1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 AnalysisKey ShouldRunExtraVectorPasses::Key;
432 
433 /// InnerLoopVectorizer vectorizes loops which contain only one basic
434 /// block to a specified vectorization factor (VF).
435 /// This class performs the widening of scalars into vectors, or multiple
436 /// scalars. This class also implements the following features:
437 /// * It inserts an epilogue loop for handling loops that don't have iteration
438 ///   counts that are known to be a multiple of the vectorization factor.
439 /// * It handles the code generation for reduction variables.
440 /// * Scalarization (implementation using scalars) of un-vectorizable
441 ///   instructions.
442 /// InnerLoopVectorizer does not perform any vectorization-legality
443 /// checks, and relies on the caller to check for the different legality
444 /// aspects. The InnerLoopVectorizer relies on the
445 /// LoopVectorizationLegality class to provide information about the induction
446 /// and reduction variables that were found to a given vectorization factor.
447 class InnerLoopVectorizer {
448 public:
449   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
450                       LoopInfo *LI, DominatorTree *DT,
451                       const TargetLibraryInfo *TLI,
452                       const TargetTransformInfo *TTI, AssumptionCache *AC,
453                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
454                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
455                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
456                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
457       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
458         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
459         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
460         PSI(PSI), RTChecks(RTChecks) {
461     // Query this against the original loop and save it here because the profile
462     // of the original loop header may change as the transformation happens.
463     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
464         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   }
466 
467   virtual ~InnerLoopVectorizer() = default;
468 
469   /// Create a new empty loop that will contain vectorized instructions later
470   /// on, while the old loop will be used as the scalar remainder. Control flow
471   /// is generated around the vectorized (and scalar epilogue) loops consisting
472   /// of various checks and bypasses. Return the pre-header block of the new
473   /// loop and the start value for the canonical induction, if it is != 0. The
474   /// latter is the case when vectorizing the epilogue loop. In the case of
475   /// epilogue vectorization, this function is overriden to handle the more
476   /// complex control flow around the loops.
477   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
478 
479   /// Widen a single call instruction within the innermost loop.
480   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
481                             VPTransformState &State);
482 
483   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
484   void fixVectorizedLoop(VPTransformState &State);
485 
486   // Return true if any runtime check is added.
487   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
488 
489   /// A type for vectorized values in the new loop. Each value from the
490   /// original loop, when vectorized, is represented by UF vector values in the
491   /// new unrolled loop, where UF is the unroll factor.
492   using VectorParts = SmallVector<Value *, 2>;
493 
494   /// Vectorize a single first-order recurrence or pointer induction PHINode in
495   /// a block. This method handles the induction variable canonicalization. It
496   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
497   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
498                            VPTransformState &State);
499 
500   /// A helper function to scalarize a single Instruction in the innermost loop.
501   /// Generates a sequence of scalar instances for each lane between \p MinLane
502   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
503   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
504   /// Instr's operands.
505   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
506                             const VPIteration &Instance, bool IfPredicateInstr,
507                             VPTransformState &State);
508 
509   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
510   /// is provided, the integer induction variable will first be truncated to
511   /// the corresponding type. \p CanonicalIV is the scalar value generated for
512   /// the canonical induction variable.
513   void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def,
514                              VPTransformState &State, Value *CanonicalIV);
515 
516   /// Construct the vector value of a scalarized value \p V one lane at a time.
517   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
518                                  VPTransformState &State);
519 
520   /// Try to vectorize interleaved access group \p Group with the base address
521   /// given in \p Addr, optionally masking the vector operations if \p
522   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
523   /// values in the vectorized loop.
524   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
525                                 ArrayRef<VPValue *> VPDefs,
526                                 VPTransformState &State, VPValue *Addr,
527                                 ArrayRef<VPValue *> StoredValues,
528                                 VPValue *BlockInMask = nullptr);
529 
530   /// Set the debug location in the builder \p Ptr using the debug location in
531   /// \p V. If \p Ptr is None then it uses the class member's Builder.
532   void setDebugLocFromInst(const Value *V,
533                            Optional<IRBuilderBase *> CustomBuilder = None);
534 
535   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
536   void fixNonInductionPHIs(VPTransformState &State);
537 
538   /// Returns true if the reordering of FP operations is not allowed, but we are
539   /// able to vectorize with strict in-order reductions for the given RdxDesc.
540   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
541 
542   /// Create a broadcast instruction. This method generates a broadcast
543   /// instruction (shuffle) for loop invariant values and for the induction
544   /// value. If this is the induction variable then we extend it to N, N+1, ...
545   /// this is needed because each iteration in the loop corresponds to a SIMD
546   /// element.
547   virtual Value *getBroadcastInstrs(Value *V);
548 
549   /// Add metadata from one instruction to another.
550   ///
551   /// This includes both the original MDs from \p From and additional ones (\see
552   /// addNewMetadata).  Use this for *newly created* instructions in the vector
553   /// loop.
554   void addMetadata(Instruction *To, Instruction *From);
555 
556   /// Similar to the previous function but it adds the metadata to a
557   /// vector of instructions.
558   void addMetadata(ArrayRef<Value *> To, Instruction *From);
559 
560   // Returns the resume value (bc.merge.rdx) for a reduction as
561   // generated by fixReduction.
562   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
563 
564 protected:
565   friend class LoopVectorizationPlanner;
566 
567   /// A small list of PHINodes.
568   using PhiVector = SmallVector<PHINode *, 4>;
569 
570   /// A type for scalarized values in the new loop. Each value from the
571   /// original loop, when scalarized, is represented by UF x VF scalar values
572   /// in the new unrolled loop, where UF is the unroll factor and VF is the
573   /// vectorization factor.
574   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
575 
576   /// Set up the values of the IVs correctly when exiting the vector loop.
577   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
578                     Value *CountRoundDown, Value *EndValue,
579                     BasicBlock *MiddleBlock);
580 
581   /// Introduce a conditional branch (on true, condition to be set later) at the
582   /// end of the header=latch connecting it to itself (across the backedge) and
583   /// to the exit block of \p L.
584   void createHeaderBranch(Loop *L);
585 
586   /// Handle all cross-iteration phis in the header.
587   void fixCrossIterationPHIs(VPTransformState &State);
588 
589   /// Create the exit value of first order recurrences in the middle block and
590   /// update their users.
591   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
592                                VPTransformState &State);
593 
594   /// Create code for the loop exit value of the reduction.
595   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
596 
597   /// Clear NSW/NUW flags from reduction instructions if necessary.
598   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
599                                VPTransformState &State);
600 
601   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
602   /// means we need to add the appropriate incoming value from the middle
603   /// block as exiting edges from the scalar epilogue loop (if present) are
604   /// already in place, and we exit the vector loop exclusively to the middle
605   /// block.
606   void fixLCSSAPHIs(VPTransformState &State);
607 
608   /// Iteratively sink the scalarized operands of a predicated instruction into
609   /// the block that was created for it.
610   void sinkScalarOperands(Instruction *PredInst);
611 
612   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
613   /// represented as.
614   void truncateToMinimalBitwidths(VPTransformState &State);
615 
616   /// Create a vector induction phi node based on an existing scalar one. \p
617   /// EntryVal is the value from the original loop that maps to the vector phi
618   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
619   /// truncate instruction, instead of widening the original IV, we widen a
620   /// version of the IV truncated to \p EntryVal's type.
621   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
622                                        Value *Step, Value *Start,
623                                        Instruction *EntryVal, VPValue *Def,
624                                        VPTransformState &State);
625 
626   /// Returns (and creates if needed) the original loop trip count.
627   Value *getOrCreateTripCount(Loop *NewLoop);
628 
629   /// Returns (and creates if needed) the trip count of the widened loop.
630   Value *getOrCreateVectorTripCount(Loop *NewLoop);
631 
632   /// Returns a bitcasted value to the requested vector type.
633   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
634   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
635                                 const DataLayout &DL);
636 
637   /// Emit a bypass check to see if the vector trip count is zero, including if
638   /// it overflows.
639   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
640 
641   /// Emit a bypass check to see if all of the SCEV assumptions we've
642   /// had to make are correct. Returns the block containing the checks or
643   /// nullptr if no checks have been added.
644   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
645 
646   /// Emit bypass checks to check any memory assumptions we may have made.
647   /// Returns the block containing the checks or nullptr if no checks have been
648   /// added.
649   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
650 
651   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
652   /// vector loop preheader, middle block and scalar preheader. Also
653   /// allocate a loop object for the new vector loop and return it.
654   Loop *createVectorLoopSkeleton(StringRef Prefix);
655 
656   /// Create new phi nodes for the induction variables to resume iteration count
657   /// in the scalar epilogue, from where the vectorized loop left off.
658   /// In cases where the loop skeleton is more complicated (eg. epilogue
659   /// vectorization) and the resume values can come from an additional bypass
660   /// block, the \p AdditionalBypass pair provides information about the bypass
661   /// block and the end value on the edge from bypass to this loop.
662   void createInductionResumeValues(
663       Loop *L,
664       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
665 
666   /// Complete the loop skeleton by adding debug MDs, creating appropriate
667   /// conditional branches in the middle block, preparing the builder and
668   /// running the verifier. Take in the vector loop \p L as argument, and return
669   /// the preheader of the completed vector loop.
670   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
671 
672   /// Add additional metadata to \p To that was not present on \p Orig.
673   ///
674   /// Currently this is used to add the noalias annotations based on the
675   /// inserted memchecks.  Use this for instructions that are *cloned* into the
676   /// vector loop.
677   void addNewMetadata(Instruction *To, const Instruction *Orig);
678 
679   /// Collect poison-generating recipes that may generate a poison value that is
680   /// used after vectorization, even when their operands are not poison. Those
681   /// recipes meet the following conditions:
682   ///  * Contribute to the address computation of a recipe generating a widen
683   ///    memory load/store (VPWidenMemoryInstructionRecipe or
684   ///    VPInterleaveRecipe).
685   ///  * Such a widen memory load/store has at least one underlying Instruction
686   ///    that is in a basic block that needs predication and after vectorization
687   ///    the generated instruction won't be predicated.
688   void collectPoisonGeneratingRecipes(VPTransformState &State);
689 
690   /// Allow subclasses to override and print debug traces before/after vplan
691   /// execution, when trace information is requested.
692   virtual void printDebugTracesAtStart(){};
693   virtual void printDebugTracesAtEnd(){};
694 
695   /// The original loop.
696   Loop *OrigLoop;
697 
698   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
699   /// dynamic knowledge to simplify SCEV expressions and converts them to a
700   /// more usable form.
701   PredicatedScalarEvolution &PSE;
702 
703   /// Loop Info.
704   LoopInfo *LI;
705 
706   /// Dominator Tree.
707   DominatorTree *DT;
708 
709   /// Alias Analysis.
710   AAResults *AA;
711 
712   /// Target Library Info.
713   const TargetLibraryInfo *TLI;
714 
715   /// Target Transform Info.
716   const TargetTransformInfo *TTI;
717 
718   /// Assumption Cache.
719   AssumptionCache *AC;
720 
721   /// Interface to emit optimization remarks.
722   OptimizationRemarkEmitter *ORE;
723 
724   /// LoopVersioning.  It's only set up (non-null) if memchecks were
725   /// used.
726   ///
727   /// This is currently only used to add no-alias metadata based on the
728   /// memchecks.  The actually versioning is performed manually.
729   std::unique_ptr<LoopVersioning> LVer;
730 
731   /// The vectorization SIMD factor to use. Each vector will have this many
732   /// vector elements.
733   ElementCount VF;
734 
735   /// The vectorization unroll factor to use. Each scalar is vectorized to this
736   /// many different vector instructions.
737   unsigned UF;
738 
739   /// The builder that we use
740   IRBuilder<> Builder;
741 
742   // --- Vectorization state ---
743 
744   /// The vector-loop preheader.
745   BasicBlock *LoopVectorPreHeader;
746 
747   /// The scalar-loop preheader.
748   BasicBlock *LoopScalarPreHeader;
749 
750   /// Middle Block between the vector and the scalar.
751   BasicBlock *LoopMiddleBlock;
752 
753   /// The unique ExitBlock of the scalar loop if one exists.  Note that
754   /// there can be multiple exiting edges reaching this block.
755   BasicBlock *LoopExitBlock;
756 
757   /// The vector loop body.
758   BasicBlock *LoopVectorBody;
759 
760   /// The scalar loop body.
761   BasicBlock *LoopScalarBody;
762 
763   /// A list of all bypass blocks. The first block is the entry of the loop.
764   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
765 
766   /// Store instructions that were predicated.
767   SmallVector<Instruction *, 4> PredicatedInstructions;
768 
769   /// Trip count of the original loop.
770   Value *TripCount = nullptr;
771 
772   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
773   Value *VectorTripCount = nullptr;
774 
775   /// The legality analysis.
776   LoopVectorizationLegality *Legal;
777 
778   /// The profitablity analysis.
779   LoopVectorizationCostModel *Cost;
780 
781   // Record whether runtime checks are added.
782   bool AddedSafetyChecks = false;
783 
784   // Holds the end values for each induction variable. We save the end values
785   // so we can later fix-up the external users of the induction variables.
786   DenseMap<PHINode *, Value *> IVEndValues;
787 
788   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
789   // fixed up at the end of vector code generation.
790   SmallVector<PHINode *, 8> OrigPHIsToFix;
791 
792   /// BFI and PSI are used to check for profile guided size optimizations.
793   BlockFrequencyInfo *BFI;
794   ProfileSummaryInfo *PSI;
795 
796   // Whether this loop should be optimized for size based on profile guided size
797   // optimizatios.
798   bool OptForSizeBasedOnProfile;
799 
800   /// Structure to hold information about generated runtime checks, responsible
801   /// for cleaning the checks, if vectorization turns out unprofitable.
802   GeneratedRTChecks &RTChecks;
803 
804   // Holds the resume values for reductions in the loops, used to set the
805   // correct start value of reduction PHIs when vectorizing the epilogue.
806   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
807       ReductionResumeValues;
808 };
809 
810 class InnerLoopUnroller : public InnerLoopVectorizer {
811 public:
812   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
813                     LoopInfo *LI, DominatorTree *DT,
814                     const TargetLibraryInfo *TLI,
815                     const TargetTransformInfo *TTI, AssumptionCache *AC,
816                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
817                     LoopVectorizationLegality *LVL,
818                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
819                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
820       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
821                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
822                             BFI, PSI, Check) {}
823 
824 private:
825   Value *getBroadcastInstrs(Value *V) override;
826 };
827 
828 /// Encapsulate information regarding vectorization of a loop and its epilogue.
829 /// This information is meant to be updated and used across two stages of
830 /// epilogue vectorization.
831 struct EpilogueLoopVectorizationInfo {
832   ElementCount MainLoopVF = ElementCount::getFixed(0);
833   unsigned MainLoopUF = 0;
834   ElementCount EpilogueVF = ElementCount::getFixed(0);
835   unsigned EpilogueUF = 0;
836   BasicBlock *MainLoopIterationCountCheck = nullptr;
837   BasicBlock *EpilogueIterationCountCheck = nullptr;
838   BasicBlock *SCEVSafetyCheck = nullptr;
839   BasicBlock *MemSafetyCheck = nullptr;
840   Value *TripCount = nullptr;
841   Value *VectorTripCount = nullptr;
842 
843   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
844                                 ElementCount EVF, unsigned EUF)
845       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
846     assert(EUF == 1 &&
847            "A high UF for the epilogue loop is likely not beneficial.");
848   }
849 };
850 
851 /// An extension of the inner loop vectorizer that creates a skeleton for a
852 /// vectorized loop that has its epilogue (residual) also vectorized.
853 /// The idea is to run the vplan on a given loop twice, firstly to setup the
854 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
855 /// from the first step and vectorize the epilogue.  This is achieved by
856 /// deriving two concrete strategy classes from this base class and invoking
857 /// them in succession from the loop vectorizer planner.
858 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
859 public:
860   InnerLoopAndEpilogueVectorizer(
861       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
862       DominatorTree *DT, const TargetLibraryInfo *TLI,
863       const TargetTransformInfo *TTI, AssumptionCache *AC,
864       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
865       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
866       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
867       GeneratedRTChecks &Checks)
868       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
869                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
870                             Checks),
871         EPI(EPI) {}
872 
873   // Override this function to handle the more complex control flow around the
874   // three loops.
875   std::pair<BasicBlock *, Value *>
876   createVectorizedLoopSkeleton() final override {
877     return createEpilogueVectorizedLoopSkeleton();
878   }
879 
880   /// The interface for creating a vectorized skeleton using one of two
881   /// different strategies, each corresponding to one execution of the vplan
882   /// as described above.
883   virtual std::pair<BasicBlock *, Value *>
884   createEpilogueVectorizedLoopSkeleton() = 0;
885 
886   /// Holds and updates state information required to vectorize the main loop
887   /// and its epilogue in two separate passes. This setup helps us avoid
888   /// regenerating and recomputing runtime safety checks. It also helps us to
889   /// shorten the iteration-count-check path length for the cases where the
890   /// iteration count of the loop is so small that the main vector loop is
891   /// completely skipped.
892   EpilogueLoopVectorizationInfo &EPI;
893 };
894 
895 /// A specialized derived class of inner loop vectorizer that performs
896 /// vectorization of *main* loops in the process of vectorizing loops and their
897 /// epilogues.
898 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
899 public:
900   EpilogueVectorizerMainLoop(
901       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
902       DominatorTree *DT, const TargetLibraryInfo *TLI,
903       const TargetTransformInfo *TTI, AssumptionCache *AC,
904       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
905       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
906       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
907       GeneratedRTChecks &Check)
908       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
909                                        EPI, LVL, CM, BFI, PSI, Check) {}
910   /// Implements the interface for creating a vectorized skeleton using the
911   /// *main loop* strategy (ie the first pass of vplan execution).
912   std::pair<BasicBlock *, Value *>
913   createEpilogueVectorizedLoopSkeleton() final override;
914 
915 protected:
916   /// Emits an iteration count bypass check once for the main loop (when \p
917   /// ForEpilogue is false) and once for the epilogue loop (when \p
918   /// ForEpilogue is true).
919   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
920                                              bool ForEpilogue);
921   void printDebugTracesAtStart() override;
922   void printDebugTracesAtEnd() override;
923 };
924 
925 // A specialized derived class of inner loop vectorizer that performs
926 // vectorization of *epilogue* loops in the process of vectorizing loops and
927 // their epilogues.
928 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
929 public:
930   EpilogueVectorizerEpilogueLoop(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                                        EPI, LVL, CM, BFI, PSI, Checks) {}
940   /// Implements the interface for creating a vectorized skeleton using the
941   /// *epilogue loop* strategy (ie the second pass of vplan execution).
942   std::pair<BasicBlock *, Value *>
943   createEpilogueVectorizedLoopSkeleton() final override;
944 
945 protected:
946   /// Emits an iteration count bypass check after the main vector loop has
947   /// finished to see if there are any iterations left to execute by either
948   /// the vector epilogue or the scalar epilogue.
949   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
950                                                       BasicBlock *Bypass,
951                                                       BasicBlock *Insert);
952   void printDebugTracesAtStart() override;
953   void printDebugTracesAtEnd() override;
954 };
955 } // end namespace llvm
956 
957 /// Look for a meaningful debug location on the instruction or it's
958 /// operands.
