2442   }
2443 
2444   // Move the last step to the end of the latch block. This ensures consistent
2445   // placement of all induction updates.
2446   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2447   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2448   auto *ICmp = cast<Instruction>(Br->getCondition());
2449   LastInduction->moveBefore(ICmp);
2450   LastInduction->setName("vec.ind.next");
2451 
2452   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2453   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2454 }
2455 
2456 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2457   return Cost->isScalarAfterVectorization(I, VF) ||
2458          Cost->isProfitableToScalarize(I, VF);
2459 }
2460 
2461 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2462   if (shouldScalarizeInstruction(IV))
2463     return true;
2464   auto isScalarInst = [&](User *U) -> bool {
2465     auto *I = cast<Instruction>(U);
2466     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2467   };
2468   return llvm::any_of(IV->users(), isScalarInst);
2469 }
2470 
2471 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2472     const InductionDescriptor &ID, const Instruction *EntryVal,
2473     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2474     unsigned Part, unsigned Lane) {
2475   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2476          "Expected either an induction phi-node or a truncate of it!");
2477 
2478   // This induction variable is not the phi from the original loop but the
2479   // newly-created IV based on the proof that casted Phi is equal to the
2480   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2481   // re-uses the same InductionDescriptor that original IV uses but we don't
2482   // have to do any recording in this case - that is done when original IV is
2483   // processed.
2484   if (isa<TruncInst>(EntryVal))
2485     return;
2486 
2487   if (!CastDef) {
2488     assert(ID.getCastInsts().empty() &&
2489            "there are casts for ID, but no CastDef");
2490     return;
2491   }
2492   assert(!ID.getCastInsts().empty() &&
2493          "there is a CastDef, but no casts for ID");
2494   // Only the first Cast instruction in the Casts vector is of interest.
2495   // The rest of the Casts (if exist) have no uses outside the
2496   // induction update chain itself.
2497   if (Lane < UINT_MAX)
2498     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2499   else
2500     State.set(CastDef, VectorLoopVal, Part);
2501 }
2502 
2503 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2504                                                 TruncInst *Trunc, VPValue *Def,
2505                                                 VPValue *CastDef,
2506                                                 VPTransformState &State) {
2507   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2508          "Primary induction variable must have an integer type");
2509 
2510   auto II = Legal->getInductionVars().find(IV);
2511   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2512 
2513   auto ID = II->second;
2514   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2515 
2516   // The value from the original loop to which we are mapping the new induction
2517   // variable.
2518   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2519 
2520   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2521 
2522   // Generate code for the induction step. Note that induction steps are
2523   // required to be loop-invariant
2524   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2525     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2526            "Induction step should be loop invariant");
2527     if (PSE.getSE()->isSCEVable(IV->getType())) {
2528       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2529       return Exp.expandCodeFor(Step, Step->getType(),
2530                                LoopVectorPreHeader->getTerminator());
2531     }
2532     return cast<SCEVUnknown>(Step)->getValue();
2533   };
2534 
2535   // The scalar value to broadcast. This is derived from the canonical
2536   // induction variable. If a truncation type is given, truncate the canonical
2537   // induction variable and step. Otherwise, derive these values from the
2538   // induction descriptor.
2539   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2540     Value *ScalarIV = Induction;
2541     if (IV != OldInduction) {
2542       ScalarIV = IV->getType()->isIntegerTy()
2543                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2544                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2545                                           IV->getType());
2546       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2547       ScalarIV->setName("offset.idx");
2548     }
2549     if (Trunc) {
2550       auto *TruncType = cast<IntegerType>(Trunc->getType());
2551       assert(Step->getType()->isIntegerTy() &&
2552              "Truncation requires an integer step");
2553       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2554       Step = Builder.CreateTrunc(Step, TruncType);
2555     }
2556     return ScalarIV;
2557   };
2558 
2559   // Create the vector values from the scalar IV, in the absence of creating a
2560   // vector IV.
2561   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2562     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2563     for (unsigned Part = 0; Part < UF; ++Part) {
2564       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2565       Value *StartIdx;
2566       if (Step->getType()->isFloatingPointTy())
2567         StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part);
2568       else
2569         StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part);
2570 
2571       Value *EntryPart =
2572           getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode());
2573       State.set(Def, EntryPart, Part);
2574       if (Trunc)
2575         addMetadata(EntryPart, Trunc);
2576       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2577                                             State, Part);
2578     }
2579   };
2580 
2581   // Fast-math-flags propagate from the original induction instruction.
2582   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2583   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2584     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2585 
2586   // Now do the actual transformations, and start with creating the step value.
2587   Value *Step = CreateStepValue(ID.getStep());
2588   if (VF.isZero() || VF.isScalar()) {
2589     Value *ScalarIV = CreateScalarIV(Step);
2590     CreateSplatIV(ScalarIV, Step);
2591     return;
2592   }
2593 
2594   // Determine if we want a scalar version of the induction variable. This is
2595   // true if the induction variable itself is not widened, or if it has at
2596   // least one user in the loop that is not widened.
2597   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2598   if (!NeedsScalarIV) {
2599     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2600                                     State);
2601     return;
2602   }
2603 
2604   // Try to create a new independent vector induction variable. If we can't
2605   // create the phi node, we will splat the scalar induction variable in each
2606   // loop iteration.
2607   if (!shouldScalarizeInstruction(EntryVal)) {
2608     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2609                                     State);
2610     Value *ScalarIV = CreateScalarIV(Step);
2611     // Create scalar steps that can be used by instructions we will later
2612     // scalarize. Note that the addition of the scalar steps will not increase
2613     // the number of instructions in the loop in the common case prior to
2614     // InstCombine. We will be trading one vector extract for each scalar step.
2615     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2616     return;
2617   }
2618 
2619   // All IV users are scalar instructions, so only emit a scalar IV, not a
2620   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2621   // predicate used by the masked loads/stores.
2622   Value *ScalarIV = CreateScalarIV(Step);
2623   if (!Cost->isScalarEpilogueAllowed())
2624     CreateSplatIV(ScalarIV, Step);
2625   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2626 }
2627 
2628 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx,
2629                                           Value *Step,
2630                                           Instruction::BinaryOps BinOp) {
2631   // Create and check the types.
2632   auto *ValVTy = cast<VectorType>(Val->getType());
2633   ElementCount VLen = ValVTy->getElementCount();
2634 
2635   Type *STy = Val->getType()->getScalarType();
2636   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2637          "Induction Step must be an integer or FP");
2638   assert(Step->getType() == STy && "Step has wrong type");
2639 
2640   SmallVector<Constant *, 8> Indices;
2641 
2642   // Create a vector of consecutive numbers from zero to VF.
2643   VectorType *InitVecValVTy = ValVTy;
2644   Type *InitVecValSTy = STy;
2645   if (STy->isFloatingPointTy()) {
2646     InitVecValSTy =
2647         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2648     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2649   }
2650   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2651 
2652   // Splat the StartIdx
2653   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2654 
2655   if (STy->isIntegerTy()) {
2656     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2657     Step = Builder.CreateVectorSplat(VLen, Step);
2658     assert(Step->getType() == Val->getType() && "Invalid step vec");
2659     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2660     // which can be found from the original scalar operations.
2661     Step = Builder.CreateMul(InitVec, Step);
2662     return Builder.CreateAdd(Val, Step, "induction");
2663   }
2664 
2665   // Floating point induction.
2666   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2667          "Binary Opcode should be specified for FP induction");
2668   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2669   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2670 
2671   Step = Builder.CreateVectorSplat(VLen, Step);
2672   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2673   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2674 }
2675 
2676 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2677                                            Instruction *EntryVal,
2678                                            const InductionDescriptor &ID,
2679                                            VPValue *Def, VPValue *CastDef,
2680                                            VPTransformState &State) {
2681   // We shouldn't have to build scalar steps if we aren't vectorizing.
2682   assert(VF.isVector() && "VF should be greater than one");
2683   // Get the value type and ensure it and the step have the same integer type.
2684   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2685   assert(ScalarIVTy == Step->getType() &&
2686          "Val and Step should have the same type");
2687 
2688   // We build scalar steps for both integer and floating-point induction
2689   // variables. Here, we determine the kind of arithmetic we will perform.
2690   Instruction::BinaryOps AddOp;
2691   Instruction::BinaryOps MulOp;
2692   if (ScalarIVTy->isIntegerTy()) {
2693     AddOp = Instruction::Add;
2694     MulOp = Instruction::Mul;
2695   } else {
2696     AddOp = ID.getInductionOpcode();
2697     MulOp = Instruction::FMul;
2698   }
2699 
2700   // Determine the number of scalars we need to generate for each unroll
2701   // iteration. If EntryVal is uniform, we only need to generate the first
2702   // lane. Otherwise, we generate all VF values.
2703   bool IsUniform =
2704       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2705   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2706   // Compute the scalar steps and save the results in State.
2707   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2708                                      ScalarIVTy->getScalarSizeInBits());
2709   Type *VecIVTy = nullptr;
2710   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2711   if (!IsUniform && VF.isScalable()) {
2712     VecIVTy = VectorType::get(ScalarIVTy, VF);
2713     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2714     SplatStep = Builder.CreateVectorSplat(VF, Step);
2715     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2716   }
2717 
2718   for (unsigned Part = 0; Part < UF; ++Part) {
2719     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, VF, Part);
2720 
2721     if (!IsUniform && VF.isScalable()) {
2722       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2723       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2724       if (ScalarIVTy->isFloatingPointTy())
2725         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2726       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2727       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2728       State.set(Def, Add, Part);
2729       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2730                                             Part);
2731       // It's useful to record the lane values too for the known minimum number
2732       // of elements so we do those below. This improves the code quality when
2733       // trying to extract the first element, for example.
2734     }
2735 
2736     if (ScalarIVTy->isFloatingPointTy())
2737       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2738 
2739     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2740       Value *StartIdx = Builder.CreateBinOp(
2741           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2742       // The step returned by `createStepForVF` is a runtime-evaluated value
2743       // when VF is scalable. Otherwise, it should be folded into a Constant.
2744       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2745              "Expected StartIdx to be folded to a constant when VF is not "
2746              "scalable");
2747       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2748       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2749       State.set(Def, Add, VPIteration(Part, Lane));
2750       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2751                                             Part, Lane);
2752     }
2753   }
2754 }
2755 
2756 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2757                                                     const VPIteration &Instance,
2758                                                     VPTransformState &State) {
2759   Value *ScalarInst = State.get(Def, Instance);
2760   Value *VectorValue = State.get(Def, Instance.Part);
2761   VectorValue = Builder.CreateInsertElement(
2762       VectorValue, ScalarInst,
2763       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2764   State.set(Def, VectorValue, Instance.Part);
2765 }
2766 
2767 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2768   assert(Vec->getType()->isVectorTy() && "Invalid type");
2769   return Builder.CreateVectorReverse(Vec, "reverse");
2770 }
2771 
2772 // Return whether we allow using masked interleave-groups (for dealing with
2773 // strided loads/stores that reside in predicated blocks, or for dealing
2774 // with gaps).
2775 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2776   // If an override option has been passed in for interleaved accesses, use it.
2777   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2778     return EnableMaskedInterleavedMemAccesses;
2779 
2780   return TTI.enableMaskedInterleavedAccessVectorization();
2781 }
2782 
2783 // Try to vectorize the interleave group that \p Instr belongs to.
2784 //
2785 // E.g. Translate following interleaved load group (factor = 3):
2786 //   for (i = 0; i < N; i+=3) {
2787 //     R = Pic[i];             // Member of index 0
2788 //     G = Pic[i+1];           // Member of index 1
2789 //     B = Pic[i+2];           // Member of index 2
2790 //     ... // do something to R, G, B
2791 //   }
2792 // To:
2793 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2794 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2795 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2796 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2797 //
2798 // Or translate following interleaved store group (factor = 3):
2799 //   for (i = 0; i < N; i+=3) {
2800 //     ... do something to R, G, B
2801 //     Pic[i]   = R;           // Member of index 0
2802 //     Pic[i+1] = G;           // Member of index 1
2803 //     Pic[i+2] = B;           // Member of index 2
2804 //   }
2805 // To:
2806 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2807 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2808 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2809 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2810 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2811 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2812     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2813     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2814     VPValue *BlockInMask) {
2815   Instruction *Instr = Group->getInsertPos();
2816   const DataLayout &DL = Instr->getModule()->getDataLayout();
2817 
2818   // Prepare for the vector type of the interleaved load/store.
2819   Type *ScalarTy = getLoadStoreType(Instr);
2820   unsigned InterleaveFactor = Group->getFactor();
2821   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2822   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2823 
2824   // Prepare for the new pointers.
2825   SmallVector<Value *, 2> AddrParts;
2826   unsigned Index = Group->getIndex(Instr);
2827 
2828   // TODO: extend the masked interleaved-group support to reversed access.
2829   assert((!BlockInMask || !Group->isReverse()) &&
2830          "Reversed masked interleave-group not supported.");
2831 
2832   // If the group is reverse, adjust the index to refer to the last vector lane
2833   // instead of the first. We adjust the index from the first vector lane,
2834   // rather than directly getting the pointer for lane VF - 1, because the
2835   // pointer operand of the interleaved access is supposed to be uniform. For
2836   // uniform instructions, we're only required to generate a value for the
2837   // first vector lane in each unroll iteration.
2838   if (Group->isReverse())
2839     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2840 
2841   for (unsigned Part = 0; Part < UF; Part++) {
2842     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2843     setDebugLocFromInst(AddrPart);
2844 
2845     // Notice current instruction could be any index. Need to adjust the address
2846     // to the member of index 0.
2847     //
2848     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2849     //       b = A[i];       // Member of index 0
2850     // Current pointer is pointed to A[i+1], adjust it to A[i].
2851     //
2852     // E.g.  A[i+1] = a;     // Member of index 1
2853     //       A[i]   = b;     // Member of index 0
2854     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2855     // Current pointer is pointed to A[i+2], adjust it to A[i].
2856 
2857     bool InBounds = false;
2858     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2859       InBounds = gep->isInBounds();
2860     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2861     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2862 
2863     // Cast to the vector pointer type.
2864     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2865     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2866     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2867   }
2868 
2869   setDebugLocFromInst(Instr);
2870   Value *PoisonVec = PoisonValue::get(VecTy);
2871 
2872   Value *MaskForGaps = nullptr;
2873   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2874     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2875     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2876   }
2877 
2878   // Vectorize the interleaved load group.
2879   if (isa<LoadInst>(Instr)) {
2880     // For each unroll part, create a wide load for the group.
2881     SmallVector<Value *, 2> NewLoads;
2882     for (unsigned Part = 0; Part < UF; Part++) {
2883       Instruction *NewLoad;
2884       if (BlockInMask || MaskForGaps) {
2885         assert(useMaskedInterleavedAccesses(*TTI) &&
2886                "masked interleaved groups are not allowed.");
2887         Value *GroupMask = MaskForGaps;
2888         if (BlockInMask) {
2889           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2890           Value *ShuffledMask = Builder.CreateShuffleVector(
2891               BlockInMaskPart,
2892               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2893               "interleaved.mask");
2894           GroupMask = MaskForGaps
2895                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2896                                                 MaskForGaps)
2897                           : ShuffledMask;
2898         }
2899         NewLoad =
2900             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2901                                      GroupMask, PoisonVec, "wide.masked.vec");
2902       }
2903       else
2904         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2905                                             Group->getAlign(), "wide.vec");
2906       Group->addMetadata(NewLoad);
2907       NewLoads.push_back(NewLoad);
2908     }
2909 
2910     // For each member in the group, shuffle out the appropriate data from the
2911     // wide loads.
2912     unsigned J = 0;
2913     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2914       Instruction *Member = Group->getMember(I);
2915 
2916       // Skip the gaps in the group.
2917       if (!Member)
2918         continue;
2919 
2920       auto StrideMask =
2921           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2922       for (unsigned Part = 0; Part < UF; Part++) {
2923         Value *StridedVec = Builder.CreateShuffleVector(
2924             NewLoads[Part], StrideMask, "strided.vec");
2925 
2926         // If this member has different type, cast the result type.
2927         if (Member->getType() != ScalarTy) {
2928           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2929           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2930           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2931         }
2932 
2933         if (Group->isReverse())
2934           StridedVec = reverseVector(StridedVec);
2935 
2936         State.set(VPDefs[J], StridedVec, Part);
2937       }
2938       ++J;
2939     }
2940     return;
2941   }
2942 
2943   // The sub vector type for current instruction.
2944   auto *SubVT = VectorType::get(ScalarTy, VF);
2945 
2946   // Vectorize the interleaved store group.
2947   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2948   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2949          "masked interleaved groups are not allowed.");
2950   assert((!MaskForGaps || !VF.isScalable()) &&
2951          "masking gaps for scalable vectors is not yet supported.");
2952   for (unsigned Part = 0; Part < UF; Part++) {
2953     // Collect the stored vector from each member.
2954     SmallVector<Value *, 4> StoredVecs;
2955     for (unsigned i = 0; i < InterleaveFactor; i++) {
2956       assert((Group->getMember(i) || MaskForGaps) &&
2957              "Fail to get a member from an interleaved store group");
2958       Instruction *Member = Group->getMember(i);
2959 
2960       // Skip the gaps in the group.
2961       if (!Member) {
2962         Value *Undef = PoisonValue::get(SubVT);
2963         StoredVecs.push_back(Undef);
2964         continue;
2965       }
2966 
2967       Value *StoredVec = State.get(StoredValues[i], Part);
2968 
2969       if (Group->isReverse())
2970         StoredVec = reverseVector(StoredVec);
2971 
2972       // If this member has different type, cast it to a unified type.
2973 
2974       if (StoredVec->getType() != SubVT)
2975         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2976 
2977       StoredVecs.push_back(StoredVec);
2978     }
2979 
2980     // Concatenate all vectors into a wide vector.
2981     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2982 
2983     // Interleave the elements in the wide vector.
2984     Value *IVec = Builder.CreateShuffleVector(
2985         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2986         "interleaved.vec");
2987 
2988     Instruction *NewStoreInstr;
2989     if (BlockInMask || MaskForGaps) {
2990       Value *GroupMask = MaskForGaps;
2991       if (BlockInMask) {
2992         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2993         Value *ShuffledMask = Builder.CreateShuffleVector(
2994             BlockInMaskPart,
2995             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2996             "interleaved.mask");
2997         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2998                                                       ShuffledMask, MaskForGaps)
2999                                 : ShuffledMask;
3000       }
3001       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
3002                                                 Group->getAlign(), GroupMask);
3003     } else
3004       NewStoreInstr =
3005           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
3006 
3007     Group->addMetadata(NewStoreInstr);
3008   }
3009 }
3010 
3011 void InnerLoopVectorizer::vectorizeMemoryInstruction(
3012     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
3013     VPValue *StoredValue, VPValue *BlockInMask, bool ConsecutiveStride,
3014     bool Reverse) {
3015   // Attempt to issue a wide load.
3016   LoadInst *LI = dyn_cast<LoadInst>(Instr);
3017   StoreInst *SI = dyn_cast<StoreInst>(Instr);
3018 
3019   assert((LI || SI) && "Invalid Load/Store instruction");
3020   assert((!SI || StoredValue) && "No stored value provided for widened store");
3021   assert((!LI || !StoredValue) && "Stored value provided for widened load");
3022 
3023   Type *ScalarDataTy = getLoadStoreType(Instr);
3024 
3025   auto *DataTy = VectorType::get(ScalarDataTy, VF);
3026   const Align Alignment = getLoadStoreAlignment(Instr);
3027   bool CreateGatherScatter = !ConsecutiveStride;
3028 
3029   VectorParts BlockInMaskParts(UF);
3030   bool isMaskRequired = BlockInMask;
3031   if (isMaskRequired)
3032     for (unsigned Part = 0; Part < UF; ++Part)
3033       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
3034 
3035   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
3036     // Calculate the pointer for the specific unroll-part.
3037     GetElementPtrInst *PartPtr = nullptr;
3038 
3039     bool InBounds = false;
3040     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
3041       InBounds = gep->isInBounds();
3042     if (Reverse) {
3043       // If the address is consecutive but reversed, then the
3044       // wide store needs to start at the last vector element.
3045       // RunTimeVF =  VScale * VF.getKnownMinValue()
3046       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
3047       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
3048       // NumElt = -Part * RunTimeVF
3049       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
3050       // LastLane = 1 - RunTimeVF
3051       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
3052       PartPtr =
3053           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
3054       PartPtr->setIsInBounds(InBounds);
3055       PartPtr = cast<GetElementPtrInst>(
3056           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
3057       PartPtr->setIsInBounds(InBounds);
3058       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
3059         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
3060     } else {
3061       Value *Increment =
3062           createStepForVF(Builder, Builder.getInt32Ty(), VF, Part);
3063       PartPtr = cast<GetElementPtrInst>(
3064           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
3065       PartPtr->setIsInBounds(InBounds);
3066     }
3067 
3068     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
3069     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3070   };
3071 
3072   // Handle Stores:
3073   if (SI) {
3074     setDebugLocFromInst(SI);
3075 
3076     for (unsigned Part = 0; Part < UF; ++Part) {
3077       Instruction *NewSI = nullptr;
3078       Value *StoredVal = State.get(StoredValue, Part);
3079       if (CreateGatherScatter) {
3080         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3081         Value *VectorGep = State.get(Addr, Part);
3082         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
3083                                             MaskPart);
3084       } else {
3085         if (Reverse) {
3086           // If we store to reverse consecutive memory locations, then we need
3087           // to reverse the order of elements in the stored value.
3088           StoredVal = reverseVector(StoredVal);
3089           // We don't want to update the value in the map as it might be used in
3090           // another expression. So don't call resetVectorValue(StoredVal).
3091         }
3092         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3093         if (isMaskRequired)
3094           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3095                                             BlockInMaskParts[Part]);
3096         else
3097           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3098       }
3099       addMetadata(NewSI, SI);
3100     }
3101     return;
3102   }
3103 
3104   // Handle loads.
3105   assert(LI && "Must have a load instruction");
3106   setDebugLocFromInst(LI);
3107   for (unsigned Part = 0; Part < UF; ++Part) {
3108     Value *NewLI;
3109     if (CreateGatherScatter) {
3110       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3111       Value *VectorGep = State.get(Addr, Part);
3112       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3113                                          nullptr, "wide.masked.gather");
3114       addMetadata(NewLI, LI);
3115     } else {
3116       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3117       if (isMaskRequired)
3118         NewLI = Builder.CreateMaskedLoad(
3119             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3120             PoisonValue::get(DataTy), "wide.masked.load");
3121       else
3122         NewLI =
3123             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3124 
3125       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3126       addMetadata(NewLI, LI);
3127       if (Reverse)
3128         NewLI = reverseVector(NewLI);
3129     }
3130 
3131     State.set(Def, NewLI, Part);
3132   }
3133 }
3134 
3135 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
3136                                                VPReplicateRecipe *RepRecipe,
3137                                                const VPIteration &Instance,
3138                                                bool IfPredicateInstr,
3139                                                VPTransformState &State) {
3140   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3141 
3142   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3143   // the first lane and part.
3144   if (isa<NoAliasScopeDeclInst>(Instr))
3145     if (!Instance.isFirstIteration())
3146       return;
3147 
3148   setDebugLocFromInst(Instr);
3149 
3150   // Does this instruction return a value ?
3151   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3152 
3153   Instruction *Cloned = Instr->clone();
3154   if (!IsVoidRetTy)
3155     Cloned->setName(Instr->getName() + ".cloned");
3156 
3157   // If the scalarized instruction contributes to the address computation of a
3158   // widen masked load/store which was in a basic block that needed predication
3159   // and is not predicated after vectorization, we can't propagate
3160   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
3161   // instruction could feed a poison value to the base address of the widen
3162   // load/store.
3163   if (State.MayGeneratePoisonRecipes.count(RepRecipe) > 0)
3164     Cloned->dropPoisonGeneratingFlags();
3165 
3166   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3167                                Builder.GetInsertPoint());
3168   // Replace the operands of the cloned instructions with their scalar
3169   // equivalents in the new loop.
3170   for (unsigned op = 0, e = RepRecipe->getNumOperands(); op != e; ++op) {
3171     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3172     auto InputInstance = Instance;
3173     if (!Operand || !OrigLoop->contains(Operand) ||
3174         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3175       InputInstance.Lane = VPLane::getFirstLane();
3176     auto *NewOp = State.get(RepRecipe->getOperand(op), InputInstance);
3177     Cloned->setOperand(op, NewOp);
3178   }
3179   addNewMetadata(Cloned, Instr);
3180 
3181   // Place the cloned scalar in the new loop.
3182   Builder.Insert(Cloned);
3183 
3184   State.set(RepRecipe, Cloned, Instance);
3185 
3186   // If we just cloned a new assumption, add it the assumption cache.
3187   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3188     AC->registerAssumption(II);
3189 
3190   // End if-block.
3191   if (IfPredicateInstr)
3192     PredicatedInstructions.push_back(Cloned);
3193 }
3194 
3195 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3196                                                       Value *End, Value *Step,
3197                                                       Instruction *DL) {
3198   BasicBlock *Header = L->getHeader();
3199   BasicBlock *Latch = L->getLoopLatch();
3200   // As we're just creating this loop, it's possible no latch exists
3201   // yet. If so, use the header as this will be a single block loop.
3202   if (!Latch)
3203     Latch = Header;
3204 
3205   IRBuilder<> B(&*Header->getFirstInsertionPt());
3206   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3207   setDebugLocFromInst(OldInst, &B);
3208   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3209 
3210   B.SetInsertPoint(Latch->getTerminator());
3211   setDebugLocFromInst(OldInst, &B);
3212 
3213   // Create i+1 and fill the PHINode.
3214   //
3215   // If the tail is not folded, we know that End - Start >= Step (either
3216   // statically or through the minimum iteration checks). We also know that both
3217   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3218   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3219   // overflows and we can mark the induction increment as NUW.
3220   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3221                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3222   Induction->addIncoming(Start, L->getLoopPreheader());
3223   Induction->addIncoming(Next, Latch);
3224   // Create the compare.
3225   Value *ICmp = B.CreateICmpEQ(Next, End);
3226   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3227 
3228   // Now we have two terminators. Remove the old one from the block.
3229   Latch->getTerminator()->eraseFromParent();
3230 
3231   return Induction;
3232 }
3233 
3234 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3235   if (TripCount)
3236     return TripCount;
3237 
3238   assert(L && "Create Trip Count for null loop.");
3239   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3240   // Find the loop boundaries.
3241   ScalarEvolution *SE = PSE.getSE();
3242   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3243   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3244          "Invalid loop count");
3245 
3246   Type *IdxTy = Legal->getWidestInductionType();
3247   assert(IdxTy && "No type for induction");
3248 
3249   // The exit count might have the type of i64 while the phi is i32. This can
3250   // happen if we have an induction variable that is sign extended before the
3251   // compare. The only way that we get a backedge taken count is that the
3252   // induction variable was signed and as such will not overflow. In such a case
3253   // truncation is legal.
3254   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3255       IdxTy->getPrimitiveSizeInBits())
3256     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3257   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3258 
3259   // Get the total trip count from the count by adding 1.
3260   const SCEV *ExitCount = SE->getAddExpr(
3261       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3262 
3263   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3264 
3265   // Expand the trip count and place the new instructions in the preheader.
3266   // Notice that the pre-header does not change, only the loop body.
3267   SCEVExpander Exp(*SE, DL, "induction");
3268 
3269   // Count holds the overall loop count (N).
3270   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3271                                 L->getLoopPreheader()->getTerminator());
3272 
3273   if (TripCount->getType()->isPointerTy())
3274     TripCount =
3275         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3276                                     L->getLoopPreheader()->getTerminator());
3277 
3278   return TripCount;
3279 }
3280 
3281 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3282   if (VectorTripCount)
3283     return VectorTripCount;
3284 
3285   Value *TC = getOrCreateTripCount(L);
3286   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3287 
3288   Type *Ty = TC->getType();
3289   // This is where we can make the step a runtime constant.
3290   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3291 
3292   // If the tail is to be folded by masking, round the number of iterations N
3293   // up to a multiple of Step instead of rounding down. This is done by first
3294   // adding Step-1 and then rounding down. Note that it's ok if this addition
3295   // overflows: the vector induction variable will eventually wrap to zero given
3296   // that it starts at zero and its Step is a power of two; the loop will then
3297   // exit, with the last early-exit vector comparison also producing all-true.
3298   if (Cost->foldTailByMasking()) {
3299     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3300            "VF*UF must be a power of 2 when folding tail by masking");
3301     assert(!VF.isScalable() &&
3302            "Tail folding not yet supported for scalable vectors");
3303     TC = Builder.CreateAdd(
3304         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3305   }
3306 
3307   // Now we need to generate the expression for the part of the loop that the
3308   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3309   // iterations are not required for correctness, or N - Step, otherwise. Step
3310   // is equal to the vectorization factor (number of SIMD elements) times the
3311   // unroll factor (number of SIMD instructions).
3312   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3313 
3314   // There are cases where we *must* run at least one iteration in the remainder
3315   // loop.  See the cost model for when this can happen.  If the step evenly
3316   // divides the trip count, we set the remainder to be equal to the step. If
3317   // the step does not evenly divide the trip count, no adjustment is necessary
3318   // since there will already be scalar iterations. Note that the minimum
3319   // iterations check ensures that N >= Step.
3320   if (Cost->requiresScalarEpilogue(VF)) {
3321     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3322     R = Builder.CreateSelect(IsZero, Step, R);
3323   }
3324 
3325   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3326 
3327   return VectorTripCount;
3328 }
3329 
3330 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3331                                                    const DataLayout &DL) {
3332   // Verify that V is a vector type with same number of elements as DstVTy.
3333   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3334   unsigned VF = DstFVTy->getNumElements();
3335   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3336   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3337   Type *SrcElemTy = SrcVecTy->getElementType();
3338   Type *DstElemTy = DstFVTy->getElementType();
3339   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3340          "Vector elements must have same size");
3341 
3342   // Do a direct cast if element types are castable.
3343   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3344     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3345   }
3346   // V cannot be directly casted to desired vector type.
3347   // May happen when V is a floating point vector but DstVTy is a vector of
3348   // pointers or vice-versa. Handle this using a two-step bitcast using an
3349   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3350   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3351          "Only one type should be a pointer type");
3352   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3353          "Only one type should be a floating point type");
3354   Type *IntTy =
3355       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3356   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3357   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3358   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3359 }
3360 
3361 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3362                                                          BasicBlock *Bypass) {
3363   Value *Count = getOrCreateTripCount(L);
3364   // Reuse existing vector loop preheader for TC checks.
3365   // Note that new preheader block is generated for vector loop.
3366   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3367   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3368 
3369   // Generate code to check if the loop's trip count is less than VF * UF, or
3370   // equal to it in case a scalar epilogue is required; this implies that the
3371   // vector trip count is zero. This check also covers the case where adding one
3372   // to the backedge-taken count overflowed leading to an incorrect trip count
3373   // of zero. In this case we will also jump to the scalar loop.
3374   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3375                                             : ICmpInst::ICMP_ULT;
3376 
3377   // If tail is to be folded, vector loop takes care of all iterations.
3378   Value *CheckMinIters = Builder.getFalse();
3379   if (!Cost->foldTailByMasking()) {
3380     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3381     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3382   }
3383   // Create new preheader for vector loop.
3384   LoopVectorPreHeader =
3385       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3386                  "vector.ph");
3387 
3388   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3389                                DT->getNode(Bypass)->getIDom()) &&
3390          "TC check is expected to dominate Bypass");
3391 
3392   // Update dominator for Bypass & LoopExit (if needed).
3393   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3394   if (!Cost->requiresScalarEpilogue(VF))
3395     // If there is an epilogue which must run, there's no edge from the
3396     // middle block to exit blocks  and thus no need to update the immediate
3397     // dominator of the exit blocks.
3398     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3399 
3400   ReplaceInstWithInst(
3401       TCCheckBlock->getTerminator(),
3402       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3403   LoopBypassBlocks.push_back(TCCheckBlock);
3404 }
3405 
3406 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3407 
3408   BasicBlock *const SCEVCheckBlock =
3409       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3410   if (!SCEVCheckBlock)
3411     return nullptr;
3412 
3413   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3414            (OptForSizeBasedOnProfile &&
3415             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3416          "Cannot SCEV check stride or overflow when optimizing for size");
3417 
3418 
3419   // Update dominator only if this is first RT check.
3420   if (LoopBypassBlocks.empty()) {
3421     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3422     if (!Cost->requiresScalarEpilogue(VF))
3423       // If there is an epilogue which must run, there's no edge from the
3424       // middle block to exit blocks  and thus no need to update the immediate
3425       // dominator of the exit blocks.
3426       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3427   }
3428 
3429   LoopBypassBlocks.push_back(SCEVCheckBlock);
3430   AddedSafetyChecks = true;
3431   return SCEVCheckBlock;
3432 }
3433 
3434 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3435                                                       BasicBlock *Bypass) {
3436   // VPlan-native path does not do any analysis for runtime checks currently.
3437   if (EnableVPlanNativePath)
3438     return nullptr;
3439 
3440   BasicBlock *const MemCheckBlock =
3441       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3442 
3443   // Check if we generated code that checks in runtime if arrays overlap. We put
3444   // the checks into a separate block to make the more common case of few
3445   // elements faster.
3446   if (!MemCheckBlock)
3447     return nullptr;
3448 
3449   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3450     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3451            "Cannot emit memory checks when optimizing for size, unless forced "
3452            "to vectorize.");
3453     ORE->emit([&]() {
3454       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3455                                         L->getStartLoc(), L->getHeader())
3456              << "Code-size may be reduced by not forcing "
3457                 "vectorization, or by source-code modifications "
3458                 "eliminating the need for runtime checks "
3459                 "(e.g., adding 'restrict').";
3460     });
3461   }
3462 
3463   LoopBypassBlocks.push_back(MemCheckBlock);
3464 
3465   AddedSafetyChecks = true;
3466 
3467   // We currently don't use LoopVersioning for the actual loop cloning but we
3468   // still use it to add the noalias metadata.
3469   LVer = std::make_unique<LoopVersioning>(
3470       *Legal->getLAI(),
3471       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3472       DT, PSE.getSE());
3473   LVer->prepareNoAliasMetadata();
3474   return MemCheckBlock;
3475 }
3476 
3477 Value *InnerLoopVectorizer::emitTransformedIndex(
3478     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3479     const InductionDescriptor &ID) const {
3480 
3481   SCEVExpander Exp(*SE, DL, "induction");
3482   auto Step = ID.getStep();
3483   auto StartValue = ID.getStartValue();
3484   assert(Index->getType()->getScalarType() == Step->getType() &&
3485          "Index scalar type does not match StepValue type");
3486 
3487   // Note: the IR at this point is broken. We cannot use SE to create any new
3488   // SCEV and then expand it, hoping that SCEV's simplification will give us
3489   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3490   // lead to various SCEV crashes. So all we can do is to use builder and rely
3491   // on InstCombine for future simplifications. Here we handle some trivial
3492   // cases only.
