1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/Metadata.h"
116 #include "llvm/IR/Module.h"
117 #include "llvm/IR/Operator.h"
118 #include "llvm/IR/PatternMatch.h"
119 #include "llvm/IR/Type.h"
120 #include "llvm/IR/Use.h"
121 #include "llvm/IR/User.h"
122 #include "llvm/IR/Value.h"
123 #include "llvm/IR/ValueHandle.h"
124 #include "llvm/IR/Verifier.h"
125 #include "llvm/InitializePasses.h"
126 #include "llvm/Pass.h"
127 #include "llvm/Support/Casting.h"
128 #include "llvm/Support/CommandLine.h"
129 #include "llvm/Support/Compiler.h"
130 #include "llvm/Support/Debug.h"
131 #include "llvm/Support/ErrorHandling.h"
132 #include "llvm/Support/InstructionCost.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <functional>
147 #include <iterator>
148 #include <limits>
149 #include <map>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 #ifndef NDEBUG
161 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
162 #endif
163 
164 /// @{
165 /// Metadata attribute names
166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
167 const char LLVMLoopVectorizeFollowupVectorized[] =
168     "llvm.loop.vectorize.followup_vectorized";
169 const char LLVMLoopVectorizeFollowupEpilogue[] =
170     "llvm.loop.vectorize.followup_epilogue";
171 /// @}
172 
173 STATISTIC(LoopsVectorized, "Number of loops vectorized");
174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
176 
177 static cl::opt<bool> EnableEpilogueVectorization(
178     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
179     cl::desc("Enable vectorization of epilogue loops."));
180 
181 static cl::opt<unsigned> EpilogueVectorizationForceVF(
182     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
183     cl::desc("When epilogue vectorization is enabled, and a value greater than "
184              "1 is specified, forces the given VF for all applicable epilogue "
185              "loops."));
186 
187 static cl::opt<unsigned> EpilogueVectorizationMinVF(
188     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
189     cl::desc("Only loops with vectorization factor equal to or larger than "
190              "the specified value are considered for epilogue vectorization."));
191 
192 /// Loops with a known constant trip count below this number are vectorized only
193 /// if no scalar iteration overheads are incurred.
194 static cl::opt<unsigned> TinyTripCountVectorThreshold(
195     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
196     cl::desc("Loops with a constant trip count that is smaller than this "
197              "value are vectorized only if no scalar iteration overheads "
198              "are incurred."));
199 
200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
201     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
202     cl::desc("The maximum allowed number of runtime memory checks with a "
203              "vectorize(enable) pragma."));
204 
205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
206 // that predication is preferred, and this lists all options. I.e., the
207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
208 // and predicate the instructions accordingly. If tail-folding fails, there are
209 // different fallback strategies depending on these values:
210 namespace PreferPredicateTy {
211   enum Option {
212     ScalarEpilogue = 0,
213     PredicateElseScalarEpilogue,
214     PredicateOrDontVectorize
215   };
216 } // namespace PreferPredicateTy
217 
218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
219     "prefer-predicate-over-epilogue",
220     cl::init(PreferPredicateTy::ScalarEpilogue),
221     cl::Hidden,
222     cl::desc("Tail-folding and predication preferences over creating a scalar "
223              "epilogue loop."),
224     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
225                          "scalar-epilogue",
226                          "Don't tail-predicate loops, create scalar epilogue"),
227               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
228                          "predicate-else-scalar-epilogue",
229                          "prefer tail-folding, create scalar epilogue if tail "
230                          "folding fails."),
231               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
232                          "predicate-dont-vectorize",
233                          "prefers tail-folding, don't attempt vectorization if "
234                          "tail-folding fails.")));
235 
236 static cl::opt<bool> MaximizeBandwidth(
237     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
238     cl::desc("Maximize bandwidth when selecting vectorization factor which "
239              "will be determined by the smallest type in loop."));
240 
241 static cl::opt<bool> EnableInterleavedMemAccesses(
242     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
243     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
244 
245 /// An interleave-group may need masking if it resides in a block that needs
246 /// predication, or in order to mask away gaps.
247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
248     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
249     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
250 
251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
252     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
253     cl::desc("We don't interleave loops with a estimated constant trip count "
254              "below this number"));
255 
256 static cl::opt<unsigned> ForceTargetNumScalarRegs(
257     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
258     cl::desc("A flag that overrides the target's number of scalar registers."));
259 
260 static cl::opt<unsigned> ForceTargetNumVectorRegs(
261     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
262     cl::desc("A flag that overrides the target's number of vector registers."));
263 
264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
265     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
266     cl::desc("A flag that overrides the target's max interleave factor for "
267              "scalar loops."));
268 
269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
270     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
271     cl::desc("A flag that overrides the target's max interleave factor for "
272              "vectorized loops."));
273 
274 static cl::opt<unsigned> ForceTargetInstructionCost(
275     "force-target-instruction-cost", cl::init(0), cl::Hidden,
276     cl::desc("A flag that overrides the target's expected cost for "
277              "an instruction to a single constant value. Mostly "
278              "useful for getting consistent testing."));
279 
280 static cl::opt<bool> ForceTargetSupportsScalableVectors(
281     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
282     cl::desc(
283         "Pretend that scalable vectors are supported, even if the target does "
284         "not support them. This flag should only be used for testing."));
285 
286 static cl::opt<unsigned> SmallLoopCost(
287     "small-loop-cost", cl::init(20), cl::Hidden,
288     cl::desc(
289         "The cost of a loop that is considered 'small' by the interleaver."));
290 
291 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
292     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
293     cl::desc("Enable the use of the block frequency analysis to access PGO "
294              "heuristics minimizing code growth in cold regions and being more "
295              "aggressive in hot regions."));
296 
297 // Runtime interleave loops for load/store throughput.
298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
299     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
300     cl::desc(
301         "Enable runtime interleaving until load/store ports are saturated"));
302 
303 /// Interleave small loops with scalar reductions.
304 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
305     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
306     cl::desc("Enable interleaving for loops with small iteration counts that "
307              "contain scalar reductions to expose ILP."));
308 
309 /// The number of stores in a loop that are allowed to need predication.
310 static cl::opt<unsigned> NumberOfStoresToPredicate(
311     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
312     cl::desc("Max number of stores to be predicated behind an if."));
313 
314 static cl::opt<bool> EnableIndVarRegisterHeur(
315     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
316     cl::desc("Count the induction variable only once when interleaving"));
317 
318 static cl::opt<bool> EnableCondStoresVectorization(
319     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
320     cl::desc("Enable if predication of stores during vectorization."));
321 
322 static cl::opt<unsigned> MaxNestedScalarReductionIC(
323     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
324     cl::desc("The maximum interleave count to use when interleaving a scalar "
325              "reduction in a nested loop."));
326 
327 static cl::opt<bool>
328     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
329                            cl::Hidden,
330                            cl::desc("Prefer in-loop vector reductions, "
331                                     "overriding the targets preference."));
332 
333 static cl::opt<bool> ForceOrderedReductions(
334     "force-ordered-reductions", cl::init(false), cl::Hidden,
335     cl::desc("Enable the vectorisation of loops with in-order (strict) "
336              "FP reductions"));
337 
338 static cl::opt<bool> PreferPredicatedReductionSelect(
339     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
340     cl::desc(
341         "Prefer predicating a reduction operation over an after loop select."));
342 
343 cl::opt<bool> EnableVPlanNativePath(
344     "enable-vplan-native-path", cl::init(false), cl::Hidden,
345     cl::desc("Enable VPlan-native vectorization path with "
346              "support for outer loop vectorization."));
347 
348 // FIXME: Remove this switch once we have divergence analysis. Currently we
349 // assume divergent non-backedge branches when this switch is true.
350 cl::opt<bool> EnableVPlanPredication(
351     "enable-vplan-predication", cl::init(false), cl::Hidden,
352     cl::desc("Enable VPlan-native vectorization path predicator with "
353              "support for outer loop vectorization."));
354 
355 // This flag enables the stress testing of the VPlan H-CFG construction in the
356 // VPlan-native vectorization path. It must be used in conjuction with
357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
358 // verification of the H-CFGs built.
359 static cl::opt<bool> VPlanBuildStressTest(
360     "vplan-build-stress-test", cl::init(false), cl::Hidden,
361     cl::desc(
362         "Build VPlan for every supported loop nest in the function and bail "
363         "out right after the build (stress test the VPlan H-CFG construction "
364         "in the VPlan-native vectorization path)."));
365 
366 cl::opt<bool> llvm::EnableLoopInterleaving(
367     "interleave-loops", cl::init(true), cl::Hidden,
368     cl::desc("Enable loop interleaving in Loop vectorization passes"));
369 cl::opt<bool> llvm::EnableLoopVectorization(
370     "vectorize-loops", cl::init(true), cl::Hidden,
371     cl::desc("Run the Loop vectorization passes"));
372 
373 cl::opt<bool> PrintVPlansInDotFormat(
374     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
375     cl::desc("Use dot format instead of plain text when dumping VPlans"));
376 
377 /// A helper function that returns true if the given type is irregular. The
378 /// type is irregular if its allocated size doesn't equal the store size of an
379 /// element of the corresponding vector type.
380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
381   // Determine if an array of N elements of type Ty is "bitcast compatible"
382   // with a <N x Ty> vector.
383   // This is only true if there is no padding between the array elements.
384   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
385 }
386 
387 /// A helper function that returns the reciprocal of the block probability of
388 /// predicated blocks. If we return X, we are assuming the predicated block
389 /// will execute once for every X iterations of the loop header.
390 ///
391 /// TODO: We should use actual block probability here, if available. Currently,
392 ///       we always assume predicated blocks have a 50% chance of executing.
393 static unsigned getReciprocalPredBlockProb() { return 2; }
394 
395 /// A helper function that returns an integer or floating-point constant with
396 /// value C.
397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
398   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
399                            : ConstantFP::get(Ty, C);
400 }
401 
402 /// Returns "best known" trip count for the specified loop \p L as defined by
403 /// the following procedure:
404 ///   1) Returns exact trip count if it is known.
405 ///   2) Returns expected trip count according to profile data if any.
406 ///   3) Returns upper bound estimate if it is known.
407 ///   4) Returns None if all of the above failed.
408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
409   // Check if exact trip count is known.
410   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
411     return ExpectedTC;
412 
413   // Check if there is an expected trip count available from profile data.
414   if (LoopVectorizeWithBlockFrequency)
415     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
416       return EstimatedTC;
417 
418   // Check if upper bound estimate is known.
419   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
420     return ExpectedTC;
421 
422   return None;
423 }
424 
425 // Forward declare GeneratedRTChecks.
426 class GeneratedRTChecks;
427 
428 namespace llvm {
429 
430 AnalysisKey ShouldRunExtraVectorPasses::Key;
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop and the start value for the canonical induction, if it is != 0. The
473   /// latter is the case when vectorizing the epilogue loop. In the case of
474   /// epilogue vectorization, this function is overriden to handle the more
475   /// complex control flow around the loops.
476   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
477 
478   /// Widen a single call instruction within the innermost loop.
479   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
480                             VPTransformState &State);
481 
482   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
483   void fixVectorizedLoop(VPTransformState &State);
484 
485   // Return true if any runtime check is added.
486   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
487 
488   /// A type for vectorized values in the new loop. Each value from the
489   /// original loop, when vectorized, is represented by UF vector values in the
490   /// new unrolled loop, where UF is the unroll factor.
491   using VectorParts = SmallVector<Value *, 2>;
492 
493   /// Vectorize a single vector PHINode in a block in the VPlan-native path
494   /// only.
495   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
496                            VPTransformState &State);
497 
498   /// A helper function to scalarize a single Instruction in the innermost loop.
499   /// Generates a sequence of scalar instances for each lane between \p MinLane
500   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
501   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
502   /// Instr's operands.
503   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
504                             const VPIteration &Instance, bool IfPredicateInstr,
505                             VPTransformState &State);
506 
507   /// Construct the vector value of a scalarized value \p V one lane at a time.
508   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
509                                  VPTransformState &State);
510 
511   /// Try to vectorize interleaved access group \p Group with the base address
512   /// given in \p Addr, optionally masking the vector operations if \p
513   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
514   /// values in the vectorized loop.
515   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
516                                 ArrayRef<VPValue *> VPDefs,
517                                 VPTransformState &State, VPValue *Addr,
518                                 ArrayRef<VPValue *> StoredValues,
519                                 VPValue *BlockInMask = nullptr);
520 
521   /// Set the debug location in the builder \p Ptr using the debug location in
522   /// \p V. If \p Ptr is None then it uses the class member's Builder.
523   void setDebugLocFromInst(const Value *V,
524                            Optional<IRBuilderBase *> CustomBuilder = None);
525 
526   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
527   void fixNonInductionPHIs(VPTransformState &State);
528 
529   /// Returns true if the reordering of FP operations is not allowed, but we are
530   /// able to vectorize with strict in-order reductions for the given RdxDesc.
531   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
532 
533   /// Create a broadcast instruction. This method generates a broadcast
534   /// instruction (shuffle) for loop invariant values and for the induction
535   /// value. If this is the induction variable then we extend it to N, N+1, ...
536   /// this is needed because each iteration in the loop corresponds to a SIMD
537   /// element.
538   virtual Value *getBroadcastInstrs(Value *V);
539 
540   /// Add metadata from one instruction to another.
541   ///
542   /// This includes both the original MDs from \p From and additional ones (\see
543   /// addNewMetadata).  Use this for *newly created* instructions in the vector
544   /// loop.
545   void addMetadata(Instruction *To, Instruction *From);
546 
547   /// Similar to the previous function but it adds the metadata to a
548   /// vector of instructions.
549   void addMetadata(ArrayRef<Value *> To, Instruction *From);
550 
551   // Returns the resume value (bc.merge.rdx) for a reduction as
552   // generated by fixReduction.
553   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
554 
555 protected:
556   friend class LoopVectorizationPlanner;
557 
558   /// A small list of PHINodes.
559   using PhiVector = SmallVector<PHINode *, 4>;
560 
561   /// A type for scalarized values in the new loop. Each value from the
562   /// original loop, when scalarized, is represented by UF x VF scalar values
563   /// in the new unrolled loop, where UF is the unroll factor and VF is the
564   /// vectorization factor.
565   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
566 
567   /// Set up the values of the IVs correctly when exiting the vector loop.
568   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
569                     Value *CountRoundDown, Value *EndValue,
570                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader);
571 
572   /// Handle all cross-iteration phis in the header.
573   void fixCrossIterationPHIs(VPTransformState &State);
574 
575   /// Create the exit value of first order recurrences in the middle block and
576   /// update their users.
577   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
578                                VPTransformState &State);
579 
580   /// Create code for the loop exit value of the reduction.
581   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
582 
583   /// Clear NSW/NUW flags from reduction instructions if necessary.
584   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
585                                VPTransformState &State);
586 
587   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
588   /// means we need to add the appropriate incoming value from the middle
589   /// block as exiting edges from the scalar epilogue loop (if present) are
590   /// already in place, and we exit the vector loop exclusively to the middle
591   /// block.
592   void fixLCSSAPHIs(VPTransformState &State);
593 
594   /// Iteratively sink the scalarized operands of a predicated instruction into
595   /// the block that was created for it.
596   void sinkScalarOperands(Instruction *PredInst);
597 
598   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
599   /// represented as.
600   void truncateToMinimalBitwidths(VPTransformState &State);
601 
602   /// Returns (and creates if needed) the original loop trip count.
603   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
604 
605   /// Returns (and creates if needed) the trip count of the widened loop.
606   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
607 
608   /// Returns a bitcasted value to the requested vector type.
609   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
610   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
611                                 const DataLayout &DL);
612 
613   /// Emit a bypass check to see if the vector trip count is zero, including if
614   /// it overflows.
615   void emitMinimumIterationCountCheck(BasicBlock *Bypass);
616 
617   /// Emit a bypass check to see if all of the SCEV assumptions we've
618   /// had to make are correct. Returns the block containing the checks or
619   /// nullptr if no checks have been added.
620   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
621 
622   /// Emit bypass checks to check any memory assumptions we may have made.
623   /// Returns the block containing the checks or nullptr if no checks have been
624   /// added.
625   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
626 
627   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
628   /// vector loop preheader, middle block and scalar preheader.
629   void createVectorLoopSkeleton(StringRef Prefix);
630 
631   /// Create new phi nodes for the induction variables to resume iteration count
632   /// in the scalar epilogue, from where the vectorized loop left off.
633   /// In cases where the loop skeleton is more complicated (eg. epilogue
634   /// vectorization) and the resume values can come from an additional bypass
635   /// block, the \p AdditionalBypass pair provides information about the bypass
636   /// block and the end value on the edge from bypass to this loop.
637   void createInductionResumeValues(
638       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
639 
640   /// Complete the loop skeleton by adding debug MDs, creating appropriate
641   /// conditional branches in the middle block, preparing the builder and
642   /// running the verifier. Return the preheader of the completed vector loop.
643   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
644 
645   /// Add additional metadata to \p To that was not present on \p Orig.
646   ///
647   /// Currently this is used to add the noalias annotations based on the
648   /// inserted memchecks.  Use this for instructions that are *cloned* into the
649   /// vector loop.
650   void addNewMetadata(Instruction *To, const Instruction *Orig);
651 
652   /// Collect poison-generating recipes that may generate a poison value that is
653   /// used after vectorization, even when their operands are not poison. Those
654   /// recipes meet the following conditions:
655   ///  * Contribute to the address computation of a recipe generating a widen
656   ///    memory load/store (VPWidenMemoryInstructionRecipe or
657   ///    VPInterleaveRecipe).
658   ///  * Such a widen memory load/store has at least one underlying Instruction
659   ///    that is in a basic block that needs predication and after vectorization
660   ///    the generated instruction won't be predicated.
661   void collectPoisonGeneratingRecipes(VPTransformState &State);
662 
663   /// Allow subclasses to override and print debug traces before/after vplan
664   /// execution, when trace information is requested.
665   virtual void printDebugTracesAtStart(){};
666   virtual void printDebugTracesAtEnd(){};
667 
668   /// The original loop.
669   Loop *OrigLoop;
670 
671   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
672   /// dynamic knowledge to simplify SCEV expressions and converts them to a
673   /// more usable form.
674   PredicatedScalarEvolution &PSE;
675 
676   /// Loop Info.
677   LoopInfo *LI;
678 
679   /// Dominator Tree.
680   DominatorTree *DT;
681 
682   /// Alias Analysis.
683   AAResults *AA;
684 
685   /// Target Library Info.
686   const TargetLibraryInfo *TLI;
687 
688   /// Target Transform Info.
689   const TargetTransformInfo *TTI;
690 
691   /// Assumption Cache.
692   AssumptionCache *AC;
693 
694   /// Interface to emit optimization remarks.
695   OptimizationRemarkEmitter *ORE;
696 
697   /// LoopVersioning.  It's only set up (non-null) if memchecks were
698   /// used.
699   ///
700   /// This is currently only used to add no-alias metadata based on the
701   /// memchecks.  The actually versioning is performed manually.
702   std::unique_ptr<LoopVersioning> LVer;
703 
704   /// The vectorization SIMD factor to use. Each vector will have this many
705   /// vector elements.
706   ElementCount VF;
707 
708   /// The vectorization unroll factor to use. Each scalar is vectorized to this
709   /// many different vector instructions.
710   unsigned UF;
711 
712   /// The builder that we use
713   IRBuilder<> Builder;
714 
715   // --- Vectorization state ---
716 
717   /// The vector-loop preheader.
718   BasicBlock *LoopVectorPreHeader;
719 
720   /// The scalar-loop preheader.
721   BasicBlock *LoopScalarPreHeader;
722 
723   /// Middle Block between the vector and the scalar.
724   BasicBlock *LoopMiddleBlock;
725 
726   /// The unique ExitBlock of the scalar loop if one exists.  Note that
727   /// there can be multiple exiting edges reaching this block.
728   BasicBlock *LoopExitBlock;
729 
730   /// The scalar loop body.
731   BasicBlock *LoopScalarBody;
732 
733   /// A list of all bypass blocks. The first block is the entry of the loop.
734   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
735 
736   /// Store instructions that were predicated.
737   SmallVector<Instruction *, 4> PredicatedInstructions;
738 
739   /// Trip count of the original loop.
740   Value *TripCount = nullptr;
741 
742   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
743   Value *VectorTripCount = nullptr;
744 
745   /// The legality analysis.
746   LoopVectorizationLegality *Legal;
747 
748   /// The profitablity analysis.
749   LoopVectorizationCostModel *Cost;
750 
751   // Record whether runtime checks are added.
752   bool AddedSafetyChecks = false;
753 
754   // Holds the end values for each induction variable. We save the end values
755   // so we can later fix-up the external users of the induction variables.
756   DenseMap<PHINode *, Value *> IVEndValues;
757 
758   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
759   // fixed up at the end of vector code generation.
760   SmallVector<PHINode *, 8> OrigPHIsToFix;
761 
762   /// BFI and PSI are used to check for profile guided size optimizations.
763   BlockFrequencyInfo *BFI;
764   ProfileSummaryInfo *PSI;
765 
766   // Whether this loop should be optimized for size based on profile guided size
767   // optimizatios.
768   bool OptForSizeBasedOnProfile;
769 
770   /// Structure to hold information about generated runtime checks, responsible
771   /// for cleaning the checks, if vectorization turns out unprofitable.
772   GeneratedRTChecks &RTChecks;
773 
774   // Holds the resume values for reductions in the loops, used to set the
775   // correct start value of reduction PHIs when vectorizing the epilogue.
776   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
777       ReductionResumeValues;
778 };
779 
780 class InnerLoopUnroller : public InnerLoopVectorizer {
781 public:
782   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
783                     LoopInfo *LI, DominatorTree *DT,
784                     const TargetLibraryInfo *TLI,
785                     const TargetTransformInfo *TTI, AssumptionCache *AC,
786                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
787                     LoopVectorizationLegality *LVL,
788                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
789                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
790       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
791                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
792                             BFI, PSI, Check) {}
793 
794 private:
795   Value *getBroadcastInstrs(Value *V) override;
796 };
797 
798 /// Encapsulate information regarding vectorization of a loop and its epilogue.
799 /// This information is meant to be updated and used across two stages of
800 /// epilogue vectorization.
801 struct EpilogueLoopVectorizationInfo {
802   ElementCount MainLoopVF = ElementCount::getFixed(0);
803   unsigned MainLoopUF = 0;
804   ElementCount EpilogueVF = ElementCount::getFixed(0);
805   unsigned EpilogueUF = 0;
806   BasicBlock *MainLoopIterationCountCheck = nullptr;
807   BasicBlock *EpilogueIterationCountCheck = nullptr;
808   BasicBlock *SCEVSafetyCheck = nullptr;
809   BasicBlock *MemSafetyCheck = nullptr;
810   Value *TripCount = nullptr;
811   Value *VectorTripCount = nullptr;
812 
813   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
814                                 ElementCount EVF, unsigned EUF)
815       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
816     assert(EUF == 1 &&
817            "A high UF for the epilogue loop is likely not beneficial.");
818   }
819 };
820 
821 /// An extension of the inner loop vectorizer that creates a skeleton for a
822 /// vectorized loop that has its epilogue (residual) also vectorized.
823 /// The idea is to run the vplan on a given loop twice, firstly to setup the
824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
825 /// from the first step and vectorize the epilogue.  This is achieved by
826 /// deriving two concrete strategy classes from this base class and invoking
827 /// them in succession from the loop vectorizer planner.
828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
829 public:
830   InnerLoopAndEpilogueVectorizer(
831       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
832       DominatorTree *DT, const TargetLibraryInfo *TLI,
833       const TargetTransformInfo *TTI, AssumptionCache *AC,
834       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
835       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
836       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
837       GeneratedRTChecks &Checks)
838       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
839                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
840                             Checks),
841         EPI(EPI) {}
842 
843   // Override this function to handle the more complex control flow around the
844   // three loops.
845   std::pair<BasicBlock *, Value *>
846   createVectorizedLoopSkeleton() final override {
847     return createEpilogueVectorizedLoopSkeleton();
848   }
849 
850   /// The interface for creating a vectorized skeleton using one of two
851   /// different strategies, each corresponding to one execution of the vplan
852   /// as described above.
853   virtual std::pair<BasicBlock *, Value *>
854   createEpilogueVectorizedLoopSkeleton() = 0;
855 
856   /// Holds and updates state information required to vectorize the main loop
857   /// and its epilogue in two separate passes. This setup helps us avoid
858   /// regenerating and recomputing runtime safety checks. It also helps us to
859   /// shorten the iteration-count-check path length for the cases where the
860   /// iteration count of the loop is so small that the main vector loop is
861   /// completely skipped.
862   EpilogueLoopVectorizationInfo &EPI;
863 };
864 
865 /// A specialized derived class of inner loop vectorizer that performs
866 /// vectorization of *main* loops in the process of vectorizing loops and their
867 /// epilogues.
868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
869 public:
870   EpilogueVectorizerMainLoop(
871       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
872       DominatorTree *DT, const TargetLibraryInfo *TLI,
873       const TargetTransformInfo *TTI, AssumptionCache *AC,
874       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
875       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
876       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
877       GeneratedRTChecks &Check)
878       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
879                                        EPI, LVL, CM, BFI, PSI, Check) {}
880   /// Implements the interface for creating a vectorized skeleton using the
881   /// *main loop* strategy (ie the first pass of vplan execution).
882   std::pair<BasicBlock *, Value *>
883   createEpilogueVectorizedLoopSkeleton() final override;
884 
885 protected:
886   /// Emits an iteration count bypass check once for the main loop (when \p
887   /// ForEpilogue is false) and once for the epilogue loop (when \p
888   /// ForEpilogue is true).
889   BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass,
890                                              bool ForEpilogue);
891   void printDebugTracesAtStart() override;
892   void printDebugTracesAtEnd() override;
893 };
894 
895 // A specialized derived class of inner loop vectorizer that performs
896 // vectorization of *epilogue* loops in the process of vectorizing loops and
897 // their epilogues.
898 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
899 public:
900   EpilogueVectorizerEpilogueLoop(
901       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
902       DominatorTree *DT, const TargetLibraryInfo *TLI,
903       const TargetTransformInfo *TTI, AssumptionCache *AC,
904       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
905       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
906       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
907       GeneratedRTChecks &Checks)
908       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
909                                        EPI, LVL, CM, BFI, PSI, Checks) {
910     TripCount = EPI.TripCount;
911   }
912   /// Implements the interface for creating a vectorized skeleton using the
913   /// *epilogue loop* strategy (ie the second pass of vplan execution).
914   std::pair<BasicBlock *, Value *>
915   createEpilogueVectorizedLoopSkeleton() final override;
916 
917 protected:
918   /// Emits an iteration count bypass check after the main vector loop has
919   /// finished to see if there are any iterations left to execute by either
920   /// the vector epilogue or the scalar epilogue.
921   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
922                                                       BasicBlock *Bypass,
923                                                       BasicBlock *Insert);
924   void printDebugTracesAtStart() override;
925   void printDebugTracesAtEnd() override;
926 };
927 } // end namespace llvm
928 
929 /// Look for a meaningful debug location on the instruction or it's
930 /// operands.
931 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
932   if (!I)
933     return I;
934 
935   DebugLoc Empty;
936   if (I->getDebugLoc() != Empty)
937     return I;
938 
939   for (Use &Op : I->operands()) {
940     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
941       if (OpInst->getDebugLoc() != Empty)
942         return OpInst;
943   }
944 
945   return I;
946 }
947 
948 void InnerLoopVectorizer::setDebugLocFromInst(
949     const Value *V, Optional<IRBuilderBase *> CustomBuilder) {
950   IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
951   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
952     const DILocation *DIL = Inst->getDebugLoc();
953 
954     // When a FSDiscriminator is enabled, we don't need to add the multiply
955     // factors to the discriminators.
956     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
957         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
958       // FIXME: For scalable vectors, assume vscale=1.
959       auto NewDIL =
960           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
961       if (NewDIL)
962         B->SetCurrentDebugLocation(NewDIL.getValue());
963       else
964         LLVM_DEBUG(dbgs()
965                    << "Failed to create new discriminator: "
966                    << DIL->getFilename() << " Line: " << DIL->getLine());
967     } else
968       B->SetCurrentDebugLocation(DIL);
969   } else
970     B->SetCurrentDebugLocation(DebugLoc());
971 }
972 
973 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
974 /// is passed, the message relates to that particular instruction.
975 #ifndef NDEBUG
976 static void debugVectorizationMessage(const StringRef Prefix,
977                                       const StringRef DebugMsg,
978                                       Instruction *I) {
979   dbgs() << "LV: " << Prefix << DebugMsg;
980   if (I != nullptr)
981     dbgs() << " " << *I;
982   else
983     dbgs() << '.';
984   dbgs() << '\n';
985 }
986 #endif
987 
988 /// Create an analysis remark that explains why vectorization failed
989 ///
990 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
991 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
992 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
993 /// the location of the remark.  \return the remark object that can be
994 /// streamed to.
995 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
996     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
997   Value *CodeRegion = TheLoop->getHeader();
998   DebugLoc DL = TheLoop->getStartLoc();
999 
1000   if (I) {
1001     CodeRegion = I->getParent();
1002     // If there is no debug location attached to the instruction, revert back to
1003     // using the loop's.
1004     if (I->getDebugLoc())
1005       DL = I->getDebugLoc();
1006   }
1007 
1008   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1009 }
1010 
1011 namespace llvm {
1012 
1013 /// Return a value for Step multiplied by VF.
1014 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
1015                        int64_t Step) {
1016   assert(Ty->isIntegerTy() && "Expected an integer step");
1017   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1018   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1019 }
1020 
1021 /// Return the runtime value for VF.
1022 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
1023   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1024   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1025 }
1026 
1027 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1028                                   ElementCount VF) {
1029   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1030   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1031   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1032   return B.CreateUIToFP(RuntimeVF, FTy);
1033 }
1034 
1035 void reportVectorizationFailure(const StringRef DebugMsg,
1036                                 const StringRef OREMsg, const StringRef ORETag,
1037                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1038                                 Instruction *I) {
1039   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1040   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1041   ORE->emit(
1042       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1043       << "loop not vectorized: " << OREMsg);
1044 }
1045 
1046 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1047                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1048                              Instruction *I) {
1049   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1050   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1051   ORE->emit(
1052       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1053       << Msg);
1054 }
1055 
1056 } // end namespace llvm
1057 
1058 #ifndef NDEBUG
1059 /// \return string containing a file name and a line # for the given loop.
1060 static std::string getDebugLocString(const Loop *L) {
1061   std::string Result;
1062   if (L) {
1063     raw_string_ostream OS(Result);
1064     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1065       LoopDbgLoc.print(OS);
1066     else
1067       // Just print the module name.
1068       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1069     OS.flush();
1070   }
1071   return Result;
1072 }
1073 #endif
1074 
1075 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1076                                          const Instruction *Orig) {
1077   // If the loop was versioned with memchecks, add the corresponding no-alias
1078   // metadata.
1079   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1080     LVer->annotateInstWithNoAlias(To, Orig);
1081 }
1082 
1083 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1084     VPTransformState &State) {
1085 
1086   // Collect recipes in the backward slice of `Root` that may generate a poison
1087   // value that is used after vectorization.
1088   SmallPtrSet<VPRecipeBase *, 16> Visited;
1089   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1090     SmallVector<VPRecipeBase *, 16> Worklist;
1091     Worklist.push_back(Root);
1092 
1093     // Traverse the backward slice of Root through its use-def chain.
1094     while (!Worklist.empty()) {
1095       VPRecipeBase *CurRec = Worklist.back();
1096       Worklist.pop_back();
1097 
1098       if (!Visited.insert(CurRec).second)
1099         continue;
1100 
1101       // Prune search if we find another recipe generating a widen memory
1102       // instruction. Widen memory instructions involved in address computation
1103       // will lead to gather/scatter instructions, which don't need to be
1104       // handled.
1105       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1106           isa<VPInterleaveRecipe>(CurRec) ||
1107           isa<VPScalarIVStepsRecipe>(CurRec) ||
1108           isa<VPCanonicalIVPHIRecipe>(CurRec))
1109         continue;
1110 
1111       // This recipe contributes to the address computation of a widen
1112       // load/store. Collect recipe if its underlying instruction has
1113       // poison-generating flags.
1114       Instruction *Instr = CurRec->getUnderlyingInstr();
1115       if (Instr && Instr->hasPoisonGeneratingFlags())
1116         State.MayGeneratePoisonRecipes.insert(CurRec);
1117 
1118       // Add new definitions to the worklist.
1119       for (VPValue *operand : CurRec->operands())
1120         if (VPDef *OpDef = operand->getDef())
1121           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1122     }
1123   });
1124 
1125   // Traverse all the recipes in the VPlan and collect the poison-generating
1126   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1127   // VPInterleaveRecipe.
1128   auto Iter = depth_first(
1129       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1130   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1131     for (VPRecipeBase &Recipe : *VPBB) {
1132       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1133         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1134         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1135         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1136             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1137           collectPoisonGeneratingInstrsInBackwardSlice(
1138               cast<VPRecipeBase>(AddrDef));
1139       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1140         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1141         if (AddrDef) {
1142           // Check if any member of the interleave group needs predication.
1143           const InterleaveGroup<Instruction> *InterGroup =
1144               InterleaveRec->getInterleaveGroup();
1145           bool NeedPredication = false;
1146           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1147                I < NumMembers; ++I) {
1148             Instruction *Member = InterGroup->getMember(I);
1149             if (Member)
1150               NeedPredication |=
1151                   Legal->blockNeedsPredication(Member->getParent());
1152           }
1153 
1154           if (NeedPredication)
1155             collectPoisonGeneratingInstrsInBackwardSlice(
1156                 cast<VPRecipeBase>(AddrDef));
1157         }
1158       }
1159     }
1160   }
1161 }
1162 
1163 void InnerLoopVectorizer::addMetadata(Instruction *To,
1164                                       Instruction *From) {
1165   propagateMetadata(To, From);
1166   addNewMetadata(To, From);
1167 }
1168 
1169 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1170                                       Instruction *From) {
1171   for (Value *V : To) {
1172     if (Instruction *I = dyn_cast<Instruction>(V))
1173       addMetadata(I, From);
1174   }
1175 }
1176 
1177 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1178     const RecurrenceDescriptor &RdxDesc) {
1179   auto It = ReductionResumeValues.find(&RdxDesc);
1180   assert(It != ReductionResumeValues.end() &&
1181          "Expected to find a resume value for the reduction.");
1182   return It->second;
1183 }
1184 
1185 namespace llvm {
1186 
1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1188 // lowered.
1189 enum ScalarEpilogueLowering {
1190 
1191   // The default: allowing scalar epilogues.
1192   CM_ScalarEpilogueAllowed,
1193 
1194   // Vectorization with OptForSize: don't allow epilogues.
1195   CM_ScalarEpilogueNotAllowedOptSize,
1196 
1197   // A special case of vectorisation with OptForSize: loops with a very small
1198   // trip count are considered for vectorization under OptForSize, thereby
1199   // making sure the cost of their loop body is dominant, free of runtime
1200   // guards and scalar iteration overheads.
1201   CM_ScalarEpilogueNotAllowedLowTripLoop,
1202 
1203   // Loop hint predicate indicating an epilogue is undesired.
1204   CM_ScalarEpilogueNotNeededUsePredicate,
1205 
1206   // Directive indicating we must either tail fold or not vectorize
1207   CM_ScalarEpilogueNotAllowedUsePredicate
1208 };
1209 
1210 /// ElementCountComparator creates a total ordering for ElementCount
1211 /// for the purposes of using it in a set structure.
1212 struct ElementCountComparator {
1213   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1214     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1215            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1216   }
1217 };
1218 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1219 
1220 /// LoopVectorizationCostModel - estimates the expected speedups due to
1221 /// vectorization.
1222 /// In many cases vectorization is not profitable. This can happen because of
1223 /// a number of reasons. In this class we mainly attempt to predict the
1224 /// expected speedup/slowdowns due to the supported instruction set. We use the
1225 /// TargetTransformInfo to query the different backends for the cost of
1226 /// different operations.
1227 class LoopVectorizationCostModel {
1228 public:
1229   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1230                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1231                              LoopVectorizationLegality *Legal,
1232                              const TargetTransformInfo &TTI,
1233                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1234                              AssumptionCache *AC,
1235                              OptimizationRemarkEmitter *ORE, const Function *F,
1236                              const LoopVectorizeHints *Hints,
1237                              InterleavedAccessInfo &IAI)
1238       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1239         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1240         Hints(Hints), InterleaveInfo(IAI) {}
1241 
1242   /// \return An upper bound for the vectorization factors (both fixed and
1243   /// scalable). If the factors are 0, vectorization and interleaving should be
1244   /// avoided up front.
1245   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1246 
1247   /// \return True if runtime checks are required for vectorization, and false
1248   /// otherwise.
1249   bool runtimeChecksRequired();
1250 
1251   /// \return The most profitable vectorization factor and the cost of that VF.
1252   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1253   /// then this vectorization factor will be selected if vectorization is
1254   /// possible.
1255   VectorizationFactor
1256   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1257 
1258   VectorizationFactor
1259   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1260                                     const LoopVectorizationPlanner &LVP);
1261 
1262   /// Setup cost-based decisions for user vectorization factor.
1263   /// \return true if the UserVF is a feasible VF to be chosen.
1264   bool selectUserVectorizationFactor(ElementCount UserVF) {
1265     collectUniformsAndScalars(UserVF);
1266     collectInstsToScalarize(UserVF);
1267     return expectedCost(UserVF).first.isValid();
1268   }
1269 
1270   /// \return The size (in bits) of the smallest and widest types in the code
1271   /// that needs to be vectorized. We ignore values that remain scalar such as
1272   /// 64 bit loop indices.
1273   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1274 
1275   /// \return The desired interleave count.
1276   /// If interleave count has been specified by metadata it will be returned.
1277   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1278   /// are the selected vectorization factor and the cost of the selected VF.
1279   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1280 
1281   /// Memory access instruction may be vectorized in more than one way.
1282   /// Form of instruction after vectorization depends on cost.
1283   /// This function takes cost-based decisions for Load/Store instructions
1284   /// and collects them in a map. This decisions map is used for building
1285   /// the lists of loop-uniform and loop-scalar instructions.
1286   /// The calculated cost is saved with widening decision in order to
1287   /// avoid redundant calculations.
1288   void setCostBasedWideningDecision(ElementCount VF);
1289 
1290   /// A struct that represents some properties of the register usage
1291   /// of a loop.
1292   struct RegisterUsage {
1293     /// Holds the number of loop invariant values that are used in the loop.
1294     /// The key is ClassID of target-provided register class.
1295     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1296     /// Holds the maximum number of concurrent live intervals in the loop.
1297     /// The key is ClassID of target-provided register class.
1298     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1299   };
1300 
1301   /// \return Returns information about the register usages of the loop for the
1302   /// given vectorization factors.
1303   SmallVector<RegisterUsage, 8>
1304   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1305 
1306   /// Collect values we want to ignore in the cost model.
1307   void collectValuesToIgnore();
1308 
1309   /// Collect all element types in the loop for which widening is needed.
1310   void collectElementTypesForWidening();
1311 
1312   /// Split reductions into those that happen in the loop, and those that happen
1313   /// outside. In loop reductions are collected into InLoopReductionChains.
1314   void collectInLoopReductions();
1315 
1316   /// Returns true if we should use strict in-order reductions for the given
1317   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1318   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1319   /// of FP operations.
1320   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1321     return !Hints->allowReordering() && RdxDesc.isOrdered();
1322   }
1323 
1324   /// \returns The smallest bitwidth each instruction can be represented with.
1325   /// The vector equivalents of these instructions should be truncated to this
1326   /// type.
1327   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1328     return MinBWs;
1329   }
1330 
1331   /// \returns True if it is more profitable to scalarize instruction \p I for
1332   /// vectorization factor \p VF.
1333   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1334     assert(VF.isVector() &&
1335            "Profitable to scalarize relevant only for VF > 1.");
1336 
1337     // Cost model is not run in the VPlan-native path - return conservative
1338     // result until this changes.
1339     if (EnableVPlanNativePath)
1340       return false;
1341 
1342     auto Scalars = InstsToScalarize.find(VF);
1343     assert(Scalars != InstsToScalarize.end() &&
1344            "VF not yet analyzed for scalarization profitability");
1345     return Scalars->second.find(I) != Scalars->second.end();
1346   }
1347 
1348   /// Returns true if \p I is known to be uniform after vectorization.
1349   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1350     if (VF.isScalar())
1351       return true;
1352 
1353     // Cost model is not run in the VPlan-native path - return conservative
1354     // result until this changes.
1355     if (EnableVPlanNativePath)
1356       return false;
1357 
1358     auto UniformsPerVF = Uniforms.find(VF);
1359     assert(UniformsPerVF != Uniforms.end() &&
1360            "VF not yet analyzed for uniformity");
1361     return UniformsPerVF->second.count(I);
1362   }
1363 
1364   /// Returns true if \p I is known to be scalar after vectorization.
1365   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1366     if (VF.isScalar())
1367       return true;
1368 
1369     // Cost model is not run in the VPlan-native path - return conservative
1370     // result until this changes.
1371     if (EnableVPlanNativePath)
1372       return false;
1373 
1374     auto ScalarsPerVF = Scalars.find(VF);
1375     assert(ScalarsPerVF != Scalars.end() &&
1376            "Scalar values are not calculated for VF");
1377     return ScalarsPerVF->second.count(I);
1378   }
1379 
1380   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1381   /// for vectorization factor \p VF.
1382   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1383     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1384            !isProfitableToScalarize(I, VF) &&
1385            !isScalarAfterVectorization(I, VF);
1386   }
1387 
1388   /// Decision that was taken during cost calculation for memory instruction.
1389   enum InstWidening {
1390     CM_Unknown,
1391     CM_Widen,         // For consecutive accesses with stride +1.
1392     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1393     CM_Interleave,
1394     CM_GatherScatter,
1395     CM_Scalarize
1396   };
1397 
1398   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1399   /// instruction \p I and vector width \p VF.
1400   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1401                            InstructionCost Cost) {
1402     assert(VF.isVector() && "Expected VF >=2");
1403     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1404   }
1405 
1406   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1407   /// interleaving group \p Grp and vector width \p VF.
1408   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1409                            ElementCount VF, InstWidening W,
1410                            InstructionCost Cost) {
1411     assert(VF.isVector() && "Expected VF >=2");
1412     /// Broadcast this decicion to all instructions inside the group.
1413     /// But the cost will be assigned to one instruction only.
1414     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1415       if (auto *I = Grp->getMember(i)) {
1416         if (Grp->getInsertPos() == I)
1417           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1418         else
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1420       }
1421     }
1422   }
1423 
1424   /// Return the cost model decision for the given instruction \p I and vector
1425   /// width \p VF. Return CM_Unknown if this instruction did not pass
1426   /// through the cost modeling.
1427   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1428     assert(VF.isVector() && "Expected VF to be a vector VF");
1429     // Cost model is not run in the VPlan-native path - return conservative
1430     // result until this changes.
1431     if (EnableVPlanNativePath)
1432       return CM_GatherScatter;
1433 
1434     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1435     auto Itr = WideningDecisions.find(InstOnVF);
1436     if (Itr == WideningDecisions.end())
1437       return CM_Unknown;
1438     return Itr->second.first;
1439   }
1440 
1441   /// Return the vectorization cost for the given instruction \p I and vector
1442   /// width \p VF.
1443   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1444     assert(VF.isVector() && "Expected VF >=2");
1445     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1446     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1447            "The cost is not calculated");
1448     return WideningDecisions[InstOnVF].second;
1449   }
1450 
1451   /// Return True if instruction \p I is an optimizable truncate whose operand
1452   /// is an induction variable. Such a truncate will be removed by adding a new
1453   /// induction variable with the destination type.
1454   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1455     // If the instruction is not a truncate, return false.
1456     auto *Trunc = dyn_cast<TruncInst>(I);
1457     if (!Trunc)
1458       return false;
1459 
1460     // Get the source and destination types of the truncate.
1461     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1462     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1463 
1464     // If the truncate is free for the given types, return false. Replacing a
1465     // free truncate with an induction variable would add an induction variable
1466     // update instruction to each iteration of the loop. We exclude from this
1467     // check the primary induction variable since it will need an update
1468     // instruction regardless.