959 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
960   if (!I)
961     return I;
962 
963   DebugLoc Empty;
964   if (I->getDebugLoc() != Empty)
965     return I;
966 
967   for (Use &Op : I->operands()) {
968     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
969       if (OpInst->getDebugLoc() != Empty)
970         return OpInst;
971   }
972 
973   return I;
974 }
975 
976 void InnerLoopVectorizer::setDebugLocFromInst(
977     const Value *V, Optional<IRBuilderBase *> CustomBuilder) {
978   IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
979   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
980     const DILocation *DIL = Inst->getDebugLoc();
981 
982     // When a FSDiscriminator is enabled, we don't need to add the multiply
983     // factors to the discriminators.
984     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
985         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
986       // FIXME: For scalable vectors, assume vscale=1.
987       auto NewDIL =
988           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
989       if (NewDIL)
990         B->SetCurrentDebugLocation(NewDIL.getValue());
991       else
992         LLVM_DEBUG(dbgs()
993                    << "Failed to create new discriminator: "
994                    << DIL->getFilename() << " Line: " << DIL->getLine());
995     } else
996       B->SetCurrentDebugLocation(DIL);
997   } else
998     B->SetCurrentDebugLocation(DebugLoc());
999 }
1000 
1001 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1002 /// is passed, the message relates to that particular instruction.
1003 #ifndef NDEBUG
1004 static void debugVectorizationMessage(const StringRef Prefix,
1005                                       const StringRef DebugMsg,
1006                                       Instruction *I) {
1007   dbgs() << "LV: " << Prefix << DebugMsg;
1008   if (I != nullptr)
1009     dbgs() << " " << *I;
1010   else
1011     dbgs() << '.';
1012   dbgs() << '\n';
1013 }
1014 #endif
1015 
1016 /// Create an analysis remark that explains why vectorization failed
1017 ///
1018 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1019 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1020 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1021 /// the location of the remark.  \return the remark object that can be
1022 /// streamed to.
1023 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1024     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1025   Value *CodeRegion = TheLoop->getHeader();
1026   DebugLoc DL = TheLoop->getStartLoc();
1027 
1028   if (I) {
1029     CodeRegion = I->getParent();
1030     // If there is no debug location attached to the instruction, revert back to
1031     // using the loop's.
1032     if (I->getDebugLoc())
1033       DL = I->getDebugLoc();
1034   }
1035 
1036   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1037 }
1038 
1039 namespace llvm {
1040 
1041 /// Return a value for Step multiplied by VF.
1042 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
1043                        int64_t Step) {
1044   assert(Ty->isIntegerTy() && "Expected an integer step");
1045   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1046   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1047 }
1048 
1049 /// Return the runtime value for VF.
1050 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
1051   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1052   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1053 }
1054 
1055 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1056                                   ElementCount VF) {
1057   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1058   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1059   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1060   return B.CreateUIToFP(RuntimeVF, FTy);
1061 }
1062 
1063 void reportVectorizationFailure(const StringRef DebugMsg,
1064                                 const StringRef OREMsg, const StringRef ORETag,
1065                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1066                                 Instruction *I) {
1067   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1068   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1069   ORE->emit(
1070       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1071       << "loop not vectorized: " << OREMsg);
1072 }
1073 
1074 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1075                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1076                              Instruction *I) {
1077   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1078   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1079   ORE->emit(
1080       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1081       << Msg);
1082 }
1083 
1084 } // end namespace llvm
1085 
1086 #ifndef NDEBUG
1087 /// \return string containing a file name and a line # for the given loop.
1088 static std::string getDebugLocString(const Loop *L) {
1089   std::string Result;
1090   if (L) {
1091     raw_string_ostream OS(Result);
1092     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1093       LoopDbgLoc.print(OS);
1094     else
1095       // Just print the module name.
1096       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1097     OS.flush();
1098   }
1099   return Result;
1100 }
1101 #endif
1102 
1103 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1104                                          const Instruction *Orig) {
1105   // If the loop was versioned with memchecks, add the corresponding no-alias
1106   // metadata.
1107   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1108     LVer->annotateInstWithNoAlias(To, Orig);
1109 }
1110 
1111 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1112     VPTransformState &State) {
1113 
1114   // Collect recipes in the backward slice of `Root` that may generate a poison
1115   // value that is used after vectorization.
1116   SmallPtrSet<VPRecipeBase *, 16> Visited;
1117   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1118     SmallVector<VPRecipeBase *, 16> Worklist;
1119     Worklist.push_back(Root);
1120 
1121     // Traverse the backward slice of Root through its use-def chain.
1122     while (!Worklist.empty()) {
1123       VPRecipeBase *CurRec = Worklist.back();
1124       Worklist.pop_back();
1125 
1126       if (!Visited.insert(CurRec).second)
1127         continue;
1128 
1129       // Prune search if we find another recipe generating a widen memory
1130       // instruction. Widen memory instructions involved in address computation
1131       // will lead to gather/scatter instructions, which don't need to be
1132       // handled.
1133       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1134           isa<VPInterleaveRecipe>(CurRec) ||
1135           isa<VPCanonicalIVPHIRecipe>(CurRec))
1136         continue;
1137 
1138       // This recipe contributes to the address computation of a widen
1139       // load/store. Collect recipe if its underlying instruction has
1140       // poison-generating flags.
1141       Instruction *Instr = CurRec->getUnderlyingInstr();
1142       if (Instr && Instr->hasPoisonGeneratingFlags())
1143         State.MayGeneratePoisonRecipes.insert(CurRec);
1144 
1145       // Add new definitions to the worklist.
1146       for (VPValue *operand : CurRec->operands())
1147         if (VPDef *OpDef = operand->getDef())
1148           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1149     }
1150   });
1151 
1152   // Traverse all the recipes in the VPlan and collect the poison-generating
1153   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1154   // VPInterleaveRecipe.
1155   auto Iter = depth_first(
1156       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1157   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1158     for (VPRecipeBase &Recipe : *VPBB) {
1159       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1160         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1161         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1162         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1163             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1164           collectPoisonGeneratingInstrsInBackwardSlice(
1165               cast<VPRecipeBase>(AddrDef));
1166       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1167         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1168         if (AddrDef) {
1169           // Check if any member of the interleave group needs predication.
1170           const InterleaveGroup<Instruction> *InterGroup =
1171               InterleaveRec->getInterleaveGroup();
1172           bool NeedPredication = false;
1173           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1174                I < NumMembers; ++I) {
1175             Instruction *Member = InterGroup->getMember(I);
1176             if (Member)
1177               NeedPredication |=
1178                   Legal->blockNeedsPredication(Member->getParent());
1179           }
1180 
1181           if (NeedPredication)
1182             collectPoisonGeneratingInstrsInBackwardSlice(
1183                 cast<VPRecipeBase>(AddrDef));
1184         }
1185       }
1186     }
1187   }
1188 }
1189 
1190 void InnerLoopVectorizer::addMetadata(Instruction *To,
1191                                       Instruction *From) {
1192   propagateMetadata(To, From);
1193   addNewMetadata(To, From);
1194 }
1195 
1196 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1197                                       Instruction *From) {
1198   for (Value *V : To) {
1199     if (Instruction *I = dyn_cast<Instruction>(V))
1200       addMetadata(I, From);
1201   }
1202 }
1203 
1204 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1205     const RecurrenceDescriptor &RdxDesc) {
1206   auto It = ReductionResumeValues.find(&RdxDesc);
1207   assert(It != ReductionResumeValues.end() &&
1208          "Expected to find a resume value for the reduction.");
1209   return It->second;
1210 }
1211 
1212 namespace llvm {
1213 
1214 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1215 // lowered.
1216 enum ScalarEpilogueLowering {
1217 
1218   // The default: allowing scalar epilogues.
1219   CM_ScalarEpilogueAllowed,
1220 
1221   // Vectorization with OptForSize: don't allow epilogues.
1222   CM_ScalarEpilogueNotAllowedOptSize,
1223 
1224   // A special case of vectorisation with OptForSize: loops with a very small
1225   // trip count are considered for vectorization under OptForSize, thereby
1226   // making sure the cost of their loop body is dominant, free of runtime
1227   // guards and scalar iteration overheads.
1228   CM_ScalarEpilogueNotAllowedLowTripLoop,
1229 
1230   // Loop hint predicate indicating an epilogue is undesired.
1231   CM_ScalarEpilogueNotNeededUsePredicate,
1232 
1233   // Directive indicating we must either tail fold or not vectorize
1234   CM_ScalarEpilogueNotAllowedUsePredicate
1235 };
1236 
1237 /// ElementCountComparator creates a total ordering for ElementCount
1238 /// for the purposes of using it in a set structure.
1239 struct ElementCountComparator {
1240   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1241     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1242            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1243   }
1244 };
1245 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1246 
1247 /// LoopVectorizationCostModel - estimates the expected speedups due to
1248 /// vectorization.
1249 /// In many cases vectorization is not profitable. This can happen because of
1250 /// a number of reasons. In this class we mainly attempt to predict the
1251 /// expected speedup/slowdowns due to the supported instruction set. We use the
1252 /// TargetTransformInfo to query the different backends for the cost of
1253 /// different operations.
1254 class LoopVectorizationCostModel {
1255 public:
1256   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1257                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1258                              LoopVectorizationLegality *Legal,
1259                              const TargetTransformInfo &TTI,
1260                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1261                              AssumptionCache *AC,
1262                              OptimizationRemarkEmitter *ORE, const Function *F,
1263                              const LoopVectorizeHints *Hints,
1264                              InterleavedAccessInfo &IAI)
1265       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1266         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1267         Hints(Hints), InterleaveInfo(IAI) {}
1268 
1269   /// \return An upper bound for the vectorization factors (both fixed and
1270   /// scalable). If the factors are 0, vectorization and interleaving should be
1271   /// avoided up front.
1272   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1273 
1274   /// \return True if runtime checks are required for vectorization, and false
1275   /// otherwise.
1276   bool runtimeChecksRequired();
1277 
1278   /// \return The most profitable vectorization factor and the cost of that VF.
1279   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1280   /// then this vectorization factor will be selected if vectorization is
1281   /// possible.
1282   VectorizationFactor
1283   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1284 
1285   VectorizationFactor
1286   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1287                                     const LoopVectorizationPlanner &LVP);
1288 
1289   /// Setup cost-based decisions for user vectorization factor.
1290   /// \return true if the UserVF is a feasible VF to be chosen.
1291   bool selectUserVectorizationFactor(ElementCount UserVF) {
1292     collectUniformsAndScalars(UserVF);
1293     collectInstsToScalarize(UserVF);
1294     return expectedCost(UserVF).first.isValid();
1295   }
1296 
1297   /// \return The size (in bits) of the smallest and widest types in the code
1298   /// that needs to be vectorized. We ignore values that remain scalar such as
1299   /// 64 bit loop indices.
1300   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1301 
1302   /// \return The desired interleave count.
1303   /// If interleave count has been specified by metadata it will be returned.
1304   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1305   /// are the selected vectorization factor and the cost of the selected VF.
1306   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1307 
1308   /// Memory access instruction may be vectorized in more than one way.
1309   /// Form of instruction after vectorization depends on cost.
1310   /// This function takes cost-based decisions for Load/Store instructions
1311   /// and collects them in a map. This decisions map is used for building
1312   /// the lists of loop-uniform and loop-scalar instructions.
1313   /// The calculated cost is saved with widening decision in order to
1314   /// avoid redundant calculations.
1315   void setCostBasedWideningDecision(ElementCount VF);
1316 
1317   /// A struct that represents some properties of the register usage
1318   /// of a loop.
1319   struct RegisterUsage {
1320     /// Holds the number of loop invariant values that are used in the loop.
1321     /// The key is ClassID of target-provided register class.
1322     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1323     /// Holds the maximum number of concurrent live intervals in the loop.
1324     /// The key is ClassID of target-provided register class.
1325     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1326   };
1327 
1328   /// \return Returns information about the register usages of the loop for the
1329   /// given vectorization factors.
1330   SmallVector<RegisterUsage, 8>
1331   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1332 
1333   /// Collect values we want to ignore in the cost model.
1334   void collectValuesToIgnore();
1335 
1336   /// Collect all element types in the loop for which widening is needed.
1337   void collectElementTypesForWidening();
1338 
1339   /// Split reductions into those that happen in the loop, and those that happen
1340   /// outside. In loop reductions are collected into InLoopReductionChains.
1341   void collectInLoopReductions();
1342 
1343   /// Returns true if we should use strict in-order reductions for the given
1344   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1345   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1346   /// of FP operations.
1347   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1348     return !Hints->allowReordering() && RdxDesc.isOrdered();
1349   }
1350 
1351   /// \returns The smallest bitwidth each instruction can be represented with.
1352   /// The vector equivalents of these instructions should be truncated to this
1353   /// type.
1354   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1355     return MinBWs;
1356   }
1357 
1358   /// \returns True if it is more profitable to scalarize instruction \p I for
1359   /// vectorization factor \p VF.
1360   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1361     assert(VF.isVector() &&
1362            "Profitable to scalarize relevant only for VF > 1.");
1363 
1364     // Cost model is not run in the VPlan-native path - return conservative
1365     // result until this changes.
1366     if (EnableVPlanNativePath)
1367       return false;
1368 
1369     auto Scalars = InstsToScalarize.find(VF);
1370     assert(Scalars != InstsToScalarize.end() &&
1371            "VF not yet analyzed for scalarization profitability");
1372     return Scalars->second.find(I) != Scalars->second.end();
1373   }
1374 
1375   /// Returns true if \p I is known to be uniform after vectorization.
1376   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1377     if (VF.isScalar())
1378       return true;
1379 
1380     // Cost model is not run in the VPlan-native path - return conservative
1381     // result until this changes.
1382     if (EnableVPlanNativePath)
1383       return false;
1384 
1385     auto UniformsPerVF = Uniforms.find(VF);
1386     assert(UniformsPerVF != Uniforms.end() &&
1387            "VF not yet analyzed for uniformity");
1388     return UniformsPerVF->second.count(I);
1389   }
1390 
1391   /// Returns true if \p I is known to be scalar after vectorization.
1392   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1393     if (VF.isScalar())
1394       return true;
1395 
1396     // Cost model is not run in the VPlan-native path - return conservative
1397     // result until this changes.
1398     if (EnableVPlanNativePath)
1399       return false;
1400 
1401     auto ScalarsPerVF = Scalars.find(VF);
1402     assert(ScalarsPerVF != Scalars.end() &&
1403            "Scalar values are not calculated for VF");
1404     return ScalarsPerVF->second.count(I);
1405   }
1406 
1407   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1408   /// for vectorization factor \p VF.
1409   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1410     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1411            !isProfitableToScalarize(I, VF) &&
1412            !isScalarAfterVectorization(I, VF);
1413   }
1414 
1415   /// Decision that was taken during cost calculation for memory instruction.
1416   enum InstWidening {
1417     CM_Unknown,
1418     CM_Widen,         // For consecutive accesses with stride +1.
1419     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1420     CM_Interleave,
1421     CM_GatherScatter,
1422     CM_Scalarize
1423   };
1424 
1425   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1426   /// instruction \p I and vector width \p VF.
1427   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1428                            InstructionCost Cost) {
1429     assert(VF.isVector() && "Expected VF >=2");
1430     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1431   }
1432 
1433   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1434   /// interleaving group \p Grp and vector width \p VF.
1435   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1436                            ElementCount VF, InstWidening W,
1437                            InstructionCost Cost) {
1438     assert(VF.isVector() && "Expected VF >=2");
1439     /// Broadcast this decicion to all instructions inside the group.
1440     /// But the cost will be assigned to one instruction only.
1441     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1442       if (auto *I = Grp->getMember(i)) {
1443         if (Grp->getInsertPos() == I)
1444           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1445         else
1446           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1447       }
1448     }
1449   }
1450 
1451   /// Return the cost model decision for the given instruction \p I and vector
1452   /// width \p VF. Return CM_Unknown if this instruction did not pass
1453   /// through the cost modeling.
1454   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1455     assert(VF.isVector() && "Expected VF to be a vector VF");
1456     // Cost model is not run in the VPlan-native path - return conservative
1457     // result until this changes.
1458     if (EnableVPlanNativePath)
1459       return CM_GatherScatter;
1460 
1461     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1462     auto Itr = WideningDecisions.find(InstOnVF);
1463     if (Itr == WideningDecisions.end())
1464       return CM_Unknown;
1465     return Itr->second.first;
1466   }
1467 
1468   /// Return the vectorization cost for the given instruction \p I and vector
1469   /// width \p VF.
1470   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1471     assert(VF.isVector() && "Expected VF >=2");
1472     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1473     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1474            "The cost is not calculated");
1475     return WideningDecisions[InstOnVF].second;
1476   }
1477 
1478   /// Return True if instruction \p I is an optimizable truncate whose operand
1479   /// is an induction variable. Such a truncate will be removed by adding a new
1480   /// induction variable with the destination type.
1481   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1482     // If the instruction is not a truncate, return false.
1483     auto *Trunc = dyn_cast<TruncInst>(I);
1484     if (!Trunc)
1485       return false;
1486 
1487     // Get the source and destination types of the truncate.
1488     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1489     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1490 
1491     // If the truncate is free for the given types, return false. Replacing a
1492     // free truncate with an induction variable would add an induction variable
1493     // update instruction to each iteration of the loop. We exclude from this
1494     // check the primary induction variable since it will need an update
1495     // instruction regardless.
1496     Value *Op = Trunc->getOperand(0);
1497     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1498       return false;
1499 
1500     // If the truncated value is not an induction variable, return false.
1501     return Legal->isInductionPhi(Op);
1502   }
1503 
1504   /// Collects the instructions to scalarize for each predicated instruction in
1505   /// the loop.
1506   void collectInstsToScalarize(ElementCount VF);
1507 
1508   /// Collect Uniform and Scalar values for the given \p VF.
1509   /// The sets depend on CM decision for Load/Store instructions
1510   /// that may be vectorized as interleave, gather-scatter or scalarized.
1511   void collectUniformsAndScalars(ElementCount VF) {
1512     // Do the analysis once.
1513     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1514       return;
1515     setCostBasedWideningDecision(VF);
1516     collectLoopUniforms(VF);
1517     collectLoopScalars(VF);
1518   }
1519 
1520   /// Returns true if the target machine supports masked store operation
1521   /// for the given \p DataType and kind of access to \p Ptr.
1522   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1523     return Legal->isConsecutivePtr(DataType, Ptr) &&
1524            TTI.isLegalMaskedStore(DataType, Alignment);
1525   }
1526 
1527   /// Returns true if the target machine supports masked load operation
1528   /// for the given \p DataType and kind of access to \p Ptr.
1529   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1530     return Legal->isConsecutivePtr(DataType, Ptr) &&
1531            TTI.isLegalMaskedLoad(DataType, Alignment);
1532   }
1533 
1534   /// Returns true if the target machine can represent \p V as a masked gather
1535   /// or scatter operation.
1536   bool isLegalGatherOrScatter(Value *V,
1537                               ElementCount VF = ElementCount::getFixed(1)) {
1538     bool LI = isa<LoadInst>(V);
1539     bool SI = isa<StoreInst>(V);
1540     if (!LI && !SI)
1541       return false;
1542     auto *Ty = getLoadStoreType(V);
1543     Align Align = getLoadStoreAlignment(V);
1544     if (VF.isVector())
1545       Ty = VectorType::get(Ty, VF);
1546     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1547            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1548   }
1549 
1550   /// Returns true if the target machine supports all of the reduction
1551   /// variables found for the given VF.