3493   auto CreateAdd = [&B](Value *X, Value *Y) {
3494     assert(X->getType() == Y->getType() && "Types don't match!");
3495     if (auto *CX = dyn_cast<ConstantInt>(X))
3496       if (CX->isZero())
3497         return Y;
3498     if (auto *CY = dyn_cast<ConstantInt>(Y))
3499       if (CY->isZero())
3500         return X;
3501     return B.CreateAdd(X, Y);
3502   };
3503 
3504   // We allow X to be a vector type, in which case Y will potentially be
3505   // splatted into a vector with the same element count.
3506   auto CreateMul = [&B](Value *X, Value *Y) {
3507     assert(X->getType()->getScalarType() == Y->getType() &&
3508            "Types don't match!");
3509     if (auto *CX = dyn_cast<ConstantInt>(X))
3510       if (CX->isOne())
3511         return Y;
3512     if (auto *CY = dyn_cast<ConstantInt>(Y))
3513       if (CY->isOne())
3514         return X;
3515     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3516     if (XVTy && !isa<VectorType>(Y->getType()))
3517       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3518     return B.CreateMul(X, Y);
3519   };
3520 
3521   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3522   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3523   // the DomTree is not kept up-to-date for additional blocks generated in the
3524   // vector loop. By using the header as insertion point, we guarantee that the
3525   // expanded instructions dominate all their uses.
3526   auto GetInsertPoint = [this, &B]() {
3527     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3528     if (InsertBB != LoopVectorBody &&
3529         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3530       return LoopVectorBody->getTerminator();
3531     return &*B.GetInsertPoint();
3532   };
3533 
3534   switch (ID.getKind()) {
3535   case InductionDescriptor::IK_IntInduction: {
3536     assert(!isa<VectorType>(Index->getType()) &&
3537            "Vector indices not supported for integer inductions yet");
3538     assert(Index->getType() == StartValue->getType() &&
3539            "Index type does not match StartValue type");
3540     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3541       return B.CreateSub(StartValue, Index);
3542     auto *Offset = CreateMul(
3543         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3544     return CreateAdd(StartValue, Offset);
3545   }
3546   case InductionDescriptor::IK_PtrInduction: {
3547     assert(isa<SCEVConstant>(Step) &&
3548            "Expected constant step for pointer induction");
3549     return B.CreateGEP(
3550         ID.getElementType(), StartValue,
3551         CreateMul(Index,
3552                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3553                                     GetInsertPoint())));
3554   }
3555   case InductionDescriptor::IK_FpInduction: {
3556     assert(!isa<VectorType>(Index->getType()) &&
3557            "Vector indices not supported for FP inductions yet");
3558     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3559     auto InductionBinOp = ID.getInductionBinOp();
3560     assert(InductionBinOp &&
3561            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3562             InductionBinOp->getOpcode() == Instruction::FSub) &&
3563            "Original bin op should be defined for FP induction");
3564 
3565     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3566     Value *MulExp = B.CreateFMul(StepValue, Index);
3567     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3568                          "induction");
3569   }
3570   case InductionDescriptor::IK_NoInduction:
3571     return nullptr;
3572   }
3573   llvm_unreachable("invalid enum");
3574 }
3575 
3576 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3577   LoopScalarBody = OrigLoop->getHeader();
3578   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3579   assert(LoopVectorPreHeader && "Invalid loop structure");
3580   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3581   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3582          "multiple exit loop without required epilogue?");
3583 
3584   LoopMiddleBlock =
3585       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3586                  LI, nullptr, Twine(Prefix) + "middle.block");
3587   LoopScalarPreHeader =
3588       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3589                  nullptr, Twine(Prefix) + "scalar.ph");
3590 
3591   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3592 
3593   // Set up the middle block terminator.  Two cases:
3594   // 1) If we know that we must execute the scalar epilogue, emit an
3595   //    unconditional branch.
3596   // 2) Otherwise, we must have a single unique exit block (due to how we
3597   //    implement the multiple exit case).  In this case, set up a conditonal
3598   //    branch from the middle block to the loop scalar preheader, and the
3599   //    exit block.  completeLoopSkeleton will update the condition to use an
3600   //    iteration check, if required to decide whether to execute the remainder.
3601   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3602     BranchInst::Create(LoopScalarPreHeader) :
3603     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3604                        Builder.getTrue());
3605   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3606   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3607 
3608   // We intentionally don't let SplitBlock to update LoopInfo since
3609   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3610   // LoopVectorBody is explicitly added to the correct place few lines later.
3611   LoopVectorBody =
3612       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3613                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3614 
3615   // Update dominator for loop exit.
3616   if (!Cost->requiresScalarEpilogue(VF))
3617     // If there is an epilogue which must run, there's no edge from the
3618     // middle block to exit blocks  and thus no need to update the immediate
3619     // dominator of the exit blocks.
3620     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3621 
3622   // Create and register the new vector loop.
3623   Loop *Lp = LI->AllocateLoop();
3624   Loop *ParentLoop = OrigLoop->getParentLoop();
3625 
3626   // Insert the new loop into the loop nest and register the new basic blocks
3627   // before calling any utilities such as SCEV that require valid LoopInfo.
3628   if (ParentLoop) {
3629     ParentLoop->addChildLoop(Lp);
3630   } else {
3631     LI->addTopLevelLoop(Lp);
3632   }
3633   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3634   return Lp;
3635 }
3636 
3637 void InnerLoopVectorizer::createInductionResumeValues(
3638     Loop *L, Value *VectorTripCount,
3639     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3640   assert(VectorTripCount && L && "Expected valid arguments");
3641   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3642           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3643          "Inconsistent information about additional bypass.");
3644   // We are going to resume the execution of the scalar loop.
3645   // Go over all of the induction variables that we found and fix the
3646   // PHIs that are left in the scalar version of the loop.
3647   // The starting values of PHI nodes depend on the counter of the last
3648   // iteration in the vectorized loop.
3649   // If we come from a bypass edge then we need to start from the original
3650   // start value.
3651   for (auto &InductionEntry : Legal->getInductionVars()) {
3652     PHINode *OrigPhi = InductionEntry.first;
3653     InductionDescriptor II = InductionEntry.second;
3654 
3655     // Create phi nodes to merge from the  backedge-taken check block.
3656     PHINode *BCResumeVal =
3657         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3658                         LoopScalarPreHeader->getTerminator());
3659     // Copy original phi DL over to the new one.
3660     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3661     Value *&EndValue = IVEndValues[OrigPhi];
3662     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3663     if (OrigPhi == OldInduction) {
3664       // We know what the end value is.
3665       EndValue = VectorTripCount;
3666     } else {
3667       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3668 
3669       // Fast-math-flags propagate from the original induction instruction.
3670       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3671         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3672 
3673       Type *StepType = II.getStep()->getType();
3674       Instruction::CastOps CastOp =
3675           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3676       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3677       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3678       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3679       EndValue->setName("ind.end");
3680 
3681       // Compute the end value for the additional bypass (if applicable).
3682       if (AdditionalBypass.first) {
3683         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3684         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3685                                          StepType, true);
3686         CRD =
3687             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3688         EndValueFromAdditionalBypass =
3689             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3690         EndValueFromAdditionalBypass->setName("ind.end");
3691       }
3692     }
3693     // The new PHI merges the original incoming value, in case of a bypass,
3694     // or the value at the end of the vectorized loop.
3695     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3696 
3697     // Fix the scalar body counter (PHI node).
3698     // The old induction's phi node in the scalar body needs the truncated
3699     // value.
3700     for (BasicBlock *BB : LoopBypassBlocks)
3701       BCResumeVal->addIncoming(II.getStartValue(), BB);
3702 
3703     if (AdditionalBypass.first)
3704       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3705                                             EndValueFromAdditionalBypass);
3706 
3707     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3708   }
3709 }
3710 
3711 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3712                                                       MDNode *OrigLoopID) {
3713   assert(L && "Expected valid loop.");
3714 
3715   // The trip counts should be cached by now.
3716   Value *Count = getOrCreateTripCount(L);
3717   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3718 
3719   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3720 
3721   // Add a check in the middle block to see if we have completed
3722   // all of the iterations in the first vector loop.  Three cases:
3723   // 1) If we require a scalar epilogue, there is no conditional branch as
3724   //    we unconditionally branch to the scalar preheader.  Do nothing.
3725   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3726   //    Thus if tail is to be folded, we know we don't need to run the
3727   //    remainder and we can use the previous value for the condition (true).
3728   // 3) Otherwise, construct a runtime check.
3729   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3730     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3731                                         Count, VectorTripCount, "cmp.n",
3732                                         LoopMiddleBlock->getTerminator());
3733 
3734     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3735     // of the corresponding compare because they may have ended up with
3736     // different line numbers and we want to avoid awkward line stepping while
3737     // debugging. Eg. if the compare has got a line number inside the loop.
3738     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3739     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3740   }
3741 
3742   // Get ready to start creating new instructions into the vectorized body.
3743   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3744          "Inconsistent vector loop preheader");
3745   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3746 
3747   Optional<MDNode *> VectorizedLoopID =
3748       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3749                                       LLVMLoopVectorizeFollowupVectorized});
3750   if (VectorizedLoopID.hasValue()) {
3751     L->setLoopID(VectorizedLoopID.getValue());
3752 
3753     // Do not setAlreadyVectorized if loop attributes have been defined
3754     // explicitly.
3755     return LoopVectorPreHeader;
3756   }
3757 
3758   // Keep all loop hints from the original loop on the vector loop (we'll
3759   // replace the vectorizer-specific hints below).
3760   if (MDNode *LID = OrigLoop->getLoopID())
3761     L->setLoopID(LID);
3762 
3763   LoopVectorizeHints Hints(L, true, *ORE);
3764   Hints.setAlreadyVectorized();
3765 
3766 #ifdef EXPENSIVE_CHECKS
3767   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3768   LI->verify(*DT);
3769 #endif
3770 
3771   return LoopVectorPreHeader;
3772 }
3773 
3774 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3775   /*
3776    In this function we generate a new loop. The new loop will contain
3777    the vectorized instructions while the old loop will continue to run the
3778    scalar remainder.
3779 
3780        [ ] <-- loop iteration number check.
3781     /   |
3782    /    v
3783   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3784   |  /  |
3785   | /   v
3786   ||   [ ]     <-- vector pre header.
3787   |/    |
3788   |     v
3789   |    [  ] \
3790   |    [  ]_|   <-- vector loop.
3791   |     |
3792   |     v
3793   \   -[ ]   <--- middle-block.
3794    \/   |
3795    /\   v
3796    | ->[ ]     <--- new preheader.
3797    |    |
3798  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3799    |   [ ] \
3800    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3801     \   |
3802      \  v
3803       >[ ]     <-- exit block(s).
3804    ...
3805    */
3806 
3807   // Get the metadata of the original loop before it gets modified.
3808   MDNode *OrigLoopID = OrigLoop->getLoopID();
3809 
3810   // Workaround!  Compute the trip count of the original loop and cache it
3811   // before we start modifying the CFG.  This code has a systemic problem
3812   // wherein it tries to run analysis over partially constructed IR; this is
3813   // wrong, and not simply for SCEV.  The trip count of the original loop
3814   // simply happens to be prone to hitting this in practice.  In theory, we
3815   // can hit the same issue for any SCEV, or ValueTracking query done during
3816   // mutation.  See PR49900.
3817   getOrCreateTripCount(OrigLoop);
3818 
3819   // Create an empty vector loop, and prepare basic blocks for the runtime
3820   // checks.
3821   Loop *Lp = createVectorLoopSkeleton("");
3822 
3823   // Now, compare the new count to zero. If it is zero skip the vector loop and
3824   // jump to the scalar loop. This check also covers the case where the
3825   // backedge-taken count is uint##_max: adding one to it will overflow leading
3826   // to an incorrect trip count of zero. In this (rare) case we will also jump
3827   // to the scalar loop.
3828   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3829 
3830   // Generate the code to check any assumptions that we've made for SCEV
3831   // expressions.
3832   emitSCEVChecks(Lp, LoopScalarPreHeader);
3833 
3834   // Generate the code that checks in runtime if arrays overlap. We put the
3835   // checks into a separate block to make the more common case of few elements
3836   // faster.
3837   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3838 
3839   // Some loops have a single integer induction variable, while other loops
3840   // don't. One example is c++ iterators that often have multiple pointer
3841   // induction variables. In the code below we also support a case where we
3842   // don't have a single induction variable.
3843   //
3844   // We try to obtain an induction variable from the original loop as hard
3845   // as possible. However if we don't find one that:
3846   //   - is an integer
3847   //   - counts from zero, stepping by one
3848   //   - is the size of the widest induction variable type
3849   // then we create a new one.
3850   OldInduction = Legal->getPrimaryInduction();
3851   Type *IdxTy = Legal->getWidestInductionType();
3852   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3853   // The loop step is equal to the vectorization factor (num of SIMD elements)
3854   // times the unroll factor (num of SIMD instructions).
3855   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3856   Value *Step = createStepForVF(Builder, IdxTy, VF, UF);
3857   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3858   Induction =
3859       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3860                               getDebugLocFromInstOrOperands(OldInduction));
3861 
3862   // Emit phis for the new starting index of the scalar loop.
3863   createInductionResumeValues(Lp, CountRoundDown);
3864 
3865   return completeLoopSkeleton(Lp, OrigLoopID);
3866 }
3867 
3868 // Fix up external users of the induction variable. At this point, we are
3869 // in LCSSA form, with all external PHIs that use the IV having one input value,
3870 // coming from the remainder loop. We need those PHIs to also have a correct
3871 // value for the IV when arriving directly from the middle block.
3872 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3873                                        const InductionDescriptor &II,
3874                                        Value *CountRoundDown, Value *EndValue,
3875                                        BasicBlock *MiddleBlock) {
3876   // There are two kinds of external IV usages - those that use the value
3877   // computed in the last iteration (the PHI) and those that use the penultimate
3878   // value (the value that feeds into the phi from the loop latch).
3879   // We allow both, but they, obviously, have different values.
3880 
3881   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3882 
3883   DenseMap<Value *, Value *> MissingVals;
3884 
3885   // An external user of the last iteration's value should see the value that
3886   // the remainder loop uses to initialize its own IV.
3887   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3888   for (User *U : PostInc->users()) {
3889     Instruction *UI = cast<Instruction>(U);
3890     if (!OrigLoop->contains(UI)) {
3891       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3892       MissingVals[UI] = EndValue;
3893     }
3894   }
3895 
3896   // An external user of the penultimate value need to see EndValue - Step.
3897   // The simplest way to get this is to recompute it from the constituent SCEVs,
3898   // that is Start + (Step * (CRD - 1)).
3899   for (User *U : OrigPhi->users()) {
3900     auto *UI = cast<Instruction>(U);
3901     if (!OrigLoop->contains(UI)) {
3902       const DataLayout &DL =
3903           OrigLoop->getHeader()->getModule()->getDataLayout();
3904       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3905 
3906       IRBuilder<> B(MiddleBlock->getTerminator());
3907 
3908       // Fast-math-flags propagate from the original induction instruction.
3909       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3910         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3911 
3912       Value *CountMinusOne = B.CreateSub(
3913           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3914       Value *CMO =
3915           !II.getStep()->getType()->isIntegerTy()
3916               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3917                              II.getStep()->getType())
3918               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3919       CMO->setName("cast.cmo");
3920       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3921       Escape->setName("ind.escape");
3922       MissingVals[UI] = Escape;
3923     }
3924   }
3925 
3926   for (auto &I : MissingVals) {
3927     PHINode *PHI = cast<PHINode>(I.first);
3928     // One corner case we have to handle is two IVs "chasing" each-other,
3929     // that is %IV2 = phi [...], [ %IV1, %latch ]
3930     // In this case, if IV1 has an external use, we need to avoid adding both
3931     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3932     // don't already have an incoming value for the middle block.
3933     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3934       PHI->addIncoming(I.second, MiddleBlock);
3935   }
3936 }
3937 
3938 namespace {
3939 
3940 struct CSEDenseMapInfo {
3941   static bool canHandle(const Instruction *I) {
3942     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3943            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3944   }
3945 
3946   static inline Instruction *getEmptyKey() {
3947     return DenseMapInfo<Instruction *>::getEmptyKey();
3948   }
3949 
3950   static inline Instruction *getTombstoneKey() {
3951     return DenseMapInfo<Instruction *>::getTombstoneKey();
3952   }
3953 
3954   static unsigned getHashValue(const Instruction *I) {
3955     assert(canHandle(I) && "Unknown instruction!");
3956     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3957                                                            I->value_op_end()));
3958   }
3959 
3960   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3961     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3962         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3963       return LHS == RHS;
3964     return LHS->isIdenticalTo(RHS);
3965   }
3966 };
3967 
3968 } // end anonymous namespace
3969 
3970 ///Perform cse of induction variable instructions.
3971 static void cse(BasicBlock *BB) {
3972   // Perform simple cse.
3973   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3974   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3975     if (!CSEDenseMapInfo::canHandle(&In))
3976       continue;
3977 
3978     // Check if we can replace this instruction with any of the
3979     // visited instructions.
3980     if (Instruction *V = CSEMap.lookup(&In)) {
3981       In.replaceAllUsesWith(V);
3982       In.eraseFromParent();
3983       continue;
3984     }
3985 
3986     CSEMap[&In] = &In;
3987   }
3988 }
3989 
3990 InstructionCost
3991 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3992                                               bool &NeedToScalarize) const {
3993   Function *F = CI->getCalledFunction();
3994   Type *ScalarRetTy = CI->getType();
3995   SmallVector<Type *, 4> Tys, ScalarTys;
3996   for (auto &ArgOp : CI->args())
3997     ScalarTys.push_back(ArgOp->getType());
3998 
3999   // Estimate cost of scalarized vector call. The source operands are assumed
4000   // to be vectors, so we need to extract individual elements from there,
4001   // execute VF scalar calls, and then gather the result into the vector return
4002   // value.
4003   InstructionCost ScalarCallCost =
4004       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
4005   if (VF.isScalar())
4006     return ScalarCallCost;
4007 
4008   // Compute corresponding vector type for return value and arguments.
4009   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
4010   for (Type *ScalarTy : ScalarTys)
4011     Tys.push_back(ToVectorTy(ScalarTy, VF));
4012 
4013   // Compute costs of unpacking argument values for the scalar calls and
4014   // packing the return values to a vector.
4015   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
4016 
4017   InstructionCost Cost =
4018       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
4019 
4020   // If we can't emit a vector call for this function, then the currently found
4021   // cost is the cost we need to return.
4022   NeedToScalarize = true;
4023   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4024   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4025 
4026   if (!TLI || CI->isNoBuiltin() || !VecFunc)
4027     return Cost;
4028 
4029   // If the corresponding vector cost is cheaper, return its cost.
4030   InstructionCost VectorCallCost =
4031       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
4032   if (VectorCallCost < Cost) {
4033     NeedToScalarize = false;
4034     Cost = VectorCallCost;
4035   }
4036   return Cost;
4037 }
4038 
4039 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
4040   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
4041     return Elt;
4042   return VectorType::get(Elt, VF);
4043 }
4044 
4045 InstructionCost
4046 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
4047                                                    ElementCount VF) const {
4048   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4049   assert(ID && "Expected intrinsic call!");
4050   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
4051   FastMathFlags FMF;
4052   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
4053     FMF = FPMO->getFastMathFlags();
4054 
4055   SmallVector<const Value *> Arguments(CI->args());
4056   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
4057   SmallVector<Type *> ParamTys;
4058   std::transform(FTy->param_begin(), FTy->param_end(),
4059                  std::back_inserter(ParamTys),
4060                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
4061 
4062   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
4063                                     dyn_cast<IntrinsicInst>(CI));
4064   return TTI.getIntrinsicInstrCost(CostAttrs,
4065                                    TargetTransformInfo::TCK_RecipThroughput);
4066 }
4067 
4068 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
4069   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
4070   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
4071   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
4072 }
4073 
4074 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
4075   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
4076   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
4077   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
4078 }
4079 
4080 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
4081   // For every instruction `I` in MinBWs, truncate the operands, create a
4082   // truncated version of `I` and reextend its result. InstCombine runs
4083   // later and will remove any ext/trunc pairs.
4084   SmallPtrSet<Value *, 4> Erased;
4085   for (const auto &KV : Cost->getMinimalBitwidths()) {
4086     // If the value wasn't vectorized, we must maintain the original scalar
4087     // type. The absence of the value from State indicates that it
4088     // wasn't vectorized.
4089     // FIXME: Should not rely on getVPValue at this point.
4090     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4091     if (!State.hasAnyVectorValue(Def))
4092       continue;
4093     for (unsigned Part = 0; Part < UF; ++Part) {
4094       Value *I = State.get(Def, Part);
4095       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
4096         continue;
4097       Type *OriginalTy = I->getType();
4098       Type *ScalarTruncatedTy =
4099           IntegerType::get(OriginalTy->getContext(), KV.second);
4100       auto *TruncatedTy = VectorType::get(
4101           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4102       if (TruncatedTy == OriginalTy)
4103         continue;
4104 
4105       IRBuilder<> B(cast<Instruction>(I));
4106       auto ShrinkOperand = [&](Value *V) -> Value * {
4107         if (auto *ZI = dyn_cast<ZExtInst>(V))
4108           if (ZI->getSrcTy() == TruncatedTy)
4109             return ZI->getOperand(0);
4110         return B.CreateZExtOrTrunc(V, TruncatedTy);
4111       };
4112 
4113       // The actual instruction modification depends on the instruction type,
4114       // unfortunately.
4115       Value *NewI = nullptr;
4116       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4117         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4118                              ShrinkOperand(BO->getOperand(1)));
4119 
4120         // Any wrapping introduced by shrinking this operation shouldn't be
4121         // considered undefined behavior. So, we can't unconditionally copy
4122         // arithmetic wrapping flags to NewI.
4123         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4124       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4125         NewI =
4126             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4127                          ShrinkOperand(CI->getOperand(1)));
4128       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4129         NewI = B.CreateSelect(SI->getCondition(),
4130                               ShrinkOperand(SI->getTrueValue()),
4131                               ShrinkOperand(SI->getFalseValue()));
4132       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4133         switch (CI->getOpcode()) {
4134         default:
4135           llvm_unreachable("Unhandled cast!");
4136         case Instruction::Trunc:
4137           NewI = ShrinkOperand(CI->getOperand(0));
4138           break;
4139         case Instruction::SExt:
4140           NewI = B.CreateSExtOrTrunc(
4141               CI->getOperand(0),
4142               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4143           break;
4144         case Instruction::ZExt:
4145           NewI = B.CreateZExtOrTrunc(
4146               CI->getOperand(0),
4147               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4148           break;
4149         }
4150       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4151         auto Elements0 =
4152             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4153         auto *O0 = B.CreateZExtOrTrunc(
4154             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4155         auto Elements1 =
4156             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4157         auto *O1 = B.CreateZExtOrTrunc(
4158             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4159 
4160         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4161       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4162         // Don't do anything with the operands, just extend the result.
4163         continue;
4164       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4165         auto Elements =
4166             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4167         auto *O0 = B.CreateZExtOrTrunc(
4168             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4169         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4170         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4171       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4172         auto Elements =
4173             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4174         auto *O0 = B.CreateZExtOrTrunc(
4175             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4176         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4177       } else {
4178         // If we don't know what to do, be conservative and don't do anything.
4179         continue;
4180       }
4181 
4182       // Lastly, extend the result.
4183       NewI->takeName(cast<Instruction>(I));
4184       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4185       I->replaceAllUsesWith(Res);
4186       cast<Instruction>(I)->eraseFromParent();
4187       Erased.insert(I);
4188       State.reset(Def, Res, Part);
4189     }
4190   }
4191 
4192   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4193   for (const auto &KV : Cost->getMinimalBitwidths()) {
4194     // If the value wasn't vectorized, we must maintain the original scalar
4195     // type. The absence of the value from State indicates that it
4196     // wasn't vectorized.
4197     // FIXME: Should not rely on getVPValue at this point.
4198     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4199     if (!State.hasAnyVectorValue(Def))
4200       continue;
4201     for (unsigned Part = 0; Part < UF; ++Part) {
4202       Value *I = State.get(Def, Part);
4203       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4204       if (Inst && Inst->use_empty()) {
4205         Value *NewI = Inst->getOperand(0);
4206         Inst->eraseFromParent();
4207         State.reset(Def, NewI, Part);
4208       }
4209     }
4210   }
4211 }
4212 
4213 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4214   // Insert truncates and extends for any truncated instructions as hints to
4215   // InstCombine.
4216   if (VF.isVector())
4217     truncateToMinimalBitwidths(State);
4218 
4219   // Fix widened non-induction PHIs by setting up the PHI operands.
4220   if (OrigPHIsToFix.size()) {
4221     assert(EnableVPlanNativePath &&
4222            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4223     fixNonInductionPHIs(State);
4224   }
4225 
4226   // At this point every instruction in the original loop is widened to a
4227   // vector form. Now we need to fix the recurrences in the loop. These PHI
4228   // nodes are currently empty because we did not want to introduce cycles.
4229   // This is the second stage of vectorizing recurrences.
4230   fixCrossIterationPHIs(State);
4231 
4232   // Forget the original basic block.
4233   PSE.getSE()->forgetLoop(OrigLoop);
4234 
4235   // If we inserted an edge from the middle block to the unique exit block,
4236   // update uses outside the loop (phis) to account for the newly inserted
4237   // edge.
4238   if (!Cost->requiresScalarEpilogue(VF)) {
4239     // Fix-up external users of the induction variables.
4240     for (auto &Entry : Legal->getInductionVars())
4241       fixupIVUsers(Entry.first, Entry.second,
4242                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4243                    IVEndValues[Entry.first], LoopMiddleBlock);
4244 
4245     fixLCSSAPHIs(State);
4246   }
4247 
4248   for (Instruction *PI : PredicatedInstructions)
4249     sinkScalarOperands(&*PI);
4250 
4251   // Remove redundant induction instructions.
4252   cse(LoopVectorBody);
4253 
4254   // Set/update profile weights for the vector and remainder loops as original
4255   // loop iterations are now distributed among them. Note that original loop
4256   // represented by LoopScalarBody becomes remainder loop after vectorization.
4257   //
4258   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4259   // end up getting slightly roughened result but that should be OK since
4260   // profile is not inherently precise anyway. Note also possible bypass of
4261   // vector code caused by legality checks is ignored, assigning all the weight
4262   // to the vector loop, optimistically.
4263   //
4264   // For scalable vectorization we can't know at compile time how many iterations
4265   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4266   // vscale of '1'.
4267   setProfileInfoAfterUnrolling(
4268       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4269       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4270 }
4271 
4272 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4273   // In order to support recurrences we need to be able to vectorize Phi nodes.
4274   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4275   // stage #2: We now need to fix the recurrences by adding incoming edges to
4276   // the currently empty PHI nodes. At this point every instruction in the
4277   // original loop is widened to a vector form so we can use them to construct
4278   // the incoming edges.
4279   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4280   for (VPRecipeBase &R : Header->phis()) {
4281     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4282       fixReduction(ReductionPhi, State);
4283     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4284       fixFirstOrderRecurrence(FOR, State);
4285   }
4286 }
4287 
4288 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4289                                                   VPTransformState &State) {
4290   // This is the second phase of vectorizing first-order recurrences. An
4291   // overview of the transformation is described below. Suppose we have the
4292   // following loop.
4293   //
4294   //   for (int i = 0; i < n; ++i)
4295   //     b[i] = a[i] - a[i - 1];
4296   //
4297   // There is a first-order recurrence on "a". For this loop, the shorthand
4298   // scalar IR looks like:
4299   //
4300   //   scalar.ph:
4301   //     s_init = a[-1]
4302   //     br scalar.body
4303   //
4304   //   scalar.body:
4305   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4306   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4307   //     s2 = a[i]
4308   //     b[i] = s2 - s1
4309   //     br cond, scalar.body, ...
4310   //
4311   // In this example, s1 is a recurrence because it's value depends on the
4312   // previous iteration. In the first phase of vectorization, we created a
4313   // vector phi v1 for s1. We now complete the vectorization and produce the
4314   // shorthand vector IR shown below (for VF = 4, UF = 1).
4315   //
4316   //   vector.ph:
4317   //     v_init = vector(..., ..., ..., a[-1])
4318   //     br vector.body
4319   //
4320   //   vector.body
4321   //     i = phi [0, vector.ph], [i+4, vector.body]
4322   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4323   //     v2 = a[i, i+1, i+2, i+3];
4324   //     v3 = vector(v1(3), v2(0, 1, 2))
4325   //     b[i, i+1, i+2, i+3] = v2 - v3
4326   //     br cond, vector.body, middle.block
4327   //
4328   //   middle.block:
4329   //     x = v2(3)
4330   //     br scalar.ph
4331   //
4332   //   scalar.ph:
4333   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4334   //     br scalar.body
4335   //
4336   // After execution completes the vector loop, we extract the next value of
4337   // the recurrence (x) to use as the initial value in the scalar loop.
4338 
4339   // Extract the last vector element in the middle block. This will be the
4340   // initial value for the recurrence when jumping to the scalar loop.
4341   VPValue *PreviousDef = PhiR->getBackedgeValue();
4342   Value *Incoming = State.get(PreviousDef, UF - 1);
4343   auto *ExtractForScalar = Incoming;
4344   auto *IdxTy = Builder.getInt32Ty();
4345   if (VF.isVector()) {
4346     auto *One = ConstantInt::get(IdxTy, 1);
4347     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4348     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4349     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4350     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4351                                                     "vector.recur.extract");
4352   }
4353   // Extract the second last element in the middle block if the
4354   // Phi is used outside the loop. We need to extract the phi itself
4355   // and not the last element (the phi update in the current iteration). This
4356   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4357   // when the scalar loop is not run at all.
4358   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4359   if (VF.isVector()) {
4360     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4361     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4362     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4363         Incoming, Idx, "vector.recur.extract.for.phi");
4364   } else if (UF > 1)
4365     // When loop is unrolled without vectorizing, initialize
4366     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4367     // of `Incoming`. This is analogous to the vectorized case above: extracting
4368     // the second last element when VF > 1.
4369     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4370 
4371   // Fix the initial value of the original recurrence in the scalar loop.
4372   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4373   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4374   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4375   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4376   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4377     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4378     Start->addIncoming(Incoming, BB);
4379   }
4380 
4381   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4382   Phi->setName("scalar.recur");
4383 
4384   // Finally, fix users of the recurrence outside the loop. The users will need
4385   // either the last value of the scalar recurrence or the last value of the
4386   // vector recurrence we extracted in the middle block. Since the loop is in
4387   // LCSSA form, we just need to find all the phi nodes for the original scalar
4388   // recurrence in the exit block, and then add an edge for the middle block.
4389   // Note that LCSSA does not imply single entry when the original scalar loop
4390   // had multiple exiting edges (as we always run the last iteration in the
4391   // scalar epilogue); in that case, there is no edge from middle to exit and
4392   // and thus no phis which needed updated.
4393   if (!Cost->requiresScalarEpilogue(VF))
4394     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4395       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4396         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4397 }
4398 
4399 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4400                                        VPTransformState &State) {
4401   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4402   // Get it's reduction variable descriptor.
4403   assert(Legal->isReductionVariable(OrigPhi) &&
4404          "Unable to find the reduction variable");
4405   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4406 
4407   RecurKind RK = RdxDesc.getRecurrenceKind();
4408   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4409   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4410   setDebugLocFromInst(ReductionStartValue);
4411 
4412   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4413   // This is the vector-clone of the value that leaves the loop.
4414   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4415 
4416   // Wrap flags are in general invalid after vectorization, clear them.
4417   clearReductionWrapFlags(RdxDesc, State);
4418 
4419   // Before each round, move the insertion point right between
4420   // the PHIs and the values we are going to write.
4421   // This allows us to write both PHINodes and the extractelement
4422   // instructions.
4423   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4424 
4425   setDebugLocFromInst(LoopExitInst);
4426 
4427   Type *PhiTy = OrigPhi->getType();
4428   // If tail is folded by masking, the vector value to leave the loop should be
4429   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4430   // instead of the former. For an inloop reduction the reduction will already
4431   // be predicated, and does not need to be handled here.
4432   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4433     for (unsigned Part = 0; Part < UF; ++Part) {
4434       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4435       Value *Sel = nullptr;
4436       for (User *U : VecLoopExitInst->users()) {
4437         if (isa<SelectInst>(U)) {
4438           assert(!Sel && "Reduction exit feeding two selects");
4439           Sel = U;
4440         } else
4441           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4442       }
4443       assert(Sel && "Reduction exit feeds no select");
4444       State.reset(LoopExitInstDef, Sel, Part);
4445 
4446       // If the target can create a predicated operator for the reduction at no
4447       // extra cost in the loop (for example a predicated vadd), it can be
4448       // cheaper for the select to remain in the loop than be sunk out of it,
4449       // and so use the select value for the phi instead of the old
4450       // LoopExitValue.
4451       if (PreferPredicatedReductionSelect ||
4452           TTI->preferPredicatedReductionSelect(
4453               RdxDesc.getOpcode(), PhiTy,
4454               TargetTransformInfo::ReductionFlags())) {
4455         auto *VecRdxPhi =
4456             cast<PHINode>(State.get(PhiR, Part));
4457         VecRdxPhi->setIncomingValueForBlock(
4458             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4459       }
4460     }
4461   }
4462 
4463   // If the vector reduction can be performed in a smaller type, we truncate
4464   // then extend the loop exit value to enable InstCombine to evaluate the
4465   // entire expression in the smaller type.
4466   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4467     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4468     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4469     Builder.SetInsertPoint(
4470         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4471     VectorParts RdxParts(UF);
4472     for (unsigned Part = 0; Part < UF; ++Part) {
4473       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4474       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4475       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4476                                         : Builder.CreateZExt(Trunc, VecTy);
4477       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4478         if (U != Trunc) {
4479           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4480           RdxParts[Part] = Extnd;
4481         }
4482     }
4483     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4484     for (unsigned Part = 0; Part < UF; ++Part) {
4485       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4486       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4487     }
4488   }
4489 
4490   // Reduce all of the unrolled parts into a single vector.
4491   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4492   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4493 
4494   // The middle block terminator has already been assigned a DebugLoc here (the
4495   // OrigLoop's single latch terminator). We want the whole middle block to
4496   // appear to execute on this line because: (a) it is all compiler generated,
4497   // (b) these instructions are always executed after evaluating the latch
4498   // conditional branch, and (c) other passes may add new predecessors which
4499   // terminate on this line. This is the easiest way to ensure we don't
4500   // accidentally cause an extra step back into the loop while debugging.
4501   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4502   if (PhiR->isOrdered())
4503     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4504   else {
4505     // Floating-point operations should have some FMF to enable the reduction.
4506     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4507     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4508     for (unsigned Part = 1; Part < UF; ++Part) {
4509       Value *RdxPart = State.get(LoopExitInstDef, Part);
4510       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4511         ReducedPartRdx = Builder.CreateBinOp(
4512             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4513       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4514         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4515                                            ReducedPartRdx, RdxPart);
4516       else
4517         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4518     }
4519   }
4520 
4521   // Create the reduction after the loop. Note that inloop reductions create the
4522   // target reduction in the loop using a Reduction recipe.