1469     Value *Op = Trunc->getOperand(0);
1470     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1471       return false;
1472 
1473     // If the truncated value is not an induction variable, return false.
1474     return Legal->isInductionPhi(Op);
1475   }
1476 
1477   /// Collects the instructions to scalarize for each predicated instruction in
1478   /// the loop.
1479   void collectInstsToScalarize(ElementCount VF);
1480 
1481   /// Collect Uniform and Scalar values for the given \p VF.
1482   /// The sets depend on CM decision for Load/Store instructions
1483   /// that may be vectorized as interleave, gather-scatter or scalarized.
1484   void collectUniformsAndScalars(ElementCount VF) {
1485     // Do the analysis once.
1486     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1487       return;
1488     setCostBasedWideningDecision(VF);
1489     collectLoopUniforms(VF);
1490     collectLoopScalars(VF);
1491   }
1492 
1493   /// Returns true if the target machine supports masked store operation
1494   /// for the given \p DataType and kind of access to \p Ptr.
1495   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1496     return Legal->isConsecutivePtr(DataType, Ptr) &&
1497            TTI.isLegalMaskedStore(DataType, Alignment);
1498   }
1499 
1500   /// Returns true if the target machine supports masked load operation
1501   /// for the given \p DataType and kind of access to \p Ptr.
1502   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1503     return Legal->isConsecutivePtr(DataType, Ptr) &&
1504            TTI.isLegalMaskedLoad(DataType, Alignment);
1505   }
1506 
1507   /// Returns true if the target machine can represent \p V as a masked gather
1508   /// or scatter operation.
1509   bool isLegalGatherOrScatter(Value *V,
1510                               ElementCount VF = ElementCount::getFixed(1)) {
1511     bool LI = isa<LoadInst>(V);
1512     bool SI = isa<StoreInst>(V);
1513     if (!LI && !SI)
1514       return false;
1515     auto *Ty = getLoadStoreType(V);
1516     Align Align = getLoadStoreAlignment(V);
1517     if (VF.isVector())
1518       Ty = VectorType::get(Ty, VF);
1519     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1520            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1521   }
1522 
1523   /// Returns true if the target machine supports all of the reduction
1524   /// variables found for the given VF.
1525   bool canVectorizeReductions(ElementCount VF) const {
1526     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1527       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1528       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1529     }));
1530   }
1531 
1532   /// Returns true if \p I is an instruction that will be scalarized with
1533   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1534   /// instructions include conditional stores and instructions that may divide
1535   /// by zero.
1536   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1537 
1538   // Returns true if \p I is an instruction that will be predicated either
1539   // through scalar predication or masked load/store or masked gather/scatter.
1540   // \p VF is the vectorization factor that will be used to vectorize \p I.
1541   // Superset of instructions that return true for isScalarWithPredication.
1542   bool isPredicatedInst(Instruction *I, ElementCount VF,
1543                         bool IsKnownUniform = false) {
1544     // When we know the load is uniform and the original scalar loop was not
1545     // predicated we don't need to mark it as a predicated instruction. Any
1546     // vectorised blocks created when tail-folding are something artificial we
1547     // have introduced and we know there is always at least one active lane.
1548     // That's why we call Legal->blockNeedsPredication here because it doesn't
1549     // query tail-folding.
1550     if (IsKnownUniform && isa<LoadInst>(I) &&
1551         !Legal->blockNeedsPredication(I->getParent()))
1552       return false;
1553     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1554       return false;
1555     // Loads and stores that need some form of masked operation are predicated
1556     // instructions.
1557     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1558       return Legal->isMaskRequired(I);
1559     return isScalarWithPredication(I, VF);
1560   }
1561 
1562   /// Returns true if \p I is a memory instruction with consecutive memory
1563   /// access that can be widened.
1564   bool
1565   memoryInstructionCanBeWidened(Instruction *I,
1566                                 ElementCount VF = ElementCount::getFixed(1));
1567 
1568   /// Returns true if \p I is a memory instruction in an interleaved-group
1569   /// of memory accesses that can be vectorized with wide vector loads/stores
1570   /// and shuffles.
1571   bool
1572   interleavedAccessCanBeWidened(Instruction *I,
1573                                 ElementCount VF = ElementCount::getFixed(1));
1574 
1575   /// Check if \p Instr belongs to any interleaved access group.
1576   bool isAccessInterleaved(Instruction *Instr) {
1577     return InterleaveInfo.isInterleaved(Instr);
1578   }
1579 
1580   /// Get the interleaved access group that \p Instr belongs to.
1581   const InterleaveGroup<Instruction> *
1582   getInterleavedAccessGroup(Instruction *Instr) {
1583     return InterleaveInfo.getInterleaveGroup(Instr);
1584   }
1585 
1586   /// Returns true if we're required to use a scalar epilogue for at least
1587   /// the final iteration of the original loop.
1588   bool requiresScalarEpilogue(ElementCount VF) const {
1589     if (!isScalarEpilogueAllowed())
1590       return false;
1591     // If we might exit from anywhere but the latch, must run the exiting
1592     // iteration in scalar form.
1593     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1594       return true;
1595     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1596   }
1597 
1598   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1599   /// loop hint annotation.
1600   bool isScalarEpilogueAllowed() const {
1601     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1602   }
1603 
1604   /// Returns true if all loop blocks should be masked to fold tail loop.
1605   bool foldTailByMasking() const { return FoldTailByMasking; }
1606 
1607   /// Returns true if the instructions in this block requires predication
1608   /// for any reason, e.g. because tail folding now requires a predicate
1609   /// or because the block in the original loop was predicated.
1610   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1611     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1612   }
1613 
1614   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1615   /// nodes to the chain of instructions representing the reductions. Uses a
1616   /// MapVector to ensure deterministic iteration order.
1617   using ReductionChainMap =
1618       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1619 
1620   /// Return the chain of instructions representing an inloop reduction.
1621   const ReductionChainMap &getInLoopReductionChains() const {
1622     return InLoopReductionChains;
1623   }
1624 
1625   /// Returns true if the Phi is part of an inloop reduction.
1626   bool isInLoopReduction(PHINode *Phi) const {
1627     return InLoopReductionChains.count(Phi);
1628   }
1629 
1630   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1631   /// with factor VF.  Return the cost of the instruction, including
1632   /// scalarization overhead if it's needed.
1633   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1634 
1635   /// Estimate cost of a call instruction CI if it were vectorized with factor
1636   /// VF. Return the cost of the instruction, including scalarization overhead
1637   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1638   /// scalarized -
1639   /// i.e. either vector version isn't available, or is too expensive.
1640   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1641                                     bool &NeedToScalarize) const;
1642 
1643   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1644   /// that of B.
1645   bool isMoreProfitable(const VectorizationFactor &A,
1646                         const VectorizationFactor &B) const;
1647 
1648   /// Invalidates decisions already taken by the cost model.
1649   void invalidateCostModelingDecisions() {
1650     WideningDecisions.clear();
1651     Uniforms.clear();
1652     Scalars.clear();
1653   }
1654 
1655 private:
1656   unsigned NumPredStores = 0;
1657 
1658   /// Convenience function that returns the value of vscale_range iff
1659   /// vscale_range.min == vscale_range.max or otherwise returns the value
1660   /// returned by the corresponding TLI method.
1661   Optional<unsigned> getVScaleForTuning() const;
1662 
1663   /// \return An upper bound for the vectorization factors for both
1664   /// fixed and scalable vectorization, where the minimum-known number of
1665   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1666   /// disabled or unsupported, then the scalable part will be equal to
1667   /// ElementCount::getScalable(0).
1668   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1669                                            ElementCount UserVF,
1670                                            bool FoldTailByMasking);
1671 
1672   /// \return the maximized element count based on the targets vector
1673   /// registers and the loop trip-count, but limited to a maximum safe VF.
1674   /// This is a helper function of computeFeasibleMaxVF.
1675   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1676   /// issue that occurred on one of the buildbots which cannot be reproduced
1677   /// without having access to the properietary compiler (see comments on
1678   /// D98509). The issue is currently under investigation and this workaround
1679   /// will be removed as soon as possible.
1680   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1681                                        unsigned SmallestType,
1682                                        unsigned WidestType,
1683                                        const ElementCount &MaxSafeVF,
1684                                        bool FoldTailByMasking);
1685 
1686   /// \return the maximum legal scalable VF, based on the safe max number
1687   /// of elements.
1688   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1689 
1690   /// The vectorization cost is a combination of the cost itself and a boolean
1691   /// indicating whether any of the contributing operations will actually
1692   /// operate on vector values after type legalization in the backend. If this
1693   /// latter value is false, then all operations will be scalarized (i.e. no
1694   /// vectorization has actually taken place).
1695   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1696 
1697   /// Returns the expected execution cost. The unit of the cost does
1698   /// not matter because we use the 'cost' units to compare different
1699   /// vector widths. The cost that is returned is *not* normalized by
1700   /// the factor width. If \p Invalid is not nullptr, this function
1701   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1702   /// each instruction that has an Invalid cost for the given VF.
1703   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1704   VectorizationCostTy
1705   expectedCost(ElementCount VF,
1706                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1707 
1708   /// Returns the execution time cost of an instruction for a given vector
1709   /// width. Vector width of one means scalar.
1710   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1711 
1712   /// The cost-computation logic from getInstructionCost which provides
1713   /// the vector type as an output parameter.
1714   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1715                                      Type *&VectorTy);
1716 
1717   /// Return the cost of instructions in an inloop reduction pattern, if I is
1718   /// part of that pattern.
1719   Optional<InstructionCost>
1720   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1721                           TTI::TargetCostKind CostKind);
1722 
1723   /// Calculate vectorization cost of memory instruction \p I.
1724   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1725 
1726   /// The cost computation for scalarized memory instruction.
1727   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1728 
1729   /// The cost computation for interleaving group of memory instructions.
1730   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1731 
1732   /// The cost computation for Gather/Scatter instruction.
1733   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1734 
1735   /// The cost computation for widening instruction \p I with consecutive
1736   /// memory access.
1737   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1738 
1739   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1740   /// Load: scalar load + broadcast.
1741   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1742   /// element)
1743   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1744 
1745   /// Estimate the overhead of scalarizing an instruction. This is a
1746   /// convenience wrapper for the type-based getScalarizationOverhead API.
1747   InstructionCost getScalarizationOverhead(Instruction *I,
1748                                            ElementCount VF) const;
1749 
1750   /// Returns whether the instruction is a load or store and will be a emitted
1751   /// as a vector operation.
1752   bool isConsecutiveLoadOrStore(Instruction *I);
1753 
1754   /// Returns true if an artificially high cost for emulated masked memrefs
1755   /// should be used.
1756   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1757 
1758   /// Map of scalar integer values to the smallest bitwidth they can be legally
1759   /// represented as. The vector equivalents of these values should be truncated
1760   /// to this type.
1761   MapVector<Instruction *, uint64_t> MinBWs;
1762 
1763   /// A type representing the costs for instructions if they were to be
1764   /// scalarized rather than vectorized. The entries are Instruction-Cost
1765   /// pairs.
1766   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1767 
1768   /// A set containing all BasicBlocks that are known to present after
1769   /// vectorization as a predicated block.
1770   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1771 
1772   /// Records whether it is allowed to have the original scalar loop execute at
1773   /// least once. This may be needed as a fallback loop in case runtime
1774   /// aliasing/dependence checks fail, or to handle the tail/remainder
1775   /// iterations when the trip count is unknown or doesn't divide by the VF,
1776   /// or as a peel-loop to handle gaps in interleave-groups.
1777   /// Under optsize and when the trip count is very small we don't allow any
1778   /// iterations to execute in the scalar loop.
1779   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1780 
1781   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1782   bool FoldTailByMasking = false;
1783 
1784   /// A map holding scalar costs for different vectorization factors. The
1785   /// presence of a cost for an instruction in the mapping indicates that the
1786   /// instruction will be scalarized when vectorizing with the associated
1787   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1788   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1789 
1790   /// Holds the instructions known to be uniform after vectorization.
1791   /// The data is collected per VF.
1792   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1793 
1794   /// Holds the instructions known to be scalar after vectorization.
1795   /// The data is collected per VF.
1796   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1797 
1798   /// Holds the instructions (address computations) that are forced to be
1799   /// scalarized.
1800   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1801 
1802   /// PHINodes of the reductions that should be expanded in-loop along with
1803   /// their associated chains of reduction operations, in program order from top
1804   /// (PHI) to bottom
1805   ReductionChainMap InLoopReductionChains;
1806 
1807   /// A Map of inloop reduction operations and their immediate chain operand.
1808   /// FIXME: This can be removed once reductions can be costed correctly in
1809   /// vplan. This was added to allow quick lookup to the inloop operations,
1810   /// without having to loop through InLoopReductionChains.
1811   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1812 
1813   /// Returns the expected difference in cost from scalarizing the expression
1814   /// feeding a predicated instruction \p PredInst. The instructions to
1815   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1816   /// non-negative return value implies the expression will be scalarized.
1817   /// Currently, only single-use chains are considered for scalarization.
1818   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1819                               ElementCount VF);
1820 
1821   /// Collect the instructions that are uniform after vectorization. An
1822   /// instruction is uniform if we represent it with a single scalar value in
1823   /// the vectorized loop corresponding to each vector iteration. Examples of
1824   /// uniform instructions include pointer operands of consecutive or
1825   /// interleaved memory accesses. Note that although uniformity implies an
1826   /// instruction will be scalar, the reverse is not true. In general, a
1827   /// scalarized instruction will be represented by VF scalar values in the
1828   /// vectorized loop, each corresponding to an iteration of the original
1829   /// scalar loop.
1830   void collectLoopUniforms(ElementCount VF);
1831 
1832   /// Collect the instructions that are scalar after vectorization. An
1833   /// instruction is scalar if it is known to be uniform or will be scalarized
1834   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1835   /// to the list if they are used by a load/store instruction that is marked as
1836   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1837   /// VF values in the vectorized loop, each corresponding to an iteration of
1838   /// the original scalar loop.
1839   void collectLoopScalars(ElementCount VF);
1840 
1841   /// Keeps cost model vectorization decision and cost for instructions.
1842   /// Right now it is used for memory instructions only.
1843   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1844                                 std::pair<InstWidening, InstructionCost>>;
1845 
1846   DecisionList WideningDecisions;
1847 
1848   /// Returns true if \p V is expected to be vectorized and it needs to be
1849   /// extracted.
1850   bool needsExtract(Value *V, ElementCount VF) const {
1851     Instruction *I = dyn_cast<Instruction>(V);
1852     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1853         TheLoop->isLoopInvariant(I))
1854       return false;
1855 
1856     // Assume we can vectorize V (and hence we need extraction) if the
1857     // scalars are not computed yet. This can happen, because it is called
1858     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1859     // the scalars are collected. That should be a safe assumption in most
1860     // cases, because we check if the operands have vectorizable types
1861     // beforehand in LoopVectorizationLegality.
1862     return Scalars.find(VF) == Scalars.end() ||
1863            !isScalarAfterVectorization(I, VF);
1864   };
1865 
1866   /// Returns a range containing only operands needing to be extracted.
1867   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1868                                                    ElementCount VF) const {
1869     return SmallVector<Value *, 4>(make_filter_range(
1870         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1871   }
1872 
1873   /// Determines if we have the infrastructure to vectorize loop \p L and its
1874   /// epilogue, assuming the main loop is vectorized by \p VF.
1875   bool isCandidateForEpilogueVectorization(const Loop &L,
1876                                            const ElementCount VF) const;
1877 
1878   /// Returns true if epilogue vectorization is considered profitable, and
1879   /// false otherwise.
1880   /// \p VF is the vectorization factor chosen for the original loop.
1881   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1882 
1883 public:
1884   /// The loop that we evaluate.
1885   Loop *TheLoop;
1886 
1887   /// Predicated scalar evolution analysis.
1888   PredicatedScalarEvolution &PSE;
1889 
1890   /// Loop Info analysis.
1891   LoopInfo *LI;
1892 
1893   /// Vectorization legality.
1894   LoopVectorizationLegality *Legal;
1895 
1896   /// Vector target information.
1897   const TargetTransformInfo &TTI;
1898 
1899   /// Target Library Info.
1900   const TargetLibraryInfo *TLI;
1901 
1902   /// Demanded bits analysis.
1903   DemandedBits *DB;
1904 
1905   /// Assumption cache.
1906   AssumptionCache *AC;
1907 
1908   /// Interface to emit optimization remarks.
1909   OptimizationRemarkEmitter *ORE;
1910 
1911   const Function *TheFunction;
1912 
1913   /// Loop Vectorize Hint.
1914   const LoopVectorizeHints *Hints;
1915 
1916   /// The interleave access information contains groups of interleaved accesses
1917   /// with the same stride and close to each other.
1918   InterleavedAccessInfo &InterleaveInfo;
1919 
1920   /// Values to ignore in the cost model.
1921   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1922 
1923   /// Values to ignore in the cost model when VF > 1.
1924   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1925 
1926   /// All element types found in the loop.
1927   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1928 
1929   /// Profitable vector factors.
1930   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1931 };
1932 } // end namespace llvm
1933 
1934 /// Helper struct to manage generating runtime checks for vectorization.
1935 ///
1936 /// The runtime checks are created up-front in temporary blocks to allow better
1937 /// estimating the cost and un-linked from the existing IR. After deciding to
1938 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1939 /// temporary blocks are completely removed.
1940 class GeneratedRTChecks {
1941   /// Basic block which contains the generated SCEV checks, if any.
1942   BasicBlock *SCEVCheckBlock = nullptr;
1943 
1944   /// The value representing the result of the generated SCEV checks. If it is
1945   /// nullptr, either no SCEV checks have been generated or they have been used.
1946   Value *SCEVCheckCond = nullptr;
1947 
1948   /// Basic block which contains the generated memory runtime checks, if any.
1949   BasicBlock *MemCheckBlock = nullptr;
1950 
1951   /// The value representing the result of the generated memory runtime checks.
1952   /// If it is nullptr, either no memory runtime checks have been generated or
1953   /// they have been used.
1954   Value *MemRuntimeCheckCond = nullptr;
1955 
1956   DominatorTree *DT;
1957   LoopInfo *LI;
1958 
1959   SCEVExpander SCEVExp;
1960   SCEVExpander MemCheckExp;
1961 
1962 public:
1963   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1964                     const DataLayout &DL)
1965       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1966         MemCheckExp(SE, DL, "scev.check") {}
1967 
1968   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1969   /// accurately estimate the cost of the runtime checks. The blocks are
1970   /// un-linked from the IR and is added back during vector code generation. If
1971   /// there is no vector code generation, the check blocks are removed
1972   /// completely.
1973   void Create(Loop *L, const LoopAccessInfo &LAI,
1974               const SCEVPredicate &Pred) {
1975 
1976     BasicBlock *LoopHeader = L->getHeader();
1977     BasicBlock *Preheader = L->getLoopPreheader();
1978 
1979     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1980     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1981     // may be used by SCEVExpander. The blocks will be un-linked from their
1982     // predecessors and removed from LI & DT at the end of the function.
1983     if (!Pred.isAlwaysTrue()) {
1984       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1985                                   nullptr, "vector.scevcheck");
1986 
1987       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1988           &Pred, SCEVCheckBlock->getTerminator());
1989     }
1990 
1991     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1992     if (RtPtrChecking.Need) {
1993       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1994       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1995                                  "vector.memcheck");
1996 
1997       MemRuntimeCheckCond =
1998           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1999                            RtPtrChecking.getChecks(), MemCheckExp);
2000       assert(MemRuntimeCheckCond &&
2001              "no RT checks generated although RtPtrChecking "
2002              "claimed checks are required");
2003     }
2004 
2005     if (!MemCheckBlock && !SCEVCheckBlock)
2006       return;
2007 
2008     // Unhook the temporary block with the checks, update various places
2009     // accordingly.
2010     if (SCEVCheckBlock)
2011       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2012     if (MemCheckBlock)
2013       MemCheckBlock->replaceAllUsesWith(Preheader);
2014 
2015     if (SCEVCheckBlock) {
2016       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2017       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2018       Preheader->getTerminator()->eraseFromParent();
2019     }
2020     if (MemCheckBlock) {
2021       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2022       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2023       Preheader->getTerminator()->eraseFromParent();
2024     }
2025 
2026     DT->changeImmediateDominator(LoopHeader, Preheader);
2027     if (MemCheckBlock) {
2028       DT->eraseNode(MemCheckBlock);
2029       LI->removeBlock(MemCheckBlock);
2030     }
2031     if (SCEVCheckBlock) {
2032       DT->eraseNode(SCEVCheckBlock);
2033       LI->removeBlock(SCEVCheckBlock);
2034     }
2035   }
2036 
2037   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2038   /// unused.
2039   ~GeneratedRTChecks() {
2040     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2041     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2042     if (!SCEVCheckCond)
2043       SCEVCleaner.markResultUsed();
2044 
2045     if (!MemRuntimeCheckCond)
2046       MemCheckCleaner.markResultUsed();
2047 
2048     if (MemRuntimeCheckCond) {
2049       auto &SE = *MemCheckExp.getSE();
2050       // Memory runtime check generation creates compares that use expanded
2051       // values. Remove them before running the SCEVExpanderCleaners.
2052       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2053         if (MemCheckExp.isInsertedInstruction(&I))
2054           continue;
2055         SE.forgetValue(&I);
2056         I.eraseFromParent();
2057       }
2058     }
2059     MemCheckCleaner.cleanup();
2060     SCEVCleaner.cleanup();
2061 
2062     if (SCEVCheckCond)
2063       SCEVCheckBlock->eraseFromParent();
2064     if (MemRuntimeCheckCond)
2065       MemCheckBlock->eraseFromParent();
2066   }
2067 
2068   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2069   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2070   /// depending on the generated condition.
2071   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2072                              BasicBlock *LoopVectorPreHeader,
2073                              BasicBlock *LoopExitBlock) {
2074     if (!SCEVCheckCond)
2075       return nullptr;
2076     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2077       if (C->isZero())
2078         return nullptr;
2079 
2080     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2081 
2082     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2083     // Create new preheader for vector loop.
2084     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2085       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2086 
2087     SCEVCheckBlock->getTerminator()->eraseFromParent();
2088     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2089     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2090                                                 SCEVCheckBlock);
2091 
2092     DT->addNewBlock(SCEVCheckBlock, Pred);
2093     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2094 
2095     ReplaceInstWithInst(
2096         SCEVCheckBlock->getTerminator(),
2097         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2098     // Mark the check as used, to prevent it from being removed during cleanup.
2099     SCEVCheckCond = nullptr;
2100     return SCEVCheckBlock;
2101   }
2102 
2103   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2104   /// the branches to branch to the vector preheader or \p Bypass, depending on
2105   /// the generated condition.
2106   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2107                                    BasicBlock *LoopVectorPreHeader) {
2108     // Check if we generated code that checks in runtime if arrays overlap.
2109     if (!MemRuntimeCheckCond)
2110       return nullptr;
2111 
2112     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2113     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2114                                                 MemCheckBlock);
2115 
2116     DT->addNewBlock(MemCheckBlock, Pred);
2117     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2118     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2119 
2120     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2121       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2122 
2123     ReplaceInstWithInst(
2124         MemCheckBlock->getTerminator(),
2125         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2126     MemCheckBlock->getTerminator()->setDebugLoc(
2127         Pred->getTerminator()->getDebugLoc());
2128 
2129     // Mark the check as used, to prevent it from being removed during cleanup.
2130     MemRuntimeCheckCond = nullptr;
2131     return MemCheckBlock;
2132   }
2133 };
2134 
2135 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2136 // vectorization. The loop needs to be annotated with #pragma omp simd
2137 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2138 // vector length information is not provided, vectorization is not considered
2139 // explicit. Interleave hints are not allowed either. These limitations will be
2140 // relaxed in the future.
2141 // Please, note that we are currently forced to abuse the pragma 'clang
2142 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2143 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2144 // provides *explicit vectorization hints* (LV can bypass legal checks and
2145 // assume that vectorization is legal). However, both hints are implemented
2146 // using the same metadata (llvm.loop.vectorize, processed by
2147 // LoopVectorizeHints). This will be fixed in the future when the native IR
2148 // representation for pragma 'omp simd' is introduced.
2149 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2150                                    OptimizationRemarkEmitter *ORE) {
2151   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2152   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2153 
2154   // Only outer loops with an explicit vectorization hint are supported.
2155   // Unannotated outer loops are ignored.
2156   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2157     return false;
2158 
2159   Function *Fn = OuterLp->getHeader()->getParent();
2160   if (!Hints.allowVectorization(Fn, OuterLp,
2161                                 true /*VectorizeOnlyWhenForced*/)) {
2162     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2163     return false;
2164   }
2165 
2166   if (Hints.getInterleave() > 1) {
2167     // TODO: Interleave support is future work.
2168     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2169                          "outer loops.\n");
2170     Hints.emitRemarkWithHints();
2171     return false;
2172   }
2173 
2174   return true;
2175 }
2176 
2177 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2178                                   OptimizationRemarkEmitter *ORE,
2179                                   SmallVectorImpl<Loop *> &V) {
2180   // Collect inner loops and outer loops without irreducible control flow. For
2181   // now, only collect outer loops that have explicit vectorization hints. If we
2182   // are stress testing the VPlan H-CFG construction, we collect the outermost
2183   // loop of every loop nest.
2184   if (L.isInnermost() || VPlanBuildStressTest ||
2185       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2186     LoopBlocksRPO RPOT(&L);
2187     RPOT.perform(LI);
2188     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2189       V.push_back(&L);
2190       // TODO: Collect inner loops inside marked outer loops in case
2191       // vectorization fails for the outer loop. Do not invoke
2192       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2193       // already known to be reducible. We can use an inherited attribute for
2194       // that.
2195       return;
2196     }
2197   }
2198   for (Loop *InnerL : L)
2199     collectSupportedLoops(*InnerL, LI, ORE, V);
2200 }
2201 
2202 namespace {
2203 
2204 /// The LoopVectorize Pass.
2205 struct LoopVectorize : public FunctionPass {
2206   /// Pass identification, replacement for typeid
2207   static char ID;
2208 
2209   LoopVectorizePass Impl;
2210 
2211   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2212                          bool VectorizeOnlyWhenForced = false)
2213       : FunctionPass(ID),
2214         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2215     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2216   }
2217 
2218   bool runOnFunction(Function &F) override {
2219     if (skipFunction(F))
2220       return false;
2221 
2222     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2223     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2224     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2225     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2226     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2227     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2228     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2229     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2230     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2231     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2232     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2233     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2234     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2235 
2236     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2237         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2238 
2239     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2240                         GetLAA, *ORE, PSI).MadeAnyChange;
2241   }
2242 
2243   void getAnalysisUsage(AnalysisUsage &AU) const override {
2244     AU.addRequired<AssumptionCacheTracker>();
2245     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2246     AU.addRequired<DominatorTreeWrapperPass>();
2247     AU.addRequired<LoopInfoWrapperPass>();
2248     AU.addRequired<ScalarEvolutionWrapperPass>();
2249     AU.addRequired<TargetTransformInfoWrapperPass>();
2250     AU.addRequired<AAResultsWrapperPass>();
2251     AU.addRequired<LoopAccessLegacyAnalysis>();
2252     AU.addRequired<DemandedBitsWrapperPass>();
2253     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2254     AU.addRequired<InjectTLIMappingsLegacy>();
2255 
2256     // We currently do not preserve loopinfo/dominator analyses with outer loop
2257     // vectorization. Until this is addressed, mark these analyses as preserved
2258     // only for non-VPlan-native path.
2259     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2260     if (!EnableVPlanNativePath) {
2261       AU.addPreserved<LoopInfoWrapperPass>();
2262       AU.addPreserved<DominatorTreeWrapperPass>();
2263     }
2264 
2265     AU.addPreserved<BasicAAWrapperPass>();
2266     AU.addPreserved<GlobalsAAWrapperPass>();
2267     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2268   }
2269 };
2270 
2271 } // end anonymous namespace
2272 
2273 //===----------------------------------------------------------------------===//
2274 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2275 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2276 //===----------------------------------------------------------------------===//
2277 
2278 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2279   // We need to place the broadcast of invariant variables outside the loop,
2280   // but only if it's proven safe to do so. Else, broadcast will be inside
2281   // vector loop body.
2282   Instruction *Instr = dyn_cast<Instruction>(V);
2283   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2284                      (!Instr ||
2285                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2286   // Place the code for broadcasting invariant variables in the new preheader.
2287   IRBuilder<>::InsertPointGuard Guard(Builder);
2288   if (SafeToHoist)
2289     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2290 
2291   // Broadcast the scalar into all locations in the vector.
2292   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2293 
2294   return Shuf;
2295 }
2296 
2297 /// This function adds
2298 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2299 /// to each vector element of Val. The sequence starts at StartIndex.
2300 /// \p Opcode is relevant for FP induction variable.
2301 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2302                             Instruction::BinaryOps BinOp, ElementCount VF,
2303                             IRBuilderBase &Builder) {
2304   assert(VF.isVector() && "only vector VFs are supported");
2305 
2306   // Create and check the types.
2307   auto *ValVTy = cast<VectorType>(Val->getType());
2308   ElementCount VLen = ValVTy->getElementCount();
2309 
2310   Type *STy = Val->getType()->getScalarType();
2311   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2312          "Induction Step must be an integer or FP");
2313   assert(Step->getType() == STy && "Step has wrong type");
2314 
2315   SmallVector<Constant *, 8> Indices;
2316 
2317   // Create a vector of consecutive numbers from zero to VF.
2318   VectorType *InitVecValVTy = ValVTy;
2319   if (STy->isFloatingPointTy()) {
2320     Type *InitVecValSTy =
2321         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2322     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2323   }
2324   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2325 
2326   // Splat the StartIdx
2327   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2328 
2329   if (STy->isIntegerTy()) {
2330     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2331     Step = Builder.CreateVectorSplat(VLen, Step);
2332     assert(Step->getType() == Val->getType() && "Invalid step vec");
2333     // FIXME: The newly created binary instructions should contain nsw/nuw
2334     // flags, which can be found from the original scalar operations.
2335     Step = Builder.CreateMul(InitVec, Step);
2336     return Builder.CreateAdd(Val, Step, "induction");
2337   }
2338 
2339   // Floating point induction.
2340   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2341          "Binary Opcode should be specified for FP induction");
2342   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2343   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2344 
2345   Step = Builder.CreateVectorSplat(VLen, Step);
2346   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2347   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2348 }
2349 
2350 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2351 /// variable on which to base the steps, \p Step is the size of the step.
2352 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2353                              const InductionDescriptor &ID, VPValue *Def,
2354                              VPTransformState &State) {
2355   IRBuilderBase &Builder = State.Builder;
2356   // We shouldn't have to build scalar steps if we aren't vectorizing.
2357   assert(State.VF.isVector() && "VF should be greater than one");
2358   // Get the value type and ensure it and the step have the same integer type.
2359   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2360   assert(ScalarIVTy == Step->getType() &&
2361          "Val and Step should have the same type");
2362 
2363   // We build scalar steps for both integer and floating-point induction
2364   // variables. Here, we determine the kind of arithmetic we will perform.
2365   Instruction::BinaryOps AddOp;
2366   Instruction::BinaryOps MulOp;
2367   if (ScalarIVTy->isIntegerTy()) {
2368     AddOp = Instruction::Add;
2369     MulOp = Instruction::Mul;
2370   } else {
2371     AddOp = ID.getInductionOpcode();
2372     MulOp = Instruction::FMul;
2373   }
2374 
2375   // Determine the number of scalars we need to generate for each unroll
2376   // iteration.
2377   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2378   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2379   // Compute the scalar steps and save the results in State.
2380   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2381                                      ScalarIVTy->getScalarSizeInBits());
2382   Type *VecIVTy = nullptr;
2383   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2384   if (!FirstLaneOnly && State.VF.isScalable()) {
2385     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2386     UnitStepVec =
2387         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2388     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2389     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2390   }
2391 
2392   for (unsigned Part = 0; Part < State.UF; ++Part) {
2393     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2394 
2395     if (!FirstLaneOnly && State.VF.isScalable()) {
2396       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2397       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2398       if (ScalarIVTy->isFloatingPointTy())
2399         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2400       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2401       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2402       State.set(Def, Add, Part);
2403       // It's useful to record the lane values too for the known minimum number
2404       // of elements so we do those below. This improves the code quality when
2405       // trying to extract the first element, for example.
2406     }
2407 
2408     if (ScalarIVTy->isFloatingPointTy())
2409       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2410 
2411     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2412       Value *StartIdx = Builder.CreateBinOp(
2413           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2414       // The step returned by `createStepForVF` is a runtime-evaluated value
2415       // when VF is scalable. Otherwise, it should be folded into a Constant.
2416       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2417              "Expected StartIdx to be folded to a constant when VF is not "
2418              "scalable");
2419       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2420       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2421       State.set(Def, Add, VPIteration(Part, Lane));
2422     }
2423   }
2424 }
2425 
2426 // Generate code for the induction step. Note that induction steps are
2427 // required to be loop-invariant
2428 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2429                               Instruction *InsertBefore,
2430                               Loop *OrigLoop = nullptr) {
2431   const DataLayout &DL = SE.getDataLayout();
2432   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2433          "Induction step should be loop invariant");
2434   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2435     return E->getValue();
2436 
2437   SCEVExpander Exp(SE, DL, "induction");
2438   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2439 }
2440 
2441 /// Compute the transformed value of Index at offset StartValue using step
2442 /// StepValue.
2443 /// For integer induction, returns StartValue + Index * StepValue.
2444 /// For pointer induction, returns StartValue[Index * StepValue].
2445 /// FIXME: The newly created binary instructions should contain nsw/nuw
2446 /// flags, which can be found from the original scalar operations.
2447 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2448                                    Value *StartValue, Value *Step,
2449                                    const InductionDescriptor &ID) {
2450   assert(Index->getType()->getScalarType() == Step->getType() &&
2451          "Index scalar type does not match StepValue type");
2452 
2453   // Note: the IR at this point is broken. We cannot use SE to create any new
2454   // SCEV and then expand it, hoping that SCEV's simplification will give us
2455   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2456   // lead to various SCEV crashes. So all we can do is to use builder and rely
2457   // on InstCombine for future simplifications. Here we handle some trivial
2458   // cases only.
2459   auto CreateAdd = [&B](Value *X, Value *Y) {
2460     assert(X->getType() == Y->getType() && "Types don't match!");
2461     if (auto *CX = dyn_cast<ConstantInt>(X))
2462       if (CX->isZero())
2463         return Y;
2464     if (auto *CY = dyn_cast<ConstantInt>(Y))
2465       if (CY->isZero())
2466         return X;
2467     return B.CreateAdd(X, Y);
2468   };
2469 
2470   // We allow X to be a vector type, in which case Y will potentially be
2471   // splatted into a vector with the same element count.
2472   auto CreateMul = [&B](Value *X, Value *Y) {
2473     assert(X->getType()->getScalarType() == Y->getType() &&
2474            "Types don't match!");
2475     if (auto *CX = dyn_cast<ConstantInt>(X))
2476       if (CX->isOne())
2477         return Y;
2478     if (auto *CY = dyn_cast<ConstantInt>(Y))
2479       if (CY->isOne())
2480         return X;
2481     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2482     if (XVTy && !isa<VectorType>(Y->getType()))
2483       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2484     return B.CreateMul(X, Y);
2485   };
2486 
2487   switch (ID.getKind()) {
2488   case InductionDescriptor::IK_IntInduction: {
2489     assert(!isa<VectorType>(Index->getType()) &&
2490            "Vector indices not supported for integer inductions yet");
2491     assert(Index->getType() == StartValue->getType() &&
2492            "Index type does not match StartValue type");
2493     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2494       return B.CreateSub(StartValue, Index);
2495     auto *Offset = CreateMul(Index, Step);
2496     return CreateAdd(StartValue, Offset);
2497   }
2498   case InductionDescriptor::IK_PtrInduction: {
2499     assert(isa<Constant>(Step) &&
2500            "Expected constant step for pointer induction");
2501     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2502   }
2503   case InductionDescriptor::IK_FpInduction: {
2504     assert(!isa<VectorType>(Index->getType()) &&
2505            "Vector indices not supported for FP inductions yet");
2506     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2507     auto InductionBinOp = ID.getInductionBinOp();
2508     assert(InductionBinOp &&
2509            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2510             InductionBinOp->getOpcode() == Instruction::FSub) &&
2511            "Original bin op should be defined for FP induction");
2512 
2513     Value *MulExp = B.CreateFMul(Step, Index);
2514     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2515                          "induction");
2516   }
2517   case InductionDescriptor::IK_NoInduction:
2518     return nullptr;
2519   }
2520   llvm_unreachable("invalid enum");
2521 }
2522 
2523 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2524                                                     const VPIteration &Instance,
2525                                                     VPTransformState &State) {
2526   Value *ScalarInst = State.get(Def, Instance);
2527   Value *VectorValue = State.get(Def, Instance.Part);
2528   VectorValue = Builder.CreateInsertElement(
2529       VectorValue, ScalarInst,
2530       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2531   State.set(Def, VectorValue, Instance.Part);
2532 }
2533 
2534 // Return whether we allow using masked interleave-groups (for dealing with
2535 // strided loads/stores that reside in predicated blocks, or for dealing
2536 // with gaps).
2537 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2538   // If an override option has been passed in for interleaved accesses, use it.
2539   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2540     return EnableMaskedInterleavedMemAccesses;
2541 
2542   return TTI.enableMaskedInterleavedAccessVectorization();
2543 }
2544 
2545 // Try to vectorize the interleave group that \p Instr belongs to.
2546 //
2547 // E.g. Translate following interleaved load group (factor = 3):
2548 //   for (i = 0; i < N; i+=3) {
2549 //     R = Pic[i];             // Member of index 0
2550 //     G = Pic[i+1];           // Member of index 1
2551 //     B = Pic[i+2];           // Member of index 2
2552 //     ... // do something to R, G, B
2553 //   }
2554 // To:
2555 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2556 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2557 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2558 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2559 //
2560 // Or translate following interleaved store group (factor = 3):
2561 //   for (i = 0; i < N; i+=3) {
2562 //     ... do something to R, G, B
2563 //     Pic[i]   = R;           // Member of index 0
2564 //     Pic[i+1] = G;           // Member of index 1
2565 //     Pic[i+2] = B;           // Member of index 2
2566 //   }
2567 // To:
2568 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2569 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2570 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2571 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2572 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2573 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2574     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2575     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2576     VPValue *BlockInMask) {
2577   Instruction *Instr = Group->getInsertPos();
2578   const DataLayout &DL = Instr->getModule()->getDataLayout();
2579 
2580   // Prepare for the vector type of the interleaved load/store.
2581   Type *ScalarTy = getLoadStoreType(Instr);
2582   unsigned InterleaveFactor = Group->getFactor();
2583   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2584   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2585 
2586   // Prepare for the new pointers.
2587   SmallVector<Value *, 2> AddrParts;
2588   unsigned Index = Group->getIndex(Instr);
2589 
2590   // TODO: extend the masked interleaved-group support to reversed access.
2591   assert((!BlockInMask || !Group->isReverse()) &&
2592          "Reversed masked interleave-group not supported.");
2593 
2594   // If the group is reverse, adjust the index to refer to the last vector lane
2595   // instead of the first. We adjust the index from the first vector lane,
2596   // rather than directly getting the pointer for lane VF - 1, because the
2597   // pointer operand of the interleaved access is supposed to be uniform. For
2598   // uniform instructions, we're only required to generate a value for the
2599   // first vector lane in each unroll iteration.
2600   if (Group->isReverse())
2601     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2602 
2603   for (unsigned Part = 0; Part < UF; Part++) {
2604     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2605     setDebugLocFromInst(AddrPart);
2606 
2607     // Notice current instruction could be any index. Need to adjust the address
2608     // to the member of index 0.
2609     //
2610     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2611     //       b = A[i];       // Member of index 0
2612     // Current pointer is pointed to A[i+1], adjust it to A[i].
2613     //
2614     // E.g.  A[i+1] = a;     // Member of index 1
2615     //       A[i]   = b;     // Member of index 0
2616     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2617     // Current pointer is pointed to A[i+2], adjust it to A[i].
2618 
2619     bool InBounds = false;
2620     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2621       InBounds = gep->isInBounds();
2622     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2623     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2624 
2625     // Cast to the vector pointer type.
2626     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2627     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2628     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2629   }
2630 
2631   setDebugLocFromInst(Instr);
2632   Value *PoisonVec = PoisonValue::get(VecTy);
2633 
2634   Value *MaskForGaps = nullptr;
2635   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2636     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2637     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2638   }
2639 
2640   // Vectorize the interleaved load group.
2641   if (isa<LoadInst>(Instr)) {
2642     // For each unroll part, create a wide load for the group.
2643     SmallVector<Value *, 2> NewLoads;
2644     for (unsigned Part = 0; Part < UF; Part++) {
2645       Instruction *NewLoad;
2646       if (BlockInMask || MaskForGaps) {
2647         assert(useMaskedInterleavedAccesses(*TTI) &&
2648                "masked interleaved groups are not allowed.");
2649         Value *GroupMask = MaskForGaps;
2650         if (BlockInMask) {
2651           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2652           Value *ShuffledMask = Builder.CreateShuffleVector(
2653               BlockInMaskPart,
2654               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2655               "interleaved.mask");
2656           GroupMask = MaskForGaps
2657                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2658                                                 MaskForGaps)
2659                           : ShuffledMask;
2660         }
2661         NewLoad =
2662             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2663                                      GroupMask, PoisonVec, "wide.masked.vec");
2664       }
2665       else
2666         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2667                                             Group->getAlign(), "wide.vec");
2668       Group->addMetadata(NewLoad);
2669       NewLoads.push_back(NewLoad);
2670     }
2671 
2672     // For each member in the group, shuffle out the appropriate data from the
2673     // wide loads.
2674     unsigned J = 0;
2675     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2676       Instruction *Member = Group->getMember(I);
2677 
2678       // Skip the gaps in the group.
2679       if (!Member)
2680         continue;
2681 
2682       auto StrideMask =
2683           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2684       for (unsigned Part = 0; Part < UF; Part++) {
2685         Value *StridedVec = Builder.CreateShuffleVector(
2686             NewLoads[Part], StrideMask, "strided.vec");
2687 
2688         // If this member has different type, cast the result type.
2689         if (Member->getType() != ScalarTy) {
2690           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2691           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2692           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2693         }
2694 
2695         if (Group->isReverse())
2696           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2697 
2698         State.set(VPDefs[J], StridedVec, Part);
2699       }
2700       ++J;
2701     }
2702     return;
2703   }
2704 
2705   // The sub vector type for current instruction.
2706   auto *SubVT = VectorType::get(ScalarTy, VF);
2707 
2708   // Vectorize the interleaved store group.
2709   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2710   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2711          "masked interleaved groups are not allowed.");
2712   assert((!MaskForGaps || !VF.isScalable()) &&
2713          "masking gaps for scalable vectors is not yet supported.");
2714   for (unsigned Part = 0; Part < UF; Part++) {
2715     // Collect the stored vector from each member.
2716     SmallVector<Value *, 4> StoredVecs;
2717     for (unsigned i = 0; i < InterleaveFactor; i++) {
2718       assert((Group->getMember(i) || MaskForGaps) &&
2719              "Fail to get a member from an interleaved store group");
2720       Instruction *Member = Group->getMember(i);
2721 
2722       // Skip the gaps in the group.
2723       if (!Member) {
2724         Value *Undef = PoisonValue::get(SubVT);
2725         StoredVecs.push_back(Undef);
2726         continue;
2727       }
2728 
2729       Value *StoredVec = State.get(StoredValues[i], Part);
2730 
2731       if (Group->isReverse())
2732         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2733 
2734       // If this member has different type, cast it to a unified type.
2735 
2736       if (StoredVec->getType() != SubVT)
2737         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2738 
2739       StoredVecs.push_back(StoredVec);
2740     }
2741 
2742     // Concatenate all vectors into a wide vector.
2743     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2744 
2745     // Interleave the elements in the wide vector.