1552   bool canVectorizeReductions(ElementCount VF) const {
1553     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1554       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1555       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1556     }));
1557   }
1558 
1559   /// Returns true if \p I is an instruction that will be scalarized with
1560   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1561   /// instructions include conditional stores and instructions that may divide
1562   /// by zero.
1563   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1564 
1565   // Returns true if \p I is an instruction that will be predicated either
1566   // through scalar predication or masked load/store or masked gather/scatter.
1567   // \p VF is the vectorization factor that will be used to vectorize \p I.
1568   // Superset of instructions that return true for isScalarWithPredication.
1569   bool isPredicatedInst(Instruction *I, ElementCount VF,
1570                         bool IsKnownUniform = false) {
1571     // When we know the load is uniform and the original scalar loop was not
1572     // predicated we don't need to mark it as a predicated instruction. Any
1573     // vectorised blocks created when tail-folding are something artificial we
1574     // have introduced and we know there is always at least one active lane.
1575     // That's why we call Legal->blockNeedsPredication here because it doesn't
1576     // query tail-folding.
1577     if (IsKnownUniform && isa<LoadInst>(I) &&
1578         !Legal->blockNeedsPredication(I->getParent()))
1579       return false;
1580     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1581       return false;
1582     // Loads and stores that need some form of masked operation are predicated
1583     // instructions.
1584     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1585       return Legal->isMaskRequired(I);
1586     return isScalarWithPredication(I, VF);
1587   }
1588 
1589   /// Returns true if \p I is a memory instruction with consecutive memory
1590   /// access that can be widened.
1591   bool
1592   memoryInstructionCanBeWidened(Instruction *I,
1593                                 ElementCount VF = ElementCount::getFixed(1));
1594 
1595   /// Returns true if \p I is a memory instruction in an interleaved-group
1596   /// of memory accesses that can be vectorized with wide vector loads/stores
1597   /// and shuffles.
1598   bool
1599   interleavedAccessCanBeWidened(Instruction *I,
1600                                 ElementCount VF = ElementCount::getFixed(1));
1601 
1602   /// Check if \p Instr belongs to any interleaved access group.
1603   bool isAccessInterleaved(Instruction *Instr) {
1604     return InterleaveInfo.isInterleaved(Instr);
1605   }
1606 
1607   /// Get the interleaved access group that \p Instr belongs to.
1608   const InterleaveGroup<Instruction> *
1609   getInterleavedAccessGroup(Instruction *Instr) {
1610     return InterleaveInfo.getInterleaveGroup(Instr);
1611   }
1612 
1613   /// Returns true if we're required to use a scalar epilogue for at least
1614   /// the final iteration of the original loop.
1615   bool requiresScalarEpilogue(ElementCount VF) const {
1616     if (!isScalarEpilogueAllowed())
1617       return false;
1618     // If we might exit from anywhere but the latch, must run the exiting
1619     // iteration in scalar form.
1620     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1621       return true;
1622     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1623   }
1624 
1625   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1626   /// loop hint annotation.
1627   bool isScalarEpilogueAllowed() const {
1628     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1629   }
1630 
1631   /// Returns true if all loop blocks should be masked to fold tail loop.
1632   bool foldTailByMasking() const { return FoldTailByMasking; }
1633 
1634   /// Returns true if the instructions in this block requires predication
1635   /// for any reason, e.g. because tail folding now requires a predicate
1636   /// or because the block in the original loop was predicated.
1637   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1638     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1639   }
1640 
1641   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1642   /// nodes to the chain of instructions representing the reductions. Uses a
1643   /// MapVector to ensure deterministic iteration order.
1644   using ReductionChainMap =
1645       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1646 
1647   /// Return the chain of instructions representing an inloop reduction.
1648   const ReductionChainMap &getInLoopReductionChains() const {
1649     return InLoopReductionChains;
1650   }
1651 
1652   /// Returns true if the Phi is part of an inloop reduction.
1653   bool isInLoopReduction(PHINode *Phi) const {
1654     return InLoopReductionChains.count(Phi);
1655   }
1656 
1657   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1658   /// with factor VF.  Return the cost of the instruction, including
1659   /// scalarization overhead if it's needed.
1660   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1661 
1662   /// Estimate cost of a call instruction CI if it were vectorized with factor
1663   /// VF. Return the cost of the instruction, including scalarization overhead
1664   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1665   /// scalarized -
1666   /// i.e. either vector version isn't available, or is too expensive.
1667   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1668                                     bool &NeedToScalarize) const;
1669 
1670   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1671   /// that of B.
1672   bool isMoreProfitable(const VectorizationFactor &A,
1673                         const VectorizationFactor &B) const;
1674 
1675   /// Invalidates decisions already taken by the cost model.
1676   void invalidateCostModelingDecisions() {
1677     WideningDecisions.clear();
1678     Uniforms.clear();
1679     Scalars.clear();
1680   }
1681 
1682 private:
1683   unsigned NumPredStores = 0;
1684 
1685   /// Convenience function that returns the value of vscale_range iff
1686   /// vscale_range.min == vscale_range.max or otherwise returns the value
1687   /// returned by the corresponding TLI method.
1688   Optional<unsigned> getVScaleForTuning() const;
1689 
1690   /// \return An upper bound for the vectorization factors for both
1691   /// fixed and scalable vectorization, where the minimum-known number of
1692   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1693   /// disabled or unsupported, then the scalable part will be equal to
1694   /// ElementCount::getScalable(0).
1695   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1696                                            ElementCount UserVF,
1697                                            bool FoldTailByMasking);
1698 
1699   /// \return the maximized element count based on the targets vector
1700   /// registers and the loop trip-count, but limited to a maximum safe VF.
1701   /// This is a helper function of computeFeasibleMaxVF.
1702   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1703   /// issue that occurred on one of the buildbots which cannot be reproduced
1704   /// without having access to the properietary compiler (see comments on
1705   /// D98509). The issue is currently under investigation and this workaround
1706   /// will be removed as soon as possible.
1707   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1708                                        unsigned SmallestType,
1709                                        unsigned WidestType,
1710                                        const ElementCount &MaxSafeVF,
1711                                        bool FoldTailByMasking);
1712 
1713   /// \return the maximum legal scalable VF, based on the safe max number
1714   /// of elements.
1715   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1716 
1717   /// The vectorization cost is a combination of the cost itself and a boolean
1718   /// indicating whether any of the contributing operations will actually
1719   /// operate on vector values after type legalization in the backend. If this
1720   /// latter value is false, then all operations will be scalarized (i.e. no
1721   /// vectorization has actually taken place).
1722   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1723 
1724   /// Returns the expected execution cost. The unit of the cost does
1725   /// not matter because we use the 'cost' units to compare different
1726   /// vector widths. The cost that is returned is *not* normalized by
1727   /// the factor width. If \p Invalid is not nullptr, this function
1728   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1729   /// each instruction that has an Invalid cost for the given VF.
1730   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1731   VectorizationCostTy
1732   expectedCost(ElementCount VF,
1733                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1734 
1735   /// Returns the execution time cost of an instruction for a given vector
1736   /// width. Vector width of one means scalar.
1737   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1738 
1739   /// The cost-computation logic from getInstructionCost which provides
1740   /// the vector type as an output parameter.
1741   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1742                                      Type *&VectorTy);
1743 
1744   /// Return the cost of instructions in an inloop reduction pattern, if I is
1745   /// part of that pattern.
1746   Optional<InstructionCost>
1747   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1748                           TTI::TargetCostKind CostKind);
1749 
1750   /// Calculate vectorization cost of memory instruction \p I.
1751   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1752 
1753   /// The cost computation for scalarized memory instruction.
1754   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1755 
1756   /// The cost computation for interleaving group of memory instructions.
1757   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1758 
1759   /// The cost computation for Gather/Scatter instruction.
1760   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1761 
1762   /// The cost computation for widening instruction \p I with consecutive
1763   /// memory access.
1764   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1765 
1766   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1767   /// Load: scalar load + broadcast.
1768   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1769   /// element)
1770   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1771 
1772   /// Estimate the overhead of scalarizing an instruction. This is a
1773   /// convenience wrapper for the type-based getScalarizationOverhead API.
1774   InstructionCost getScalarizationOverhead(Instruction *I,
1775                                            ElementCount VF) const;
1776 
1777   /// Returns whether the instruction is a load or store and will be a emitted
1778   /// as a vector operation.
1779   bool isConsecutiveLoadOrStore(Instruction *I);
1780 
1781   /// Returns true if an artificially high cost for emulated masked memrefs
1782   /// should be used.
1783   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1784 
1785   /// Map of scalar integer values to the smallest bitwidth they can be legally
1786   /// represented as. The vector equivalents of these values should be truncated
1787   /// to this type.
1788   MapVector<Instruction *, uint64_t> MinBWs;
1789 
1790   /// A type representing the costs for instructions if they were to be
1791   /// scalarized rather than vectorized. The entries are Instruction-Cost
1792   /// pairs.
1793   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1794 
1795   /// A set containing all BasicBlocks that are known to present after
1796   /// vectorization as a predicated block.
1797   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1798 
1799   /// Records whether it is allowed to have the original scalar loop execute at
1800   /// least once. This may be needed as a fallback loop in case runtime
1801   /// aliasing/dependence checks fail, or to handle the tail/remainder
1802   /// iterations when the trip count is unknown or doesn't divide by the VF,
1803   /// or as a peel-loop to handle gaps in interleave-groups.
1804   /// Under optsize and when the trip count is very small we don't allow any
1805   /// iterations to execute in the scalar loop.
1806   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1807 
1808   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1809   bool FoldTailByMasking = false;
1810 
1811   /// A map holding scalar costs for different vectorization factors. The
1812   /// presence of a cost for an instruction in the mapping indicates that the
1813   /// instruction will be scalarized when vectorizing with the associated
1814   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1815   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1816 
1817   /// Holds the instructions known to be uniform after vectorization.
1818   /// The data is collected per VF.
1819   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1820 
1821   /// Holds the instructions known to be scalar after vectorization.
1822   /// The data is collected per VF.
1823   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1824 
1825   /// Holds the instructions (address computations) that are forced to be
1826   /// scalarized.
1827   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1828 
1829   /// PHINodes of the reductions that should be expanded in-loop along with
1830   /// their associated chains of reduction operations, in program order from top
1831   /// (PHI) to bottom
1832   ReductionChainMap InLoopReductionChains;
1833 
1834   /// A Map of inloop reduction operations and their immediate chain operand.
1835   /// FIXME: This can be removed once reductions can be costed correctly in
1836   /// vplan. This was added to allow quick lookup to the inloop operations,
1837   /// without having to loop through InLoopReductionChains.
1838   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1839 
1840   /// Returns the expected difference in cost from scalarizing the expression
1841   /// feeding a predicated instruction \p PredInst. The instructions to
1842   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1843   /// non-negative return value implies the expression will be scalarized.
1844   /// Currently, only single-use chains are considered for scalarization.
1845   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1846                               ElementCount VF);
1847 
1848   /// Collect the instructions that are uniform after vectorization. An
1849   /// instruction is uniform if we represent it with a single scalar value in
1850   /// the vectorized loop corresponding to each vector iteration. Examples of
1851   /// uniform instructions include pointer operands of consecutive or
1852   /// interleaved memory accesses. Note that although uniformity implies an
1853   /// instruction will be scalar, the reverse is not true. In general, a
1854   /// scalarized instruction will be represented by VF scalar values in the
1855   /// vectorized loop, each corresponding to an iteration of the original
1856   /// scalar loop.
1857   void collectLoopUniforms(ElementCount VF);
1858 
1859   /// Collect the instructions that are scalar after vectorization. An
1860   /// instruction is scalar if it is known to be uniform or will be scalarized
1861   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1862   /// to the list if they are used by a load/store instruction that is marked as
1863   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1864   /// VF values in the vectorized loop, each corresponding to an iteration of
1865   /// the original scalar loop.
1866   void collectLoopScalars(ElementCount VF);
1867 
1868   /// Keeps cost model vectorization decision and cost for instructions.
1869   /// Right now it is used for memory instructions only.
1870   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1871                                 std::pair<InstWidening, InstructionCost>>;
1872 
1873   DecisionList WideningDecisions;
1874 
1875   /// Returns true if \p V is expected to be vectorized and it needs to be
1876   /// extracted.
1877   bool needsExtract(Value *V, ElementCount VF) const {
1878     Instruction *I = dyn_cast<Instruction>(V);
1879     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1880         TheLoop->isLoopInvariant(I))
1881       return false;
1882 
1883     // Assume we can vectorize V (and hence we need extraction) if the
1884     // scalars are not computed yet. This can happen, because it is called
1885     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1886     // the scalars are collected. That should be a safe assumption in most
1887     // cases, because we check if the operands have vectorizable types
1888     // beforehand in LoopVectorizationLegality.
1889     return Scalars.find(VF) == Scalars.end() ||
1890            !isScalarAfterVectorization(I, VF);
1891   };
1892 
1893   /// Returns a range containing only operands needing to be extracted.
1894   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1895                                                    ElementCount VF) const {
1896     return SmallVector<Value *, 4>(make_filter_range(
1897         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1898   }
1899 
1900   /// Determines if we have the infrastructure to vectorize loop \p L and its
1901   /// epilogue, assuming the main loop is vectorized by \p VF.
1902   bool isCandidateForEpilogueVectorization(const Loop &L,
1903                                            const ElementCount VF) const;
1904 
1905   /// Returns true if epilogue vectorization is considered profitable, and
1906   /// false otherwise.
1907   /// \p VF is the vectorization factor chosen for the original loop.
1908   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1909 
1910 public:
1911   /// The loop that we evaluate.
1912   Loop *TheLoop;
1913 
1914   /// Predicated scalar evolution analysis.
1915   PredicatedScalarEvolution &PSE;
1916 
1917   /// Loop Info analysis.
1918   LoopInfo *LI;
1919 
1920   /// Vectorization legality.
1921   LoopVectorizationLegality *Legal;
1922 
1923   /// Vector target information.
1924   const TargetTransformInfo &TTI;
1925 
1926   /// Target Library Info.
1927   const TargetLibraryInfo *TLI;
1928 
1929   /// Demanded bits analysis.
1930   DemandedBits *DB;
1931 
1932   /// Assumption cache.
1933   AssumptionCache *AC;
1934 
1935   /// Interface to emit optimization remarks.
1936   OptimizationRemarkEmitter *ORE;
1937 
1938   const Function *TheFunction;
1939 
1940   /// Loop Vectorize Hint.
1941   const LoopVectorizeHints *Hints;
1942 
1943   /// The interleave access information contains groups of interleaved accesses
1944   /// with the same stride and close to each other.
1945   InterleavedAccessInfo &InterleaveInfo;
1946 
1947   /// Values to ignore in the cost model.
1948   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1949 
1950   /// Values to ignore in the cost model when VF > 1.
1951   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1952 
1953   /// All element types found in the loop.
1954   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1955 
1956   /// Profitable vector factors.
1957   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1958 };
1959 } // end namespace llvm
1960 
1961 /// Helper struct to manage generating runtime checks for vectorization.
1962 ///
1963 /// The runtime checks are created up-front in temporary blocks to allow better
1964 /// estimating the cost and un-linked from the existing IR. After deciding to
1965 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1966 /// temporary blocks are completely removed.
1967 class GeneratedRTChecks {
1968   /// Basic block which contains the generated SCEV checks, if any.
1969   BasicBlock *SCEVCheckBlock = nullptr;
1970 
1971   /// The value representing the result of the generated SCEV checks. If it is
1972   /// nullptr, either no SCEV checks have been generated or they have been used.
1973   Value *SCEVCheckCond = nullptr;
1974 
1975   /// Basic block which contains the generated memory runtime checks, if any.
1976   BasicBlock *MemCheckBlock = nullptr;
1977 
1978   /// The value representing the result of the generated memory runtime checks.
1979   /// If it is nullptr, either no memory runtime checks have been generated or
1980   /// they have been used.
1981   Value *MemRuntimeCheckCond = nullptr;
1982 
1983   DominatorTree *DT;
1984   LoopInfo *LI;
1985 
1986   SCEVExpander SCEVExp;
1987   SCEVExpander MemCheckExp;
1988 
1989 public:
1990   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1991                     const DataLayout &DL)
1992       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1993         MemCheckExp(SE, DL, "scev.check") {}
1994 
1995   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1996   /// accurately estimate the cost of the runtime checks. The blocks are
1997   /// un-linked from the IR and is added back during vector code generation. If
1998   /// there is no vector code generation, the check blocks are removed
1999   /// completely.
2000   void Create(Loop *L, const LoopAccessInfo &LAI,
2001               const SCEVPredicate &Pred) {
2002 
2003     BasicBlock *LoopHeader = L->getHeader();
2004     BasicBlock *Preheader = L->getLoopPreheader();
2005 
2006     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2007     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2008     // may be used by SCEVExpander. The blocks will be un-linked from their
2009     // predecessors and removed from LI & DT at the end of the function.
2010     if (!Pred.isAlwaysTrue()) {
2011       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2012                                   nullptr, "vector.scevcheck");
2013 
2014       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2015           &Pred, SCEVCheckBlock->getTerminator());
2016     }
2017 
2018     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2019     if (RtPtrChecking.Need) {
2020       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2021       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2022                                  "vector.memcheck");
2023 
2024       MemRuntimeCheckCond =
2025           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2026                            RtPtrChecking.getChecks(), MemCheckExp);
2027       assert(MemRuntimeCheckCond &&
2028              "no RT checks generated although RtPtrChecking "
2029              "claimed checks are required");
2030     }
2031 
2032     if (!MemCheckBlock && !SCEVCheckBlock)
2033       return;
2034 
2035     // Unhook the temporary block with the checks, update various places
2036     // accordingly.
2037     if (SCEVCheckBlock)
2038       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2039     if (MemCheckBlock)
2040       MemCheckBlock->replaceAllUsesWith(Preheader);
2041 
2042     if (SCEVCheckBlock) {
2043       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2044       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2045       Preheader->getTerminator()->eraseFromParent();
2046     }
2047     if (MemCheckBlock) {
2048       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2049       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2050       Preheader->getTerminator()->eraseFromParent();
2051     }
2052 
2053     DT->changeImmediateDominator(LoopHeader, Preheader);
2054     if (MemCheckBlock) {
2055       DT->eraseNode(MemCheckBlock);
2056       LI->removeBlock(MemCheckBlock);
2057     }
2058     if (SCEVCheckBlock) {
2059       DT->eraseNode(SCEVCheckBlock);
2060       LI->removeBlock(SCEVCheckBlock);
2061     }
2062   }
2063 
2064   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2065   /// unused.
2066   ~GeneratedRTChecks() {
2067     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2068     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2069     if (!SCEVCheckCond)
2070       SCEVCleaner.markResultUsed();
2071 
2072     if (!MemRuntimeCheckCond)
2073       MemCheckCleaner.markResultUsed();
2074 
2075     if (MemRuntimeCheckCond) {
2076       auto &SE = *MemCheckExp.getSE();
2077       // Memory runtime check generation creates compares that use expanded
2078       // values. Remove them before running the SCEVExpanderCleaners.