4523   if (VF.isVector() && !PhiR->isInLoop()) {
4524     ReducedPartRdx =
4525         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4526     // If the reduction can be performed in a smaller type, we need to extend
4527     // the reduction to the wider type before we branch to the original loop.
4528     if (PhiTy != RdxDesc.getRecurrenceType())
4529       ReducedPartRdx = RdxDesc.isSigned()
4530                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4531                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4532   }
4533 
4534   // Create a phi node that merges control-flow from the backedge-taken check
4535   // block and the middle block.
4536   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4537                                         LoopScalarPreHeader->getTerminator());
4538   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4539     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4540   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4541 
4542   // Now, we need to fix the users of the reduction variable
4543   // inside and outside of the scalar remainder loop.
4544 
4545   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4546   // in the exit blocks.  See comment on analogous loop in
4547   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4548   if (!Cost->requiresScalarEpilogue(VF))
4549     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4550       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4551         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4552 
4553   // Fix the scalar loop reduction variable with the incoming reduction sum
4554   // from the vector body and from the backedge value.
4555   int IncomingEdgeBlockIdx =
4556       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4557   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4558   // Pick the other block.
4559   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4560   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4561   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4562 }
4563 
4564 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4565                                                   VPTransformState &State) {
4566   RecurKind RK = RdxDesc.getRecurrenceKind();
4567   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4568     return;
4569 
4570   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4571   assert(LoopExitInstr && "null loop exit instruction");
4572   SmallVector<Instruction *, 8> Worklist;
4573   SmallPtrSet<Instruction *, 8> Visited;
4574   Worklist.push_back(LoopExitInstr);
4575   Visited.insert(LoopExitInstr);
4576 
4577   while (!Worklist.empty()) {
4578     Instruction *Cur = Worklist.pop_back_val();
4579     if (isa<OverflowingBinaryOperator>(Cur))
4580       for (unsigned Part = 0; Part < UF; ++Part) {
4581         // FIXME: Should not rely on getVPValue at this point.
4582         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4583         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4584       }
4585 
4586     for (User *U : Cur->users()) {
4587       Instruction *UI = cast<Instruction>(U);
4588       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4589           Visited.insert(UI).second)
4590         Worklist.push_back(UI);
4591     }
4592   }
4593 }
4594 
4595 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4596   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4597     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4598       // Some phis were already hand updated by the reduction and recurrence
4599       // code above, leave them alone.
4600       continue;
4601 
4602     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4603     // Non-instruction incoming values will have only one value.
4604 
4605     VPLane Lane = VPLane::getFirstLane();
4606     if (isa<Instruction>(IncomingValue) &&
4607         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4608                                            VF))
4609       Lane = VPLane::getLastLaneForVF(VF);
4610 
4611     // Can be a loop invariant incoming value or the last scalar value to be
4612     // extracted from the vectorized loop.
4613     // FIXME: Should not rely on getVPValue at this point.
4614     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4615     Value *lastIncomingValue =
4616         OrigLoop->isLoopInvariant(IncomingValue)
4617             ? IncomingValue
4618             : State.get(State.Plan->getVPValue(IncomingValue, true),
4619                         VPIteration(UF - 1, Lane));
4620     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4621   }
4622 }
4623 
4624 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4625   // The basic block and loop containing the predicated instruction.
4626   auto *PredBB = PredInst->getParent();
4627   auto *VectorLoop = LI->getLoopFor(PredBB);
4628 
4629   // Initialize a worklist with the operands of the predicated instruction.
4630   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4631 
4632   // Holds instructions that we need to analyze again. An instruction may be
4633   // reanalyzed if we don't yet know if we can sink it or not.
4634   SmallVector<Instruction *, 8> InstsToReanalyze;
4635 
4636   // Returns true if a given use occurs in the predicated block. Phi nodes use
4637   // their operands in their corresponding predecessor blocks.
4638   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4639     auto *I = cast<Instruction>(U.getUser());
4640     BasicBlock *BB = I->getParent();
4641     if (auto *Phi = dyn_cast<PHINode>(I))
4642       BB = Phi->getIncomingBlock(
4643           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4644     return BB == PredBB;
4645   };
4646 
4647   // Iteratively sink the scalarized operands of the predicated instruction
4648   // into the block we created for it. When an instruction is sunk, it's
4649   // operands are then added to the worklist. The algorithm ends after one pass
4650   // through the worklist doesn't sink a single instruction.
4651   bool Changed;
4652   do {
4653     // Add the instructions that need to be reanalyzed to the worklist, and
4654     // reset the changed indicator.
4655     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4656     InstsToReanalyze.clear();
4657     Changed = false;
4658 
4659     while (!Worklist.empty()) {
4660       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4661 
4662       // We can't sink an instruction if it is a phi node, is not in the loop,
4663       // or may have side effects.
4664       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4665           I->mayHaveSideEffects())
4666         continue;
4667 
4668       // If the instruction is already in PredBB, check if we can sink its
4669       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4670       // sinking the scalar instruction I, hence it appears in PredBB; but it
4671       // may have failed to sink I's operands (recursively), which we try
4672       // (again) here.
4673       if (I->getParent() == PredBB) {
4674         Worklist.insert(I->op_begin(), I->op_end());
4675         continue;
4676       }
4677 
4678       // It's legal to sink the instruction if all its uses occur in the
4679       // predicated block. Otherwise, there's nothing to do yet, and we may
4680       // need to reanalyze the instruction.
4681       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4682         InstsToReanalyze.push_back(I);
4683         continue;
4684       }
4685 
4686       // Move the instruction to the beginning of the predicated block, and add
4687       // it's operands to the worklist.
4688       I->moveBefore(&*PredBB->getFirstInsertionPt());
4689       Worklist.insert(I->op_begin(), I->op_end());
4690 
4691       // The sinking may have enabled other instructions to be sunk, so we will
4692       // need to iterate.
4693       Changed = true;
4694     }
4695   } while (Changed);
4696 }
4697 
4698 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4699   for (PHINode *OrigPhi : OrigPHIsToFix) {
4700     VPWidenPHIRecipe *VPPhi =
4701         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4702     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4703     // Make sure the builder has a valid insert point.
4704     Builder.SetInsertPoint(NewPhi);
4705     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4706       VPValue *Inc = VPPhi->getIncomingValue(i);
4707       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4708       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4709     }
4710   }
4711 }
4712 
4713 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4714   return Cost->useOrderedReductions(RdxDesc);
4715 }
4716 
4717 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP,
4718                                    VPWidenGEPRecipe *WidenGEPRec,
4719                                    VPUser &Operands, unsigned UF,
4720                                    ElementCount VF, bool IsPtrLoopInvariant,
4721                                    SmallBitVector &IsIndexLoopInvariant,
4722                                    VPTransformState &State) {
4723   // Construct a vector GEP by widening the operands of the scalar GEP as
4724   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4725   // results in a vector of pointers when at least one operand of the GEP
4726   // is vector-typed. Thus, to keep the representation compact, we only use
4727   // vector-typed operands for loop-varying values.
4728 
4729   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4730     // If we are vectorizing, but the GEP has only loop-invariant operands,
4731     // the GEP we build (by only using vector-typed operands for
4732     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4733     // produce a vector of pointers, we need to either arbitrarily pick an
4734     // operand to broadcast, or broadcast a clone of the original GEP.
4735     // Here, we broadcast a clone of the original.
4736     //
4737     // TODO: If at some point we decide to scalarize instructions having
4738     //       loop-invariant operands, this special case will no longer be
4739     //       required. We would add the scalarization decision to
4740     //       collectLoopScalars() and teach getVectorValue() to broadcast
4741     //       the lane-zero scalar value.
4742     auto *Clone = Builder.Insert(GEP->clone());
4743     for (unsigned Part = 0; Part < UF; ++Part) {
4744       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4745       State.set(WidenGEPRec, EntryPart, Part);
4746       addMetadata(EntryPart, GEP);
4747     }
4748   } else {
4749     // If the GEP has at least one loop-varying operand, we are sure to
4750     // produce a vector of pointers. But if we are only unrolling, we want
4751     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4752     // produce with the code below will be scalar (if VF == 1) or vector
4753     // (otherwise). Note that for the unroll-only case, we still maintain
4754     // values in the vector mapping with initVector, as we do for other
4755     // instructions.
4756     for (unsigned Part = 0; Part < UF; ++Part) {
4757       // The pointer operand of the new GEP. If it's loop-invariant, we
4758       // won't broadcast it.
4759       auto *Ptr = IsPtrLoopInvariant
4760                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4761                       : State.get(Operands.getOperand(0), Part);
4762 
4763       // Collect all the indices for the new GEP. If any index is
4764       // loop-invariant, we won't broadcast it.
4765       SmallVector<Value *, 4> Indices;
4766       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4767         VPValue *Operand = Operands.getOperand(I);
4768         if (IsIndexLoopInvariant[I - 1])
4769           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4770         else
4771           Indices.push_back(State.get(Operand, Part));
4772       }
4773 
4774       // If the GEP instruction is vectorized and was in a basic block that
4775       // needed predication, we can't propagate the poison-generating 'inbounds'
4776       // flag. The control flow has been linearized and the GEP is no longer
4777       // guarded by the predicate, which could make the 'inbounds' properties to
4778       // no longer hold.
4779       bool IsInBounds = GEP->isInBounds() &&
4780                         State.MayGeneratePoisonRecipes.count(WidenGEPRec) == 0;
4781 
4782       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4783       // but it should be a vector, otherwise.
4784       auto *NewGEP =
4785           IsInBounds
4786               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4787                                           Indices)
4788               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4789       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4790              "NewGEP is not a pointer vector");
4791       State.set(WidenGEPRec, NewGEP, Part);
4792       addMetadata(NewGEP, GEP);
4793     }
4794   }
4795 }
4796 
4797 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4798                                               VPWidenPHIRecipe *PhiR,
4799                                               VPTransformState &State) {
4800   PHINode *P = cast<PHINode>(PN);
4801   if (EnableVPlanNativePath) {
4802     // Currently we enter here in the VPlan-native path for non-induction
4803     // PHIs where all control flow is uniform. We simply widen these PHIs.
4804     // Create a vector phi with no operands - the vector phi operands will be
4805     // set at the end of vector code generation.
4806     Type *VecTy = (State.VF.isScalar())
4807                       ? PN->getType()
4808                       : VectorType::get(PN->getType(), State.VF);
4809     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4810     State.set(PhiR, VecPhi, 0);
4811     OrigPHIsToFix.push_back(P);
4812 
4813     return;
4814   }
4815 
4816   assert(PN->getParent() == OrigLoop->getHeader() &&
4817          "Non-header phis should have been handled elsewhere");
4818 
4819   // In order to support recurrences we need to be able to vectorize Phi nodes.
4820   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4821   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4822   // this value when we vectorize all of the instructions that use the PHI.
4823 
4824   assert(!Legal->isReductionVariable(P) &&
4825          "reductions should be handled elsewhere");
4826 
4827   setDebugLocFromInst(P);
4828 
4829   // This PHINode must be an induction variable.
4830   // Make sure that we know about it.
4831   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4832 
4833   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4834   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4835 
4836   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4837   // which can be found from the original scalar operations.
4838   switch (II.getKind()) {
4839   case InductionDescriptor::IK_NoInduction:
4840     llvm_unreachable("Unknown induction");
4841   case InductionDescriptor::IK_IntInduction:
4842   case InductionDescriptor::IK_FpInduction:
4843     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4844   case InductionDescriptor::IK_PtrInduction: {
4845     // Handle the pointer induction variable case.
4846     assert(P->getType()->isPointerTy() && "Unexpected type.");
4847 
4848     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4849       // This is the normalized GEP that starts counting at zero.
4850       Value *PtrInd =
4851           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4852       // Determine the number of scalars we need to generate for each unroll
4853       // iteration. If the instruction is uniform, we only need to generate the
4854       // first lane. Otherwise, we generate all VF values.
4855       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4856       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4857 
4858       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4859       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4860       if (NeedsVectorIndex) {
4861         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4862         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4863         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4864       }
4865 
4866       for (unsigned Part = 0; Part < UF; ++Part) {
4867         Value *PartStart =
4868             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4869 
4870         if (NeedsVectorIndex) {
4871           // Here we cache the whole vector, which means we can support the
4872           // extraction of any lane. However, in some cases the extractelement
4873           // instruction that is generated for scalar uses of this vector (e.g.
4874           // a load instruction) is not folded away. Therefore we still
4875           // calculate values for the first n lanes to avoid redundant moves
4876           // (when extracting the 0th element) and to produce scalar code (i.e.
4877           // additional add/gep instructions instead of expensive extractelement
4878           // instructions) when extracting higher-order elements.
4879           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4880           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4881           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4882           Value *SclrGep =
4883               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4884           SclrGep->setName("next.gep");
4885           State.set(PhiR, SclrGep, Part);
4886         }
4887 
4888         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4889           Value *Idx = Builder.CreateAdd(
4890               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4891           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4892           Value *SclrGep =
4893               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4894           SclrGep->setName("next.gep");
4895           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4896         }
4897       }
4898       return;
4899     }
4900     assert(isa<SCEVConstant>(II.getStep()) &&
4901            "Induction step not a SCEV constant!");
4902     Type *PhiType = II.getStep()->getType();
4903 
4904     // Build a pointer phi
4905     Value *ScalarStartValue = II.getStartValue();
4906     Type *ScStValueType = ScalarStartValue->getType();
4907     PHINode *NewPointerPhi =
4908         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4909     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4910 
4911     // A pointer induction, performed by using a gep
4912     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4913     Instruction *InductionLoc = LoopLatch->getTerminator();
4914     const SCEV *ScalarStep = II.getStep();
4915     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4916     Value *ScalarStepValue =
4917         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4918     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4919     Value *NumUnrolledElems =
4920         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4921     Value *InductionGEP = GetElementPtrInst::Create(
4922         II.getElementType(), NewPointerPhi,
4923         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4924         InductionLoc);
4925     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4926 
4927     // Create UF many actual address geps that use the pointer
4928     // phi as base and a vectorized version of the step value
4929     // (<step*0, ..., step*N>) as offset.
4930     for (unsigned Part = 0; Part < State.UF; ++Part) {
4931       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4932       Value *StartOffsetScalar =
4933           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4934       Value *StartOffset =
4935           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4936       // Create a vector of consecutive numbers from zero to VF.
4937       StartOffset =
4938           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4939 
4940       Value *GEP = Builder.CreateGEP(
4941           II.getElementType(), NewPointerPhi,
4942           Builder.CreateMul(
4943               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4944               "vector.gep"));
4945       State.set(PhiR, GEP, Part);
4946     }
4947   }
4948   }
4949 }
4950 
4951 /// A helper function for checking whether an integer division-related
4952 /// instruction may divide by zero (in which case it must be predicated if
4953 /// executed conditionally in the scalar code).
4954 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4955 /// Non-zero divisors that are non compile-time constants will not be
4956 /// converted into multiplication, so we will still end up scalarizing
4957 /// the division, but can do so w/o predication.
4958 static bool mayDivideByZero(Instruction &I) {
4959   assert((I.getOpcode() == Instruction::UDiv ||
4960           I.getOpcode() == Instruction::SDiv ||
4961           I.getOpcode() == Instruction::URem ||
4962           I.getOpcode() == Instruction::SRem) &&
4963          "Unexpected instruction");
4964   Value *Divisor = I.getOperand(1);
4965   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4966   return !CInt || CInt->isZero();
4967 }
4968 
4969 void InnerLoopVectorizer::widenInstruction(Instruction &I,
4970                                            VPWidenRecipe *WidenRec,
4971                                            VPTransformState &State) {
4972   switch (I.getOpcode()) {
4973   case Instruction::Call:
4974   case Instruction::Br:
4975   case Instruction::PHI:
4976   case Instruction::GetElementPtr:
4977   case Instruction::Select:
4978     llvm_unreachable("This instruction is handled by a different recipe.");
4979   case Instruction::UDiv:
4980   case Instruction::SDiv:
4981   case Instruction::SRem:
4982   case Instruction::URem:
4983   case Instruction::Add:
4984   case Instruction::FAdd:
4985   case Instruction::Sub:
4986   case Instruction::FSub:
4987   case Instruction::FNeg:
4988   case Instruction::Mul:
4989   case Instruction::FMul:
4990   case Instruction::FDiv:
4991   case Instruction::FRem:
4992   case Instruction::Shl:
4993   case Instruction::LShr:
4994   case Instruction::AShr:
4995   case Instruction::And:
4996   case Instruction::Or:
4997   case Instruction::Xor: {
4998     // Just widen unops and binops.
4999     setDebugLocFromInst(&I);
5000 
5001     for (unsigned Part = 0; Part < UF; ++Part) {
5002       SmallVector<Value *, 2> Ops;
5003       for (VPValue *VPOp : WidenRec->operands())
5004         Ops.push_back(State.get(VPOp, Part));
5005 
5006       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
5007 
5008       if (auto *VecOp = dyn_cast<Instruction>(V)) {
5009         VecOp->copyIRFlags(&I);
5010 
5011         // If the instruction is vectorized and was in a basic block that needed
5012         // predication, we can't propagate poison-generating flags (nuw/nsw,
5013         // exact, etc.). The control flow has been linearized and the
5014         // instruction is no longer guarded by the predicate, which could make
5015         // the flag properties to no longer hold.
5016         if (State.MayGeneratePoisonRecipes.count(WidenRec) > 0)
5017           VecOp->dropPoisonGeneratingFlags();
5018       }
5019 
5020       // Use this vector value for all users of the original instruction.
5021       State.set(WidenRec, V, Part);
5022       addMetadata(V, &I);
5023     }
5024 
5025     break;
5026   }
5027   case Instruction::ICmp:
5028   case Instruction::FCmp: {
5029     // Widen compares. Generate vector compares.
5030     bool FCmp = (I.getOpcode() == Instruction::FCmp);
5031     auto *Cmp = cast<CmpInst>(&I);
5032     setDebugLocFromInst(Cmp);
5033     for (unsigned Part = 0; Part < UF; ++Part) {
5034       Value *A = State.get(WidenRec->getOperand(0), Part);
5035       Value *B = State.get(WidenRec->getOperand(1), Part);
5036       Value *C = nullptr;
5037       if (FCmp) {
5038         // Propagate fast math flags.
5039         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
5040         Builder.setFastMathFlags(Cmp->getFastMathFlags());
5041         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
5042       } else {
5043         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
5044       }
5045       State.set(WidenRec, C, Part);
5046       addMetadata(C, &I);
5047     }
5048 
5049     break;
5050   }
5051 
5052   case Instruction::ZExt:
5053   case Instruction::SExt:
5054   case Instruction::FPToUI:
5055   case Instruction::FPToSI:
5056   case Instruction::FPExt:
5057   case Instruction::PtrToInt:
5058   case Instruction::IntToPtr:
5059   case Instruction::SIToFP:
5060   case Instruction::UIToFP:
5061   case Instruction::Trunc:
5062   case Instruction::FPTrunc:
5063   case Instruction::BitCast: {
5064     auto *CI = cast<CastInst>(&I);
5065     setDebugLocFromInst(CI);
5066 
5067     /// Vectorize casts.
5068     Type *DestTy =
5069         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
5070 
5071     for (unsigned Part = 0; Part < UF; ++Part) {
5072       Value *A = State.get(WidenRec->getOperand(0), Part);
5073       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
5074       State.set(WidenRec, Cast, Part);
5075       addMetadata(Cast, &I);
5076     }
5077     break;
5078   }
5079   default:
5080     // This instruction is not vectorized by simple widening.
5081     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
5082     llvm_unreachable("Unhandled instruction!");
5083   } // end of switch.
5084 }
5085 
5086 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
5087                                                VPUser &ArgOperands,
5088                                                VPTransformState &State) {
5089   assert(!isa<DbgInfoIntrinsic>(I) &&
5090          "DbgInfoIntrinsic should have been dropped during VPlan construction");
5091   setDebugLocFromInst(&I);
5092 
5093   Module *M = I.getParent()->getParent()->getParent();
5094   auto *CI = cast<CallInst>(&I);
5095 
5096   SmallVector<Type *, 4> Tys;
5097   for (Value *ArgOperand : CI->args())
5098     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
5099 
5100   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5101 
5102   // The flag shows whether we use Intrinsic or a usual Call for vectorized
5103   // version of the instruction.
5104   // Is it beneficial to perform intrinsic call compared to lib call?
5105   bool NeedToScalarize = false;
5106   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
5107   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
5108   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
5109   assert((UseVectorIntrinsic || !NeedToScalarize) &&
5110          "Instruction should be scalarized elsewhere.");
5111   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
5112          "Either the intrinsic cost or vector call cost must be valid");
5113 
5114   for (unsigned Part = 0; Part < UF; ++Part) {
5115     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5116     SmallVector<Value *, 4> Args;
5117     for (auto &I : enumerate(ArgOperands.operands())) {
5118       // Some intrinsics have a scalar argument - don't replace it with a
5119       // vector.
5120       Value *Arg;
5121       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5122         Arg = State.get(I.value(), Part);
5123       else {
5124         Arg = State.get(I.value(), VPIteration(0, 0));
5125         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5126           TysForDecl.push_back(Arg->getType());
5127       }
5128       Args.push_back(Arg);
5129     }
5130 
5131     Function *VectorF;
5132     if (UseVectorIntrinsic) {
5133       // Use vector version of the intrinsic.
5134       if (VF.isVector())
5135         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5136       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5137       assert(VectorF && "Can't retrieve vector intrinsic.");
5138     } else {
5139       // Use vector version of the function call.
5140       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5141 #ifndef NDEBUG
5142       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5143              "Can't create vector function.");
5144 #endif
5145         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5146     }
5147       SmallVector<OperandBundleDef, 1> OpBundles;
5148       CI->getOperandBundlesAsDefs(OpBundles);
5149       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5150 
5151       if (isa<FPMathOperator>(V))
5152         V->copyFastMathFlags(CI);
5153 
5154       State.set(Def, V, Part);
5155       addMetadata(V, &I);
5156   }
5157 }
5158 
5159 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5160                                                  VPUser &Operands,
5161                                                  bool InvariantCond,
5162                                                  VPTransformState &State) {
5163   setDebugLocFromInst(&I);
5164 
5165   // The condition can be loop invariant  but still defined inside the
5166   // loop. This means that we can't just use the original 'cond' value.
5167   // We have to take the 'vectorized' value and pick the first lane.
5168   // Instcombine will make this a no-op.
5169   auto *InvarCond = InvariantCond
5170                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5171                         : nullptr;
5172 
5173   for (unsigned Part = 0; Part < UF; ++Part) {
5174     Value *Cond =
5175         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5176     Value *Op0 = State.get(Operands.getOperand(1), Part);
5177     Value *Op1 = State.get(Operands.getOperand(2), Part);
5178     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5179     State.set(VPDef, Sel, Part);
5180     addMetadata(Sel, &I);
5181   }
5182 }
5183 
5184 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5185   // We should not collect Scalars more than once per VF. Right now, this
5186   // function is called from collectUniformsAndScalars(), which already does
5187   // this check. Collecting Scalars for VF=1 does not make any sense.
5188   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5189          "This function should not be visited twice for the same VF");
5190 
5191   SmallSetVector<Instruction *, 8> Worklist;
5192 
5193   // These sets are used to seed the analysis with pointers used by memory
5194   // accesses that will remain scalar.
5195   SmallSetVector<Instruction *, 8> ScalarPtrs;
5196   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5197   auto *Latch = TheLoop->getLoopLatch();
5198 
5199   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5200   // The pointer operands of loads and stores will be scalar as long as the
5201   // memory access is not a gather or scatter operation. The value operand of a
5202   // store will remain scalar if the store is scalarized.
5203   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5204     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5205     assert(WideningDecision != CM_Unknown &&
5206            "Widening decision should be ready at this moment");
5207     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5208       if (Ptr == Store->getValueOperand())
5209         return WideningDecision == CM_Scalarize;
5210     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5211            "Ptr is neither a value or pointer operand");
5212     return WideningDecision != CM_GatherScatter;
5213   };
5214 
5215   // A helper that returns true if the given value is a bitcast or
5216   // getelementptr instruction contained in the loop.
5217   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5218     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5219             isa<GetElementPtrInst>(V)) &&
5220            !TheLoop->isLoopInvariant(V);
5221   };
5222 
5223   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5224     if (!isa<PHINode>(Ptr) ||
5225         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5226       return false;
5227     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5228     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5229       return false;
5230     return isScalarUse(MemAccess, Ptr);
5231   };
5232 
5233   // A helper that evaluates a memory access's use of a pointer. If the
5234   // pointer is actually the pointer induction of a loop, it is being
5235   // inserted into Worklist. If the use will be a scalar use, and the
5236   // pointer is only used by memory accesses, we place the pointer in
5237   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5238   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5239     if (isScalarPtrInduction(MemAccess, Ptr)) {
5240       Worklist.insert(cast<Instruction>(Ptr));
5241       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5242                         << "\n");
5243 
5244       Instruction *Update = cast<Instruction>(
5245           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5246 
5247       // If there is more than one user of Update (Ptr), we shouldn't assume it
5248       // will be scalar after vectorisation as other users of the instruction
5249       // may require widening. Otherwise, add it to ScalarPtrs.
5250       if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) {
5251         ScalarPtrs.insert(Update);
5252         return;
5253       }
5254     }
5255     // We only care about bitcast and getelementptr instructions contained in
5256     // the loop.
5257     if (!isLoopVaryingBitCastOrGEP(Ptr))
5258       return;
5259 
5260     // If the pointer has already been identified as scalar (e.g., if it was
5261     // also identified as uniform), there's nothing to do.
5262     auto *I = cast<Instruction>(Ptr);
5263     if (Worklist.count(I))
5264       return;
5265 
5266     // If the use of the pointer will be a scalar use, and all users of the
5267     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5268     // place the pointer in PossibleNonScalarPtrs.
5269     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5270           return isa<LoadInst>(U) || isa<StoreInst>(U);
5271         }))
5272       ScalarPtrs.insert(I);
5273     else
5274       PossibleNonScalarPtrs.insert(I);
5275   };
5276 
5277   // We seed the scalars analysis with three classes of instructions: (1)
5278   // instructions marked uniform-after-vectorization and (2) bitcast,
5279   // getelementptr and (pointer) phi instructions used by memory accesses
5280   // requiring a scalar use.
5281   //
5282   // (1) Add to the worklist all instructions that have been identified as
5283   // uniform-after-vectorization.
5284   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5285 
5286   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5287   // memory accesses requiring a scalar use. The pointer operands of loads and
5288   // stores will be scalar as long as the memory accesses is not a gather or
5289   // scatter operation. The value operand of a store will remain scalar if the
5290   // store is scalarized.
5291   for (auto *BB : TheLoop->blocks())
5292     for (auto &I : *BB) {
5293       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5294         evaluatePtrUse(Load, Load->getPointerOperand());
5295       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5296         evaluatePtrUse(Store, Store->getPointerOperand());
5297         evaluatePtrUse(Store, Store->getValueOperand());
5298       }
5299     }
5300   for (auto *I : ScalarPtrs)
5301     if (!PossibleNonScalarPtrs.count(I)) {
5302       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5303       Worklist.insert(I);
5304     }
5305 
5306   // Insert the forced scalars.
5307   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5308   // induction variable when the PHI user is scalarized.
5309   auto ForcedScalar = ForcedScalars.find(VF);
5310   if (ForcedScalar != ForcedScalars.end())
5311     for (auto *I : ForcedScalar->second)
5312       Worklist.insert(I);
5313 
5314   // Expand the worklist by looking through any bitcasts and getelementptr
5315   // instructions we've already identified as scalar. This is similar to the
5316   // expansion step in collectLoopUniforms(); however, here we're only
5317   // expanding to include additional bitcasts and getelementptr instructions.
5318   unsigned Idx = 0;
5319   while (Idx != Worklist.size()) {
5320     Instruction *Dst = Worklist[Idx++];
5321     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5322       continue;
5323     auto *Src = cast<Instruction>(Dst->getOperand(0));
5324     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5325           auto *J = cast<Instruction>(U);
5326           return !TheLoop->contains(J) || Worklist.count(J) ||
5327                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5328                   isScalarUse(J, Src));
5329         })) {
5330       Worklist.insert(Src);
5331       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5332     }
5333   }
5334 
5335   // An induction variable will remain scalar if all users of the induction
5336   // variable and induction variable update remain scalar.
5337   for (auto &Induction : Legal->getInductionVars()) {
5338     auto *Ind = Induction.first;
5339     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5340 
5341     // If tail-folding is applied, the primary induction variable will be used
5342     // to feed a vector compare.
5343     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5344       continue;
5345 
5346     // Determine if all users of the induction variable are scalar after
5347     // vectorization.
5348     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5349       auto *I = cast<Instruction>(U);
5350       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5351     });
5352     if (!ScalarInd)
5353       continue;
5354 
5355     // Determine if all users of the induction variable update instruction are
5356     // scalar after vectorization.
5357     auto ScalarIndUpdate =
5358         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5359           auto *I = cast<Instruction>(U);
5360           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5361         });
5362     if (!ScalarIndUpdate)
5363       continue;
5364 
5365     // The induction variable and its update instruction will remain scalar.
5366     Worklist.insert(Ind);
5367     Worklist.insert(IndUpdate);
5368     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5369     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5370                       << "\n");
5371   }
5372 
5373   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5374 }
5375 
5376 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5377   if (!blockNeedsPredicationForAnyReason(I->getParent()))
5378     return false;
5379   switch(I->getOpcode()) {
5380   default:
5381     break;
5382   case Instruction::Load:
5383   case Instruction::Store: {
5384     if (!Legal->isMaskRequired(I))
5385       return false;
5386     auto *Ptr = getLoadStorePointerOperand(I);
5387     auto *Ty = getLoadStoreType(I);
5388     const Align Alignment = getLoadStoreAlignment(I);
5389     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5390                                 TTI.isLegalMaskedGather(Ty, Alignment))
5391                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5392                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5393   }
5394   case Instruction::UDiv:
5395   case Instruction::SDiv:
5396   case Instruction::SRem:
5397   case Instruction::URem:
5398     return mayDivideByZero(*I);
5399   }
5400   return false;
5401 }
5402 
5403 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5404     Instruction *I, ElementCount VF) {
5405   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5406   assert(getWideningDecision(I, VF) == CM_Unknown &&
5407          "Decision should not be set yet.");
5408   auto *Group = getInterleavedAccessGroup(I);
5409   assert(Group && "Must have a group.");
5410 
5411   // If the instruction's allocated size doesn't equal it's type size, it
5412   // requires padding and will be scalarized.
5413   auto &DL = I->getModule()->getDataLayout();
5414   auto *ScalarTy = getLoadStoreType(I);
5415   if (hasIrregularType(ScalarTy, DL))
5416     return false;
5417 
5418   // Check if masking is required.
5419   // A Group may need masking for one of two reasons: it resides in a block that
5420   // needs predication, or it was decided to use masking to deal with gaps
5421   // (either a gap at the end of a load-access that may result in a speculative
5422   // load, or any gaps in a store-access).
5423   bool PredicatedAccessRequiresMasking =
5424       blockNeedsPredicationForAnyReason(I->getParent()) &&
5425       Legal->isMaskRequired(I);
5426   bool LoadAccessWithGapsRequiresEpilogMasking =
5427       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5428       !isScalarEpilogueAllowed();
5429   bool StoreAccessWithGapsRequiresMasking =
5430       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5431   if (!PredicatedAccessRequiresMasking &&
5432       !LoadAccessWithGapsRequiresEpilogMasking &&
5433       !StoreAccessWithGapsRequiresMasking)
5434     return true;
5435 
5436   // If masked interleaving is required, we expect that the user/target had
5437   // enabled it, because otherwise it either wouldn't have been created or
5438   // it should have been invalidated by the CostModel.
5439   assert(useMaskedInterleavedAccesses(TTI) &&
5440          "Masked interleave-groups for predicated accesses are not enabled.");
5441 
5442   if (Group->isReverse())
5443     return false;
5444 
5445   auto *Ty = getLoadStoreType(I);
5446   const Align Alignment = getLoadStoreAlignment(I);
5447   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5448                           : TTI.isLegalMaskedStore(Ty, Alignment);
5449 }
5450 
5451 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5452     Instruction *I, ElementCount VF) {
5453   // Get and ensure we have a valid memory instruction.
5454   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5455 
5456   auto *Ptr = getLoadStorePointerOperand(I);
5457   auto *ScalarTy = getLoadStoreType(I);
5458 
5459   // In order to be widened, the pointer should be consecutive, first of all.
5460   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5461     return false;
5462 
5463   // If the instruction is a store located in a predicated block, it will be
5464   // scalarized.
5465   if (isScalarWithPredication(I))
5466     return false;
5467 
5468   // If the instruction's allocated size doesn't equal it's type size, it
5469   // requires padding and will be scalarized.
5470   auto &DL = I->getModule()->getDataLayout();
5471   if (hasIrregularType(ScalarTy, DL))
5472     return false;
5473 
5474   return true;
5475 }
5476 
5477 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5478   // We should not collect Uniforms more than once per VF. Right now,
5479   // this function is called from collectUniformsAndScalars(), which
5480   // already does this check. Collecting Uniforms for VF=1 does not make any
5481   // sense.
5482 
5483   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5484          "This function should not be visited twice for the same VF");
5485 
5486   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5487   // not analyze again.  Uniforms.count(VF) will return 1.
5488   Uniforms[VF].clear();
5489 
5490   // We now know that the loop is vectorizable!
5491   // Collect instructions inside the loop that will remain uniform after
5492   // vectorization.
5493 
5494   // Global values, params and instructions outside of current loop are out of
5495   // scope.
5496   auto isOutOfScope = [&](Value *V) -> bool {
5497     Instruction *I = dyn_cast<Instruction>(V);
5498     return (!I || !TheLoop->contains(I));
5499   };
5500 
5501   // Worklist containing uniform instructions demanding lane 0.
5502   SetVector<Instruction *> Worklist;
5503   BasicBlock *Latch = TheLoop->getLoopLatch();
5504 
5505   // Add uniform instructions demanding lane 0 to the worklist. Instructions
5506   // that are scalar with predication must not be considered uniform after
5507   // vectorization, because that would create an erroneous replicating region
5508   // where only a single instance out of VF should be formed.
5509   // TODO: optimize such seldom cases if found important, see PR40816.
5510   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5511     if (isOutOfScope(I)) {
5512       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5513                         << *I << "\n");
5514       return;
5515     }
5516     if (isScalarWithPredication(I)) {
5517       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5518                         << *I << "\n");
5519       return;
5520     }
5521     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5522     Worklist.insert(I);
5523   };
5524 
5525   // Start with the conditional branch. If the branch condition is an
5526   // instruction contained in the loop that is only used by the branch, it is
5527   // uniform.