2746     Value *IVec = Builder.CreateShuffleVector(
2747         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2748         "interleaved.vec");
2749 
2750     Instruction *NewStoreInstr;
2751     if (BlockInMask || MaskForGaps) {
2752       Value *GroupMask = MaskForGaps;
2753       if (BlockInMask) {
2754         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2755         Value *ShuffledMask = Builder.CreateShuffleVector(
2756             BlockInMaskPart,
2757             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2758             "interleaved.mask");
2759         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2760                                                       ShuffledMask, MaskForGaps)
2761                                 : ShuffledMask;
2762       }
2763       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2764                                                 Group->getAlign(), GroupMask);
2765     } else
2766       NewStoreInstr =
2767           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2768 
2769     Group->addMetadata(NewStoreInstr);
2770   }
2771 }
2772 
2773 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2774                                                VPReplicateRecipe *RepRecipe,
2775                                                const VPIteration &Instance,
2776                                                bool IfPredicateInstr,
2777                                                VPTransformState &State) {
2778   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2779 
2780   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2781   // the first lane and part.
2782   if (isa<NoAliasScopeDeclInst>(Instr))
2783     if (!Instance.isFirstIteration())
2784       return;
2785 
2786   // Does this instruction return a value ?
2787   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2788 
2789   Instruction *Cloned = Instr->clone();
2790   if (!IsVoidRetTy)
2791     Cloned->setName(Instr->getName() + ".cloned");
2792 
2793   // If the scalarized instruction contributes to the address computation of a
2794   // widen masked load/store which was in a basic block that needed predication
2795   // and is not predicated after vectorization, we can't propagate
2796   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2797   // instruction could feed a poison value to the base address of the widen
2798   // load/store.
2799   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2800     Cloned->dropPoisonGeneratingFlags();
2801 
2802   if (Instr->getDebugLoc())
2803     setDebugLocFromInst(Instr);
2804 
2805   // Replace the operands of the cloned instructions with their scalar
2806   // equivalents in the new loop.
2807   for (auto &I : enumerate(RepRecipe->operands())) {
2808     auto InputInstance = Instance;
2809     VPValue *Operand = I.value();
2810     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2811     if (OperandR && OperandR->isUniform())
2812       InputInstance.Lane = VPLane::getFirstLane();
2813     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2814   }
2815   addNewMetadata(Cloned, Instr);
2816 
2817   // Place the cloned scalar in the new loop.
2818   State.Builder.Insert(Cloned);
2819 
2820   State.set(RepRecipe, Cloned, Instance);
2821 
2822   // If we just cloned a new assumption, add it the assumption cache.
2823   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2824     AC->registerAssumption(II);
2825 
2826   // End if-block.
2827   if (IfPredicateInstr)
2828     PredicatedInstructions.push_back(Cloned);
2829 }
2830 
2831 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2832   if (TripCount)
2833     return TripCount;
2834 
2835   assert(InsertBlock);
2836   IRBuilder<> Builder(InsertBlock->getTerminator());
2837   // Find the loop boundaries.
2838   ScalarEvolution *SE = PSE.getSE();
2839   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2840   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2841          "Invalid loop count");
2842 
2843   Type *IdxTy = Legal->getWidestInductionType();
2844   assert(IdxTy && "No type for induction");
2845 
2846   // The exit count might have the type of i64 while the phi is i32. This can
2847   // happen if we have an induction variable that is sign extended before the
2848   // compare. The only way that we get a backedge taken count is that the
2849   // induction variable was signed and as such will not overflow. In such a case
2850   // truncation is legal.
2851   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2852       IdxTy->getPrimitiveSizeInBits())
2853     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2854   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2855 
2856   // Get the total trip count from the count by adding 1.
2857   const SCEV *ExitCount = SE->getAddExpr(
2858       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2859 
2860   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2861 
2862   // Expand the trip count and place the new instructions in the preheader.
2863   // Notice that the pre-header does not change, only the loop body.
2864   SCEVExpander Exp(*SE, DL, "induction");
2865 
2866   // Count holds the overall loop count (N).
2867   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2868                                 InsertBlock->getTerminator());
2869 
2870   if (TripCount->getType()->isPointerTy())
2871     TripCount =
2872         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2873                                     InsertBlock->getTerminator());
2874 
2875   return TripCount;
2876 }
2877 
2878 Value *
2879 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2880   if (VectorTripCount)
2881     return VectorTripCount;
2882 
2883   Value *TC = getOrCreateTripCount(InsertBlock);
2884   IRBuilder<> Builder(InsertBlock->getTerminator());
2885 
2886   Type *Ty = TC->getType();
2887   // This is where we can make the step a runtime constant.
2888   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2889 
2890   // If the tail is to be folded by masking, round the number of iterations N
2891   // up to a multiple of Step instead of rounding down. This is done by first
2892   // adding Step-1 and then rounding down. Note that it's ok if this addition
2893   // overflows: the vector induction variable will eventually wrap to zero given
2894   // that it starts at zero and its Step is a power of two; the loop will then
2895   // exit, with the last early-exit vector comparison also producing all-true.
2896   if (Cost->foldTailByMasking()) {
2897     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2898            "VF*UF must be a power of 2 when folding tail by masking");
2899     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2900     TC = Builder.CreateAdd(
2901         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2902   }
2903 
2904   // Now we need to generate the expression for the part of the loop that the
2905   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2906   // iterations are not required for correctness, or N - Step, otherwise. Step
2907   // is equal to the vectorization factor (number of SIMD elements) times the
2908   // unroll factor (number of SIMD instructions).
2909   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2910 
2911   // There are cases where we *must* run at least one iteration in the remainder
2912   // loop.  See the cost model for when this can happen.  If the step evenly
2913   // divides the trip count, we set the remainder to be equal to the step. If
2914   // the step does not evenly divide the trip count, no adjustment is necessary
2915   // since there will already be scalar iterations. Note that the minimum
2916   // iterations check ensures that N >= Step.
2917   if (Cost->requiresScalarEpilogue(VF)) {
2918     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2919     R = Builder.CreateSelect(IsZero, Step, R);
2920   }
2921 
2922   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2923 
2924   return VectorTripCount;
2925 }
2926 
2927 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2928                                                    const DataLayout &DL) {
2929   // Verify that V is a vector type with same number of elements as DstVTy.
2930   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2931   unsigned VF = DstFVTy->getNumElements();
2932   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2933   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2934   Type *SrcElemTy = SrcVecTy->getElementType();
2935   Type *DstElemTy = DstFVTy->getElementType();
2936   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2937          "Vector elements must have same size");
2938 
2939   // Do a direct cast if element types are castable.
2940   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2941     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2942   }
2943   // V cannot be directly casted to desired vector type.
2944   // May happen when V is a floating point vector but DstVTy is a vector of
2945   // pointers or vice-versa. Handle this using a two-step bitcast using an
2946   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2947   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2948          "Only one type should be a pointer type");
2949   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2950          "Only one type should be a floating point type");
2951   Type *IntTy =
2952       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2953   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2954   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2955   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2956 }
2957 
2958 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) {
2959   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2960   // Reuse existing vector loop preheader for TC checks.
2961   // Note that new preheader block is generated for vector loop.
2962   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2963   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2964 
2965   // Generate code to check if the loop's trip count is less than VF * UF, or
2966   // equal to it in case a scalar epilogue is required; this implies that the
2967   // vector trip count is zero. This check also covers the case where adding one
2968   // to the backedge-taken count overflowed leading to an incorrect trip count
2969   // of zero. In this case we will also jump to the scalar loop.
2970   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2971                                             : ICmpInst::ICMP_ULT;
2972 
2973   // If tail is to be folded, vector loop takes care of all iterations.
2974   Value *CheckMinIters = Builder.getFalse();
2975   if (!Cost->foldTailByMasking()) {
2976     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
2977     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2978   }
2979   // Create new preheader for vector loop.
2980   LoopVectorPreHeader =
2981       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2982                  "vector.ph");
2983 
2984   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2985                                DT->getNode(Bypass)->getIDom()) &&
2986          "TC check is expected to dominate Bypass");
2987 
2988   // Update dominator for Bypass & LoopExit (if needed).
2989   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2990   if (!Cost->requiresScalarEpilogue(VF))
2991     // If there is an epilogue which must run, there's no edge from the
2992     // middle block to exit blocks  and thus no need to update the immediate
2993     // dominator of the exit blocks.
2994     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2995 
2996   ReplaceInstWithInst(
2997       TCCheckBlock->getTerminator(),
2998       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2999   LoopBypassBlocks.push_back(TCCheckBlock);
3000 }
3001 
3002 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
3003 
3004   BasicBlock *const SCEVCheckBlock =
3005       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3006   if (!SCEVCheckBlock)
3007     return nullptr;
3008 
3009   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3010            (OptForSizeBasedOnProfile &&
3011             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3012          "Cannot SCEV check stride or overflow when optimizing for size");
3013 
3014 
3015   // Update dominator only if this is first RT check.
3016   if (LoopBypassBlocks.empty()) {
3017     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3018     if (!Cost->requiresScalarEpilogue(VF))
3019       // If there is an epilogue which must run, there's no edge from the
3020       // middle block to exit blocks  and thus no need to update the immediate
3021       // dominator of the exit blocks.
3022       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3023   }
3024 
3025   LoopBypassBlocks.push_back(SCEVCheckBlock);
3026   AddedSafetyChecks = true;
3027   return SCEVCheckBlock;
3028 }
3029 
3030 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3031   // VPlan-native path does not do any analysis for runtime checks currently.
3032   if (EnableVPlanNativePath)
3033     return nullptr;
3034 
3035   BasicBlock *const MemCheckBlock =
3036       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3037 
3038   // Check if we generated code that checks in runtime if arrays overlap. We put
3039   // the checks into a separate block to make the more common case of few
3040   // elements faster.
3041   if (!MemCheckBlock)
3042     return nullptr;
3043 
3044   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3045     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3046            "Cannot emit memory checks when optimizing for size, unless forced "
3047            "to vectorize.");
3048     ORE->emit([&]() {
3049       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3050                                         OrigLoop->getStartLoc(),
3051                                         OrigLoop->getHeader())
3052              << "Code-size may be reduced by not forcing "
3053                 "vectorization, or by source-code modifications "
3054                 "eliminating the need for runtime checks "
3055                 "(e.g., adding 'restrict').";
3056     });
3057   }
3058 
3059   LoopBypassBlocks.push_back(MemCheckBlock);
3060 
3061   AddedSafetyChecks = true;
3062 
3063   // We currently don't use LoopVersioning for the actual loop cloning but we
3064   // still use it to add the noalias metadata.
3065   LVer = std::make_unique<LoopVersioning>(
3066       *Legal->getLAI(),
3067       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3068       DT, PSE.getSE());
3069   LVer->prepareNoAliasMetadata();
3070   return MemCheckBlock;
3071 }
3072 
3073 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3074   LoopScalarBody = OrigLoop->getHeader();
3075   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3076   assert(LoopVectorPreHeader && "Invalid loop structure");
3077   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3078   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3079          "multiple exit loop without required epilogue?");
3080 
3081   LoopMiddleBlock =
3082       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3083                  LI, nullptr, Twine(Prefix) + "middle.block");
3084   LoopScalarPreHeader =
3085       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3086                  nullptr, Twine(Prefix) + "scalar.ph");
3087 
3088   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3089 
3090   // Set up the middle block terminator.  Two cases:
3091   // 1) If we know that we must execute the scalar epilogue, emit an
3092   //    unconditional branch.
3093   // 2) Otherwise, we must have a single unique exit block (due to how we
3094   //    implement the multiple exit case).  In this case, set up a conditonal
3095   //    branch from the middle block to the loop scalar preheader, and the
3096   //    exit block.  completeLoopSkeleton will update the condition to use an
3097   //    iteration check, if required to decide whether to execute the remainder.
3098   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3099     BranchInst::Create(LoopScalarPreHeader) :
3100     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3101                        Builder.getTrue());
3102   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3103   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3104 
3105   // Update dominator for loop exit. During skeleton creation, only the vector
3106   // pre-header and the middle block are created. The vector loop is entirely
3107   // created during VPlan exection.
3108   if (!Cost->requiresScalarEpilogue(VF))
3109     // If there is an epilogue which must run, there's no edge from the
3110     // middle block to exit blocks  and thus no need to update the immediate
3111     // dominator of the exit blocks.
3112     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3113 }
3114 
3115 void InnerLoopVectorizer::createInductionResumeValues(
3116     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3117   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3118           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3119          "Inconsistent information about additional bypass.");
3120 
3121   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3122   assert(VectorTripCount && "Expected valid arguments");
3123   // We are going to resume the execution of the scalar loop.
3124   // Go over all of the induction variables that we found and fix the
3125   // PHIs that are left in the scalar version of the loop.
3126   // The starting values of PHI nodes depend on the counter of the last
3127   // iteration in the vectorized loop.
3128   // If we come from a bypass edge then we need to start from the original
3129   // start value.
3130   Instruction *OldInduction = Legal->getPrimaryInduction();
3131   for (auto &InductionEntry : Legal->getInductionVars()) {
3132     PHINode *OrigPhi = InductionEntry.first;
3133     InductionDescriptor II = InductionEntry.second;
3134 
3135     // Create phi nodes to merge from the  backedge-taken check block.
3136     PHINode *BCResumeVal =
3137         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3138                         LoopScalarPreHeader->getTerminator());
3139     // Copy original phi DL over to the new one.
3140     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3141     Value *&EndValue = IVEndValues[OrigPhi];
3142     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3143     if (OrigPhi == OldInduction) {
3144       // We know what the end value is.
3145       EndValue = VectorTripCount;
3146     } else {
3147       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3148 
3149       // Fast-math-flags propagate from the original induction instruction.
3150       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3151         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3152 
3153       Type *StepType = II.getStep()->getType();
3154       Instruction::CastOps CastOp =
3155           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3156       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3157       Value *Step =
3158           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3159       EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3160       EndValue->setName("ind.end");
3161 
3162       // Compute the end value for the additional bypass (if applicable).
3163       if (AdditionalBypass.first) {
3164         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3165         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3166                                          StepType, true);
3167         Value *Step =
3168             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3169         CRD =
3170             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3171         EndValueFromAdditionalBypass =
3172             emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3173         EndValueFromAdditionalBypass->setName("ind.end");
3174       }
3175     }
3176     // The new PHI merges the original incoming value, in case of a bypass,
3177     // or the value at the end of the vectorized loop.
3178     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3179 
3180     // Fix the scalar body counter (PHI node).
3181     // The old induction's phi node in the scalar body needs the truncated
3182     // value.
3183     for (BasicBlock *BB : LoopBypassBlocks)
3184       BCResumeVal->addIncoming(II.getStartValue(), BB);
3185 
3186     if (AdditionalBypass.first)
3187       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3188                                             EndValueFromAdditionalBypass);
3189 
3190     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3191   }
3192 }
3193 
3194 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3195   // The trip counts should be cached by now.
3196   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3197   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3198 
3199   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3200 
3201   // Add a check in the middle block to see if we have completed
3202   // all of the iterations in the first vector loop.  Three cases:
3203   // 1) If we require a scalar epilogue, there is no conditional branch as
3204   //    we unconditionally branch to the scalar preheader.  Do nothing.
3205   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3206   //    Thus if tail is to be folded, we know we don't need to run the
3207   //    remainder and we can use the previous value for the condition (true).
3208   // 3) Otherwise, construct a runtime check.
3209   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3210     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3211                                         Count, VectorTripCount, "cmp.n",
3212                                         LoopMiddleBlock->getTerminator());
3213 
3214     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3215     // of the corresponding compare because they may have ended up with
3216     // different line numbers and we want to avoid awkward line stepping while
3217     // debugging. Eg. if the compare has got a line number inside the loop.
3218     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3219     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3220   }
3221 
3222 #ifdef EXPENSIVE_CHECKS
3223   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3224 #endif
3225 
3226   return LoopVectorPreHeader;
3227 }
3228 
3229 std::pair<BasicBlock *, Value *>
3230 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3231   /*
3232    In this function we generate a new loop. The new loop will contain
3233    the vectorized instructions while the old loop will continue to run the
3234    scalar remainder.
3235 
3236        [ ] <-- loop iteration number check.
3237     /   |
3238    /    v
3239   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3240   |  /  |
3241   | /   v
3242   ||   [ ]     <-- vector pre header.
3243   |/    |
3244   |     v
3245   |    [  ] \
3246   |    [  ]_|   <-- vector loop (created during VPlan execution).
3247   |     |
3248   |     v
3249   \   -[ ]   <--- middle-block.
3250    \/   |
3251    /\   v
3252    | ->[ ]     <--- new preheader.
3253    |    |
3254  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3255    |   [ ] \
3256    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3257     \   |
3258      \  v
3259       >[ ]     <-- exit block(s).
3260    ...
3261    */
3262 
3263   // Get the metadata of the original loop before it gets modified.
3264   MDNode *OrigLoopID = OrigLoop->getLoopID();
3265 
3266   // Workaround!  Compute the trip count of the original loop and cache it
3267   // before we start modifying the CFG.  This code has a systemic problem
3268   // wherein it tries to run analysis over partially constructed IR; this is
3269   // wrong, and not simply for SCEV.  The trip count of the original loop
3270   // simply happens to be prone to hitting this in practice.  In theory, we
3271   // can hit the same issue for any SCEV, or ValueTracking query done during
3272   // mutation.  See PR49900.
3273   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3274 
3275   // Create an empty vector loop, and prepare basic blocks for the runtime
3276   // checks.
3277   createVectorLoopSkeleton("");
3278 
3279   // Now, compare the new count to zero. If it is zero skip the vector loop and
3280   // jump to the scalar loop. This check also covers the case where the
3281   // backedge-taken count is uint##_max: adding one to it will overflow leading
3282   // to an incorrect trip count of zero. In this (rare) case we will also jump
3283   // to the scalar loop.
3284   emitMinimumIterationCountCheck(LoopScalarPreHeader);
3285 
3286   // Generate the code to check any assumptions that we've made for SCEV
3287   // expressions.
3288   emitSCEVChecks(LoopScalarPreHeader);
3289 
3290   // Generate the code that checks in runtime if arrays overlap. We put the
3291   // checks into a separate block to make the more common case of few elements
3292   // faster.
3293   emitMemRuntimeChecks(LoopScalarPreHeader);
3294 
3295   // Emit phis for the new starting index of the scalar loop.
3296   createInductionResumeValues();
3297 
3298   return {completeLoopSkeleton(OrigLoopID), nullptr};
3299 }
3300 
3301 // Fix up external users of the induction variable. At this point, we are
3302 // in LCSSA form, with all external PHIs that use the IV having one input value,
3303 // coming from the remainder loop. We need those PHIs to also have a correct
3304 // value for the IV when arriving directly from the middle block.
3305 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3306                                        const InductionDescriptor &II,
3307                                        Value *CountRoundDown, Value *EndValue,
3308                                        BasicBlock *MiddleBlock,
3309                                        BasicBlock *VectorHeader) {
3310   // There are two kinds of external IV usages - those that use the value
3311   // computed in the last iteration (the PHI) and those that use the penultimate
3312   // value (the value that feeds into the phi from the loop latch).
3313   // We allow both, but they, obviously, have different values.
3314 
3315   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3316 
3317   DenseMap<Value *, Value *> MissingVals;
3318 
3319   // An external user of the last iteration's value should see the value that
3320   // the remainder loop uses to initialize its own IV.
3321   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3322   for (User *U : PostInc->users()) {
3323     Instruction *UI = cast<Instruction>(U);
3324     if (!OrigLoop->contains(UI)) {
3325       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3326       MissingVals[UI] = EndValue;
3327     }
3328   }
3329 
3330   // An external user of the penultimate value need to see EndValue - Step.
3331   // The simplest way to get this is to recompute it from the constituent SCEVs,
3332   // that is Start + (Step * (CRD - 1)).
3333   for (User *U : OrigPhi->users()) {
3334     auto *UI = cast<Instruction>(U);
3335     if (!OrigLoop->contains(UI)) {
3336       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3337 
3338       IRBuilder<> B(MiddleBlock->getTerminator());
3339 
3340       // Fast-math-flags propagate from the original induction instruction.
3341       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3342         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3343 
3344       Value *CountMinusOne = B.CreateSub(
3345           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3346       Value *CMO =
3347           !II.getStep()->getType()->isIntegerTy()
3348               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3349                              II.getStep()->getType())
3350               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3351       CMO->setName("cast.cmo");
3352 
3353       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3354                                     VectorHeader->getTerminator());
3355       Value *Escape =
3356           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3357       Escape->setName("ind.escape");
3358       MissingVals[UI] = Escape;
3359     }
3360   }
3361 
3362   for (auto &I : MissingVals) {
3363     PHINode *PHI = cast<PHINode>(I.first);
3364     // One corner case we have to handle is two IVs "chasing" each-other,
3365     // that is %IV2 = phi [...], [ %IV1, %latch ]
3366     // In this case, if IV1 has an external use, we need to avoid adding both
3367     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3368     // don't already have an incoming value for the middle block.
3369     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3370       PHI->addIncoming(I.second, MiddleBlock);
3371   }
3372 }
3373 
3374 namespace {
3375 
3376 struct CSEDenseMapInfo {
3377   static bool canHandle(const Instruction *I) {
3378     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3379            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3380   }
3381 
3382   static inline Instruction *getEmptyKey() {
3383     return DenseMapInfo<Instruction *>::getEmptyKey();
3384   }
3385 
3386   static inline Instruction *getTombstoneKey() {
3387     return DenseMapInfo<Instruction *>::getTombstoneKey();
3388   }
3389 
3390   static unsigned getHashValue(const Instruction *I) {
3391     assert(canHandle(I) && "Unknown instruction!");
3392     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3393                                                            I->value_op_end()));
3394   }
3395 
3396   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3397     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3398         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3399       return LHS == RHS;
3400     return LHS->isIdenticalTo(RHS);
3401   }
3402 };
3403 
3404 } // end anonymous namespace
3405 
3406 ///Perform cse of induction variable instructions.
3407 static void cse(BasicBlock *BB) {
3408   // Perform simple cse.
3409   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3410   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3411     if (!CSEDenseMapInfo::canHandle(&In))
3412       continue;
3413 
3414     // Check if we can replace this instruction with any of the
3415     // visited instructions.
3416     if (Instruction *V = CSEMap.lookup(&In)) {
3417       In.replaceAllUsesWith(V);
3418       In.eraseFromParent();
3419       continue;
3420     }
3421 
3422     CSEMap[&In] = &In;
3423   }
3424 }
3425 
3426 InstructionCost
3427 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3428                                               bool &NeedToScalarize) const {
3429   Function *F = CI->getCalledFunction();
3430   Type *ScalarRetTy = CI->getType();
3431   SmallVector<Type *, 4> Tys, ScalarTys;
3432   for (auto &ArgOp : CI->args())
3433     ScalarTys.push_back(ArgOp->getType());
3434 
3435   // Estimate cost of scalarized vector call. The source operands are assumed
3436   // to be vectors, so we need to extract individual elements from there,
3437   // execute VF scalar calls, and then gather the result into the vector return
3438   // value.
3439   InstructionCost ScalarCallCost =
3440       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3441   if (VF.isScalar())
3442     return ScalarCallCost;
3443 
3444   // Compute corresponding vector type for return value and arguments.
3445   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3446   for (Type *ScalarTy : ScalarTys)
3447     Tys.push_back(ToVectorTy(ScalarTy, VF));
3448 
3449   // Compute costs of unpacking argument values for the scalar calls and
3450   // packing the return values to a vector.
3451   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3452 
3453   InstructionCost Cost =
3454       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3455 
3456   // If we can't emit a vector call for this function, then the currently found
3457   // cost is the cost we need to return.
3458   NeedToScalarize = true;
3459   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3460   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3461 
3462   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3463     return Cost;
3464 
3465   // If the corresponding vector cost is cheaper, return its cost.
3466   InstructionCost VectorCallCost =
3467       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3468   if (VectorCallCost < Cost) {
3469     NeedToScalarize = false;
3470     Cost = VectorCallCost;
3471   }
3472   return Cost;
3473 }
3474 
3475 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3476   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3477     return Elt;
3478   return VectorType::get(Elt, VF);
3479 }
3480 
3481 InstructionCost
3482 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3483                                                    ElementCount VF) const {
3484   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3485   assert(ID && "Expected intrinsic call!");
3486   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3487   FastMathFlags FMF;
3488   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3489     FMF = FPMO->getFastMathFlags();
3490 
3491   SmallVector<const Value *> Arguments(CI->args());
3492   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3493   SmallVector<Type *> ParamTys;
3494   std::transform(FTy->param_begin(), FTy->param_end(),
3495                  std::back_inserter(ParamTys),
3496                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3497 
3498   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3499                                     dyn_cast<IntrinsicInst>(CI));
3500   return TTI.getIntrinsicInstrCost(CostAttrs,
3501                                    TargetTransformInfo::TCK_RecipThroughput);
3502 }
3503 
3504 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3505   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3506   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3507   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3508 }
3509 
3510 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3511   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3512   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3513   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3514 }
3515 
3516 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3517   // For every instruction `I` in MinBWs, truncate the operands, create a
3518   // truncated version of `I` and reextend its result. InstCombine runs
3519   // later and will remove any ext/trunc pairs.
3520   SmallPtrSet<Value *, 4> Erased;
3521   for (const auto &KV : Cost->getMinimalBitwidths()) {
3522     // If the value wasn't vectorized, we must maintain the original scalar
3523     // type. The absence of the value from State indicates that it
3524     // wasn't vectorized.
3525     // FIXME: Should not rely on getVPValue at this point.
3526     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3527     if (!State.hasAnyVectorValue(Def))
3528       continue;
3529     for (unsigned Part = 0; Part < UF; ++Part) {
3530       Value *I = State.get(Def, Part);
3531       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3532         continue;
3533       Type *OriginalTy = I->getType();
3534       Type *ScalarTruncatedTy =
3535           IntegerType::get(OriginalTy->getContext(), KV.second);
3536       auto *TruncatedTy = VectorType::get(
3537           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3538       if (TruncatedTy == OriginalTy)
3539         continue;
3540 
3541       IRBuilder<> B(cast<Instruction>(I));
3542       auto ShrinkOperand = [&](Value *V) -> Value * {
3543         if (auto *ZI = dyn_cast<ZExtInst>(V))
3544           if (ZI->getSrcTy() == TruncatedTy)
3545             return ZI->getOperand(0);
3546         return B.CreateZExtOrTrunc(V, TruncatedTy);
3547       };
3548 
3549       // The actual instruction modification depends on the instruction type,
3550       // unfortunately.
3551       Value *NewI = nullptr;
3552       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3553         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3554                              ShrinkOperand(BO->getOperand(1)));
3555 
3556         // Any wrapping introduced by shrinking this operation shouldn't be
3557         // considered undefined behavior. So, we can't unconditionally copy
3558         // arithmetic wrapping flags to NewI.
3559         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3560       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3561         NewI =
3562             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3563                          ShrinkOperand(CI->getOperand(1)));
3564       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3565         NewI = B.CreateSelect(SI->getCondition(),
3566                               ShrinkOperand(SI->getTrueValue()),
3567                               ShrinkOperand(SI->getFalseValue()));
3568       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3569         switch (CI->getOpcode()) {
3570         default:
3571           llvm_unreachable("Unhandled cast!");
3572         case Instruction::Trunc:
3573           NewI = ShrinkOperand(CI->getOperand(0));
3574           break;
3575         case Instruction::SExt:
3576           NewI = B.CreateSExtOrTrunc(
3577               CI->getOperand(0),
3578               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3579           break;
3580         case Instruction::ZExt:
3581           NewI = B.CreateZExtOrTrunc(
3582               CI->getOperand(0),
3583               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3584           break;
3585         }
3586       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3587         auto Elements0 =
3588             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3589         auto *O0 = B.CreateZExtOrTrunc(
3590             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3591         auto Elements1 =
3592             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3593         auto *O1 = B.CreateZExtOrTrunc(
3594             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3595 
3596         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3597       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3598         // Don't do anything with the operands, just extend the result.
3599         continue;
3600       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3601         auto Elements =
3602             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3603         auto *O0 = B.CreateZExtOrTrunc(
3604             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3605         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3606         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3607       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3608         auto Elements =
3609             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3610         auto *O0 = B.CreateZExtOrTrunc(
3611             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3612         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3613       } else {
3614         // If we don't know what to do, be conservative and don't do anything.
3615         continue;
3616       }
3617 
3618       // Lastly, extend the result.
3619       NewI->takeName(cast<Instruction>(I));
3620       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3621       I->replaceAllUsesWith(Res);
3622       cast<Instruction>(I)->eraseFromParent();
3623       Erased.insert(I);
3624       State.reset(Def, Res, Part);
3625     }
3626   }
3627 
3628   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3629   for (const auto &KV : Cost->getMinimalBitwidths()) {
3630     // If the value wasn't vectorized, we must maintain the original scalar
3631     // type. The absence of the value from State indicates that it
3632     // wasn't vectorized.
3633     // FIXME: Should not rely on getVPValue at this point.
3634     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3635     if (!State.hasAnyVectorValue(Def))
3636       continue;
3637     for (unsigned Part = 0; Part < UF; ++Part) {
3638       Value *I = State.get(Def, Part);
3639       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3640       if (Inst && Inst->use_empty()) {
3641         Value *NewI = Inst->getOperand(0);
3642         Inst->eraseFromParent();
3643         State.reset(Def, NewI, Part);
3644       }
3645     }
3646   }
3647 }
3648 
3649 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3650   // Insert truncates and extends for any truncated instructions as hints to
3651   // InstCombine.
3652   if (VF.isVector())
3653     truncateToMinimalBitwidths(State);
3654 
3655   // Fix widened non-induction PHIs by setting up the PHI operands.
3656   if (OrigPHIsToFix.size()) {
3657     assert(EnableVPlanNativePath &&
3658            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3659     fixNonInductionPHIs(State);
3660   }
3661 
3662   // At this point every instruction in the original loop is widened to a
3663   // vector form. Now we need to fix the recurrences in the loop. These PHI
3664   // nodes are currently empty because we did not want to introduce cycles.
3665   // This is the second stage of vectorizing recurrences.
3666   fixCrossIterationPHIs(State);
3667 
3668   // Forget the original basic block.
3669   PSE.getSE()->forgetLoop(OrigLoop);
3670 
3671   Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB);
3672   // If we inserted an edge from the middle block to the unique exit block,
3673   // update uses outside the loop (phis) to account for the newly inserted
3674   // edge.
3675   if (!Cost->requiresScalarEpilogue(VF)) {
3676     // Fix-up external users of the induction variables.
3677     for (auto &Entry : Legal->getInductionVars())
3678       fixupIVUsers(Entry.first, Entry.second,
3679                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3680                    IVEndValues[Entry.first], LoopMiddleBlock,
3681                    VectorLoop->getHeader());
3682 
3683     fixLCSSAPHIs(State);
3684   }
3685 
3686   for (Instruction *PI : PredicatedInstructions)
3687     sinkScalarOperands(&*PI);
3688 
3689   // Remove redundant induction instructions.
3690   cse(VectorLoop->getHeader());
3691 
3692   // Set/update profile weights for the vector and remainder loops as original
3693   // loop iterations are now distributed among them. Note that original loop
3694   // represented by LoopScalarBody becomes remainder loop after vectorization.
3695   //
3696   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3697   // end up getting slightly roughened result but that should be OK since
3698   // profile is not inherently precise anyway. Note also possible bypass of
3699   // vector code caused by legality checks is ignored, assigning all the weight
3700   // to the vector loop, optimistically.
3701   //
3702   // For scalable vectorization we can't know at compile time how many iterations
3703   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3704   // vscale of '1'.
3705   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3706                                LI->getLoopFor(LoopScalarBody),
3707                                VF.getKnownMinValue() * UF);
3708 }
3709 
3710 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3711   // In order to support recurrences we need to be able to vectorize Phi nodes.
3712   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3713   // stage #2: We now need to fix the recurrences by adding incoming edges to
3714   // the currently empty PHI nodes. At this point every instruction in the
3715   // original loop is widened to a vector form so we can use them to construct
3716   // the incoming edges.
3717   VPBasicBlock *Header =
3718       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3719   for (VPRecipeBase &R : Header->phis()) {
3720     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3721       fixReduction(ReductionPhi, State);
3722     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3723       fixFirstOrderRecurrence(FOR, State);
3724   }
3725 }
3726 
3727 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3728     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3729   // This is the second phase of vectorizing first-order recurrences. An
3730   // overview of the transformation is described below. Suppose we have the
3731   // following loop.
3732   //
3733   //   for (int i = 0; i < n; ++i)
3734   //     b[i] = a[i] - a[i - 1];
3735   //
3736   // There is a first-order recurrence on "a". For this loop, the shorthand
3737   // scalar IR looks like:
3738   //
3739   //   scalar.ph:
3740   //     s_init = a[-1]
3741   //     br scalar.body
3742   //
3743   //   scalar.body:
3744   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3745   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3746   //     s2 = a[i]
3747   //     b[i] = s2 - s1
3748   //     br cond, scalar.body, ...
3749   //
3750   // In this example, s1 is a recurrence because it's value depends on the
3751   // previous iteration. In the first phase of vectorization, we created a
3752   // vector phi v1 for s1. We now complete the vectorization and produce the
3753   // shorthand vector IR shown below (for VF = 4, UF = 1).
3754   //
3755   //   vector.ph:
3756   //     v_init = vector(..., ..., ..., a[-1])
3757   //     br vector.body
3758   //
3759   //   vector.body
3760   //     i = phi [0, vector.ph], [i+4, vector.body]
3761   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3762   //     v2 = a[i, i+1, i+2, i+3];
3763   //     v3 = vector(v1(3), v2(0, 1, 2))
3764   //     b[i, i+1, i+2, i+3] = v2 - v3
3765   //     br cond, vector.body, middle.block
3766   //
3767   //   middle.block:
3768   //     x = v2(3)
3769   //     br scalar.ph
3770   //
3771   //   scalar.ph:
3772   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3773   //     br scalar.body
3774   //
3775   // After execution completes the vector loop, we extract the next value of
3776   // the recurrence (x) to use as the initial value in the scalar loop.
3777 
3778   // Extract the last vector element in the middle block. This will be the
3779   // initial value for the recurrence when jumping to the scalar loop.
3780   VPValue *PreviousDef = PhiR->getBackedgeValue();
3781   Value *Incoming = State.get(PreviousDef, UF - 1);
3782   auto *ExtractForScalar = Incoming;
3783   auto *IdxTy = Builder.getInt32Ty();
3784   if (VF.isVector()) {
3785     auto *One = ConstantInt::get(IdxTy, 1);
3786     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3787     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3788     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3789     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3790                                                     "vector.recur.extract");
3791   }
3792   // Extract the second last element in the middle block if the
3793   // Phi is used outside the loop. We need to extract the phi itself
3794   // and not the last element (the phi update in the current iteration). This
3795   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3796   // when the scalar loop is not run at all.
3797   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3798   if (VF.isVector()) {
3799     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3800     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3801     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3802         Incoming, Idx, "vector.recur.extract.for.phi");
3803   } else if (UF > 1)
3804     // When loop is unrolled without vectorizing, initialize
3805     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3806     // of `Incoming`. This is analogous to the vectorized case above: extracting
3807     // the second last element when VF > 1.
3808     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3809 
3810   // Fix the initial value of the original recurrence in the scalar loop.
3811   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3812   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3813   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3814   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3815   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3816     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3817     Start->addIncoming(Incoming, BB);
3818   }
3819 
3820   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3821   Phi->setName("scalar.recur");
3822 
3823   // Finally, fix users of the recurrence outside the loop. The users will need
3824   // either the last value of the scalar recurrence or the last value of the
3825   // vector recurrence we extracted in the middle block. Since the loop is in
3826   // LCSSA form, we just need to find all the phi nodes for the original scalar
3827   // recurrence in the exit block, and then add an edge for the middle block.
3828   // Note that LCSSA does not imply single entry when the original scalar loop
3829   // had multiple exiting edges (as we always run the last iteration in the
3830   // scalar epilogue); in that case, there is no edge from middle to exit and
3831   // and thus no phis which needed updated.
3832   if (!Cost->requiresScalarEpilogue(VF))
3833     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3834       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
3835         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3836 }
3837 
3838 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3839                                        VPTransformState &State) {
3840   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3841   // Get it's reduction variable descriptor.
3842   assert(Legal->isReductionVariable(OrigPhi) &&
3843          "Unable to find the reduction variable");
3844   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3845 
3846   RecurKind RK = RdxDesc.getRecurrenceKind();
3847   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3848   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3849   setDebugLocFromInst(ReductionStartValue);
3850 
3851   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3852   // This is the vector-clone of the value that leaves the loop.
3853   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3854 
3855   // Wrap flags are in general invalid after vectorization, clear them.
3856   clearReductionWrapFlags(RdxDesc, State);
3857 
3858   // Before each round, move the insertion point right between
3859   // the PHIs and the values we are going to write.
3860   // This allows us to write both PHINodes and the extractelement
3861   // instructions.
3862   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3863 
3864   setDebugLocFromInst(LoopExitInst);
3865 
3866   Type *PhiTy = OrigPhi->getType();
3867   BasicBlock *VectorLoopLatch =
3868       LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch();
3869   // If tail is folded by masking, the vector value to leave the loop should be
3870   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3871   // instead of the former. For an inloop reduction the reduction will already
3872   // be predicated, and does not need to be handled here.
3873   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3874     for (unsigned Part = 0; Part < UF; ++Part) {
3875       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3876       Value *Sel = nullptr;
3877       for (User *U : VecLoopExitInst->users()) {
3878         if (isa<SelectInst>(U)) {
3879           assert(!Sel && "Reduction exit feeding two selects");
3880           Sel = U;
3881         } else
3882           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3883       }
3884       assert(Sel && "Reduction exit feeds no select");
3885       State.reset(LoopExitInstDef, Sel, Part);
3886 
3887       // If the target can create a predicated operator for the reduction at no
3888       // extra cost in the loop (for example a predicated vadd), it can be
3889       // cheaper for the select to remain in the loop than be sunk out of it,
3890       // and so use the select value for the phi instead of the old
3891       // LoopExitValue.
3892       if (PreferPredicatedReductionSelect ||
3893           TTI->preferPredicatedReductionSelect(
3894               RdxDesc.getOpcode(), PhiTy,
3895               TargetTransformInfo::ReductionFlags())) {
3896         auto *VecRdxPhi =
3897             cast<PHINode>(State.get(PhiR, Part));
3898         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3899       }
3900     }
3901   }
3902 
3903   // If the vector reduction can be performed in a smaller type, we truncate
3904   // then extend the loop exit value to enable InstCombine to evaluate the
3905   // entire expression in the smaller type.
3906   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3907     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3908     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3909     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3910     VectorParts RdxParts(UF);
3911     for (unsigned Part = 0; Part < UF; ++Part) {
3912       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3913       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3914       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3915                                         : Builder.CreateZExt(Trunc, VecTy);
3916       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3917         if (U != Trunc) {
3918           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3919           RdxParts[Part] = Extnd;
3920         }
3921     }
3922     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3923     for (unsigned Part = 0; Part < UF; ++Part) {
3924       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3925       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3926     }
3927   }
3928 
3929   // Reduce all of the unrolled parts into a single vector.
3930   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3931   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3932 
3933   // The middle block terminator has already been assigned a DebugLoc here (the
3934   // OrigLoop's single latch terminator). We want the whole middle block to
3935   // appear to execute on this line because: (a) it is all compiler generated,
3936   // (b) these instructions are always executed after evaluating the latch
3937   // conditional branch, and (c) other passes may add new predecessors which
3938   // terminate on this line. This is the easiest way to ensure we don't
3939   // accidentally cause an extra step back into the loop while debugging.
3940   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3941   if (PhiR->isOrdered())
3942     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3943   else {
3944     // Floating-point operations should have some FMF to enable the reduction.
3945     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3946     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3947     for (unsigned Part = 1; Part < UF; ++Part) {
3948       Value *RdxPart = State.get(LoopExitInstDef, Part);
3949       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3950         ReducedPartRdx = Builder.CreateBinOp(
3951             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3952       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3953         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3954                                            ReducedPartRdx, RdxPart);
3955       else
3956         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3957     }
3958   }
3959 
3960   // Create the reduction after the loop. Note that inloop reductions create the
3961   // target reduction in the loop using a Reduction recipe.
3962   if (VF.isVector() && !PhiR->isInLoop()) {
3963     ReducedPartRdx =
3964         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3965     // If the reduction can be performed in a smaller type, we need to extend
3966     // the reduction to the wider type before we branch to the original loop.
3967     if (PhiTy != RdxDesc.getRecurrenceType())
3968       ReducedPartRdx = RdxDesc.isSigned()
3969                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3970                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3971   }
3972 
3973   PHINode *ResumePhi =
3974       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3975 
3976   // Create a phi node that merges control-flow from the backedge-taken check
3977   // block and the middle block.
3978   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3979                                         LoopScalarPreHeader->getTerminator());
3980 
3981   // If we are fixing reductions in the epilogue loop then we should already
3982   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
3983   // we carry over the incoming values correctly.
3984   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
3985     if (Incoming == LoopMiddleBlock)
3986       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
3987     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
3988       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
3989                               Incoming);
3990     else
3991       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
3992   }
3993 
3994   // Set the resume value for this reduction
3995   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
3996 
3997   // Now, we need to fix the users of the reduction variable
3998   // inside and outside of the scalar remainder loop.
3999 
4000   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4001   // in the exit blocks.  See comment on analogous loop in
4002   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4003   if (!Cost->requiresScalarEpilogue(VF))
4004     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4005       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4006         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4007 
4008   // Fix the scalar loop reduction variable with the incoming reduction sum
4009   // from the vector body and from the backedge value.
4010   int IncomingEdgeBlockIdx =
4011       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4012   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4013   // Pick the other block.
4014   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4015   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4016   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4017 }
4018 
4019 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4020                                                   VPTransformState &State) {
4021   RecurKind RK = RdxDesc.getRecurrenceKind();
4022   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4023     return;
4024 
4025   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4026   assert(LoopExitInstr && "null loop exit instruction");
4027   SmallVector<Instruction *, 8> Worklist;
4028   SmallPtrSet<Instruction *, 8> Visited;
4029   Worklist.push_back(LoopExitInstr);
4030   Visited.insert(LoopExitInstr);
4031 
4032   while (!Worklist.empty()) {
4033     Instruction *Cur = Worklist.pop_back_val();
4034     if (isa<OverflowingBinaryOperator>(Cur))
4035       for (unsigned Part = 0; Part < UF; ++Part) {
4036         // FIXME: Should not rely on getVPValue at this point.
4037         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4038         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4039       }
4040 
4041     for (User *U : Cur->users()) {
4042       Instruction *UI = cast<Instruction>(U);
4043       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4044           Visited.insert(UI).second)
4045         Worklist.push_back(UI);
4046     }
4047   }
4048 }
4049 
4050 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4051   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4052     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4053       // Some phis were already hand updated by the reduction and recurrence
4054       // code above, leave them alone.
4055       continue;
4056 
4057     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4058     // Non-instruction incoming values will have only one value.
4059 
4060     VPLane Lane = VPLane::getFirstLane();
4061     if (isa<Instruction>(IncomingValue) &&
4062         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4063                                            VF))
4064       Lane = VPLane::getLastLaneForVF(VF);
4065 
4066     // Can be a loop invariant incoming value or the last scalar value to be
4067     // extracted from the vectorized loop.
4068     // FIXME: Should not rely on getVPValue at this point.
4069     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4070     Value *lastIncomingValue =
4071         OrigLoop->isLoopInvariant(IncomingValue)
4072             ? IncomingValue
4073             : State.get(State.Plan->getVPValue(IncomingValue, true),
4074                         VPIteration(UF - 1, Lane));
4075     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4076   }
4077 }
4078 
4079 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4080   // The basic block and loop containing the predicated instruction.
4081   auto *PredBB = PredInst->getParent();
4082   auto *VectorLoop = LI->getLoopFor(PredBB);
4083 
4084   // Initialize a worklist with the operands of the predicated instruction.
4085   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4086 
4087   // Holds instructions that we need to analyze again. An instruction may be
4088   // reanalyzed if we don't yet know if we can sink it or not.
4089   SmallVector<Instruction *, 8> InstsToReanalyze;
4090 
4091   // Returns true if a given use occurs in the predicated block. Phi nodes use
4092   // their operands in their corresponding predecessor blocks.