2079       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2080         if (MemCheckExp.isInsertedInstruction(&I))
2081           continue;
2082         SE.forgetValue(&I);
2083         I.eraseFromParent();
2084       }
2085     }
2086     MemCheckCleaner.cleanup();
2087     SCEVCleaner.cleanup();
2088 
2089     if (SCEVCheckCond)
2090       SCEVCheckBlock->eraseFromParent();
2091     if (MemRuntimeCheckCond)
2092       MemCheckBlock->eraseFromParent();
2093   }
2094 
2095   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2096   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2097   /// depending on the generated condition.
2098   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2099                              BasicBlock *LoopVectorPreHeader,
2100                              BasicBlock *LoopExitBlock) {
2101     if (!SCEVCheckCond)
2102       return nullptr;
2103     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2104       if (C->isZero())
2105         return nullptr;
2106 
2107     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2108 
2109     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2110     // Create new preheader for vector loop.
2111     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2112       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2113 
2114     SCEVCheckBlock->getTerminator()->eraseFromParent();
2115     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2116     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2117                                                 SCEVCheckBlock);
2118 
2119     DT->addNewBlock(SCEVCheckBlock, Pred);
2120     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2121 
2122     ReplaceInstWithInst(
2123         SCEVCheckBlock->getTerminator(),
2124         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2125     // Mark the check as used, to prevent it from being removed during cleanup.
2126     SCEVCheckCond = nullptr;
2127     return SCEVCheckBlock;
2128   }
2129 
2130   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2131   /// the branches to branch to the vector preheader or \p Bypass, depending on
2132   /// the generated condition.
2133   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2134                                    BasicBlock *LoopVectorPreHeader) {
2135     // Check if we generated code that checks in runtime if arrays overlap.
2136     if (!MemRuntimeCheckCond)
2137       return nullptr;
2138 
2139     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2140     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2141                                                 MemCheckBlock);
2142 
2143     DT->addNewBlock(MemCheckBlock, Pred);
2144     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2145     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2146 
2147     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2148       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2149 
2150     ReplaceInstWithInst(
2151         MemCheckBlock->getTerminator(),
2152         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2153     MemCheckBlock->getTerminator()->setDebugLoc(
2154         Pred->getTerminator()->getDebugLoc());
2155 
2156     // Mark the check as used, to prevent it from being removed during cleanup.
2157     MemRuntimeCheckCond = nullptr;
2158     return MemCheckBlock;
2159   }
2160 };
2161 
2162 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2163 // vectorization. The loop needs to be annotated with #pragma omp simd
2164 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2165 // vector length information is not provided, vectorization is not considered
2166 // explicit. Interleave hints are not allowed either. These limitations will be
2167 // relaxed in the future.
2168 // Please, note that we are currently forced to abuse the pragma 'clang
2169 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2170 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2171 // provides *explicit vectorization hints* (LV can bypass legal checks and
2172 // assume that vectorization is legal). However, both hints are implemented
2173 // using the same metadata (llvm.loop.vectorize, processed by
2174 // LoopVectorizeHints). This will be fixed in the future when the native IR
2175 // representation for pragma 'omp simd' is introduced.
2176 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2177                                    OptimizationRemarkEmitter *ORE) {
2178   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2179   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2180 
2181   // Only outer loops with an explicit vectorization hint are supported.
2182   // Unannotated outer loops are ignored.
2183   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2184     return false;
2185 
2186   Function *Fn = OuterLp->getHeader()->getParent();
2187   if (!Hints.allowVectorization(Fn, OuterLp,
2188                                 true /*VectorizeOnlyWhenForced*/)) {
2189     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2190     return false;
2191   }
2192 
2193   if (Hints.getInterleave() > 1) {
2194     // TODO: Interleave support is future work.
2195     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2196                          "outer loops.\n");
2197     Hints.emitRemarkWithHints();
2198     return false;
2199   }
2200 
2201   return true;
2202 }
2203 
2204 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2205                                   OptimizationRemarkEmitter *ORE,
2206                                   SmallVectorImpl<Loop *> &V) {
2207   // Collect inner loops and outer loops without irreducible control flow. For
2208   // now, only collect outer loops that have explicit vectorization hints. If we
2209   // are stress testing the VPlan H-CFG construction, we collect the outermost
2210   // loop of every loop nest.
2211   if (L.isInnermost() || VPlanBuildStressTest ||
2212       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2213     LoopBlocksRPO RPOT(&L);
2214     RPOT.perform(LI);
2215     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2216       V.push_back(&L);
2217       // TODO: Collect inner loops inside marked outer loops in case
2218       // vectorization fails for the outer loop. Do not invoke
2219       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2220       // already known to be reducible. We can use an inherited attribute for
2221       // that.
2222       return;
2223     }
2224   }
2225   for (Loop *InnerL : L)
2226     collectSupportedLoops(*InnerL, LI, ORE, V);
2227 }
2228 
2229 namespace {
2230 
2231 /// The LoopVectorize Pass.
2232 struct LoopVectorize : public FunctionPass {
2233   /// Pass identification, replacement for typeid
2234   static char ID;
2235 
2236   LoopVectorizePass Impl;
2237 
2238   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2239                          bool VectorizeOnlyWhenForced = false)
2240       : FunctionPass(ID),
2241         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2242     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2243   }
2244 
2245   bool runOnFunction(Function &F) override {
2246     if (skipFunction(F))
2247       return false;
2248 
2249     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2250     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2251     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2252     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2253     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2254     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2255     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2256     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2257     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2258     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2259     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2260     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2261     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2262 
2263     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2264         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2265 
2266     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2267                         GetLAA, *ORE, PSI).MadeAnyChange;
2268   }
2269 
2270   void getAnalysisUsage(AnalysisUsage &AU) const override {
2271     AU.addRequired<AssumptionCacheTracker>();
2272     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2273     AU.addRequired<DominatorTreeWrapperPass>();
2274     AU.addRequired<LoopInfoWrapperPass>();
2275     AU.addRequired<ScalarEvolutionWrapperPass>();
2276     AU.addRequired<TargetTransformInfoWrapperPass>();
2277     AU.addRequired<AAResultsWrapperPass>();
2278     AU.addRequired<LoopAccessLegacyAnalysis>();
2279     AU.addRequired<DemandedBitsWrapperPass>();
2280     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2281     AU.addRequired<InjectTLIMappingsLegacy>();
2282 
2283     // We currently do not preserve loopinfo/dominator analyses with outer loop
2284     // vectorization. Until this is addressed, mark these analyses as preserved
2285     // only for non-VPlan-native path.
2286     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2287     if (!EnableVPlanNativePath) {
2288       AU.addPreserved<LoopInfoWrapperPass>();
2289       AU.addPreserved<DominatorTreeWrapperPass>();
2290     }
2291 
2292     AU.addPreserved<BasicAAWrapperPass>();
2293     AU.addPreserved<GlobalsAAWrapperPass>();
2294     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2295   }
2296 };
2297 
2298 } // end anonymous namespace
2299 
2300 //===----------------------------------------------------------------------===//
2301 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2302 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2303 //===----------------------------------------------------------------------===//
2304 
2305 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2306   // We need to place the broadcast of invariant variables outside the loop,
2307   // but only if it's proven safe to do so. Else, broadcast will be inside
2308   // vector loop body.
2309   Instruction *Instr = dyn_cast<Instruction>(V);
2310   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2311                      (!Instr ||
2312                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2313   // Place the code for broadcasting invariant variables in the new preheader.
2314   IRBuilder<>::InsertPointGuard Guard(Builder);
2315   if (SafeToHoist)
2316     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2317 
2318   // Broadcast the scalar into all locations in the vector.
2319   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2320 
2321   return Shuf;
2322 }
2323 
2324 /// This function adds
2325 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2326 /// to each vector element of Val. The sequence starts at StartIndex.
2327 /// \p Opcode is relevant for FP induction variable.
2328 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2329                             Instruction::BinaryOps BinOp, ElementCount VF,
2330                             IRBuilderBase &Builder) {
2331   assert(VF.isVector() && "only vector VFs are supported");
2332 
2333   // Create and check the types.
2334   auto *ValVTy = cast<VectorType>(Val->getType());
2335   ElementCount VLen = ValVTy->getElementCount();
2336 
2337   Type *STy = Val->getType()->getScalarType();
2338   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2339          "Induction Step must be an integer or FP");
2340   assert(Step->getType() == STy && "Step has wrong type");
2341 
2342   SmallVector<Constant *, 8> Indices;
2343 
2344   // Create a vector of consecutive numbers from zero to VF.
2345   VectorType *InitVecValVTy = ValVTy;
2346   if (STy->isFloatingPointTy()) {
2347     Type *InitVecValSTy =
2348         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2349     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2350   }
2351   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2352 
2353   // Splat the StartIdx
2354   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2355 
2356   if (STy->isIntegerTy()) {
2357     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2358     Step = Builder.CreateVectorSplat(VLen, Step);
2359     assert(Step->getType() == Val->getType() && "Invalid step vec");
2360     // FIXME: The newly created binary instructions should contain nsw/nuw
2361     // flags, which can be found from the original scalar operations.
2362     Step = Builder.CreateMul(InitVec, Step);
2363     return Builder.CreateAdd(Val, Step, "induction");
2364   }
2365 
2366   // Floating point induction.
2367   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2368          "Binary Opcode should be specified for FP induction");
2369   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2370   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2371 
2372   Step = Builder.CreateVectorSplat(VLen, Step);
2373   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2374   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2375 }
2376 
2377 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2378     const InductionDescriptor &II, Value *Step, Value *Start,
2379     Instruction *EntryVal, VPValue *Def, VPTransformState &State) {
2380   IRBuilderBase &Builder = State.Builder;
2381   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2382          "Expected either an induction phi-node or a truncate of it!");
2383 
2384   // Construct the initial value of the vector IV in the vector loop preheader
2385   auto CurrIP = Builder.saveIP();
2386   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2387   if (isa<TruncInst>(EntryVal)) {
2388     assert(Start->getType()->isIntegerTy() &&
2389            "Truncation requires an integer type");
2390     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2391     Step = Builder.CreateTrunc(Step, TruncType);
2392     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2393   }
2394 
2395   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2396   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
2397   Value *SteppedStart = getStepVector(
2398       SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder);
2399 
2400   // We create vector phi nodes for both integer and floating-point induction
2401   // variables. Here, we determine the kind of arithmetic we will perform.
2402   Instruction::BinaryOps AddOp;
2403   Instruction::BinaryOps MulOp;
2404   if (Step->getType()->isIntegerTy()) {
2405     AddOp = Instruction::Add;
2406     MulOp = Instruction::Mul;
2407   } else {
2408     AddOp = II.getInductionOpcode();
2409     MulOp = Instruction::FMul;
2410   }
2411 
2412   // Multiply the vectorization factor by the step using integer or
2413   // floating-point arithmetic as appropriate.
2414   Type *StepType = Step->getType();
2415   Value *RuntimeVF;
2416   if (Step->getType()->isFloatingPointTy())
2417     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
2418   else
2419     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
2420   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2421 
2422   // Create a vector splat to use in the induction update.
2423   //
2424   // FIXME: If the step is non-constant, we create the vector splat with
2425   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2426   //        handle a constant vector splat.
2427   Value *SplatVF = isa<Constant>(Mul)
2428                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
2429                        : Builder.CreateVectorSplat(State.VF, Mul);
2430   Builder.restoreIP(CurrIP);
2431 
2432   // We may need to add the step a number of times, depending on the unroll
2433   // factor. The last of those goes into the PHI.
2434   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2435                                     &*LoopVectorBody->getFirstInsertionPt());
2436   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2437   Instruction *LastInduction = VecInd;
2438   for (unsigned Part = 0; Part < UF; ++Part) {
2439     State.set(Def, LastInduction, Part);
2440 
2441     if (isa<TruncInst>(EntryVal))
2442       addMetadata(LastInduction, EntryVal);
2443 
2444     LastInduction = cast<Instruction>(
2445         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2446     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2447   }
2448 
2449   // Move the last step to the end of the latch block. This ensures consistent
2450   // placement of all induction updates.
2451   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2452   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2453   LastInduction->moveBefore(Br);
2454   LastInduction->setName("vec.ind.next");
2455 
2456   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2457   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2458 }
2459 
2460 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2461 /// variable on which to base the steps, \p Step is the size of the step, and
2462 /// \p EntryVal is the value from the original loop that maps to the steps.
2463 /// Note that \p EntryVal doesn't have to be an induction variable - it
2464 /// can also be a truncate instruction.
2465 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2466                              Instruction *EntryVal,
2467                              const InductionDescriptor &ID, VPValue *Def,
2468                              VPTransformState &State) {
2469   IRBuilderBase &Builder = State.Builder;
2470   // We shouldn't have to build scalar steps if we aren't vectorizing.
2471   assert(State.VF.isVector() && "VF should be greater than one");
2472   // Get the value type and ensure it and the step have the same integer type.
2473   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2474   assert(ScalarIVTy == Step->getType() &&
2475          "Val and Step should have the same type");
2476 
2477   // We build scalar steps for both integer and floating-point induction
2478   // variables. Here, we determine the kind of arithmetic we will perform.
2479   Instruction::BinaryOps AddOp;
2480   Instruction::BinaryOps MulOp;
2481   if (ScalarIVTy->isIntegerTy()) {
2482     AddOp = Instruction::Add;
2483     MulOp = Instruction::Mul;
2484   } else {
2485     AddOp = ID.getInductionOpcode();
2486     MulOp = Instruction::FMul;
2487   }
2488 
2489   // Determine the number of scalars we need to generate for each unroll
2490   // iteration.
2491   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2492   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2493   // Compute the scalar steps and save the results in State.
2494   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2495                                      ScalarIVTy->getScalarSizeInBits());
2496   Type *VecIVTy = nullptr;
2497   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2498   if (!FirstLaneOnly && State.VF.isScalable()) {
2499     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2500     UnitStepVec =
2501         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2502     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2503     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2504   }
2505 
2506   for (unsigned Part = 0; Part < State.UF; ++Part) {
2507     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2508 
2509     if (!FirstLaneOnly && State.VF.isScalable()) {
2510       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2511       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2512       if (ScalarIVTy->isFloatingPointTy())
2513         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2514       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2515       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2516       State.set(Def, Add, Part);
2517       // It's useful to record the lane values too for the known minimum number
2518       // of elements so we do those below. This improves the code quality when
2519       // trying to extract the first element, for example.
2520     }
2521 
2522     if (ScalarIVTy->isFloatingPointTy())
2523       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2524 
2525     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2526       Value *StartIdx = Builder.CreateBinOp(
2527           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2528       // The step returned by `createStepForVF` is a runtime-evaluated value
2529       // when VF is scalable. Otherwise, it should be folded into a Constant.
2530       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2531              "Expected StartIdx to be folded to a constant when VF is not "
2532              "scalable");
2533       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2534       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2535       State.set(Def, Add, VPIteration(Part, Lane));
2536     }
2537   }
2538 }
2539 
2540 // Generate code for the induction step. Note that induction steps are
2541 // required to be loop-invariant
2542 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2543                               Instruction *InsertBefore,
2544                               Loop *OrigLoop = nullptr) {
2545   const DataLayout &DL = SE.getDataLayout();
2546   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2547          "Induction step should be loop invariant");
2548   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2549     return E->getValue();
2550 
2551   SCEVExpander Exp(SE, DL, "induction");
2552   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2553 }
2554 
2555 /// Compute the transformed value of Index at offset StartValue using step
2556 /// StepValue.
2557 /// For integer induction, returns StartValue + Index * StepValue.
2558 /// For pointer induction, returns StartValue[Index * StepValue].
2559 /// FIXME: The newly created binary instructions should contain nsw/nuw
2560 /// flags, which can be found from the original scalar operations.
2561 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2562                                    Value *StartValue, Value *Step,
2563                                    const InductionDescriptor &ID) {
2564   assert(Index->getType()->getScalarType() == Step->getType() &&
2565          "Index scalar type does not match StepValue type");
2566 
2567   // Note: the IR at this point is broken. We cannot use SE to create any new
2568   // SCEV and then expand it, hoping that SCEV's simplification will give us
2569   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2570   // lead to various SCEV crashes. So all we can do is to use builder and rely
2571   // on InstCombine for future simplifications. Here we handle some trivial
2572   // cases only.
2573   auto CreateAdd = [&B](Value *X, Value *Y) {
2574     assert(X->getType() == Y->getType() && "Types don't match!");
2575     if (auto *CX = dyn_cast<ConstantInt>(X))
2576       if (CX->isZero())
2577         return Y;
2578     if (auto *CY = dyn_cast<ConstantInt>(Y))
2579       if (CY->isZero())
2580         return X;
2581     return B.CreateAdd(X, Y);
2582   };
2583 
2584   // We allow X to be a vector type, in which case Y will potentially be
2585   // splatted into a vector with the same element count.
2586   auto CreateMul = [&B](Value *X, Value *Y) {
2587     assert(X->getType()->getScalarType() == Y->getType() &&
2588            "Types don't match!");
2589     if (auto *CX = dyn_cast<ConstantInt>(X))
2590       if (CX->isOne())
2591         return Y;
2592     if (auto *CY = dyn_cast<ConstantInt>(Y))
2593       if (CY->isOne())
2594         return X;
2595     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2596     if (XVTy && !isa<VectorType>(Y->getType()))
2597       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2598     return B.CreateMul(X, Y);
2599   };
2600 
2601   switch (ID.getKind()) {
2602   case InductionDescriptor::IK_IntInduction: {
2603     assert(!isa<VectorType>(Index->getType()) &&
2604            "Vector indices not supported for integer inductions yet");
2605     assert(Index->getType() == StartValue->getType() &&
2606            "Index type does not match StartValue type");
2607     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2608       return B.CreateSub(StartValue, Index);
2609     auto *Offset = CreateMul(Index, Step);
2610     return CreateAdd(StartValue, Offset);
2611   }
2612   case InductionDescriptor::IK_PtrInduction: {
2613     assert(isa<Constant>(Step) &&
2614            "Expected constant step for pointer induction");
2615     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2616   }
2617   case InductionDescriptor::IK_FpInduction: {
2618     assert(!isa<VectorType>(Index->getType()) &&
2619            "Vector indices not supported for FP inductions yet");
2620     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2621     auto InductionBinOp = ID.getInductionBinOp();
2622     assert(InductionBinOp &&
2623            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2624             InductionBinOp->getOpcode() == Instruction::FSub) &&
2625            "Original bin op should be defined for FP induction");
2626 
2627     Value *MulExp = B.CreateFMul(Step, Index);
2628     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2629                          "induction");
2630   }
2631   case InductionDescriptor::IK_NoInduction:
2632     return nullptr;
2633   }
2634   llvm_unreachable("invalid enum");
2635 }
2636 
2637 void InnerLoopVectorizer::widenIntOrFpInduction(
2638     PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State,
2639     Value *CanonicalIV) {
2640   Value *Start = Def->getStartValue()->getLiveInIRValue();
2641   const InductionDescriptor &ID = Def->getInductionDescriptor();
2642   TruncInst *Trunc = Def->getTruncInst();
2643   IRBuilderBase &Builder = State.Builder;
2644   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2645   assert(State.VF.isVector() && "must have vector VF");
2646 
2647   // The value from the original loop to which we are mapping the new induction
2648   // variable.