5528   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5529   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5530     addToWorklistIfAllowed(Cmp);
5531 
5532   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5533     InstWidening WideningDecision = getWideningDecision(I, VF);
5534     assert(WideningDecision != CM_Unknown &&
5535            "Widening decision should be ready at this moment");
5536 
5537     // A uniform memory op is itself uniform.  We exclude uniform stores
5538     // here as they demand the last lane, not the first one.
5539     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5540       assert(WideningDecision == CM_Scalarize);
5541       return true;
5542     }
5543 
5544     return (WideningDecision == CM_Widen ||
5545             WideningDecision == CM_Widen_Reverse ||
5546             WideningDecision == CM_Interleave);
5547   };
5548 
5549 
5550   // Returns true if Ptr is the pointer operand of a memory access instruction
5551   // I, and I is known to not require scalarization.
5552   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5553     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5554   };
5555 
5556   // Holds a list of values which are known to have at least one uniform use.
5557   // Note that there may be other uses which aren't uniform.  A "uniform use"
5558   // here is something which only demands lane 0 of the unrolled iterations;
5559   // it does not imply that all lanes produce the same value (e.g. this is not
5560   // the usual meaning of uniform)
5561   SetVector<Value *> HasUniformUse;
5562 
5563   // Scan the loop for instructions which are either a) known to have only
5564   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5565   for (auto *BB : TheLoop->blocks())
5566     for (auto &I : *BB) {
5567       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5568         switch (II->getIntrinsicID()) {
5569         case Intrinsic::sideeffect:
5570         case Intrinsic::experimental_noalias_scope_decl:
5571         case Intrinsic::assume:
5572         case Intrinsic::lifetime_start:
5573         case Intrinsic::lifetime_end:
5574           if (TheLoop->hasLoopInvariantOperands(&I))
5575             addToWorklistIfAllowed(&I);
5576           break;
5577         default:
5578           break;
5579         }
5580       }
5581 
5582       // ExtractValue instructions must be uniform, because the operands are
5583       // known to be loop-invariant.
5584       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5585         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5586                "Expected aggregate value to be loop invariant");
5587         addToWorklistIfAllowed(EVI);
5588         continue;
5589       }
5590 
5591       // If there's no pointer operand, there's nothing to do.
5592       auto *Ptr = getLoadStorePointerOperand(&I);
5593       if (!Ptr)
5594         continue;
5595 
5596       // A uniform memory op is itself uniform.  We exclude uniform stores
5597       // here as they demand the last lane, not the first one.
5598       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5599         addToWorklistIfAllowed(&I);
5600 
5601       if (isUniformDecision(&I, VF)) {
5602         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5603         HasUniformUse.insert(Ptr);
5604       }
5605     }
5606 
5607   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5608   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5609   // disallows uses outside the loop as well.
5610   for (auto *V : HasUniformUse) {
5611     if (isOutOfScope(V))
5612       continue;
5613     auto *I = cast<Instruction>(V);
5614     auto UsersAreMemAccesses =
5615       llvm::all_of(I->users(), [&](User *U) -> bool {
5616         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5617       });
5618     if (UsersAreMemAccesses)
5619       addToWorklistIfAllowed(I);
5620   }
5621 
5622   // Expand Worklist in topological order: whenever a new instruction
5623   // is added , its users should be already inside Worklist.  It ensures
5624   // a uniform instruction will only be used by uniform instructions.
5625   unsigned idx = 0;
5626   while (idx != Worklist.size()) {
5627     Instruction *I = Worklist[idx++];
5628 
5629     for (auto OV : I->operand_values()) {
5630       // isOutOfScope operands cannot be uniform instructions.
5631       if (isOutOfScope(OV))
5632         continue;
5633       // First order recurrence Phi's should typically be considered
5634       // non-uniform.
5635       auto *OP = dyn_cast<PHINode>(OV);
5636       if (OP && Legal->isFirstOrderRecurrence(OP))
5637         continue;
5638       // If all the users of the operand are uniform, then add the
5639       // operand into the uniform worklist.
5640       auto *OI = cast<Instruction>(OV);
5641       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5642             auto *J = cast<Instruction>(U);
5643             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5644           }))
5645         addToWorklistIfAllowed(OI);
5646     }
5647   }
5648 
5649   // For an instruction to be added into Worklist above, all its users inside
5650   // the loop should also be in Worklist. However, this condition cannot be
5651   // true for phi nodes that form a cyclic dependence. We must process phi
5652   // nodes separately. An induction variable will remain uniform if all users
5653   // of the induction variable and induction variable update remain uniform.
5654   // The code below handles both pointer and non-pointer induction variables.
5655   for (auto &Induction : Legal->getInductionVars()) {
5656     auto *Ind = Induction.first;
5657     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5658 
5659     // Determine if all users of the induction variable are uniform after
5660     // vectorization.
5661     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5662       auto *I = cast<Instruction>(U);
5663       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5664              isVectorizedMemAccessUse(I, Ind);
5665     });
5666     if (!UniformInd)
5667       continue;
5668 
5669     // Determine if all users of the induction variable update instruction are
5670     // uniform after vectorization.
5671     auto UniformIndUpdate =
5672         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5673           auto *I = cast<Instruction>(U);
5674           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5675                  isVectorizedMemAccessUse(I, IndUpdate);
5676         });
5677     if (!UniformIndUpdate)
5678       continue;
5679 
5680     // The induction variable and its update instruction will remain uniform.
5681     addToWorklistIfAllowed(Ind);
5682     addToWorklistIfAllowed(IndUpdate);
5683   }
5684 
5685   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5686 }
5687 
5688 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5689   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5690 
5691   if (Legal->getRuntimePointerChecking()->Need) {
5692     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5693         "runtime pointer checks needed. Enable vectorization of this "
5694         "loop with '#pragma clang loop vectorize(enable)' when "
5695         "compiling with -Os/-Oz",
5696         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5697     return true;
5698   }
5699 
5700   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5701     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5702         "runtime SCEV checks needed. Enable vectorization of this "
5703         "loop with '#pragma clang loop vectorize(enable)' when "
5704         "compiling with -Os/-Oz",
5705         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5706     return true;
5707   }
5708 
5709   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5710   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5711     reportVectorizationFailure("Runtime stride check for small trip count",
5712         "runtime stride == 1 checks needed. Enable vectorization of "
5713         "this loop without such check by compiling with -Os/-Oz",
5714         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5715     return true;
5716   }
5717 
5718   return false;
5719 }
5720 
5721 ElementCount
5722 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5723   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5724     return ElementCount::getScalable(0);
5725 
5726   if (Hints->isScalableVectorizationDisabled()) {
5727     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5728                             "ScalableVectorizationDisabled", ORE, TheLoop);
5729     return ElementCount::getScalable(0);
5730   }
5731 
5732   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5733 
5734   auto MaxScalableVF = ElementCount::getScalable(
5735       std::numeric_limits<ElementCount::ScalarTy>::max());
5736 
5737   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5738   // FIXME: While for scalable vectors this is currently sufficient, this should
5739   // be replaced by a more detailed mechanism that filters out specific VFs,
5740   // instead of invalidating vectorization for a whole set of VFs based on the
5741   // MaxVF.
5742 
5743   // Disable scalable vectorization if the loop contains unsupported reductions.
5744   if (!canVectorizeReductions(MaxScalableVF)) {
5745     reportVectorizationInfo(
5746         "Scalable vectorization not supported for the reduction "
5747         "operations found in this loop.",
5748         "ScalableVFUnfeasible", ORE, TheLoop);
5749     return ElementCount::getScalable(0);
5750   }
5751 
5752   // Disable scalable vectorization if the loop contains any instructions
5753   // with element types not supported for scalable vectors.
5754   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5755         return !Ty->isVoidTy() &&
5756                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5757       })) {
5758     reportVectorizationInfo("Scalable vectorization is not supported "
5759                             "for all element types found in this loop.",
5760                             "ScalableVFUnfeasible", ORE, TheLoop);
5761     return ElementCount::getScalable(0);
5762   }
5763 
5764   if (Legal->isSafeForAnyVectorWidth())
5765     return MaxScalableVF;
5766 
5767   // Limit MaxScalableVF by the maximum safe dependence distance.
5768   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5769   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5770     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5771                              .getVScaleRangeArgs()
5772                              .second;
5773     if (VScaleMax > 0)
5774       MaxVScale = VScaleMax;
5775   }
5776   MaxScalableVF = ElementCount::getScalable(
5777       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5778   if (!MaxScalableVF)
5779     reportVectorizationInfo(
5780         "Max legal vector width too small, scalable vectorization "
5781         "unfeasible.",
5782         "ScalableVFUnfeasible", ORE, TheLoop);
5783 
5784   return MaxScalableVF;
5785 }
5786 
5787 FixedScalableVFPair
5788 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5789                                                  ElementCount UserVF) {
5790   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5791   unsigned SmallestType, WidestType;
5792   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5793 
5794   // Get the maximum safe dependence distance in bits computed by LAA.
5795   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5796   // the memory accesses that is most restrictive (involved in the smallest
5797   // dependence distance).
5798   unsigned MaxSafeElements =
5799       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5800 
5801   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5802   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5803 
5804   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5805                     << ".\n");
5806   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5807                     << ".\n");
5808 
5809   // First analyze the UserVF, fall back if the UserVF should be ignored.
5810   if (UserVF) {
5811     auto MaxSafeUserVF =
5812         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5813 
5814     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5815       // If `VF=vscale x N` is safe, then so is `VF=N`
5816       if (UserVF.isScalable())
5817         return FixedScalableVFPair(
5818             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5819       else
5820         return UserVF;
5821     }
5822 
5823     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5824 
5825     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5826     // is better to ignore the hint and let the compiler choose a suitable VF.
5827     if (!UserVF.isScalable()) {
5828       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5829                         << " is unsafe, clamping to max safe VF="
5830                         << MaxSafeFixedVF << ".\n");
5831       ORE->emit([&]() {
5832         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5833                                           TheLoop->getStartLoc(),
5834                                           TheLoop->getHeader())
5835                << "User-specified vectorization factor "
5836                << ore::NV("UserVectorizationFactor", UserVF)
5837                << " is unsafe, clamping to maximum safe vectorization factor "
5838                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5839       });
5840       return MaxSafeFixedVF;
5841     }
5842 
5843     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5844       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5845                         << " is ignored because scalable vectors are not "
5846                            "available.\n");
5847       ORE->emit([&]() {
5848         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5849                                           TheLoop->getStartLoc(),
5850                                           TheLoop->getHeader())
5851                << "User-specified vectorization factor "
5852                << ore::NV("UserVectorizationFactor", UserVF)
5853                << " is ignored because the target does not support scalable "
5854                   "vectors. The compiler will pick a more suitable value.";
5855       });
5856     } else {
5857       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5858                         << " is unsafe. Ignoring scalable UserVF.\n");
5859       ORE->emit([&]() {
5860         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5861                                           TheLoop->getStartLoc(),
5862                                           TheLoop->getHeader())
5863                << "User-specified vectorization factor "
5864                << ore::NV("UserVectorizationFactor", UserVF)
5865                << " is unsafe. Ignoring the hint to let the compiler pick a "
5866                   "more suitable value.";
5867       });
5868     }
5869   }
5870 
5871   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5872                     << " / " << WidestType << " bits.\n");
5873 
5874   FixedScalableVFPair Result(ElementCount::getFixed(1),
5875                              ElementCount::getScalable(0));
5876   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5877                                            WidestType, MaxSafeFixedVF))
5878     Result.FixedVF = MaxVF;
5879 
5880   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5881                                            WidestType, MaxSafeScalableVF))
5882     if (MaxVF.isScalable()) {
5883       Result.ScalableVF = MaxVF;
5884       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5885                         << "\n");
5886     }
5887 
5888   return Result;
5889 }
5890 
5891 FixedScalableVFPair
5892 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5893   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5894     // TODO: It may by useful to do since it's still likely to be dynamically
5895     // uniform if the target can skip.
5896     reportVectorizationFailure(
5897         "Not inserting runtime ptr check for divergent target",
5898         "runtime pointer checks needed. Not enabled for divergent target",
5899         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5900     return FixedScalableVFPair::getNone();
5901   }
5902 
5903   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5904   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5905   if (TC == 1) {
5906     reportVectorizationFailure("Single iteration (non) loop",
5907         "loop trip count is one, irrelevant for vectorization",
5908         "SingleIterationLoop", ORE, TheLoop);
5909     return FixedScalableVFPair::getNone();
5910   }
5911 
5912   switch (ScalarEpilogueStatus) {
5913   case CM_ScalarEpilogueAllowed:
5914     return computeFeasibleMaxVF(TC, UserVF);
5915   case CM_ScalarEpilogueNotAllowedUsePredicate:
5916     LLVM_FALLTHROUGH;
5917   case CM_ScalarEpilogueNotNeededUsePredicate:
5918     LLVM_DEBUG(
5919         dbgs() << "LV: vector predicate hint/switch found.\n"
5920                << "LV: Not allowing scalar epilogue, creating predicated "
5921                << "vector loop.\n");
5922     break;
5923   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5924     // fallthrough as a special case of OptForSize
5925   case CM_ScalarEpilogueNotAllowedOptSize:
5926     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5927       LLVM_DEBUG(
5928           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5929     else
5930       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5931                         << "count.\n");
5932 
5933     // Bail if runtime checks are required, which are not good when optimising
5934     // for size.
5935     if (runtimeChecksRequired())
5936       return FixedScalableVFPair::getNone();
5937 
5938     break;
5939   }
5940 
5941   // The only loops we can vectorize without a scalar epilogue, are loops with
5942   // a bottom-test and a single exiting block. We'd have to handle the fact
5943   // that not every instruction executes on the last iteration.  This will
5944   // require a lane mask which varies through the vector loop body.  (TODO)
5945   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5946     // If there was a tail-folding hint/switch, but we can't fold the tail by
5947     // masking, fallback to a vectorization with a scalar epilogue.
5948     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5949       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5950                            "scalar epilogue instead.\n");
5951       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5952       return computeFeasibleMaxVF(TC, UserVF);
5953     }
5954     return FixedScalableVFPair::getNone();
5955   }
5956 
5957   // Now try the tail folding
5958 
5959   // Invalidate interleave groups that require an epilogue if we can't mask
5960   // the interleave-group.
5961   if (!useMaskedInterleavedAccesses(TTI)) {
5962     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5963            "No decisions should have been taken at this point");
5964     // Note: There is no need to invalidate any cost modeling decisions here, as
5965     // non where taken so far.
5966     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5967   }
5968 
5969   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5970   // Avoid tail folding if the trip count is known to be a multiple of any VF
5971   // we chose.
5972   // FIXME: The condition below pessimises the case for fixed-width vectors,
5973   // when scalable VFs are also candidates for vectorization.
5974   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5975     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5976     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5977            "MaxFixedVF must be a power of 2");
5978     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5979                                    : MaxFixedVF.getFixedValue();
5980     ScalarEvolution *SE = PSE.getSE();
5981     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5982     const SCEV *ExitCount = SE->getAddExpr(
5983         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5984     const SCEV *Rem = SE->getURemExpr(
5985         SE->applyLoopGuards(ExitCount, TheLoop),
5986         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5987     if (Rem->isZero()) {
5988       // Accept MaxFixedVF if we do not have a tail.
5989       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5990       return MaxFactors;
5991     }
5992   }
5993 
5994   // For scalable vectors, don't use tail folding as this is currently not yet
5995   // supported. The code is likely to have ended up here if the tripcount is
5996   // low, in which case it makes sense not to use scalable vectors.
5997   if (MaxFactors.ScalableVF.isVector())
5998     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5999 
6000   // If we don't know the precise trip count, or if the trip count that we
6001   // found modulo the vectorization factor is not zero, try to fold the tail
6002   // by masking.
6003   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
6004   if (Legal->prepareToFoldTailByMasking()) {
6005     FoldTailByMasking = true;
6006     return MaxFactors;
6007   }
6008 
6009   // If there was a tail-folding hint/switch, but we can't fold the tail by
6010   // masking, fallback to a vectorization with a scalar epilogue.
6011   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
6012     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
6013                          "scalar epilogue instead.\n");
6014     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
6015     return MaxFactors;
6016   }
6017 
6018   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
6019     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
6020     return FixedScalableVFPair::getNone();
6021   }
6022 
6023   if (TC == 0) {
6024     reportVectorizationFailure(
6025         "Unable to calculate the loop count due to complex control flow",
6026         "unable to calculate the loop count due to complex control flow",
6027         "UnknownLoopCountComplexCFG", ORE, TheLoop);
6028     return FixedScalableVFPair::getNone();
6029   }
6030 
6031   reportVectorizationFailure(
6032       "Cannot optimize for size and vectorize at the same time.",
6033       "cannot optimize for size and vectorize at the same time. "
6034       "Enable vectorization of this loop with '#pragma clang loop "
6035       "vectorize(enable)' when compiling with -Os/-Oz",
6036       "NoTailLoopWithOptForSize", ORE, TheLoop);
6037   return FixedScalableVFPair::getNone();
6038 }
6039 
6040 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
6041     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
6042     const ElementCount &MaxSafeVF) {
6043   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
6044   TypeSize WidestRegister = TTI.getRegisterBitWidth(
6045       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
6046                            : TargetTransformInfo::RGK_FixedWidthVector);
6047 
6048   // Convenience function to return the minimum of two ElementCounts.
6049   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
6050     assert((LHS.isScalable() == RHS.isScalable()) &&
6051            "Scalable flags must match");
6052     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
6053   };
6054 
6055   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
6056   // Note that both WidestRegister and WidestType may not be a powers of 2.
6057   auto MaxVectorElementCount = ElementCount::get(
6058       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
6059       ComputeScalableMaxVF);
6060   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
6061   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
6062                     << (MaxVectorElementCount * WidestType) << " bits.\n");
6063 
6064   if (!MaxVectorElementCount) {
6065     LLVM_DEBUG(dbgs() << "LV: The target has no "
6066                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
6067                       << " vector registers.\n");
6068     return ElementCount::getFixed(1);
6069   }
6070 
6071   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
6072   if (ConstTripCount &&
6073       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
6074       isPowerOf2_32(ConstTripCount)) {
6075     // We need to clamp the VF to be the ConstTripCount. There is no point in
6076     // choosing a higher viable VF as done in the loop below. If
6077     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
6078     // the TC is less than or equal to the known number of lanes.
6079     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
6080                       << ConstTripCount << "\n");
6081     return TripCountEC;
6082   }
6083 
6084   ElementCount MaxVF = MaxVectorElementCount;
6085   if (TTI.shouldMaximizeVectorBandwidth() ||
6086       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
6087     auto MaxVectorElementCountMaxBW = ElementCount::get(
6088         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
6089         ComputeScalableMaxVF);
6090     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
6091 
6092     // Collect all viable vectorization factors larger than the default MaxVF
6093     // (i.e. MaxVectorElementCount).
6094     SmallVector<ElementCount, 8> VFs;
6095     for (ElementCount VS = MaxVectorElementCount * 2;
6096          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
6097       VFs.push_back(VS);
6098 
6099     // For each VF calculate its register usage.
6100     auto RUs = calculateRegisterUsage(VFs);
6101 
6102     // Select the largest VF which doesn't require more registers than existing
6103     // ones.
6104     for (int i = RUs.size() - 1; i >= 0; --i) {
6105       bool Selected = true;
6106       for (auto &pair : RUs[i].MaxLocalUsers) {
6107         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6108         if (pair.second > TargetNumRegisters)
6109           Selected = false;
6110       }
6111       if (Selected) {
6112         MaxVF = VFs[i];
6113         break;
6114       }
6115     }
6116     if (ElementCount MinVF =
6117             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
6118       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
6119         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
6120                           << ") with target's minimum: " << MinVF << '\n');
6121         MaxVF = MinVF;
6122       }
6123     }
6124   }
6125   return MaxVF;
6126 }
6127 
6128 bool LoopVectorizationCostModel::isMoreProfitable(
6129     const VectorizationFactor &A, const VectorizationFactor &B) const {
6130   InstructionCost CostA = A.Cost;
6131   InstructionCost CostB = B.Cost;
6132 
6133   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6134 
6135   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6136       MaxTripCount) {
6137     // If we are folding the tail and the trip count is a known (possibly small)
6138     // constant, the trip count will be rounded up to an integer number of
6139     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6140     // which we compare directly. When not folding the tail, the total cost will
6141     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6142     // approximated with the per-lane cost below instead of using the tripcount
6143     // as here.
6144     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6145     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6146     return RTCostA < RTCostB;
6147   }
6148 
6149   // Improve estimate for the vector width if it is scalable.
6150   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
6151   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
6152   if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) {
6153     if (A.Width.isScalable())
6154       EstimatedWidthA *= VScale.getValue();
6155     if (B.Width.isScalable())
6156       EstimatedWidthB *= VScale.getValue();
6157   }
6158 
6159   // When set to preferred, for now assume vscale may be larger than 1 (or the
6160   // one being tuned for), so that scalable vectorization is slightly favorable
6161   // over fixed-width vectorization.
6162   if (Hints->isScalableVectorizationPreferred())
6163     if (A.Width.isScalable() && !B.Width.isScalable())
6164       return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
6165 
6166   // To avoid the need for FP division:
6167   //      (CostA / A.Width) < (CostB / B.Width)
6168   // <=>  (CostA * B.Width) < (CostB * A.Width)
6169   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
6170 }
6171 
6172 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6173     const ElementCountSet &VFCandidates) {
6174   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6175   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6176   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6177   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6178          "Expected Scalar VF to be a candidate");
6179 
6180   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6181   VectorizationFactor ChosenFactor = ScalarCost;
6182 
6183   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6184   if (ForceVectorization && VFCandidates.size() > 1) {
6185     // Ignore scalar width, because the user explicitly wants vectorization.
6186     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6187     // evaluation.
6188     ChosenFactor.Cost = InstructionCost::getMax();
6189   }
6190 
6191   SmallVector<InstructionVFPair> InvalidCosts;
6192   for (const auto &i : VFCandidates) {
6193     // The cost for scalar VF=1 is already calculated, so ignore it.
6194     if (i.isScalar())
6195       continue;
6196 
6197     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6198     VectorizationFactor Candidate(i, C.first);
6199 
6200 #ifndef NDEBUG
6201     unsigned AssumedMinimumVscale = 1;
6202     if (Optional<unsigned> VScale = TTI.getVScaleForTuning())
6203       AssumedMinimumVscale = VScale.getValue();
6204     unsigned Width =
6205         Candidate.Width.isScalable()
6206             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
6207             : Candidate.Width.getFixedValue();
6208     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
6209                       << " costs: " << (Candidate.Cost / Width));
6210     if (i.isScalable())
6211       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
6212                         << AssumedMinimumVscale << ")");
6213     LLVM_DEBUG(dbgs() << ".\n");
6214 #endif
6215 
6216     if (!C.second && !ForceVectorization) {
6217       LLVM_DEBUG(
6218           dbgs() << "LV: Not considering vector loop of width " << i
6219                  << " because it will not generate any vector instructions.\n");
6220       continue;
6221     }
6222 
6223     // If profitable add it to ProfitableVF list.
6224     if (isMoreProfitable(Candidate, ScalarCost))
6225       ProfitableVFs.push_back(Candidate);
6226 
6227     if (isMoreProfitable(Candidate, ChosenFactor))
6228       ChosenFactor = Candidate;
6229   }
6230 
6231   // Emit a report of VFs with invalid costs in the loop.
6232   if (!InvalidCosts.empty()) {
6233     // Group the remarks per instruction, keeping the instruction order from
6234     // InvalidCosts.
6235     std::map<Instruction *, unsigned> Numbering;
6236     unsigned I = 0;
6237     for (auto &Pair : InvalidCosts)
6238       if (!Numbering.count(Pair.first))
6239         Numbering[Pair.first] = I++;
6240 
6241     // Sort the list, first on instruction(number) then on VF.
6242     llvm::sort(InvalidCosts,
6243                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6244                  if (Numbering[A.first] != Numbering[B.first])
6245                    return Numbering[A.first] < Numbering[B.first];
6246                  ElementCountComparator ECC;
6247                  return ECC(A.second, B.second);
6248                });
6249 
6250     // For a list of ordered instruction-vf pairs:
6251     //   [(load, vf1), (load, vf2), (store, vf1)]
6252     // Group the instructions together to emit separate remarks for:
6253     //   load  (vf1, vf2)
6254     //   store (vf1)
6255     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6256     auto Subset = ArrayRef<InstructionVFPair>();
6257     do {
6258       if (Subset.empty())
6259         Subset = Tail.take_front(1);
6260 
6261       Instruction *I = Subset.front().first;
6262 
6263       // If the next instruction is different, or if there are no other pairs,
6264       // emit a remark for the collated subset. e.g.
6265       //   [(load, vf1), (load, vf2))]
6266       // to emit:
6267       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6268       if (Subset == Tail || Tail[Subset.size()].first != I) {
6269         std::string OutString;
6270         raw_string_ostream OS(OutString);
6271         assert(!Subset.empty() && "Unexpected empty range");
6272         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6273         for (auto &Pair : Subset)
6274           OS << (Pair.second == Subset.front().second ? "" : ", ")
6275              << Pair.second;
6276         OS << "):";
6277         if (auto *CI = dyn_cast<CallInst>(I))
6278           OS << " call to " << CI->getCalledFunction()->getName();
6279         else
6280           OS << " " << I->getOpcodeName();
6281         OS.flush();
6282         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6283         Tail = Tail.drop_front(Subset.size());
6284         Subset = {};
6285       } else
6286         // Grow the subset by one element
6287         Subset = Tail.take_front(Subset.size() + 1);
6288     } while (!Tail.empty());
6289   }
6290 
6291   if (!EnableCondStoresVectorization && NumPredStores) {
6292     reportVectorizationFailure("There are conditional stores.",
6293         "store that is conditionally executed prevents vectorization",
6294         "ConditionalStore", ORE, TheLoop);
6295     ChosenFactor = ScalarCost;
6296   }
6297 
6298   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6299                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6300              << "LV: Vectorization seems to be not beneficial, "
6301              << "but was forced by a user.\n");
6302   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6303   return ChosenFactor;
6304 }
6305 
6306 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6307     const Loop &L, ElementCount VF) const {
6308   // Cross iteration phis such as reductions need special handling and are
6309   // currently unsupported.
6310   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6311         return Legal->isFirstOrderRecurrence(&Phi) ||
6312                Legal->isReductionVariable(&Phi);
6313       }))
6314     return false;
6315 
6316   // Phis with uses outside of the loop require special handling and are
6317   // currently unsupported.
6318   for (auto &Entry : Legal->getInductionVars()) {
6319     // Look for uses of the value of the induction at the last iteration.
6320     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6321     for (User *U : PostInc->users())
6322       if (!L.contains(cast<Instruction>(U)))
6323         return false;
6324     // Look for uses of penultimate value of the induction.
6325     for (User *U : Entry.first->users())
6326       if (!L.contains(cast<Instruction>(U)))
6327         return false;
6328   }
6329 
6330   // Induction variables that are widened require special handling that is
6331   // currently not supported.
6332   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6333         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6334                  this->isProfitableToScalarize(Entry.first, VF));
6335       }))
6336     return false;
6337 
6338   // Epilogue vectorization code has not been auditted to ensure it handles
6339   // non-latch exits properly.  It may be fine, but it needs auditted and
6340   // tested.
6341   if (L.getExitingBlock() != L.getLoopLatch())
6342     return false;
6343 
6344   return true;
6345 }
6346 
6347 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6348     const ElementCount VF) const {
6349   // FIXME: We need a much better cost-model to take different parameters such
6350   // as register pressure, code size increase and cost of extra branches into
6351   // account. For now we apply a very crude heuristic and only consider loops
6352   // with vectorization factors larger than a certain value.
6353   // We also consider epilogue vectorization unprofitable for targets that don't
6354   // consider interleaving beneficial (eg. MVE).
6355   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6356     return false;
6357   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6358     return true;
6359   return false;
6360 }
6361 
6362 VectorizationFactor
6363 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6364     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6365   VectorizationFactor Result = VectorizationFactor::Disabled();
6366   if (!EnableEpilogueVectorization) {
6367     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6368     return Result;
6369   }
6370 
6371   if (!isScalarEpilogueAllowed()) {
6372     LLVM_DEBUG(
6373         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6374                   "allowed.\n";);
6375     return Result;
6376   }
6377 
6378   // Not really a cost consideration, but check for unsupported cases here to
6379   // simplify the logic.
6380   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6381     LLVM_DEBUG(
6382         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6383                   "not a supported candidate.\n";);
6384     return Result;
6385   }
6386 
6387   if (EpilogueVectorizationForceVF > 1) {
6388     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6389     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
6390     if (LVP.hasPlanWithVF(ForcedEC))
6391       return {ForcedEC, 0};
6392     else {
6393       LLVM_DEBUG(
6394           dbgs()
6395               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6396       return Result;
6397     }
6398   }
6399 
6400   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6401       TheLoop->getHeader()->getParent()->hasMinSize()) {
6402     LLVM_DEBUG(
6403         dbgs()
6404             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6405     return Result;
6406   }
6407 
6408   auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
6409   if (MainLoopVF.isScalable())
6410     LLVM_DEBUG(
6411         dbgs() << "LEV: Epilogue vectorization using scalable vectors not "
6412                   "yet supported. Converting to fixed-width (VF="
6413                << FixedMainLoopVF << ") instead\n");
6414 
6415   if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) {
6416     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
6417                          "this loop\n");
6418     return Result;
6419   }
6420 
6421   for (auto &NextVF : ProfitableVFs)
6422     if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) &&
6423         (Result.Width.getFixedValue() == 1 ||
6424          isMoreProfitable(NextVF, Result)) &&
6425         LVP.hasPlanWithVF(NextVF.Width))
6426       Result = NextVF;
6427 
6428   if (Result != VectorizationFactor::Disabled())
6429     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6430                       << Result.Width.getFixedValue() << "\n";);
6431   return Result;
6432 }
6433 
6434 std::pair<unsigned, unsigned>
6435 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6436   unsigned MinWidth = -1U;
6437   unsigned MaxWidth = 8;
6438   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6439   for (Type *T : ElementTypesInLoop) {
6440     MinWidth = std::min<unsigned>(
6441         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6442     MaxWidth = std::max<unsigned>(
6443         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6444   }
6445   return {MinWidth, MaxWidth};
6446 }
6447 
6448 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6449   ElementTypesInLoop.clear();
6450   // For each block.
6451   for (BasicBlock *BB : TheLoop->blocks()) {
6452     // For each instruction in the loop.
6453     for (Instruction &I : BB->instructionsWithoutDebug()) {
6454       Type *T = I.getType();
6455 
6456       // Skip ignored values.
6457       if (ValuesToIgnore.count(&I))
6458         continue;
6459 
6460       // Only examine Loads, Stores and PHINodes.
6461       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6462         continue;
6463 
6464       // Examine PHI nodes that are reduction variables. Update the type to
6465       // account for the recurrence type.
6466       if (auto *PN = dyn_cast<PHINode>(&I)) {
6467         if (!Legal->isReductionVariable(PN))
6468           continue;
6469         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6470         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6471             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6472                                       RdxDesc.getRecurrenceType(),
6473                                       TargetTransformInfo::ReductionFlags()))
6474           continue;
6475         T = RdxDesc.getRecurrenceType();
6476       }
6477 
6478       // Examine the stored values.
6479       if (auto *ST = dyn_cast<StoreInst>(&I))
6480         T = ST->getValueOperand()->getType();
6481 
6482       // Ignore loaded pointer types and stored pointer types that are not
6483       // vectorizable.
6484       //
6485       // FIXME: The check here attempts to predict whether a load or store will
6486       //        be vectorized. We only know this for certain after a VF has
6487       //        been selected. Here, we assume that if an access can be
6488       //        vectorized, it will be. We should also look at extending this
6489       //        optimization to non-pointer types.
6490       //
6491       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6492           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6493         continue;
6494 
6495       ElementTypesInLoop.insert(T);
6496     }
6497   }
6498 }
6499 
6500 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6501                                                            unsigned LoopCost) {
6502   // -- The interleave heuristics --
6503   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6504   // There are many micro-architectural considerations that we can't predict
6505   // at this level. For example, frontend pressure (on decode or fetch) due to
6506   // code size, or the number and capabilities of the execution ports.
6507   //
6508   // We use the following heuristics to select the interleave count:
6509   // 1. If the code has reductions, then we interleave to break the cross
6510   // iteration dependency.
6511   // 2. If the loop is really small, then we interleave to reduce the loop
6512   // overhead.
6513   // 3. We don't interleave if we think that we will spill registers to memory
6514   // due to the increased register pressure.
6515 
6516   if (!isScalarEpilogueAllowed())
6517     return 1;
6518 
6519   // We used the distance for the interleave count.
6520   if (Legal->getMaxSafeDepDistBytes() != -1U)
6521     return 1;
6522 
6523   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6524   const bool HasReductions = !Legal->getReductionVars().empty();
6525   // Do not interleave loops with a relatively small known or estimated trip
6526   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6527   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6528   // because with the above conditions interleaving can expose ILP and break
6529   // cross iteration dependences for reductions.
6530   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6531       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6532     return 1;
6533 
6534   RegisterUsage R = calculateRegisterUsage({VF})[0];
6535   // We divide by these constants so assume that we have at least one
6536   // instruction that uses at least one register.
6537   for (auto& pair : R.MaxLocalUsers) {
6538     pair.second = std::max(pair.second, 1U);
6539   }
6540 
6541   // We calculate the interleave count using the following formula.
6542   // Subtract the number of loop invariants from the number of available
6543   // registers. These registers are used by all of the interleaved instances.
6544   // Next, divide the remaining registers by the number of registers that is
6545   // required by the loop, in order to estimate how many parallel instances
6546   // fit without causing spills. All of this is rounded down if necessary to be
6547   // a power of two. We want power of two interleave count to simplify any
6548   // addressing operations or alignment considerations.
6549   // We also want power of two interleave counts to ensure that the induction
6550   // variable of the vector loop wraps to zero, when tail is folded by masking;
6551   // this currently happens when OptForSize, in which case IC is set to 1 above.
6552   unsigned IC = UINT_MAX;
6553 
6554   for (auto& pair : R.MaxLocalUsers) {
6555     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6556     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6557                       << " registers of "
6558                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6559     if (VF.isScalar()) {
6560       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6561         TargetNumRegisters = ForceTargetNumScalarRegs;
6562     } else {
6563       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6564         TargetNumRegisters = ForceTargetNumVectorRegs;
6565     }
6566     unsigned MaxLocalUsers = pair.second;
6567     unsigned LoopInvariantRegs = 0;
6568     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6569       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6570 
6571     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6572     // Don't count the induction variable as interleaved.
6573     if (EnableIndVarRegisterHeur) {
6574       TmpIC =
6575           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6576                         std::max(1U, (MaxLocalUsers - 1)));
6577     }
6578 
6579     IC = std::min(IC, TmpIC);
6580   }
6581 
6582   // Clamp the interleave ranges to reasonable counts.
6583   unsigned MaxInterleaveCount =
6584       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6585 
6586   // Check if the user has overridden the max.
6587   if (VF.isScalar()) {
6588     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6589       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6590   } else {
6591     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6592       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6593   }
6594 
6595   // If trip count is known or estimated compile time constant, limit the
6596   // interleave count to be less than the trip count divided by VF, provided it
6597   // is at least 1.