4093   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4094     auto *I = cast<Instruction>(U.getUser());
4095     BasicBlock *BB = I->getParent();
4096     if (auto *Phi = dyn_cast<PHINode>(I))
4097       BB = Phi->getIncomingBlock(
4098           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4099     return BB == PredBB;
4100   };
4101 
4102   // Iteratively sink the scalarized operands of the predicated instruction
4103   // into the block we created for it. When an instruction is sunk, it's
4104   // operands are then added to the worklist. The algorithm ends after one pass
4105   // through the worklist doesn't sink a single instruction.
4106   bool Changed;
4107   do {
4108     // Add the instructions that need to be reanalyzed to the worklist, and
4109     // reset the changed indicator.
4110     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4111     InstsToReanalyze.clear();
4112     Changed = false;
4113 
4114     while (!Worklist.empty()) {
4115       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4116 
4117       // We can't sink an instruction if it is a phi node, is not in the loop,
4118       // or may have side effects.
4119       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4120           I->mayHaveSideEffects())
4121         continue;
4122 
4123       // If the instruction is already in PredBB, check if we can sink its
4124       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4125       // sinking the scalar instruction I, hence it appears in PredBB; but it
4126       // may have failed to sink I's operands (recursively), which we try
4127       // (again) here.
4128       if (I->getParent() == PredBB) {
4129         Worklist.insert(I->op_begin(), I->op_end());
4130         continue;
4131       }
4132 
4133       // It's legal to sink the instruction if all its uses occur in the
4134       // predicated block. Otherwise, there's nothing to do yet, and we may
4135       // need to reanalyze the instruction.
4136       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4137         InstsToReanalyze.push_back(I);
4138         continue;
4139       }
4140 
4141       // Move the instruction to the beginning of the predicated block, and add
4142       // it's operands to the worklist.
4143       I->moveBefore(&*PredBB->getFirstInsertionPt());
4144       Worklist.insert(I->op_begin(), I->op_end());
4145 
4146       // The sinking may have enabled other instructions to be sunk, so we will
4147       // need to iterate.
4148       Changed = true;
4149     }
4150   } while (Changed);
4151 }
4152 
4153 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4154   for (PHINode *OrigPhi : OrigPHIsToFix) {
4155     VPWidenPHIRecipe *VPPhi =
4156         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4157     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4158     // Make sure the builder has a valid insert point.
4159     Builder.SetInsertPoint(NewPhi);
4160     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4161       VPValue *Inc = VPPhi->getIncomingValue(i);
4162       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4163       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4164     }
4165   }
4166 }
4167 
4168 bool InnerLoopVectorizer::useOrderedReductions(
4169     const RecurrenceDescriptor &RdxDesc) {
4170   return Cost->useOrderedReductions(RdxDesc);
4171 }
4172 
4173 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4174                                               VPWidenPHIRecipe *PhiR,
4175                                               VPTransformState &State) {
4176   assert(EnableVPlanNativePath &&
4177          "Non-native vplans are not expected to have VPWidenPHIRecipes.");
4178   // Currently we enter here in the VPlan-native path for non-induction
4179   // PHIs where all control flow is uniform. We simply widen these PHIs.
4180   // Create a vector phi with no operands - the vector phi operands will be
4181   // set at the end of vector code generation.
4182   Type *VecTy = (State.VF.isScalar())
4183                     ? PN->getType()
4184                     : VectorType::get(PN->getType(), State.VF);
4185   Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4186   State.set(PhiR, VecPhi, 0);
4187   OrigPHIsToFix.push_back(cast<PHINode>(PN));
4188 }
4189 
4190 /// A helper function for checking whether an integer division-related
4191 /// instruction may divide by zero (in which case it must be predicated if
4192 /// executed conditionally in the scalar code).
4193 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4194 /// Non-zero divisors that are non compile-time constants will not be
4195 /// converted into multiplication, so we will still end up scalarizing
4196 /// the division, but can do so w/o predication.
4197 static bool mayDivideByZero(Instruction &I) {
4198   assert((I.getOpcode() == Instruction::UDiv ||
4199           I.getOpcode() == Instruction::SDiv ||
4200           I.getOpcode() == Instruction::URem ||
4201           I.getOpcode() == Instruction::SRem) &&
4202          "Unexpected instruction");
4203   Value *Divisor = I.getOperand(1);
4204   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4205   return !CInt || CInt->isZero();
4206 }
4207 
4208 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4209                                                VPUser &ArgOperands,
4210                                                VPTransformState &State) {
4211   assert(!isa<DbgInfoIntrinsic>(I) &&
4212          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4213   setDebugLocFromInst(&I);
4214 
4215   Module *M = I.getParent()->getParent()->getParent();
4216   auto *CI = cast<CallInst>(&I);
4217 
4218   SmallVector<Type *, 4> Tys;
4219   for (Value *ArgOperand : CI->args())
4220     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4221 
4222   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4223 
4224   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4225   // version of the instruction.
4226   // Is it beneficial to perform intrinsic call compared to lib call?
4227   bool NeedToScalarize = false;
4228   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4229   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4230   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4231   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4232          "Instruction should be scalarized elsewhere.");
4233   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4234          "Either the intrinsic cost or vector call cost must be valid");
4235 
4236   for (unsigned Part = 0; Part < UF; ++Part) {
4237     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4238     SmallVector<Value *, 4> Args;
4239     for (auto &I : enumerate(ArgOperands.operands())) {
4240       // Some intrinsics have a scalar argument - don't replace it with a
4241       // vector.
4242       Value *Arg;
4243       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4244         Arg = State.get(I.value(), Part);
4245       else {
4246         Arg = State.get(I.value(), VPIteration(0, 0));
4247         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4248           TysForDecl.push_back(Arg->getType());
4249       }
4250       Args.push_back(Arg);
4251     }
4252 
4253     Function *VectorF;
4254     if (UseVectorIntrinsic) {
4255       // Use vector version of the intrinsic.
4256       if (VF.isVector())
4257         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4258       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4259       assert(VectorF && "Can't retrieve vector intrinsic.");
4260     } else {
4261       // Use vector version of the function call.
4262       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4263 #ifndef NDEBUG
4264       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4265              "Can't create vector function.");
4266 #endif
4267         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4268     }
4269       SmallVector<OperandBundleDef, 1> OpBundles;
4270       CI->getOperandBundlesAsDefs(OpBundles);
4271       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4272 
4273       if (isa<FPMathOperator>(V))
4274         V->copyFastMathFlags(CI);
4275 
4276       State.set(Def, V, Part);
4277       addMetadata(V, &I);
4278   }
4279 }
4280 
4281 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4282   // We should not collect Scalars more than once per VF. Right now, this
4283   // function is called from collectUniformsAndScalars(), which already does
4284   // this check. Collecting Scalars for VF=1 does not make any sense.
4285   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4286          "This function should not be visited twice for the same VF");
4287 
4288   // This avoids any chances of creating a REPLICATE recipe during planning
4289   // since that would result in generation of scalarized code during execution,
4290   // which is not supported for scalable vectors.
4291   if (VF.isScalable()) {
4292     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4293     return;
4294   }
4295 
4296   SmallSetVector<Instruction *, 8> Worklist;
4297 
4298   // These sets are used to seed the analysis with pointers used by memory
4299   // accesses that will remain scalar.
4300   SmallSetVector<Instruction *, 8> ScalarPtrs;
4301   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4302   auto *Latch = TheLoop->getLoopLatch();
4303 
4304   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4305   // The pointer operands of loads and stores will be scalar as long as the
4306   // memory access is not a gather or scatter operation. The value operand of a
4307   // store will remain scalar if the store is scalarized.
4308   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4309     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4310     assert(WideningDecision != CM_Unknown &&
4311            "Widening decision should be ready at this moment");
4312     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4313       if (Ptr == Store->getValueOperand())
4314         return WideningDecision == CM_Scalarize;
4315     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4316            "Ptr is neither a value or pointer operand");
4317     return WideningDecision != CM_GatherScatter;
4318   };
4319 
4320   // A helper that returns true if the given value is a bitcast or
4321   // getelementptr instruction contained in the loop.
4322   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4323     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4324             isa<GetElementPtrInst>(V)) &&
4325            !TheLoop->isLoopInvariant(V);
4326   };
4327 
4328   // A helper that evaluates a memory access's use of a pointer. If the use will
4329   // be a scalar use and the pointer is only used by memory accesses, we place
4330   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4331   // PossibleNonScalarPtrs.
4332   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4333     // We only care about bitcast and getelementptr instructions contained in
4334     // the loop.
4335     if (!isLoopVaryingBitCastOrGEP(Ptr))
4336       return;
4337 
4338     // If the pointer has already been identified as scalar (e.g., if it was
4339     // also identified as uniform), there's nothing to do.
4340     auto *I = cast<Instruction>(Ptr);
4341     if (Worklist.count(I))
4342       return;
4343 
4344     // If the use of the pointer will be a scalar use, and all users of the
4345     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4346     // place the pointer in PossibleNonScalarPtrs.
4347     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4348           return isa<LoadInst>(U) || isa<StoreInst>(U);
4349         }))
4350       ScalarPtrs.insert(I);
4351     else
4352       PossibleNonScalarPtrs.insert(I);
4353   };
4354 
4355   // We seed the scalars analysis with three classes of instructions: (1)
4356   // instructions marked uniform-after-vectorization and (2) bitcast,
4357   // getelementptr and (pointer) phi instructions used by memory accesses
4358   // requiring a scalar use.
4359   //
4360   // (1) Add to the worklist all instructions that have been identified as
4361   // uniform-after-vectorization.
4362   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4363 
4364   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4365   // memory accesses requiring a scalar use. The pointer operands of loads and
4366   // stores will be scalar as long as the memory accesses is not a gather or
4367   // scatter operation. The value operand of a store will remain scalar if the
4368   // store is scalarized.
4369   for (auto *BB : TheLoop->blocks())
4370     for (auto &I : *BB) {
4371       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4372         evaluatePtrUse(Load, Load->getPointerOperand());
4373       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4374         evaluatePtrUse(Store, Store->getPointerOperand());
4375         evaluatePtrUse(Store, Store->getValueOperand());
4376       }
4377     }
4378   for (auto *I : ScalarPtrs)
4379     if (!PossibleNonScalarPtrs.count(I)) {
4380       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4381       Worklist.insert(I);
4382     }
4383 
4384   // Insert the forced scalars.
4385   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4386   // induction variable when the PHI user is scalarized.
4387   auto ForcedScalar = ForcedScalars.find(VF);
4388   if (ForcedScalar != ForcedScalars.end())
4389     for (auto *I : ForcedScalar->second)
4390       Worklist.insert(I);
4391 
4392   // Expand the worklist by looking through any bitcasts and getelementptr
4393   // instructions we've already identified as scalar. This is similar to the
4394   // expansion step in collectLoopUniforms(); however, here we're only
4395   // expanding to include additional bitcasts and getelementptr instructions.
4396   unsigned Idx = 0;
4397   while (Idx != Worklist.size()) {
4398     Instruction *Dst = Worklist[Idx++];
4399     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4400       continue;
4401     auto *Src = cast<Instruction>(Dst->getOperand(0));
4402     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4403           auto *J = cast<Instruction>(U);
4404           return !TheLoop->contains(J) || Worklist.count(J) ||
4405                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4406                   isScalarUse(J, Src));
4407         })) {
4408       Worklist.insert(Src);
4409       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4410     }
4411   }
4412 
4413   // An induction variable will remain scalar if all users of the induction
4414   // variable and induction variable update remain scalar.
4415   for (auto &Induction : Legal->getInductionVars()) {
4416     auto *Ind = Induction.first;
4417     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4418 
4419     // If tail-folding is applied, the primary induction variable will be used
4420     // to feed a vector compare.
4421     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4422       continue;
4423 
4424     // Returns true if \p Indvar is a pointer induction that is used directly by
4425     // load/store instruction \p I.
4426     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4427                                               Instruction *I) {
4428       return Induction.second.getKind() ==
4429                  InductionDescriptor::IK_PtrInduction &&
4430              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4431              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4432     };
4433 
4434     // Determine if all users of the induction variable are scalar after
4435     // vectorization.
4436     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4437       auto *I = cast<Instruction>(U);
4438       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4439              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4440     });
4441     if (!ScalarInd)
4442       continue;
4443 
4444     // Determine if all users of the induction variable update instruction are
4445     // scalar after vectorization.
4446     auto ScalarIndUpdate =
4447         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4448           auto *I = cast<Instruction>(U);
4449           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4450                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4451         });
4452     if (!ScalarIndUpdate)
4453       continue;
4454 
4455     // The induction variable and its update instruction will remain scalar.
4456     Worklist.insert(Ind);
4457     Worklist.insert(IndUpdate);
4458     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4459     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4460                       << "\n");
4461   }
4462 
4463   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4464 }
4465 
4466 bool LoopVectorizationCostModel::isScalarWithPredication(
4467     Instruction *I, ElementCount VF) const {
4468   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4469     return false;
4470   switch(I->getOpcode()) {
4471   default:
4472     break;
4473   case Instruction::Load:
4474   case Instruction::Store: {
4475     if (!Legal->isMaskRequired(I))
4476       return false;
4477     auto *Ptr = getLoadStorePointerOperand(I);
4478     auto *Ty = getLoadStoreType(I);
4479     Type *VTy = Ty;
4480     if (VF.isVector())
4481       VTy = VectorType::get(Ty, VF);
4482     const Align Alignment = getLoadStoreAlignment(I);
4483     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4484                                 TTI.isLegalMaskedGather(VTy, Alignment))
4485                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4486                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4487   }
4488   case Instruction::UDiv:
4489   case Instruction::SDiv:
4490   case Instruction::SRem:
4491   case Instruction::URem:
4492     return mayDivideByZero(*I);
4493   }
4494   return false;
4495 }
4496 
4497 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4498     Instruction *I, ElementCount VF) {
4499   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4500   assert(getWideningDecision(I, VF) == CM_Unknown &&
4501          "Decision should not be set yet.");
4502   auto *Group = getInterleavedAccessGroup(I);
4503   assert(Group && "Must have a group.");
4504 
4505   // If the instruction's allocated size doesn't equal it's type size, it
4506   // requires padding and will be scalarized.
4507   auto &DL = I->getModule()->getDataLayout();
4508   auto *ScalarTy = getLoadStoreType(I);
4509   if (hasIrregularType(ScalarTy, DL))
4510     return false;
4511 
4512   // If the group involves a non-integral pointer, we may not be able to
4513   // losslessly cast all values to a common type.
4514   unsigned InterleaveFactor = Group->getFactor();
4515   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4516   for (unsigned i = 0; i < InterleaveFactor; i++) {
4517     Instruction *Member = Group->getMember(i);
4518     if (!Member)
4519       continue;
4520     auto *MemberTy = getLoadStoreType(Member);
4521     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4522     // Don't coerce non-integral pointers to integers or vice versa.
4523     if (MemberNI != ScalarNI) {
4524       // TODO: Consider adding special nullptr value case here
4525       return false;
4526     } else if (MemberNI && ScalarNI &&
4527                ScalarTy->getPointerAddressSpace() !=
4528                MemberTy->getPointerAddressSpace()) {
4529       return false;
4530     }
4531   }
4532 
4533   // Check if masking is required.
4534   // A Group may need masking for one of two reasons: it resides in a block that
4535   // needs predication, or it was decided to use masking to deal with gaps
4536   // (either a gap at the end of a load-access that may result in a speculative
4537   // load, or any gaps in a store-access).
4538   bool PredicatedAccessRequiresMasking =
4539       blockNeedsPredicationForAnyReason(I->getParent()) &&
4540       Legal->isMaskRequired(I);
4541   bool LoadAccessWithGapsRequiresEpilogMasking =
4542       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4543       !isScalarEpilogueAllowed();
4544   bool StoreAccessWithGapsRequiresMasking =
4545       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4546   if (!PredicatedAccessRequiresMasking &&
4547       !LoadAccessWithGapsRequiresEpilogMasking &&
4548       !StoreAccessWithGapsRequiresMasking)
4549     return true;
4550 
4551   // If masked interleaving is required, we expect that the user/target had
4552   // enabled it, because otherwise it either wouldn't have been created or
4553   // it should have been invalidated by the CostModel.
4554   assert(useMaskedInterleavedAccesses(TTI) &&
4555          "Masked interleave-groups for predicated accesses are not enabled.");
4556 
4557   if (Group->isReverse())
4558     return false;
4559 
4560   auto *Ty = getLoadStoreType(I);
4561   const Align Alignment = getLoadStoreAlignment(I);
4562   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4563                           : TTI.isLegalMaskedStore(Ty, Alignment);
4564 }
4565 
4566 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4567     Instruction *I, ElementCount VF) {
4568   // Get and ensure we have a valid memory instruction.
4569   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4570 
4571   auto *Ptr = getLoadStorePointerOperand(I);
4572   auto *ScalarTy = getLoadStoreType(I);
4573 
4574   // In order to be widened, the pointer should be consecutive, first of all.
4575   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4576     return false;
4577 
4578   // If the instruction is a store located in a predicated block, it will be
4579   // scalarized.
4580   if (isScalarWithPredication(I, VF))
4581     return false;
4582 
4583   // If the instruction's allocated size doesn't equal it's type size, it
4584   // requires padding and will be scalarized.
4585   auto &DL = I->getModule()->getDataLayout();
4586   if (hasIrregularType(ScalarTy, DL))
4587     return false;
4588 
4589   return true;
4590 }
4591 
4592 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4593   // We should not collect Uniforms more than once per VF. Right now,
4594   // this function is called from collectUniformsAndScalars(), which
4595   // already does this check. Collecting Uniforms for VF=1 does not make any
4596   // sense.
4597 
4598   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4599          "This function should not be visited twice for the same VF");
4600 
4601   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4602   // not analyze again.  Uniforms.count(VF) will return 1.
4603   Uniforms[VF].clear();
4604 
4605   // We now know that the loop is vectorizable!
4606   // Collect instructions inside the loop that will remain uniform after
4607   // vectorization.
4608 
4609   // Global values, params and instructions outside of current loop are out of
4610   // scope.
4611   auto isOutOfScope = [&](Value *V) -> bool {
4612     Instruction *I = dyn_cast<Instruction>(V);
4613     return (!I || !TheLoop->contains(I));
4614   };
4615 
4616   // Worklist containing uniform instructions demanding lane 0.
4617   SetVector<Instruction *> Worklist;
4618   BasicBlock *Latch = TheLoop->getLoopLatch();
4619 
4620   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4621   // that are scalar with predication must not be considered uniform after
4622   // vectorization, because that would create an erroneous replicating region
4623   // where only a single instance out of VF should be formed.
4624   // TODO: optimize such seldom cases if found important, see PR40816.
4625   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4626     if (isOutOfScope(I)) {
4627       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4628                         << *I << "\n");
4629       return;
4630     }
4631     if (isScalarWithPredication(I, VF)) {
4632       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4633                         << *I << "\n");
4634       return;
4635     }
4636     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4637     Worklist.insert(I);
4638   };
4639 
4640   // Start with the conditional branch. If the branch condition is an
4641   // instruction contained in the loop that is only used by the branch, it is
4642   // uniform.
4643   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4644   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4645     addToWorklistIfAllowed(Cmp);
4646 
4647   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4648     InstWidening WideningDecision = getWideningDecision(I, VF);
4649     assert(WideningDecision != CM_Unknown &&
4650            "Widening decision should be ready at this moment");
4651 
4652     // A uniform memory op is itself uniform.  We exclude uniform stores
4653     // here as they demand the last lane, not the first one.
4654     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4655       assert(WideningDecision == CM_Scalarize);
4656       return true;
4657     }
4658 
4659     return (WideningDecision == CM_Widen ||
4660             WideningDecision == CM_Widen_Reverse ||
4661             WideningDecision == CM_Interleave);
4662   };
4663 
4664 
4665   // Returns true if Ptr is the pointer operand of a memory access instruction
4666   // I, and I is known to not require scalarization.
4667   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4668     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4669   };
4670 
4671   // Holds a list of values which are known to have at least one uniform use.
4672   // Note that there may be other uses which aren't uniform.  A "uniform use"
4673   // here is something which only demands lane 0 of the unrolled iterations;
4674   // it does not imply that all lanes produce the same value (e.g. this is not
4675   // the usual meaning of uniform)
4676   SetVector<Value *> HasUniformUse;
4677 
4678   // Scan the loop for instructions which are either a) known to have only
4679   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4680   for (auto *BB : TheLoop->blocks())
4681     for (auto &I : *BB) {
4682       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4683         switch (II->getIntrinsicID()) {
4684         case Intrinsic::sideeffect:
4685         case Intrinsic::experimental_noalias_scope_decl:
4686         case Intrinsic::assume:
4687         case Intrinsic::lifetime_start:
4688         case Intrinsic::lifetime_end:
4689           if (TheLoop->hasLoopInvariantOperands(&I))
4690             addToWorklistIfAllowed(&I);
4691           break;
4692         default:
4693           break;
4694         }
4695       }
4696 
4697       // ExtractValue instructions must be uniform, because the operands are
4698       // known to be loop-invariant.
4699       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4700         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4701                "Expected aggregate value to be loop invariant");
4702         addToWorklistIfAllowed(EVI);
4703         continue;
4704       }
4705 
4706       // If there's no pointer operand, there's nothing to do.
4707       auto *Ptr = getLoadStorePointerOperand(&I);
4708       if (!Ptr)
4709         continue;
4710 
4711       // A uniform memory op is itself uniform.  We exclude uniform stores
4712       // here as they demand the last lane, not the first one.
4713       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4714         addToWorklistIfAllowed(&I);
4715 
4716       if (isUniformDecision(&I, VF)) {
4717         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4718         HasUniformUse.insert(Ptr);
4719       }
4720     }
4721 
4722   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4723   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4724   // disallows uses outside the loop as well.
4725   for (auto *V : HasUniformUse) {
4726     if (isOutOfScope(V))
4727       continue;
4728     auto *I = cast<Instruction>(V);
4729     auto UsersAreMemAccesses =
4730       llvm::all_of(I->users(), [&](User *U) -> bool {
4731         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4732       });
4733     if (UsersAreMemAccesses)
4734       addToWorklistIfAllowed(I);
4735   }
4736 
4737   // Expand Worklist in topological order: whenever a new instruction
4738   // is added , its users should be already inside Worklist.  It ensures
4739   // a uniform instruction will only be used by uniform instructions.
4740   unsigned idx = 0;
4741   while (idx != Worklist.size()) {
4742     Instruction *I = Worklist[idx++];
4743 
4744     for (auto OV : I->operand_values()) {
4745       // isOutOfScope operands cannot be uniform instructions.
4746       if (isOutOfScope(OV))
4747         continue;
4748       // First order recurrence Phi's should typically be considered
4749       // non-uniform.
4750       auto *OP = dyn_cast<PHINode>(OV);
4751       if (OP && Legal->isFirstOrderRecurrence(OP))
4752         continue;
4753       // If all the users of the operand are uniform, then add the
4754       // operand into the uniform worklist.
4755       auto *OI = cast<Instruction>(OV);
4756       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4757             auto *J = cast<Instruction>(U);
4758             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4759           }))
4760         addToWorklistIfAllowed(OI);
4761     }
4762   }
4763 
4764   // For an instruction to be added into Worklist above, all its users inside
4765   // the loop should also be in Worklist. However, this condition cannot be
4766   // true for phi nodes that form a cyclic dependence. We must process phi
4767   // nodes separately. An induction variable will remain uniform if all users
4768   // of the induction variable and induction variable update remain uniform.
4769   // The code below handles both pointer and non-pointer induction variables.
4770   for (auto &Induction : Legal->getInductionVars()) {
4771     auto *Ind = Induction.first;
4772     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4773 
4774     // Determine if all users of the induction variable are uniform after
4775     // vectorization.
4776     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4777       auto *I = cast<Instruction>(U);
4778       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4779              isVectorizedMemAccessUse(I, Ind);
4780     });
4781     if (!UniformInd)
4782       continue;
4783 
4784     // Determine if all users of the induction variable update instruction are
4785     // uniform after vectorization.
4786     auto UniformIndUpdate =
4787         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4788           auto *I = cast<Instruction>(U);
4789           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4790                  isVectorizedMemAccessUse(I, IndUpdate);
4791         });
4792     if (!UniformIndUpdate)
4793       continue;
4794 
4795     // The induction variable and its update instruction will remain uniform.
4796     addToWorklistIfAllowed(Ind);
4797     addToWorklistIfAllowed(IndUpdate);
4798   }
4799 
4800   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4801 }
4802 
4803 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4804   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4805 
4806   if (Legal->getRuntimePointerChecking()->Need) {
4807     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4808         "runtime pointer checks needed. Enable vectorization of this "
4809         "loop with '#pragma clang loop vectorize(enable)' when "
4810         "compiling with -Os/-Oz",
4811         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4812     return true;
4813   }
4814 
4815   if (!PSE.getPredicate().isAlwaysTrue()) {
4816     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4817         "runtime SCEV checks needed. Enable vectorization of this "
4818         "loop with '#pragma clang loop vectorize(enable)' when "
4819         "compiling with -Os/-Oz",
4820         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4821     return true;
4822   }
4823 
4824   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4825   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4826     reportVectorizationFailure("Runtime stride check for small trip count",
4827         "runtime stride == 1 checks needed. Enable vectorization of "
4828         "this loop without such check by compiling with -Os/-Oz",
4829         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4830     return true;
4831   }
4832 
4833   return false;
4834 }
4835 
4836 ElementCount
4837 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4838   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4839     return ElementCount::getScalable(0);
4840 
4841   if (Hints->isScalableVectorizationDisabled()) {
4842     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4843                             "ScalableVectorizationDisabled", ORE, TheLoop);
4844     return ElementCount::getScalable(0);
4845   }
4846 
4847   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4848 
4849   auto MaxScalableVF = ElementCount::getScalable(
4850       std::numeric_limits<ElementCount::ScalarTy>::max());
4851 
4852   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4853   // FIXME: While for scalable vectors this is currently sufficient, this should
4854   // be replaced by a more detailed mechanism that filters out specific VFs,
4855   // instead of invalidating vectorization for a whole set of VFs based on the
4856   // MaxVF.
4857 
4858   // Disable scalable vectorization if the loop contains unsupported reductions.
4859   if (!canVectorizeReductions(MaxScalableVF)) {
4860     reportVectorizationInfo(
4861         "Scalable vectorization not supported for the reduction "
4862         "operations found in this loop.",
4863         "ScalableVFUnfeasible", ORE, TheLoop);
4864     return ElementCount::getScalable(0);
4865   }
4866 
4867   // Disable scalable vectorization if the loop contains any instructions
4868   // with element types not supported for scalable vectors.
4869   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4870         return !Ty->isVoidTy() &&
4871                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4872       })) {
4873     reportVectorizationInfo("Scalable vectorization is not supported "
4874                             "for all element types found in this loop.",
4875                             "ScalableVFUnfeasible", ORE, TheLoop);
4876     return ElementCount::getScalable(0);
4877   }
4878 
4879   if (Legal->isSafeForAnyVectorWidth())
4880     return MaxScalableVF;
4881 
4882   // Limit MaxScalableVF by the maximum safe dependence distance.
4883   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4884   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4885     MaxVScale =
4886         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4887   MaxScalableVF = ElementCount::getScalable(
4888       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4889   if (!MaxScalableVF)
4890     reportVectorizationInfo(
4891         "Max legal vector width too small, scalable vectorization "
4892         "unfeasible.",
4893         "ScalableVFUnfeasible", ORE, TheLoop);
4894 
4895   return MaxScalableVF;
4896 }
4897 
4898 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4899     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4900   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4901   unsigned SmallestType, WidestType;
4902   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4903 
4904   // Get the maximum safe dependence distance in bits computed by LAA.
4905   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4906   // the memory accesses that is most restrictive (involved in the smallest
4907   // dependence distance).
4908   unsigned MaxSafeElements =
4909       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4910 
4911   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4912   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4913 
4914   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4915                     << ".\n");
4916   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4917                     << ".\n");
4918 
4919   // First analyze the UserVF, fall back if the UserVF should be ignored.
4920   if (UserVF) {
4921     auto MaxSafeUserVF =
4922         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4923 
4924     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4925       // If `VF=vscale x N` is safe, then so is `VF=N`
4926       if (UserVF.isScalable())
4927         return FixedScalableVFPair(
4928             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4929       else
4930         return UserVF;
4931     }
4932 
4933     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4934 
4935     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4936     // is better to ignore the hint and let the compiler choose a suitable VF.
4937     if (!UserVF.isScalable()) {
4938       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4939                         << " is unsafe, clamping to max safe VF="
4940                         << MaxSafeFixedVF << ".\n");
4941       ORE->emit([&]() {
4942         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4943                                           TheLoop->getStartLoc(),
4944                                           TheLoop->getHeader())
4945                << "User-specified vectorization factor "
4946                << ore::NV("UserVectorizationFactor", UserVF)
4947                << " is unsafe, clamping to maximum safe vectorization factor "
4948                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4949       });
4950       return MaxSafeFixedVF;
4951     }
4952 
4953     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4954       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4955                         << " is ignored because scalable vectors are not "
4956                            "available.\n");
4957       ORE->emit([&]() {
4958         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4959                                           TheLoop->getStartLoc(),
4960                                           TheLoop->getHeader())
4961                << "User-specified vectorization factor "
4962                << ore::NV("UserVectorizationFactor", UserVF)
4963                << " is ignored because the target does not support scalable "
4964                   "vectors. The compiler will pick a more suitable value.";
4965       });
4966     } else {
4967       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4968                         << " is unsafe. Ignoring scalable UserVF.\n");
4969       ORE->emit([&]() {
4970         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4971                                           TheLoop->getStartLoc(),
4972                                           TheLoop->getHeader())
4973                << "User-specified vectorization factor "
4974                << ore::NV("UserVectorizationFactor", UserVF)
4975                << " is unsafe. Ignoring the hint to let the compiler pick a "
4976                   "more suitable value.";
4977       });
4978     }
4979   }
4980 
4981   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4982                     << " / " << WidestType << " bits.\n");
4983 
4984   FixedScalableVFPair Result(ElementCount::getFixed(1),
4985                              ElementCount::getScalable(0));
4986   if (auto MaxVF =
4987           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4988                                   MaxSafeFixedVF, FoldTailByMasking))
4989     Result.FixedVF = MaxVF;
4990 
4991   if (auto MaxVF =
4992           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4993                                   MaxSafeScalableVF, FoldTailByMasking))
4994     if (MaxVF.isScalable()) {
4995       Result.ScalableVF = MaxVF;
4996       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4997                         << "\n");
4998     }
4999 
5000   return Result;
5001 }
5002 
5003 FixedScalableVFPair
5004 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5005   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5006     // TODO: It may by useful to do since it's still likely to be dynamically
5007     // uniform if the target can skip.
5008     reportVectorizationFailure(
5009         "Not inserting runtime ptr check for divergent target",
5010         "runtime pointer checks needed. Not enabled for divergent target",
5011         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5012     return FixedScalableVFPair::getNone();
5013   }
5014 
5015   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5016   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5017   if (TC == 1) {
5018     reportVectorizationFailure("Single iteration (non) loop",
5019         "loop trip count is one, irrelevant for vectorization",
5020         "SingleIterationLoop", ORE, TheLoop);
5021     return FixedScalableVFPair::getNone();
5022   }
5023 
5024   switch (ScalarEpilogueStatus) {
5025   case CM_ScalarEpilogueAllowed:
5026     return computeFeasibleMaxVF(TC, UserVF, false);
5027   case CM_ScalarEpilogueNotAllowedUsePredicate:
5028     LLVM_FALLTHROUGH;
5029   case CM_ScalarEpilogueNotNeededUsePredicate:
5030     LLVM_DEBUG(
5031         dbgs() << "LV: vector predicate hint/switch found.\n"
5032                << "LV: Not allowing scalar epilogue, creating predicated "
5033                << "vector loop.\n");
5034     break;
5035   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5036     // fallthrough as a special case of OptForSize
5037   case CM_ScalarEpilogueNotAllowedOptSize:
5038     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5039       LLVM_DEBUG(
5040           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5041     else
5042       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5043                         << "count.\n");
5044 
5045     // Bail if runtime checks are required, which are not good when optimising
5046     // for size.
5047     if (runtimeChecksRequired())
5048       return FixedScalableVFPair::getNone();
5049 
5050     break;
5051   }
5052 
5053   // The only loops we can vectorize without a scalar epilogue, are loops with
5054   // a bottom-test and a single exiting block. We'd have to handle the fact
5055   // that not every instruction executes on the last iteration.  This will
5056   // require a lane mask which varies through the vector loop body.  (TODO)
5057   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5058     // If there was a tail-folding hint/switch, but we can't fold the tail by
5059     // masking, fallback to a vectorization with a scalar epilogue.
5060     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5061       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5062                            "scalar epilogue instead.\n");
5063       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5064       return computeFeasibleMaxVF(TC, UserVF, false);
5065     }
5066     return FixedScalableVFPair::getNone();
5067   }
5068 
5069   // Now try the tail folding
5070 
5071   // Invalidate interleave groups that require an epilogue if we can't mask
5072   // the interleave-group.
5073   if (!useMaskedInterleavedAccesses(TTI)) {
5074     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5075            "No decisions should have been taken at this point");
5076     // Note: There is no need to invalidate any cost modeling decisions here, as
5077     // non where taken so far.
5078     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5079   }
5080 
5081   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5082   // Avoid tail folding if the trip count is known to be a multiple of any VF
5083   // we chose.
5084   // FIXME: The condition below pessimises the case for fixed-width vectors,
5085   // when scalable VFs are also candidates for vectorization.
5086   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5087     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5088     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5089            "MaxFixedVF must be a power of 2");
5090     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5091                                    : MaxFixedVF.getFixedValue();
5092     ScalarEvolution *SE = PSE.getSE();
5093     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5094     const SCEV *ExitCount = SE->getAddExpr(
5095         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5096     const SCEV *Rem = SE->getURemExpr(
5097         SE->applyLoopGuards(ExitCount, TheLoop),
5098         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5099     if (Rem->isZero()) {
5100       // Accept MaxFixedVF if we do not have a tail.
5101       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5102       return MaxFactors;
5103     }
5104   }
5105 
5106   // For scalable vectors don't use tail folding for low trip counts or
5107   // optimizing for code size. We only permit this if the user has explicitly
5108   // requested it.
5109   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5110       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5111       MaxFactors.ScalableVF.isVector())
5112     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5113 
5114   // If we don't know the precise trip count, or if the trip count that we
5115   // found modulo the vectorization factor is not zero, try to fold the tail
5116   // by masking.
5117   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5118   if (Legal->prepareToFoldTailByMasking()) {
5119     FoldTailByMasking = true;
5120     return MaxFactors;
5121   }
5122 
5123   // If there was a tail-folding hint/switch, but we can't fold the tail by
5124   // masking, fallback to a vectorization with a scalar epilogue.
5125   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5126     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5127                          "scalar epilogue instead.\n");
5128     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5129     return MaxFactors;
5130   }
5131 
5132   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5133     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5134     return FixedScalableVFPair::getNone();
5135   }
5136 
5137   if (TC == 0) {
5138     reportVectorizationFailure(
5139         "Unable to calculate the loop count due to complex control flow",
5140         "unable to calculate the loop count due to complex control flow",
5141         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5142     return FixedScalableVFPair::getNone();
5143   }
5144 
5145   reportVectorizationFailure(
5146       "Cannot optimize for size and vectorize at the same time.",
5147       "cannot optimize for size and vectorize at the same time. "
5148       "Enable vectorization of this loop with '#pragma clang loop "
5149       "vectorize(enable)' when compiling with -Os/-Oz",
5150       "NoTailLoopWithOptForSize", ORE, TheLoop);
5151   return FixedScalableVFPair::getNone();
5152 }
5153 
5154 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5155     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5156     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5157   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5158   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5159       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5160                            : TargetTransformInfo::RGK_FixedWidthVector);
5161 
5162   // Convenience function to return the minimum of two ElementCounts.
5163   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5164     assert((LHS.isScalable() == RHS.isScalable()) &&
5165            "Scalable flags must match");
5166     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5167   };
5168 
5169   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5170   // Note that both WidestRegister and WidestType may not be a powers of 2.
5171   auto MaxVectorElementCount = ElementCount::get(
5172       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5173       ComputeScalableMaxVF);
5174   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5175   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5176                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5177 
5178   if (!MaxVectorElementCount) {
5179     LLVM_DEBUG(dbgs() << "LV: The target has no "
5180                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5181                       << " vector registers.\n");
5182     return ElementCount::getFixed(1);
5183   }
5184 
5185   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5186   if (ConstTripCount &&
5187       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5188       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5189     // If loop trip count (TC) is known at compile time there is no point in
5190     // choosing VF greater than TC (as done in the loop below). Select maximum
5191     // power of two which doesn't exceed TC.
5192     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5193     // when the TC is less than or equal to the known number of lanes.
5194     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5195     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5196                          "exceeding the constant trip count: "
5197                       << ClampedConstTripCount << "\n");
5198     return ElementCount::getFixed(ClampedConstTripCount);
5199   }
5200 
5201   TargetTransformInfo::RegisterKind RegKind =
5202       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5203                            : TargetTransformInfo::RGK_FixedWidthVector;
5204   ElementCount MaxVF = MaxVectorElementCount;
5205   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5206                             TTI.shouldMaximizeVectorBandwidth(RegKind))) {
5207     auto MaxVectorElementCountMaxBW = ElementCount::get(
5208         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5209         ComputeScalableMaxVF);
5210     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5211 
5212     // Collect all viable vectorization factors larger than the default MaxVF
5213     // (i.e. MaxVectorElementCount).
5214     SmallVector<ElementCount, 8> VFs;
5215     for (ElementCount VS = MaxVectorElementCount * 2;
5216          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5217       VFs.push_back(VS);
5218 
5219     // For each VF calculate its register usage.
5220     auto RUs = calculateRegisterUsage(VFs);
5221 
5222     // Select the largest VF which doesn't require more registers than existing
5223     // ones.
5224     for (int i = RUs.size() - 1; i >= 0; --i) {
5225       bool Selected = true;
5226       for (auto &pair : RUs[i].MaxLocalUsers) {
5227         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5228         if (pair.second > TargetNumRegisters)
5229           Selected = false;
5230       }
5231       if (Selected) {
5232         MaxVF = VFs[i];
5233         break;
5234       }
5235     }
5236     if (ElementCount MinVF =
5237             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5238       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5239         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5240                           << ") with target's minimum: " << MinVF << '\n');
5241         MaxVF = MinVF;
5242       }
5243     }
5244 
5245     // Invalidate any widening decisions we might have made, in case the loop
5246     // requires prediction (decided later), but we have already made some
5247     // load/store widening decisions.
5248     invalidateCostModelingDecisions();
5249   }
5250   return MaxVF;
5251 }
5252 
5253 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5254   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5255     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5256     auto Min = Attr.getVScaleRangeMin();
5257     auto Max = Attr.getVScaleRangeMax();
5258     if (Max && Min == Max)
5259       return Max;
5260   }
5261 
5262   return TTI.getVScaleForTuning();
5263 }
5264 
5265 bool LoopVectorizationCostModel::isMoreProfitable(
5266     const VectorizationFactor &A, const VectorizationFactor &B) const {
5267   InstructionCost CostA = A.Cost;
5268   InstructionCost CostB = B.Cost;
5269 
5270   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5271 
5272   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5273       MaxTripCount) {
5274     // If we are folding the tail and the trip count is a known (possibly small)
5275     // constant, the trip count will be rounded up to an integer number of
5276     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5277     // which we compare directly. When not folding the tail, the total cost will
5278     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5279     // approximated with the per-lane cost below instead of using the tripcount
5280     // as here.
5281     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5282     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5283     return RTCostA < RTCostB;
5284   }
5285 
5286   // Improve estimate for the vector width if it is scalable.
5287   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5288   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5289   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5290     if (A.Width.isScalable())
5291       EstimatedWidthA *= VScale.getValue();
5292     if (B.Width.isScalable())
5293       EstimatedWidthB *= VScale.getValue();
5294   }
5295 
5296   // Assume vscale may be larger than 1 (or the value being tuned for),
5297   // so that scalable vectorization is slightly favorable over fixed-width
5298   // vectorization.
5299   if (A.Width.isScalable() && !B.Width.isScalable())
5300     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5301 
5302   // To avoid the need for FP division:
5303   //      (CostA / A.Width) < (CostB / B.Width)
5304   // <=>  (CostA * B.Width) < (CostB * A.Width)
5305   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5306 }
5307 
5308 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5309     const ElementCountSet &VFCandidates) {
5310   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5311   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5312   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5313   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5314          "Expected Scalar VF to be a candidate");
5315 
5316   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5317   VectorizationFactor ChosenFactor = ScalarCost;
5318 
5319   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5320   if (ForceVectorization && VFCandidates.size() > 1) {
5321     // Ignore scalar width, because the user explicitly wants vectorization.
5322     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5323     // evaluation.
5324     ChosenFactor.Cost = InstructionCost::getMax();
5325   }
5326 
5327   SmallVector<InstructionVFPair> InvalidCosts;
5328   for (const auto &i : VFCandidates) {
5329     // The cost for scalar VF=1 is already calculated, so ignore it.
5330     if (i.isScalar())
5331       continue;
5332 
5333     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5334     VectorizationFactor Candidate(i, C.first);
5335 
5336 #ifndef NDEBUG
5337     unsigned AssumedMinimumVscale = 1;
5338     if (Optional<unsigned> VScale = getVScaleForTuning())
5339       AssumedMinimumVscale = VScale.getValue();
5340     unsigned Width =
5341         Candidate.Width.isScalable()
5342             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5343             : Candidate.Width.getFixedValue();
5344     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5345                       << " costs: " << (Candidate.Cost / Width));
5346     if (i.isScalable())
5347       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5348                         << AssumedMinimumVscale << ")");
5349     LLVM_DEBUG(dbgs() << ".\n");
5350 #endif
5351 
5352     if (!C.second && !ForceVectorization) {
5353       LLVM_DEBUG(
5354           dbgs() << "LV: Not considering vector loop of width " << i
5355                  << " because it will not generate any vector instructions.\n");
5356       continue;
5357     }
5358 
5359     // If profitable add it to ProfitableVF list.
5360     if (isMoreProfitable(Candidate, ScalarCost))
5361       ProfitableVFs.push_back(Candidate);
5362 
5363     if (isMoreProfitable(Candidate, ChosenFactor))
5364       ChosenFactor = Candidate;
5365   }
5366 
5367   // Emit a report of VFs with invalid costs in the loop.
5368   if (!InvalidCosts.empty()) {
5369     // Group the remarks per instruction, keeping the instruction order from
5370     // InvalidCosts.
5371     std::map<Instruction *, unsigned> Numbering;
5372     unsigned I = 0;
5373     for (auto &Pair : InvalidCosts)
5374       if (!Numbering.count(Pair.first))
5375         Numbering[Pair.first] = I++;
5376 
5377     // Sort the list, first on instruction(number) then on VF.
5378     llvm::sort(InvalidCosts,
5379                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5380                  if (Numbering[A.first] != Numbering[B.first])
5381                    return Numbering[A.first] < Numbering[B.first];
5382                  ElementCountComparator ECC;
5383                  return ECC(A.second, B.second);
5384                });
5385 
5386     // For a list of ordered instruction-vf pairs:
5387     //   [(load, vf1), (load, vf2), (store, vf1)]
5388     // Group the instructions together to emit separate remarks for:
5389     //   load  (vf1, vf2)
5390     //   store (vf1)
5391     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5392     auto Subset = ArrayRef<InstructionVFPair>();
5393     do {
5394       if (Subset.empty())
5395         Subset = Tail.take_front(1);
5396 
5397       Instruction *I = Subset.front().first;
5398 
5399       // If the next instruction is different, or if there are no other pairs,
5400       // emit a remark for the collated subset. e.g.