2649   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2650 
2651   auto &DL = EntryVal->getModule()->getDataLayout();
2652 
2653   // Generate code for the induction step. Note that induction steps are
2654   // required to be loop-invariant
2655   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2656     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2657            "Induction step should be loop invariant");
2658     if (PSE.getSE()->isSCEVable(IV->getType())) {
2659       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2660       return Exp.expandCodeFor(Step, Step->getType(),
2661                                State.CFG.VectorPreHeader->getTerminator());
2662     }
2663     return cast<SCEVUnknown>(Step)->getValue();
2664   };
2665 
2666   // The scalar value to broadcast. This is derived from the canonical
2667   // induction variable. If a truncation type is given, truncate the canonical
2668   // induction variable and step. Otherwise, derive these values from the
2669   // induction descriptor.
2670   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2671     Value *ScalarIV = CanonicalIV;
2672     Type *NeededType = IV->getType();
2673     if (!Def->isCanonical() || ScalarIV->getType() != NeededType) {
2674       ScalarIV =
2675           NeededType->isIntegerTy()
2676               ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType)
2677               : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType);
2678       ScalarIV = emitTransformedIndex(Builder, ScalarIV, Start, Step, ID);
2679       ScalarIV->setName("offset.idx");
2680     }
2681     if (Trunc) {
2682       auto *TruncType = cast<IntegerType>(Trunc->getType());
2683       assert(Step->getType()->isIntegerTy() &&
2684              "Truncation requires an integer step");
2685       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2686       Step = Builder.CreateTrunc(Step, TruncType);
2687     }
2688     return ScalarIV;
2689   };
2690 
2691   // Fast-math-flags propagate from the original induction instruction.
2692   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2693   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2694     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2695 
2696   // Now do the actual transformations, and start with creating the step value.
2697   Value *Step = CreateStepValue(ID.getStep());
2698 
2699   // Create a new independent vector induction variable. Later VPlan2VPlan
2700   // optimizations will remove it, if it won't be needed, e.g. because all users
2701   // of it access scalar values.
2702   createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2703 
2704   if (Def->needsScalarIV()) {
2705     // Create scalar steps that can be used by instructions we will later
2706     // scalarize. Note that the addition of the scalar steps will not increase
2707     // the number of instructions in the loop in the common case prior to
2708     // InstCombine. We will be trading one vector extract for each scalar step.
2709     Value *ScalarIV = CreateScalarIV(Step);
2710     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2711   }
2712 }
2713 
2714 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2715                                                     const VPIteration &Instance,
2716                                                     VPTransformState &State) {
2717   Value *ScalarInst = State.get(Def, Instance);
2718   Value *VectorValue = State.get(Def, Instance.Part);
2719   VectorValue = Builder.CreateInsertElement(
2720       VectorValue, ScalarInst,
2721       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2722   State.set(Def, VectorValue, Instance.Part);
2723 }
2724 
2725 // Return whether we allow using masked interleave-groups (for dealing with
2726 // strided loads/stores that reside in predicated blocks, or for dealing
2727 // with gaps).
2728 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2729   // If an override option has been passed in for interleaved accesses, use it.
2730   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2731     return EnableMaskedInterleavedMemAccesses;
2732 
2733   return TTI.enableMaskedInterleavedAccessVectorization();
2734 }
2735 
2736 // Try to vectorize the interleave group that \p Instr belongs to.
2737 //
2738 // E.g. Translate following interleaved load group (factor = 3):
2739 //   for (i = 0; i < N; i+=3) {
2740 //     R = Pic[i];             // Member of index 0
2741 //     G = Pic[i+1];           // Member of index 1
2742 //     B = Pic[i+2];           // Member of index 2
2743 //     ... // do something to R, G, B
2744 //   }
2745 // To:
2746 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2747 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2748 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2749 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2750 //
2751 // Or translate following interleaved store group (factor = 3):
2752 //   for (i = 0; i < N; i+=3) {
2753 //     ... do something to R, G, B
2754 //     Pic[i]   = R;           // Member of index 0
2755 //     Pic[i+1] = G;           // Member of index 1
2756 //     Pic[i+2] = B;           // Member of index 2
2757 //   }
2758 // To:
2759 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2760 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2761 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2762 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2763 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2764 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2765     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2766     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2767     VPValue *BlockInMask) {
2768   Instruction *Instr = Group->getInsertPos();
2769   const DataLayout &DL = Instr->getModule()->getDataLayout();
2770 
2771   // Prepare for the vector type of the interleaved load/store.
2772   Type *ScalarTy = getLoadStoreType(Instr);
2773   unsigned InterleaveFactor = Group->getFactor();
2774   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2775   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2776 
2777   // Prepare for the new pointers.
2778   SmallVector<Value *, 2> AddrParts;
2779   unsigned Index = Group->getIndex(Instr);
2780 
2781   // TODO: extend the masked interleaved-group support to reversed access.
2782   assert((!BlockInMask || !Group->isReverse()) &&
2783          "Reversed masked interleave-group not supported.");
2784 
2785   // If the group is reverse, adjust the index to refer to the last vector lane
2786   // instead of the first. We adjust the index from the first vector lane,
2787   // rather than directly getting the pointer for lane VF - 1, because the
2788   // pointer operand of the interleaved access is supposed to be uniform. For
2789   // uniform instructions, we're only required to generate a value for the
2790   // first vector lane in each unroll iteration.
2791   if (Group->isReverse())
2792     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2793 
2794   for (unsigned Part = 0; Part < UF; Part++) {
2795     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2796     setDebugLocFromInst(AddrPart);
2797 
2798     // Notice current instruction could be any index. Need to adjust the address
2799     // to the member of index 0.
2800     //
2801     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2802     //       b = A[i];       // Member of index 0
2803     // Current pointer is pointed to A[i+1], adjust it to A[i].
2804     //
2805     // E.g.  A[i+1] = a;     // Member of index 1
2806     //       A[i]   = b;     // Member of index 0
2807     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2808     // Current pointer is pointed to A[i+2], adjust it to A[i].
2809 
2810     bool InBounds = false;
2811     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2812       InBounds = gep->isInBounds();
2813     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2814     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2815 
2816     // Cast to the vector pointer type.
2817     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2818     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2819     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2820   }
2821 
2822   setDebugLocFromInst(Instr);
2823   Value *PoisonVec = PoisonValue::get(VecTy);
2824 
2825   Value *MaskForGaps = nullptr;
2826   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2827     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2828     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2829   }
2830 
2831   // Vectorize the interleaved load group.
2832   if (isa<LoadInst>(Instr)) {
2833     // For each unroll part, create a wide load for the group.
2834     SmallVector<Value *, 2> NewLoads;
2835     for (unsigned Part = 0; Part < UF; Part++) {
2836       Instruction *NewLoad;
2837       if (BlockInMask || MaskForGaps) {
2838         assert(useMaskedInterleavedAccesses(*TTI) &&
2839                "masked interleaved groups are not allowed.");
2840         Value *GroupMask = MaskForGaps;
2841         if (BlockInMask) {
2842           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2843           Value *ShuffledMask = Builder.CreateShuffleVector(
2844               BlockInMaskPart,
2845               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2846               "interleaved.mask");
2847           GroupMask = MaskForGaps
2848                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2849                                                 MaskForGaps)
2850                           : ShuffledMask;
2851         }
2852         NewLoad =
2853             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2854                                      GroupMask, PoisonVec, "wide.masked.vec");
2855       }
2856       else
2857         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2858                                             Group->getAlign(), "wide.vec");
2859       Group->addMetadata(NewLoad);
2860       NewLoads.push_back(NewLoad);
2861     }
2862 
2863     // For each member in the group, shuffle out the appropriate data from the
2864     // wide loads.
2865     unsigned J = 0;
2866     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2867       Instruction *Member = Group->getMember(I);
2868 
2869       // Skip the gaps in the group.
2870       if (!Member)
2871         continue;
2872 
2873       auto StrideMask =
2874           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2875       for (unsigned Part = 0; Part < UF; Part++) {
2876         Value *StridedVec = Builder.CreateShuffleVector(
2877             NewLoads[Part], StrideMask, "strided.vec");
2878 
2879         // If this member has different type, cast the result type.
2880         if (Member->getType() != ScalarTy) {
2881           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2882           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2883           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2884         }
2885 
2886         if (Group->isReverse())
2887           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2888 
2889         State.set(VPDefs[J], StridedVec, Part);
2890       }
2891       ++J;
2892     }
2893     return;
2894   }
2895 
2896   // The sub vector type for current instruction.
2897   auto *SubVT = VectorType::get(ScalarTy, VF);
2898 
2899   // Vectorize the interleaved store group.
2900   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2901   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2902          "masked interleaved groups are not allowed.");
2903   assert((!MaskForGaps || !VF.isScalable()) &&
2904          "masking gaps for scalable vectors is not yet supported.");
2905   for (unsigned Part = 0; Part < UF; Part++) {
2906     // Collect the stored vector from each member.
2907     SmallVector<Value *, 4> StoredVecs;
2908     for (unsigned i = 0; i < InterleaveFactor; i++) {
2909       assert((Group->getMember(i) || MaskForGaps) &&
2910              "Fail to get a member from an interleaved store group");
2911       Instruction *Member = Group->getMember(i);
2912 
2913       // Skip the gaps in the group.
2914       if (!Member) {
2915         Value *Undef = PoisonValue::get(SubVT);
2916         StoredVecs.push_back(Undef);
2917         continue;
2918       }
2919 
2920       Value *StoredVec = State.get(StoredValues[i], Part);
2921 
2922       if (Group->isReverse())
2923         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2924 
2925       // If this member has different type, cast it to a unified type.
2926 
2927       if (StoredVec->getType() != SubVT)
2928         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2929 
2930       StoredVecs.push_back(StoredVec);
2931     }
2932 
2933     // Concatenate all vectors into a wide vector.
2934     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2935 
2936     // Interleave the elements in the wide vector.
2937     Value *IVec = Builder.CreateShuffleVector(
2938         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2939         "interleaved.vec");
2940 
2941     Instruction *NewStoreInstr;
2942     if (BlockInMask || MaskForGaps) {
2943       Value *GroupMask = MaskForGaps;
2944       if (BlockInMask) {
2945         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2946         Value *ShuffledMask = Builder.CreateShuffleVector(
2947             BlockInMaskPart,
2948             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2949             "interleaved.mask");
2950         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2951                                                       ShuffledMask, MaskForGaps)
2952                                 : ShuffledMask;
2953       }
2954       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2955                                                 Group->getAlign(), GroupMask);
2956     } else
2957       NewStoreInstr =
2958           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2959 
2960     Group->addMetadata(NewStoreInstr);
2961   }
2962 }
2963 
2964 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2965                                                VPReplicateRecipe *RepRecipe,
2966                                                const VPIteration &Instance,
2967                                                bool IfPredicateInstr,
2968                                                VPTransformState &State) {
2969   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2970 
2971   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2972   // the first lane and part.
2973   if (isa<NoAliasScopeDeclInst>(Instr))
2974     if (!Instance.isFirstIteration())
2975       return;
2976 
2977   setDebugLocFromInst(Instr);
2978 
2979   // Does this instruction return a value ?
2980   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2981 
2982   Instruction *Cloned = Instr->clone();
2983   if (!IsVoidRetTy)
2984     Cloned->setName(Instr->getName() + ".cloned");
2985 
2986   // If the scalarized instruction contributes to the address computation of a
2987   // widen masked load/store which was in a basic block that needed predication
2988   // and is not predicated after vectorization, we can't propagate
2989   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2990   // instruction could feed a poison value to the base address of the widen
2991   // load/store.
2992   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2993     Cloned->dropPoisonGeneratingFlags();
2994 
2995   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2996                                Builder.GetInsertPoint());
2997   // Replace the operands of the cloned instructions with their scalar
2998   // equivalents in the new loop.
2999   for (auto &I : enumerate(RepRecipe->operands())) {
3000     auto InputInstance = Instance;
3001     VPValue *Operand = I.value();
3002     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
3003     if (OperandR && OperandR->isUniform())
3004       InputInstance.Lane = VPLane::getFirstLane();
3005     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
3006   }
3007   addNewMetadata(Cloned, Instr);
3008 
3009   // Place the cloned scalar in the new loop.
3010   Builder.Insert(Cloned);
3011 
3012   State.set(RepRecipe, Cloned, Instance);
3013 
3014   // If we just cloned a new assumption, add it the assumption cache.
3015   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3016     AC->registerAssumption(II);
3017 
3018   // End if-block.
3019   if (IfPredicateInstr)
3020     PredicatedInstructions.push_back(Cloned);
3021 }
3022 
3023 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
3024   BasicBlock *Header = L->getHeader();
3025   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
3026 
3027   IRBuilder<> B(Header->getTerminator());
3028   Instruction *OldInst =
3029       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
3030   setDebugLocFromInst(OldInst, &B);
3031 
3032   // Connect the header to the exit and header blocks and replace the old
3033   // terminator.
3034   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
3035 
3036   // Now we have two terminators. Remove the old one from the block.
3037   Header->getTerminator()->eraseFromParent();
3038 }
3039 
3040 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3041   if (TripCount)
3042     return TripCount;
3043 
3044   assert(L && "Create Trip Count for null loop.");
3045   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3046   // Find the loop boundaries.
3047   ScalarEvolution *SE = PSE.getSE();
3048   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3049   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3050          "Invalid loop count");
3051 
3052   Type *IdxTy = Legal->getWidestInductionType();
3053   assert(IdxTy && "No type for induction");
3054 
3055   // The exit count might have the type of i64 while the phi is i32. This can
3056   // happen if we have an induction variable that is sign extended before the
3057   // compare. The only way that we get a backedge taken count is that the
3058   // induction variable was signed and as such will not overflow. In such a case
3059   // truncation is legal.
3060   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3061       IdxTy->getPrimitiveSizeInBits())
3062     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3063   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3064 
3065   // Get the total trip count from the count by adding 1.
3066   const SCEV *ExitCount = SE->getAddExpr(
3067       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3068 
3069   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3070 
3071   // Expand the trip count and place the new instructions in the preheader.
3072   // Notice that the pre-header does not change, only the loop body.
3073   SCEVExpander Exp(*SE, DL, "induction");
3074 
3075   // Count holds the overall loop count (N).
3076   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3077                                 L->getLoopPreheader()->getTerminator());
3078 
3079   if (TripCount->getType()->isPointerTy())
3080     TripCount =
3081         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3082                                     L->getLoopPreheader()->getTerminator());
3083 
3084   return TripCount;
3085 }
3086 
3087 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3088   if (VectorTripCount)
3089     return VectorTripCount;
3090 
3091   Value *TC = getOrCreateTripCount(L);
3092   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3093 
3094   Type *Ty = TC->getType();
3095   // This is where we can make the step a runtime constant.
3096   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3097 
3098   // If the tail is to be folded by masking, round the number of iterations N
3099   // up to a multiple of Step instead of rounding down. This is done by first
3100   // adding Step-1 and then rounding down. Note that it's ok if this addition
3101   // overflows: the vector induction variable will eventually wrap to zero given
3102   // that it starts at zero and its Step is a power of two; the loop will then
3103   // exit, with the last early-exit vector comparison also producing all-true.
3104   if (Cost->foldTailByMasking()) {
3105     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3106            "VF*UF must be a power of 2 when folding tail by masking");
3107     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
3108     TC = Builder.CreateAdd(
3109         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
3110   }
3111 
3112   // Now we need to generate the expression for the part of the loop that the
3113   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3114   // iterations are not required for correctness, or N - Step, otherwise. Step
3115   // is equal to the vectorization factor (number of SIMD elements) times the
3116   // unroll factor (number of SIMD instructions).
3117   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3118 
3119   // There are cases where we *must* run at least one iteration in the remainder
3120   // loop.  See the cost model for when this can happen.  If the step evenly
3121   // divides the trip count, we set the remainder to be equal to the step. If
3122   // the step does not evenly divide the trip count, no adjustment is necessary
3123   // since there will already be scalar iterations. Note that the minimum
3124   // iterations check ensures that N >= Step.
3125   if (Cost->requiresScalarEpilogue(VF)) {
3126     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3127     R = Builder.CreateSelect(IsZero, Step, R);
3128   }
3129 
3130   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3131 
3132   return VectorTripCount;
3133 }
3134 
3135 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3136                                                    const DataLayout &DL) {
3137   // Verify that V is a vector type with same number of elements as DstVTy.
3138   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3139   unsigned VF = DstFVTy->getNumElements();
3140   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3141   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3142   Type *SrcElemTy = SrcVecTy->getElementType();
3143   Type *DstElemTy = DstFVTy->getElementType();
3144   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3145          "Vector elements must have same size");
3146 
3147   // Do a direct cast if element types are castable.
3148   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3149     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3150   }
3151   // V cannot be directly casted to desired vector type.
3152   // May happen when V is a floating point vector but DstVTy is a vector of
3153   // pointers or vice-versa. Handle this using a two-step bitcast using an
3154   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3155   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3156          "Only one type should be a pointer type");
3157   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3158          "Only one type should be a floating point type");
3159   Type *IntTy =
3160       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3161   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3162   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3163   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3164 }
3165 
3166 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3167                                                          BasicBlock *Bypass) {
3168   Value *Count = getOrCreateTripCount(L);
3169   // Reuse existing vector loop preheader for TC checks.
3170   // Note that new preheader block is generated for vector loop.
3171   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3172   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3173 
3174   // Generate code to check if the loop's trip count is less than VF * UF, or
3175   // equal to it in case a scalar epilogue is required; this implies that the
3176   // vector trip count is zero. This check also covers the case where adding one
3177   // to the backedge-taken count overflowed leading to an incorrect trip count
3178   // of zero. In this case we will also jump to the scalar loop.
3179   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3180                                             : ICmpInst::ICMP_ULT;
3181 
3182   // If tail is to be folded, vector loop takes care of all iterations.
3183   Value *CheckMinIters = Builder.getFalse();
3184   if (!Cost->foldTailByMasking()) {
3185     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3186     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3187   }
3188   // Create new preheader for vector loop.
3189   LoopVectorPreHeader =
3190       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3191                  "vector.ph");
3192 
3193   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3194                                DT->getNode(Bypass)->getIDom()) &&
3195          "TC check is expected to dominate Bypass");
3196 
3197   // Update dominator for Bypass & LoopExit (if needed).
3198   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3199   if (!Cost->requiresScalarEpilogue(VF))
3200     // If there is an epilogue which must run, there's no edge from the
3201     // middle block to exit blocks  and thus no need to update the immediate
3202     // dominator of the exit blocks.
3203     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3204 
3205   ReplaceInstWithInst(
3206       TCCheckBlock->getTerminator(),
3207       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3208   LoopBypassBlocks.push_back(TCCheckBlock);
3209 }
3210 
3211 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3212 
3213   BasicBlock *const SCEVCheckBlock =
3214       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3215   if (!SCEVCheckBlock)
3216     return nullptr;
3217 
3218   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3219            (OptForSizeBasedOnProfile &&
3220             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3221          "Cannot SCEV check stride or overflow when optimizing for size");
3222 
3223 
3224   // Update dominator only if this is first RT check.