6598   //
6599   // For scalable vectors we can't know if interleaving is beneficial. It may
6600   // not be beneficial for small loops if none of the lanes in the second vector
6601   // iterations is enabled. However, for larger loops, there is likely to be a
6602   // similar benefit as for fixed-width vectors. For now, we choose to leave
6603   // the InterleaveCount as if vscale is '1', although if some information about
6604   // the vector is known (e.g. min vector size), we can make a better decision.
6605   if (BestKnownTC) {
6606     MaxInterleaveCount =
6607         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6608     // Make sure MaxInterleaveCount is greater than 0.
6609     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6610   }
6611 
6612   assert(MaxInterleaveCount > 0 &&
6613          "Maximum interleave count must be greater than 0");
6614 
6615   // Clamp the calculated IC to be between the 1 and the max interleave count
6616   // that the target and trip count allows.
6617   if (IC > MaxInterleaveCount)
6618     IC = MaxInterleaveCount;
6619   else
6620     // Make sure IC is greater than 0.
6621     IC = std::max(1u, IC);
6622 
6623   assert(IC > 0 && "Interleave count must be greater than 0.");
6624 
6625   // If we did not calculate the cost for VF (because the user selected the VF)
6626   // then we calculate the cost of VF here.
6627   if (LoopCost == 0) {
6628     InstructionCost C = expectedCost(VF).first;
6629     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6630     LoopCost = *C.getValue();
6631   }
6632 
6633   assert(LoopCost && "Non-zero loop cost expected");
6634 
6635   // Interleave if we vectorized this loop and there is a reduction that could
6636   // benefit from interleaving.
6637   if (VF.isVector() && HasReductions) {
6638     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6639     return IC;
6640   }
6641 
6642   // Note that if we've already vectorized the loop we will have done the
6643   // runtime check and so interleaving won't require further checks.
6644   bool InterleavingRequiresRuntimePointerCheck =
6645       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6646 
6647   // We want to interleave small loops in order to reduce the loop overhead and
6648   // potentially expose ILP opportunities.
6649   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6650                     << "LV: IC is " << IC << '\n'
6651                     << "LV: VF is " << VF << '\n');
6652   const bool AggressivelyInterleaveReductions =
6653       TTI.enableAggressiveInterleaving(HasReductions);
6654   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6655     // We assume that the cost overhead is 1 and we use the cost model
6656     // to estimate the cost of the loop and interleave until the cost of the
6657     // loop overhead is about 5% of the cost of the loop.
6658     unsigned SmallIC =
6659         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6660 
6661     // Interleave until store/load ports (estimated by max interleave count) are
6662     // saturated.
6663     unsigned NumStores = Legal->getNumStores();
6664     unsigned NumLoads = Legal->getNumLoads();
6665     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6666     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6667 
6668     // There is little point in interleaving for reductions containing selects
6669     // and compares when VF=1 since it may just create more overhead than it's
6670     // worth for loops with small trip counts. This is because we still have to
6671     // do the final reduction after the loop.
6672     bool HasSelectCmpReductions =
6673         HasReductions &&
6674         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6675           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6676           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6677               RdxDesc.getRecurrenceKind());
6678         });
6679     if (HasSelectCmpReductions) {
6680       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6681       return 1;
6682     }
6683 
6684     // If we have a scalar reduction (vector reductions are already dealt with
6685     // by this point), we can increase the critical path length if the loop
6686     // we're interleaving is inside another loop. For tree-wise reductions
6687     // set the limit to 2, and for ordered reductions it's best to disable
6688     // interleaving entirely.
6689     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6690       bool HasOrderedReductions =
6691           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6692             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6693             return RdxDesc.isOrdered();
6694           });
6695       if (HasOrderedReductions) {
6696         LLVM_DEBUG(
6697             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6698         return 1;
6699       }
6700 
6701       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6702       SmallIC = std::min(SmallIC, F);
6703       StoresIC = std::min(StoresIC, F);
6704       LoadsIC = std::min(LoadsIC, F);
6705     }
6706 
6707     if (EnableLoadStoreRuntimeInterleave &&
6708         std::max(StoresIC, LoadsIC) > SmallIC) {
6709       LLVM_DEBUG(
6710           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6711       return std::max(StoresIC, LoadsIC);
6712     }
6713 
6714     // If there are scalar reductions and TTI has enabled aggressive
6715     // interleaving for reductions, we will interleave to expose ILP.
6716     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6717         AggressivelyInterleaveReductions) {
6718       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6719       // Interleave no less than SmallIC but not as aggressive as the normal IC
6720       // to satisfy the rare situation when resources are too limited.
6721       return std::max(IC / 2, SmallIC);
6722     } else {
6723       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6724       return SmallIC;
6725     }
6726   }
6727 
6728   // Interleave if this is a large loop (small loops are already dealt with by
6729   // this point) that could benefit from interleaving.
6730   if (AggressivelyInterleaveReductions) {
6731     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6732     return IC;
6733   }
6734 
6735   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6736   return 1;
6737 }
6738 
6739 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6740 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6741   // This function calculates the register usage by measuring the highest number
6742   // of values that are alive at a single location. Obviously, this is a very
6743   // rough estimation. We scan the loop in a topological order in order and
6744   // assign a number to each instruction. We use RPO to ensure that defs are
6745   // met before their users. We assume that each instruction that has in-loop
6746   // users starts an interval. We record every time that an in-loop value is
6747   // used, so we have a list of the first and last occurrences of each
6748   // instruction. Next, we transpose this data structure into a multi map that
6749   // holds the list of intervals that *end* at a specific location. This multi
6750   // map allows us to perform a linear search. We scan the instructions linearly
6751   // and record each time that a new interval starts, by placing it in a set.
6752   // If we find this value in the multi-map then we remove it from the set.
6753   // The max register usage is the maximum size of the set.
6754   // We also search for instructions that are defined outside the loop, but are
6755   // used inside the loop. We need this number separately from the max-interval
6756   // usage number because when we unroll, loop-invariant values do not take
6757   // more register.
6758   LoopBlocksDFS DFS(TheLoop);
6759   DFS.perform(LI);
6760 
6761   RegisterUsage RU;
6762 
6763   // Each 'key' in the map opens a new interval. The values
6764   // of the map are the index of the 'last seen' usage of the
6765   // instruction that is the key.
6766   using IntervalMap = DenseMap<Instruction *, unsigned>;
6767 
6768   // Maps instruction to its index.
6769   SmallVector<Instruction *, 64> IdxToInstr;
6770   // Marks the end of each interval.
6771   IntervalMap EndPoint;
6772   // Saves the list of instruction indices that are used in the loop.
6773   SmallPtrSet<Instruction *, 8> Ends;
6774   // Saves the list of values that are used in the loop but are
6775   // defined outside the loop, such as arguments and constants.
6776   SmallPtrSet<Value *, 8> LoopInvariants;
6777 
6778   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6779     for (Instruction &I : BB->instructionsWithoutDebug()) {
6780       IdxToInstr.push_back(&I);
6781 
6782       // Save the end location of each USE.
6783       for (Value *U : I.operands()) {
6784         auto *Instr = dyn_cast<Instruction>(U);
6785 
6786         // Ignore non-instruction values such as arguments, constants, etc.
6787         if (!Instr)
6788           continue;
6789 
6790         // If this instruction is outside the loop then record it and continue.
6791         if (!TheLoop->contains(Instr)) {
6792           LoopInvariants.insert(Instr);
6793           continue;
6794         }
6795 
6796         // Overwrite previous end points.
6797         EndPoint[Instr] = IdxToInstr.size();
6798         Ends.insert(Instr);
6799       }
6800     }
6801   }
6802 
6803   // Saves the list of intervals that end with the index in 'key'.
6804   using InstrList = SmallVector<Instruction *, 2>;
6805   DenseMap<unsigned, InstrList> TransposeEnds;
6806 
6807   // Transpose the EndPoints to a list of values that end at each index.
6808   for (auto &Interval : EndPoint)
6809     TransposeEnds[Interval.second].push_back(Interval.first);
6810 
6811   SmallPtrSet<Instruction *, 8> OpenIntervals;
6812   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6813   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6814 
6815   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6816 
6817   // A lambda that gets the register usage for the given type and VF.
6818   const auto &TTICapture = TTI;
6819   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6820     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6821       return 0;
6822     InstructionCost::CostType RegUsage =
6823         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6824     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6825            "Nonsensical values for register usage.");
6826     return RegUsage;
6827   };
6828 
6829   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6830     Instruction *I = IdxToInstr[i];
6831 
6832     // Remove all of the instructions that end at this location.
6833     InstrList &List = TransposeEnds[i];
6834     for (Instruction *ToRemove : List)
6835       OpenIntervals.erase(ToRemove);
6836 
6837     // Ignore instructions that are never used within the loop.
6838     if (!Ends.count(I))
6839       continue;
6840 
6841     // Skip ignored values.
6842     if (ValuesToIgnore.count(I))
6843       continue;
6844 
6845     // For each VF find the maximum usage of registers.
6846     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6847       // Count the number of live intervals.
6848       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6849 
6850       if (VFs[j].isScalar()) {
6851         for (auto Inst : OpenIntervals) {
6852           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6853           if (RegUsage.find(ClassID) == RegUsage.end())
6854             RegUsage[ClassID] = 1;
6855           else
6856             RegUsage[ClassID] += 1;
6857         }
6858       } else {
6859         collectUniformsAndScalars(VFs[j]);
6860         for (auto Inst : OpenIntervals) {
6861           // Skip ignored values for VF > 1.
6862           if (VecValuesToIgnore.count(Inst))
6863             continue;
6864           if (isScalarAfterVectorization(Inst, VFs[j])) {
6865             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6866             if (RegUsage.find(ClassID) == RegUsage.end())
6867               RegUsage[ClassID] = 1;
6868             else
6869               RegUsage[ClassID] += 1;
6870           } else {
6871             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6872             if (RegUsage.find(ClassID) == RegUsage.end())
6873               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6874             else
6875               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6876           }
6877         }
6878       }
6879 
6880       for (auto& pair : RegUsage) {
6881         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6882           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6883         else
6884           MaxUsages[j][pair.first] = pair.second;
6885       }
6886     }
6887 
6888     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6889                       << OpenIntervals.size() << '\n');
6890 
6891     // Add the current instruction to the list of open intervals.
6892     OpenIntervals.insert(I);
6893   }
6894 
6895   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6896     SmallMapVector<unsigned, unsigned, 4> Invariant;
6897 
6898     for (auto Inst : LoopInvariants) {
6899       unsigned Usage =
6900           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6901       unsigned ClassID =
6902           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6903       if (Invariant.find(ClassID) == Invariant.end())
6904         Invariant[ClassID] = Usage;
6905       else
6906         Invariant[ClassID] += Usage;
6907     }
6908 
6909     LLVM_DEBUG({
6910       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6911       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6912              << " item\n";
6913       for (const auto &pair : MaxUsages[i]) {
6914         dbgs() << "LV(REG): RegisterClass: "
6915                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6916                << " registers\n";
6917       }
6918       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6919              << " item\n";
6920       for (const auto &pair : Invariant) {
6921         dbgs() << "LV(REG): RegisterClass: "
6922                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6923                << " registers\n";
6924       }
6925     });
6926 
6927     RU.LoopInvariantRegs = Invariant;
6928     RU.MaxLocalUsers = MaxUsages[i];
6929     RUs[i] = RU;
6930   }
6931 
6932   return RUs;
6933 }
6934 
6935 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6936   // TODO: Cost model for emulated masked load/store is completely
6937   // broken. This hack guides the cost model to use an artificially
6938   // high enough value to practically disable vectorization with such
6939   // operations, except where previously deployed legality hack allowed
6940   // using very low cost values. This is to avoid regressions coming simply
6941   // from moving "masked load/store" check from legality to cost model.
6942   // Masked Load/Gather emulation was previously never allowed.
6943   // Limited number of Masked Store/Scatter emulation was allowed.
6944   assert(isPredicatedInst(I) &&
6945          "Expecting a scalar emulated instruction");
6946   return isa<LoadInst>(I) ||
6947          (isa<StoreInst>(I) &&
6948           NumPredStores > NumberOfStoresToPredicate);
6949 }
6950 
6951 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6952   // If we aren't vectorizing the loop, or if we've already collected the
6953   // instructions to scalarize, there's nothing to do. Collection may already
6954   // have occurred if we have a user-selected VF and are now computing the
6955   // expected cost for interleaving.
6956   if (VF.isScalar() || VF.isZero() ||
6957       InstsToScalarize.find(VF) != InstsToScalarize.end())
6958     return;
6959 
6960   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6961   // not profitable to scalarize any instructions, the presence of VF in the
6962   // map will indicate that we've analyzed it already.
6963   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6964 
6965   // Find all the instructions that are scalar with predication in the loop and
6966   // determine if it would be better to not if-convert the blocks they are in.
6967   // If so, we also record the instructions to scalarize.
6968   for (BasicBlock *BB : TheLoop->blocks()) {
6969     if (!blockNeedsPredicationForAnyReason(BB))
6970       continue;
6971     for (Instruction &I : *BB)
6972       if (isScalarWithPredication(&I)) {
6973         ScalarCostsTy ScalarCosts;
6974         // Do not apply discount if scalable, because that would lead to
6975         // invalid scalarization costs.
6976         // Do not apply discount logic if hacked cost is needed
6977         // for emulated masked memrefs.
6978         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6979             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6980           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6981         // Remember that BB will remain after vectorization.
6982         PredicatedBBsAfterVectorization.insert(BB);
6983       }
6984   }
6985 }
6986 
6987 int LoopVectorizationCostModel::computePredInstDiscount(
6988     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6989   assert(!isUniformAfterVectorization(PredInst, VF) &&
6990          "Instruction marked uniform-after-vectorization will be predicated");
6991 
6992   // Initialize the discount to zero, meaning that the scalar version and the
6993   // vector version cost the same.
6994   InstructionCost Discount = 0;
6995 
6996   // Holds instructions to analyze. The instructions we visit are mapped in
6997   // ScalarCosts. Those instructions are the ones that would be scalarized if
6998   // we find that the scalar version costs less.
6999   SmallVector<Instruction *, 8> Worklist;
7000 
7001   // Returns true if the given instruction can be scalarized.
7002   auto canBeScalarized = [&](Instruction *I) -> bool {
7003     // We only attempt to scalarize instructions forming a single-use chain
7004     // from the original predicated block that would otherwise be vectorized.
7005     // Although not strictly necessary, we give up on instructions we know will
7006     // already be scalar to avoid traversing chains that are unlikely to be
7007     // beneficial.
7008     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
7009         isScalarAfterVectorization(I, VF))
7010       return false;
7011 
7012     // If the instruction is scalar with predication, it will be analyzed
7013     // separately. We ignore it within the context of PredInst.
7014     if (isScalarWithPredication(I))
7015       return false;
7016 
7017     // If any of the instruction's operands are uniform after vectorization,
7018     // the instruction cannot be scalarized. This prevents, for example, a
7019     // masked load from being scalarized.
7020     //
7021     // We assume we will only emit a value for lane zero of an instruction
7022     // marked uniform after vectorization, rather than VF identical values.
7023     // Thus, if we scalarize an instruction that uses a uniform, we would
7024     // create uses of values corresponding to the lanes we aren't emitting code
7025     // for. This behavior can be changed by allowing getScalarValue to clone
7026     // the lane zero values for uniforms rather than asserting.
7027     for (Use &U : I->operands())
7028       if (auto *J = dyn_cast<Instruction>(U.get()))
7029         if (isUniformAfterVectorization(J, VF))
7030           return false;
7031 
7032     // Otherwise, we can scalarize the instruction.
7033     return true;
7034   };
7035 
7036   // Compute the expected cost discount from scalarizing the entire expression
7037   // feeding the predicated instruction. We currently only consider expressions
7038   // that are single-use instruction chains.
7039   Worklist.push_back(PredInst);
7040   while (!Worklist.empty()) {
7041     Instruction *I = Worklist.pop_back_val();
7042 
7043     // If we've already analyzed the instruction, there's nothing to do.
7044     if (ScalarCosts.find(I) != ScalarCosts.end())
7045       continue;
7046 
7047     // Compute the cost of the vector instruction. Note that this cost already
7048     // includes the scalarization overhead of the predicated instruction.
7049     InstructionCost VectorCost = getInstructionCost(I, VF).first;
7050 
7051     // Compute the cost of the scalarized instruction. This cost is the cost of
7052     // the instruction as if it wasn't if-converted and instead remained in the
7053     // predicated block. We will scale this cost by block probability after
7054     // computing the scalarization overhead.
7055     InstructionCost ScalarCost =
7056         VF.getFixedValue() *
7057         getInstructionCost(I, ElementCount::getFixed(1)).first;
7058 
7059     // Compute the scalarization overhead of needed insertelement instructions
7060     // and phi nodes.
7061     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
7062       ScalarCost += TTI.getScalarizationOverhead(
7063           cast<VectorType>(ToVectorTy(I->getType(), VF)),
7064           APInt::getAllOnes(VF.getFixedValue()), true, false);
7065       ScalarCost +=
7066           VF.getFixedValue() *
7067           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
7068     }
7069 
7070     // Compute the scalarization overhead of needed extractelement
7071     // instructions. For each of the instruction's operands, if the operand can
7072     // be scalarized, add it to the worklist; otherwise, account for the
7073     // overhead.
7074     for (Use &U : I->operands())
7075       if (auto *J = dyn_cast<Instruction>(U.get())) {
7076         assert(VectorType::isValidElementType(J->getType()) &&
7077                "Instruction has non-scalar type");
7078         if (canBeScalarized(J))
7079           Worklist.push_back(J);
7080         else if (needsExtract(J, VF)) {
7081           ScalarCost += TTI.getScalarizationOverhead(
7082               cast<VectorType>(ToVectorTy(J->getType(), VF)),
7083               APInt::getAllOnes(VF.getFixedValue()), false, true);
7084         }
7085       }
7086 
7087     // Scale the total scalar cost by block probability.
7088     ScalarCost /= getReciprocalPredBlockProb();
7089 
7090     // Compute the discount. A non-negative discount means the vector version
7091     // of the instruction costs more, and scalarizing would be beneficial.
7092     Discount += VectorCost - ScalarCost;
7093     ScalarCosts[I] = ScalarCost;
7094   }
7095 
7096   return *Discount.getValue();
7097 }
7098 
7099 LoopVectorizationCostModel::VectorizationCostTy
7100 LoopVectorizationCostModel::expectedCost(
7101     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
7102   VectorizationCostTy Cost;
7103 
7104   // For each block.
7105   for (BasicBlock *BB : TheLoop->blocks()) {
7106     VectorizationCostTy BlockCost;
7107 
7108     // For each instruction in the old loop.
7109     for (Instruction &I : BB->instructionsWithoutDebug()) {
7110       // Skip ignored values.
7111       if (ValuesToIgnore.count(&I) ||
7112           (VF.isVector() && VecValuesToIgnore.count(&I)))
7113         continue;
7114 
7115       VectorizationCostTy C = getInstructionCost(&I, VF);
7116 
7117       // Check if we should override the cost.
7118       if (C.first.isValid() &&
7119           ForceTargetInstructionCost.getNumOccurrences() > 0)
7120         C.first = InstructionCost(ForceTargetInstructionCost);
7121 
7122       // Keep a list of instructions with invalid costs.
7123       if (Invalid && !C.first.isValid())
7124         Invalid->emplace_back(&I, VF);
7125 
7126       BlockCost.first += C.first;
7127       BlockCost.second |= C.second;
7128       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
7129                         << " for VF " << VF << " For instruction: " << I
7130                         << '\n');
7131     }
7132 
7133     // If we are vectorizing a predicated block, it will have been
7134     // if-converted. This means that the block's instructions (aside from
7135     // stores and instructions that may divide by zero) will now be
7136     // unconditionally executed. For the scalar case, we may not always execute
7137     // the predicated block, if it is an if-else block. Thus, scale the block's
7138     // cost by the probability of executing it. blockNeedsPredication from
7139     // Legal is used so as to not include all blocks in tail folded loops.
7140     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
7141       BlockCost.first /= getReciprocalPredBlockProb();
7142 
7143     Cost.first += BlockCost.first;
7144     Cost.second |= BlockCost.second;
7145   }
7146 
7147   return Cost;
7148 }
7149 
7150 /// Gets Address Access SCEV after verifying that the access pattern
7151 /// is loop invariant except the induction variable dependence.
7152 ///
7153 /// This SCEV can be sent to the Target in order to estimate the address
7154 /// calculation cost.
7155 static const SCEV *getAddressAccessSCEV(
7156               Value *Ptr,
7157               LoopVectorizationLegality *Legal,
7158               PredicatedScalarEvolution &PSE,
7159               const Loop *TheLoop) {
7160 
7161   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7162   if (!Gep)
7163     return nullptr;
7164 
7165   // We are looking for a gep with all loop invariant indices except for one
7166   // which should be an induction variable.
7167   auto SE = PSE.getSE();
7168   unsigned NumOperands = Gep->getNumOperands();
7169   for (unsigned i = 1; i < NumOperands; ++i) {
7170     Value *Opd = Gep->getOperand(i);
7171     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7172         !Legal->isInductionVariable(Opd))
7173       return nullptr;
7174   }
7175 
7176   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7177   return PSE.getSCEV(Ptr);
7178 }
7179 
7180 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7181   return Legal->hasStride(I->getOperand(0)) ||
7182          Legal->hasStride(I->getOperand(1));
7183 }
7184 
7185 InstructionCost
7186 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7187                                                         ElementCount VF) {
7188   assert(VF.isVector() &&
7189          "Scalarization cost of instruction implies vectorization.");
7190   if (VF.isScalable())
7191     return InstructionCost::getInvalid();
7192 
7193   Type *ValTy = getLoadStoreType(I);
7194   auto SE = PSE.getSE();
7195 
7196   unsigned AS = getLoadStoreAddressSpace(I);
7197   Value *Ptr = getLoadStorePointerOperand(I);
7198   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7199 
7200   // Figure out whether the access is strided and get the stride value
7201   // if it's known in compile time
7202   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7203 
7204   // Get the cost of the scalar memory instruction and address computation.
7205   InstructionCost Cost =
7206       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7207 
7208   // Don't pass *I here, since it is scalar but will actually be part of a
7209   // vectorized loop where the user of it is a vectorized instruction.
7210   const Align Alignment = getLoadStoreAlignment(I);
7211   Cost += VF.getKnownMinValue() *
7212           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7213                               AS, TTI::TCK_RecipThroughput);
7214 
7215   // Get the overhead of the extractelement and insertelement instructions
7216   // we might create due to scalarization.
7217   Cost += getScalarizationOverhead(I, VF);
7218 
7219   // If we have a predicated load/store, it will need extra i1 extracts and
7220   // conditional branches, but may not be executed for each vector lane. Scale
7221   // the cost by the probability of executing the predicated block.
7222   if (isPredicatedInst(I)) {
7223     Cost /= getReciprocalPredBlockProb();
7224 
7225     // Add the cost of an i1 extract and a branch
7226     auto *Vec_i1Ty =
7227         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7228     Cost += TTI.getScalarizationOverhead(
7229         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7230         /*Insert=*/false, /*Extract=*/true);
7231     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7232 
7233     if (useEmulatedMaskMemRefHack(I))
7234       // Artificially setting to a high enough value to practically disable
7235       // vectorization with such operations.
7236       Cost = 3000000;
7237   }
7238 
7239   return Cost;
7240 }
7241 
7242 InstructionCost
7243 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7244                                                     ElementCount VF) {
7245   Type *ValTy = getLoadStoreType(I);
7246   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7247   Value *Ptr = getLoadStorePointerOperand(I);
7248   unsigned AS = getLoadStoreAddressSpace(I);
7249   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7250   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7251 
7252   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7253          "Stride should be 1 or -1 for consecutive memory access");
7254   const Align Alignment = getLoadStoreAlignment(I);
7255   InstructionCost Cost = 0;
7256   if (Legal->isMaskRequired(I))
7257     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7258                                       CostKind);
7259   else
7260     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7261                                 CostKind, I);
7262 
7263   bool Reverse = ConsecutiveStride < 0;
7264   if (Reverse)
7265     Cost +=
7266         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7267   return Cost;
7268 }
7269 
7270 InstructionCost
7271 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7272                                                 ElementCount VF) {
7273   assert(Legal->isUniformMemOp(*I));
7274 
7275   Type *ValTy = getLoadStoreType(I);
7276   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7277   const Align Alignment = getLoadStoreAlignment(I);
7278   unsigned AS = getLoadStoreAddressSpace(I);
7279   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7280   if (isa<LoadInst>(I)) {
7281     return TTI.getAddressComputationCost(ValTy) +
7282            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7283                                CostKind) +
7284            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7285   }
7286   StoreInst *SI = cast<StoreInst>(I);
7287 
7288   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7289   return TTI.getAddressComputationCost(ValTy) +
7290          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7291                              CostKind) +
7292          (isLoopInvariantStoreValue
7293               ? 0
7294               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7295                                        VF.getKnownMinValue() - 1));
7296 }
7297 
7298 InstructionCost
7299 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7300                                                  ElementCount VF) {
7301   Type *ValTy = getLoadStoreType(I);
7302   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7303   const Align Alignment = getLoadStoreAlignment(I);
7304   const Value *Ptr = getLoadStorePointerOperand(I);
7305 
7306   return TTI.getAddressComputationCost(VectorTy) +
7307          TTI.getGatherScatterOpCost(
7308              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7309              TargetTransformInfo::TCK_RecipThroughput, I);
7310 }
7311 
7312 InstructionCost
7313 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7314                                                    ElementCount VF) {
7315   // TODO: Once we have support for interleaving with scalable vectors
7316   // we can calculate the cost properly here.
7317   if (VF.isScalable())
7318     return InstructionCost::getInvalid();
7319 
7320   Type *ValTy = getLoadStoreType(I);
7321   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7322   unsigned AS = getLoadStoreAddressSpace(I);
7323 
7324   auto Group = getInterleavedAccessGroup(I);
7325   assert(Group && "Fail to get an interleaved access group.");
7326 
7327   unsigned InterleaveFactor = Group->getFactor();
7328   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7329 
7330   // Holds the indices of existing members in the interleaved group.
7331   SmallVector<unsigned, 4> Indices;
7332   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7333     if (Group->getMember(IF))
7334       Indices.push_back(IF);
7335 
7336   // Calculate the cost of the whole interleaved group.
7337   bool UseMaskForGaps =
7338       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7339       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7340   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7341       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7342       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7343 
7344   if (Group->isReverse()) {
7345     // TODO: Add support for reversed masked interleaved access.
7346     assert(!Legal->isMaskRequired(I) &&
7347            "Reverse masked interleaved access not supported.");
7348     Cost +=
7349         Group->getNumMembers() *
7350         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7351   }
7352   return Cost;
7353 }
7354 
7355 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7356     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7357   using namespace llvm::PatternMatch;
7358   // Early exit for no inloop reductions
7359   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7360     return None;
7361   auto *VectorTy = cast<VectorType>(Ty);
7362 
7363   // We are looking for a pattern of, and finding the minimal acceptable cost:
7364   //  reduce(mul(ext(A), ext(B))) or
7365   //  reduce(mul(A, B)) or
7366   //  reduce(ext(A)) or
7367   //  reduce(A).
7368   // The basic idea is that we walk down the tree to do that, finding the root
7369   // reduction instruction in InLoopReductionImmediateChains. From there we find
7370   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7371   // of the components. If the reduction cost is lower then we return it for the
7372   // reduction instruction and 0 for the other instructions in the pattern. If
7373   // it is not we return an invalid cost specifying the orignal cost method
7374   // should be used.
7375   Instruction *RetI = I;
7376   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7377     if (!RetI->hasOneUser())
7378       return None;
7379     RetI = RetI->user_back();
7380   }
7381   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7382       RetI->user_back()->getOpcode() == Instruction::Add) {
7383     if (!RetI->hasOneUser())
7384       return None;
7385     RetI = RetI->user_back();
7386   }
7387 
7388   // Test if the found instruction is a reduction, and if not return an invalid
7389   // cost specifying the parent to use the original cost modelling.
7390   if (!InLoopReductionImmediateChains.count(RetI))
7391     return None;
7392 
7393   // Find the reduction this chain is a part of and calculate the basic cost of
7394   // the reduction on its own.
7395   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7396   Instruction *ReductionPhi = LastChain;
7397   while (!isa<PHINode>(ReductionPhi))
7398     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7399 
7400   const RecurrenceDescriptor &RdxDesc =
7401       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7402 
7403   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7404       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7405 
7406   // If we're using ordered reductions then we can just return the base cost
7407   // here, since getArithmeticReductionCost calculates the full ordered
7408   // reduction cost when FP reassociation is not allowed.
7409   if (useOrderedReductions(RdxDesc))
7410     return BaseCost;
7411 
7412   // Get the operand that was not the reduction chain and match it to one of the
7413   // patterns, returning the better cost if it is found.
7414   Instruction *RedOp = RetI->getOperand(1) == LastChain
7415                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7416                            : dyn_cast<Instruction>(RetI->getOperand(1));
7417 
7418   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7419 
7420   Instruction *Op0, *Op1;
7421   if (RedOp &&
7422       match(RedOp,
7423             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7424       match(Op0, m_ZExtOrSExt(m_Value())) &&
7425       Op0->getOpcode() == Op1->getOpcode() &&
7426       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7427       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7428       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7429 
7430     // Matched reduce(ext(mul(ext(A), ext(B)))
7431     // Note that the extend opcodes need to all match, or if A==B they will have
7432     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7433     // which is equally fine.
7434     bool IsUnsigned = isa<ZExtInst>(Op0);
7435     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7436     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7437 
7438     InstructionCost ExtCost =
7439         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7440                              TTI::CastContextHint::None, CostKind, Op0);
7441     InstructionCost MulCost =
7442         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7443     InstructionCost Ext2Cost =
7444         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7445                              TTI::CastContextHint::None, CostKind, RedOp);
7446 
7447     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7448         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7449         CostKind);
7450 
7451     if (RedCost.isValid() &&
7452         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7453       return I == RetI ? RedCost : 0;
7454   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7455              !TheLoop->isLoopInvariant(RedOp)) {
7456     // Matched reduce(ext(A))
7457     bool IsUnsigned = isa<ZExtInst>(RedOp);
7458     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7459     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7460         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7461         CostKind);
7462 
7463     InstructionCost ExtCost =
7464         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7465                              TTI::CastContextHint::None, CostKind, RedOp);
7466     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7467       return I == RetI ? RedCost : 0;
7468   } else if (RedOp &&
7469              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7470     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7471         Op0->getOpcode() == Op1->getOpcode() &&
7472         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7473         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7474       bool IsUnsigned = isa<ZExtInst>(Op0);
7475       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7476       // Matched reduce(mul(ext, ext))
7477       InstructionCost ExtCost =
7478           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7479                                TTI::CastContextHint::None, CostKind, Op0);
7480       InstructionCost MulCost =
7481           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7482 
7483       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7484           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7485           CostKind);
7486 
7487       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7488         return I == RetI ? RedCost : 0;
7489     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7490       // Matched reduce(mul())
7491       InstructionCost MulCost =
7492           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7493 
7494       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7495           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7496           CostKind);
7497 
7498       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7499         return I == RetI ? RedCost : 0;
7500     }
7501   }
7502 
7503   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7504 }
7505 
7506 InstructionCost
7507 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7508                                                      ElementCount VF) {
7509   // Calculate scalar cost only. Vectorization cost should be ready at this
7510   // moment.
7511   if (VF.isScalar()) {
7512     Type *ValTy = getLoadStoreType(I);
7513     const Align Alignment = getLoadStoreAlignment(I);
7514     unsigned AS = getLoadStoreAddressSpace(I);
7515 
7516     return TTI.getAddressComputationCost(ValTy) +
7517            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7518                                TTI::TCK_RecipThroughput, I);
7519   }
7520   return getWideningCost(I, VF);
7521 }
7522 
7523 LoopVectorizationCostModel::VectorizationCostTy
7524 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7525                                                ElementCount VF) {
7526   // If we know that this instruction will remain uniform, check the cost of
7527   // the scalar version.
7528   if (isUniformAfterVectorization(I, VF))
7529     VF = ElementCount::getFixed(1);
7530 
7531   if (VF.isVector() && isProfitableToScalarize(I, VF))
7532     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7533 
7534   // Forced scalars do not have any scalarization overhead.
7535   auto ForcedScalar = ForcedScalars.find(VF);
7536   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7537     auto InstSet = ForcedScalar->second;
7538     if (InstSet.count(I))
7539       return VectorizationCostTy(
7540           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7541            VF.getKnownMinValue()),
7542           false);
7543   }
7544 
7545   Type *VectorTy;
7546   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7547 
7548   bool TypeNotScalarized = false;
7549   if (VF.isVector() && VectorTy->isVectorTy()) {
7550     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7551     if (NumParts)
7552       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7553     else
7554       C = InstructionCost::getInvalid();
7555   }
7556   return VectorizationCostTy(C, TypeNotScalarized);
7557 }
7558 
7559 InstructionCost
7560 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7561                                                      ElementCount VF) const {
7562 
7563   // There is no mechanism yet to create a scalable scalarization loop,
7564   // so this is currently Invalid.
7565   if (VF.isScalable())
7566     return InstructionCost::getInvalid();
7567 
7568   if (VF.isScalar())
7569     return 0;
7570 
7571   InstructionCost Cost = 0;
7572   Type *RetTy = ToVectorTy(I->getType(), VF);
7573   if (!RetTy->isVoidTy() &&
7574       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7575     Cost += TTI.getScalarizationOverhead(
7576         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7577         false);
7578 
7579   // Some targets keep addresses scalar.
7580   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7581     return Cost;
7582 
7583   // Some targets support efficient element stores.
7584   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7585     return Cost;
7586 
7587   // Collect operands to consider.
7588   CallInst *CI = dyn_cast<CallInst>(I);
7589   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7590 
7591   // Skip operands that do not require extraction/scalarization and do not incur
7592   // any overhead.
7593   SmallVector<Type *> Tys;
7594   for (auto *V : filterExtractingOperands(Ops, VF))
7595     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7596   return Cost + TTI.getOperandsScalarizationOverhead(
7597                     filterExtractingOperands(Ops, VF), Tys);
7598 }
7599 
7600 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7601   if (VF.isScalar())
7602     return;
7603   NumPredStores = 0;
7604   for (BasicBlock *BB : TheLoop->blocks()) {
7605     // For each instruction in the old loop.
7606     for (Instruction &I : *BB) {
7607       Value *Ptr =  getLoadStorePointerOperand(&I);
7608       if (!Ptr)
7609         continue;
7610 
7611       // TODO: We should generate better code and update the cost model for
7612       // predicated uniform stores. Today they are treated as any other
7613       // predicated store (see added test cases in
7614       // invariant-store-vectorization.ll).
7615       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7616         NumPredStores++;
7617 
7618       if (Legal->isUniformMemOp(I)) {
7619         // TODO: Avoid replicating loads and stores instead of
7620         // relying on instcombine to remove them.