5401       //   [(load, vf1), (load, vf2))]
5402       // to emit:
5403       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5404       if (Subset == Tail || Tail[Subset.size()].first != I) {
5405         std::string OutString;
5406         raw_string_ostream OS(OutString);
5407         assert(!Subset.empty() && "Unexpected empty range");
5408         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5409         for (auto &Pair : Subset)
5410           OS << (Pair.second == Subset.front().second ? "" : ", ")
5411              << Pair.second;
5412         OS << "):";
5413         if (auto *CI = dyn_cast<CallInst>(I))
5414           OS << " call to " << CI->getCalledFunction()->getName();
5415         else
5416           OS << " " << I->getOpcodeName();
5417         OS.flush();
5418         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5419         Tail = Tail.drop_front(Subset.size());
5420         Subset = {};
5421       } else
5422         // Grow the subset by one element
5423         Subset = Tail.take_front(Subset.size() + 1);
5424     } while (!Tail.empty());
5425   }
5426 
5427   if (!EnableCondStoresVectorization && NumPredStores) {
5428     reportVectorizationFailure("There are conditional stores.",
5429         "store that is conditionally executed prevents vectorization",
5430         "ConditionalStore", ORE, TheLoop);
5431     ChosenFactor = ScalarCost;
5432   }
5433 
5434   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5435                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5436              << "LV: Vectorization seems to be not beneficial, "
5437              << "but was forced by a user.\n");
5438   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5439   return ChosenFactor;
5440 }
5441 
5442 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5443     const Loop &L, ElementCount VF) const {
5444   // Cross iteration phis such as reductions need special handling and are
5445   // currently unsupported.
5446   if (any_of(L.getHeader()->phis(),
5447              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5448     return false;
5449 
5450   // Phis with uses outside of the loop require special handling and are
5451   // currently unsupported.
5452   for (auto &Entry : Legal->getInductionVars()) {
5453     // Look for uses of the value of the induction at the last iteration.
5454     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5455     for (User *U : PostInc->users())
5456       if (!L.contains(cast<Instruction>(U)))
5457         return false;
5458     // Look for uses of penultimate value of the induction.
5459     for (User *U : Entry.first->users())
5460       if (!L.contains(cast<Instruction>(U)))
5461         return false;
5462   }
5463 
5464   // Induction variables that are widened require special handling that is
5465   // currently not supported.
5466   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5467         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5468                  this->isProfitableToScalarize(Entry.first, VF));
5469       }))
5470     return false;
5471 
5472   // Epilogue vectorization code has not been auditted to ensure it handles
5473   // non-latch exits properly.  It may be fine, but it needs auditted and
5474   // tested.
5475   if (L.getExitingBlock() != L.getLoopLatch())
5476     return false;
5477 
5478   return true;
5479 }
5480 
5481 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5482     const ElementCount VF) const {
5483   // FIXME: We need a much better cost-model to take different parameters such
5484   // as register pressure, code size increase and cost of extra branches into
5485   // account. For now we apply a very crude heuristic and only consider loops
5486   // with vectorization factors larger than a certain value.
5487   // We also consider epilogue vectorization unprofitable for targets that don't
5488   // consider interleaving beneficial (eg. MVE).
5489   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5490     return false;
5491   // FIXME: We should consider changing the threshold for scalable
5492   // vectors to take VScaleForTuning into account.
5493   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5494     return true;
5495   return false;
5496 }
5497 
5498 VectorizationFactor
5499 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5500     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5501   VectorizationFactor Result = VectorizationFactor::Disabled();
5502   if (!EnableEpilogueVectorization) {
5503     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5504     return Result;
5505   }
5506 
5507   if (!isScalarEpilogueAllowed()) {
5508     LLVM_DEBUG(
5509         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5510                   "allowed.\n";);
5511     return Result;
5512   }
5513 
5514   // Not really a cost consideration, but check for unsupported cases here to
5515   // simplify the logic.
5516   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5517     LLVM_DEBUG(
5518         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5519                   "not a supported candidate.\n";);
5520     return Result;
5521   }
5522 
5523   if (EpilogueVectorizationForceVF > 1) {
5524     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5525     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5526     if (LVP.hasPlanWithVF(ForcedEC))
5527       return {ForcedEC, 0};
5528     else {
5529       LLVM_DEBUG(
5530           dbgs()
5531               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5532       return Result;
5533     }
5534   }
5535 
5536   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5537       TheLoop->getHeader()->getParent()->hasMinSize()) {
5538     LLVM_DEBUG(
5539         dbgs()
5540             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5541     return Result;
5542   }
5543 
5544   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5545     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5546                          "this loop\n");
5547     return Result;
5548   }
5549 
5550   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5551   // the main loop handles 8 lanes per iteration. We could still benefit from
5552   // vectorizing the epilogue loop with VF=4.
5553   ElementCount EstimatedRuntimeVF = MainLoopVF;
5554   if (MainLoopVF.isScalable()) {
5555     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5556     if (Optional<unsigned> VScale = getVScaleForTuning())
5557       EstimatedRuntimeVF *= VScale.getValue();
5558   }
5559 
5560   for (auto &NextVF : ProfitableVFs)
5561     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5562           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5563          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5564         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5565         LVP.hasPlanWithVF(NextVF.Width))
5566       Result = NextVF;
5567 
5568   if (Result != VectorizationFactor::Disabled())
5569     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5570                       << Result.Width << "\n";);
5571   return Result;
5572 }
5573 
5574 std::pair<unsigned, unsigned>
5575 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5576   unsigned MinWidth = -1U;
5577   unsigned MaxWidth = 8;
5578   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5579   // For in-loop reductions, no element types are added to ElementTypesInLoop
5580   // if there are no loads/stores in the loop. In this case, check through the
5581   // reduction variables to determine the maximum width.
5582   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5583     // Reset MaxWidth so that we can find the smallest type used by recurrences
5584     // in the loop.
5585     MaxWidth = -1U;
5586     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5587       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5588       // When finding the min width used by the recurrence we need to account
5589       // for casts on the input operands of the recurrence.
5590       MaxWidth = std::min<unsigned>(
5591           MaxWidth, std::min<unsigned>(
5592                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5593                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5594     }
5595   } else {
5596     for (Type *T : ElementTypesInLoop) {
5597       MinWidth = std::min<unsigned>(
5598           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5599       MaxWidth = std::max<unsigned>(
5600           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5601     }
5602   }
5603   return {MinWidth, MaxWidth};
5604 }
5605 
5606 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5607   ElementTypesInLoop.clear();
5608   // For each block.
5609   for (BasicBlock *BB : TheLoop->blocks()) {
5610     // For each instruction in the loop.
5611     for (Instruction &I : BB->instructionsWithoutDebug()) {
5612       Type *T = I.getType();
5613 
5614       // Skip ignored values.
5615       if (ValuesToIgnore.count(&I))
5616         continue;
5617 
5618       // Only examine Loads, Stores and PHINodes.
5619       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5620         continue;
5621 
5622       // Examine PHI nodes that are reduction variables. Update the type to
5623       // account for the recurrence type.
5624       if (auto *PN = dyn_cast<PHINode>(&I)) {
5625         if (!Legal->isReductionVariable(PN))
5626           continue;
5627         const RecurrenceDescriptor &RdxDesc =
5628             Legal->getReductionVars().find(PN)->second;
5629         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5630             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5631                                       RdxDesc.getRecurrenceType(),
5632                                       TargetTransformInfo::ReductionFlags()))
5633           continue;
5634         T = RdxDesc.getRecurrenceType();
5635       }
5636 
5637       // Examine the stored values.
5638       if (auto *ST = dyn_cast<StoreInst>(&I))
5639         T = ST->getValueOperand()->getType();
5640 
5641       assert(T->isSized() &&
5642              "Expected the load/store/recurrence type to be sized");
5643 
5644       ElementTypesInLoop.insert(T);
5645     }
5646   }
5647 }
5648 
5649 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5650                                                            unsigned LoopCost) {
5651   // -- The interleave heuristics --
5652   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5653   // There are many micro-architectural considerations that we can't predict
5654   // at this level. For example, frontend pressure (on decode or fetch) due to
5655   // code size, or the number and capabilities of the execution ports.
5656   //
5657   // We use the following heuristics to select the interleave count:
5658   // 1. If the code has reductions, then we interleave to break the cross
5659   // iteration dependency.
5660   // 2. If the loop is really small, then we interleave to reduce the loop
5661   // overhead.
5662   // 3. We don't interleave if we think that we will spill registers to memory
5663   // due to the increased register pressure.
5664 
5665   if (!isScalarEpilogueAllowed())
5666     return 1;
5667 
5668   // We used the distance for the interleave count.
5669   if (Legal->getMaxSafeDepDistBytes() != -1U)
5670     return 1;
5671 
5672   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5673   const bool HasReductions = !Legal->getReductionVars().empty();
5674   // Do not interleave loops with a relatively small known or estimated trip
5675   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5676   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5677   // because with the above conditions interleaving can expose ILP and break
5678   // cross iteration dependences for reductions.
5679   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5680       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5681     return 1;
5682 
5683   // If we did not calculate the cost for VF (because the user selected the VF)
5684   // then we calculate the cost of VF here.
5685   if (LoopCost == 0) {
5686     InstructionCost C = expectedCost(VF).first;
5687     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5688     LoopCost = *C.getValue();
5689 
5690     // Loop body is free and there is no need for interleaving.
5691     if (LoopCost == 0)
5692       return 1;
5693   }
5694 
5695   RegisterUsage R = calculateRegisterUsage({VF})[0];
5696   // We divide by these constants so assume that we have at least one
5697   // instruction that uses at least one register.
5698   for (auto& pair : R.MaxLocalUsers) {
5699     pair.second = std::max(pair.second, 1U);
5700   }
5701 
5702   // We calculate the interleave count using the following formula.
5703   // Subtract the number of loop invariants from the number of available
5704   // registers. These registers are used by all of the interleaved instances.
5705   // Next, divide the remaining registers by the number of registers that is
5706   // required by the loop, in order to estimate how many parallel instances
5707   // fit without causing spills. All of this is rounded down if necessary to be
5708   // a power of two. We want power of two interleave count to simplify any
5709   // addressing operations or alignment considerations.
5710   // We also want power of two interleave counts to ensure that the induction
5711   // variable of the vector loop wraps to zero, when tail is folded by masking;
5712   // this currently happens when OptForSize, in which case IC is set to 1 above.
5713   unsigned IC = UINT_MAX;
5714 
5715   for (auto& pair : R.MaxLocalUsers) {
5716     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5717     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5718                       << " registers of "
5719                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5720     if (VF.isScalar()) {
5721       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5722         TargetNumRegisters = ForceTargetNumScalarRegs;
5723     } else {
5724       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5725         TargetNumRegisters = ForceTargetNumVectorRegs;
5726     }
5727     unsigned MaxLocalUsers = pair.second;
5728     unsigned LoopInvariantRegs = 0;
5729     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5730       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5731 
5732     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5733     // Don't count the induction variable as interleaved.
5734     if (EnableIndVarRegisterHeur) {
5735       TmpIC =
5736           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5737                         std::max(1U, (MaxLocalUsers - 1)));
5738     }
5739 
5740     IC = std::min(IC, TmpIC);
5741   }
5742 
5743   // Clamp the interleave ranges to reasonable counts.
5744   unsigned MaxInterleaveCount =
5745       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5746 
5747   // Check if the user has overridden the max.
5748   if (VF.isScalar()) {
5749     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5750       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5751   } else {
5752     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5753       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5754   }
5755 
5756   // If trip count is known or estimated compile time constant, limit the
5757   // interleave count to be less than the trip count divided by VF, provided it
5758   // is at least 1.
5759   //
5760   // For scalable vectors we can't know if interleaving is beneficial. It may
5761   // not be beneficial for small loops if none of the lanes in the second vector
5762   // iterations is enabled. However, for larger loops, there is likely to be a
5763   // similar benefit as for fixed-width vectors. For now, we choose to leave
5764   // the InterleaveCount as if vscale is '1', although if some information about
5765   // the vector is known (e.g. min vector size), we can make a better decision.
5766   if (BestKnownTC) {
5767     MaxInterleaveCount =
5768         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5769     // Make sure MaxInterleaveCount is greater than 0.
5770     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5771   }
5772 
5773   assert(MaxInterleaveCount > 0 &&
5774          "Maximum interleave count must be greater than 0");
5775 
5776   // Clamp the calculated IC to be between the 1 and the max interleave count
5777   // that the target and trip count allows.
5778   if (IC > MaxInterleaveCount)
5779     IC = MaxInterleaveCount;
5780   else
5781     // Make sure IC is greater than 0.
5782     IC = std::max(1u, IC);
5783 
5784   assert(IC > 0 && "Interleave count must be greater than 0.");
5785 
5786   // Interleave if we vectorized this loop and there is a reduction that could
5787   // benefit from interleaving.
5788   if (VF.isVector() && HasReductions) {
5789     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5790     return IC;
5791   }
5792 
5793   // For any scalar loop that either requires runtime checks or predication we
5794   // are better off leaving this to the unroller. Note that if we've already
5795   // vectorized the loop we will have done the runtime check and so interleaving
5796   // won't require further checks.
5797   bool ScalarInterleavingRequiresPredication =
5798       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5799          return Legal->blockNeedsPredication(BB);
5800        }));
5801   bool ScalarInterleavingRequiresRuntimePointerCheck =
5802       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5803 
5804   // We want to interleave small loops in order to reduce the loop overhead and
5805   // potentially expose ILP opportunities.
5806   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5807                     << "LV: IC is " << IC << '\n'
5808                     << "LV: VF is " << VF << '\n');
5809   const bool AggressivelyInterleaveReductions =
5810       TTI.enableAggressiveInterleaving(HasReductions);
5811   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5812       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5813     // We assume that the cost overhead is 1 and we use the cost model
5814     // to estimate the cost of the loop and interleave until the cost of the
5815     // loop overhead is about 5% of the cost of the loop.
5816     unsigned SmallIC =
5817         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5818 
5819     // Interleave until store/load ports (estimated by max interleave count) are
5820     // saturated.
5821     unsigned NumStores = Legal->getNumStores();
5822     unsigned NumLoads = Legal->getNumLoads();
5823     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5824     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5825 
5826     // There is little point in interleaving for reductions containing selects
5827     // and compares when VF=1 since it may just create more overhead than it's
5828     // worth for loops with small trip counts. This is because we still have to
5829     // do the final reduction after the loop.
5830     bool HasSelectCmpReductions =
5831         HasReductions &&
5832         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5833           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5834           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5835               RdxDesc.getRecurrenceKind());
5836         });
5837     if (HasSelectCmpReductions) {
5838       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5839       return 1;
5840     }
5841 
5842     // If we have a scalar reduction (vector reductions are already dealt with
5843     // by this point), we can increase the critical path length if the loop
5844     // we're interleaving is inside another loop. For tree-wise reductions
5845     // set the limit to 2, and for ordered reductions it's best to disable
5846     // interleaving entirely.
5847     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5848       bool HasOrderedReductions =
5849           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5850             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5851             return RdxDesc.isOrdered();
5852           });
5853       if (HasOrderedReductions) {
5854         LLVM_DEBUG(
5855             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5856         return 1;
5857       }
5858 
5859       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5860       SmallIC = std::min(SmallIC, F);
5861       StoresIC = std::min(StoresIC, F);
5862       LoadsIC = std::min(LoadsIC, F);
5863     }
5864 
5865     if (EnableLoadStoreRuntimeInterleave &&
5866         std::max(StoresIC, LoadsIC) > SmallIC) {
5867       LLVM_DEBUG(
5868           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5869       return std::max(StoresIC, LoadsIC);
5870     }
5871 
5872     // If there are scalar reductions and TTI has enabled aggressive
5873     // interleaving for reductions, we will interleave to expose ILP.
5874     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5875         AggressivelyInterleaveReductions) {
5876       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5877       // Interleave no less than SmallIC but not as aggressive as the normal IC
5878       // to satisfy the rare situation when resources are too limited.
5879       return std::max(IC / 2, SmallIC);
5880     } else {
5881       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5882       return SmallIC;
5883     }
5884   }
5885 
5886   // Interleave if this is a large loop (small loops are already dealt with by
5887   // this point) that could benefit from interleaving.
5888   if (AggressivelyInterleaveReductions) {
5889     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5890     return IC;
5891   }
5892 
5893   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5894   return 1;
5895 }
5896 
5897 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5898 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5899   // This function calculates the register usage by measuring the highest number
5900   // of values that are alive at a single location. Obviously, this is a very
5901   // rough estimation. We scan the loop in a topological order in order and
5902   // assign a number to each instruction. We use RPO to ensure that defs are
5903   // met before their users. We assume that each instruction that has in-loop
5904   // users starts an interval. We record every time that an in-loop value is
5905   // used, so we have a list of the first and last occurrences of each
5906   // instruction. Next, we transpose this data structure into a multi map that
5907   // holds the list of intervals that *end* at a specific location. This multi
5908   // map allows us to perform a linear search. We scan the instructions linearly
5909   // and record each time that a new interval starts, by placing it in a set.
5910   // If we find this value in the multi-map then we remove it from the set.
5911   // The max register usage is the maximum size of the set.
5912   // We also search for instructions that are defined outside the loop, but are
5913   // used inside the loop. We need this number separately from the max-interval
5914   // usage number because when we unroll, loop-invariant values do not take
5915   // more register.
5916   LoopBlocksDFS DFS(TheLoop);
5917   DFS.perform(LI);
5918 
5919   RegisterUsage RU;
5920 
5921   // Each 'key' in the map opens a new interval. The values
5922   // of the map are the index of the 'last seen' usage of the
5923   // instruction that is the key.
5924   using IntervalMap = DenseMap<Instruction *, unsigned>;
5925 
5926   // Maps instruction to its index.
5927   SmallVector<Instruction *, 64> IdxToInstr;
5928   // Marks the end of each interval.
5929   IntervalMap EndPoint;
5930   // Saves the list of instruction indices that are used in the loop.
5931   SmallPtrSet<Instruction *, 8> Ends;
5932   // Saves the list of values that are used in the loop but are
5933   // defined outside the loop, such as arguments and constants.
5934   SmallPtrSet<Value *, 8> LoopInvariants;
5935 
5936   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5937     for (Instruction &I : BB->instructionsWithoutDebug()) {
5938       IdxToInstr.push_back(&I);
5939 
5940       // Save the end location of each USE.
5941       for (Value *U : I.operands()) {
5942         auto *Instr = dyn_cast<Instruction>(U);
5943 
5944         // Ignore non-instruction values such as arguments, constants, etc.
5945         if (!Instr)
5946           continue;
5947 
5948         // If this instruction is outside the loop then record it and continue.
5949         if (!TheLoop->contains(Instr)) {
5950           LoopInvariants.insert(Instr);
5951           continue;
5952         }
5953 
5954         // Overwrite previous end points.
5955         EndPoint[Instr] = IdxToInstr.size();
5956         Ends.insert(Instr);
5957       }
5958     }
5959   }
5960 
5961   // Saves the list of intervals that end with the index in 'key'.
5962   using InstrList = SmallVector<Instruction *, 2>;
5963   DenseMap<unsigned, InstrList> TransposeEnds;
5964 
5965   // Transpose the EndPoints to a list of values that end at each index.
5966   for (auto &Interval : EndPoint)
5967     TransposeEnds[Interval.second].push_back(Interval.first);
5968 
5969   SmallPtrSet<Instruction *, 8> OpenIntervals;
5970   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5971   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5972 
5973   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5974 
5975   // A lambda that gets the register usage for the given type and VF.
5976   const auto &TTICapture = TTI;
5977   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
5978     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5979       return 0;
5980     InstructionCost::CostType RegUsage =
5981         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
5982     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
5983            "Nonsensical values for register usage.");
5984     return RegUsage;
5985   };
5986 
5987   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5988     Instruction *I = IdxToInstr[i];
5989 
5990     // Remove all of the instructions that end at this location.
5991     InstrList &List = TransposeEnds[i];
5992     for (Instruction *ToRemove : List)
5993       OpenIntervals.erase(ToRemove);
5994 
5995     // Ignore instructions that are never used within the loop.
5996     if (!Ends.count(I))
5997       continue;
5998 
5999     // Skip ignored values.
6000     if (ValuesToIgnore.count(I))
6001       continue;
6002 
6003     // For each VF find the maximum usage of registers.
6004     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6005       // Count the number of live intervals.
6006       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6007 
6008       if (VFs[j].isScalar()) {
6009         for (auto Inst : OpenIntervals) {
6010           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6011           if (RegUsage.find(ClassID) == RegUsage.end())
6012             RegUsage[ClassID] = 1;
6013           else
6014             RegUsage[ClassID] += 1;
6015         }
6016       } else {
6017         collectUniformsAndScalars(VFs[j]);
6018         for (auto Inst : OpenIntervals) {
6019           // Skip ignored values for VF > 1.
6020           if (VecValuesToIgnore.count(Inst))
6021             continue;
6022           if (isScalarAfterVectorization(Inst, VFs[j])) {
6023             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6024             if (RegUsage.find(ClassID) == RegUsage.end())
6025               RegUsage[ClassID] = 1;
6026             else
6027               RegUsage[ClassID] += 1;
6028           } else {
6029             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6030             if (RegUsage.find(ClassID) == RegUsage.end())
6031               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6032             else
6033               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6034           }
6035         }
6036       }
6037 
6038       for (auto& pair : RegUsage) {
6039         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6040           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6041         else
6042           MaxUsages[j][pair.first] = pair.second;
6043       }
6044     }
6045 
6046     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6047                       << OpenIntervals.size() << '\n');
6048 
6049     // Add the current instruction to the list of open intervals.
6050     OpenIntervals.insert(I);
6051   }
6052 
6053   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6054     SmallMapVector<unsigned, unsigned, 4> Invariant;
6055 
6056     for (auto Inst : LoopInvariants) {
6057       unsigned Usage =
6058           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6059       unsigned ClassID =
6060           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6061       if (Invariant.find(ClassID) == Invariant.end())
6062         Invariant[ClassID] = Usage;
6063       else
6064         Invariant[ClassID] += Usage;
6065     }
6066 
6067     LLVM_DEBUG({
6068       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6069       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6070              << " item\n";
6071       for (const auto &pair : MaxUsages[i]) {
6072         dbgs() << "LV(REG): RegisterClass: "
6073                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6074                << " registers\n";
6075       }
6076       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6077              << " item\n";
6078       for (const auto &pair : Invariant) {
6079         dbgs() << "LV(REG): RegisterClass: "
6080                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6081                << " registers\n";
6082       }
6083     });
6084 
6085     RU.LoopInvariantRegs = Invariant;
6086     RU.MaxLocalUsers = MaxUsages[i];
6087     RUs[i] = RU;
6088   }
6089 
6090   return RUs;
6091 }
6092 
6093 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6094                                                            ElementCount VF) {
6095   // TODO: Cost model for emulated masked load/store is completely
6096   // broken. This hack guides the cost model to use an artificially
6097   // high enough value to practically disable vectorization with such
6098   // operations, except where previously deployed legality hack allowed
6099   // using very low cost values. This is to avoid regressions coming simply
6100   // from moving "masked load/store" check from legality to cost model.
6101   // Masked Load/Gather emulation was previously never allowed.
6102   // Limited number of Masked Store/Scatter emulation was allowed.
6103   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6104   return isa<LoadInst>(I) ||
6105          (isa<StoreInst>(I) &&
6106           NumPredStores > NumberOfStoresToPredicate);
6107 }
6108 
6109 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6110   // If we aren't vectorizing the loop, or if we've already collected the
6111   // instructions to scalarize, there's nothing to do. Collection may already
6112   // have occurred if we have a user-selected VF and are now computing the
6113   // expected cost for interleaving.
6114   if (VF.isScalar() || VF.isZero() ||
6115       InstsToScalarize.find(VF) != InstsToScalarize.end())
6116     return;
6117 
6118   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6119   // not profitable to scalarize any instructions, the presence of VF in the
6120   // map will indicate that we've analyzed it already.
6121   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6122 
6123   // Find all the instructions that are scalar with predication in the loop and
6124   // determine if it would be better to not if-convert the blocks they are in.
6125   // If so, we also record the instructions to scalarize.
6126   for (BasicBlock *BB : TheLoop->blocks()) {
6127     if (!blockNeedsPredicationForAnyReason(BB))
6128       continue;
6129     for (Instruction &I : *BB)
6130       if (isScalarWithPredication(&I, VF)) {
6131         ScalarCostsTy ScalarCosts;
6132         // Do not apply discount if scalable, because that would lead to
6133         // invalid scalarization costs.
6134         // Do not apply discount logic if hacked cost is needed
6135         // for emulated masked memrefs.
6136         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6137             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6138           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6139         // Remember that BB will remain after vectorization.
6140         PredicatedBBsAfterVectorization.insert(BB);
6141       }
6142   }
6143 }
6144 
6145 int LoopVectorizationCostModel::computePredInstDiscount(
6146     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6147   assert(!isUniformAfterVectorization(PredInst, VF) &&
6148          "Instruction marked uniform-after-vectorization will be predicated");
6149 
6150   // Initialize the discount to zero, meaning that the scalar version and the
6151   // vector version cost the same.
6152   InstructionCost Discount = 0;
6153 
6154   // Holds instructions to analyze. The instructions we visit are mapped in
6155   // ScalarCosts. Those instructions are the ones that would be scalarized if
6156   // we find that the scalar version costs less.
6157   SmallVector<Instruction *, 8> Worklist;
6158 
6159   // Returns true if the given instruction can be scalarized.
6160   auto canBeScalarized = [&](Instruction *I) -> bool {
6161     // We only attempt to scalarize instructions forming a single-use chain
6162     // from the original predicated block that would otherwise be vectorized.
6163     // Although not strictly necessary, we give up on instructions we know will
6164     // already be scalar to avoid traversing chains that are unlikely to be
6165     // beneficial.
6166     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6167         isScalarAfterVectorization(I, VF))
6168       return false;
6169 
6170     // If the instruction is scalar with predication, it will be analyzed
6171     // separately. We ignore it within the context of PredInst.
6172     if (isScalarWithPredication(I, VF))
6173       return false;
6174 
6175     // If any of the instruction's operands are uniform after vectorization,
6176     // the instruction cannot be scalarized. This prevents, for example, a
6177     // masked load from being scalarized.
6178     //
6179     // We assume we will only emit a value for lane zero of an instruction
6180     // marked uniform after vectorization, rather than VF identical values.
6181     // Thus, if we scalarize an instruction that uses a uniform, we would
6182     // create uses of values corresponding to the lanes we aren't emitting code
6183     // for. This behavior can be changed by allowing getScalarValue to clone
6184     // the lane zero values for uniforms rather than asserting.
6185     for (Use &U : I->operands())
6186       if (auto *J = dyn_cast<Instruction>(U.get()))
6187         if (isUniformAfterVectorization(J, VF))
6188           return false;
6189 
6190     // Otherwise, we can scalarize the instruction.
6191     return true;
6192   };
6193 
6194   // Compute the expected cost discount from scalarizing the entire expression
6195   // feeding the predicated instruction. We currently only consider expressions
6196   // that are single-use instruction chains.
6197   Worklist.push_back(PredInst);
6198   while (!Worklist.empty()) {
6199     Instruction *I = Worklist.pop_back_val();
6200 
6201     // If we've already analyzed the instruction, there's nothing to do.
6202     if (ScalarCosts.find(I) != ScalarCosts.end())
6203       continue;
6204 
6205     // Compute the cost of the vector instruction. Note that this cost already
6206     // includes the scalarization overhead of the predicated instruction.
6207     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6208 
6209     // Compute the cost of the scalarized instruction. This cost is the cost of
6210     // the instruction as if it wasn't if-converted and instead remained in the
6211     // predicated block. We will scale this cost by block probability after
6212     // computing the scalarization overhead.
6213     InstructionCost ScalarCost =
6214         VF.getFixedValue() *
6215         getInstructionCost(I, ElementCount::getFixed(1)).first;
6216 
6217     // Compute the scalarization overhead of needed insertelement instructions
6218     // and phi nodes.
6219     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6220       ScalarCost += TTI.getScalarizationOverhead(
6221           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6222           APInt::getAllOnes(VF.getFixedValue()), true, false);
6223       ScalarCost +=
6224           VF.getFixedValue() *
6225           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6226     }
6227 
6228     // Compute the scalarization overhead of needed extractelement
6229     // instructions. For each of the instruction's operands, if the operand can
6230     // be scalarized, add it to the worklist; otherwise, account for the
6231     // overhead.
6232     for (Use &U : I->operands())
6233       if (auto *J = dyn_cast<Instruction>(U.get())) {
6234         assert(VectorType::isValidElementType(J->getType()) &&
6235                "Instruction has non-scalar type");
6236         if (canBeScalarized(J))
6237           Worklist.push_back(J);
6238         else if (needsExtract(J, VF)) {
6239           ScalarCost += TTI.getScalarizationOverhead(
6240               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6241               APInt::getAllOnes(VF.getFixedValue()), false, true);
6242         }
6243       }
6244 
6245     // Scale the total scalar cost by block probability.
6246     ScalarCost /= getReciprocalPredBlockProb();
6247 
6248     // Compute the discount. A non-negative discount means the vector version
6249     // of the instruction costs more, and scalarizing would be beneficial.
6250     Discount += VectorCost - ScalarCost;
6251     ScalarCosts[I] = ScalarCost;
6252   }
6253 
6254   return *Discount.getValue();
6255 }
6256 
6257 LoopVectorizationCostModel::VectorizationCostTy
6258 LoopVectorizationCostModel::expectedCost(
6259     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6260   VectorizationCostTy Cost;
6261 
6262   // For each block.
6263   for (BasicBlock *BB : TheLoop->blocks()) {
6264     VectorizationCostTy BlockCost;
6265 
6266     // For each instruction in the old loop.
6267     for (Instruction &I : BB->instructionsWithoutDebug()) {
6268       // Skip ignored values.
6269       if (ValuesToIgnore.count(&I) ||
6270           (VF.isVector() && VecValuesToIgnore.count(&I)))
6271         continue;
6272 
6273       VectorizationCostTy C = getInstructionCost(&I, VF);
6274 
6275       // Check if we should override the cost.
6276       if (C.first.isValid() &&
6277           ForceTargetInstructionCost.getNumOccurrences() > 0)
6278         C.first = InstructionCost(ForceTargetInstructionCost);
6279 
6280       // Keep a list of instructions with invalid costs.
6281       if (Invalid && !C.first.isValid())
6282         Invalid->emplace_back(&I, VF);
6283 
6284       BlockCost.first += C.first;
6285       BlockCost.second |= C.second;
6286       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6287                         << " for VF " << VF << " For instruction: " << I
6288                         << '\n');
6289     }
6290 
6291     // If we are vectorizing a predicated block, it will have been
6292     // if-converted. This means that the block's instructions (aside from
6293     // stores and instructions that may divide by zero) will now be
6294     // unconditionally executed. For the scalar case, we may not always execute
6295     // the predicated block, if it is an if-else block. Thus, scale the block's
6296     // cost by the probability of executing it. blockNeedsPredication from
6297     // Legal is used so as to not include all blocks in tail folded loops.
6298     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6299       BlockCost.first /= getReciprocalPredBlockProb();
6300 
6301     Cost.first += BlockCost.first;
6302     Cost.second |= BlockCost.second;
6303   }
6304 
6305   return Cost;
6306 }
6307 
6308 /// Gets Address Access SCEV after verifying that the access pattern
6309 /// is loop invariant except the induction variable dependence.
6310 ///
6311 /// This SCEV can be sent to the Target in order to estimate the address
6312 /// calculation cost.
6313 static const SCEV *getAddressAccessSCEV(
6314               Value *Ptr,
6315               LoopVectorizationLegality *Legal,
6316               PredicatedScalarEvolution &PSE,
6317               const Loop *TheLoop) {
6318 
6319   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6320   if (!Gep)
6321     return nullptr;
6322 
6323   // We are looking for a gep with all loop invariant indices except for one
6324   // which should be an induction variable.
6325   auto SE = PSE.getSE();
6326   unsigned NumOperands = Gep->getNumOperands();
6327   for (unsigned i = 1; i < NumOperands; ++i) {
6328     Value *Opd = Gep->getOperand(i);
6329     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6330         !Legal->isInductionVariable(Opd))
6331       return nullptr;
6332   }
6333 
6334   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6335   return PSE.getSCEV(Ptr);
6336 }
6337 
6338 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6339   return Legal->hasStride(I->getOperand(0)) ||
6340          Legal->hasStride(I->getOperand(1));
6341 }
6342 
6343 InstructionCost
6344 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6345                                                         ElementCount VF) {
6346   assert(VF.isVector() &&
6347          "Scalarization cost of instruction implies vectorization.");
6348   if (VF.isScalable())
6349     return InstructionCost::getInvalid();
6350 
6351   Type *ValTy = getLoadStoreType(I);
6352   auto SE = PSE.getSE();
6353 
6354   unsigned AS = getLoadStoreAddressSpace(I);
6355   Value *Ptr = getLoadStorePointerOperand(I);
6356   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6357   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6358   //       that it is being called from this specific place.
6359 
6360   // Figure out whether the access is strided and get the stride value
6361   // if it's known in compile time
6362   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6363 
6364   // Get the cost of the scalar memory instruction and address computation.
6365   InstructionCost Cost =
6366       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6367 
6368   // Don't pass *I here, since it is scalar but will actually be part of a
6369   // vectorized loop where the user of it is a vectorized instruction.
6370   const Align Alignment = getLoadStoreAlignment(I);
6371   Cost += VF.getKnownMinValue() *
6372           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6373                               AS, TTI::TCK_RecipThroughput);
6374 
6375   // Get the overhead of the extractelement and insertelement instructions
6376   // we might create due to scalarization.
6377   Cost += getScalarizationOverhead(I, VF);
6378 
6379   // If we have a predicated load/store, it will need extra i1 extracts and
6380   // conditional branches, but may not be executed for each vector lane. Scale
6381   // the cost by the probability of executing the predicated block.
6382   if (isPredicatedInst(I, VF)) {
6383     Cost /= getReciprocalPredBlockProb();
6384 
6385     // Add the cost of an i1 extract and a branch
6386     auto *Vec_i1Ty =
6387         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6388     Cost += TTI.getScalarizationOverhead(
6389         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6390         /*Insert=*/false, /*Extract=*/true);
6391     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6392 
6393     if (useEmulatedMaskMemRefHack(I, VF))
6394       // Artificially setting to a high enough value to practically disable
6395       // vectorization with such operations.
6396       Cost = 3000000;
6397   }
6398 
6399   return Cost;
6400 }
6401 
6402 InstructionCost
6403 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6404                                                     ElementCount VF) {
6405   Type *ValTy = getLoadStoreType(I);
6406   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6407   Value *Ptr = getLoadStorePointerOperand(I);
6408   unsigned AS = getLoadStoreAddressSpace(I);
6409   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6410   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6411 
6412   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6413          "Stride should be 1 or -1 for consecutive memory access");
6414   const Align Alignment = getLoadStoreAlignment(I);
6415   InstructionCost Cost = 0;
6416   if (Legal->isMaskRequired(I))
6417     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6418                                       CostKind);
6419   else
6420     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6421                                 CostKind, I);
6422 
6423   bool Reverse = ConsecutiveStride < 0;
6424   if (Reverse)
6425     Cost +=
6426         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6427   return Cost;
6428 }
6429 
6430 InstructionCost
6431 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6432                                                 ElementCount VF) {
6433   assert(Legal->isUniformMemOp(*I));
6434 
6435   Type *ValTy = getLoadStoreType(I);
6436   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6437   const Align Alignment = getLoadStoreAlignment(I);
6438   unsigned AS = getLoadStoreAddressSpace(I);
6439   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6440   if (isa<LoadInst>(I)) {
6441     return TTI.getAddressComputationCost(ValTy) +
6442            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6443                                CostKind) +
6444            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6445   }
6446   StoreInst *SI = cast<StoreInst>(I);
6447 
6448   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6449   return TTI.getAddressComputationCost(ValTy) +
6450          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6451                              CostKind) +
6452          (isLoopInvariantStoreValue
6453               ? 0
6454               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6455                                        VF.getKnownMinValue() - 1));
6456 }
6457 
6458 InstructionCost
6459 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6460                                                  ElementCount VF) {
6461   Type *ValTy = getLoadStoreType(I);
6462   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6463   const Align Alignment = getLoadStoreAlignment(I);
6464   const Value *Ptr = getLoadStorePointerOperand(I);
6465 
6466   return TTI.getAddressComputationCost(VectorTy) +
6467          TTI.getGatherScatterOpCost(
6468              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6469              TargetTransformInfo::TCK_RecipThroughput, I);
6470 }
6471 
6472 InstructionCost
6473 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6474                                                    ElementCount VF) {
6475   // TODO: Once we have support for interleaving with scalable vectors
6476   // we can calculate the cost properly here.
6477   if (VF.isScalable())
6478     return InstructionCost::getInvalid();
6479 
6480   Type *ValTy = getLoadStoreType(I);
6481   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6482   unsigned AS = getLoadStoreAddressSpace(I);
6483 
6484   auto Group = getInterleavedAccessGroup(I);
6485   assert(Group && "Fail to get an interleaved access group.");
6486 
6487   unsigned InterleaveFactor = Group->getFactor();
6488   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6489 
6490   // Holds the indices of existing members in the interleaved group.
6491   SmallVector<unsigned, 4> Indices;
6492   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6493     if (Group->getMember(IF))
6494       Indices.push_back(IF);
6495 
6496   // Calculate the cost of the whole interleaved group.
6497   bool UseMaskForGaps =
6498       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6499       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6500   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6501       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6502       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6503 
6504   if (Group->isReverse()) {
6505     // TODO: Add support for reversed masked interleaved access.
6506     assert(!Legal->isMaskRequired(I) &&
6507            "Reverse masked interleaved access not supported.");
6508     Cost +=
6509         Group->getNumMembers() *
6510         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6511   }
6512   return Cost;
6513 }
6514 
6515 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6516     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6517   using namespace llvm::PatternMatch;
6518   // Early exit for no inloop reductions
6519   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6520     return None;
6521   auto *VectorTy = cast<VectorType>(Ty);
6522 
6523   // We are looking for a pattern of, and finding the minimal acceptable cost:
6524   //  reduce(mul(ext(A), ext(B))) or
6525   //  reduce(mul(A, B)) or
6526   //  reduce(ext(A)) or
6527   //  reduce(A).
6528   // The basic idea is that we walk down the tree to do that, finding the root
6529   // reduction instruction in InLoopReductionImmediateChains. From there we find
6530   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6531   // of the components. If the reduction cost is lower then we return it for the
6532   // reduction instruction and 0 for the other instructions in the pattern. If
6533   // it is not we return an invalid cost specifying the orignal cost method
6534   // should be used.
6535   Instruction *RetI = I;
6536   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6537     if (!RetI->hasOneUser())
6538       return None;
6539     RetI = RetI->user_back();
6540   }
6541   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6542       RetI->user_back()->getOpcode() == Instruction::Add) {
6543     if (!RetI->hasOneUser())
6544       return None;
6545     RetI = RetI->user_back();
6546   }
6547 
6548   // Test if the found instruction is a reduction, and if not return an invalid
6549   // cost specifying the parent to use the original cost modelling.
6550   if (!InLoopReductionImmediateChains.count(RetI))
6551     return None;
6552 
6553   // Find the reduction this chain is a part of and calculate the basic cost of
6554   // the reduction on its own.
6555   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6556   Instruction *ReductionPhi = LastChain;
6557   while (!isa<PHINode>(ReductionPhi))
6558     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6559 
6560   const RecurrenceDescriptor &RdxDesc =
6561       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6562 
6563   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6564       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6565 
6566   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6567   // normal fmul instruction to the cost of the fadd reduction.
6568   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6569     BaseCost +=
6570         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6571 
6572   // If we're using ordered reductions then we can just return the base cost
6573   // here, since getArithmeticReductionCost calculates the full ordered
6574   // reduction cost when FP reassociation is not allowed.
6575   if (useOrderedReductions(RdxDesc))
6576     return BaseCost;
6577 
6578   // Get the operand that was not the reduction chain and match it to one of the
6579   // patterns, returning the better cost if it is found.
6580   Instruction *RedOp = RetI->getOperand(1) == LastChain
6581                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6582                            : dyn_cast<Instruction>(RetI->getOperand(1));
6583 
6584   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6585 
6586   Instruction *Op0, *Op1;
6587   if (RedOp &&
6588       match(RedOp,
6589             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6590       match(Op0, m_ZExtOrSExt(m_Value())) &&
6591       Op0->getOpcode() == Op1->getOpcode() &&
6592       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6593       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6594       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6595 
6596     // Matched reduce(ext(mul(ext(A), ext(B)))
6597     // Note that the extend opcodes need to all match, or if A==B they will have
6598     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6599     // which is equally fine.
6600     bool IsUnsigned = isa<ZExtInst>(Op0);
6601     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6602     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6603 
6604     InstructionCost ExtCost =
6605         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6606                              TTI::CastContextHint::None, CostKind, Op0);
6607     InstructionCost MulCost =
6608         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6609     InstructionCost Ext2Cost =
6610         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6611                              TTI::CastContextHint::None, CostKind, RedOp);
6612 
6613     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6614         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6615         CostKind);
6616 
6617     if (RedCost.isValid() &&
6618         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6619       return I == RetI ? RedCost : 0;
6620   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6621              !TheLoop->isLoopInvariant(RedOp)) {
6622     // Matched reduce(ext(A))
6623     bool IsUnsigned = isa<ZExtInst>(RedOp);
6624     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6625     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6626         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6627         CostKind);
6628 
6629     InstructionCost ExtCost =
6630         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6631                              TTI::CastContextHint::None, CostKind, RedOp);
6632     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6633       return I == RetI ? RedCost : 0;
6634   } else if (RedOp &&
6635              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6636     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6637         Op0->getOpcode() == Op1->getOpcode() &&
6638         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6639       bool IsUnsigned = isa<ZExtInst>(Op0);
6640       Type *Op0Ty = Op0->getOperand(0)->getType();
6641       Type *Op1Ty = Op1->getOperand(0)->getType();
6642       Type *LargestOpTy =
6643           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6644                                                                     : Op0Ty;
6645       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6646 
6647       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6648       // different sizes. We take the largest type as the ext to reduce, and add
6649       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6650       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6651           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6652           TTI::CastContextHint::None, CostKind, Op0);
6653       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6654           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6655           TTI::CastContextHint::None, CostKind, Op1);
6656       InstructionCost MulCost =
6657           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6658 
6659       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6660           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6661           CostKind);
6662       InstructionCost ExtraExtCost = 0;
6663       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6664         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6665         ExtraExtCost = TTI.getCastInstrCost(
6666             ExtraExtOp->getOpcode(), ExtType,
6667             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6668             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6669       }
6670 
6671       if (RedCost.isValid() &&
6672           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6673         return I == RetI ? RedCost : 0;
6674     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6675       // Matched reduce(mul())
6676       InstructionCost MulCost =
6677           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6678 
6679       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6680           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6681           CostKind);
6682 
6683       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6684         return I == RetI ? RedCost : 0;
6685     }
6686   }
6687 
6688   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6689 }
6690 
6691 InstructionCost
6692 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6693                                                      ElementCount VF) {
6694   // Calculate scalar cost only. Vectorization cost should be ready at this
6695   // moment.
6696   if (VF.isScalar()) {
6697     Type *ValTy = getLoadStoreType(I);
6698     const Align Alignment = getLoadStoreAlignment(I);
6699     unsigned AS = getLoadStoreAddressSpace(I);
6700 
6701     return TTI.getAddressComputationCost(ValTy) +
6702            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6703                                TTI::TCK_RecipThroughput, I);
6704   }
6705   return getWideningCost(I, VF);
6706 }
6707 
6708 LoopVectorizationCostModel::VectorizationCostTy
6709 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6710                                                ElementCount VF) {
6711   // If we know that this instruction will remain uniform, check the cost of
6712   // the scalar version.
6713   if (isUniformAfterVectorization(I, VF))
6714     VF = ElementCount::getFixed(1);
6715 
6716   if (VF.isVector() && isProfitableToScalarize(I, VF))
6717     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6718 
6719   // Forced scalars do not have any scalarization overhead.