3225   if (LoopBypassBlocks.empty()) {
3226     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3227     if (!Cost->requiresScalarEpilogue(VF))
3228       // If there is an epilogue which must run, there's no edge from the
3229       // middle block to exit blocks  and thus no need to update the immediate
3230       // dominator of the exit blocks.
3231       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3232   }
3233 
3234   LoopBypassBlocks.push_back(SCEVCheckBlock);
3235   AddedSafetyChecks = true;
3236   return SCEVCheckBlock;
3237 }
3238 
3239 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3240                                                       BasicBlock *Bypass) {
3241   // VPlan-native path does not do any analysis for runtime checks currently.
3242   if (EnableVPlanNativePath)
3243     return nullptr;
3244 
3245   BasicBlock *const MemCheckBlock =
3246       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3247 
3248   // Check if we generated code that checks in runtime if arrays overlap. We put
3249   // the checks into a separate block to make the more common case of few
3250   // elements faster.
3251   if (!MemCheckBlock)
3252     return nullptr;
3253 
3254   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3255     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3256            "Cannot emit memory checks when optimizing for size, unless forced "
3257            "to vectorize.");
3258     ORE->emit([&]() {
3259       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3260                                         L->getStartLoc(), L->getHeader())
3261              << "Code-size may be reduced by not forcing "
3262                 "vectorization, or by source-code modifications "
3263                 "eliminating the need for runtime checks "
3264                 "(e.g., adding 'restrict').";
3265     });
3266   }
3267 
3268   LoopBypassBlocks.push_back(MemCheckBlock);
3269 
3270   AddedSafetyChecks = true;
3271 
3272   // We currently don't use LoopVersioning for the actual loop cloning but we
3273   // still use it to add the noalias metadata.
3274   LVer = std::make_unique<LoopVersioning>(
3275       *Legal->getLAI(),
3276       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3277       DT, PSE.getSE());
3278   LVer->prepareNoAliasMetadata();
3279   return MemCheckBlock;
3280 }
3281 
3282 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3283   LoopScalarBody = OrigLoop->getHeader();
3284   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3285   assert(LoopVectorPreHeader && "Invalid loop structure");
3286   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3287   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3288          "multiple exit loop without required epilogue?");
3289 
3290   LoopMiddleBlock =
3291       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3292                  LI, nullptr, Twine(Prefix) + "middle.block");
3293   LoopScalarPreHeader =
3294       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3295                  nullptr, Twine(Prefix) + "scalar.ph");
3296 
3297   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3298 
3299   // Set up the middle block terminator.  Two cases:
3300   // 1) If we know that we must execute the scalar epilogue, emit an
3301   //    unconditional branch.
3302   // 2) Otherwise, we must have a single unique exit block (due to how we
3303   //    implement the multiple exit case).  In this case, set up a conditonal
3304   //    branch from the middle block to the loop scalar preheader, and the
3305   //    exit block.  completeLoopSkeleton will update the condition to use an
3306   //    iteration check, if required to decide whether to execute the remainder.
3307   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3308     BranchInst::Create(LoopScalarPreHeader) :
3309     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3310                        Builder.getTrue());
3311   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3312   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3313 
3314   // We intentionally don't let SplitBlock to update LoopInfo since
3315   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3316   // LoopVectorBody is explicitly added to the correct place few lines later.
3317   LoopVectorBody =
3318       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3319                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3320 
3321   // Update dominator for loop exit.
3322   if (!Cost->requiresScalarEpilogue(VF))
3323     // If there is an epilogue which must run, there's no edge from the
3324     // middle block to exit blocks  and thus no need to update the immediate
3325     // dominator of the exit blocks.
3326     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3327 
3328   // Create and register the new vector loop.
3329   Loop *Lp = LI->AllocateLoop();
3330   Loop *ParentLoop = OrigLoop->getParentLoop();
3331 
3332   // Insert the new loop into the loop nest and register the new basic blocks
3333   // before calling any utilities such as SCEV that require valid LoopInfo.
3334   if (ParentLoop) {
3335     ParentLoop->addChildLoop(Lp);
3336   } else {
3337     LI->addTopLevelLoop(Lp);
3338   }
3339   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3340   return Lp;
3341 }
3342 
3343 void InnerLoopVectorizer::createInductionResumeValues(
3344     Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) {
3345   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3346           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3347          "Inconsistent information about additional bypass.");
3348 
3349   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3350   assert(VectorTripCount && L && "Expected valid arguments");
3351   // We are going to resume the execution of the scalar loop.
3352   // Go over all of the induction variables that we found and fix the
3353   // PHIs that are left in the scalar version of the loop.
3354   // The starting values of PHI nodes depend on the counter of the last
3355   // iteration in the vectorized loop.
3356   // If we come from a bypass edge then we need to start from the original
3357   // start value.
3358   Instruction *OldInduction = Legal->getPrimaryInduction();
3359   for (auto &InductionEntry : Legal->getInductionVars()) {
3360     PHINode *OrigPhi = InductionEntry.first;
3361     InductionDescriptor II = InductionEntry.second;
3362 
3363     // Create phi nodes to merge from the  backedge-taken check block.
3364     PHINode *BCResumeVal =
3365         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3366                         LoopScalarPreHeader->getTerminator());
3367     // Copy original phi DL over to the new one.
3368     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3369     Value *&EndValue = IVEndValues[OrigPhi];
3370     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3371     if (OrigPhi == OldInduction) {
3372       // We know what the end value is.
3373       EndValue = VectorTripCount;
3374     } else {
3375       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3376 
3377       // Fast-math-flags propagate from the original induction instruction.
3378       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3379         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3380 
3381       Type *StepType = II.getStep()->getType();
3382       Instruction::CastOps CastOp =
3383           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3384       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3385       Value *Step =
3386           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3387       EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3388       EndValue->setName("ind.end");
3389 
3390       // Compute the end value for the additional bypass (if applicable).
3391       if (AdditionalBypass.first) {
3392         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3393         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3394                                          StepType, true);
3395         Value *Step =
3396             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3397         CRD =
3398             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3399         EndValueFromAdditionalBypass =
3400             emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3401         EndValueFromAdditionalBypass->setName("ind.end");
3402       }
3403     }
3404     // The new PHI merges the original incoming value, in case of a bypass,
3405     // or the value at the end of the vectorized loop.
3406     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3407 
3408     // Fix the scalar body counter (PHI node).
3409     // The old induction's phi node in the scalar body needs the truncated
3410     // value.
3411     for (BasicBlock *BB : LoopBypassBlocks)
3412       BCResumeVal->addIncoming(II.getStartValue(), BB);
3413 
3414     if (AdditionalBypass.first)
3415       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3416                                             EndValueFromAdditionalBypass);
3417 
3418     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3419   }
3420 }
3421 
3422 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3423                                                       MDNode *OrigLoopID) {
3424   assert(L && "Expected valid loop.");
3425 
3426   // The trip counts should be cached by now.
3427   Value *Count = getOrCreateTripCount(L);
3428   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3429 
3430   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3431 
3432   // Add a check in the middle block to see if we have completed
3433   // all of the iterations in the first vector loop.  Three cases:
3434   // 1) If we require a scalar epilogue, there is no conditional branch as
3435   //    we unconditionally branch to the scalar preheader.  Do nothing.
3436   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3437   //    Thus if tail is to be folded, we know we don't need to run the
3438   //    remainder and we can use the previous value for the condition (true).
3439   // 3) Otherwise, construct a runtime check.
3440   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3441     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3442                                         Count, VectorTripCount, "cmp.n",
3443                                         LoopMiddleBlock->getTerminator());
3444 
3445     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3446     // of the corresponding compare because they may have ended up with
3447     // different line numbers and we want to avoid awkward line stepping while
3448     // debugging. Eg. if the compare has got a line number inside the loop.
3449     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3450     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3451   }
3452 
3453   // Get ready to start creating new instructions into the vectorized body.
3454   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3455          "Inconsistent vector loop preheader");
3456   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3457 
3458 #ifdef EXPENSIVE_CHECKS
3459   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3460   LI->verify(*DT);
3461 #endif
3462 
3463   return LoopVectorPreHeader;
3464 }
3465 
3466 std::pair<BasicBlock *, Value *>
3467 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3468   /*
3469    In this function we generate a new loop. The new loop will contain
3470    the vectorized instructions while the old loop will continue to run the
3471    scalar remainder.
3472 
3473        [ ] <-- loop iteration number check.
3474     /   |
3475    /    v
3476   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3477   |  /  |
3478   | /   v
3479   ||   [ ]     <-- vector pre header.
3480   |/    |
3481   |     v
3482   |    [  ] \
3483   |    [  ]_|   <-- vector loop.
3484   |     |
3485   |     v
3486   \   -[ ]   <--- middle-block.
3487    \/   |
3488    /\   v
3489    | ->[ ]     <--- new preheader.
3490    |    |
3491  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3492    |   [ ] \
3493    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3494     \   |
3495      \  v
3496       >[ ]     <-- exit block(s).
3497    ...
3498    */
3499 
3500   // Get the metadata of the original loop before it gets modified.
3501   MDNode *OrigLoopID = OrigLoop->getLoopID();
3502 
3503   // Workaround!  Compute the trip count of the original loop and cache it
3504   // before we start modifying the CFG.  This code has a systemic problem
3505   // wherein it tries to run analysis over partially constructed IR; this is
3506   // wrong, and not simply for SCEV.  The trip count of the original loop
3507   // simply happens to be prone to hitting this in practice.  In theory, we
3508   // can hit the same issue for any SCEV, or ValueTracking query done during
3509   // mutation.  See PR49900.
3510   getOrCreateTripCount(OrigLoop);
3511 
3512   // Create an empty vector loop, and prepare basic blocks for the runtime
3513   // checks.
3514   Loop *Lp = createVectorLoopSkeleton("");
3515 
3516   // Now, compare the new count to zero. If it is zero skip the vector loop and
3517   // jump to the scalar loop. This check also covers the case where the
3518   // backedge-taken count is uint##_max: adding one to it will overflow leading
3519   // to an incorrect trip count of zero. In this (rare) case we will also jump
3520   // to the scalar loop.
3521   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3522 
3523   // Generate the code to check any assumptions that we've made for SCEV
3524   // expressions.
3525   emitSCEVChecks(Lp, LoopScalarPreHeader);
3526 
3527   // Generate the code that checks in runtime if arrays overlap. We put the
3528   // checks into a separate block to make the more common case of few elements
3529   // faster.
3530   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3531 
3532   createHeaderBranch(Lp);
3533 
3534   // Emit phis for the new starting index of the scalar loop.
3535   createInductionResumeValues(Lp);
3536 
3537   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
3538 }
3539 
3540 // Fix up external users of the induction variable. At this point, we are
3541 // in LCSSA form, with all external PHIs that use the IV having one input value,
3542 // coming from the remainder loop. We need those PHIs to also have a correct
3543 // value for the IV when arriving directly from the middle block.
3544 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3545                                        const InductionDescriptor &II,
3546                                        Value *CountRoundDown, Value *EndValue,
3547                                        BasicBlock *MiddleBlock) {
3548   // There are two kinds of external IV usages - those that use the value
3549   // computed in the last iteration (the PHI) and those that use the penultimate
3550   // value (the value that feeds into the phi from the loop latch).
3551   // We allow both, but they, obviously, have different values.
3552 
3553   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3554 
3555   DenseMap<Value *, Value *> MissingVals;
3556 
3557   // An external user of the last iteration's value should see the value that
3558   // the remainder loop uses to initialize its own IV.
3559   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3560   for (User *U : PostInc->users()) {
3561     Instruction *UI = cast<Instruction>(U);
3562     if (!OrigLoop->contains(UI)) {
3563       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3564       MissingVals[UI] = EndValue;
3565     }
3566   }
3567 
3568   // An external user of the penultimate value need to see EndValue - Step.
3569   // The simplest way to get this is to recompute it from the constituent SCEVs,
3570   // that is Start + (Step * (CRD - 1)).
3571   for (User *U : OrigPhi->users()) {
3572     auto *UI = cast<Instruction>(U);
3573     if (!OrigLoop->contains(UI)) {
3574       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3575 
3576       IRBuilder<> B(MiddleBlock->getTerminator());
3577 
3578       // Fast-math-flags propagate from the original induction instruction.
3579       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3580         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3581 
3582       Value *CountMinusOne = B.CreateSub(
3583           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3584       Value *CMO =
3585           !II.getStep()->getType()->isIntegerTy()
3586               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3587                              II.getStep()->getType())
3588               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3589       CMO->setName("cast.cmo");
3590 
3591       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3592                                     LoopVectorBody->getTerminator());
3593       Value *Escape =
3594           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3595       Escape->setName("ind.escape");
3596       MissingVals[UI] = Escape;
3597     }
3598   }
3599 
3600   for (auto &I : MissingVals) {
3601     PHINode *PHI = cast<PHINode>(I.first);
3602     // One corner case we have to handle is two IVs "chasing" each-other,
3603     // that is %IV2 = phi [...], [ %IV1, %latch ]
3604     // In this case, if IV1 has an external use, we need to avoid adding both
3605     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3606     // don't already have an incoming value for the middle block.
3607     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3608       PHI->addIncoming(I.second, MiddleBlock);
3609   }
3610 }
3611 
3612 namespace {
3613 
3614 struct CSEDenseMapInfo {
3615   static bool canHandle(const Instruction *I) {
3616     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3617            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3618   }
3619 
3620   static inline Instruction *getEmptyKey() {
3621     return DenseMapInfo<Instruction *>::getEmptyKey();
3622   }
3623 
3624   static inline Instruction *getTombstoneKey() {
3625     return DenseMapInfo<Instruction *>::getTombstoneKey();
3626   }
3627 
3628   static unsigned getHashValue(const Instruction *I) {
3629     assert(canHandle(I) && "Unknown instruction!");
3630     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3631                                                            I->value_op_end()));
3632   }
3633 
3634   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3635     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3636         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3637       return LHS == RHS;
3638     return LHS->isIdenticalTo(RHS);
3639   }
3640 };
3641 
3642 } // end anonymous namespace
3643 
3644 ///Perform cse of induction variable instructions.
3645 static void cse(BasicBlock *BB) {
3646   // Perform simple cse.
3647   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3648   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3649     if (!CSEDenseMapInfo::canHandle(&In))
3650       continue;
3651 
3652     // Check if we can replace this instruction with any of the
3653     // visited instructions.
3654     if (Instruction *V = CSEMap.lookup(&In)) {
3655       In.replaceAllUsesWith(V);
3656       In.eraseFromParent();
3657       continue;
3658     }
3659 
3660     CSEMap[&In] = &In;
3661   }
3662 }
3663 
3664 InstructionCost
3665 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3666                                               bool &NeedToScalarize) const {
3667   Function *F = CI->getCalledFunction();
3668   Type *ScalarRetTy = CI->getType();
3669   SmallVector<Type *, 4> Tys, ScalarTys;
3670   for (auto &ArgOp : CI->args())
3671     ScalarTys.push_back(ArgOp->getType());
3672 
3673   // Estimate cost of scalarized vector call. The source operands are assumed
3674   // to be vectors, so we need to extract individual elements from there,
3675   // execute VF scalar calls, and then gather the result into the vector return
3676   // value.
3677   InstructionCost ScalarCallCost =
3678       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3679   if (VF.isScalar())
3680     return ScalarCallCost;
3681 
3682   // Compute corresponding vector type for return value and arguments.
3683   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3684   for (Type *ScalarTy : ScalarTys)
3685     Tys.push_back(ToVectorTy(ScalarTy, VF));
3686 
3687   // Compute costs of unpacking argument values for the scalar calls and
3688   // packing the return values to a vector.
3689   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3690 
3691   InstructionCost Cost =
3692       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3693 
3694   // If we can't emit a vector call for this function, then the currently found
3695   // cost is the cost we need to return.
3696   NeedToScalarize = true;
3697   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3698   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3699 
3700   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3701     return Cost;
3702 
3703   // If the corresponding vector cost is cheaper, return its cost.
3704   InstructionCost VectorCallCost =
3705       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3706   if (VectorCallCost < Cost) {
3707     NeedToScalarize = false;
3708     Cost = VectorCallCost;
3709   }
3710   return Cost;
3711 }
3712 
3713 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3714   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3715     return Elt;
3716   return VectorType::get(Elt, VF);
3717 }
3718 
3719 InstructionCost
3720 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3721                                                    ElementCount VF) const {
3722   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3723   assert(ID && "Expected intrinsic call!");
3724   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3725   FastMathFlags FMF;
3726   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3727     FMF = FPMO->getFastMathFlags();
3728 
3729   SmallVector<const Value *> Arguments(CI->args());
3730   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3731   SmallVector<Type *> ParamTys;
3732   std::transform(FTy->param_begin(), FTy->param_end(),
3733                  std::back_inserter(ParamTys),
3734                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3735 
3736   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3737                                     dyn_cast<IntrinsicInst>(CI));
3738   return TTI.getIntrinsicInstrCost(CostAttrs,
3739                                    TargetTransformInfo::TCK_RecipThroughput);
3740 }
3741 
3742 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3743   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3744   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3745   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3746 }
3747 
3748 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3749   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3750   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3751   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3752 }
3753 
3754 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3755   // For every instruction `I` in MinBWs, truncate the operands, create a
3756   // truncated version of `I` and reextend its result. InstCombine runs
3757   // later and will remove any ext/trunc pairs.
3758   SmallPtrSet<Value *, 4> Erased;
3759   for (const auto &KV : Cost->getMinimalBitwidths()) {
3760     // If the value wasn't vectorized, we must maintain the original scalar
3761     // type. The absence of the value from State indicates that it
3762     // wasn't vectorized.
3763     // FIXME: Should not rely on getVPValue at this point.
3764     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3765     if (!State.hasAnyVectorValue(Def))
3766       continue;
3767     for (unsigned Part = 0; Part < UF; ++Part) {
3768       Value *I = State.get(Def, Part);
3769       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3770         continue;
3771       Type *OriginalTy = I->getType();
3772       Type *ScalarTruncatedTy =
3773           IntegerType::get(OriginalTy->getContext(), KV.second);
3774       auto *TruncatedTy = VectorType::get(
3775           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3776       if (TruncatedTy == OriginalTy)
3777         continue;
3778 
3779       IRBuilder<> B(cast<Instruction>(I));
3780       auto ShrinkOperand = [&](Value *V) -> Value * {
3781         if (auto *ZI = dyn_cast<ZExtInst>(V))
3782           if (ZI->getSrcTy() == TruncatedTy)
3783             return ZI->getOperand(0);
3784         return B.CreateZExtOrTrunc(V, TruncatedTy);
3785       };
3786 
3787       // The actual instruction modification depends on the instruction type,
3788       // unfortunately.
3789       Value *NewI = nullptr;
3790       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3791         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3792                              ShrinkOperand(BO->getOperand(1)));
3793 
3794         // Any wrapping introduced by shrinking this operation shouldn't be
3795         // considered undefined behavior. So, we can't unconditionally copy
3796         // arithmetic wrapping flags to NewI.