7621         // Load: Scalar load + broadcast
7622         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7623         InstructionCost Cost;
7624         if (isa<StoreInst>(&I) && VF.isScalable() &&
7625             isLegalGatherOrScatter(&I)) {
7626           Cost = getGatherScatterCost(&I, VF);
7627           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7628         } else {
7629           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7630                  "Cannot yet scalarize uniform stores");
7631           Cost = getUniformMemOpCost(&I, VF);
7632           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7633         }
7634         continue;
7635       }
7636 
7637       // We assume that widening is the best solution when possible.
7638       if (memoryInstructionCanBeWidened(&I, VF)) {
7639         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7640         int ConsecutiveStride = Legal->isConsecutivePtr(
7641             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7642         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7643                "Expected consecutive stride.");
7644         InstWidening Decision =
7645             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7646         setWideningDecision(&I, VF, Decision, Cost);
7647         continue;
7648       }
7649 
7650       // Choose between Interleaving, Gather/Scatter or Scalarization.
7651       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7652       unsigned NumAccesses = 1;
7653       if (isAccessInterleaved(&I)) {
7654         auto Group = getInterleavedAccessGroup(&I);
7655         assert(Group && "Fail to get an interleaved access group.");
7656 
7657         // Make one decision for the whole group.
7658         if (getWideningDecision(&I, VF) != CM_Unknown)
7659           continue;
7660 
7661         NumAccesses = Group->getNumMembers();
7662         if (interleavedAccessCanBeWidened(&I, VF))
7663           InterleaveCost = getInterleaveGroupCost(&I, VF);
7664       }
7665 
7666       InstructionCost GatherScatterCost =
7667           isLegalGatherOrScatter(&I)
7668               ? getGatherScatterCost(&I, VF) * NumAccesses
7669               : InstructionCost::getInvalid();
7670 
7671       InstructionCost ScalarizationCost =
7672           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7673 
7674       // Choose better solution for the current VF,
7675       // write down this decision and use it during vectorization.
7676       InstructionCost Cost;
7677       InstWidening Decision;
7678       if (InterleaveCost <= GatherScatterCost &&
7679           InterleaveCost < ScalarizationCost) {
7680         Decision = CM_Interleave;
7681         Cost = InterleaveCost;
7682       } else if (GatherScatterCost < ScalarizationCost) {
7683         Decision = CM_GatherScatter;
7684         Cost = GatherScatterCost;
7685       } else {
7686         Decision = CM_Scalarize;
7687         Cost = ScalarizationCost;
7688       }
7689       // If the instructions belongs to an interleave group, the whole group
7690       // receives the same decision. The whole group receives the cost, but
7691       // the cost will actually be assigned to one instruction.
7692       if (auto Group = getInterleavedAccessGroup(&I))
7693         setWideningDecision(Group, VF, Decision, Cost);
7694       else
7695         setWideningDecision(&I, VF, Decision, Cost);
7696     }
7697   }
7698 
7699   // Make sure that any load of address and any other address computation
7700   // remains scalar unless there is gather/scatter support. This avoids
7701   // inevitable extracts into address registers, and also has the benefit of
7702   // activating LSR more, since that pass can't optimize vectorized
7703   // addresses.
7704   if (TTI.prefersVectorizedAddressing())
7705     return;
7706 
7707   // Start with all scalar pointer uses.
7708   SmallPtrSet<Instruction *, 8> AddrDefs;
7709   for (BasicBlock *BB : TheLoop->blocks())
7710     for (Instruction &I : *BB) {
7711       Instruction *PtrDef =
7712         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7713       if (PtrDef && TheLoop->contains(PtrDef) &&
7714           getWideningDecision(&I, VF) != CM_GatherScatter)
7715         AddrDefs.insert(PtrDef);
7716     }
7717 
7718   // Add all instructions used to generate the addresses.
7719   SmallVector<Instruction *, 4> Worklist;
7720   append_range(Worklist, AddrDefs);
7721   while (!Worklist.empty()) {
7722     Instruction *I = Worklist.pop_back_val();
7723     for (auto &Op : I->operands())
7724       if (auto *InstOp = dyn_cast<Instruction>(Op))
7725         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7726             AddrDefs.insert(InstOp).second)
7727           Worklist.push_back(InstOp);
7728   }
7729 
7730   for (auto *I : AddrDefs) {
7731     if (isa<LoadInst>(I)) {
7732       // Setting the desired widening decision should ideally be handled in
7733       // by cost functions, but since this involves the task of finding out
7734       // if the loaded register is involved in an address computation, it is
7735       // instead changed here when we know this is the case.
7736       InstWidening Decision = getWideningDecision(I, VF);
7737       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7738         // Scalarize a widened load of address.
7739         setWideningDecision(
7740             I, VF, CM_Scalarize,
7741             (VF.getKnownMinValue() *
7742              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7743       else if (auto Group = getInterleavedAccessGroup(I)) {
7744         // Scalarize an interleave group of address loads.
7745         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7746           if (Instruction *Member = Group->getMember(I))
7747             setWideningDecision(
7748                 Member, VF, CM_Scalarize,
7749                 (VF.getKnownMinValue() *
7750                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7751         }
7752       }
7753     } else
7754       // Make sure I gets scalarized and a cost estimate without
7755       // scalarization overhead.
7756       ForcedScalars[VF].insert(I);
7757   }
7758 }
7759 
7760 InstructionCost
7761 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7762                                                Type *&VectorTy) {
7763   Type *RetTy = I->getType();
7764   if (canTruncateToMinimalBitwidth(I, VF))
7765     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7766   auto SE = PSE.getSE();
7767   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7768 
7769   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7770                                                 ElementCount VF) -> bool {
7771     if (VF.isScalar())
7772       return true;
7773 
7774     auto Scalarized = InstsToScalarize.find(VF);
7775     assert(Scalarized != InstsToScalarize.end() &&
7776            "VF not yet analyzed for scalarization profitability");
7777     return !Scalarized->second.count(I) &&
7778            llvm::all_of(I->users(), [&](User *U) {
7779              auto *UI = cast<Instruction>(U);
7780              return !Scalarized->second.count(UI);
7781            });
7782   };
7783   (void) hasSingleCopyAfterVectorization;
7784 
7785   if (isScalarAfterVectorization(I, VF)) {
7786     // With the exception of GEPs and PHIs, after scalarization there should
7787     // only be one copy of the instruction generated in the loop. This is
7788     // because the VF is either 1, or any instructions that need scalarizing
7789     // have already been dealt with by the the time we get here. As a result,
7790     // it means we don't have to multiply the instruction cost by VF.
7791     assert(I->getOpcode() == Instruction::GetElementPtr ||
7792            I->getOpcode() == Instruction::PHI ||
7793            (I->getOpcode() == Instruction::BitCast &&
7794             I->getType()->isPointerTy()) ||
7795            hasSingleCopyAfterVectorization(I, VF));
7796     VectorTy = RetTy;
7797   } else
7798     VectorTy = ToVectorTy(RetTy, VF);
7799 
7800   // TODO: We need to estimate the cost of intrinsic calls.
7801   switch (I->getOpcode()) {
7802   case Instruction::GetElementPtr:
7803     // We mark this instruction as zero-cost because the cost of GEPs in
7804     // vectorized code depends on whether the corresponding memory instruction
7805     // is scalarized or not. Therefore, we handle GEPs with the memory
7806     // instruction cost.
7807     return 0;
7808   case Instruction::Br: {
7809     // In cases of scalarized and predicated instructions, there will be VF
7810     // predicated blocks in the vectorized loop. Each branch around these
7811     // blocks requires also an extract of its vector compare i1 element.
7812     bool ScalarPredicatedBB = false;
7813     BranchInst *BI = cast<BranchInst>(I);
7814     if (VF.isVector() && BI->isConditional() &&
7815         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7816          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7817       ScalarPredicatedBB = true;
7818 
7819     if (ScalarPredicatedBB) {
7820       // Not possible to scalarize scalable vector with predicated instructions.
7821       if (VF.isScalable())
7822         return InstructionCost::getInvalid();
7823       // Return cost for branches around scalarized and predicated blocks.
7824       auto *Vec_i1Ty =
7825           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7826       return (
7827           TTI.getScalarizationOverhead(
7828               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7829           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7830     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7831       // The back-edge branch will remain, as will all scalar branches.
7832       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7833     else
7834       // This branch will be eliminated by if-conversion.
7835       return 0;
7836     // Note: We currently assume zero cost for an unconditional branch inside
7837     // a predicated block since it will become a fall-through, although we
7838     // may decide in the future to call TTI for all branches.
7839   }
7840   case Instruction::PHI: {
7841     auto *Phi = cast<PHINode>(I);
7842 
7843     // First-order recurrences are replaced by vector shuffles inside the loop.
7844     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7845     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7846       return TTI.getShuffleCost(
7847           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7848           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7849 
7850     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7851     // converted into select instructions. We require N - 1 selects per phi
7852     // node, where N is the number of incoming values.
7853     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7854       return (Phi->getNumIncomingValues() - 1) *
7855              TTI.getCmpSelInstrCost(
7856                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7857                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7858                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7859 
7860     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7861   }
7862   case Instruction::UDiv:
7863   case Instruction::SDiv:
7864   case Instruction::URem:
7865   case Instruction::SRem:
7866     // If we have a predicated instruction, it may not be executed for each
7867     // vector lane. Get the scalarization cost and scale this amount by the
7868     // probability of executing the predicated block. If the instruction is not
7869     // predicated, we fall through to the next case.
7870     if (VF.isVector() && isScalarWithPredication(I)) {
7871       InstructionCost Cost = 0;
7872 
7873       // These instructions have a non-void type, so account for the phi nodes
7874       // that we will create. This cost is likely to be zero. The phi node
7875       // cost, if any, should be scaled by the block probability because it
7876       // models a copy at the end of each predicated block.
7877       Cost += VF.getKnownMinValue() *
7878               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7879 
7880       // The cost of the non-predicated instruction.
7881       Cost += VF.getKnownMinValue() *
7882               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7883 
7884       // The cost of insertelement and extractelement instructions needed for
7885       // scalarization.
7886       Cost += getScalarizationOverhead(I, VF);
7887 
7888       // Scale the cost by the probability of executing the predicated blocks.
7889       // This assumes the predicated block for each vector lane is equally
7890       // likely.
7891       return Cost / getReciprocalPredBlockProb();
7892     }
7893     LLVM_FALLTHROUGH;
7894   case Instruction::Add:
7895   case Instruction::FAdd:
7896   case Instruction::Sub:
7897   case Instruction::FSub:
7898   case Instruction::Mul:
7899   case Instruction::FMul:
7900   case Instruction::FDiv:
7901   case Instruction::FRem:
7902   case Instruction::Shl:
7903   case Instruction::LShr:
7904   case Instruction::AShr:
7905   case Instruction::And:
7906   case Instruction::Or:
7907   case Instruction::Xor: {
7908     // Since we will replace the stride by 1 the multiplication should go away.
7909     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7910       return 0;
7911 
7912     // Detect reduction patterns
7913     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7914       return *RedCost;
7915 
7916     // Certain instructions can be cheaper to vectorize if they have a constant
7917     // second vector operand. One example of this are shifts on x86.
7918     Value *Op2 = I->getOperand(1);
7919     TargetTransformInfo::OperandValueProperties Op2VP;
7920     TargetTransformInfo::OperandValueKind Op2VK =
7921         TTI.getOperandInfo(Op2, Op2VP);
7922     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7923       Op2VK = TargetTransformInfo::OK_UniformValue;
7924 
7925     SmallVector<const Value *, 4> Operands(I->operand_values());
7926     return TTI.getArithmeticInstrCost(
7927         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7928         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7929   }
7930   case Instruction::FNeg: {
7931     return TTI.getArithmeticInstrCost(
7932         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7933         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7934         TargetTransformInfo::OP_None, I->getOperand(0), I);
7935   }
7936   case Instruction::Select: {
7937     SelectInst *SI = cast<SelectInst>(I);
7938     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7939     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7940 
7941     const Value *Op0, *Op1;
7942     using namespace llvm::PatternMatch;
7943     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7944                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7945       // select x, y, false --> x & y
7946       // select x, true, y --> x | y
7947       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7948       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7949       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7950       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7951       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7952               Op1->getType()->getScalarSizeInBits() == 1);
7953 
7954       SmallVector<const Value *, 2> Operands{Op0, Op1};
7955       return TTI.getArithmeticInstrCost(
7956           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7957           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7958     }
7959 
7960     Type *CondTy = SI->getCondition()->getType();
7961     if (!ScalarCond)
7962       CondTy = VectorType::get(CondTy, VF);
7963     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7964                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7965   }
7966   case Instruction::ICmp:
7967   case Instruction::FCmp: {
7968     Type *ValTy = I->getOperand(0)->getType();
7969     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7970     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7971       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7972     VectorTy = ToVectorTy(ValTy, VF);
7973     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7974                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7975   }
7976   case Instruction::Store:
7977   case Instruction::Load: {
7978     ElementCount Width = VF;
7979     if (Width.isVector()) {
7980       InstWidening Decision = getWideningDecision(I, Width);
7981       assert(Decision != CM_Unknown &&
7982              "CM decision should be taken at this point");
7983       if (Decision == CM_Scalarize)
7984         Width = ElementCount::getFixed(1);
7985     }
7986     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7987     return getMemoryInstructionCost(I, VF);
7988   }
7989   case Instruction::BitCast:
7990     if (I->getType()->isPointerTy())
7991       return 0;
7992     LLVM_FALLTHROUGH;
7993   case Instruction::ZExt:
7994   case Instruction::SExt:
7995   case Instruction::FPToUI:
7996   case Instruction::FPToSI:
7997   case Instruction::FPExt:
7998   case Instruction::PtrToInt:
7999   case Instruction::IntToPtr:
8000   case Instruction::SIToFP:
8001   case Instruction::UIToFP:
8002   case Instruction::Trunc:
8003   case Instruction::FPTrunc: {
8004     // Computes the CastContextHint from a Load/Store instruction.
8005     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
8006       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8007              "Expected a load or a store!");
8008 
8009       if (VF.isScalar() || !TheLoop->contains(I))
8010         return TTI::CastContextHint::Normal;
8011 
8012       switch (getWideningDecision(I, VF)) {
8013       case LoopVectorizationCostModel::CM_GatherScatter:
8014         return TTI::CastContextHint::GatherScatter;
8015       case LoopVectorizationCostModel::CM_Interleave:
8016         return TTI::CastContextHint::Interleave;
8017       case LoopVectorizationCostModel::CM_Scalarize:
8018       case LoopVectorizationCostModel::CM_Widen:
8019         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
8020                                         : TTI::CastContextHint::Normal;
8021       case LoopVectorizationCostModel::CM_Widen_Reverse:
8022         return TTI::CastContextHint::Reversed;
8023       case LoopVectorizationCostModel::CM_Unknown:
8024         llvm_unreachable("Instr did not go through cost modelling?");
8025       }
8026 
8027       llvm_unreachable("Unhandled case!");
8028     };
8029 
8030     unsigned Opcode = I->getOpcode();
8031     TTI::CastContextHint CCH = TTI::CastContextHint::None;
8032     // For Trunc, the context is the only user, which must be a StoreInst.
8033     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
8034       if (I->hasOneUse())
8035         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
8036           CCH = ComputeCCH(Store);
8037     }
8038     // For Z/Sext, the context is the operand, which must be a LoadInst.
8039     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
8040              Opcode == Instruction::FPExt) {
8041       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
8042         CCH = ComputeCCH(Load);
8043     }
8044 
8045     // We optimize the truncation of induction variables having constant
8046     // integer steps. The cost of these truncations is the same as the scalar
8047     // operation.
8048     if (isOptimizableIVTruncate(I, VF)) {
8049       auto *Trunc = cast<TruncInst>(I);
8050       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
8051                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
8052     }
8053 
8054     // Detect reduction patterns
8055     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
8056       return *RedCost;
8057 
8058     Type *SrcScalarTy = I->getOperand(0)->getType();
8059     Type *SrcVecTy =
8060         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
8061     if (canTruncateToMinimalBitwidth(I, VF)) {
8062       // This cast is going to be shrunk. This may remove the cast or it might
8063       // turn it into slightly different cast. For example, if MinBW == 16,
8064       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
8065       //
8066       // Calculate the modified src and dest types.
8067       Type *MinVecTy = VectorTy;
8068       if (Opcode == Instruction::Trunc) {
8069         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
8070         VectorTy =
8071             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
8072       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
8073         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
8074         VectorTy =
8075             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
8076       }
8077     }
8078 
8079     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
8080   }
8081   case Instruction::Call: {
8082     bool NeedToScalarize;
8083     CallInst *CI = cast<CallInst>(I);
8084     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
8085     if (getVectorIntrinsicIDForCall(CI, TLI)) {
8086       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
8087       return std::min(CallCost, IntrinsicCost);
8088     }
8089     return CallCost;
8090   }
8091   case Instruction::ExtractValue:
8092     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
8093   case Instruction::Alloca:
8094     // We cannot easily widen alloca to a scalable alloca, as
8095     // the result would need to be a vector of pointers.
8096     if (VF.isScalable())
8097       return InstructionCost::getInvalid();
8098     LLVM_FALLTHROUGH;
8099   default:
8100     // This opcode is unknown. Assume that it is the same as 'mul'.
8101     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
8102   } // end of switch.
8103 }
8104 
8105 char LoopVectorize::ID = 0;
8106 
8107 static const char lv_name[] = "Loop Vectorization";
8108 
8109 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
8110 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
8111 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
8112 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
8113 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
8114 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8115 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
8116 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
8117 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
8118 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
8119 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
8120 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
8121 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
8122 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
8123 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
8124 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
8125 
8126 namespace llvm {
8127 
8128 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
8129 
8130 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
8131                               bool VectorizeOnlyWhenForced) {
8132   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
8133 }
8134 
8135 } // end namespace llvm
8136 
8137 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
8138   // Check if the pointer operand of a load or store instruction is
8139   // consecutive.
8140   if (auto *Ptr = getLoadStorePointerOperand(Inst))
8141     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
8142   return false;
8143 }
8144 
8145 void LoopVectorizationCostModel::collectValuesToIgnore() {
8146   // Ignore ephemeral values.
8147   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
8148 
8149   // Ignore type-promoting instructions we identified during reduction
8150   // detection.
8151   for (auto &Reduction : Legal->getReductionVars()) {
8152     RecurrenceDescriptor &RedDes = Reduction.second;
8153     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
8154     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8155   }
8156   // Ignore type-casting instructions we identified during induction
8157   // detection.
8158   for (auto &Induction : Legal->getInductionVars()) {
8159     InductionDescriptor &IndDes = Induction.second;
8160     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8161     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8162   }
8163 }
8164 
8165 void LoopVectorizationCostModel::collectInLoopReductions() {
8166   for (auto &Reduction : Legal->getReductionVars()) {
8167     PHINode *Phi = Reduction.first;
8168     RecurrenceDescriptor &RdxDesc = Reduction.second;
8169 
8170     // We don't collect reductions that are type promoted (yet).
8171     if (RdxDesc.getRecurrenceType() != Phi->getType())
8172       continue;
8173 
8174     // If the target would prefer this reduction to happen "in-loop", then we
8175     // want to record it as such.
8176     unsigned Opcode = RdxDesc.getOpcode();
8177     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8178         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8179                                    TargetTransformInfo::ReductionFlags()))
8180       continue;
8181 
8182     // Check that we can correctly put the reductions into the loop, by
8183     // finding the chain of operations that leads from the phi to the loop
8184     // exit value.
8185     SmallVector<Instruction *, 4> ReductionOperations =
8186         RdxDesc.getReductionOpChain(Phi, TheLoop);
8187     bool InLoop = !ReductionOperations.empty();
8188     if (InLoop) {
8189       InLoopReductionChains[Phi] = ReductionOperations;
8190       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8191       Instruction *LastChain = Phi;
8192       for (auto *I : ReductionOperations) {
8193         InLoopReductionImmediateChains[I] = LastChain;
8194         LastChain = I;
8195       }
8196     }
8197     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8198                       << " reduction for phi: " << *Phi << "\n");
8199   }
8200 }
8201 
8202 // TODO: we could return a pair of values that specify the max VF and
8203 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8204 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8205 // doesn't have a cost model that can choose which plan to execute if
8206 // more than one is generated.
8207 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8208                                  LoopVectorizationCostModel &CM) {
8209   unsigned WidestType;
8210   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8211   return WidestVectorRegBits / WidestType;
8212 }
8213 
8214 VectorizationFactor
8215 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8216   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8217   ElementCount VF = UserVF;
8218   // Outer loop handling: They may require CFG and instruction level
8219   // transformations before even evaluating whether vectorization is profitable.
8220   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8221   // the vectorization pipeline.
8222   if (!OrigLoop->isInnermost()) {
8223     // If the user doesn't provide a vectorization factor, determine a
8224     // reasonable one.
8225     if (UserVF.isZero()) {
8226       VF = ElementCount::getFixed(determineVPlanVF(
8227           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8228               .getFixedSize(),
8229           CM));
8230       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8231 
8232       // Make sure we have a VF > 1 for stress testing.
8233       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8234         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8235                           << "overriding computed VF.\n");
8236         VF = ElementCount::getFixed(4);
8237       }
8238     }
8239     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8240     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8241            "VF needs to be a power of two");
8242     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8243                       << "VF " << VF << " to build VPlans.\n");
8244     buildVPlans(VF, VF);
8245 
8246     // For VPlan build stress testing, we bail out after VPlan construction.
8247     if (VPlanBuildStressTest)
8248       return VectorizationFactor::Disabled();
8249 
8250     return {VF, 0 /*Cost*/};
8251   }
8252 
8253   LLVM_DEBUG(
8254       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8255                 "VPlan-native path.\n");
8256   return VectorizationFactor::Disabled();
8257 }
8258 
8259 Optional<VectorizationFactor>
8260 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8261   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8262   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8263   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8264     return None;
8265 
8266   // Invalidate interleave groups if all blocks of loop will be predicated.
8267   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
8268       !useMaskedInterleavedAccesses(*TTI)) {
8269     LLVM_DEBUG(
8270         dbgs()
8271         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8272            "which requires masked-interleaved support.\n");
8273     if (CM.InterleaveInfo.invalidateGroups())
8274       // Invalidating interleave groups also requires invalidating all decisions
8275       // based on them, which includes widening decisions and uniform and scalar
8276       // values.
8277       CM.invalidateCostModelingDecisions();
8278   }
8279 
8280   ElementCount MaxUserVF =
8281       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8282   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8283   if (!UserVF.isZero() && UserVFIsLegal) {
8284     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8285            "VF needs to be a power of two");
8286     // Collect the instructions (and their associated costs) that will be more
8287     // profitable to scalarize.
8288     if (CM.selectUserVectorizationFactor(UserVF)) {
8289       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8290       CM.collectInLoopReductions();
8291       buildVPlansWithVPRecipes(UserVF, UserVF);
8292       LLVM_DEBUG(printPlans(dbgs()));
8293       return {{UserVF, 0}};
8294     } else
8295       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8296                               "InvalidCost", ORE, OrigLoop);
8297   }
8298 
8299   // Populate the set of Vectorization Factor Candidates.
8300   ElementCountSet VFCandidates;
8301   for (auto VF = ElementCount::getFixed(1);
8302        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8303     VFCandidates.insert(VF);
8304   for (auto VF = ElementCount::getScalable(1);
8305        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8306     VFCandidates.insert(VF);
8307 
8308   for (const auto &VF : VFCandidates) {
8309     // Collect Uniform and Scalar instructions after vectorization with VF.
8310     CM.collectUniformsAndScalars(VF);
8311 
8312     // Collect the instructions (and their associated costs) that will be more
8313     // profitable to scalarize.
8314     if (VF.isVector())
8315       CM.collectInstsToScalarize(VF);
8316   }
8317 
8318   CM.collectInLoopReductions();
8319   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8320   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8321 
8322   LLVM_DEBUG(printPlans(dbgs()));
8323   if (!MaxFactors.hasVector())
8324     return VectorizationFactor::Disabled();
8325 
8326   // Select the optimal vectorization factor.
8327   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8328 
8329   // Check if it is profitable to vectorize with runtime checks.
8330   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8331   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8332     bool PragmaThresholdReached =
8333         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8334     bool ThresholdReached =
8335         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8336     if ((ThresholdReached && !Hints.allowReordering()) ||
8337         PragmaThresholdReached) {
8338       ORE->emit([&]() {
8339         return OptimizationRemarkAnalysisAliasing(
8340                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8341                    OrigLoop->getHeader())
8342                << "loop not vectorized: cannot prove it is safe to reorder "
8343                   "memory operations";
8344       });
8345       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8346       Hints.emitRemarkWithHints();
8347       return VectorizationFactor::Disabled();
8348     }
8349   }
8350   return SelectedVF;
8351 }
8352 
8353 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
8354   assert(count_if(VPlans,
8355                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
8356              1 &&
8357          "Best VF has not a single VPlan.");
8358 
8359   for (const VPlanPtr &Plan : VPlans) {
8360     if (Plan->hasVF(VF))
8361       return *Plan.get();
8362   }
8363   llvm_unreachable("No plan found!");
8364 }
8365 
8366 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
8367                                            VPlan &BestVPlan,
8368                                            InnerLoopVectorizer &ILV,
8369                                            DominatorTree *DT) {
8370   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
8371                     << '\n');
8372 
8373   // Perform the actual loop transformation.
8374 
8375   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8376   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
8377   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8378   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8379   State.CanonicalIV = ILV.Induction;
8380   ILV.collectPoisonGeneratingRecipes(State);
8381 
8382   ILV.printDebugTracesAtStart();
8383 
8384   //===------------------------------------------------===//
8385   //
8386   // Notice: any optimization or new instruction that go
8387   // into the code below should also be implemented in
8388   // the cost-model.
8389   //
8390   //===------------------------------------------------===//
8391 
8392   // 2. Copy and widen instructions from the old loop into the new loop.
8393   BestVPlan.execute(&State);
8394 
8395   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8396   //    predication, updating analyses.
8397   ILV.fixVectorizedLoop(State);
8398 
8399   ILV.printDebugTracesAtEnd();
8400 }
8401 
8402 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8403 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8404   for (const auto &Plan : VPlans)
8405     if (PrintVPlansInDotFormat)
8406       Plan->printDOT(O);
8407     else
8408       Plan->print(O);
8409 }
8410 #endif
8411 
8412 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8413     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8414 
8415   // We create new control-flow for the vectorized loop, so the original exit
8416   // conditions will be dead after vectorization if it's only used by the
8417   // terminator
8418   SmallVector<BasicBlock*> ExitingBlocks;
8419   OrigLoop->getExitingBlocks(ExitingBlocks);
8420   for (auto *BB : ExitingBlocks) {
8421     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8422     if (!Cmp || !Cmp->hasOneUse())
8423       continue;
8424 
8425     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8426     if (!DeadInstructions.insert(Cmp).second)
8427       continue;
8428 
8429     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8430     // TODO: can recurse through operands in general
8431     for (Value *Op : Cmp->operands()) {
8432       if (isa<TruncInst>(Op) && Op->hasOneUse())
8433           DeadInstructions.insert(cast<Instruction>(Op));
8434     }
8435   }
8436 
8437   // We create new "steps" for induction variable updates to which the original
8438   // induction variables map. An original update instruction will be dead if
8439   // all its users except the induction variable are dead.
8440   auto *Latch = OrigLoop->getLoopLatch();
8441   for (auto &Induction : Legal->getInductionVars()) {
8442     PHINode *Ind = Induction.first;
8443     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8444 
8445     // If the tail is to be folded by masking, the primary induction variable,
8446     // if exists, isn't dead: it will be used for masking. Don't kill it.
8447     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8448       continue;
8449 
8450     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8451           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8452         }))
8453       DeadInstructions.insert(IndUpdate);
8454 
8455     // We record as "Dead" also the type-casting instructions we had identified
8456     // during induction analysis. We don't need any handling for them in the
8457     // vectorized loop because we have proven that, under a proper runtime
8458     // test guarding the vectorized loop, the value of the phi, and the casted
8459     // value of the phi, are the same. The last instruction in this casting chain
8460     // will get its scalar/vector/widened def from the scalar/vector/widened def
8461     // of the respective phi node. Any other casts in the induction def-use chain
8462     // have no other uses outside the phi update chain, and will be ignored.
8463     InductionDescriptor &IndDes = Induction.second;
8464     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8465     DeadInstructions.insert(Casts.begin(), Casts.end());
8466   }
8467 }
8468 
8469 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8470 
8471 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8472 
8473 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx,
8474                                         Value *Step,
8475                                         Instruction::BinaryOps BinOp) {
8476   // When unrolling and the VF is 1, we only need to add a simple scalar.
8477   Type *Ty = Val->getType();
8478   assert(!Ty->isVectorTy() && "Val must be a scalar");
8479 
8480   if (Ty->isFloatingPointTy()) {
8481     // Floating-point operations inherit FMF via the builder's flags.
8482     Value *MulOp = Builder.CreateFMul(StartIdx, Step);
8483     return Builder.CreateBinOp(BinOp, Val, MulOp);
8484   }
8485   return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction");
8486 }
8487 
8488 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8489   SmallVector<Metadata *, 4> MDs;
8490   // Reserve first location for self reference to the LoopID metadata node.
8491   MDs.push_back(nullptr);
8492   bool IsUnrollMetadata = false;
8493   MDNode *LoopID = L->getLoopID();
8494   if (LoopID) {
8495     // First find existing loop unrolling disable metadata.
8496     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8497       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8498       if (MD) {
8499         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8500         IsUnrollMetadata =
8501             S && S->getString().startswith("llvm.loop.unroll.disable");
8502       }
8503       MDs.push_back(LoopID->getOperand(i));
8504     }
8505   }
8506 
8507   if (!IsUnrollMetadata) {
8508     // Add runtime unroll disable metadata.
8509     LLVMContext &Context = L->getHeader()->getContext();
8510     SmallVector<Metadata *, 1> DisableOperands;
8511     DisableOperands.push_back(
8512         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8513     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8514     MDs.push_back(DisableNode);
8515     MDNode *NewLoopID = MDNode::get(Context, MDs);
8516     // Set operand 0 to refer to the loop id itself.
8517     NewLoopID->replaceOperandWith(0, NewLoopID);
8518     L->setLoopID(NewLoopID);
8519   }
8520 }
8521 
8522 //===--------------------------------------------------------------------===//
8523 // EpilogueVectorizerMainLoop
8524 //===--------------------------------------------------------------------===//
8525 
8526 /// This function is partially responsible for generating the control flow
8527 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8528 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8529   MDNode *OrigLoopID = OrigLoop->getLoopID();
8530   Loop *Lp = createVectorLoopSkeleton("");
8531 
8532   // Generate the code to check the minimum iteration count of the vector
8533   // epilogue (see below).
8534   EPI.EpilogueIterationCountCheck =
8535       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8536   EPI.EpilogueIterationCountCheck->setName("iter.check");
8537 
8538   // Generate the code to check any assumptions that we've made for SCEV
8539   // expressions.
8540   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8541 
8542   // Generate the code that checks at runtime if arrays overlap. We put the
8543   // checks into a separate block to make the more common case of few elements
8544   // faster.
8545   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8546 
8547   // Generate the iteration count check for the main loop, *after* the check
8548   // for the epilogue loop, so that the path-length is shorter for the case
8549   // that goes directly through the vector epilogue. The longer-path length for
8550   // the main loop is compensated for, by the gain from vectorizing the larger
8551   // trip count. Note: the branch will get updated later on when we vectorize
8552   // the epilogue.
8553   EPI.MainLoopIterationCountCheck =
8554       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8555 
8556   // Generate the induction variable.
8557   OldInduction = Legal->getPrimaryInduction();
8558   Type *IdxTy = Legal->getWidestInductionType();
8559   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8560 
8561   IRBuilder<> B(&*Lp->getLoopPreheader()->getFirstInsertionPt());
8562   Value *Step = getRuntimeVF(B, IdxTy, VF * UF);
8563   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8564   EPI.VectorTripCount = CountRoundDown;
8565   Induction =
8566       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8567                               getDebugLocFromInstOrOperands(OldInduction));
8568 
8569   // Skip induction resume value creation here because they will be created in
8570   // the second pass. If we created them here, they wouldn't be used anyway,
8571   // because the vplan in the second pass still contains the inductions from the
8572   // original loop.
8573 
8574   return completeLoopSkeleton(Lp, OrigLoopID);
8575 }
8576 
8577 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8578   LLVM_DEBUG({
8579     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8580            << "Main Loop VF:" << EPI.MainLoopVF
8581            << ", Main Loop UF:" << EPI.MainLoopUF
8582            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8583            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8584   });
8585 }
8586 
8587 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8588   DEBUG_WITH_TYPE(VerboseDebug, {
8589     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8590   });
8591 }
8592 
8593 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8594     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8595   assert(L && "Expected valid Loop.");
8596   assert(Bypass && "Expected valid bypass basic block.");
8597   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8598   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8599   Value *Count = getOrCreateTripCount(L);
8600   // Reuse existing vector loop preheader for TC checks.
8601   // Note that new preheader block is generated for vector loop.
8602   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8603   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8604 
8605   // Generate code to check if the loop's trip count is less than VF * UF of the
8606   // main vector loop.
8607   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8608       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8609 
8610   Value *CheckMinIters = Builder.CreateICmp(
8611       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8612       "min.iters.check");
8613 
8614   if (!ForEpilogue)
8615     TCCheckBlock->setName("vector.main.loop.iter.check");
8616 
8617   // Create new preheader for vector loop.
8618   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8619                                    DT, LI, nullptr, "vector.ph");
8620 
8621   if (ForEpilogue) {
8622     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8623                                  DT->getNode(Bypass)->getIDom()) &&
8624            "TC check is expected to dominate Bypass");
8625 
8626     // Update dominator for Bypass & LoopExit.
8627     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8628     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8629       // For loops with multiple exits, there's no edge from the middle block
8630       // to exit blocks (as the epilogue must run) and thus no need to update
8631       // the immediate dominator of the exit blocks.
8632       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8633 
8634     LoopBypassBlocks.push_back(TCCheckBlock);
8635 
8636     // Save the trip count so we don't have to regenerate it in the
8637     // vec.epilog.iter.check. This is safe to do because the trip count
8638     // generated here dominates the vector epilog iter check.
8639     EPI.TripCount = Count;
8640   }
8641 
8642   ReplaceInstWithInst(
8643       TCCheckBlock->getTerminator(),
8644       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8645 
8646   return TCCheckBlock;
8647 }
8648 
8649 //===--------------------------------------------------------------------===//
8650 // EpilogueVectorizerEpilogueLoop
8651 //===--------------------------------------------------------------------===//
8652 
8653 /// This function is partially responsible for generating the control flow
8654 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8655 BasicBlock *
8656 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8657   MDNode *OrigLoopID = OrigLoop->getLoopID();
8658   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8659 
8660   // Now, compare the remaining count and if there aren't enough iterations to
8661   // execute the vectorized epilogue skip to the scalar part.