6720   auto ForcedScalar = ForcedScalars.find(VF);
6721   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6722     auto InstSet = ForcedScalar->second;
6723     if (InstSet.count(I))
6724       return VectorizationCostTy(
6725           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6726            VF.getKnownMinValue()),
6727           false);
6728   }
6729 
6730   Type *VectorTy;
6731   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6732 
6733   bool TypeNotScalarized = false;
6734   if (VF.isVector() && VectorTy->isVectorTy()) {
6735     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6736     if (NumParts)
6737       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6738     else
6739       C = InstructionCost::getInvalid();
6740   }
6741   return VectorizationCostTy(C, TypeNotScalarized);
6742 }
6743 
6744 InstructionCost
6745 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6746                                                      ElementCount VF) const {
6747 
6748   // There is no mechanism yet to create a scalable scalarization loop,
6749   // so this is currently Invalid.
6750   if (VF.isScalable())
6751     return InstructionCost::getInvalid();
6752 
6753   if (VF.isScalar())
6754     return 0;
6755 
6756   InstructionCost Cost = 0;
6757   Type *RetTy = ToVectorTy(I->getType(), VF);
6758   if (!RetTy->isVoidTy() &&
6759       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6760     Cost += TTI.getScalarizationOverhead(
6761         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6762         false);
6763 
6764   // Some targets keep addresses scalar.
6765   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6766     return Cost;
6767 
6768   // Some targets support efficient element stores.
6769   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6770     return Cost;
6771 
6772   // Collect operands to consider.
6773   CallInst *CI = dyn_cast<CallInst>(I);
6774   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6775 
6776   // Skip operands that do not require extraction/scalarization and do not incur
6777   // any overhead.
6778   SmallVector<Type *> Tys;
6779   for (auto *V : filterExtractingOperands(Ops, VF))
6780     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6781   return Cost + TTI.getOperandsScalarizationOverhead(
6782                     filterExtractingOperands(Ops, VF), Tys);
6783 }
6784 
6785 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6786   if (VF.isScalar())
6787     return;
6788   NumPredStores = 0;
6789   for (BasicBlock *BB : TheLoop->blocks()) {
6790     // For each instruction in the old loop.
6791     for (Instruction &I : *BB) {
6792       Value *Ptr =  getLoadStorePointerOperand(&I);
6793       if (!Ptr)
6794         continue;
6795 
6796       // TODO: We should generate better code and update the cost model for
6797       // predicated uniform stores. Today they are treated as any other
6798       // predicated store (see added test cases in
6799       // invariant-store-vectorization.ll).
6800       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6801         NumPredStores++;
6802 
6803       if (Legal->isUniformMemOp(I)) {
6804         // TODO: Avoid replicating loads and stores instead of
6805         // relying on instcombine to remove them.
6806         // Load: Scalar load + broadcast
6807         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6808         InstructionCost Cost;
6809         if (isa<StoreInst>(&I) && VF.isScalable() &&
6810             isLegalGatherOrScatter(&I, VF)) {
6811           Cost = getGatherScatterCost(&I, VF);
6812           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6813         } else {
6814           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
6815                  "Cannot yet scalarize uniform stores");
6816           Cost = getUniformMemOpCost(&I, VF);
6817           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6818         }
6819         continue;
6820       }
6821 
6822       // We assume that widening is the best solution when possible.
6823       if (memoryInstructionCanBeWidened(&I, VF)) {
6824         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6825         int ConsecutiveStride = Legal->isConsecutivePtr(
6826             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6827         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6828                "Expected consecutive stride.");
6829         InstWidening Decision =
6830             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6831         setWideningDecision(&I, VF, Decision, Cost);
6832         continue;
6833       }
6834 
6835       // Choose between Interleaving, Gather/Scatter or Scalarization.
6836       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6837       unsigned NumAccesses = 1;
6838       if (isAccessInterleaved(&I)) {
6839         auto Group = getInterleavedAccessGroup(&I);
6840         assert(Group && "Fail to get an interleaved access group.");
6841 
6842         // Make one decision for the whole group.
6843         if (getWideningDecision(&I, VF) != CM_Unknown)
6844           continue;
6845 
6846         NumAccesses = Group->getNumMembers();
6847         if (interleavedAccessCanBeWidened(&I, VF))
6848           InterleaveCost = getInterleaveGroupCost(&I, VF);
6849       }
6850 
6851       InstructionCost GatherScatterCost =
6852           isLegalGatherOrScatter(&I, VF)
6853               ? getGatherScatterCost(&I, VF) * NumAccesses
6854               : InstructionCost::getInvalid();
6855 
6856       InstructionCost ScalarizationCost =
6857           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6858 
6859       // Choose better solution for the current VF,
6860       // write down this decision and use it during vectorization.
6861       InstructionCost Cost;
6862       InstWidening Decision;
6863       if (InterleaveCost <= GatherScatterCost &&
6864           InterleaveCost < ScalarizationCost) {
6865         Decision = CM_Interleave;
6866         Cost = InterleaveCost;
6867       } else if (GatherScatterCost < ScalarizationCost) {
6868         Decision = CM_GatherScatter;
6869         Cost = GatherScatterCost;
6870       } else {
6871         Decision = CM_Scalarize;
6872         Cost = ScalarizationCost;
6873       }
6874       // If the instructions belongs to an interleave group, the whole group
6875       // receives the same decision. The whole group receives the cost, but
6876       // the cost will actually be assigned to one instruction.
6877       if (auto Group = getInterleavedAccessGroup(&I))
6878         setWideningDecision(Group, VF, Decision, Cost);
6879       else
6880         setWideningDecision(&I, VF, Decision, Cost);
6881     }
6882   }
6883 
6884   // Make sure that any load of address and any other address computation
6885   // remains scalar unless there is gather/scatter support. This avoids
6886   // inevitable extracts into address registers, and also has the benefit of
6887   // activating LSR more, since that pass can't optimize vectorized
6888   // addresses.
6889   if (TTI.prefersVectorizedAddressing())
6890     return;
6891 
6892   // Start with all scalar pointer uses.
6893   SmallPtrSet<Instruction *, 8> AddrDefs;
6894   for (BasicBlock *BB : TheLoop->blocks())
6895     for (Instruction &I : *BB) {
6896       Instruction *PtrDef =
6897         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6898       if (PtrDef && TheLoop->contains(PtrDef) &&
6899           getWideningDecision(&I, VF) != CM_GatherScatter)
6900         AddrDefs.insert(PtrDef);
6901     }
6902 
6903   // Add all instructions used to generate the addresses.
6904   SmallVector<Instruction *, 4> Worklist;
6905   append_range(Worklist, AddrDefs);
6906   while (!Worklist.empty()) {
6907     Instruction *I = Worklist.pop_back_val();
6908     for (auto &Op : I->operands())
6909       if (auto *InstOp = dyn_cast<Instruction>(Op))
6910         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6911             AddrDefs.insert(InstOp).second)
6912           Worklist.push_back(InstOp);
6913   }
6914 
6915   for (auto *I : AddrDefs) {
6916     if (isa<LoadInst>(I)) {
6917       // Setting the desired widening decision should ideally be handled in
6918       // by cost functions, but since this involves the task of finding out
6919       // if the loaded register is involved in an address computation, it is
6920       // instead changed here when we know this is the case.
6921       InstWidening Decision = getWideningDecision(I, VF);
6922       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6923         // Scalarize a widened load of address.
6924         setWideningDecision(
6925             I, VF, CM_Scalarize,
6926             (VF.getKnownMinValue() *
6927              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6928       else if (auto Group = getInterleavedAccessGroup(I)) {
6929         // Scalarize an interleave group of address loads.
6930         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6931           if (Instruction *Member = Group->getMember(I))
6932             setWideningDecision(
6933                 Member, VF, CM_Scalarize,
6934                 (VF.getKnownMinValue() *
6935                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6936         }
6937       }
6938     } else
6939       // Make sure I gets scalarized and a cost estimate without
6940       // scalarization overhead.
6941       ForcedScalars[VF].insert(I);
6942   }
6943 }
6944 
6945 InstructionCost
6946 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6947                                                Type *&VectorTy) {
6948   Type *RetTy = I->getType();
6949   if (canTruncateToMinimalBitwidth(I, VF))
6950     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6951   auto SE = PSE.getSE();
6952   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6953 
6954   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6955                                                 ElementCount VF) -> bool {
6956     if (VF.isScalar())
6957       return true;
6958 
6959     auto Scalarized = InstsToScalarize.find(VF);
6960     assert(Scalarized != InstsToScalarize.end() &&
6961            "VF not yet analyzed for scalarization profitability");
6962     return !Scalarized->second.count(I) &&
6963            llvm::all_of(I->users(), [&](User *U) {
6964              auto *UI = cast<Instruction>(U);
6965              return !Scalarized->second.count(UI);
6966            });
6967   };
6968   (void) hasSingleCopyAfterVectorization;
6969 
6970   if (isScalarAfterVectorization(I, VF)) {
6971     // With the exception of GEPs and PHIs, after scalarization there should
6972     // only be one copy of the instruction generated in the loop. This is
6973     // because the VF is either 1, or any instructions that need scalarizing
6974     // have already been dealt with by the the time we get here. As a result,
6975     // it means we don't have to multiply the instruction cost by VF.
6976     assert(I->getOpcode() == Instruction::GetElementPtr ||
6977            I->getOpcode() == Instruction::PHI ||
6978            (I->getOpcode() == Instruction::BitCast &&
6979             I->getType()->isPointerTy()) ||
6980            hasSingleCopyAfterVectorization(I, VF));
6981     VectorTy = RetTy;
6982   } else
6983     VectorTy = ToVectorTy(RetTy, VF);
6984 
6985   // TODO: We need to estimate the cost of intrinsic calls.
6986   switch (I->getOpcode()) {
6987   case Instruction::GetElementPtr:
6988     // We mark this instruction as zero-cost because the cost of GEPs in
6989     // vectorized code depends on whether the corresponding memory instruction
6990     // is scalarized or not. Therefore, we handle GEPs with the memory
6991     // instruction cost.
6992     return 0;
6993   case Instruction::Br: {
6994     // In cases of scalarized and predicated instructions, there will be VF
6995     // predicated blocks in the vectorized loop. Each branch around these
6996     // blocks requires also an extract of its vector compare i1 element.
6997     bool ScalarPredicatedBB = false;
6998     BranchInst *BI = cast<BranchInst>(I);
6999     if (VF.isVector() && BI->isConditional() &&
7000         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7001          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7002       ScalarPredicatedBB = true;
7003 
7004     if (ScalarPredicatedBB) {
7005       // Not possible to scalarize scalable vector with predicated instructions.
7006       if (VF.isScalable())
7007         return InstructionCost::getInvalid();
7008       // Return cost for branches around scalarized and predicated blocks.
7009       auto *Vec_i1Ty =
7010           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7011       return (
7012           TTI.getScalarizationOverhead(
7013               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7014           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7015     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7016       // The back-edge branch will remain, as will all scalar branches.
7017       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7018     else
7019       // This branch will be eliminated by if-conversion.
7020       return 0;
7021     // Note: We currently assume zero cost for an unconditional branch inside
7022     // a predicated block since it will become a fall-through, although we
7023     // may decide in the future to call TTI for all branches.
7024   }
7025   case Instruction::PHI: {
7026     auto *Phi = cast<PHINode>(I);
7027 
7028     // First-order recurrences are replaced by vector shuffles inside the loop.
7029     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7030     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7031       return TTI.getShuffleCost(
7032           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7033           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7034 
7035     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7036     // converted into select instructions. We require N - 1 selects per phi
7037     // node, where N is the number of incoming values.
7038     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7039       return (Phi->getNumIncomingValues() - 1) *
7040              TTI.getCmpSelInstrCost(
7041                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7042                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7043                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7044 
7045     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7046   }
7047   case Instruction::UDiv:
7048   case Instruction::SDiv:
7049   case Instruction::URem:
7050   case Instruction::SRem:
7051     // If we have a predicated instruction, it may not be executed for each
7052     // vector lane. Get the scalarization cost and scale this amount by the
7053     // probability of executing the predicated block. If the instruction is not
7054     // predicated, we fall through to the next case.
7055     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7056       InstructionCost Cost = 0;
7057 
7058       // These instructions have a non-void type, so account for the phi nodes
7059       // that we will create. This cost is likely to be zero. The phi node
7060       // cost, if any, should be scaled by the block probability because it
7061       // models a copy at the end of each predicated block.
7062       Cost += VF.getKnownMinValue() *
7063               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7064 
7065       // The cost of the non-predicated instruction.
7066       Cost += VF.getKnownMinValue() *
7067               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7068 
7069       // The cost of insertelement and extractelement instructions needed for
7070       // scalarization.
7071       Cost += getScalarizationOverhead(I, VF);
7072 
7073       // Scale the cost by the probability of executing the predicated blocks.
7074       // This assumes the predicated block for each vector lane is equally
7075       // likely.
7076       return Cost / getReciprocalPredBlockProb();
7077     }
7078     LLVM_FALLTHROUGH;
7079   case Instruction::Add:
7080   case Instruction::FAdd:
7081   case Instruction::Sub:
7082   case Instruction::FSub:
7083   case Instruction::Mul:
7084   case Instruction::FMul:
7085   case Instruction::FDiv:
7086   case Instruction::FRem:
7087   case Instruction::Shl:
7088   case Instruction::LShr:
7089   case Instruction::AShr:
7090   case Instruction::And:
7091   case Instruction::Or:
7092   case Instruction::Xor: {
7093     // Since we will replace the stride by 1 the multiplication should go away.
7094     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7095       return 0;
7096 
7097     // Detect reduction patterns
7098     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7099       return *RedCost;
7100 
7101     // Certain instructions can be cheaper to vectorize if they have a constant
7102     // second vector operand. One example of this are shifts on x86.
7103     Value *Op2 = I->getOperand(1);
7104     TargetTransformInfo::OperandValueProperties Op2VP;
7105     TargetTransformInfo::OperandValueKind Op2VK =
7106         TTI.getOperandInfo(Op2, Op2VP);
7107     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7108       Op2VK = TargetTransformInfo::OK_UniformValue;
7109 
7110     SmallVector<const Value *, 4> Operands(I->operand_values());
7111     return TTI.getArithmeticInstrCost(
7112         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7113         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7114   }
7115   case Instruction::FNeg: {
7116     return TTI.getArithmeticInstrCost(
7117         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7118         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7119         TargetTransformInfo::OP_None, I->getOperand(0), I);
7120   }
7121   case Instruction::Select: {
7122     SelectInst *SI = cast<SelectInst>(I);
7123     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7124     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7125 
7126     const Value *Op0, *Op1;
7127     using namespace llvm::PatternMatch;
7128     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7129                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7130       // select x, y, false --> x & y
7131       // select x, true, y --> x | y
7132       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7133       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7134       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7135       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7136       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7137               Op1->getType()->getScalarSizeInBits() == 1);
7138 
7139       SmallVector<const Value *, 2> Operands{Op0, Op1};
7140       return TTI.getArithmeticInstrCost(
7141           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7142           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7143     }
7144 
7145     Type *CondTy = SI->getCondition()->getType();
7146     if (!ScalarCond)
7147       CondTy = VectorType::get(CondTy, VF);
7148 
7149     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7150     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7151       Pred = Cmp->getPredicate();
7152     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7153                                   CostKind, I);
7154   }
7155   case Instruction::ICmp:
7156   case Instruction::FCmp: {
7157     Type *ValTy = I->getOperand(0)->getType();
7158     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7159     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7160       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7161     VectorTy = ToVectorTy(ValTy, VF);
7162     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7163                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7164                                   I);
7165   }
7166   case Instruction::Store:
7167   case Instruction::Load: {
7168     ElementCount Width = VF;
7169     if (Width.isVector()) {
7170       InstWidening Decision = getWideningDecision(I, Width);
7171       assert(Decision != CM_Unknown &&
7172              "CM decision should be taken at this point");
7173       if (Decision == CM_Scalarize)
7174         Width = ElementCount::getFixed(1);
7175     }
7176     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7177     return getMemoryInstructionCost(I, VF);
7178   }
7179   case Instruction::BitCast:
7180     if (I->getType()->isPointerTy())
7181       return 0;
7182     LLVM_FALLTHROUGH;
7183   case Instruction::ZExt:
7184   case Instruction::SExt:
7185   case Instruction::FPToUI:
7186   case Instruction::FPToSI:
7187   case Instruction::FPExt:
7188   case Instruction::PtrToInt:
7189   case Instruction::IntToPtr:
7190   case Instruction::SIToFP:
7191   case Instruction::UIToFP:
7192   case Instruction::Trunc:
7193   case Instruction::FPTrunc: {
7194     // Computes the CastContextHint from a Load/Store instruction.
7195     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7196       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7197              "Expected a load or a store!");
7198 
7199       if (VF.isScalar() || !TheLoop->contains(I))
7200         return TTI::CastContextHint::Normal;
7201 
7202       switch (getWideningDecision(I, VF)) {
7203       case LoopVectorizationCostModel::CM_GatherScatter:
7204         return TTI::CastContextHint::GatherScatter;
7205       case LoopVectorizationCostModel::CM_Interleave:
7206         return TTI::CastContextHint::Interleave;
7207       case LoopVectorizationCostModel::CM_Scalarize:
7208       case LoopVectorizationCostModel::CM_Widen:
7209         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7210                                         : TTI::CastContextHint::Normal;
7211       case LoopVectorizationCostModel::CM_Widen_Reverse:
7212         return TTI::CastContextHint::Reversed;
7213       case LoopVectorizationCostModel::CM_Unknown:
7214         llvm_unreachable("Instr did not go through cost modelling?");
7215       }
7216 
7217       llvm_unreachable("Unhandled case!");
7218     };
7219 
7220     unsigned Opcode = I->getOpcode();
7221     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7222     // For Trunc, the context is the only user, which must be a StoreInst.
7223     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7224       if (I->hasOneUse())
7225         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7226           CCH = ComputeCCH(Store);
7227     }
7228     // For Z/Sext, the context is the operand, which must be a LoadInst.
7229     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7230              Opcode == Instruction::FPExt) {
7231       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7232         CCH = ComputeCCH(Load);
7233     }
7234 
7235     // We optimize the truncation of induction variables having constant
7236     // integer steps. The cost of these truncations is the same as the scalar
7237     // operation.
7238     if (isOptimizableIVTruncate(I, VF)) {
7239       auto *Trunc = cast<TruncInst>(I);
7240       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7241                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7242     }
7243 
7244     // Detect reduction patterns
7245     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7246       return *RedCost;
7247 
7248     Type *SrcScalarTy = I->getOperand(0)->getType();
7249     Type *SrcVecTy =
7250         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7251     if (canTruncateToMinimalBitwidth(I, VF)) {
7252       // This cast is going to be shrunk. This may remove the cast or it might
7253       // turn it into slightly different cast. For example, if MinBW == 16,
7254       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7255       //
7256       // Calculate the modified src and dest types.
7257       Type *MinVecTy = VectorTy;
7258       if (Opcode == Instruction::Trunc) {
7259         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7260         VectorTy =
7261             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7262       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7263         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7264         VectorTy =
7265             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7266       }
7267     }
7268 
7269     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7270   }
7271   case Instruction::Call: {
7272     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7273       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7274         return *RedCost;
7275     bool NeedToScalarize;
7276     CallInst *CI = cast<CallInst>(I);
7277     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7278     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7279       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7280       return std::min(CallCost, IntrinsicCost);
7281     }
7282     return CallCost;
7283   }
7284   case Instruction::ExtractValue:
7285     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7286   case Instruction::Alloca:
7287     // We cannot easily widen alloca to a scalable alloca, as
7288     // the result would need to be a vector of pointers.
7289     if (VF.isScalable())
7290       return InstructionCost::getInvalid();
7291     LLVM_FALLTHROUGH;
7292   default:
7293     // This opcode is unknown. Assume that it is the same as 'mul'.
7294     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7295   } // end of switch.
7296 }
7297 
7298 char LoopVectorize::ID = 0;
7299 
7300 static const char lv_name[] = "Loop Vectorization";
7301 
7302 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7303 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7304 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7305 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7306 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7307 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7308 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7309 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7310 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7311 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7312 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7313 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7314 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7315 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7316 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7317 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7318 
7319 namespace llvm {
7320 
7321 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7322 
7323 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7324                               bool VectorizeOnlyWhenForced) {
7325   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7326 }
7327 
7328 } // end namespace llvm
7329 
7330 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7331   // Check if the pointer operand of a load or store instruction is
7332   // consecutive.
7333   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7334     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7335   return false;
7336 }
7337 
7338 void LoopVectorizationCostModel::collectValuesToIgnore() {
7339   // Ignore ephemeral values.
7340   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7341 
7342   // Ignore type-promoting instructions we identified during reduction
7343   // detection.
7344   for (auto &Reduction : Legal->getReductionVars()) {
7345     const RecurrenceDescriptor &RedDes = Reduction.second;
7346     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7347     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7348   }
7349   // Ignore type-casting instructions we identified during induction
7350   // detection.
7351   for (auto &Induction : Legal->getInductionVars()) {
7352     const InductionDescriptor &IndDes = Induction.second;
7353     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7354     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7355   }
7356 }
7357 
7358 void LoopVectorizationCostModel::collectInLoopReductions() {
7359   for (auto &Reduction : Legal->getReductionVars()) {
7360     PHINode *Phi = Reduction.first;
7361     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7362 
7363     // We don't collect reductions that are type promoted (yet).
7364     if (RdxDesc.getRecurrenceType() != Phi->getType())
7365       continue;
7366 
7367     // If the target would prefer this reduction to happen "in-loop", then we
7368     // want to record it as such.
7369     unsigned Opcode = RdxDesc.getOpcode();
7370     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7371         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7372                                    TargetTransformInfo::ReductionFlags()))
7373       continue;
7374 
7375     // Check that we can correctly put the reductions into the loop, by
7376     // finding the chain of operations that leads from the phi to the loop
7377     // exit value.
7378     SmallVector<Instruction *, 4> ReductionOperations =
7379         RdxDesc.getReductionOpChain(Phi, TheLoop);
7380     bool InLoop = !ReductionOperations.empty();
7381     if (InLoop) {
7382       InLoopReductionChains[Phi] = ReductionOperations;
7383       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7384       Instruction *LastChain = Phi;
7385       for (auto *I : ReductionOperations) {
7386         InLoopReductionImmediateChains[I] = LastChain;
7387         LastChain = I;
7388       }
7389     }
7390     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7391                       << " reduction for phi: " << *Phi << "\n");
7392   }
7393 }
7394 
7395 // TODO: we could return a pair of values that specify the max VF and
7396 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7397 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7398 // doesn't have a cost model that can choose which plan to execute if
7399 // more than one is generated.
7400 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7401                                  LoopVectorizationCostModel &CM) {
7402   unsigned WidestType;
7403   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7404   return WidestVectorRegBits / WidestType;
7405 }
7406 
7407 VectorizationFactor
7408 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7409   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7410   ElementCount VF = UserVF;
7411   // Outer loop handling: They may require CFG and instruction level
7412   // transformations before even evaluating whether vectorization is profitable.
7413   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7414   // the vectorization pipeline.
7415   if (!OrigLoop->isInnermost()) {
7416     // If the user doesn't provide a vectorization factor, determine a
7417     // reasonable one.
7418     if (UserVF.isZero()) {
7419       VF = ElementCount::getFixed(determineVPlanVF(
7420           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7421               .getFixedSize(),
7422           CM));
7423       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7424 
7425       // Make sure we have a VF > 1 for stress testing.
7426       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7427         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7428                           << "overriding computed VF.\n");
7429         VF = ElementCount::getFixed(4);
7430       }
7431     }
7432     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7433     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7434            "VF needs to be a power of two");
7435     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7436                       << "VF " << VF << " to build VPlans.\n");
7437     buildVPlans(VF, VF);
7438 
7439     // For VPlan build stress testing, we bail out after VPlan construction.
7440     if (VPlanBuildStressTest)
7441       return VectorizationFactor::Disabled();
7442 
7443     return {VF, 0 /*Cost*/};
7444   }
7445 
7446   LLVM_DEBUG(
7447       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7448                 "VPlan-native path.\n");
7449   return VectorizationFactor::Disabled();
7450 }
7451 
7452 Optional<VectorizationFactor>
7453 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7454   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7455   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7456   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7457     return None;
7458 
7459   // Invalidate interleave groups if all blocks of loop will be predicated.
7460   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7461       !useMaskedInterleavedAccesses(*TTI)) {
7462     LLVM_DEBUG(
7463         dbgs()
7464         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7465            "which requires masked-interleaved support.\n");
7466     if (CM.InterleaveInfo.invalidateGroups())
7467       // Invalidating interleave groups also requires invalidating all decisions
7468       // based on them, which includes widening decisions and uniform and scalar
7469       // values.
7470       CM.invalidateCostModelingDecisions();
7471   }
7472 
7473   ElementCount MaxUserVF =
7474       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7475   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7476   if (!UserVF.isZero() && UserVFIsLegal) {
7477     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7478            "VF needs to be a power of two");
7479     // Collect the instructions (and their associated costs) that will be more
7480     // profitable to scalarize.
7481     if (CM.selectUserVectorizationFactor(UserVF)) {
7482       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7483       CM.collectInLoopReductions();
7484       buildVPlansWithVPRecipes(UserVF, UserVF);
7485       LLVM_DEBUG(printPlans(dbgs()));
7486       return {{UserVF, 0}};
7487     } else
7488       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7489                               "InvalidCost", ORE, OrigLoop);
7490   }
7491 
7492   // Populate the set of Vectorization Factor Candidates.
7493   ElementCountSet VFCandidates;
7494   for (auto VF = ElementCount::getFixed(1);
7495        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7496     VFCandidates.insert(VF);
7497   for (auto VF = ElementCount::getScalable(1);
7498        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7499     VFCandidates.insert(VF);
7500 
7501   for (const auto &VF : VFCandidates) {
7502     // Collect Uniform and Scalar instructions after vectorization with VF.
7503     CM.collectUniformsAndScalars(VF);
7504 
7505     // Collect the instructions (and their associated costs) that will be more
7506     // profitable to scalarize.
7507     if (VF.isVector())
7508       CM.collectInstsToScalarize(VF);
7509   }
7510 
7511   CM.collectInLoopReductions();
7512   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7513   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7514 
7515   LLVM_DEBUG(printPlans(dbgs()));
7516   if (!MaxFactors.hasVector())
7517     return VectorizationFactor::Disabled();
7518 
7519   // Select the optimal vectorization factor.
7520   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7521 
7522   // Check if it is profitable to vectorize with runtime checks.
7523   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7524   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7525     bool PragmaThresholdReached =
7526         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7527     bool ThresholdReached =
7528         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7529     if ((ThresholdReached && !Hints.allowReordering()) ||
7530         PragmaThresholdReached) {
7531       ORE->emit([&]() {
7532         return OptimizationRemarkAnalysisAliasing(
7533                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7534                    OrigLoop->getHeader())
7535                << "loop not vectorized: cannot prove it is safe to reorder "
7536                   "memory operations";
7537       });
7538       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7539       Hints.emitRemarkWithHints();
7540       return VectorizationFactor::Disabled();
7541     }
7542   }
7543   return SelectedVF;
7544 }
7545 
7546 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7547   assert(count_if(VPlans,
7548                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7549              1 &&
7550          "Best VF has not a single VPlan.");
7551 
7552   for (const VPlanPtr &Plan : VPlans) {
7553     if (Plan->hasVF(VF))
7554       return *Plan.get();
7555   }
7556   llvm_unreachable("No plan found!");
7557 }
7558 
7559 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7560   SmallVector<Metadata *, 4> MDs;
7561   // Reserve first location for self reference to the LoopID metadata node.
7562   MDs.push_back(nullptr);
7563   bool IsUnrollMetadata = false;
7564   MDNode *LoopID = L->getLoopID();
7565   if (LoopID) {
7566     // First find existing loop unrolling disable metadata.
7567     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7568       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7569       if (MD) {
7570         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7571         IsUnrollMetadata =
7572             S && S->getString().startswith("llvm.loop.unroll.disable");
7573       }
7574       MDs.push_back(LoopID->getOperand(i));
7575     }
7576   }
7577 
7578   if (!IsUnrollMetadata) {
7579     // Add runtime unroll disable metadata.
7580     LLVMContext &Context = L->getHeader()->getContext();
7581     SmallVector<Metadata *, 1> DisableOperands;
7582     DisableOperands.push_back(
7583         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7584     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7585     MDs.push_back(DisableNode);
7586     MDNode *NewLoopID = MDNode::get(Context, MDs);
7587     // Set operand 0 to refer to the loop id itself.
7588     NewLoopID->replaceOperandWith(0, NewLoopID);
7589     L->setLoopID(NewLoopID);
7590   }
7591 }
7592 
7593 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7594                                            VPlan &BestVPlan,
7595                                            InnerLoopVectorizer &ILV,
7596                                            DominatorTree *DT) {
7597   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7598                     << '\n');
7599 
7600   // Perform the actual loop transformation.
7601 
7602   // 1. Set up the skeleton for vectorization, including vector pre-header and
7603   // middle block. The vector loop is created during VPlan execution.
7604   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7605   Value *CanonicalIVStartValue;
7606   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7607       ILV.createVectorizedLoopSkeleton();
7608   ILV.collectPoisonGeneratingRecipes(State);
7609 
7610   ILV.printDebugTracesAtStart();
7611 
7612   //===------------------------------------------------===//
7613   //
7614   // Notice: any optimization or new instruction that go
7615   // into the code below should also be implemented in
7616   // the cost-model.
7617   //
7618   //===------------------------------------------------===//
7619 
7620   // 2. Copy and widen instructions from the old loop into the new loop.
7621   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7622                              ILV.getOrCreateVectorTripCount(nullptr),
7623                              CanonicalIVStartValue, State);
7624   BestVPlan.execute(&State);
7625 
7626   // Keep all loop hints from the original loop on the vector loop (we'll
7627   // replace the vectorizer-specific hints below).
7628   MDNode *OrigLoopID = OrigLoop->getLoopID();
7629 
7630   Optional<MDNode *> VectorizedLoopID =
7631       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7632                                       LLVMLoopVectorizeFollowupVectorized});
7633 
7634   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7635   if (VectorizedLoopID.hasValue())
7636     L->setLoopID(VectorizedLoopID.getValue());
7637   else {
7638     // Keep all loop hints from the original loop on the vector loop (we'll
7639     // replace the vectorizer-specific hints below).
7640     if (MDNode *LID = OrigLoop->getLoopID())
7641       L->setLoopID(LID);
7642 
7643     LoopVectorizeHints Hints(L, true, *ORE);
7644     Hints.setAlreadyVectorized();
7645   }
7646   // Disable runtime unrolling when vectorizing the epilogue loop.
7647   if (CanonicalIVStartValue)
7648     AddRuntimeUnrollDisableMetaData(L);
7649 
7650   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7651   //    predication, updating analyses.
7652   ILV.fixVectorizedLoop(State);
7653 
7654   ILV.printDebugTracesAtEnd();
7655 }
7656 
7657 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7658 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7659   for (const auto &Plan : VPlans)
7660     if (PrintVPlansInDotFormat)
7661       Plan->printDOT(O);
7662     else
7663       Plan->print(O);
7664 }
7665 #endif
7666 
7667 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7668     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7669 
7670   // We create new control-flow for the vectorized loop, so the original exit
7671   // conditions will be dead after vectorization if it's only used by the
7672   // terminator
7673   SmallVector<BasicBlock*> ExitingBlocks;
7674   OrigLoop->getExitingBlocks(ExitingBlocks);
7675   for (auto *BB : ExitingBlocks) {
7676     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7677     if (!Cmp || !Cmp->hasOneUse())
7678       continue;
7679 
7680     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7681     if (!DeadInstructions.insert(Cmp).second)
7682       continue;
7683 
7684     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7685     // TODO: can recurse through operands in general
7686     for (Value *Op : Cmp->operands()) {
7687       if (isa<TruncInst>(Op) && Op->hasOneUse())
7688           DeadInstructions.insert(cast<Instruction>(Op));
7689     }
7690   }
7691 
7692   // We create new "steps" for induction variable updates to which the original
7693   // induction variables map. An original update instruction will be dead if
7694   // all its users except the induction variable are dead.
7695   auto *Latch = OrigLoop->getLoopLatch();
7696   for (auto &Induction : Legal->getInductionVars()) {
7697     PHINode *Ind = Induction.first;
7698     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7699 
7700     // If the tail is to be folded by masking, the primary induction variable,
7701     // if exists, isn't dead: it will be used for masking. Don't kill it.
7702     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7703       continue;
7704 
7705     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7706           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7707         }))
7708       DeadInstructions.insert(IndUpdate);
7709   }
7710 }
7711 
7712 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7713 
7714 //===--------------------------------------------------------------------===//
7715 // EpilogueVectorizerMainLoop
7716 //===--------------------------------------------------------------------===//
7717 
7718 /// This function is partially responsible for generating the control flow
7719 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7720 std::pair<BasicBlock *, Value *>
7721 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7722   MDNode *OrigLoopID = OrigLoop->getLoopID();
7723 
7724   // Workaround!  Compute the trip count of the original loop and cache it
7725   // before we start modifying the CFG.  This code has a systemic problem
7726   // wherein it tries to run analysis over partially constructed IR; this is
7727   // wrong, and not simply for SCEV.  The trip count of the original loop
7728   // simply happens to be prone to hitting this in practice.  In theory, we
7729   // can hit the same issue for any SCEV, or ValueTracking query done during
7730   // mutation.  See PR49900.
7731   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7732   createVectorLoopSkeleton("");
7733 
7734   // Generate the code to check the minimum iteration count of the vector
7735   // epilogue (see below).
7736   EPI.EpilogueIterationCountCheck =
7737       emitMinimumIterationCountCheck(LoopScalarPreHeader, true);
7738   EPI.EpilogueIterationCountCheck->setName("iter.check");
7739 
7740   // Generate the code to check any assumptions that we've made for SCEV
7741   // expressions.
7742   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7743 
7744   // Generate the code that checks at runtime if arrays overlap. We put the
7745   // checks into a separate block to make the more common case of few elements
7746   // faster.
7747   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7748 
7749   // Generate the iteration count check for the main loop, *after* the check
7750   // for the epilogue loop, so that the path-length is shorter for the case
7751   // that goes directly through the vector epilogue. The longer-path length for
7752   // the main loop is compensated for, by the gain from vectorizing the larger
7753   // trip count. Note: the branch will get updated later on when we vectorize
7754   // the epilogue.
7755   EPI.MainLoopIterationCountCheck =
7756       emitMinimumIterationCountCheck(LoopScalarPreHeader, false);
7757 
7758   // Generate the induction variable.
7759   Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader);
7760   EPI.VectorTripCount = CountRoundDown;
7761 
7762   // Skip induction resume value creation here because they will be created in
7763   // the second pass. If we created them here, they wouldn't be used anyway,
7764   // because the vplan in the second pass still contains the inductions from the
7765   // original loop.
7766 
7767   return {completeLoopSkeleton(OrigLoopID), nullptr};
7768 }
7769 
7770 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7771   LLVM_DEBUG({
7772     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7773            << "Main Loop VF:" << EPI.MainLoopVF
7774            << ", Main Loop UF:" << EPI.MainLoopUF
7775            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7776            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7777   });
7778 }
7779 
7780 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7781   DEBUG_WITH_TYPE(VerboseDebug, {
7782     dbgs() << "intermediate fn:\n"
7783            << *OrigLoop->getHeader()->getParent() << "\n";
7784   });
7785 }
7786 
7787 BasicBlock *
7788 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass,
7789                                                            bool ForEpilogue) {
7790   assert(Bypass && "Expected valid bypass basic block.");
7791   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7792   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7793   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7794   // Reuse existing vector loop preheader for TC checks.
7795   // Note that new preheader block is generated for vector loop.
7796   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7797   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7798 
7799   // Generate code to check if the loop's trip count is less than VF * UF of the
7800   // main vector loop.
7801   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7802       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7803 
7804   Value *CheckMinIters = Builder.CreateICmp(
7805       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7806       "min.iters.check");
7807 
7808   if (!ForEpilogue)
7809     TCCheckBlock->setName("vector.main.loop.iter.check");
7810 
7811   // Create new preheader for vector loop.
7812   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7813                                    DT, LI, nullptr, "vector.ph");
7814 
7815   if (ForEpilogue) {
7816     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7817                                  DT->getNode(Bypass)->getIDom()) &&
7818            "TC check is expected to dominate Bypass");
7819 
7820     // Update dominator for Bypass & LoopExit.
7821     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7822     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7823       // For loops with multiple exits, there's no edge from the middle block
7824       // to exit blocks (as the epilogue must run) and thus no need to update
7825       // the immediate dominator of the exit blocks.
7826       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7827 
7828     LoopBypassBlocks.push_back(TCCheckBlock);
7829 
7830     // Save the trip count so we don't have to regenerate it in the
7831     // vec.epilog.iter.check. This is safe to do because the trip count
7832     // generated here dominates the vector epilog iter check.
7833     EPI.TripCount = Count;
7834   }
7835 
7836   ReplaceInstWithInst(
7837       TCCheckBlock->getTerminator(),
7838       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7839 
7840   return TCCheckBlock;
7841 }
7842 
7843 //===--------------------------------------------------------------------===//
7844 // EpilogueVectorizerEpilogueLoop
7845 //===--------------------------------------------------------------------===//
7846 
7847 /// This function is partially responsible for generating the control flow
7848 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7849 std::pair<BasicBlock *, Value *>
7850 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7851   MDNode *OrigLoopID = OrigLoop->getLoopID();
7852   createVectorLoopSkeleton("vec.epilog.");
7853 
7854   // Now, compare the remaining count and if there aren't enough iterations to
7855   // execute the vectorized epilogue skip to the scalar part.
7856   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7857   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7858   LoopVectorPreHeader =
7859       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7860                  LI, nullptr, "vec.epilog.ph");
7861   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7862                                           VecEpilogueIterationCountCheck);
7863 
7864   // Adjust the control flow taking the state info from the main loop
7865   // vectorization into account.
7866   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7867          "expected this to be saved from the previous pass.");
7868   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7869       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7870 
7871   DT->changeImmediateDominator(LoopVectorPreHeader,
7872                                EPI.MainLoopIterationCountCheck);
7873 
7874   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7875       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7876 
7877   if (EPI.SCEVSafetyCheck)
7878     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7879         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7880   if (EPI.MemSafetyCheck)
7881     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7882         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7883 
7884   DT->changeImmediateDominator(
7885       VecEpilogueIterationCountCheck,
7886       VecEpilogueIterationCountCheck->getSinglePredecessor());
7887 
7888   DT->changeImmediateDominator(LoopScalarPreHeader,
7889                                EPI.EpilogueIterationCountCheck);
7890   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7891     // If there is an epilogue which must run, there's no edge from the
7892     // middle block to exit blocks  and thus no need to update the immediate
7893     // dominator of the exit blocks.
7894     DT->changeImmediateDominator(LoopExitBlock,
7895                                  EPI.EpilogueIterationCountCheck);
7896 
7897   // Keep track of bypass blocks, as they feed start values to the induction
7898   // phis in the scalar loop preheader.
7899   if (EPI.SCEVSafetyCheck)
7900     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7901   if (EPI.MemSafetyCheck)
7902     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7903   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7904 
7905   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7906   // merge control-flow from the latch block and the middle block. Update the
7907   // incoming values here and move the Phi into the preheader.
7908   SmallVector<PHINode *, 4> PhisInBlock;
7909   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7910     PhisInBlock.push_back(&Phi);
7911 
7912   for (PHINode *Phi : PhisInBlock) {
7913     Phi->replaceIncomingBlockWith(
7914         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7915         VecEpilogueIterationCountCheck);
7916     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7917     if (EPI.SCEVSafetyCheck)
7918       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7919     if (EPI.MemSafetyCheck)
7920       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7921     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7922   }
7923 
7924   // Generate a resume induction for the vector epilogue and put it in the
7925   // vector epilogue preheader
7926   Type *IdxTy = Legal->getWidestInductionType();
7927   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7928                                          LoopVectorPreHeader->getFirstNonPHI());
7929   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7930   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7931                            EPI.MainLoopIterationCountCheck);
7932 
7933   // Generate induction resume values. These variables save the new starting
7934   // indexes for the scalar loop. They are used to test if there are any tail
7935   // iterations left once the vector loop has completed.
7936   // Note that when the vectorized epilogue is skipped due to iteration count
7937   // check, then the resume value for the induction variable comes from
7938   // the trip count of the main vector loop, hence passing the AdditionalBypass
7939   // argument.
7940   createInductionResumeValues({VecEpilogueIterationCountCheck,
7941                                EPI.VectorTripCount} /* AdditionalBypass */);
7942 
7943   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7944 }
7945 
7946 BasicBlock *
7947 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7948     BasicBlock *Bypass, BasicBlock *Insert) {
7949 
7950   assert(EPI.TripCount &&
7951          "Expected trip count to have been safed in the first pass.");
7952   assert(
7953       (!isa<Instruction>(EPI.TripCount) ||
7954        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7955       "saved trip count does not dominate insertion point.");
7956   Value *TC = EPI.TripCount;
7957   IRBuilder<> Builder(Insert->getTerminator());
7958   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7959 
7960   // Generate code to check if the loop's trip count is less than VF * UF of the
7961   // vector epilogue loop.
7962   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7963       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7964 
7965   Value *CheckMinIters =
7966       Builder.CreateICmp(P, Count,
7967                          createStepForVF(Builder, Count->getType(),
7968                                          EPI.EpilogueVF, EPI.EpilogueUF),
7969                          "min.epilog.iters.check");
7970 
7971   ReplaceInstWithInst(
7972       Insert->getTerminator(),
7973       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7974 
7975   LoopBypassBlocks.push_back(Insert);
7976   return Insert;
7977 }
7978 
7979 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7980   LLVM_DEBUG({
7981     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7982            << "Epilogue Loop VF:" << EPI.EpilogueVF
7983            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7984   });
7985 }
7986 
7987 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7988   DEBUG_WITH_TYPE(VerboseDebug, {
7989     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7990   });
7991 }
7992 
7993 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7994     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7995   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7996   bool PredicateAtRangeStart = Predicate(Range.Start);
7997 
7998   for (ElementCount TmpVF = Range.Start * 2;
7999        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8000     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8001       Range.End = TmpVF;
8002       break;
8003     }
8004 
8005   return PredicateAtRangeStart;
8006 }
8007 
8008 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8009 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8010 /// of VF's starting at a given VF and extending it as much as possible. Each
8011 /// vectorization decision can potentially shorten this sub-range during
8012 /// buildVPlan().
8013 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8014                                            ElementCount MaxVF) {
8015   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8016   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8017     VFRange SubRange = {VF, MaxVFPlusOne};
8018     VPlans.push_back(buildVPlan(SubRange));
8019     VF = SubRange.End;
8020   }
8021 }
8022 
8023 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8024                                          VPlanPtr &Plan) {
8025   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8026 
8027   // Look for cached value.
8028   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8029   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8030   if (ECEntryIt != EdgeMaskCache.end())
8031     return ECEntryIt->second;
8032 
8033   VPValue *SrcMask = createBlockInMask(Src, Plan);
8034 
8035   // The terminator has to be a branch inst!
8036   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8037   assert(BI && "Unexpected terminator found");
8038 
8039   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8040     return EdgeMaskCache[Edge] = SrcMask;
8041 
8042   // If source is an exiting block, we know the exit edge is dynamically dead
8043   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8044   // adding uses of an otherwise potentially dead instruction.
8045   if (OrigLoop->isLoopExiting(Src))
8046     return EdgeMaskCache[Edge] = SrcMask;
8047 
8048   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8049   assert(EdgeMask && "No Edge Mask found for condition");
8050 
8051   if (BI->getSuccessor(0) != Dst)
8052     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8053 
8054   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8055     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8056     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8057     // The select version does not introduce new UB if SrcMask is false and
8058     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8059     VPValue *False = Plan->getOrAddVPValue(
8060         ConstantInt::getFalse(BI->getCondition()->getType()));
8061     EdgeMask =
8062         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8063   }
8064 
8065   return EdgeMaskCache[Edge] = EdgeMask;
8066 }
8067 
8068 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8069   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8070 
8071   // Look for cached value.
8072   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8073   if (BCEntryIt != BlockMaskCache.end())
8074     return BCEntryIt->second;
8075 
8076   // All-one mask is modelled as no-mask following the convention for masked
8077   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8078   VPValue *BlockMask = nullptr;
8079 
8080   if (OrigLoop->getHeader() == BB) {
8081     if (!CM.blockNeedsPredicationForAnyReason(BB))
8082       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8083 
8084     // Introduce the early-exit compare IV <= BTC to form header block mask.