3797         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3798       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3799         NewI =
3800             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3801                          ShrinkOperand(CI->getOperand(1)));
3802       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3803         NewI = B.CreateSelect(SI->getCondition(),
3804                               ShrinkOperand(SI->getTrueValue()),
3805                               ShrinkOperand(SI->getFalseValue()));
3806       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3807         switch (CI->getOpcode()) {
3808         default:
3809           llvm_unreachable("Unhandled cast!");
3810         case Instruction::Trunc:
3811           NewI = ShrinkOperand(CI->getOperand(0));
3812           break;
3813         case Instruction::SExt:
3814           NewI = B.CreateSExtOrTrunc(
3815               CI->getOperand(0),
3816               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3817           break;
3818         case Instruction::ZExt:
3819           NewI = B.CreateZExtOrTrunc(
3820               CI->getOperand(0),
3821               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3822           break;
3823         }
3824       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3825         auto Elements0 =
3826             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3827         auto *O0 = B.CreateZExtOrTrunc(
3828             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3829         auto Elements1 =
3830             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3831         auto *O1 = B.CreateZExtOrTrunc(
3832             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3833 
3834         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3835       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3836         // Don't do anything with the operands, just extend the result.
3837         continue;
3838       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3839         auto Elements =
3840             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3841         auto *O0 = B.CreateZExtOrTrunc(
3842             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3843         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3844         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3845       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3846         auto Elements =
3847             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3848         auto *O0 = B.CreateZExtOrTrunc(
3849             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3850         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3851       } else {
3852         // If we don't know what to do, be conservative and don't do anything.
3853         continue;
3854       }
3855 
3856       // Lastly, extend the result.
3857       NewI->takeName(cast<Instruction>(I));
3858       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3859       I->replaceAllUsesWith(Res);
3860       cast<Instruction>(I)->eraseFromParent();
3861       Erased.insert(I);
3862       State.reset(Def, Res, Part);
3863     }
3864   }
3865 
3866   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3867   for (const auto &KV : Cost->getMinimalBitwidths()) {
3868     // If the value wasn't vectorized, we must maintain the original scalar
3869     // type. The absence of the value from State indicates that it
3870     // wasn't vectorized.
3871     // FIXME: Should not rely on getVPValue at this point.
3872     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3873     if (!State.hasAnyVectorValue(Def))
3874       continue;
3875     for (unsigned Part = 0; Part < UF; ++Part) {
3876       Value *I = State.get(Def, Part);
3877       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3878       if (Inst && Inst->use_empty()) {
3879         Value *NewI = Inst->getOperand(0);
3880         Inst->eraseFromParent();
3881         State.reset(Def, NewI, Part);
3882       }
3883     }
3884   }
3885 }
3886 
3887 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3888   // Insert truncates and extends for any truncated instructions as hints to
3889   // InstCombine.
3890   if (VF.isVector())
3891     truncateToMinimalBitwidths(State);
3892 
3893   // Fix widened non-induction PHIs by setting up the PHI operands.
3894   if (OrigPHIsToFix.size()) {
3895     assert(EnableVPlanNativePath &&
3896            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3897     fixNonInductionPHIs(State);
3898   }
3899 
3900   // At this point every instruction in the original loop is widened to a
3901   // vector form. Now we need to fix the recurrences in the loop. These PHI
3902   // nodes are currently empty because we did not want to introduce cycles.
3903   // This is the second stage of vectorizing recurrences.
3904   fixCrossIterationPHIs(State);
3905 
3906   // Forget the original basic block.
3907   PSE.getSE()->forgetLoop(OrigLoop);
3908 
3909   // If we inserted an edge from the middle block to the unique exit block,
3910   // update uses outside the loop (phis) to account for the newly inserted
3911   // edge.
3912   if (!Cost->requiresScalarEpilogue(VF)) {
3913     // Fix-up external users of the induction variables.
3914     for (auto &Entry : Legal->getInductionVars())
3915       fixupIVUsers(Entry.first, Entry.second,
3916                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3917                    IVEndValues[Entry.first], LoopMiddleBlock);
3918 
3919     fixLCSSAPHIs(State);
3920   }
3921 
3922   for (Instruction *PI : PredicatedInstructions)
3923     sinkScalarOperands(&*PI);
3924 
3925   // Remove redundant induction instructions.
3926   cse(LoopVectorBody);
3927 
3928   // Set/update profile weights for the vector and remainder loops as original
3929   // loop iterations are now distributed among them. Note that original loop
3930   // represented by LoopScalarBody becomes remainder loop after vectorization.
3931   //
3932   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3933   // end up getting slightly roughened result but that should be OK since
3934   // profile is not inherently precise anyway. Note also possible bypass of
3935   // vector code caused by legality checks is ignored, assigning all the weight
3936   // to the vector loop, optimistically.
3937   //
3938   // For scalable vectorization we can't know at compile time how many iterations
3939   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3940   // vscale of '1'.
3941   setProfileInfoAfterUnrolling(
3942       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
3943       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
3944 }
3945 
3946 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3947   // In order to support recurrences we need to be able to vectorize Phi nodes.
3948   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3949   // stage #2: We now need to fix the recurrences by adding incoming edges to
3950   // the currently empty PHI nodes. At this point every instruction in the
3951   // original loop is widened to a vector form so we can use them to construct
3952   // the incoming edges.
3953   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
3954   for (VPRecipeBase &R : Header->phis()) {
3955     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3956       fixReduction(ReductionPhi, State);
3957     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3958       fixFirstOrderRecurrence(FOR, State);
3959   }
3960 }
3961 
3962 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3963     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3964   // This is the second phase of vectorizing first-order recurrences. An
3965   // overview of the transformation is described below. Suppose we have the
3966   // following loop.
3967   //
3968   //   for (int i = 0; i < n; ++i)
3969   //     b[i] = a[i] - a[i - 1];
3970   //
3971   // There is a first-order recurrence on "a". For this loop, the shorthand
3972   // scalar IR looks like:
3973   //
3974   //   scalar.ph:
3975   //     s_init = a[-1]
3976   //     br scalar.body
3977   //
3978   //   scalar.body:
3979   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3980   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3981   //     s2 = a[i]
3982   //     b[i] = s2 - s1
3983   //     br cond, scalar.body, ...
3984   //
3985   // In this example, s1 is a recurrence because it's value depends on the
3986   // previous iteration. In the first phase of vectorization, we created a
3987   // vector phi v1 for s1. We now complete the vectorization and produce the
3988   // shorthand vector IR shown below (for VF = 4, UF = 1).
3989   //
3990   //   vector.ph:
3991   //     v_init = vector(..., ..., ..., a[-1])
3992   //     br vector.body
3993   //
3994   //   vector.body
3995   //     i = phi [0, vector.ph], [i+4, vector.body]
3996   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3997   //     v2 = a[i, i+1, i+2, i+3];
3998   //     v3 = vector(v1(3), v2(0, 1, 2))
3999   //     b[i, i+1, i+2, i+3] = v2 - v3
4000   //     br cond, vector.body, middle.block
4001   //
4002   //   middle.block:
4003   //     x = v2(3)
4004   //     br scalar.ph
4005   //
4006   //   scalar.ph:
4007   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4008   //     br scalar.body
4009   //
4010   // After execution completes the vector loop, we extract the next value of
4011   // the recurrence (x) to use as the initial value in the scalar loop.
4012 
4013   // Extract the last vector element in the middle block. This will be the
4014   // initial value for the recurrence when jumping to the scalar loop.
4015   VPValue *PreviousDef = PhiR->getBackedgeValue();
4016   Value *Incoming = State.get(PreviousDef, UF - 1);
4017   auto *ExtractForScalar = Incoming;
4018   auto *IdxTy = Builder.getInt32Ty();
4019   if (VF.isVector()) {
4020     auto *One = ConstantInt::get(IdxTy, 1);
4021     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4022     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4023     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4024     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4025                                                     "vector.recur.extract");
4026   }
4027   // Extract the second last element in the middle block if the
4028   // Phi is used outside the loop. We need to extract the phi itself
4029   // and not the last element (the phi update in the current iteration). This
4030   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4031   // when the scalar loop is not run at all.
4032   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4033   if (VF.isVector()) {
4034     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4035     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4036     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4037         Incoming, Idx, "vector.recur.extract.for.phi");
4038   } else if (UF > 1)
4039     // When loop is unrolled without vectorizing, initialize
4040     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4041     // of `Incoming`. This is analogous to the vectorized case above: extracting
4042     // the second last element when VF > 1.
4043     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4044 
4045   // Fix the initial value of the original recurrence in the scalar loop.
4046   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4047   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4048   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4049   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4050   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4051     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4052     Start->addIncoming(Incoming, BB);
4053   }
4054 
4055   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4056   Phi->setName("scalar.recur");
4057 
4058   // Finally, fix users of the recurrence outside the loop. The users will need
4059   // either the last value of the scalar recurrence or the last value of the
4060   // vector recurrence we extracted in the middle block. Since the loop is in
4061   // LCSSA form, we just need to find all the phi nodes for the original scalar
4062   // recurrence in the exit block, and then add an edge for the middle block.
4063   // Note that LCSSA does not imply single entry when the original scalar loop
4064   // had multiple exiting edges (as we always run the last iteration in the
4065   // scalar epilogue); in that case, there is no edge from middle to exit and
4066   // and thus no phis which needed updated.
4067   if (!Cost->requiresScalarEpilogue(VF))
4068     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4069       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4070         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4071 }
4072 
4073 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4074                                        VPTransformState &State) {
4075   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4076   // Get it's reduction variable descriptor.
4077   assert(Legal->isReductionVariable(OrigPhi) &&
4078          "Unable to find the reduction variable");
4079   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4080 
4081   RecurKind RK = RdxDesc.getRecurrenceKind();
4082   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4083   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4084   setDebugLocFromInst(ReductionStartValue);
4085 
4086   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4087   // This is the vector-clone of the value that leaves the loop.
4088   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4089 
4090   // Wrap flags are in general invalid after vectorization, clear them.
4091   clearReductionWrapFlags(RdxDesc, State);
4092 
4093   // Before each round, move the insertion point right between
4094   // the PHIs and the values we are going to write.
4095   // This allows us to write both PHINodes and the extractelement
4096   // instructions.
4097   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4098 
4099   setDebugLocFromInst(LoopExitInst);
4100 
4101   Type *PhiTy = OrigPhi->getType();
4102   // If tail is folded by masking, the vector value to leave the loop should be
4103   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4104   // instead of the former. For an inloop reduction the reduction will already
4105   // be predicated, and does not need to be handled here.
4106   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4107     for (unsigned Part = 0; Part < UF; ++Part) {
4108       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4109       Value *Sel = nullptr;
4110       for (User *U : VecLoopExitInst->users()) {
4111         if (isa<SelectInst>(U)) {
4112           assert(!Sel && "Reduction exit feeding two selects");
4113           Sel = U;
4114         } else
4115           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4116       }
4117       assert(Sel && "Reduction exit feeds no select");
4118       State.reset(LoopExitInstDef, Sel, Part);
4119 
4120       // If the target can create a predicated operator for the reduction at no
4121       // extra cost in the loop (for example a predicated vadd), it can be
4122       // cheaper for the select to remain in the loop than be sunk out of it,
4123       // and so use the select value for the phi instead of the old
4124       // LoopExitValue.
4125       if (PreferPredicatedReductionSelect ||
4126           TTI->preferPredicatedReductionSelect(
4127               RdxDesc.getOpcode(), PhiTy,
4128               TargetTransformInfo::ReductionFlags())) {
4129         auto *VecRdxPhi =
4130             cast<PHINode>(State.get(PhiR, Part));
4131         VecRdxPhi->setIncomingValueForBlock(
4132             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4133       }
4134     }
4135   }
4136 
4137   // If the vector reduction can be performed in a smaller type, we truncate
4138   // then extend the loop exit value to enable InstCombine to evaluate the
4139   // entire expression in the smaller type.
4140   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4141     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4142     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4143     Builder.SetInsertPoint(
4144         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4145     VectorParts RdxParts(UF);
4146     for (unsigned Part = 0; Part < UF; ++Part) {
4147       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4148       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4149       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4150                                         : Builder.CreateZExt(Trunc, VecTy);
4151       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4152         if (U != Trunc) {
4153           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4154           RdxParts[Part] = Extnd;
4155         }
4156     }
4157     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4158     for (unsigned Part = 0; Part < UF; ++Part) {
4159       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4160       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4161     }
4162   }
4163 
4164   // Reduce all of the unrolled parts into a single vector.
4165   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4166   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4167 
4168   // The middle block terminator has already been assigned a DebugLoc here (the
4169   // OrigLoop's single latch terminator). We want the whole middle block to
4170   // appear to execute on this line because: (a) it is all compiler generated,
4171   // (b) these instructions are always executed after evaluating the latch
4172   // conditional branch, and (c) other passes may add new predecessors which
4173   // terminate on this line. This is the easiest way to ensure we don't
4174   // accidentally cause an extra step back into the loop while debugging.
4175   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4176   if (PhiR->isOrdered())
4177     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4178   else {
4179     // Floating-point operations should have some FMF to enable the reduction.
4180     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4181     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4182     for (unsigned Part = 1; Part < UF; ++Part) {
4183       Value *RdxPart = State.get(LoopExitInstDef, Part);
4184       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4185         ReducedPartRdx = Builder.CreateBinOp(
4186             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4187       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4188         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4189                                            ReducedPartRdx, RdxPart);
4190       else
4191         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4192     }
4193   }
4194 
4195   // Create the reduction after the loop. Note that inloop reductions create the
4196   // target reduction in the loop using a Reduction recipe.
4197   if (VF.isVector() && !PhiR->isInLoop()) {
4198     ReducedPartRdx =
4199         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4200     // If the reduction can be performed in a smaller type, we need to extend
4201     // the reduction to the wider type before we branch to the original loop.
4202     if (PhiTy != RdxDesc.getRecurrenceType())
4203       ReducedPartRdx = RdxDesc.isSigned()
4204                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4205                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4206   }
4207 
4208   PHINode *ResumePhi =
4209       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4210 
4211   // Create a phi node that merges control-flow from the backedge-taken check
4212   // block and the middle block.
4213   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4214                                         LoopScalarPreHeader->getTerminator());
4215 
4216   // If we are fixing reductions in the epilogue loop then we should already
4217   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4218   // we carry over the incoming values correctly.
4219   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4220     if (Incoming == LoopMiddleBlock)
4221       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4222     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4223       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4224                               Incoming);
4225     else
4226       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4227   }
4228 
4229   // Set the resume value for this reduction
4230   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4231 
4232   // Now, we need to fix the users of the reduction variable
4233   // inside and outside of the scalar remainder loop.
4234 
4235   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4236   // in the exit blocks.  See comment on analogous loop in
4237   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4238   if (!Cost->requiresScalarEpilogue(VF))
4239     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4240       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4241         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4242 
4243   // Fix the scalar loop reduction variable with the incoming reduction sum
4244   // from the vector body and from the backedge value.
4245   int IncomingEdgeBlockIdx =
4246       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4247   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4248   // Pick the other block.
4249   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4250   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4251   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4252 }
4253 
4254 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4255                                                   VPTransformState &State) {
4256   RecurKind RK = RdxDesc.getRecurrenceKind();
4257   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4258     return;
4259 
4260   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4261   assert(LoopExitInstr && "null loop exit instruction");
4262   SmallVector<Instruction *, 8> Worklist;
4263   SmallPtrSet<Instruction *, 8> Visited;
4264   Worklist.push_back(LoopExitInstr);
4265   Visited.insert(LoopExitInstr);
4266 
4267   while (!Worklist.empty()) {
4268     Instruction *Cur = Worklist.pop_back_val();
4269     if (isa<OverflowingBinaryOperator>(Cur))
4270       for (unsigned Part = 0; Part < UF; ++Part) {
4271         // FIXME: Should not rely on getVPValue at this point.
4272         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4273         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4274       }
4275 
4276     for (User *U : Cur->users()) {
4277       Instruction *UI = cast<Instruction>(U);
4278       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4279           Visited.insert(UI).second)
4280         Worklist.push_back(UI);
4281     }
4282   }
4283 }
4284 
4285 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4286   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4287     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4288       // Some phis were already hand updated by the reduction and recurrence
4289       // code above, leave them alone.
4290       continue;
4291 
4292     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4293     // Non-instruction incoming values will have only one value.
4294 
4295     VPLane Lane = VPLane::getFirstLane();
4296     if (isa<Instruction>(IncomingValue) &&
4297         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4298                                            VF))
4299       Lane = VPLane::getLastLaneForVF(VF);
4300 
4301     // Can be a loop invariant incoming value or the last scalar value to be
4302     // extracted from the vectorized loop.
4303     // FIXME: Should not rely on getVPValue at this point.
4304     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4305     Value *lastIncomingValue =
4306         OrigLoop->isLoopInvariant(IncomingValue)
4307             ? IncomingValue
4308             : State.get(State.Plan->getVPValue(IncomingValue, true),
4309                         VPIteration(UF - 1, Lane));
4310     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4311   }
4312 }
4313 
4314 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4315   // The basic block and loop containing the predicated instruction.
4316   auto *PredBB = PredInst->getParent();
4317   auto *VectorLoop = LI->getLoopFor(PredBB);
4318 
4319   // Initialize a worklist with the operands of the predicated instruction.
4320   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4321 
4322   // Holds instructions that we need to analyze again. An instruction may be
4323   // reanalyzed if we don't yet know if we can sink it or not.
4324   SmallVector<Instruction *, 8> InstsToReanalyze;
4325 
4326   // Returns true if a given use occurs in the predicated block. Phi nodes use
4327   // their operands in their corresponding predecessor blocks.
4328   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4329     auto *I = cast<Instruction>(U.getUser());
4330     BasicBlock *BB = I->getParent();
4331     if (auto *Phi = dyn_cast<PHINode>(I))
4332       BB = Phi->getIncomingBlock(
4333           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4334     return BB == PredBB;
4335   };
4336 
4337   // Iteratively sink the scalarized operands of the predicated instruction
4338   // into the block we created for it. When an instruction is sunk, it's
4339   // operands are then added to the worklist. The algorithm ends after one pass
4340   // through the worklist doesn't sink a single instruction.
4341   bool Changed;
4342   do {
4343     // Add the instructions that need to be reanalyzed to the worklist, and
4344     // reset the changed indicator.
4345     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4346     InstsToReanalyze.clear();
4347     Changed = false;
4348 
4349     while (!Worklist.empty()) {
4350       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4351 
4352       // We can't sink an instruction if it is a phi node, is not in the loop,
4353       // or may have side effects.
4354       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4355           I->mayHaveSideEffects())
4356         continue;
4357 
4358       // If the instruction is already in PredBB, check if we can sink its
4359       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4360       // sinking the scalar instruction I, hence it appears in PredBB; but it
4361       // may have failed to sink I's operands (recursively), which we try
4362       // (again) here.
4363       if (I->getParent() == PredBB) {
4364         Worklist.insert(I->op_begin(), I->op_end());
4365         continue;
4366       }
4367 
4368       // It's legal to sink the instruction if all its uses occur in the
4369       // predicated block. Otherwise, there's nothing to do yet, and we may
4370       // need to reanalyze the instruction.
4371       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4372         InstsToReanalyze.push_back(I);
4373         continue;
4374       }
4375 
4376       // Move the instruction to the beginning of the predicated block, and add
4377       // it's operands to the worklist.
4378       I->moveBefore(&*PredBB->getFirstInsertionPt());
4379       Worklist.insert(I->op_begin(), I->op_end());
4380 
4381       // The sinking may have enabled other instructions to be sunk, so we will
4382       // need to iterate.