8662   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8663   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8664   LoopVectorPreHeader =
8665       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8666                  LI, nullptr, "vec.epilog.ph");
8667   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8668                                           VecEpilogueIterationCountCheck);
8669 
8670   // Adjust the control flow taking the state info from the main loop
8671   // vectorization into account.
8672   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8673          "expected this to be saved from the previous pass.");
8674   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8675       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8676 
8677   DT->changeImmediateDominator(LoopVectorPreHeader,
8678                                EPI.MainLoopIterationCountCheck);
8679 
8680   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8681       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8682 
8683   if (EPI.SCEVSafetyCheck)
8684     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8685         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8686   if (EPI.MemSafetyCheck)
8687     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8688         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8689 
8690   DT->changeImmediateDominator(
8691       VecEpilogueIterationCountCheck,
8692       VecEpilogueIterationCountCheck->getSinglePredecessor());
8693 
8694   DT->changeImmediateDominator(LoopScalarPreHeader,
8695                                EPI.EpilogueIterationCountCheck);
8696   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8697     // If there is an epilogue which must run, there's no edge from the
8698     // middle block to exit blocks  and thus no need to update the immediate
8699     // dominator of the exit blocks.
8700     DT->changeImmediateDominator(LoopExitBlock,
8701                                  EPI.EpilogueIterationCountCheck);
8702 
8703   // Keep track of bypass blocks, as they feed start values to the induction
8704   // phis in the scalar loop preheader.
8705   if (EPI.SCEVSafetyCheck)
8706     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8707   if (EPI.MemSafetyCheck)
8708     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8709   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8710 
8711   // Generate a resume induction for the vector epilogue and put it in the
8712   // vector epilogue preheader
8713   Type *IdxTy = Legal->getWidestInductionType();
8714   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8715                                          LoopVectorPreHeader->getFirstNonPHI());
8716   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8717   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8718                            EPI.MainLoopIterationCountCheck);
8719 
8720   // Generate the induction variable.
8721   OldInduction = Legal->getPrimaryInduction();
8722   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8723   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8724   Value *StartIdx = EPResumeVal;
8725   Induction =
8726       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8727                               getDebugLocFromInstOrOperands(OldInduction));
8728 
8729   // Generate induction resume values. These variables save the new starting
8730   // indexes for the scalar loop. They are used to test if there are any tail
8731   // iterations left once the vector loop has completed.
8732   // Note that when the vectorized epilogue is skipped due to iteration count
8733   // check, then the resume value for the induction variable comes from
8734   // the trip count of the main vector loop, hence passing the AdditionalBypass
8735   // argument.
8736   createInductionResumeValues(Lp, CountRoundDown,
8737                               {VecEpilogueIterationCountCheck,
8738                                EPI.VectorTripCount} /* AdditionalBypass */);
8739 
8740   AddRuntimeUnrollDisableMetaData(Lp);
8741   return completeLoopSkeleton(Lp, OrigLoopID);
8742 }
8743 
8744 BasicBlock *
8745 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8746     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8747 
8748   assert(EPI.TripCount &&
8749          "Expected trip count to have been safed in the first pass.");
8750   assert(
8751       (!isa<Instruction>(EPI.TripCount) ||
8752        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8753       "saved trip count does not dominate insertion point.");
8754   Value *TC = EPI.TripCount;
8755   IRBuilder<> Builder(Insert->getTerminator());
8756   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8757 
8758   // Generate code to check if the loop's trip count is less than VF * UF of the
8759   // vector epilogue loop.
8760   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8761       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8762 
8763   Value *CheckMinIters =
8764       Builder.CreateICmp(P, Count,
8765                          createStepForVF(Builder, Count->getType(),
8766                                          EPI.EpilogueVF, EPI.EpilogueUF),
8767                          "min.epilog.iters.check");
8768 
8769   ReplaceInstWithInst(
8770       Insert->getTerminator(),
8771       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8772 
8773   LoopBypassBlocks.push_back(Insert);
8774   return Insert;
8775 }
8776 
8777 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8778   LLVM_DEBUG({
8779     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8780            << "Epilogue Loop VF:" << EPI.EpilogueVF
8781            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8782   });
8783 }
8784 
8785 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8786   DEBUG_WITH_TYPE(VerboseDebug, {
8787     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8788   });
8789 }
8790 
8791 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8792     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8793   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8794   bool PredicateAtRangeStart = Predicate(Range.Start);
8795 
8796   for (ElementCount TmpVF = Range.Start * 2;
8797        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8798     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8799       Range.End = TmpVF;
8800       break;
8801     }
8802 
8803   return PredicateAtRangeStart;
8804 }
8805 
8806 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8807 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8808 /// of VF's starting at a given VF and extending it as much as possible. Each
8809 /// vectorization decision can potentially shorten this sub-range during
8810 /// buildVPlan().
8811 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8812                                            ElementCount MaxVF) {
8813   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8814   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8815     VFRange SubRange = {VF, MaxVFPlusOne};
8816     VPlans.push_back(buildVPlan(SubRange));
8817     VF = SubRange.End;
8818   }
8819 }
8820 
8821 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8822                                          VPlanPtr &Plan) {
8823   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8824 
8825   // Look for cached value.
8826   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8827   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8828   if (ECEntryIt != EdgeMaskCache.end())
8829     return ECEntryIt->second;
8830 
8831   VPValue *SrcMask = createBlockInMask(Src, Plan);
8832 
8833   // The terminator has to be a branch inst!
8834   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8835   assert(BI && "Unexpected terminator found");
8836 
8837   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8838     return EdgeMaskCache[Edge] = SrcMask;
8839 
8840   // If source is an exiting block, we know the exit edge is dynamically dead
8841   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8842   // adding uses of an otherwise potentially dead instruction.
8843   if (OrigLoop->isLoopExiting(Src))
8844     return EdgeMaskCache[Edge] = SrcMask;
8845 
8846   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8847   assert(EdgeMask && "No Edge Mask found for condition");
8848 
8849   if (BI->getSuccessor(0) != Dst)
8850     EdgeMask = Builder.createNot(EdgeMask);
8851 
8852   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8853     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8854     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8855     // The select version does not introduce new UB if SrcMask is false and
8856     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8857     VPValue *False = Plan->getOrAddVPValue(
8858         ConstantInt::getFalse(BI->getCondition()->getType()));
8859     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8860   }
8861 
8862   return EdgeMaskCache[Edge] = EdgeMask;
8863 }
8864 
8865 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8866   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8867 
8868   // Look for cached value.
8869   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8870   if (BCEntryIt != BlockMaskCache.end())
8871     return BCEntryIt->second;
8872 
8873   // All-one mask is modelled as no-mask following the convention for masked
8874   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8875   VPValue *BlockMask = nullptr;
8876 
8877   if (OrigLoop->getHeader() == BB) {
8878     if (!CM.blockNeedsPredicationForAnyReason(BB))
8879       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8880 
8881     // Create the block in mask as the first non-phi instruction in the block.
8882     VPBuilder::InsertPointGuard Guard(Builder);
8883     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8884     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8885 
8886     // Introduce the early-exit compare IV <= BTC to form header block mask.
8887     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8888     // Start by constructing the desired canonical IV.
8889     VPValue *IV = nullptr;
8890     if (Legal->getPrimaryInduction())
8891       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8892     else {
8893       auto *IVRecipe = new VPWidenCanonicalIVRecipe();
8894       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8895       IV = IVRecipe;
8896     }
8897     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8898     bool TailFolded = !CM.isScalarEpilogueAllowed();
8899 
8900     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8901       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8902       // as a second argument, we only pass the IV here and extract the
8903       // tripcount from the transform state where codegen of the VP instructions
8904       // happen.
8905       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8906     } else {
8907       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8908     }
8909     return BlockMaskCache[BB] = BlockMask;
8910   }
8911 
8912   // This is the block mask. We OR all incoming edges.
8913   for (auto *Predecessor : predecessors(BB)) {
8914     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8915     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8916       return BlockMaskCache[BB] = EdgeMask;
8917 
8918     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8919       BlockMask = EdgeMask;
8920       continue;
8921     }
8922 
8923     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8924   }
8925 
8926   return BlockMaskCache[BB] = BlockMask;
8927 }
8928 
8929 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8930                                                 ArrayRef<VPValue *> Operands,
8931                                                 VFRange &Range,
8932                                                 VPlanPtr &Plan) {
8933   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8934          "Must be called with either a load or store");
8935 
8936   auto willWiden = [&](ElementCount VF) -> bool {
8937     if (VF.isScalar())
8938       return false;
8939     LoopVectorizationCostModel::InstWidening Decision =
8940         CM.getWideningDecision(I, VF);
8941     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8942            "CM decision should be taken at this point.");
8943     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8944       return true;
8945     if (CM.isScalarAfterVectorization(I, VF) ||
8946         CM.isProfitableToScalarize(I, VF))
8947       return false;
8948     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8949   };
8950 
8951   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8952     return nullptr;
8953 
8954   VPValue *Mask = nullptr;
8955   if (Legal->isMaskRequired(I))
8956     Mask = createBlockInMask(I->getParent(), Plan);
8957 
8958   // Determine if the pointer operand of the access is either consecutive or
8959   // reverse consecutive.
8960   LoopVectorizationCostModel::InstWidening Decision =
8961       CM.getWideningDecision(I, Range.Start);
8962   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8963   bool Consecutive =
8964       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8965 
8966   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8967     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8968                                               Consecutive, Reverse);
8969 
8970   StoreInst *Store = cast<StoreInst>(I);
8971   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8972                                             Mask, Consecutive, Reverse);
8973 }
8974 
8975 VPWidenIntOrFpInductionRecipe *
8976 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8977                                            ArrayRef<VPValue *> Operands) const {
8978   // Check if this is an integer or fp induction. If so, build the recipe that
8979   // produces its scalar and vector values.
8980   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8981   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8982       II.getKind() == InductionDescriptor::IK_FpInduction) {
8983     assert(II.getStartValue() ==
8984            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8985     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8986     return new VPWidenIntOrFpInductionRecipe(
8987         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8988   }
8989 
8990   return nullptr;
8991 }
8992 
8993 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8994     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8995     VPlan &Plan) const {
8996   // Optimize the special case where the source is a constant integer
8997   // induction variable. Notice that we can only optimize the 'trunc' case
8998   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8999   // (c) other casts depend on pointer size.
9000 
9001   // Determine whether \p K is a truncation based on an induction variable that
9002   // can be optimized.
9003   auto isOptimizableIVTruncate =
9004       [&](Instruction *K) -> std::function<bool(ElementCount)> {
9005     return [=](ElementCount VF) -> bool {
9006       return CM.isOptimizableIVTruncate(K, VF);
9007     };
9008   };
9009 
9010   if (LoopVectorizationPlanner::getDecisionAndClampRange(
9011           isOptimizableIVTruncate(I), Range)) {
9012 
9013     InductionDescriptor II =
9014         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
9015     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
9016     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
9017                                              Start, nullptr, I);
9018   }
9019   return nullptr;
9020 }
9021 
9022 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
9023                                                 ArrayRef<VPValue *> Operands,
9024                                                 VPlanPtr &Plan) {
9025   // If all incoming values are equal, the incoming VPValue can be used directly
9026   // instead of creating a new VPBlendRecipe.
9027   VPValue *FirstIncoming = Operands[0];
9028   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
9029         return FirstIncoming == Inc;
9030       })) {
9031     return Operands[0];
9032   }
9033 
9034   // We know that all PHIs in non-header blocks are converted into selects, so
9035   // we don't have to worry about the insertion order and we can just use the
9036   // builder. At this point we generate the predication tree. There may be
9037   // duplications since this is a simple recursive scan, but future
9038   // optimizations will clean it up.
9039   SmallVector<VPValue *, 2> OperandsWithMask;
9040   unsigned NumIncoming = Phi->getNumIncomingValues();
9041 
9042   for (unsigned In = 0; In < NumIncoming; In++) {
9043     VPValue *EdgeMask =
9044       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
9045     assert((EdgeMask || NumIncoming == 1) &&
9046            "Multiple predecessors with one having a full mask");
9047     OperandsWithMask.push_back(Operands[In]);
9048     if (EdgeMask)
9049       OperandsWithMask.push_back(EdgeMask);
9050   }
9051   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
9052 }
9053 
9054 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
9055                                                    ArrayRef<VPValue *> Operands,
9056                                                    VFRange &Range) const {
9057 
9058   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9059       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
9060       Range);
9061 
9062   if (IsPredicated)
9063     return nullptr;
9064 
9065   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
9066   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
9067              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
9068              ID == Intrinsic::pseudoprobe ||
9069              ID == Intrinsic::experimental_noalias_scope_decl))
9070     return nullptr;
9071 
9072   auto willWiden = [&](ElementCount VF) -> bool {
9073     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
9074     // The following case may be scalarized depending on the VF.
9075     // The flag shows whether we use Intrinsic or a usual Call for vectorized
9076     // version of the instruction.
9077     // Is it beneficial to perform intrinsic call compared to lib call?
9078     bool NeedToScalarize = false;
9079     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
9080     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
9081     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
9082     return UseVectorIntrinsic || !NeedToScalarize;
9083   };
9084 
9085   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
9086     return nullptr;
9087 
9088   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
9089   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
9090 }
9091 
9092 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
9093   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
9094          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
9095   // Instruction should be widened, unless it is scalar after vectorization,
9096   // scalarization is profitable or it is predicated.
9097   auto WillScalarize = [this, I](ElementCount VF) -> bool {
9098     return CM.isScalarAfterVectorization(I, VF) ||
9099            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
9100   };
9101   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
9102                                                              Range);
9103 }
9104 
9105 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
9106                                            ArrayRef<VPValue *> Operands) const {
9107   auto IsVectorizableOpcode = [](unsigned Opcode) {
9108     switch (Opcode) {
9109     case Instruction::Add:
9110     case Instruction::And:
9111     case Instruction::AShr:
9112     case Instruction::BitCast:
9113     case Instruction::FAdd:
9114     case Instruction::FCmp:
9115     case Instruction::FDiv:
9116     case Instruction::FMul:
9117     case Instruction::FNeg:
9118     case Instruction::FPExt:
9119     case Instruction::FPToSI:
9120     case Instruction::FPToUI:
9121     case Instruction::FPTrunc:
9122     case Instruction::FRem:
9123     case Instruction::FSub:
9124     case Instruction::ICmp:
9125     case Instruction::IntToPtr:
9126     case Instruction::LShr:
9127     case Instruction::Mul:
9128     case Instruction::Or:
9129     case Instruction::PtrToInt:
9130     case Instruction::SDiv:
9131     case Instruction::Select:
9132     case Instruction::SExt:
9133     case Instruction::Shl:
9134     case Instruction::SIToFP:
9135     case Instruction::SRem:
9136     case Instruction::Sub:
9137     case Instruction::Trunc:
9138     case Instruction::UDiv:
9139     case Instruction::UIToFP:
9140     case Instruction::URem:
9141     case Instruction::Xor:
9142     case Instruction::ZExt:
9143       return true;
9144     }
9145     return false;
9146   };
9147 
9148   if (!IsVectorizableOpcode(I->getOpcode()))
9149     return nullptr;
9150 
9151   // Success: widen this instruction.
9152   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
9153 }
9154 
9155 void VPRecipeBuilder::fixHeaderPhis() {
9156   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
9157   for (VPWidenPHIRecipe *R : PhisToFix) {
9158     auto *PN = cast<PHINode>(R->getUnderlyingValue());
9159     VPRecipeBase *IncR =
9160         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
9161     R->addOperand(IncR->getVPSingleValue());
9162   }
9163 }
9164 
9165 VPBasicBlock *VPRecipeBuilder::handleReplication(
9166     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
9167     VPlanPtr &Plan) {
9168   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
9169       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
9170       Range);
9171 
9172   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9173       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
9174 
9175   // Even if the instruction is not marked as uniform, there are certain
9176   // intrinsic calls that can be effectively treated as such, so we check for
9177   // them here. Conservatively, we only do this for scalable vectors, since
9178   // for fixed-width VFs we can always fall back on full scalarization.
9179   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9180     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9181     case Intrinsic::assume:
9182     case Intrinsic::lifetime_start:
9183     case Intrinsic::lifetime_end:
9184       // For scalable vectors if one of the operands is variant then we still
9185       // want to mark as uniform, which will generate one instruction for just
9186       // the first lane of the vector. We can't scalarize the call in the same
9187       // way as for fixed-width vectors because we don't know how many lanes
9188       // there are.
9189       //
9190       // The reasons for doing it this way for scalable vectors are:
9191       //   1. For the assume intrinsic generating the instruction for the first
9192       //      lane is still be better than not generating any at all. For
9193       //      example, the input may be a splat across all lanes.
9194       //   2. For the lifetime start/end intrinsics the pointer operand only
9195       //      does anything useful when the input comes from a stack object,
9196       //      which suggests it should always be uniform. For non-stack objects
9197       //      the effect is to poison the object, which still allows us to
9198       //      remove the call.
9199       IsUniform = true;
9200       break;
9201     default:
9202       break;
9203     }
9204   }
9205 
9206   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9207                                        IsUniform, IsPredicated);
9208   setRecipe(I, Recipe);
9209   Plan->addVPValue(I, Recipe);
9210 
9211   // Find if I uses a predicated instruction. If so, it will use its scalar
9212   // value. Avoid hoisting the insert-element which packs the scalar value into
9213   // a vector value, as that happens iff all users use the vector value.
9214   for (VPValue *Op : Recipe->operands()) {
9215     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9216     if (!PredR)
9217       continue;
9218     auto *RepR =
9219         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9220     assert(RepR->isPredicated() &&
9221            "expected Replicate recipe to be predicated");
9222     RepR->setAlsoPack(false);
9223   }
9224 
9225   // Finalize the recipe for Instr, first if it is not predicated.
9226   if (!IsPredicated) {
9227     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9228     VPBB->appendRecipe(Recipe);
9229     return VPBB;
9230   }
9231   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9232   assert(VPBB->getSuccessors().empty() &&
9233          "VPBB has successors when handling predicated replication.");
9234   // Record predicated instructions for above packing optimizations.
9235   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9236   VPBlockUtils::insertBlockAfter(Region, VPBB);
9237   auto *RegSucc = new VPBasicBlock();
9238   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9239   return RegSucc;
9240 }
9241 
9242 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9243                                                       VPRecipeBase *PredRecipe,
9244                                                       VPlanPtr &Plan) {
9245   // Instructions marked for predication are replicated and placed under an
9246   // if-then construct to prevent side-effects.
9247 
9248   // Generate recipes to compute the block mask for this region.
9249   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9250 
9251   // Build the triangular if-then region.
9252   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9253   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9254   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9255   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9256   auto *PHIRecipe = Instr->getType()->isVoidTy()
9257                         ? nullptr
9258                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9259   if (PHIRecipe) {
9260     Plan->removeVPValueFor(Instr);
9261     Plan->addVPValue(Instr, PHIRecipe);
9262   }
9263   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9264   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9265   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9266 
9267   // Note: first set Entry as region entry and then connect successors starting
9268   // from it in order, to propagate the "parent" of each VPBasicBlock.
9269   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9270   VPBlockUtils::connectBlocks(Pred, Exit);
9271 
9272   return Region;
9273 }
9274 
9275 VPRecipeOrVPValueTy
9276 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9277                                         ArrayRef<VPValue *> Operands,
9278                                         VFRange &Range, VPlanPtr &Plan) {
9279   // First, check for specific widening recipes that deal with calls, memory
9280   // operations, inductions and Phi nodes.
9281   if (auto *CI = dyn_cast<CallInst>(Instr))
9282     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9283 
9284   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9285     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9286 
9287   VPRecipeBase *Recipe;
9288   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9289     if (Phi->getParent() != OrigLoop->getHeader())
9290       return tryToBlend(Phi, Operands, Plan);
9291     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9292       return toVPRecipeResult(Recipe);
9293 
9294     VPWidenPHIRecipe *PhiRecipe = nullptr;
9295     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9296       VPValue *StartV = Operands[0];
9297       if (Legal->isReductionVariable(Phi)) {
9298         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9299         assert(RdxDesc.getRecurrenceStartValue() ==
9300                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9301         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9302                                              CM.isInLoopReduction(Phi),
9303                                              CM.useOrderedReductions(RdxDesc));
9304       } else {
9305         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9306       }
9307 
9308       // Record the incoming value from the backedge, so we can add the incoming
9309       // value from the backedge after all recipes have been created.
9310       recordRecipeOf(cast<Instruction>(
9311           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9312       PhisToFix.push_back(PhiRecipe);
9313     } else {
9314       // TODO: record start and backedge value for remaining pointer induction
9315       // phis.
9316       assert(Phi->getType()->isPointerTy() &&
9317              "only pointer phis should be handled here");
9318       PhiRecipe = new VPWidenPHIRecipe(Phi);
9319     }
9320 
9321     return toVPRecipeResult(PhiRecipe);
9322   }
9323 
9324   if (isa<TruncInst>(Instr) &&
9325       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9326                                                Range, *Plan)))
9327     return toVPRecipeResult(Recipe);
9328 
9329   if (!shouldWiden(Instr, Range))
9330     return nullptr;
9331 
9332   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9333     return toVPRecipeResult(new VPWidenGEPRecipe(
9334         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9335 
9336   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9337     bool InvariantCond =
9338         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9339     return toVPRecipeResult(new VPWidenSelectRecipe(
9340         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9341   }
9342 
9343   return toVPRecipeResult(tryToWiden(Instr, Operands));
9344 }
9345 
9346 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9347                                                         ElementCount MaxVF) {
9348   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9349 
9350   // Collect instructions from the original loop that will become trivially dead
9351   // in the vectorized loop. We don't need to vectorize these instructions. For
9352   // example, original induction update instructions can become dead because we
9353   // separately emit induction "steps" when generating code for the new loop.
9354   // Similarly, we create a new latch condition when setting up the structure
9355   // of the new loop, so the old one can become dead.
9356   SmallPtrSet<Instruction *, 4> DeadInstructions;
9357   collectTriviallyDeadInstructions(DeadInstructions);
9358 
9359   // Add assume instructions we need to drop to DeadInstructions, to prevent
9360   // them from being added to the VPlan.
9361   // TODO: We only need to drop assumes in blocks that get flattend. If the
9362   // control flow is preserved, we should keep them.
9363   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9364   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9365 
9366   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9367   // Dead instructions do not need sinking. Remove them from SinkAfter.
9368   for (Instruction *I : DeadInstructions)
9369     SinkAfter.erase(I);
9370 
9371   // Cannot sink instructions after dead instructions (there won't be any
9372   // recipes for them). Instead, find the first non-dead previous instruction.
9373   for (auto &P : Legal->getSinkAfter()) {
9374     Instruction *SinkTarget = P.second;
9375     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9376     (void)FirstInst;
9377     while (DeadInstructions.contains(SinkTarget)) {
9378       assert(
9379           SinkTarget != FirstInst &&
9380           "Must find a live instruction (at least the one feeding the "
9381           "first-order recurrence PHI) before reaching beginning of the block");
9382       SinkTarget = SinkTarget->getPrevNode();
9383       assert(SinkTarget != P.first &&
9384              "sink source equals target, no sinking required");
9385     }
9386     P.second = SinkTarget;
9387   }
9388 
9389   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9390   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9391     VFRange SubRange = {VF, MaxVFPlusOne};
9392     VPlans.push_back(
9393         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9394     VF = SubRange.End;
9395   }
9396 }
9397 
9398 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9399     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9400     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9401 
9402   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9403 
9404   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9405 
9406   // ---------------------------------------------------------------------------
9407   // Pre-construction: record ingredients whose recipes we'll need to further
9408   // process after constructing the initial VPlan.
9409   // ---------------------------------------------------------------------------
9410 
9411   // Mark instructions we'll need to sink later and their targets as
9412   // ingredients whose recipe we'll need to record.
9413   for (auto &Entry : SinkAfter) {
9414     RecipeBuilder.recordRecipeOf(Entry.first);
9415     RecipeBuilder.recordRecipeOf(Entry.second);
9416   }
9417   for (auto &Reduction : CM.getInLoopReductionChains()) {
9418     PHINode *Phi = Reduction.first;
9419     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9420     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9421 
9422     RecipeBuilder.recordRecipeOf(Phi);
9423     for (auto &R : ReductionOperations) {
9424       RecipeBuilder.recordRecipeOf(R);
9425       // For min/max reducitons, where we have a pair of icmp/select, we also
9426       // need to record the ICmp recipe, so it can be removed later.
9427       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9428              "Only min/max recurrences allowed for inloop reductions");
9429       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9430         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9431     }
9432   }
9433 
9434   // For each interleave group which is relevant for this (possibly trimmed)
9435   // Range, add it to the set of groups to be later applied to the VPlan and add
9436   // placeholders for its members' Recipes which we'll be replacing with a
9437   // single VPInterleaveRecipe.
9438   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9439     auto applyIG = [IG, this](ElementCount VF) -> bool {
9440       return (VF.isVector() && // Query is illegal for VF == 1
9441               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9442                   LoopVectorizationCostModel::CM_Interleave);
9443     };
9444     if (!getDecisionAndClampRange(applyIG, Range))
9445       continue;
9446     InterleaveGroups.insert(IG);
9447     for (unsigned i = 0; i < IG->getFactor(); i++)
9448       if (Instruction *Member = IG->getMember(i))
9449         RecipeBuilder.recordRecipeOf(Member);
9450   };
9451 
9452   // ---------------------------------------------------------------------------
9453   // Build initial VPlan: Scan the body of the loop in a topological order to
9454   // visit each basic block after having visited its predecessor basic blocks.
9455   // ---------------------------------------------------------------------------
9456 
9457   auto Plan = std::make_unique<VPlan>();
9458 
9459   // Scan the body of the loop in a topological order to visit each basic block
9460   // after having visited its predecessor basic blocks.
9461   LoopBlocksDFS DFS(OrigLoop);
9462   DFS.perform(LI);
9463 
9464   VPBasicBlock *VPBB = nullptr;
9465   VPBasicBlock *HeaderVPBB = nullptr;
9466   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9467   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9468     // Relevant instructions from basic block BB will be grouped into VPRecipe
9469     // ingredients and fill a new VPBasicBlock.
9470     unsigned VPBBsForBB = 0;
9471     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9472     if (VPBB)
9473       VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9474     else {
9475       auto *TopRegion = new VPRegionBlock("vector loop");
9476       TopRegion->setEntry(FirstVPBBForBB);
9477       Plan->setEntry(TopRegion);
9478       HeaderVPBB = FirstVPBBForBB;
9479     }
9480     VPBB = FirstVPBBForBB;
9481     Builder.setInsertPoint(VPBB);
9482 
9483     // Introduce each ingredient into VPlan.
9484     // TODO: Model and preserve debug instrinsics in VPlan.
9485     for (Instruction &I : BB->instructionsWithoutDebug()) {
9486       Instruction *Instr = &I;
9487 
9488       // First filter out irrelevant instructions, to ensure no recipes are
9489       // built for them.
9490       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9491         continue;
9492 
9493       SmallVector<VPValue *, 4> Operands;
9494       auto *Phi = dyn_cast<PHINode>(Instr);
9495       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9496         Operands.push_back(Plan->getOrAddVPValue(
9497             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9498       } else {
9499         auto OpRange = Plan->mapToVPValues(Instr->operands());
9500         Operands = {OpRange.begin(), OpRange.end()};
9501       }
9502       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9503               Instr, Operands, Range, Plan)) {
9504         // If Instr can be simplified to an existing VPValue, use it.
9505         if (RecipeOrValue.is<VPValue *>()) {
9506           auto *VPV = RecipeOrValue.get<VPValue *>();
9507           Plan->addVPValue(Instr, VPV);
9508           // If the re-used value is a recipe, register the recipe for the
9509           // instruction, in case the recipe for Instr needs to be recorded.
9510           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9511             RecipeBuilder.setRecipe(Instr, R);
9512           continue;
9513         }
9514         // Otherwise, add the new recipe.
9515         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9516         for (auto *Def : Recipe->definedValues()) {
9517           auto *UV = Def->getUnderlyingValue();
9518           Plan->addVPValue(UV, Def);
9519         }
9520 
9521         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9522             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9523           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9524           // of the header block. That can happen for truncates of induction
9525           // variables. Those recipes are moved to the phi section of the header
9526           // block after applying SinkAfter, which relies on the original
9527           // position of the trunc.
9528           assert(isa<TruncInst>(Instr));
9529           InductionsToMove.push_back(
9530               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9531         }
9532         RecipeBuilder.setRecipe(Instr, Recipe);
9533         VPBB->appendRecipe(Recipe);
9534         continue;
9535       }
9536 
9537       // Otherwise, if all widening options failed, Instruction is to be
9538       // replicated. This may create a successor for VPBB.
9539       VPBasicBlock *NextVPBB =
9540           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9541       if (NextVPBB != VPBB) {
9542         VPBB = NextVPBB;
9543         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9544                                     : "");
9545       }
9546     }
9547   }
9548 
9549   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9550          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9551          "entry block must be set to a VPRegionBlock having a non-empty entry "
9552          "VPBasicBlock");
9553   cast<VPRegionBlock>(Plan->getEntry())->setExit(VPBB);
9554   RecipeBuilder.fixHeaderPhis();
9555 
9556   // ---------------------------------------------------------------------------
9557   // Transform initial VPlan: Apply previously taken decisions, in order, to
9558   // bring the VPlan to its final state.
9559   // ---------------------------------------------------------------------------
9560 
9561   // Apply Sink-After legal constraints.
9562   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9563     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9564     if (Region && Region->isReplicator()) {
9565       assert(Region->getNumSuccessors() == 1 &&
9566              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9567       assert(R->getParent()->size() == 1 &&
9568              "A recipe in an original replicator region must be the only "
9569              "recipe in its block");
9570       return Region;
9571     }
9572     return nullptr;
9573   };
9574   for (auto &Entry : SinkAfter) {
9575     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9576     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9577 
9578     auto *TargetRegion = GetReplicateRegion(Target);
9579     auto *SinkRegion = GetReplicateRegion(Sink);
9580     if (!SinkRegion) {
9581       // If the sink source is not a replicate region, sink the recipe directly.
9582       if (TargetRegion) {
9583         // The target is in a replication region, make sure to move Sink to
9584         // the block after it, not into the replication region itself.
9585         VPBasicBlock *NextBlock =
9586             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9587         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9588       } else
9589         Sink->moveAfter(Target);
9590       continue;
9591     }
9592 
9593     // The sink source is in a replicate region. Unhook the region from the CFG.
9594     auto *SinkPred = SinkRegion->getSinglePredecessor();
9595     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9596     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9597     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9598     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9599 
9600     if (TargetRegion) {
9601       // The target recipe is also in a replicate region, move the sink region
9602       // after the target region.
9603       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9604       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9605       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9606       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9607     } else {
9608       // The sink source is in a replicate region, we need to move the whole
9609       // replicate region, which should only contain a single recipe in the
9610       // main block.
9611       auto *SplitBlock =
9612           Target->getParent()->splitAt(std::next(Target->getIterator()));
9613 
9614       auto *SplitPred = SplitBlock->getSinglePredecessor();
9615 
9616       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9617       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9618       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9619       if (VPBB == SplitPred)
9620         VPBB = SplitBlock;
9621     }
9622   }
9623 
9624   // Now that sink-after is done, move induction recipes for optimized truncates
9625   // to the phi section of the header block.
9626   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9627     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9628 
9629   // Adjust the recipes for any inloop reductions.
9630   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9631 
9632   // Introduce a recipe to combine the incoming and previous values of a
9633   // first-order recurrence.
9634   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9635     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9636     if (!RecurPhi)
9637       continue;
9638 
9639     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9640     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9641     auto *Region = GetReplicateRegion(PrevRecipe);
9642     if (Region)
9643       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9644     if (Region || PrevRecipe->isPhi())
9645       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9646     else
9647       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9648 
9649     auto *RecurSplice = cast<VPInstruction>(
9650         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9651                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9652 
9653     RecurPhi->replaceAllUsesWith(RecurSplice);
9654     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9655     // all users.
9656     RecurSplice->setOperand(0, RecurPhi);
9657   }
9658 
9659   // Interleave memory: for each Interleave Group we marked earlier as relevant
9660   // for this VPlan, replace the Recipes widening its memory instructions with a
9661   // single VPInterleaveRecipe at its insertion point.
9662   for (auto IG : InterleaveGroups) {
9663     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9664         RecipeBuilder.getRecipe(IG->getInsertPos()));
9665     SmallVector<VPValue *, 4> StoredValues;
9666     for (unsigned i = 0; i < IG->getFactor(); ++i)
9667       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9668         auto *StoreR =
9669             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9670         StoredValues.push_back(StoreR->getStoredValue());
9671       }
9672 
9673     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9674                                         Recipe->getMask());
9675     VPIG->insertBefore(Recipe);
9676     unsigned J = 0;
9677     for (unsigned i = 0; i < IG->getFactor(); ++i)
9678       if (Instruction *Member = IG->getMember(i)) {
9679         if (!Member->getType()->isVoidTy()) {
9680           VPValue *OriginalV = Plan->getVPValue(Member);
9681           Plan->removeVPValueFor(Member);
9682           Plan->addVPValue(Member, VPIG->getVPValue(J));
9683           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9684           J++;
9685         }
9686         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9687       }
9688   }
9689 
9690   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9691   // in ways that accessing values using original IR values is incorrect.
9692   Plan->disableValue2VPValue();
9693 
9694   VPlanTransforms::sinkScalarOperands(*Plan);
9695   VPlanTransforms::mergeReplicateRegions(*Plan);
9696 
9697   std::string PlanName;
9698   raw_string_ostream RSO(PlanName);
9699   ElementCount VF = Range.Start;
9700   Plan->addVF(VF);
9701   RSO << "Initial VPlan for VF={" << VF;
9702   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9703     Plan->addVF(VF);
9704     RSO << "," << VF;
9705   }
9706   RSO << "},UF>=1";
9707   RSO.flush();
9708   Plan->setName(PlanName);
9709 
9710   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9711   return Plan;
9712 }
9713 
9714 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9715   // Outer loop handling: They may require CFG and instruction level
9716   // transformations before even evaluating whether vectorization is profitable.
9717   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9718   // the vectorization pipeline.
9719   assert(!OrigLoop->isInnermost());
9720   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9721 
9722   // Create new empty VPlan
9723   auto Plan = std::make_unique<VPlan>();
9724 
9725   // Build hierarchical CFG
9726   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9727   HCFGBuilder.buildHierarchicalCFG();
9728 
9729   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9730        VF *= 2)
9731     Plan->addVF(VF);
9732 
9733   if (EnableVPlanPredication) {
9734     VPlanPredicator VPP(*Plan);
9735     VPP.predicate();
9736 
9737     // Avoid running transformation to recipes until masked code generation in
9738     // VPlan-native path is in place.