8085     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8086     // constructing the desired canonical IV in the header block as its first
8087     // non-phi instructions.
8088     assert(CM.foldTailByMasking() && "must fold the tail");
8089     VPBasicBlock *HeaderVPBB =
8090         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8091     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8092     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8093     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8094 
8095     VPBuilder::InsertPointGuard Guard(Builder);
8096     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8097     if (CM.TTI.emitGetActiveLaneMask()) {
8098       VPValue *TC = Plan->getOrCreateTripCount();
8099       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8100     } else {
8101       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8102       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8103     }
8104     return BlockMaskCache[BB] = BlockMask;
8105   }
8106 
8107   // This is the block mask. We OR all incoming edges.
8108   for (auto *Predecessor : predecessors(BB)) {
8109     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8110     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8111       return BlockMaskCache[BB] = EdgeMask;
8112 
8113     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8114       BlockMask = EdgeMask;
8115       continue;
8116     }
8117 
8118     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8119   }
8120 
8121   return BlockMaskCache[BB] = BlockMask;
8122 }
8123 
8124 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8125                                                 ArrayRef<VPValue *> Operands,
8126                                                 VFRange &Range,
8127                                                 VPlanPtr &Plan) {
8128   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8129          "Must be called with either a load or store");
8130 
8131   auto willWiden = [&](ElementCount VF) -> bool {
8132     if (VF.isScalar())
8133       return false;
8134     LoopVectorizationCostModel::InstWidening Decision =
8135         CM.getWideningDecision(I, VF);
8136     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8137            "CM decision should be taken at this point.");
8138     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8139       return true;
8140     if (CM.isScalarAfterVectorization(I, VF) ||
8141         CM.isProfitableToScalarize(I, VF))
8142       return false;
8143     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8144   };
8145 
8146   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8147     return nullptr;
8148 
8149   VPValue *Mask = nullptr;
8150   if (Legal->isMaskRequired(I))
8151     Mask = createBlockInMask(I->getParent(), Plan);
8152 
8153   // Determine if the pointer operand of the access is either consecutive or
8154   // reverse consecutive.
8155   LoopVectorizationCostModel::InstWidening Decision =
8156       CM.getWideningDecision(I, Range.Start);
8157   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8158   bool Consecutive =
8159       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8160 
8161   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8162     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8163                                               Consecutive, Reverse);
8164 
8165   StoreInst *Store = cast<StoreInst>(I);
8166   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8167                                             Mask, Consecutive, Reverse);
8168 }
8169 
8170 static VPWidenIntOrFpInductionRecipe *
8171 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8172                            VPValue *Start, const InductionDescriptor &IndDesc,
8173                            LoopVectorizationCostModel &CM, ScalarEvolution &SE,
8174                            Loop &OrigLoop, VFRange &Range) {
8175   // Returns true if an instruction \p I should be scalarized instead of
8176   // vectorized for the chosen vectorization factor.
8177   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8178     return CM.isScalarAfterVectorization(I, VF) ||
8179            CM.isProfitableToScalarize(I, VF);
8180   };
8181 
8182   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8183       [&](ElementCount VF) {
8184         // Returns true if we should generate a scalar version of \p IV.
8185         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8186           return true;
8187         auto isScalarInst = [&](User *U) -> bool {
8188           auto *I = cast<Instruction>(U);
8189           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8190         };
8191         return any_of(PhiOrTrunc->users(), isScalarInst);
8192       },
8193       Range);
8194   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8195       [&](ElementCount VF) {
8196         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8197       },
8198       Range);
8199   assert(IndDesc.getStartValue() ==
8200          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8201   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8202          "step must be loop invariant");
8203   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8204     return new VPWidenIntOrFpInductionRecipe(
8205         Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE);
8206   }
8207   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8208   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8209                                            !NeedsScalarIVOnly, SE);
8210 }
8211 
8212 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8213     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8214 
8215   // Check if this is an integer or fp induction. If so, build the recipe that
8216   // produces its scalar and vector values.
8217   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8218     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM,
8219                                       *PSE.getSE(), *OrigLoop, Range);
8220 
8221   // Check if this is pointer induction. If so, build the recipe for it.
8222   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8223     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8224                                              *PSE.getSE());
8225   return nullptr;
8226 }
8227 
8228 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8229     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8230     VPlan &Plan) const {
8231   // Optimize the special case where the source is a constant integer
8232   // induction variable. Notice that we can only optimize the 'trunc' case
8233   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8234   // (c) other casts depend on pointer size.
8235 
8236   // Determine whether \p K is a truncation based on an induction variable that
8237   // can be optimized.
8238   auto isOptimizableIVTruncate =
8239       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8240     return [=](ElementCount VF) -> bool {
8241       return CM.isOptimizableIVTruncate(K, VF);
8242     };
8243   };
8244 
8245   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8246           isOptimizableIVTruncate(I), Range)) {
8247 
8248     auto *Phi = cast<PHINode>(I->getOperand(0));
8249     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8250     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8251     return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(),
8252                                       *OrigLoop, Range);
8253   }
8254   return nullptr;
8255 }
8256 
8257 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8258                                                 ArrayRef<VPValue *> Operands,
8259                                                 VPlanPtr &Plan) {
8260   // If all incoming values are equal, the incoming VPValue can be used directly
8261   // instead of creating a new VPBlendRecipe.
8262   VPValue *FirstIncoming = Operands[0];
8263   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8264         return FirstIncoming == Inc;
8265       })) {
8266     return Operands[0];
8267   }
8268 
8269   unsigned NumIncoming = Phi->getNumIncomingValues();
8270   // For in-loop reductions, we do not need to create an additional select.
8271   VPValue *InLoopVal = nullptr;
8272   for (unsigned In = 0; In < NumIncoming; In++) {
8273     PHINode *PhiOp =
8274         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8275     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8276       assert(!InLoopVal && "Found more than one in-loop reduction!");
8277       InLoopVal = Operands[In];
8278     }
8279   }
8280 
8281   assert((!InLoopVal || NumIncoming == 2) &&
8282          "Found an in-loop reduction for PHI with unexpected number of "
8283          "incoming values");
8284   if (InLoopVal)
8285     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8286 
8287   // We know that all PHIs in non-header blocks are converted into selects, so
8288   // we don't have to worry about the insertion order and we can just use the
8289   // builder. At this point we generate the predication tree. There may be
8290   // duplications since this is a simple recursive scan, but future
8291   // optimizations will clean it up.
8292   SmallVector<VPValue *, 2> OperandsWithMask;
8293 
8294   for (unsigned In = 0; In < NumIncoming; In++) {
8295     VPValue *EdgeMask =
8296       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8297     assert((EdgeMask || NumIncoming == 1) &&
8298            "Multiple predecessors with one having a full mask");
8299     OperandsWithMask.push_back(Operands[In]);
8300     if (EdgeMask)
8301       OperandsWithMask.push_back(EdgeMask);
8302   }
8303   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8304 }
8305 
8306 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8307                                                    ArrayRef<VPValue *> Operands,
8308                                                    VFRange &Range) const {
8309 
8310   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8311       [this, CI](ElementCount VF) {
8312         return CM.isScalarWithPredication(CI, VF);
8313       },
8314       Range);
8315 
8316   if (IsPredicated)
8317     return nullptr;
8318 
8319   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8320   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8321              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8322              ID == Intrinsic::pseudoprobe ||
8323              ID == Intrinsic::experimental_noalias_scope_decl))
8324     return nullptr;
8325 
8326   auto willWiden = [&](ElementCount VF) -> bool {
8327     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8328     // The following case may be scalarized depending on the VF.
8329     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8330     // version of the instruction.
8331     // Is it beneficial to perform intrinsic call compared to lib call?
8332     bool NeedToScalarize = false;
8333     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8334     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8335     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8336     return UseVectorIntrinsic || !NeedToScalarize;
8337   };
8338 
8339   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8340     return nullptr;
8341 
8342   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8343   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8344 }
8345 
8346 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8347   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8348          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8349   // Instruction should be widened, unless it is scalar after vectorization,
8350   // scalarization is profitable or it is predicated.
8351   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8352     return CM.isScalarAfterVectorization(I, VF) ||
8353            CM.isProfitableToScalarize(I, VF) ||
8354            CM.isScalarWithPredication(I, VF);
8355   };
8356   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8357                                                              Range);
8358 }
8359 
8360 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8361                                            ArrayRef<VPValue *> Operands) const {
8362   auto IsVectorizableOpcode = [](unsigned Opcode) {
8363     switch (Opcode) {
8364     case Instruction::Add:
8365     case Instruction::And:
8366     case Instruction::AShr:
8367     case Instruction::BitCast:
8368     case Instruction::FAdd:
8369     case Instruction::FCmp:
8370     case Instruction::FDiv:
8371     case Instruction::FMul:
8372     case Instruction::FNeg:
8373     case Instruction::FPExt:
8374     case Instruction::FPToSI:
8375     case Instruction::FPToUI:
8376     case Instruction::FPTrunc:
8377     case Instruction::FRem:
8378     case Instruction::FSub:
8379     case Instruction::ICmp:
8380     case Instruction::IntToPtr:
8381     case Instruction::LShr:
8382     case Instruction::Mul:
8383     case Instruction::Or:
8384     case Instruction::PtrToInt:
8385     case Instruction::SDiv:
8386     case Instruction::Select:
8387     case Instruction::SExt:
8388     case Instruction::Shl:
8389     case Instruction::SIToFP:
8390     case Instruction::SRem:
8391     case Instruction::Sub:
8392     case Instruction::Trunc:
8393     case Instruction::UDiv:
8394     case Instruction::UIToFP:
8395     case Instruction::URem:
8396     case Instruction::Xor:
8397     case Instruction::ZExt:
8398       return true;
8399     }
8400     return false;
8401   };
8402 
8403   if (!IsVectorizableOpcode(I->getOpcode()))
8404     return nullptr;
8405 
8406   // Success: widen this instruction.
8407   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8408 }
8409 
8410 void VPRecipeBuilder::fixHeaderPhis() {
8411   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8412   for (VPHeaderPHIRecipe *R : PhisToFix) {
8413     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8414     VPRecipeBase *IncR =
8415         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8416     R->addOperand(IncR->getVPSingleValue());
8417   }
8418 }
8419 
8420 VPBasicBlock *VPRecipeBuilder::handleReplication(
8421     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8422     VPlanPtr &Plan) {
8423   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8424       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8425       Range);
8426 
8427   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8428       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8429       Range);
8430 
8431   // Even if the instruction is not marked as uniform, there are certain
8432   // intrinsic calls that can be effectively treated as such, so we check for
8433   // them here. Conservatively, we only do this for scalable vectors, since
8434   // for fixed-width VFs we can always fall back on full scalarization.
8435   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8436     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8437     case Intrinsic::assume:
8438     case Intrinsic::lifetime_start:
8439     case Intrinsic::lifetime_end:
8440       // For scalable vectors if one of the operands is variant then we still
8441       // want to mark as uniform, which will generate one instruction for just
8442       // the first lane of the vector. We can't scalarize the call in the same
8443       // way as for fixed-width vectors because we don't know how many lanes
8444       // there are.
8445       //
8446       // The reasons for doing it this way for scalable vectors are:
8447       //   1. For the assume intrinsic generating the instruction for the first
8448       //      lane is still be better than not generating any at all. For
8449       //      example, the input may be a splat across all lanes.
8450       //   2. For the lifetime start/end intrinsics the pointer operand only
8451       //      does anything useful when the input comes from a stack object,
8452       //      which suggests it should always be uniform. For non-stack objects
8453       //      the effect is to poison the object, which still allows us to
8454       //      remove the call.
8455       IsUniform = true;
8456       break;
8457     default:
8458       break;
8459     }
8460   }
8461 
8462   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8463                                        IsUniform, IsPredicated);
8464   setRecipe(I, Recipe);
8465   Plan->addVPValue(I, Recipe);
8466 
8467   // Find if I uses a predicated instruction. If so, it will use its scalar
8468   // value. Avoid hoisting the insert-element which packs the scalar value into
8469   // a vector value, as that happens iff all users use the vector value.
8470   for (VPValue *Op : Recipe->operands()) {
8471     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8472     if (!PredR)
8473       continue;
8474     auto *RepR =
8475         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8476     assert(RepR->isPredicated() &&
8477            "expected Replicate recipe to be predicated");
8478     RepR->setAlsoPack(false);
8479   }
8480 
8481   // Finalize the recipe for Instr, first if it is not predicated.
8482   if (!IsPredicated) {
8483     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8484     VPBB->appendRecipe(Recipe);
8485     return VPBB;
8486   }
8487   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8488 
8489   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8490   assert(SingleSucc && "VPBB must have a single successor when handling "
8491                        "predicated replication.");
8492   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8493   // Record predicated instructions for above packing optimizations.
8494   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8495   VPBlockUtils::insertBlockAfter(Region, VPBB);
8496   auto *RegSucc = new VPBasicBlock();
8497   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8498   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8499   return RegSucc;
8500 }
8501 
8502 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8503                                                       VPRecipeBase *PredRecipe,
8504                                                       VPlanPtr &Plan) {
8505   // Instructions marked for predication are replicated and placed under an
8506   // if-then construct to prevent side-effects.
8507 
8508   // Generate recipes to compute the block mask for this region.
8509   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8510 
8511   // Build the triangular if-then region.
8512   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8513   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8514   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8515   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8516   auto *PHIRecipe = Instr->getType()->isVoidTy()
8517                         ? nullptr
8518                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8519   if (PHIRecipe) {
8520     Plan->removeVPValueFor(Instr);
8521     Plan->addVPValue(Instr, PHIRecipe);
8522   }
8523   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8524   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8525   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8526 
8527   // Note: first set Entry as region entry and then connect successors starting
8528   // from it in order, to propagate the "parent" of each VPBasicBlock.
8529   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8530   VPBlockUtils::connectBlocks(Pred, Exit);
8531 
8532   return Region;
8533 }
8534 
8535 VPRecipeOrVPValueTy
8536 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8537                                         ArrayRef<VPValue *> Operands,
8538                                         VFRange &Range, VPlanPtr &Plan) {
8539   // First, check for specific widening recipes that deal with calls, memory
8540   // operations, inductions and Phi nodes.
8541   if (auto *CI = dyn_cast<CallInst>(Instr))
8542     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8543 
8544   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8545     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8546 
8547   VPRecipeBase *Recipe;
8548   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8549     if (Phi->getParent() != OrigLoop->getHeader())
8550       return tryToBlend(Phi, Operands, Plan);
8551     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8552       return toVPRecipeResult(Recipe);
8553 
8554     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8555     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8556       VPValue *StartV = Operands[0];
8557       if (Legal->isReductionVariable(Phi)) {
8558         const RecurrenceDescriptor &RdxDesc =
8559             Legal->getReductionVars().find(Phi)->second;
8560         assert(RdxDesc.getRecurrenceStartValue() ==
8561                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8562         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8563                                              CM.isInLoopReduction(Phi),
8564                                              CM.useOrderedReductions(RdxDesc));
8565       } else {
8566         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8567       }
8568 
8569       // Record the incoming value from the backedge, so we can add the incoming
8570       // value from the backedge after all recipes have been created.
8571       recordRecipeOf(cast<Instruction>(
8572           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8573       PhisToFix.push_back(PhiRecipe);
8574     } else {
8575       // TODO: record backedge value for remaining pointer induction phis.
8576       assert(Phi->getType()->isPointerTy() &&
8577              "only pointer phis should be handled here");
8578       assert(Legal->getInductionVars().count(Phi) &&
8579              "Not an induction variable");
8580       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8581       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8582       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8583     }
8584 
8585     return toVPRecipeResult(PhiRecipe);
8586   }
8587 
8588   if (isa<TruncInst>(Instr) &&
8589       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8590                                                Range, *Plan)))
8591     return toVPRecipeResult(Recipe);
8592 
8593   if (!shouldWiden(Instr, Range))
8594     return nullptr;
8595 
8596   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8597     return toVPRecipeResult(new VPWidenGEPRecipe(
8598         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8599 
8600   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8601     bool InvariantCond =
8602         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8603     return toVPRecipeResult(new VPWidenSelectRecipe(
8604         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8605   }
8606 
8607   return toVPRecipeResult(tryToWiden(Instr, Operands));
8608 }
8609 
8610 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8611                                                         ElementCount MaxVF) {
8612   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8613 
8614   // Collect instructions from the original loop that will become trivially dead
8615   // in the vectorized loop. We don't need to vectorize these instructions. For
8616   // example, original induction update instructions can become dead because we
8617   // separately emit induction "steps" when generating code for the new loop.
8618   // Similarly, we create a new latch condition when setting up the structure
8619   // of the new loop, so the old one can become dead.
8620   SmallPtrSet<Instruction *, 4> DeadInstructions;
8621   collectTriviallyDeadInstructions(DeadInstructions);
8622 
8623   // Add assume instructions we need to drop to DeadInstructions, to prevent
8624   // them from being added to the VPlan.
8625   // TODO: We only need to drop assumes in blocks that get flattend. If the
8626   // control flow is preserved, we should keep them.
8627   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8628   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8629 
8630   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8631   // Dead instructions do not need sinking. Remove them from SinkAfter.
8632   for (Instruction *I : DeadInstructions)
8633     SinkAfter.erase(I);
8634 
8635   // Cannot sink instructions after dead instructions (there won't be any
8636   // recipes for them). Instead, find the first non-dead previous instruction.
8637   for (auto &P : Legal->getSinkAfter()) {
8638     Instruction *SinkTarget = P.second;
8639     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8640     (void)FirstInst;
8641     while (DeadInstructions.contains(SinkTarget)) {
8642       assert(
8643           SinkTarget != FirstInst &&
8644           "Must find a live instruction (at least the one feeding the "
8645           "first-order recurrence PHI) before reaching beginning of the block");
8646       SinkTarget = SinkTarget->getPrevNode();
8647       assert(SinkTarget != P.first &&
8648              "sink source equals target, no sinking required");
8649     }
8650     P.second = SinkTarget;
8651   }
8652 
8653   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8654   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8655     VFRange SubRange = {VF, MaxVFPlusOne};
8656     VPlans.push_back(
8657         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8658     VF = SubRange.End;
8659   }
8660 }
8661 
8662 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8663 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8664 // BranchOnCount VPInstruction to the latch.
8665 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8666                                   bool HasNUW, bool IsVPlanNative) {
8667   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8668   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8669 
8670   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8671   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8672   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8673   Header->insert(CanonicalIVPHI, Header->begin());
8674 
8675   auto *CanonicalIVIncrement =
8676       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8677                                : VPInstruction::CanonicalIVIncrement,
8678                         {CanonicalIVPHI}, DL);
8679   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8680 
8681   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8682   if (IsVPlanNative)
8683     EB->setCondBit(nullptr);
8684   EB->appendRecipe(CanonicalIVIncrement);
8685 
8686   auto *BranchOnCount =
8687       new VPInstruction(VPInstruction::BranchOnCount,
8688                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8689   EB->appendRecipe(BranchOnCount);
8690 }
8691 
8692 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8693     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8694     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8695 
8696   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8697 
8698   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8699 
8700   // ---------------------------------------------------------------------------
8701   // Pre-construction: record ingredients whose recipes we'll need to further
8702   // process after constructing the initial VPlan.
8703   // ---------------------------------------------------------------------------
8704 
8705   // Mark instructions we'll need to sink later and their targets as
8706   // ingredients whose recipe we'll need to record.
8707   for (auto &Entry : SinkAfter) {
8708     RecipeBuilder.recordRecipeOf(Entry.first);
8709     RecipeBuilder.recordRecipeOf(Entry.second);
8710   }
8711   for (auto &Reduction : CM.getInLoopReductionChains()) {
8712     PHINode *Phi = Reduction.first;
8713     RecurKind Kind =
8714         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8715     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8716 
8717     RecipeBuilder.recordRecipeOf(Phi);
8718     for (auto &R : ReductionOperations) {
8719       RecipeBuilder.recordRecipeOf(R);
8720       // For min/max reductions, where we have a pair of icmp/select, we also
8721       // need to record the ICmp recipe, so it can be removed later.
8722       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8723              "Only min/max recurrences allowed for inloop reductions");
8724       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8725         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8726     }
8727   }
8728 
8729   // For each interleave group which is relevant for this (possibly trimmed)
8730   // Range, add it to the set of groups to be later applied to the VPlan and add
8731   // placeholders for its members' Recipes which we'll be replacing with a
8732   // single VPInterleaveRecipe.
8733   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8734     auto applyIG = [IG, this](ElementCount VF) -> bool {
8735       return (VF.isVector() && // Query is illegal for VF == 1
8736               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8737                   LoopVectorizationCostModel::CM_Interleave);
8738     };
8739     if (!getDecisionAndClampRange(applyIG, Range))
8740       continue;
8741     InterleaveGroups.insert(IG);
8742     for (unsigned i = 0; i < IG->getFactor(); i++)
8743       if (Instruction *Member = IG->getMember(i))
8744         RecipeBuilder.recordRecipeOf(Member);
8745   };
8746 
8747   // ---------------------------------------------------------------------------
8748   // Build initial VPlan: Scan the body of the loop in a topological order to
8749   // visit each basic block after having visited its predecessor basic blocks.
8750   // ---------------------------------------------------------------------------
8751 
8752   // Create initial VPlan skeleton, starting with a block for the pre-header,
8753   // followed by a region for the vector loop. The skeleton vector loop region
8754   // contains a header and latch block.
8755   VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
8756   auto Plan = std::make_unique<VPlan>(Preheader);
8757 
8758   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
8759   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8760   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8761   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8762   VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
8763 
8764   Instruction *DLInst =
8765       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8766   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8767                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8768                         !CM.foldTailByMasking(), false);
8769 
8770   // Scan the body of the loop in a topological order to visit each basic block
8771   // after having visited its predecessor basic blocks.
8772   LoopBlocksDFS DFS(OrigLoop);
8773   DFS.perform(LI);
8774 
8775   VPBasicBlock *VPBB = HeaderVPBB;
8776   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8777   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8778     // Relevant instructions from basic block BB will be grouped into VPRecipe
8779     // ingredients and fill a new VPBasicBlock.
8780     unsigned VPBBsForBB = 0;
8781     if (VPBB != HeaderVPBB)
8782       VPBB->setName(BB->getName());
8783     Builder.setInsertPoint(VPBB);
8784 
8785     // Introduce each ingredient into VPlan.
8786     // TODO: Model and preserve debug instrinsics in VPlan.
8787     for (Instruction &I : BB->instructionsWithoutDebug()) {
8788       Instruction *Instr = &I;
8789 
8790       // First filter out irrelevant instructions, to ensure no recipes are
8791       // built for them.
8792       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8793         continue;
8794 
8795       SmallVector<VPValue *, 4> Operands;
8796       auto *Phi = dyn_cast<PHINode>(Instr);
8797       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8798         Operands.push_back(Plan->getOrAddVPValue(
8799             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8800       } else {
8801         auto OpRange = Plan->mapToVPValues(Instr->operands());
8802         Operands = {OpRange.begin(), OpRange.end()};
8803       }
8804       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8805               Instr, Operands, Range, Plan)) {
8806         // If Instr can be simplified to an existing VPValue, use it.
8807         if (RecipeOrValue.is<VPValue *>()) {
8808           auto *VPV = RecipeOrValue.get<VPValue *>();
8809           Plan->addVPValue(Instr, VPV);
8810           // If the re-used value is a recipe, register the recipe for the
8811           // instruction, in case the recipe for Instr needs to be recorded.
8812           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8813             RecipeBuilder.setRecipe(Instr, R);
8814           continue;
8815         }
8816         // Otherwise, add the new recipe.
8817         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8818         for (auto *Def : Recipe->definedValues()) {
8819           auto *UV = Def->getUnderlyingValue();
8820           Plan->addVPValue(UV, Def);
8821         }
8822 
8823         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8824             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8825           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8826           // of the header block. That can happen for truncates of induction
8827           // variables. Those recipes are moved to the phi section of the header
8828           // block after applying SinkAfter, which relies on the original
8829           // position of the trunc.
8830           assert(isa<TruncInst>(Instr));
8831           InductionsToMove.push_back(
8832               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8833         }
8834         RecipeBuilder.setRecipe(Instr, Recipe);
8835         VPBB->appendRecipe(Recipe);
8836         continue;
8837       }
8838 
8839       // Otherwise, if all widening options failed, Instruction is to be
8840       // replicated. This may create a successor for VPBB.
8841       VPBasicBlock *NextVPBB =
8842           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8843       if (NextVPBB != VPBB) {
8844         VPBB = NextVPBB;
8845         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8846                                     : "");
8847       }
8848     }
8849 
8850     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8851     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8852   }
8853 
8854   HeaderVPBB->setName("vector.body");
8855 
8856   // Fold the last, empty block into its predecessor.
8857   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8858   assert(VPBB && "expected to fold last (empty) block");
8859   // After here, VPBB should not be used.
8860   VPBB = nullptr;
8861 
8862   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8863          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8864          "entry block must be set to a VPRegionBlock having a non-empty entry "
8865          "VPBasicBlock");
8866   RecipeBuilder.fixHeaderPhis();
8867 
8868   // ---------------------------------------------------------------------------
8869   // Transform initial VPlan: Apply previously taken decisions, in order, to
8870   // bring the VPlan to its final state.
8871   // ---------------------------------------------------------------------------
8872 
8873   // Apply Sink-After legal constraints.
8874   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8875     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8876     if (Region && Region->isReplicator()) {
8877       assert(Region->getNumSuccessors() == 1 &&
8878              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8879       assert(R->getParent()->size() == 1 &&
8880              "A recipe in an original replicator region must be the only "
8881              "recipe in its block");
8882       return Region;
8883     }
8884     return nullptr;
8885   };
8886   for (auto &Entry : SinkAfter) {
8887     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8888     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8889 
8890     auto *TargetRegion = GetReplicateRegion(Target);
8891     auto *SinkRegion = GetReplicateRegion(Sink);
8892     if (!SinkRegion) {
8893       // If the sink source is not a replicate region, sink the recipe directly.
8894       if (TargetRegion) {
8895         // The target is in a replication region, make sure to move Sink to
8896         // the block after it, not into the replication region itself.
8897         VPBasicBlock *NextBlock =
8898             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8899         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8900       } else
8901         Sink->moveAfter(Target);
8902       continue;
8903     }
8904 
8905     // The sink source is in a replicate region. Unhook the region from the CFG.
8906     auto *SinkPred = SinkRegion->getSinglePredecessor();
8907     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8908     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8909     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8910     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8911 
8912     if (TargetRegion) {
8913       // The target recipe is also in a replicate region, move the sink region
8914       // after the target region.
8915       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8916       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8917       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8918       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8919     } else {
8920       // The sink source is in a replicate region, we need to move the whole
8921       // replicate region, which should only contain a single recipe in the
8922       // main block.
8923       auto *SplitBlock =
8924           Target->getParent()->splitAt(std::next(Target->getIterator()));
8925 
8926       auto *SplitPred = SplitBlock->getSinglePredecessor();
8927 
8928       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8929       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8930       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8931     }
8932   }
8933 
8934   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8935   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8936 
8937   // Now that sink-after is done, move induction recipes for optimized truncates
8938   // to the phi section of the header block.
8939   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8940     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8941 
8942   // Adjust the recipes for any inloop reductions.
8943   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
8944                              RecipeBuilder, Range.Start);
8945 
8946   // Introduce a recipe to combine the incoming and previous values of a
8947   // first-order recurrence.
8948   for (VPRecipeBase &R :
8949        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8950     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8951     if (!RecurPhi)
8952       continue;
8953 
8954     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8955     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8956     auto *Region = GetReplicateRegion(PrevRecipe);
8957     if (Region)
8958       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
8959     if (Region || PrevRecipe->isPhi())
8960       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8961     else
8962       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8963 
8964     auto *RecurSplice = cast<VPInstruction>(
8965         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8966                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8967 
8968     RecurPhi->replaceAllUsesWith(RecurSplice);
8969     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8970     // all users.
8971     RecurSplice->setOperand(0, RecurPhi);
8972   }
8973 
8974   // Interleave memory: for each Interleave Group we marked earlier as relevant
8975   // for this VPlan, replace the Recipes widening its memory instructions with a
8976   // single VPInterleaveRecipe at its insertion point.
8977   for (auto IG : InterleaveGroups) {
8978     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8979         RecipeBuilder.getRecipe(IG->getInsertPos()));
8980     SmallVector<VPValue *, 4> StoredValues;
8981     for (unsigned i = 0; i < IG->getFactor(); ++i)
8982       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8983         auto *StoreR =
8984             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
8985         StoredValues.push_back(StoreR->getStoredValue());
8986       }
8987 
8988     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8989                                         Recipe->getMask());
8990     VPIG->insertBefore(Recipe);
8991     unsigned J = 0;
8992     for (unsigned i = 0; i < IG->getFactor(); ++i)
8993       if (Instruction *Member = IG->getMember(i)) {
8994         if (!Member->getType()->isVoidTy()) {
8995           VPValue *OriginalV = Plan->getVPValue(Member);
8996           Plan->removeVPValueFor(Member);
8997           Plan->addVPValue(Member, VPIG->getVPValue(J));
8998           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8999           J++;
9000         }
9001         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9002       }
9003   }
9004 
9005   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9006   // in ways that accessing values using original IR values is incorrect.
9007   Plan->disableValue2VPValue();
9008 
9009   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9010   VPlanTransforms::sinkScalarOperands(*Plan);
9011   VPlanTransforms::mergeReplicateRegions(*Plan);
9012   VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop);
9013 
9014   std::string PlanName;
9015   raw_string_ostream RSO(PlanName);
9016   ElementCount VF = Range.Start;
9017   Plan->addVF(VF);
9018   RSO << "Initial VPlan for VF={" << VF;
9019   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9020     Plan->addVF(VF);
9021     RSO << "," << VF;
9022   }
9023   RSO << "},UF>=1";
9024   RSO.flush();
9025   Plan->setName(PlanName);
9026 
9027   // Fold Exit block into its predecessor if possible.
9028   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9029   // VPBasicBlock as exit.
9030   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9031 
9032   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9033   return Plan;
9034 }
9035 
9036 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9037   // Outer loop handling: They may require CFG and instruction level
9038   // transformations before even evaluating whether vectorization is profitable.
9039   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9040   // the vectorization pipeline.
9041   assert(!OrigLoop->isInnermost());
9042   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9043 
9044   // Create new empty VPlan
9045   auto Plan = std::make_unique<VPlan>();
9046 
9047   // Build hierarchical CFG
9048   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9049   HCFGBuilder.buildHierarchicalCFG();
9050 
9051   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9052        VF *= 2)
9053     Plan->addVF(VF);
9054 
9055   if (EnableVPlanPredication) {
9056     VPlanPredicator VPP(*Plan);
9057     VPP.predicate();
9058 
9059     // Avoid running transformation to recipes until masked code generation in
9060     // VPlan-native path is in place.
9061     return Plan;
9062   }
9063 
9064   SmallPtrSet<Instruction *, 1> DeadInstructions;
9065   VPlanTransforms::VPInstructionsToVPRecipes(
9066       OrigLoop, Plan,
9067       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9068       DeadInstructions, *PSE.getSE());
9069 
9070   // Update plan to be compatible with the inner loop vectorizer for
9071   // code-generation.
9072   VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
9073   VPBasicBlock *Preheader = LoopRegion->getEntryBasicBlock();
9074   VPBasicBlock *Exit = LoopRegion->getExitBasicBlock();
9075   VPBlockBase *Latch = Exit->getSinglePredecessor();
9076   VPBlockBase *Header = Preheader->getSingleSuccessor();
9077 
9078   // 1. Move preheader block out of main vector loop.
9079   Preheader->setParent(LoopRegion->getParent());
9080   VPBlockUtils::disconnectBlocks(Preheader, Header);
9081   VPBlockUtils::connectBlocks(Preheader, LoopRegion);
9082   Plan->setEntry(Preheader);
9083 
9084   // 2. Disconnect backedge and exit block.
9085   VPBlockUtils::disconnectBlocks(Latch, Header);
9086   VPBlockUtils::disconnectBlocks(Latch, Exit);
9087 
9088   // 3. Update entry and exit of main vector loop region.
9089   LoopRegion->setEntry(Header);
9090   LoopRegion->setExit(Latch);
9091 
9092   // 4. Remove exit block.
9093   delete Exit;
9094 
9095   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9096                         true, true);
9097   return Plan;
9098 }
9099 
9100 // Adjust the recipes for reductions. For in-loop reductions the chain of
9101 // instructions leading from the loop exit instr to the phi need to be converted
9102 // to reductions, with one operand being vector and the other being the scalar
9103 // reduction chain. For other reductions, a select is introduced between the phi
9104 // and live-out recipes when folding the tail.
9105 void LoopVectorizationPlanner::adjustRecipesForReductions(
9106     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9107     ElementCount MinVF) {
9108   for (auto &Reduction : CM.getInLoopReductionChains()) {
9109     PHINode *Phi = Reduction.first;
9110     const RecurrenceDescriptor &RdxDesc =
9111         Legal->getReductionVars().find(Phi)->second;
9112     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9113 
9114     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9115       continue;
9116 
9117     // ReductionOperations are orders top-down from the phi's use to the
9118     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9119     // which of the two operands will remain scalar and which will be reduced.
9120     // For minmax the chain will be the select instructions.
9121     Instruction *Chain = Phi;
9122     for (Instruction *R : ReductionOperations) {
9123       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9124       RecurKind Kind = RdxDesc.getRecurrenceKind();
9125 
9126       VPValue *ChainOp = Plan->getVPValue(Chain);
9127       unsigned FirstOpId;
9128       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9129              "Only min/max recurrences allowed for inloop reductions");
9130       // Recognize a call to the llvm.fmuladd intrinsic.
9131       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9132       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9133              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9134       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9135         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9136                "Expected to replace a VPWidenSelectSC");
9137         FirstOpId = 1;
9138       } else {
9139         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9140                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9141                "Expected to replace a VPWidenSC");
9142         FirstOpId = 0;
9143       }
9144       unsigned VecOpId =
9145           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9146       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9147 
9148       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9149                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9150                          : nullptr;
9151 
9152       if (IsFMulAdd) {
9153         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9154         // need to create an fmul recipe to use as the vector operand for the
9155         // fadd reduction.
9156         VPInstruction *FMulRecipe = new VPInstruction(
9157             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9158         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9159         WidenRecipe->getParent()->insert(FMulRecipe,
9160                                          WidenRecipe->getIterator());
9161         VecOp = FMulRecipe;
9162       }
9163       VPReductionRecipe *RedRecipe =
9164           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9165       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9166       Plan->removeVPValueFor(R);
9167       Plan->addVPValue(R, RedRecipe);
9168       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9169       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9170       WidenRecipe->eraseFromParent();
9171 
9172       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9173         VPRecipeBase *CompareRecipe =
9174             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9175         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9176                "Expected to replace a VPWidenSC");
9177         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9178                "Expected no remaining users");
9179         CompareRecipe->eraseFromParent();
9180       }
9181       Chain = R;
9182     }
9183   }
9184 
9185   // If tail is folded by masking, introduce selects between the phi
9186   // and the live-out instruction of each reduction, at the beginning of the
9187   // dedicated latch block.
9188   if (CM.foldTailByMasking()) {
9189     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9190     for (VPRecipeBase &R :
9191          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9192       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9193       if (!PhiR || PhiR->isInLoop())
9194         continue;
9195       VPValue *Cond =
9196           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9197       VPValue *Red = PhiR->getBackedgeValue();
9198       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9199              "reduction recipe must be defined before latch");
9200       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9201     }
9202   }
9203 }
9204 
9205 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9206 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9207                                VPSlotTracker &SlotTracker) const {
9208   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9209   IG->getInsertPos()->printAsOperand(O, false);
9210   O << ", ";
9211   getAddr()->printAsOperand(O, SlotTracker);
9212   VPValue *Mask = getMask();
9213   if (Mask) {
9214     O << ", ";
9215     Mask->printAsOperand(O, SlotTracker);
9216   }
9217 
9218   unsigned OpIdx = 0;
9219   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9220     if (!IG->getMember(i))
9221       continue;
9222     if (getNumStoreOperands() > 0) {
9223       O << "\n" << Indent << "  store ";
9224       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9225       O << " to index " << i;
9226     } else {
9227       O << "\n" << Indent << "  ";
9228       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9229       O << " = load from index " << i;
9230     }
9231     ++OpIdx;
9232   }
9233 }
9234 #endif
9235 
9236 void VPWidenCallRecipe::execute(VPTransformState &State) {
9237   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9238                                   *this, State);
9239 }
9240 
9241 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9242   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9243   State.ILV->setDebugLocFromInst(&I);
9244 
9245   // The condition can be loop invariant  but still defined inside the
9246   // loop. This means that we can't just use the original 'cond' value.
9247   // We have to take the 'vectorized' value and pick the first lane.
9248   // Instcombine will make this a no-op.
9249   auto *InvarCond =
9250       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9251 
9252   for (unsigned Part = 0; Part < State.UF; ++Part) {
9253     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9254     Value *Op0 = State.get(getOperand(1), Part);
9255     Value *Op1 = State.get(getOperand(2), Part);
9256     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9257     State.set(this, Sel, Part);
9258     State.ILV->addMetadata(Sel, &I);
9259   }
9260 }
9261 
9262 void VPWidenRecipe::execute(VPTransformState &State) {
9263   auto &I = *cast<Instruction>(getUnderlyingValue());
9264   auto &Builder = State.Builder;
9265   switch (I.getOpcode()) {
9266   case Instruction::Call:
9267   case Instruction::Br:
9268   case Instruction::PHI:
9269   case Instruction::GetElementPtr:
9270   case Instruction::Select:
9271     llvm_unreachable("This instruction is handled by a different recipe.");
9272   case Instruction::UDiv:
9273   case Instruction::SDiv:
9274   case Instruction::SRem:
9275   case Instruction::URem:
9276   case Instruction::Add:
9277   case Instruction::FAdd:
9278   case Instruction::Sub:
9279   case Instruction::FSub:
9280   case Instruction::FNeg:
9281   case Instruction::Mul:
9282   case Instruction::FMul:
9283   case Instruction::FDiv:
9284   case Instruction::FRem:
9285   case Instruction::Shl:
9286   case Instruction::LShr:
9287   case Instruction::AShr:
9288   case Instruction::And:
9289   case Instruction::Or:
9290   case Instruction::Xor: {
9291     // Just widen unops and binops.
9292     State.ILV->setDebugLocFromInst(&I);
9293 
9294     for (unsigned Part = 0; Part < State.UF; ++Part) {
9295       SmallVector<Value *, 2> Ops;
9296       for (VPValue *VPOp : operands())
9297         Ops.push_back(State.get(VPOp, Part));
9298 
9299       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9300 
9301       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9302         VecOp->copyIRFlags(&I);
9303 
9304         // If the instruction is vectorized and was in a basic block that needed
9305         // predication, we can't propagate poison-generating flags (nuw/nsw,
9306         // exact, etc.). The control flow has been linearized and the
9307         // instruction is no longer guarded by the predicate, which could make
9308         // the flag properties to no longer hold.
9309         if (State.MayGeneratePoisonRecipes.contains(this))
9310           VecOp->dropPoisonGeneratingFlags();
9311       }
9312 
9313       // Use this vector value for all users of the original instruction.
9314       State.set(this, V, Part);
9315       State.ILV->addMetadata(V, &I);
9316     }
9317 
9318     break;
9319   }
9320   case Instruction::ICmp:
9321   case Instruction::FCmp: {
9322     // Widen compares. Generate vector compares.
9323     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9324     auto *Cmp = cast<CmpInst>(&I);
9325     State.ILV->setDebugLocFromInst(Cmp);
9326     for (unsigned Part = 0; Part < State.UF; ++Part) {
9327       Value *A = State.get(getOperand(0), Part);
9328       Value *B = State.get(getOperand(1), Part);
9329       Value *C = nullptr;
9330       if (FCmp) {
9331         // Propagate fast math flags.
9332         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9333         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9334         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9335       } else {
9336         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9337       }
9338       State.set(this, C, Part);
9339       State.ILV->addMetadata(C, &I);
9340     }
9341 
9342     break;
9343   }
9344 
9345   case Instruction::ZExt:
9346   case Instruction::SExt:
9347   case Instruction::FPToUI:
9348   case Instruction::FPToSI:
9349   case Instruction::FPExt:
9350   case Instruction::PtrToInt:
9351   case Instruction::IntToPtr:
9352   case Instruction::SIToFP:
9353   case Instruction::UIToFP:
9354   case Instruction::Trunc:
9355   case Instruction::FPTrunc:
9356   case Instruction::BitCast: {
9357     auto *CI = cast<CastInst>(&I);
9358     State.ILV->setDebugLocFromInst(CI);
9359 
9360     /// Vectorize casts.
9361     Type *DestTy = (State.VF.isScalar())
9362                        ? CI->getType()
9363                        : VectorType::get(CI->getType(), State.VF);
9364 
9365     for (unsigned Part = 0; Part < State.UF; ++Part) {
9366       Value *A = State.get(getOperand(0), Part);
9367       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9368       State.set(this, Cast, Part);
9369       State.ILV->addMetadata(Cast, &I);
9370     }
9371     break;
9372   }
9373   default:
9374     // This instruction is not vectorized by simple widening.
9375     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9376     llvm_unreachable("Unhandled instruction!");
9377   } // end of switch.
9378 }
9379 
9380 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9381   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9382   // Construct a vector GEP by widening the operands of the scalar GEP as
9383   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9384   // results in a vector of pointers when at least one operand of the GEP
9385   // is vector-typed. Thus, to keep the representation compact, we only use
9386   // vector-typed operands for loop-varying values.
9387 
9388   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9389     // If we are vectorizing, but the GEP has only loop-invariant operands,
9390     // the GEP we build (by only using vector-typed operands for
9391     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9392     // produce a vector of pointers, we need to either arbitrarily pick an
9393     // operand to broadcast, or broadcast a clone of the original GEP.
9394     // Here, we broadcast a clone of the original.
9395     //
9396     // TODO: If at some point we decide to scalarize instructions having
9397     //       loop-invariant operands, this special case will no longer be
9398     //       required. We would add the scalarization decision to
9399     //       collectLoopScalars() and teach getVectorValue() to broadcast
9400     //       the lane-zero scalar value.
9401     auto *Clone = State.Builder.Insert(GEP->clone());
9402     for (unsigned Part = 0; Part < State.UF; ++Part) {
9403       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9404       State.set(this, EntryPart, Part);
9405       State.ILV->addMetadata(EntryPart, GEP);
9406     }
9407   } else {
9408     // If the GEP has at least one loop-varying operand, we are sure to
9409     // produce a vector of pointers. But if we are only unrolling, we want
9410     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9411     // produce with the code below will be scalar (if VF == 1) or vector
9412     // (otherwise). Note that for the unroll-only case, we still maintain
9413     // values in the vector mapping with initVector, as we do for other
9414     // instructions.
9415     for (unsigned Part = 0; Part < State.UF; ++Part) {
9416       // The pointer operand of the new GEP. If it's loop-invariant, we
9417       // won't broadcast it.
9418       auto *Ptr = IsPtrLoopInvariant
9419                       ? State.get(getOperand(0), VPIteration(0, 0))
9420                       : State.get(getOperand(0), Part);
9421 
9422       // Collect all the indices for the new GEP. If any index is
9423       // loop-invariant, we won't broadcast it.
9424       SmallVector<Value *, 4> Indices;
9425       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9426         VPValue *Operand = getOperand(I);
9427         if (IsIndexLoopInvariant[I - 1])
9428           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9429         else
9430           Indices.push_back(State.get(Operand, Part));
9431       }
9432 
9433       // If the GEP instruction is vectorized and was in a basic block that
9434       // needed predication, we can't propagate the poison-generating 'inbounds'
9435       // flag. The control flow has been linearized and the GEP is no longer
9436       // guarded by the predicate, which could make the 'inbounds' properties to
9437       // no longer hold.
9438       bool IsInBounds =
9439           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9440 
9441       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9442       // but it should be a vector, otherwise.