9739     return Plan;
9740   }
9741 
9742   SmallPtrSet<Instruction *, 1> DeadInstructions;
9743   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9744                                              Legal->getInductionVars(),
9745                                              DeadInstructions, *PSE.getSE());
9746   return Plan;
9747 }
9748 
9749 // Adjust the recipes for reductions. For in-loop reductions the chain of
9750 // instructions leading from the loop exit instr to the phi need to be converted
9751 // to reductions, with one operand being vector and the other being the scalar
9752 // reduction chain. For other reductions, a select is introduced between the phi
9753 // and live-out recipes when folding the tail.
9754 void LoopVectorizationPlanner::adjustRecipesForReductions(
9755     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9756     ElementCount MinVF) {
9757   for (auto &Reduction : CM.getInLoopReductionChains()) {
9758     PHINode *Phi = Reduction.first;
9759     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9760     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9761 
9762     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9763       continue;
9764 
9765     // ReductionOperations are orders top-down from the phi's use to the
9766     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9767     // which of the two operands will remain scalar and which will be reduced.
9768     // For minmax the chain will be the select instructions.
9769     Instruction *Chain = Phi;
9770     for (Instruction *R : ReductionOperations) {
9771       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9772       RecurKind Kind = RdxDesc.getRecurrenceKind();
9773 
9774       VPValue *ChainOp = Plan->getVPValue(Chain);
9775       unsigned FirstOpId;
9776       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9777              "Only min/max recurrences allowed for inloop reductions");
9778       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9779         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9780                "Expected to replace a VPWidenSelectSC");
9781         FirstOpId = 1;
9782       } else {
9783         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9784                "Expected to replace a VPWidenSC");
9785         FirstOpId = 0;
9786       }
9787       unsigned VecOpId =
9788           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9789       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9790 
9791       auto *CondOp = CM.foldTailByMasking()
9792                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9793                          : nullptr;
9794       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9795           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9796       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9797       Plan->removeVPValueFor(R);
9798       Plan->addVPValue(R, RedRecipe);
9799       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9800       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9801       WidenRecipe->eraseFromParent();
9802 
9803       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9804         VPRecipeBase *CompareRecipe =
9805             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9806         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9807                "Expected to replace a VPWidenSC");
9808         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9809                "Expected no remaining users");
9810         CompareRecipe->eraseFromParent();
9811       }
9812       Chain = R;
9813     }
9814   }
9815 
9816   // If tail is folded by masking, introduce selects between the phi
9817   // and the live-out instruction of each reduction, at the end of the latch.
9818   if (CM.foldTailByMasking()) {
9819     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9820       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9821       if (!PhiR || PhiR->isInLoop())
9822         continue;
9823       Builder.setInsertPoint(LatchVPBB);
9824       VPValue *Cond =
9825           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9826       VPValue *Red = PhiR->getBackedgeValue();
9827       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9828     }
9829   }
9830 }
9831 
9832 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9833 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9834                                VPSlotTracker &SlotTracker) const {
9835   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9836   IG->getInsertPos()->printAsOperand(O, false);
9837   O << ", ";
9838   getAddr()->printAsOperand(O, SlotTracker);
9839   VPValue *Mask = getMask();
9840   if (Mask) {
9841     O << ", ";
9842     Mask->printAsOperand(O, SlotTracker);
9843   }
9844 
9845   unsigned OpIdx = 0;
9846   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9847     if (!IG->getMember(i))
9848       continue;
9849     if (getNumStoreOperands() > 0) {
9850       O << "\n" << Indent << "  store ";
9851       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9852       O << " to index " << i;
9853     } else {
9854       O << "\n" << Indent << "  ";
9855       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9856       O << " = load from index " << i;
9857     }
9858     ++OpIdx;
9859   }
9860 }
9861 #endif
9862 
9863 void VPWidenCallRecipe::execute(VPTransformState &State) {
9864   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9865                                   *this, State);
9866 }
9867 
9868 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9869   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9870                                     this, *this, InvariantCond, State);
9871 }
9872 
9873 void VPWidenRecipe::execute(VPTransformState &State) {
9874   State.ILV->widenInstruction(*getUnderlyingInstr(), this, State);
9875 }
9876 
9877 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9878   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9879                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9880                       IsIndexLoopInvariant, State);
9881 }
9882 
9883 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9884   assert(!State.Instance && "Int or FP induction being replicated.");
9885   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9886                                    getTruncInst(), getVPValue(0),
9887                                    getCastValue(), State);
9888 }
9889 
9890 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9891   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9892                                  State);
9893 }
9894 
9895 void VPBlendRecipe::execute(VPTransformState &State) {
9896   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9897   // We know that all PHIs in non-header blocks are converted into
9898   // selects, so we don't have to worry about the insertion order and we
9899   // can just use the builder.
9900   // At this point we generate the predication tree. There may be
9901   // duplications since this is a simple recursive scan, but future
9902   // optimizations will clean it up.
9903 
9904   unsigned NumIncoming = getNumIncomingValues();
9905 
9906   // Generate a sequence of selects of the form:
9907   // SELECT(Mask3, In3,
9908   //        SELECT(Mask2, In2,
9909   //               SELECT(Mask1, In1,
9910   //                      In0)))
9911   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9912   // are essentially undef are taken from In0.
9913   InnerLoopVectorizer::VectorParts Entry(State.UF);
9914   for (unsigned In = 0; In < NumIncoming; ++In) {
9915     for (unsigned Part = 0; Part < State.UF; ++Part) {
9916       // We might have single edge PHIs (blocks) - use an identity
9917       // 'select' for the first PHI operand.
9918       Value *In0 = State.get(getIncomingValue(In), Part);
9919       if (In == 0)
9920         Entry[Part] = In0; // Initialize with the first incoming value.
9921       else {
9922         // Select between the current value and the previous incoming edge
9923         // based on the incoming mask.
9924         Value *Cond = State.get(getMask(In), Part);
9925         Entry[Part] =
9926             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9927       }
9928     }
9929   }
9930   for (unsigned Part = 0; Part < State.UF; ++Part)
9931     State.set(this, Entry[Part], Part);
9932 }
9933 
9934 void VPInterleaveRecipe::execute(VPTransformState &State) {
9935   assert(!State.Instance && "Interleave group being replicated.");
9936   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9937                                       getStoredValues(), getMask());
9938 }
9939 
9940 void VPReductionRecipe::execute(VPTransformState &State) {
9941   assert(!State.Instance && "Reduction being replicated.");
9942   Value *PrevInChain = State.get(getChainOp(), 0);
9943   RecurKind Kind = RdxDesc->getRecurrenceKind();
9944   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9945   // Propagate the fast-math flags carried by the underlying instruction.
9946   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9947   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9948   for (unsigned Part = 0; Part < State.UF; ++Part) {
9949     Value *NewVecOp = State.get(getVecOp(), Part);
9950     if (VPValue *Cond = getCondOp()) {
9951       Value *NewCond = State.get(Cond, Part);
9952       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9953       Value *Iden = RdxDesc->getRecurrenceIdentity(
9954           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9955       Value *IdenVec =
9956           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9957       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9958       NewVecOp = Select;
9959     }
9960     Value *NewRed;
9961     Value *NextInChain;
9962     if (IsOrdered) {
9963       if (State.VF.isVector())
9964         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9965                                         PrevInChain);
9966       else
9967         NewRed = State.Builder.CreateBinOp(
9968             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9969             NewVecOp);
9970       PrevInChain = NewRed;
9971     } else {
9972       PrevInChain = State.get(getChainOp(), Part);
9973       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9974     }
9975     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9976       NextInChain =
9977           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9978                          NewRed, PrevInChain);
9979     } else if (IsOrdered)
9980       NextInChain = NewRed;
9981     else
9982       NextInChain = State.Builder.CreateBinOp(
9983           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9984           PrevInChain);
9985     State.set(this, NextInChain, Part);
9986   }
9987 }
9988 
9989 void VPReplicateRecipe::execute(VPTransformState &State) {
9990   if (State.Instance) { // Generate a single instance.
9991     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9992     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9993                                     IsPredicated, State);
9994     // Insert scalar instance packing it into a vector.
9995     if (AlsoPack && State.VF.isVector()) {
9996       // If we're constructing lane 0, initialize to start from poison.
9997       if (State.Instance->Lane.isFirstLane()) {
9998         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9999         Value *Poison = PoisonValue::get(
10000             VectorType::get(getUnderlyingValue()->getType(), State.VF));
10001         State.set(this, Poison, State.Instance->Part);
10002       }
10003       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
10004     }
10005     return;
10006   }
10007 
10008   // Generate scalar instances for all VF lanes of all UF parts, unless the
10009   // instruction is uniform inwhich case generate only the first lane for each
10010   // of the UF parts.
10011   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
10012   assert((!State.VF.isScalable() || IsUniform) &&
10013          "Can't scalarize a scalable vector");
10014   for (unsigned Part = 0; Part < State.UF; ++Part)
10015     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
10016       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
10017                                       VPIteration(Part, Lane), IsPredicated,
10018                                       State);
10019 }
10020 
10021 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
10022   assert(State.Instance && "Branch on Mask works only on single instance.");
10023 
10024   unsigned Part = State.Instance->Part;
10025   unsigned Lane = State.Instance->Lane.getKnownLane();
10026 
10027   Value *ConditionBit = nullptr;
10028   VPValue *BlockInMask = getMask();
10029   if (BlockInMask) {
10030     ConditionBit = State.get(BlockInMask, Part);
10031     if (ConditionBit->getType()->isVectorTy())
10032       ConditionBit = State.Builder.CreateExtractElement(
10033           ConditionBit, State.Builder.getInt32(Lane));
10034   } else // Block in mask is all-one.
10035     ConditionBit = State.Builder.getTrue();
10036 
10037   // Replace the temporary unreachable terminator with a new conditional branch,
10038   // whose two destinations will be set later when they are created.
10039   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
10040   assert(isa<UnreachableInst>(CurrentTerminator) &&
10041          "Expected to replace unreachable terminator with conditional branch.");
10042   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
10043   CondBr->setSuccessor(0, nullptr);
10044   ReplaceInstWithInst(CurrentTerminator, CondBr);
10045 }
10046 
10047 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
10048   assert(State.Instance && "Predicated instruction PHI works per instance.");
10049   Instruction *ScalarPredInst =
10050       cast<Instruction>(State.get(getOperand(0), *State.Instance));
10051   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
10052   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
10053   assert(PredicatingBB && "Predicated block has no single predecessor.");
10054   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
10055          "operand must be VPReplicateRecipe");
10056 
10057   // By current pack/unpack logic we need to generate only a single phi node: if
10058   // a vector value for the predicated instruction exists at this point it means
10059   // the instruction has vector users only, and a phi for the vector value is
10060   // needed. In this case the recipe of the predicated instruction is marked to
10061   // also do that packing, thereby "hoisting" the insert-element sequence.
10062   // Otherwise, a phi node for the scalar value is needed.
10063   unsigned Part = State.Instance->Part;
10064   if (State.hasVectorValue(getOperand(0), Part)) {
10065     Value *VectorValue = State.get(getOperand(0), Part);
10066     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
10067     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
10068     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
10069     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
10070     if (State.hasVectorValue(this, Part))
10071       State.reset(this, VPhi, Part);
10072     else
10073       State.set(this, VPhi, Part);
10074     // NOTE: Currently we need to update the value of the operand, so the next
10075     // predicated iteration inserts its generated value in the correct vector.
10076     State.reset(getOperand(0), VPhi, Part);
10077   } else {
10078     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
10079     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
10080     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
10081                      PredicatingBB);
10082     Phi->addIncoming(ScalarPredInst, PredicatedBB);
10083     if (State.hasScalarValue(this, *State.Instance))
10084       State.reset(this, Phi, *State.Instance);
10085     else
10086       State.set(this, Phi, *State.Instance);
10087     // NOTE: Currently we need to update the value of the operand, so the next
10088     // predicated iteration inserts its generated value in the correct vector.
10089     State.reset(getOperand(0), Phi, *State.Instance);
10090   }
10091 }
10092 
10093 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
10094   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
10095   State.ILV->vectorizeMemoryInstruction(
10096       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
10097       StoredValue, getMask(), Consecutive, Reverse);
10098 }
10099 
10100 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10101 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10102 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10103 // for predication.
10104 static ScalarEpilogueLowering getScalarEpilogueLowering(
10105     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10106     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10107     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10108     LoopVectorizationLegality &LVL) {
10109   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10110   // don't look at hints or options, and don't request a scalar epilogue.
10111   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10112   // LoopAccessInfo (due to code dependency and not being able to reliably get
10113   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10114   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10115   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10116   // back to the old way and vectorize with versioning when forced. See D81345.)
10117   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10118                                                       PGSOQueryType::IRPass) &&
10119                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10120     return CM_ScalarEpilogueNotAllowedOptSize;
10121 
10122   // 2) If set, obey the directives
10123   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10124     switch (PreferPredicateOverEpilogue) {
10125     case PreferPredicateTy::ScalarEpilogue:
10126       return CM_ScalarEpilogueAllowed;
10127     case PreferPredicateTy::PredicateElseScalarEpilogue:
10128       return CM_ScalarEpilogueNotNeededUsePredicate;
10129     case PreferPredicateTy::PredicateOrDontVectorize:
10130       return CM_ScalarEpilogueNotAllowedUsePredicate;
10131     };
10132   }
10133 
10134   // 3) If set, obey the hints
10135   switch (Hints.getPredicate()) {
10136   case LoopVectorizeHints::FK_Enabled:
10137     return CM_ScalarEpilogueNotNeededUsePredicate;
10138   case LoopVectorizeHints::FK_Disabled:
10139     return CM_ScalarEpilogueAllowed;
10140   };
10141 
10142   // 4) if the TTI hook indicates this is profitable, request predication.
10143   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10144                                        LVL.getLAI()))
10145     return CM_ScalarEpilogueNotNeededUsePredicate;
10146 
10147   return CM_ScalarEpilogueAllowed;
10148 }
10149 
10150 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10151   // If Values have been set for this Def return the one relevant for \p Part.
10152   if (hasVectorValue(Def, Part))
10153     return Data.PerPartOutput[Def][Part];
10154 
10155   if (!hasScalarValue(Def, {Part, 0})) {
10156     Value *IRV = Def->getLiveInIRValue();
10157     Value *B = ILV->getBroadcastInstrs(IRV);
10158     set(Def, B, Part);
10159     return B;
10160   }
10161 
10162   Value *ScalarValue = get(Def, {Part, 0});
10163   // If we aren't vectorizing, we can just copy the scalar map values over
10164   // to the vector map.
10165   if (VF.isScalar()) {
10166     set(Def, ScalarValue, Part);
10167     return ScalarValue;
10168   }
10169 
10170   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10171   bool IsUniform = RepR && RepR->isUniform();
10172 
10173   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10174   // Check if there is a scalar value for the selected lane.
10175   if (!hasScalarValue(Def, {Part, LastLane})) {
10176     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10177     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10178            "unexpected recipe found to be invariant");
10179     IsUniform = true;
10180     LastLane = 0;
10181   }
10182 
10183   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10184   // Set the insert point after the last scalarized instruction or after the
10185   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10186   // will directly follow the scalar definitions.
10187   auto OldIP = Builder.saveIP();
10188   auto NewIP =
10189       isa<PHINode>(LastInst)
10190           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10191           : std::next(BasicBlock::iterator(LastInst));
10192   Builder.SetInsertPoint(&*NewIP);
10193 
10194   // However, if we are vectorizing, we need to construct the vector values.
10195   // If the value is known to be uniform after vectorization, we can just
10196   // broadcast the scalar value corresponding to lane zero for each unroll
10197   // iteration. Otherwise, we construct the vector values using
10198   // insertelement instructions. Since the resulting vectors are stored in
10199   // State, we will only generate the insertelements once.
10200   Value *VectorValue = nullptr;
10201   if (IsUniform) {
10202     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10203     set(Def, VectorValue, Part);
10204   } else {
10205     // Initialize packing with insertelements to start from undef.
10206     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10207     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10208     set(Def, Undef, Part);
10209     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10210       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10211     VectorValue = get(Def, Part);
10212   }
10213   Builder.restoreIP(OldIP);
10214   return VectorValue;
10215 }
10216 
10217 // Process the loop in the VPlan-native vectorization path. This path builds
10218 // VPlan upfront in the vectorization pipeline, which allows to apply
10219 // VPlan-to-VPlan transformations from the very beginning without modifying the
10220 // input LLVM IR.
10221 static bool processLoopInVPlanNativePath(
10222     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10223     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10224     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10225     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10226     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10227     LoopVectorizationRequirements &Requirements) {
10228 
10229   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10230     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10231     return false;
10232   }
10233   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10234   Function *F = L->getHeader()->getParent();
10235   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10236 
10237   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10238       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10239 
10240   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10241                                 &Hints, IAI);
10242   // Use the planner for outer loop vectorization.
10243   // TODO: CM is not used at this point inside the planner. Turn CM into an
10244   // optional argument if we don't need it in the future.
10245   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10246                                Requirements, ORE);
10247 
10248   // Get user vectorization factor.
10249   ElementCount UserVF = Hints.getWidth();
10250 
10251   CM.collectElementTypesForWidening();
10252 
10253   // Plan how to best vectorize, return the best VF and its cost.
10254   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10255 
10256   // If we are stress testing VPlan builds, do not attempt to generate vector
10257   // code. Masked vector code generation support will follow soon.
10258   // Also, do not attempt to vectorize if no vector code will be produced.
10259   if (VPlanBuildStressTest || EnableVPlanPredication ||
10260       VectorizationFactor::Disabled() == VF)
10261     return false;
10262 
10263   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10264 
10265   {
10266     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10267                              F->getParent()->getDataLayout());
10268     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10269                            &CM, BFI, PSI, Checks);
10270     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10271                       << L->getHeader()->getParent()->getName() << "\"\n");
10272     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10273   }
10274 
10275   // Mark the loop as already vectorized to avoid vectorizing again.
10276   Hints.setAlreadyVectorized();
10277   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10278   return true;
10279 }
10280 
10281 // Emit a remark if there are stores to floats that required a floating point
10282 // extension. If the vectorized loop was generated with floating point there
10283 // will be a performance penalty from the conversion overhead and the change in
10284 // the vector width.
10285 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10286   SmallVector<Instruction *, 4> Worklist;
10287   for (BasicBlock *BB : L->getBlocks()) {
10288     for (Instruction &Inst : *BB) {
10289       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10290         if (S->getValueOperand()->getType()->isFloatTy())
10291           Worklist.push_back(S);
10292       }
10293     }
10294   }
10295 
10296   // Traverse the floating point stores upwards searching, for floating point
10297   // conversions.
10298   SmallPtrSet<const Instruction *, 4> Visited;
10299   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10300   while (!Worklist.empty()) {
10301     auto *I = Worklist.pop_back_val();
10302     if (!L->contains(I))
10303       continue;
10304     if (!Visited.insert(I).second)
10305       continue;
10306 
10307     // Emit a remark if the floating point store required a floating
10308     // point conversion.
10309     // TODO: More work could be done to identify the root cause such as a
10310     // constant or a function return type and point the user to it.
10311     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10312       ORE->emit([&]() {
10313         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10314                                           I->getDebugLoc(), L->getHeader())
10315                << "floating point conversion changes vector width. "
10316                << "Mixed floating point precision requires an up/down "
10317                << "cast that will negatively impact performance.";
10318       });
10319 
10320     for (Use &Op : I->operands())
10321       if (auto *OpI = dyn_cast<Instruction>(Op))
10322         Worklist.push_back(OpI);
10323   }
10324 }
10325 
10326 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10327     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10328                                !EnableLoopInterleaving),
10329       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10330                               !EnableLoopVectorization) {}
10331 
10332 bool LoopVectorizePass::processLoop(Loop *L) {
10333   assert((EnableVPlanNativePath || L->isInnermost()) &&
10334          "VPlan-native path is not enabled. Only process inner loops.");
10335 
10336 #ifndef NDEBUG
10337   const std::string DebugLocStr = getDebugLocString(L);
10338 #endif /* NDEBUG */
10339 
10340   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10341                     << L->getHeader()->getParent()->getName() << "\" from "
10342                     << DebugLocStr << "\n");
10343 
10344   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10345 
10346   LLVM_DEBUG(
10347       dbgs() << "LV: Loop hints:"
10348              << " force="
10349              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10350                      ? "disabled"
10351                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10352                             ? "enabled"
10353                             : "?"))
10354              << " width=" << Hints.getWidth()
10355              << " interleave=" << Hints.getInterleave() << "\n");
10356 
10357   // Function containing loop
10358   Function *F = L->getHeader()->getParent();
10359 
10360   // Looking at the diagnostic output is the only way to determine if a loop
10361   // was vectorized (other than looking at the IR or machine code), so it
10362   // is important to generate an optimization remark for each loop. Most of
10363   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10364   // generated as OptimizationRemark and OptimizationRemarkMissed are
10365   // less verbose reporting vectorized loops and unvectorized loops that may
10366   // benefit from vectorization, respectively.
10367 
10368   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10369     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10370     return false;
10371   }
10372 
10373   PredicatedScalarEvolution PSE(*SE, *L);
10374 
10375   // Check if it is legal to vectorize the loop.
10376   LoopVectorizationRequirements Requirements;
10377   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10378                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10379   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10380     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10381     Hints.emitRemarkWithHints();
10382     return false;
10383   }
10384 
10385   // Check the function attributes and profiles to find out if this function
10386   // should be optimized for size.
10387   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10388       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10389 
10390   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10391   // here. They may require CFG and instruction level transformations before
10392   // even evaluating whether vectorization is profitable. Since we cannot modify
10393   // the incoming IR, we need to build VPlan upfront in the vectorization
10394   // pipeline.
10395   if (!L->isInnermost())
10396     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10397                                         ORE, BFI, PSI, Hints, Requirements);
10398 
10399   assert(L->isInnermost() && "Inner loop expected.");
10400 
10401   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10402   // count by optimizing for size, to minimize overheads.
10403   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10404   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10405     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10406                       << "This loop is worth vectorizing only if no scalar "
10407                       << "iteration overheads are incurred.");
10408     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10409       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10410     else {
10411       LLVM_DEBUG(dbgs() << "\n");
10412       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10413     }
10414   }
10415 
10416   // Check the function attributes to see if implicit floats are allowed.
10417   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10418   // an integer loop and the vector instructions selected are purely integer
10419   // vector instructions?
10420   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10421     reportVectorizationFailure(
10422         "Can't vectorize when the NoImplicitFloat attribute is used",
10423         "loop not vectorized due to NoImplicitFloat attribute",
10424         "NoImplicitFloat", ORE, L);
10425     Hints.emitRemarkWithHints();
10426     return false;
10427   }
10428 
10429   // Check if the target supports potentially unsafe FP vectorization.
10430   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10431   // for the target we're vectorizing for, to make sure none of the
10432   // additional fp-math flags can help.
10433   if (Hints.isPotentiallyUnsafe() &&
10434       TTI->isFPVectorizationPotentiallyUnsafe()) {
10435     reportVectorizationFailure(
10436         "Potentially unsafe FP op prevents vectorization",
10437         "loop not vectorized due to unsafe FP support.",
10438         "UnsafeFP", ORE, L);
10439     Hints.emitRemarkWithHints();
10440     return false;
10441   }
10442 
10443   bool AllowOrderedReductions;
10444   // If the flag is set, use that instead and override the TTI behaviour.
10445   if (ForceOrderedReductions.getNumOccurrences() > 0)
10446     AllowOrderedReductions = ForceOrderedReductions;
10447   else
10448     AllowOrderedReductions = TTI->enableOrderedReductions();
10449   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10450     ORE->emit([&]() {
10451       auto *ExactFPMathInst = Requirements.getExactFPInst();
10452       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10453                                                  ExactFPMathInst->getDebugLoc(),
10454                                                  ExactFPMathInst->getParent())
10455              << "loop not vectorized: cannot prove it is safe to reorder "
10456                 "floating-point operations";
10457     });
10458     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10459                          "reorder floating-point operations\n");
10460     Hints.emitRemarkWithHints();
10461     return false;
10462   }
10463 
10464   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10465   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10466 
10467   // If an override option has been passed in for interleaved accesses, use it.
10468   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10469     UseInterleaved = EnableInterleavedMemAccesses;
10470 
10471   // Analyze interleaved memory accesses.
10472   if (UseInterleaved) {
10473     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10474   }
10475 
10476   // Use the cost model.
10477   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10478                                 F, &Hints, IAI);
10479   CM.collectValuesToIgnore();
10480   CM.collectElementTypesForWidening();
10481 
10482   // Use the planner for vectorization.
10483   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10484                                Requirements, ORE);
10485 
10486   // Get user vectorization factor and interleave count.
10487   ElementCount UserVF = Hints.getWidth();
10488   unsigned UserIC = Hints.getInterleave();
10489 
10490   // Plan how to best vectorize, return the best VF and its cost.
10491   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10492 
10493   VectorizationFactor VF = VectorizationFactor::Disabled();
10494   unsigned IC = 1;
10495 
10496   if (MaybeVF) {
10497     VF = *MaybeVF;
10498     // Select the interleave count.
10499     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10500   }
10501 
10502   // Identify the diagnostic messages that should be produced.
10503   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10504   bool VectorizeLoop = true, InterleaveLoop = true;
10505   if (VF.Width.isScalar()) {
10506     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10507     VecDiagMsg = std::make_pair(
10508         "VectorizationNotBeneficial",
10509         "the cost-model indicates that vectorization is not beneficial");
10510     VectorizeLoop = false;
10511   }
10512 
10513   if (!MaybeVF && UserIC > 1) {
10514     // Tell the user interleaving was avoided up-front, despite being explicitly
10515     // requested.
10516     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10517                          "interleaving should be avoided up front\n");
10518     IntDiagMsg = std::make_pair(
10519         "InterleavingAvoided",
10520         "Ignoring UserIC, because interleaving was avoided up front");
10521     InterleaveLoop = false;
10522   } else if (IC == 1 && UserIC <= 1) {
10523     // Tell the user interleaving is not beneficial.
10524     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10525     IntDiagMsg = std::make_pair(
10526         "InterleavingNotBeneficial",
10527         "the cost-model indicates that interleaving is not beneficial");
10528     InterleaveLoop = false;
10529     if (UserIC == 1) {
10530       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10531       IntDiagMsg.second +=
10532           " and is explicitly disabled or interleave count is set to 1";
10533     }
10534   } else if (IC > 1 && UserIC == 1) {
10535     // Tell the user interleaving is beneficial, but it explicitly disabled.
10536     LLVM_DEBUG(
10537         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10538     IntDiagMsg = std::make_pair(
10539         "InterleavingBeneficialButDisabled",
10540         "the cost-model indicates that interleaving is beneficial "
10541         "but is explicitly disabled or interleave count is set to 1");
10542     InterleaveLoop = false;
10543   }
10544 
10545   // Override IC if user provided an interleave count.
10546   IC = UserIC > 0 ? UserIC : IC;
10547 
10548   // Emit diagnostic messages, if any.
10549   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10550   if (!VectorizeLoop && !InterleaveLoop) {
10551     // Do not vectorize or interleaving the loop.
10552     ORE->emit([&]() {
10553       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10554                                       L->getStartLoc(), L->getHeader())
10555              << VecDiagMsg.second;
10556     });
10557     ORE->emit([&]() {
10558       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10559                                       L->getStartLoc(), L->getHeader())
10560              << IntDiagMsg.second;
10561     });
10562     return false;
10563   } else if (!VectorizeLoop && InterleaveLoop) {
10564     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10565     ORE->emit([&]() {
10566       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10567                                         L->getStartLoc(), L->getHeader())
10568              << VecDiagMsg.second;
10569     });
10570   } else if (VectorizeLoop && !InterleaveLoop) {
10571     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10572                       << ") in " << DebugLocStr << '\n');
10573     ORE->emit([&]() {
10574       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10575                                         L->getStartLoc(), L->getHeader())
10576              << IntDiagMsg.second;
10577     });
10578   } else if (VectorizeLoop && InterleaveLoop) {
10579     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10580                       << ") in " << DebugLocStr << '\n');
10581     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10582   }
10583 
10584   bool DisableRuntimeUnroll = false;
10585   MDNode *OrigLoopID = L->getLoopID();
10586   {
10587     // Optimistically generate runtime checks. Drop them if they turn out to not
10588     // be profitable. Limit the scope of Checks, so the cleanup happens
10589     // immediately after vector codegeneration is done.
10590     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10591                              F->getParent()->getDataLayout());
10592     if (!VF.Width.isScalar() || IC > 1)
10593       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10594 
10595     using namespace ore;
10596     if (!VectorizeLoop) {
10597       assert(IC > 1 && "interleave count should not be 1 or 0");
10598       // If we decided that it is not legal to vectorize the loop, then
10599       // interleave it.
10600       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10601                                  &CM, BFI, PSI, Checks);
10602 
10603       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10604       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10605 
10606       ORE->emit([&]() {
10607         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10608                                   L->getHeader())
10609                << "interleaved loop (interleaved count: "
10610                << NV("InterleaveCount", IC) << ")";
10611       });
10612     } else {
10613       // If we decided that it is *legal* to vectorize the loop, then do it.
10614 
10615       // Consider vectorizing the epilogue too if it's profitable.
10616       VectorizationFactor EpilogueVF =
10617           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10618       if (EpilogueVF.Width.isVector()) {
10619 
10620         // The first pass vectorizes the main loop and creates a scalar epilogue
10621         // to be vectorized by executing the plan (potentially with a different
10622         // factor) again shortly afterwards.
10623         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10624         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10625                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10626 
10627         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10628         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10629                         DT);
10630         ++LoopsVectorized;
10631 
10632         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10633         formLCSSARecursively(*L, *DT, LI, SE);
10634 
10635         // Second pass vectorizes the epilogue and adjusts the control flow
10636         // edges from the first pass.
10637         EPI.MainLoopVF = EPI.EpilogueVF;
10638         EPI.MainLoopUF = EPI.EpilogueUF;
10639         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10640                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10641                                                  Checks);
10642 
10643         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10644         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10645                         DT);
10646         ++LoopsEpilogueVectorized;
10647 
10648         if (!MainILV.areSafetyChecksAdded())
10649           DisableRuntimeUnroll = true;
10650       } else {
10651         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10652                                &LVL, &CM, BFI, PSI, Checks);
10653 
10654         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10655         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10656         ++LoopsVectorized;
10657 
10658         // Add metadata to disable runtime unrolling a scalar loop when there
10659         // are no runtime checks about strides and memory. A scalar loop that is
10660         // rarely used is not worth unrolling.
10661         if (!LB.areSafetyChecksAdded())
10662           DisableRuntimeUnroll = true;
10663       }
10664       // Report the vectorization decision.
10665       ORE->emit([&]() {
10666         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10667                                   L->getHeader())
10668                << "vectorized loop (vectorization width: "
10669                << NV("VectorizationFactor", VF.Width)
10670                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10671       });
10672     }
10673 
10674     if (ORE->allowExtraAnalysis(LV_NAME))
10675       checkMixedPrecision(L, ORE);
10676   }
10677 
10678   Optional<MDNode *> RemainderLoopID =
10679       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10680                                       LLVMLoopVectorizeFollowupEpilogue});
10681   if (RemainderLoopID.hasValue()) {
10682     L->setLoopID(RemainderLoopID.getValue());
10683   } else {
10684     if (DisableRuntimeUnroll)
10685       AddRuntimeUnrollDisableMetaData(L);
10686 
10687     // Mark the loop as already vectorized to avoid vectorizing again.
10688     Hints.setAlreadyVectorized();
10689   }
10690 
10691   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10692   return true;
10693 }
10694 
10695 LoopVectorizeResult LoopVectorizePass::runImpl(
10696     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10697     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10698     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10699     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10700     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10701   SE = &SE_;
10702   LI = &LI_;
10703   TTI = &TTI_;
10704   DT = &DT_;
10705   BFI = &BFI_;
10706   TLI = TLI_;
10707   AA = &AA_;
10708   AC = &AC_;
10709   GetLAA = &GetLAA_;
10710   DB = &DB_;
10711   ORE = &ORE_;
10712   PSI = PSI_;
10713 
10714   // Don't attempt if
10715   // 1. the target claims to have no vector registers, and
10716   // 2. interleaving won't help ILP.
10717   //
10718   // The second condition is necessary because, even if the target has no
10719   // vector registers, loop vectorization may still enable scalar
10720   // interleaving.
10721   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10722       TTI->getMaxInterleaveFactor(1) < 2)
10723     return LoopVectorizeResult(false, false);
10724 
10725   bool Changed = false, CFGChanged = false;
10726 
10727   // The vectorizer requires loops to be in simplified form.
10728   // Since simplification may add new inner loops, it has to run before the
10729   // legality and profitability checks. This means running the loop vectorizer
10730   // will simplify all loops, regardless of whether anything end up being
10731   // vectorized.
10732   for (auto &L : *LI)
10733     Changed |= CFGChanged |=
10734         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10735 
10736   // Build up a worklist of inner-loops to vectorize. This is necessary as
10737   // the act of vectorizing or partially unrolling a loop creates new loops
10738   // and can invalidate iterators across the loops.
10739   SmallVector<Loop *, 8> Worklist;
10740 
10741   for (Loop *L : *LI)
10742     collectSupportedLoops(*L, LI, ORE, Worklist);
10743 
10744   LoopsAnalyzed += Worklist.size();
10745 
10746   // Now walk the identified inner loops.
10747   while (!Worklist.empty()) {
10748     Loop *L = Worklist.pop_back_val();
10749 
10750     // For the inner loops we actually process, form LCSSA to simplify the
10751     // transform.
10752     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10753 
10754     Changed |= CFGChanged |= processLoop(L);
10755   }
10756 
10757   // Process each loop nest in the function.
10758   return LoopVectorizeResult(Changed, CFGChanged);
10759 }
10760 
10761 PreservedAnalyses LoopVectorizePass::run(Function &F,
10762                                          FunctionAnalysisManager &AM) {
10763     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10764     auto &LI = AM.getResult<LoopAnalysis>(F);
10765     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10766     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10767     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10768     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10769     auto &AA = AM.getResult<AAManager>(F);
10770     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10771     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10772     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10773 
10774     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10775     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10776         [&](Loop &L) -> const LoopAccessInfo & {
10777       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10778                                         TLI, TTI, nullptr, nullptr, nullptr};
10779       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10780     };
10781     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10782     ProfileSummaryInfo *PSI =
10783         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10784     LoopVectorizeResult Result =
10785         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10786     if (!Result.MadeAnyChange)
10787       return PreservedAnalyses::all();
10788     PreservedAnalyses PA;
10789 
10790     // We currently do not preserve loopinfo/dominator analyses with outer loop
10791     // vectorization. Until this is addressed, mark these analyses as preserved
10792     // only for non-VPlan-native path.
10793     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10794     if (!EnableVPlanNativePath) {
10795       PA.preserve<LoopAnalysis>();
10796       PA.preserve<DominatorTreeAnalysis>();
10797     }
10798     if (!Result.MadeCFGChange)
10799       PA.preserveSet<CFGAnalyses>();
10800     return PA;
10801 }
10802 
10803 void LoopVectorizePass::printPipeline(
10804     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10805   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10806       OS, MapClassName2PassName);
10807 
10808   OS << "<";
10809   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10810   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10811   OS << ">";
10812 }
10813