9443       auto *NewGEP = IsInBounds
9444                          ? State.Builder.CreateInBoundsGEP(
9445                                GEP->getSourceElementType(), Ptr, Indices)
9446                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9447                                                    Ptr, Indices);
9448       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9449              "NewGEP is not a pointer vector");
9450       State.set(this, NewGEP, Part);
9451       State.ILV->addMetadata(NewGEP, GEP);
9452     }
9453   }
9454 }
9455 
9456 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9457   assert(!State.Instance && "Int or FP induction being replicated.");
9458 
9459   Value *Start = getStartValue()->getLiveInIRValue();
9460   const InductionDescriptor &ID = getInductionDescriptor();
9461   TruncInst *Trunc = getTruncInst();
9462   IRBuilderBase &Builder = State.Builder;
9463   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9464   assert(State.VF.isVector() && "must have vector VF");
9465 
9466   // The value from the original loop to which we are mapping the new induction
9467   // variable.
9468   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9469 
9470   auto &DL = EntryVal->getModule()->getDataLayout();
9471 
9472   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9473   // Generate code for the induction step. Note that induction steps are
9474   // required to be loop-invariant
9475   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
9476     if (SE.isSCEVable(IV->getType())) {
9477       SCEVExpander Exp(SE, DL, "induction");
9478       return Exp.expandCodeFor(Step, Step->getType(),
9479                                VectorPH->getTerminator());
9480     }
9481     return cast<SCEVUnknown>(Step)->getValue();
9482   };
9483 
9484   // Fast-math-flags propagate from the original induction instruction.
9485   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9486   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9487     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9488 
9489   // Now do the actual transformations, and start with creating the step value.
9490   Value *Step = CreateStepValue(ID.getStep());
9491 
9492   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9493          "Expected either an induction phi-node or a truncate of it!");
9494 
9495   // Construct the initial value of the vector IV in the vector loop preheader
9496   auto CurrIP = Builder.saveIP();
9497   Builder.SetInsertPoint(VectorPH->getTerminator());
9498   if (isa<TruncInst>(EntryVal)) {
9499     assert(Start->getType()->isIntegerTy() &&
9500            "Truncation requires an integer type");
9501     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9502     Step = Builder.CreateTrunc(Step, TruncType);
9503     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9504   }
9505 
9506   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9507   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9508   Value *SteppedStart = getStepVector(
9509       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9510 
9511   // We create vector phi nodes for both integer and floating-point induction
9512   // variables. Here, we determine the kind of arithmetic we will perform.
9513   Instruction::BinaryOps AddOp;
9514   Instruction::BinaryOps MulOp;
9515   if (Step->getType()->isIntegerTy()) {
9516     AddOp = Instruction::Add;
9517     MulOp = Instruction::Mul;
9518   } else {
9519     AddOp = ID.getInductionOpcode();
9520     MulOp = Instruction::FMul;
9521   }
9522 
9523   // Multiply the vectorization factor by the step using integer or
9524   // floating-point arithmetic as appropriate.
9525   Type *StepType = Step->getType();
9526   Value *RuntimeVF;
9527   if (Step->getType()->isFloatingPointTy())
9528     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9529   else
9530     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9531   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9532 
9533   // Create a vector splat to use in the induction update.
9534   //
9535   // FIXME: If the step is non-constant, we create the vector splat with
9536   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9537   //        handle a constant vector splat.
9538   Value *SplatVF = isa<Constant>(Mul)
9539                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9540                        : Builder.CreateVectorSplat(State.VF, Mul);
9541   Builder.restoreIP(CurrIP);
9542 
9543   // We may need to add the step a number of times, depending on the unroll
9544   // factor. The last of those goes into the PHI.
9545   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9546                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9547   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9548   Instruction *LastInduction = VecInd;
9549   for (unsigned Part = 0; Part < State.UF; ++Part) {
9550     State.set(this, LastInduction, Part);
9551 
9552     if (isa<TruncInst>(EntryVal))
9553       State.ILV->addMetadata(LastInduction, EntryVal);
9554 
9555     LastInduction = cast<Instruction>(
9556         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9557     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9558   }
9559 
9560   LastInduction->setName("vec.ind.next");
9561   VecInd->addIncoming(SteppedStart, VectorPH);
9562   // Add induction update using an incorrect block temporarily. The phi node
9563   // will be fixed after VPlan execution. Note that at this point the latch
9564   // block cannot be used, as it does not exist yet.
9565   // TODO: Model increment value in VPlan, by turning the recipe into a
9566   // multi-def and a subclass of VPHeaderPHIRecipe.
9567   VecInd->addIncoming(LastInduction, VectorPH);
9568 }
9569 
9570 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9571   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9572          "Not a pointer induction according to InductionDescriptor!");
9573   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9574          "Unexpected type.");
9575 
9576   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9577   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9578 
9579   if (all_of(users(), [this](const VPUser *U) {
9580         return cast<VPRecipeBase>(U)->usesScalars(this);
9581       })) {
9582     // This is the normalized GEP that starts counting at zero.
9583     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9584         CanonicalIV, IndDesc.getStep()->getType());
9585     // Determine the number of scalars we need to generate for each unroll
9586     // iteration. If the instruction is uniform, we only need to generate the
9587     // first lane. Otherwise, we generate all VF values.
9588     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9589     assert((IsUniform || !State.VF.isScalable()) &&
9590            "Cannot scalarize a scalable VF");
9591     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9592 
9593     for (unsigned Part = 0; Part < State.UF; ++Part) {
9594       Value *PartStart =
9595           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9596 
9597       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9598         Value *Idx = State.Builder.CreateAdd(
9599             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9600         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9601 
9602         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9603                                       State.CFG.PrevBB->getTerminator());
9604         Value *SclrGep = emitTransformedIndex(
9605             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9606         SclrGep->setName("next.gep");
9607         State.set(this, SclrGep, VPIteration(Part, Lane));
9608       }
9609     }
9610     return;
9611   }
9612 
9613   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9614          "Induction step not a SCEV constant!");
9615   Type *PhiType = IndDesc.getStep()->getType();
9616 
9617   // Build a pointer phi
9618   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9619   Type *ScStValueType = ScalarStartValue->getType();
9620   PHINode *NewPointerPhi =
9621       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9622 
9623   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9624   NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
9625 
9626   // A pointer induction, performed by using a gep
9627   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9628   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9629 
9630   const SCEV *ScalarStep = IndDesc.getStep();
9631   SCEVExpander Exp(SE, DL, "induction");
9632   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9633   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9634   Value *NumUnrolledElems =
9635       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9636   Value *InductionGEP = GetElementPtrInst::Create(
9637       IndDesc.getElementType(), NewPointerPhi,
9638       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9639       InductionLoc);
9640   // Add induction update using an incorrect block temporarily. The phi node
9641   // will be fixed after VPlan execution. Note that at this point the latch
9642   // block cannot be used, as it does not exist yet.
9643   // TODO: Model increment value in VPlan, by turning the recipe into a
9644   // multi-def and a subclass of VPHeaderPHIRecipe.
9645   NewPointerPhi->addIncoming(InductionGEP, VectorPH);
9646 
9647   // Create UF many actual address geps that use the pointer
9648   // phi as base and a vectorized version of the step value
9649   // (<step*0, ..., step*N>) as offset.
9650   for (unsigned Part = 0; Part < State.UF; ++Part) {
9651     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9652     Value *StartOffsetScalar =
9653         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9654     Value *StartOffset =
9655         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9656     // Create a vector of consecutive numbers from zero to VF.
9657     StartOffset = State.Builder.CreateAdd(
9658         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9659 
9660     Value *GEP = State.Builder.CreateGEP(
9661         IndDesc.getElementType(), NewPointerPhi,
9662         State.Builder.CreateMul(
9663             StartOffset,
9664             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9665             "vector.gep"));
9666     State.set(this, GEP, Part);
9667   }
9668 }
9669 
9670 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9671   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9672 
9673   // Fast-math-flags propagate from the original induction instruction.
9674   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9675   if (IndDesc.getInductionBinOp() &&
9676       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9677     State.Builder.setFastMathFlags(
9678         IndDesc.getInductionBinOp()->getFastMathFlags());
9679 
9680   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9681   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9682     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9683     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9684     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9685       ScalarIV =
9686           Ty->isIntegerTy()
9687               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9688               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9689       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9690                                       getStartValue()->getLiveInIRValue(), Step,
9691                                       IndDesc);
9692       ScalarIV->setName("offset.idx");
9693     }
9694     if (TruncToTy) {
9695       assert(Step->getType()->isIntegerTy() &&
9696              "Truncation requires an integer step");
9697       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9698       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9699     }
9700     return ScalarIV;
9701   };
9702 
9703   Value *ScalarIV = CreateScalarIV(Step);
9704   if (State.VF.isVector()) {
9705     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9706     return;
9707   }
9708 
9709   for (unsigned Part = 0; Part < State.UF; ++Part) {
9710     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9711     Value *EntryPart;
9712     if (Step->getType()->isFloatingPointTy()) {
9713       Value *StartIdx =
9714           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9715       // Floating-point operations inherit FMF via the builder's flags.
9716       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9717       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9718                                             ScalarIV, MulOp);
9719     } else {
9720       Value *StartIdx =
9721           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9722       EntryPart = State.Builder.CreateAdd(
9723           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9724     }
9725     State.set(this, EntryPart, Part);
9726   }
9727 }
9728 
9729 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9730   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9731                                  State);
9732 }
9733 
9734 void VPBlendRecipe::execute(VPTransformState &State) {
9735   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9736   // We know that all PHIs in non-header blocks are converted into
9737   // selects, so we don't have to worry about the insertion order and we
9738   // can just use the builder.
9739   // At this point we generate the predication tree. There may be
9740   // duplications since this is a simple recursive scan, but future
9741   // optimizations will clean it up.
9742 
9743   unsigned NumIncoming = getNumIncomingValues();
9744 
9745   // Generate a sequence of selects of the form:
9746   // SELECT(Mask3, In3,
9747   //        SELECT(Mask2, In2,
9748   //               SELECT(Mask1, In1,
9749   //                      In0)))
9750   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9751   // are essentially undef are taken from In0.
9752   InnerLoopVectorizer::VectorParts Entry(State.UF);
9753   for (unsigned In = 0; In < NumIncoming; ++In) {
9754     for (unsigned Part = 0; Part < State.UF; ++Part) {
9755       // We might have single edge PHIs (blocks) - use an identity
9756       // 'select' for the first PHI operand.
9757       Value *In0 = State.get(getIncomingValue(In), Part);
9758       if (In == 0)
9759         Entry[Part] = In0; // Initialize with the first incoming value.
9760       else {
9761         // Select between the current value and the previous incoming edge
9762         // based on the incoming mask.
9763         Value *Cond = State.get(getMask(In), Part);
9764         Entry[Part] =
9765             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9766       }
9767     }
9768   }
9769   for (unsigned Part = 0; Part < State.UF; ++Part)
9770     State.set(this, Entry[Part], Part);
9771 }
9772 
9773 void VPInterleaveRecipe::execute(VPTransformState &State) {
9774   assert(!State.Instance && "Interleave group being replicated.");
9775   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9776                                       getStoredValues(), getMask());
9777 }
9778 
9779 void VPReductionRecipe::execute(VPTransformState &State) {
9780   assert(!State.Instance && "Reduction being replicated.");
9781   Value *PrevInChain = State.get(getChainOp(), 0);
9782   RecurKind Kind = RdxDesc->getRecurrenceKind();
9783   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9784   // Propagate the fast-math flags carried by the underlying instruction.
9785   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9786   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9787   for (unsigned Part = 0; Part < State.UF; ++Part) {
9788     Value *NewVecOp = State.get(getVecOp(), Part);
9789     if (VPValue *Cond = getCondOp()) {
9790       Value *NewCond = State.get(Cond, Part);
9791       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9792       Value *Iden = RdxDesc->getRecurrenceIdentity(
9793           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9794       Value *IdenVec =
9795           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9796       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9797       NewVecOp = Select;
9798     }
9799     Value *NewRed;
9800     Value *NextInChain;
9801     if (IsOrdered) {
9802       if (State.VF.isVector())
9803         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9804                                         PrevInChain);
9805       else
9806         NewRed = State.Builder.CreateBinOp(
9807             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9808             NewVecOp);
9809       PrevInChain = NewRed;
9810     } else {
9811       PrevInChain = State.get(getChainOp(), Part);
9812       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9813     }
9814     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9815       NextInChain =
9816           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9817                          NewRed, PrevInChain);
9818     } else if (IsOrdered)
9819       NextInChain = NewRed;
9820     else
9821       NextInChain = State.Builder.CreateBinOp(
9822           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9823           PrevInChain);
9824     State.set(this, NextInChain, Part);
9825   }
9826 }
9827 
9828 void VPReplicateRecipe::execute(VPTransformState &State) {
9829   if (State.Instance) { // Generate a single instance.
9830     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9831     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9832                                     IsPredicated, State);
9833     // Insert scalar instance packing it into a vector.
9834     if (AlsoPack && State.VF.isVector()) {
9835       // If we're constructing lane 0, initialize to start from poison.
9836       if (State.Instance->Lane.isFirstLane()) {
9837         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9838         Value *Poison = PoisonValue::get(
9839             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9840         State.set(this, Poison, State.Instance->Part);
9841       }
9842       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9843     }
9844     return;
9845   }
9846 
9847   // Generate scalar instances for all VF lanes of all UF parts, unless the
9848   // instruction is uniform inwhich case generate only the first lane for each
9849   // of the UF parts.
9850   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9851   assert((!State.VF.isScalable() || IsUniform) &&
9852          "Can't scalarize a scalable vector");
9853   for (unsigned Part = 0; Part < State.UF; ++Part)
9854     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9855       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9856                                       VPIteration(Part, Lane), IsPredicated,
9857                                       State);
9858 }
9859 
9860 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9861   assert(State.Instance && "Branch on Mask works only on single instance.");
9862 
9863   unsigned Part = State.Instance->Part;
9864   unsigned Lane = State.Instance->Lane.getKnownLane();
9865 
9866   Value *ConditionBit = nullptr;
9867   VPValue *BlockInMask = getMask();
9868   if (BlockInMask) {
9869     ConditionBit = State.get(BlockInMask, Part);
9870     if (ConditionBit->getType()->isVectorTy())
9871       ConditionBit = State.Builder.CreateExtractElement(
9872           ConditionBit, State.Builder.getInt32(Lane));
9873   } else // Block in mask is all-one.
9874     ConditionBit = State.Builder.getTrue();
9875 
9876   // Replace the temporary unreachable terminator with a new conditional branch,
9877   // whose two destinations will be set later when they are created.
9878   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9879   assert(isa<UnreachableInst>(CurrentTerminator) &&
9880          "Expected to replace unreachable terminator with conditional branch.");
9881   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9882   CondBr->setSuccessor(0, nullptr);
9883   ReplaceInstWithInst(CurrentTerminator, CondBr);
9884 }
9885 
9886 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9887   assert(State.Instance && "Predicated instruction PHI works per instance.");
9888   Instruction *ScalarPredInst =
9889       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9890   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9891   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9892   assert(PredicatingBB && "Predicated block has no single predecessor.");
9893   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9894          "operand must be VPReplicateRecipe");
9895 
9896   // By current pack/unpack logic we need to generate only a single phi node: if
9897   // a vector value for the predicated instruction exists at this point it means
9898   // the instruction has vector users only, and a phi for the vector value is
9899   // needed. In this case the recipe of the predicated instruction is marked to
9900   // also do that packing, thereby "hoisting" the insert-element sequence.
9901   // Otherwise, a phi node for the scalar value is needed.
9902   unsigned Part = State.Instance->Part;
9903   if (State.hasVectorValue(getOperand(0), Part)) {
9904     Value *VectorValue = State.get(getOperand(0), Part);
9905     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9906     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9907     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9908     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9909     if (State.hasVectorValue(this, Part))
9910       State.reset(this, VPhi, Part);
9911     else
9912       State.set(this, VPhi, Part);
9913     // NOTE: Currently we need to update the value of the operand, so the next
9914     // predicated iteration inserts its generated value in the correct vector.
9915     State.reset(getOperand(0), VPhi, Part);
9916   } else {
9917     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9918     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9919     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9920                      PredicatingBB);
9921     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9922     if (State.hasScalarValue(this, *State.Instance))
9923       State.reset(this, Phi, *State.Instance);
9924     else
9925       State.set(this, Phi, *State.Instance);
9926     // NOTE: Currently we need to update the value of the operand, so the next
9927     // predicated iteration inserts its generated value in the correct vector.
9928     State.reset(getOperand(0), Phi, *State.Instance);
9929   }
9930 }
9931 
9932 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9933   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9934 
9935   // Attempt to issue a wide load.
9936   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9937   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9938 
9939   assert((LI || SI) && "Invalid Load/Store instruction");
9940   assert((!SI || StoredValue) && "No stored value provided for widened store");
9941   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9942 
9943   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9944 
9945   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9946   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9947   bool CreateGatherScatter = !Consecutive;
9948 
9949   auto &Builder = State.Builder;
9950   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9951   bool isMaskRequired = getMask();
9952   if (isMaskRequired)
9953     for (unsigned Part = 0; Part < State.UF; ++Part)
9954       BlockInMaskParts[Part] = State.get(getMask(), Part);
9955 
9956   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9957     // Calculate the pointer for the specific unroll-part.
9958     GetElementPtrInst *PartPtr = nullptr;
9959 
9960     bool InBounds = false;
9961     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9962       InBounds = gep->isInBounds();
9963     if (Reverse) {
9964       // If the address is consecutive but reversed, then the
9965       // wide store needs to start at the last vector element.
9966       // RunTimeVF =  VScale * VF.getKnownMinValue()
9967       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9968       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9969       // NumElt = -Part * RunTimeVF
9970       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9971       // LastLane = 1 - RunTimeVF
9972       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9973       PartPtr =
9974           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9975       PartPtr->setIsInBounds(InBounds);
9976       PartPtr = cast<GetElementPtrInst>(
9977           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9978       PartPtr->setIsInBounds(InBounds);
9979       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9980         BlockInMaskParts[Part] =
9981             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9982     } else {
9983       Value *Increment =
9984           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9985       PartPtr = cast<GetElementPtrInst>(
9986           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9987       PartPtr->setIsInBounds(InBounds);
9988     }
9989 
9990     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9991     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9992   };
9993 
9994   // Handle Stores:
9995   if (SI) {
9996     State.ILV->setDebugLocFromInst(SI);
9997 
9998     for (unsigned Part = 0; Part < State.UF; ++Part) {
9999       Instruction *NewSI = nullptr;
10000       Value *StoredVal = State.get(StoredValue, Part);
10001       if (CreateGatherScatter) {
10002         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10003         Value *VectorGep = State.get(getAddr(), Part);
10004         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
10005                                             MaskPart);
10006       } else {
10007         if (Reverse) {
10008           // If we store to reverse consecutive memory locations, then we need
10009           // to reverse the order of elements in the stored value.
10010           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10011           // We don't want to update the value in the map as it might be used in
10012           // another expression. So don't call resetVectorValue(StoredVal).
10013         }
10014         auto *VecPtr =
10015             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10016         if (isMaskRequired)
10017           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10018                                             BlockInMaskParts[Part]);
10019         else
10020           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10021       }
10022       State.ILV->addMetadata(NewSI, SI);
10023     }
10024     return;
10025   }
10026 
10027   // Handle loads.
10028   assert(LI && "Must have a load instruction");
10029   State.ILV->setDebugLocFromInst(LI);
10030   for (unsigned Part = 0; Part < State.UF; ++Part) {
10031     Value *NewLI;
10032     if (CreateGatherScatter) {
10033       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10034       Value *VectorGep = State.get(getAddr(), Part);
10035       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10036                                          nullptr, "wide.masked.gather");
10037       State.ILV->addMetadata(NewLI, LI);
10038     } else {
10039       auto *VecPtr =
10040           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10041       if (isMaskRequired)
10042         NewLI = Builder.CreateMaskedLoad(
10043             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10044             PoisonValue::get(DataTy), "wide.masked.load");
10045       else
10046         NewLI =
10047             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10048 
10049       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10050       State.ILV->addMetadata(NewLI, LI);
10051       if (Reverse)
10052         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10053     }
10054 
10055     State.set(this, NewLI, Part);
10056   }
10057 }
10058 
10059 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10060 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10061 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10062 // for predication.
10063 static ScalarEpilogueLowering getScalarEpilogueLowering(
10064     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10065     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10066     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10067     LoopVectorizationLegality &LVL) {
10068   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10069   // don't look at hints or options, and don't request a scalar epilogue.
10070   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10071   // LoopAccessInfo (due to code dependency and not being able to reliably get
10072   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10073   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10074   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10075   // back to the old way and vectorize with versioning when forced. See D81345.)
10076   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10077                                                       PGSOQueryType::IRPass) &&
10078                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10079     return CM_ScalarEpilogueNotAllowedOptSize;
10080 
10081   // 2) If set, obey the directives
10082   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10083     switch (PreferPredicateOverEpilogue) {
10084     case PreferPredicateTy::ScalarEpilogue:
10085       return CM_ScalarEpilogueAllowed;
10086     case PreferPredicateTy::PredicateElseScalarEpilogue:
10087       return CM_ScalarEpilogueNotNeededUsePredicate;
10088     case PreferPredicateTy::PredicateOrDontVectorize:
10089       return CM_ScalarEpilogueNotAllowedUsePredicate;
10090     };
10091   }
10092 
10093   // 3) If set, obey the hints
10094   switch (Hints.getPredicate()) {
10095   case LoopVectorizeHints::FK_Enabled:
10096     return CM_ScalarEpilogueNotNeededUsePredicate;
10097   case LoopVectorizeHints::FK_Disabled:
10098     return CM_ScalarEpilogueAllowed;
10099   };
10100 
10101   // 4) if the TTI hook indicates this is profitable, request predication.
10102   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10103                                        LVL.getLAI()))
10104     return CM_ScalarEpilogueNotNeededUsePredicate;
10105 
10106   return CM_ScalarEpilogueAllowed;
10107 }
10108 
10109 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10110   // If Values have been set for this Def return the one relevant for \p Part.
10111   if (hasVectorValue(Def, Part))
10112     return Data.PerPartOutput[Def][Part];
10113 
10114   if (!hasScalarValue(Def, {Part, 0})) {
10115     Value *IRV = Def->getLiveInIRValue();
10116     Value *B = ILV->getBroadcastInstrs(IRV);
10117     set(Def, B, Part);
10118     return B;
10119   }
10120 
10121   Value *ScalarValue = get(Def, {Part, 0});
10122   // If we aren't vectorizing, we can just copy the scalar map values over
10123   // to the vector map.
10124   if (VF.isScalar()) {
10125     set(Def, ScalarValue, Part);
10126     return ScalarValue;
10127   }
10128 
10129   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10130   bool IsUniform = RepR && RepR->isUniform();
10131 
10132   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10133   // Check if there is a scalar value for the selected lane.
10134   if (!hasScalarValue(Def, {Part, LastLane})) {
10135     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10136     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10137             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10138            "unexpected recipe found to be invariant");
10139     IsUniform = true;
10140     LastLane = 0;
10141   }
10142 
10143   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10144   // Set the insert point after the last scalarized instruction or after the
10145   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10146   // will directly follow the scalar definitions.
10147   auto OldIP = Builder.saveIP();
10148   auto NewIP =
10149       isa<PHINode>(LastInst)
10150           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10151           : std::next(BasicBlock::iterator(LastInst));
10152   Builder.SetInsertPoint(&*NewIP);
10153 
10154   // However, if we are vectorizing, we need to construct the vector values.
10155   // If the value is known to be uniform after vectorization, we can just
10156   // broadcast the scalar value corresponding to lane zero for each unroll
10157   // iteration. Otherwise, we construct the vector values using
10158   // insertelement instructions. Since the resulting vectors are stored in
10159   // State, we will only generate the insertelements once.
10160   Value *VectorValue = nullptr;
10161   if (IsUniform) {
10162     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10163     set(Def, VectorValue, Part);
10164   } else {
10165     // Initialize packing with insertelements to start from undef.
10166     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10167     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10168     set(Def, Undef, Part);
10169     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10170       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10171     VectorValue = get(Def, Part);
10172   }
10173   Builder.restoreIP(OldIP);
10174   return VectorValue;
10175 }
10176 
10177 // Process the loop in the VPlan-native vectorization path. This path builds
10178 // VPlan upfront in the vectorization pipeline, which allows to apply
10179 // VPlan-to-VPlan transformations from the very beginning without modifying the
10180 // input LLVM IR.
10181 static bool processLoopInVPlanNativePath(
10182     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10183     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10184     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10185     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10186     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10187     LoopVectorizationRequirements &Requirements) {
10188 
10189   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10190     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10191     return false;
10192   }
10193   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10194   Function *F = L->getHeader()->getParent();
10195   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10196 
10197   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10198       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10199 
10200   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10201                                 &Hints, IAI);
10202   // Use the planner for outer loop vectorization.
10203   // TODO: CM is not used at this point inside the planner. Turn CM into an
10204   // optional argument if we don't need it in the future.
10205   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10206                                Requirements, ORE);
10207 
10208   // Get user vectorization factor.
10209   ElementCount UserVF = Hints.getWidth();
10210 
10211   CM.collectElementTypesForWidening();
10212 
10213   // Plan how to best vectorize, return the best VF and its cost.
10214   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10215 
10216   // If we are stress testing VPlan builds, do not attempt to generate vector
10217   // code. Masked vector code generation support will follow soon.
10218   // Also, do not attempt to vectorize if no vector code will be produced.
10219   if (VPlanBuildStressTest || EnableVPlanPredication ||
10220       VectorizationFactor::Disabled() == VF)
10221     return false;
10222 
10223   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10224 
10225   {
10226     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10227                              F->getParent()->getDataLayout());
10228     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10229                            &CM, BFI, PSI, Checks);
10230     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10231                       << L->getHeader()->getParent()->getName() << "\"\n");
10232     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10233   }
10234 
10235   // Mark the loop as already vectorized to avoid vectorizing again.
10236   Hints.setAlreadyVectorized();
10237   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10238   return true;
10239 }
10240 
10241 // Emit a remark if there are stores to floats that required a floating point
10242 // extension. If the vectorized loop was generated with floating point there
10243 // will be a performance penalty from the conversion overhead and the change in
10244 // the vector width.
10245 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10246   SmallVector<Instruction *, 4> Worklist;
10247   for (BasicBlock *BB : L->getBlocks()) {
10248     for (Instruction &Inst : *BB) {
10249       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10250         if (S->getValueOperand()->getType()->isFloatTy())
10251           Worklist.push_back(S);
10252       }
10253     }
10254   }
10255 
10256   // Traverse the floating point stores upwards searching, for floating point
10257   // conversions.
10258   SmallPtrSet<const Instruction *, 4> Visited;
10259   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10260   while (!Worklist.empty()) {
10261     auto *I = Worklist.pop_back_val();
10262     if (!L->contains(I))
10263       continue;
10264     if (!Visited.insert(I).second)
10265       continue;
10266 
10267     // Emit a remark if the floating point store required a floating
10268     // point conversion.
10269     // TODO: More work could be done to identify the root cause such as a
10270     // constant or a function return type and point the user to it.
10271     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10272       ORE->emit([&]() {
10273         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10274                                           I->getDebugLoc(), L->getHeader())
10275                << "floating point conversion changes vector width. "
10276                << "Mixed floating point precision requires an up/down "
10277                << "cast that will negatively impact performance.";
10278       });
10279 
10280     for (Use &Op : I->operands())
10281       if (auto *OpI = dyn_cast<Instruction>(Op))
10282         Worklist.push_back(OpI);
10283   }
10284 }
10285 
10286 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10287     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10288                                !EnableLoopInterleaving),
10289       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10290                               !EnableLoopVectorization) {}
10291 
10292 bool LoopVectorizePass::processLoop(Loop *L) {
10293   assert((EnableVPlanNativePath || L->isInnermost()) &&
10294          "VPlan-native path is not enabled. Only process inner loops.");
10295 
10296 #ifndef NDEBUG
10297   const std::string DebugLocStr = getDebugLocString(L);
10298 #endif /* NDEBUG */
10299 
10300   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10301                     << L->getHeader()->getParent()->getName() << "' from "
10302                     << DebugLocStr << "\n");
10303 
10304   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10305 
10306   LLVM_DEBUG(
10307       dbgs() << "LV: Loop hints:"
10308              << " force="
10309              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10310                      ? "disabled"
10311                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10312                             ? "enabled"
10313                             : "?"))
10314              << " width=" << Hints.getWidth()
10315              << " interleave=" << Hints.getInterleave() << "\n");
10316 
10317   // Function containing loop
10318   Function *F = L->getHeader()->getParent();
10319 
10320   // Looking at the diagnostic output is the only way to determine if a loop
10321   // was vectorized (other than looking at the IR or machine code), so it
10322   // is important to generate an optimization remark for each loop. Most of
10323   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10324   // generated as OptimizationRemark and OptimizationRemarkMissed are
10325   // less verbose reporting vectorized loops and unvectorized loops that may
10326   // benefit from vectorization, respectively.
10327 
10328   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10329     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10330     return false;
10331   }
10332 
10333   PredicatedScalarEvolution PSE(*SE, *L);
10334 
10335   // Check if it is legal to vectorize the loop.
10336   LoopVectorizationRequirements Requirements;
10337   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10338                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10339   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10340     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10341     Hints.emitRemarkWithHints();
10342     return false;
10343   }
10344 
10345   // Check the function attributes and profiles to find out if this function
10346   // should be optimized for size.
10347   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10348       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10349 
10350   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10351   // here. They may require CFG and instruction level transformations before
10352   // even evaluating whether vectorization is profitable. Since we cannot modify
10353   // the incoming IR, we need to build VPlan upfront in the vectorization
10354   // pipeline.
10355   if (!L->isInnermost())
10356     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10357                                         ORE, BFI, PSI, Hints, Requirements);
10358 
10359   assert(L->isInnermost() && "Inner loop expected.");
10360 
10361   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10362   // count by optimizing for size, to minimize overheads.
10363   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10364   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10365     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10366                       << "This loop is worth vectorizing only if no scalar "
10367                       << "iteration overheads are incurred.");
10368     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10369       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10370     else {
10371       LLVM_DEBUG(dbgs() << "\n");
10372       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10373     }
10374   }
10375 
10376   // Check the function attributes to see if implicit floats are allowed.
10377   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10378   // an integer loop and the vector instructions selected are purely integer
10379   // vector instructions?
10380   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10381     reportVectorizationFailure(
10382         "Can't vectorize when the NoImplicitFloat attribute is used",
10383         "loop not vectorized due to NoImplicitFloat attribute",
10384         "NoImplicitFloat", ORE, L);
10385     Hints.emitRemarkWithHints();
10386     return false;
10387   }
10388 
10389   // Check if the target supports potentially unsafe FP vectorization.
10390   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10391   // for the target we're vectorizing for, to make sure none of the
10392   // additional fp-math flags can help.
10393   if (Hints.isPotentiallyUnsafe() &&
10394       TTI->isFPVectorizationPotentiallyUnsafe()) {
10395     reportVectorizationFailure(
10396         "Potentially unsafe FP op prevents vectorization",
10397         "loop not vectorized due to unsafe FP support.",
10398         "UnsafeFP", ORE, L);
10399     Hints.emitRemarkWithHints();
10400     return false;
10401   }
10402 
10403   bool AllowOrderedReductions;
10404   // If the flag is set, use that instead and override the TTI behaviour.
10405   if (ForceOrderedReductions.getNumOccurrences() > 0)
10406     AllowOrderedReductions = ForceOrderedReductions;
10407   else
10408     AllowOrderedReductions = TTI->enableOrderedReductions();
10409   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10410     ORE->emit([&]() {
10411       auto *ExactFPMathInst = Requirements.getExactFPInst();
10412       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10413                                                  ExactFPMathInst->getDebugLoc(),
10414                                                  ExactFPMathInst->getParent())
10415              << "loop not vectorized: cannot prove it is safe to reorder "
10416                 "floating-point operations";
10417     });
10418     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10419                          "reorder floating-point operations\n");
10420     Hints.emitRemarkWithHints();
10421     return false;
10422   }
10423 
10424   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10425   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10426 
10427   // If an override option has been passed in for interleaved accesses, use it.
10428   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10429     UseInterleaved = EnableInterleavedMemAccesses;
10430 
10431   // Analyze interleaved memory accesses.
10432   if (UseInterleaved) {
10433     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10434   }
10435 
10436   // Use the cost model.
10437   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10438                                 F, &Hints, IAI);
10439   CM.collectValuesToIgnore();
10440   CM.collectElementTypesForWidening();
10441 
10442   // Use the planner for vectorization.
10443   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10444                                Requirements, ORE);
10445 
10446   // Get user vectorization factor and interleave count.
10447   ElementCount UserVF = Hints.getWidth();
10448   unsigned UserIC = Hints.getInterleave();
10449 
10450   // Plan how to best vectorize, return the best VF and its cost.
10451   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10452 
10453   VectorizationFactor VF = VectorizationFactor::Disabled();
10454   unsigned IC = 1;
10455 
10456   if (MaybeVF) {
10457     VF = *MaybeVF;
10458     // Select the interleave count.
10459     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10460   }
10461 
10462   // Identify the diagnostic messages that should be produced.
10463   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10464   bool VectorizeLoop = true, InterleaveLoop = true;
10465   if (VF.Width.isScalar()) {
10466     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10467     VecDiagMsg = std::make_pair(
10468         "VectorizationNotBeneficial",
10469         "the cost-model indicates that vectorization is not beneficial");
10470     VectorizeLoop = false;
10471   }
10472 
10473   if (!MaybeVF && UserIC > 1) {
10474     // Tell the user interleaving was avoided up-front, despite being explicitly
10475     // requested.
10476     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10477                          "interleaving should be avoided up front\n");
10478     IntDiagMsg = std::make_pair(
10479         "InterleavingAvoided",
10480         "Ignoring UserIC, because interleaving was avoided up front");
10481     InterleaveLoop = false;
10482   } else if (IC == 1 && UserIC <= 1) {
10483     // Tell the user interleaving is not beneficial.
10484     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10485     IntDiagMsg = std::make_pair(
10486         "InterleavingNotBeneficial",
10487         "the cost-model indicates that interleaving is not beneficial");
10488     InterleaveLoop = false;
10489     if (UserIC == 1) {
10490       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10491       IntDiagMsg.second +=
10492           " and is explicitly disabled or interleave count is set to 1";
10493     }
10494   } else if (IC > 1 && UserIC == 1) {
10495     // Tell the user interleaving is beneficial, but it explicitly disabled.
10496     LLVM_DEBUG(
10497         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10498     IntDiagMsg = std::make_pair(
10499         "InterleavingBeneficialButDisabled",
10500         "the cost-model indicates that interleaving is beneficial "
10501         "but is explicitly disabled or interleave count is set to 1");
10502     InterleaveLoop = false;
10503   }
10504 
10505   // Override IC if user provided an interleave count.
10506   IC = UserIC > 0 ? UserIC : IC;
10507 
10508   // Emit diagnostic messages, if any.
10509   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10510   if (!VectorizeLoop && !InterleaveLoop) {
10511     // Do not vectorize or interleaving the loop.
10512     ORE->emit([&]() {
10513       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10514                                       L->getStartLoc(), L->getHeader())
10515              << VecDiagMsg.second;
10516     });
10517     ORE->emit([&]() {
10518       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10519                                       L->getStartLoc(), L->getHeader())
10520              << IntDiagMsg.second;
10521     });
10522     return false;
10523   } else if (!VectorizeLoop && InterleaveLoop) {
10524     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10525     ORE->emit([&]() {
10526       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10527                                         L->getStartLoc(), L->getHeader())
10528              << VecDiagMsg.second;
10529     });
10530   } else if (VectorizeLoop && !InterleaveLoop) {
10531     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10532                       << ") in " << DebugLocStr << '\n');
10533     ORE->emit([&]() {
10534       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10535                                         L->getStartLoc(), L->getHeader())
10536              << IntDiagMsg.second;
10537     });
10538   } else if (VectorizeLoop && InterleaveLoop) {
10539     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10540                       << ") in " << DebugLocStr << '\n');
10541     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10542   }
10543 
10544   bool DisableRuntimeUnroll = false;
10545   MDNode *OrigLoopID = L->getLoopID();
10546   {
10547     // Optimistically generate runtime checks. Drop them if they turn out to not
10548     // be profitable. Limit the scope of Checks, so the cleanup happens
10549     // immediately after vector codegeneration is done.
10550     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10551                              F->getParent()->getDataLayout());
10552     if (!VF.Width.isScalar() || IC > 1)
10553       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate());
10554 
10555     using namespace ore;
10556     if (!VectorizeLoop) {
10557       assert(IC > 1 && "interleave count should not be 1 or 0");
10558       // If we decided that it is not legal to vectorize the loop, then
10559       // interleave it.
10560       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10561                                  &CM, BFI, PSI, Checks);
10562 
10563       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10564       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10565 
10566       ORE->emit([&]() {
10567         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10568                                   L->getHeader())
10569                << "interleaved loop (interleaved count: "
10570                << NV("InterleaveCount", IC) << ")";
10571       });
10572     } else {
10573       // If we decided that it is *legal* to vectorize the loop, then do it.
10574 
10575       // Consider vectorizing the epilogue too if it's profitable.
10576       VectorizationFactor EpilogueVF =
10577           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10578       if (EpilogueVF.Width.isVector()) {
10579 
10580         // The first pass vectorizes the main loop and creates a scalar epilogue
10581         // to be vectorized by executing the plan (potentially with a different
10582         // factor) again shortly afterwards.
10583         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10584         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10585                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10586 
10587         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10588         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10589                         DT);
10590         ++LoopsVectorized;
10591 
10592         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10593         formLCSSARecursively(*L, *DT, LI, SE);
10594 
10595         // Second pass vectorizes the epilogue and adjusts the control flow
10596         // edges from the first pass.
10597         EPI.MainLoopVF = EPI.EpilogueVF;
10598         EPI.MainLoopUF = EPI.EpilogueUF;
10599         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10600                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10601                                                  Checks);
10602 
10603         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10604         BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->setName(
10605             "vec.epilog.vector.body");
10606 
10607         // Ensure that the start values for any VPReductionPHIRecipes are
10608         // updated before vectorising the epilogue loop.
10609         VPBasicBlock *Header =
10610             BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock();
10611         for (VPRecipeBase &R : Header->phis()) {
10612           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10613             if (auto *Resume = MainILV.getReductionResumeValue(
10614                     ReductionPhi->getRecurrenceDescriptor())) {
10615               VPValue *StartVal = new VPValue(Resume);
10616               BestEpiPlan.addExternalDef(StartVal);
10617               ReductionPhi->setOperand(0, StartVal);
10618             }
10619           }
10620         }
10621 
10622         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10623                         DT);
10624         ++LoopsEpilogueVectorized;
10625 
10626         if (!MainILV.areSafetyChecksAdded())
10627           DisableRuntimeUnroll = true;
10628       } else {
10629         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10630                                &LVL, &CM, BFI, PSI, Checks);
10631 
10632         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10633         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10634         ++LoopsVectorized;
10635 
10636         // Add metadata to disable runtime unrolling a scalar loop when there
10637         // are no runtime checks about strides and memory. A scalar loop that is
10638         // rarely used is not worth unrolling.
10639         if (!LB.areSafetyChecksAdded())
10640           DisableRuntimeUnroll = true;
10641       }
10642       // Report the vectorization decision.
10643       ORE->emit([&]() {
10644         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10645                                   L->getHeader())
10646                << "vectorized loop (vectorization width: "
10647                << NV("VectorizationFactor", VF.Width)
10648                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10649       });
10650     }
10651 
10652     if (ORE->allowExtraAnalysis(LV_NAME))
10653       checkMixedPrecision(L, ORE);
10654   }
10655 
10656   Optional<MDNode *> RemainderLoopID =
10657       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10658                                       LLVMLoopVectorizeFollowupEpilogue});
10659   if (RemainderLoopID.hasValue()) {
10660     L->setLoopID(RemainderLoopID.getValue());
10661   } else {
10662     if (DisableRuntimeUnroll)
10663       AddRuntimeUnrollDisableMetaData(L);
10664 
10665     // Mark the loop as already vectorized to avoid vectorizing again.
10666     Hints.setAlreadyVectorized();
10667   }
10668 
10669   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10670   return true;
10671 }
10672 
10673 LoopVectorizeResult LoopVectorizePass::runImpl(
10674     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10675     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10676     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10677     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10678     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10679   SE = &SE_;
10680   LI = &LI_;
10681   TTI = &TTI_;
10682   DT = &DT_;
10683   BFI = &BFI_;
10684   TLI = TLI_;
10685   AA = &AA_;
10686   AC = &AC_;
10687   GetLAA = &GetLAA_;
10688   DB = &DB_;
10689   ORE = &ORE_;
10690   PSI = PSI_;
10691 
10692   // Don't attempt if
10693   // 1. the target claims to have no vector registers, and
10694   // 2. interleaving won't help ILP.
10695   //
10696   // The second condition is necessary because, even if the target has no
10697   // vector registers, loop vectorization may still enable scalar
10698   // interleaving.
10699   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10700       TTI->getMaxInterleaveFactor(1) < 2)
10701     return LoopVectorizeResult(false, false);
10702 
10703   bool Changed = false, CFGChanged = false;
10704 
10705   // The vectorizer requires loops to be in simplified form.
10706   // Since simplification may add new inner loops, it has to run before the
10707   // legality and profitability checks. This means running the loop vectorizer
10708   // will simplify all loops, regardless of whether anything end up being
10709   // vectorized.
10710   for (auto &L : *LI)
10711     Changed |= CFGChanged |=
10712         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10713 
10714   // Build up a worklist of inner-loops to vectorize. This is necessary as
10715   // the act of vectorizing or partially unrolling a loop creates new loops
10716   // and can invalidate iterators across the loops.
10717   SmallVector<Loop *, 8> Worklist;
10718 
10719   for (Loop *L : *LI)
10720     collectSupportedLoops(*L, LI, ORE, Worklist);
10721 
10722   LoopsAnalyzed += Worklist.size();
10723 
10724   // Now walk the identified inner loops.
10725   while (!Worklist.empty()) {
10726     Loop *L = Worklist.pop_back_val();
10727 
10728     // For the inner loops we actually process, form LCSSA to simplify the
10729     // transform.
10730     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10731 
10732     Changed |= CFGChanged |= processLoop(L);
10733   }
10734 
10735   // Process each loop nest in the function.
10736   return LoopVectorizeResult(Changed, CFGChanged);
10737 }
10738 
10739 PreservedAnalyses LoopVectorizePass::run(Function &F,
10740                                          FunctionAnalysisManager &AM) {
10741     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10742     auto &LI = AM.getResult<LoopAnalysis>(F);
10743     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10744     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10745     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10746     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10747     auto &AA = AM.getResult<AAManager>(F);
10748     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10749     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10750     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10751 
10752     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10753     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10754         [&](Loop &L) -> const LoopAccessInfo & {
10755       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10756                                         TLI, TTI, nullptr, nullptr, nullptr};
10757       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10758     };
10759     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10760     ProfileSummaryInfo *PSI =
10761         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10762     LoopVectorizeResult Result =
10763         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10764     if (!Result.MadeAnyChange)
10765       return PreservedAnalyses::all();
10766     PreservedAnalyses PA;
10767 
10768     // We currently do not preserve loopinfo/dominator analyses with outer loop
10769     // vectorization. Until this is addressed, mark these analyses as preserved
10770     // only for non-VPlan-native path.
10771     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10772     if (!EnableVPlanNativePath) {
10773       PA.preserve<LoopAnalysis>();
10774       PA.preserve<DominatorTreeAnalysis>();
10775     }
10776 
10777     if (Result.MadeCFGChange) {
10778       // Making CFG changes likely means a loop got vectorized. Indicate that
10779       // extra simplification passes should be run.
10780       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10781       // be run if runtime checks have been added.
10782       AM.getResult<ShouldRunExtraVectorPasses>(F);
10783       PA.preserve<ShouldRunExtraVectorPasses>();
10784     } else {
10785       PA.preserveSet<CFGAnalyses>();
10786     }
10787     return PA;
10788 }
10789 
10790 void LoopVectorizePass::printPipeline(
10791     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10792   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10793       OS, MapClassName2PassName);
10794 
10795   OS << "<";
10796   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10797   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10798   OS << ">";
10799 }
10800