4383       Changed = true;
4384     }
4385   } while (Changed);
4386 }
4387 
4388 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4389   for (PHINode *OrigPhi : OrigPHIsToFix) {
4390     VPWidenPHIRecipe *VPPhi =
4391         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4392     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4393     // Make sure the builder has a valid insert point.
4394     Builder.SetInsertPoint(NewPhi);
4395     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4396       VPValue *Inc = VPPhi->getIncomingValue(i);
4397       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4398       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4399     }
4400   }
4401 }
4402 
4403 bool InnerLoopVectorizer::useOrderedReductions(
4404     const RecurrenceDescriptor &RdxDesc) {
4405   return Cost->useOrderedReductions(RdxDesc);
4406 }
4407 
4408 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4409                                               VPWidenPHIRecipe *PhiR,
4410                                               VPTransformState &State) {
4411   PHINode *P = cast<PHINode>(PN);
4412   if (EnableVPlanNativePath) {
4413     // Currently we enter here in the VPlan-native path for non-induction
4414     // PHIs where all control flow is uniform. We simply widen these PHIs.
4415     // Create a vector phi with no operands - the vector phi operands will be
4416     // set at the end of vector code generation.
4417     Type *VecTy = (State.VF.isScalar())
4418                       ? PN->getType()
4419                       : VectorType::get(PN->getType(), State.VF);
4420     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4421     State.set(PhiR, VecPhi, 0);
4422     OrigPHIsToFix.push_back(P);
4423 
4424     return;
4425   }
4426 
4427   assert(PN->getParent() == OrigLoop->getHeader() &&
4428          "Non-header phis should have been handled elsewhere");
4429 
4430   // In order to support recurrences we need to be able to vectorize Phi nodes.
4431   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4432   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4433   // this value when we vectorize all of the instructions that use the PHI.
4434 
4435   assert(!Legal->isReductionVariable(P) &&
4436          "reductions should be handled elsewhere");
4437 
4438   setDebugLocFromInst(P);
4439 
4440   // This PHINode must be an induction variable.
4441   // Make sure that we know about it.
4442   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4443 
4444   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4445   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4446 
4447   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4448   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4449 
4450   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4451   // which can be found from the original scalar operations.
4452   switch (II.getKind()) {
4453   case InductionDescriptor::IK_NoInduction:
4454     llvm_unreachable("Unknown induction");
4455   case InductionDescriptor::IK_IntInduction:
4456   case InductionDescriptor::IK_FpInduction:
4457     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4458   case InductionDescriptor::IK_PtrInduction: {
4459     // Handle the pointer induction variable case.
4460     assert(P->getType()->isPointerTy() && "Unexpected type.");
4461 
4462     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4463       // This is the normalized GEP that starts counting at zero.
4464       Value *PtrInd =
4465           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4466       // Determine the number of scalars we need to generate for each unroll
4467       // iteration. If the instruction is uniform, we only need to generate the
4468       // first lane. Otherwise, we generate all VF values.
4469       bool IsUniform = vputils::onlyFirstLaneUsed(PhiR);
4470       assert((IsUniform || !State.VF.isScalable()) &&
4471              "Cannot scalarize a scalable VF");
4472       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4473 
4474       for (unsigned Part = 0; Part < UF; ++Part) {
4475         Value *PartStart =
4476             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4477 
4478         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4479           Value *Idx = Builder.CreateAdd(
4480               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4481           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4482 
4483           Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
4484                                         State.CFG.PrevBB->getTerminator());
4485           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx,
4486                                                 II.getStartValue(), Step, II);
4487           SclrGep->setName("next.gep");
4488           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4489         }
4490       }
4491       return;
4492     }
4493     assert(isa<SCEVConstant>(II.getStep()) &&
4494            "Induction step not a SCEV constant!");
4495     Type *PhiType = II.getStep()->getType();
4496 
4497     // Build a pointer phi
4498     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4499     Type *ScStValueType = ScalarStartValue->getType();
4500     PHINode *NewPointerPhi =
4501         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4502     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4503 
4504     // A pointer induction, performed by using a gep
4505     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4506     Instruction *InductionLoc = LoopLatch->getTerminator();
4507     const SCEV *ScalarStep = II.getStep();
4508     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4509     Value *ScalarStepValue =
4510         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4511     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4512     Value *NumUnrolledElems =
4513         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4514     Value *InductionGEP = GetElementPtrInst::Create(
4515         II.getElementType(), NewPointerPhi,
4516         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4517         InductionLoc);
4518     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4519 
4520     // Create UF many actual address geps that use the pointer
4521     // phi as base and a vectorized version of the step value
4522     // (<step*0, ..., step*N>) as offset.
4523     for (unsigned Part = 0; Part < State.UF; ++Part) {
4524       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4525       Value *StartOffsetScalar =
4526           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4527       Value *StartOffset =
4528           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4529       // Create a vector of consecutive numbers from zero to VF.
4530       StartOffset =
4531           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4532 
4533       Value *GEP = Builder.CreateGEP(
4534           II.getElementType(), NewPointerPhi,
4535           Builder.CreateMul(
4536               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4537               "vector.gep"));
4538       State.set(PhiR, GEP, Part);
4539     }
4540   }
4541   }
4542 }
4543 
4544 /// A helper function for checking whether an integer division-related
4545 /// instruction may divide by zero (in which case it must be predicated if
4546 /// executed conditionally in the scalar code).
4547 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4548 /// Non-zero divisors that are non compile-time constants will not be
4549 /// converted into multiplication, so we will still end up scalarizing
4550 /// the division, but can do so w/o predication.
4551 static bool mayDivideByZero(Instruction &I) {
4552   assert((I.getOpcode() == Instruction::UDiv ||
4553           I.getOpcode() == Instruction::SDiv ||
4554           I.getOpcode() == Instruction::URem ||
4555           I.getOpcode() == Instruction::SRem) &&
4556          "Unexpected instruction");
4557   Value *Divisor = I.getOperand(1);
4558   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4559   return !CInt || CInt->isZero();
4560 }
4561 
4562 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4563                                                VPUser &ArgOperands,
4564                                                VPTransformState &State) {
4565   assert(!isa<DbgInfoIntrinsic>(I) &&
4566          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4567   setDebugLocFromInst(&I);
4568 
4569   Module *M = I.getParent()->getParent()->getParent();
4570   auto *CI = cast<CallInst>(&I);
4571 
4572   SmallVector<Type *, 4> Tys;
4573   for (Value *ArgOperand : CI->args())
4574     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4575 
4576   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4577 
4578   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4579   // version of the instruction.
4580   // Is it beneficial to perform intrinsic call compared to lib call?
4581   bool NeedToScalarize = false;
4582   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4583   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4584   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4585   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4586          "Instruction should be scalarized elsewhere.");
4587   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4588          "Either the intrinsic cost or vector call cost must be valid");
4589 
4590   for (unsigned Part = 0; Part < UF; ++Part) {
4591     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4592     SmallVector<Value *, 4> Args;
4593     for (auto &I : enumerate(ArgOperands.operands())) {
4594       // Some intrinsics have a scalar argument - don't replace it with a
4595       // vector.
4596       Value *Arg;
4597       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4598         Arg = State.get(I.value(), Part);
4599       else {
4600         Arg = State.get(I.value(), VPIteration(0, 0));
4601         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4602           TysForDecl.push_back(Arg->getType());
4603       }
4604       Args.push_back(Arg);
4605     }
4606 
4607     Function *VectorF;
4608     if (UseVectorIntrinsic) {
4609       // Use vector version of the intrinsic.
4610       if (VF.isVector())
4611         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4612       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4613       assert(VectorF && "Can't retrieve vector intrinsic.");
4614     } else {
4615       // Use vector version of the function call.
4616       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4617 #ifndef NDEBUG
4618       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4619              "Can't create vector function.");
4620 #endif
4621         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4622     }
4623       SmallVector<OperandBundleDef, 1> OpBundles;
4624       CI->getOperandBundlesAsDefs(OpBundles);
4625       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4626 
4627       if (isa<FPMathOperator>(V))
4628         V->copyFastMathFlags(CI);
4629 
4630       State.set(Def, V, Part);
4631       addMetadata(V, &I);
4632   }
4633 }
4634 
4635 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4636   // We should not collect Scalars more than once per VF. Right now, this
4637   // function is called from collectUniformsAndScalars(), which already does
4638   // this check. Collecting Scalars for VF=1 does not make any sense.
4639   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4640          "This function should not be visited twice for the same VF");
4641 
4642   SmallSetVector<Instruction *, 8> Worklist;
4643 
4644   // These sets are used to seed the analysis with pointers used by memory
4645   // accesses that will remain scalar.
4646   SmallSetVector<Instruction *, 8> ScalarPtrs;
4647   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4648   auto *Latch = TheLoop->getLoopLatch();
4649 
4650   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4651   // The pointer operands of loads and stores will be scalar as long as the
4652   // memory access is not a gather or scatter operation. The value operand of a
4653   // store will remain scalar if the store is scalarized.
4654   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4655     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4656     assert(WideningDecision != CM_Unknown &&
4657            "Widening decision should be ready at this moment");
4658     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4659       if (Ptr == Store->getValueOperand())
4660         return WideningDecision == CM_Scalarize;
4661     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4662            "Ptr is neither a value or pointer operand");
4663     return WideningDecision != CM_GatherScatter;
4664   };
4665 
4666   // A helper that returns true if the given value is a bitcast or
4667   // getelementptr instruction contained in the loop.
4668   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4669     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4670             isa<GetElementPtrInst>(V)) &&
4671            !TheLoop->isLoopInvariant(V);
4672   };
4673 
4674   // A helper that evaluates a memory access's use of a pointer. If the use will
4675   // be a scalar use and the pointer is only used by memory accesses, we place
4676   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4677   // PossibleNonScalarPtrs.
4678   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4679     // We only care about bitcast and getelementptr instructions contained in
4680     // the loop.
4681     if (!isLoopVaryingBitCastOrGEP(Ptr))
4682       return;
4683 
4684     // If the pointer has already been identified as scalar (e.g., if it was
4685     // also identified as uniform), there's nothing to do.
4686     auto *I = cast<Instruction>(Ptr);
4687     if (Worklist.count(I))
4688       return;
4689 
4690     // If the use of the pointer will be a scalar use, and all users of the
4691     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4692     // place the pointer in PossibleNonScalarPtrs.
4693     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4694           return isa<LoadInst>(U) || isa<StoreInst>(U);
4695         }))
4696       ScalarPtrs.insert(I);
4697     else
4698       PossibleNonScalarPtrs.insert(I);
4699   };
4700 
4701   // We seed the scalars analysis with three classes of instructions: (1)
4702   // instructions marked uniform-after-vectorization and (2) bitcast,
4703   // getelementptr and (pointer) phi instructions used by memory accesses
4704   // requiring a scalar use.
4705   //
4706   // (1) Add to the worklist all instructions that have been identified as
4707   // uniform-after-vectorization.
4708   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4709 
4710   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4711   // memory accesses requiring a scalar use. The pointer operands of loads and
4712   // stores will be scalar as long as the memory accesses is not a gather or
4713   // scatter operation. The value operand of a store will remain scalar if the
4714   // store is scalarized.
4715   for (auto *BB : TheLoop->blocks())
4716     for (auto &I : *BB) {
4717       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4718         evaluatePtrUse(Load, Load->getPointerOperand());
4719       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4720         evaluatePtrUse(Store, Store->getPointerOperand());
4721         evaluatePtrUse(Store, Store->getValueOperand());
4722       }
4723     }
4724   for (auto *I : ScalarPtrs)
4725     if (!PossibleNonScalarPtrs.count(I)) {
4726       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4727       Worklist.insert(I);
4728     }
4729 
4730   // Insert the forced scalars.
4731   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4732   // induction variable when the PHI user is scalarized.
4733   auto ForcedScalar = ForcedScalars.find(VF);
4734   if (ForcedScalar != ForcedScalars.end())
4735     for (auto *I : ForcedScalar->second)
4736       Worklist.insert(I);
4737 
4738   // Expand the worklist by looking through any bitcasts and getelementptr
4739   // instructions we've already identified as scalar. This is similar to the
4740   // expansion step in collectLoopUniforms(); however, here we're only
4741   // expanding to include additional bitcasts and getelementptr instructions.
4742   unsigned Idx = 0;
4743   while (Idx != Worklist.size()) {
4744     Instruction *Dst = Worklist[Idx++];
4745     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4746       continue;
4747     auto *Src = cast<Instruction>(Dst->getOperand(0));
4748     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4749           auto *J = cast<Instruction>(U);
4750           return !TheLoop->contains(J) || Worklist.count(J) ||
4751                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4752                   isScalarUse(J, Src));
4753         })) {
4754       Worklist.insert(Src);
4755       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4756     }
4757   }
4758 
4759   // An induction variable will remain scalar if all users of the induction
4760   // variable and induction variable update remain scalar.
4761   for (auto &Induction : Legal->getInductionVars()) {
4762     auto *Ind = Induction.first;
4763     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4764 
4765     // If tail-folding is applied, the primary induction variable will be used
4766     // to feed a vector compare.
4767     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4768       continue;
4769 
4770     // Returns true if \p Indvar is a pointer induction that is used directly by
4771     // load/store instruction \p I.
4772     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4773                                               Instruction *I) {
4774       return Induction.second.getKind() ==
4775                  InductionDescriptor::IK_PtrInduction &&
4776              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4777              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4778     };
4779 
4780     // Determine if all users of the induction variable are scalar after
4781     // vectorization.
4782     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4783       auto *I = cast<Instruction>(U);
4784       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4785              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4786     });
4787     if (!ScalarInd)
4788       continue;
4789 
4790     // Determine if all users of the induction variable update instruction are
4791     // scalar after vectorization.
4792     auto ScalarIndUpdate =
4793         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4794           auto *I = cast<Instruction>(U);
4795           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4796                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4797         });
4798     if (!ScalarIndUpdate)
4799       continue;
4800 
4801     // The induction variable and its update instruction will remain scalar.
4802     Worklist.insert(Ind);
4803     Worklist.insert(IndUpdate);
4804     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4805     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4806                       << "\n");
4807   }
4808 
4809   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4810 }
4811 
4812 bool LoopVectorizationCostModel::isScalarWithPredication(
4813     Instruction *I, ElementCount VF) const {
4814   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4815     return false;
4816   switch(I->getOpcode()) {
4817   default:
4818     break;
4819   case Instruction::Load:
4820   case Instruction::Store: {
4821     if (!Legal->isMaskRequired(I))
4822       return false;
4823     auto *Ptr = getLoadStorePointerOperand(I);
4824     auto *Ty = getLoadStoreType(I);
4825     Type *VTy = Ty;
4826     if (VF.isVector())
4827       VTy = VectorType::get(Ty, VF);
4828     const Align Alignment = getLoadStoreAlignment(I);
4829     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4830                                 TTI.isLegalMaskedGather(VTy, Alignment))
4831                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4832                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4833   }
4834   case Instruction::UDiv:
4835   case Instruction::SDiv:
4836   case Instruction::SRem:
4837   case Instruction::URem:
4838     return mayDivideByZero(*I);
4839   }
4840   return false;
4841 }
4842 
4843 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4844     Instruction *I, ElementCount VF) {
4845   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4846   assert(getWideningDecision(I, VF) == CM_Unknown &&
4847          "Decision should not be set yet.");
4848   auto *Group = getInterleavedAccessGroup(I);
4849   assert(Group && "Must have a group.");
4850 
4851   // If the instruction's allocated size doesn't equal it's type size, it
4852   // requires padding and will be scalarized.
4853   auto &DL = I->getModule()->getDataLayout();
4854   auto *ScalarTy = getLoadStoreType(I);
4855   if (hasIrregularType(ScalarTy, DL))
4856     return false;
4857 
4858   // Check if masking is required.
4859   // A Group may need masking for one of two reasons: it resides in a block that
4860   // needs predication, or it was decided to use masking to deal with gaps
4861   // (either a gap at the end of a load-access that may result in a speculative
4862   // load, or any gaps in a store-access).
4863   bool PredicatedAccessRequiresMasking =
4864       blockNeedsPredicationForAnyReason(I->getParent()) &&
4865       Legal->isMaskRequired(I);
4866   bool LoadAccessWithGapsRequiresEpilogMasking =
4867       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4868       !isScalarEpilogueAllowed();
4869   bool StoreAccessWithGapsRequiresMasking =
4870       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4871   if (!PredicatedAccessRequiresMasking &&
4872       !LoadAccessWithGapsRequiresEpilogMasking &&
4873       !StoreAccessWithGapsRequiresMasking)
4874     return true;
4875 
4876   // If masked interleaving is required, we expect that the user/target had
4877   // enabled it, because otherwise it either wouldn't have been created or
4878   // it should have been invalidated by the CostModel.
4879   assert(useMaskedInterleavedAccesses(TTI) &&
4880          "Masked interleave-groups for predicated accesses are not enabled.");
4881 
4882   if (Group->isReverse())
4883     return false;
4884 
4885   auto *Ty = getLoadStoreType(I);
4886   const Align Alignment = getLoadStoreAlignment(I);
4887   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4888                           : TTI.isLegalMaskedStore(Ty, Alignment);
4889 }
4890 
4891 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4892     Instruction *I, ElementCount VF) {
4893   // Get and ensure we have a valid memory instruction.
4894   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4895 
4896   auto *Ptr = getLoadStorePointerOperand(I);
4897   auto *ScalarTy = getLoadStoreType(I);
4898 
4899   // In order to be widened, the pointer should be consecutive, first of all.
4900   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4901     return false;
4902 
4903   // If the instruction is a store located in a predicated block, it will be
4904   // scalarized.
4905   if (isScalarWithPredication(I, VF))
4906     return false;
4907 
4908   // If the instruction's allocated size doesn't equal it's type size, it
4909   // requires padding and will be scalarized.
4910   auto &DL = I->getModule()->getDataLayout();
4911   if (hasIrregularType(ScalarTy, DL))
4912     return false;
4913 
4914   return true;
4915 }
4916 
4917 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4918   // We should not collect Uniforms more than once per VF. Right now,
4919   // this function is called from collectUniformsAndScalars(), which
4920   // already does this check. Collecting Uniforms for VF=1 does not make any
4921   // sense.
4922 
4923   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4924          "This function should not be visited twice for the same VF");
4925 
4926   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4927   // not analyze again.  Uniforms.count(VF) will return 1.
4928   Uniforms[VF].clear();
4929 
4930   // We now know that the loop is vectorizable!
4931   // Collect instructions inside the loop that will remain uniform after
4932   // vectorization.
4933 
4934   // Global values, params and instructions outside of current loop are out of
4935   // scope.
4936   auto isOutOfScope = [&](Value *V) -> bool {
4937     Instruction *I = dyn_cast<Instruction>(V);
4938     return (!I || !TheLoop->contains(I));
4939   };
4940 
4941   // Worklist containing uniform instructions demanding lane 0.
4942   SetVector<Instruction *> Worklist;
4943   BasicBlock *Latch = TheLoop->getLoopLatch();
4944 
4945   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4946   // that are scalar with predication must not be considered uniform after
4947   // vectorization, because that would create an erroneous replicating region
4948   // where only a single instance out of VF should be formed.
4949   // TODO: optimize such seldom cases if found important, see PR40816.
4950   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4951     if (isOutOfScope(I)) {
4952       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4953                         << *I << "\n");
4954       return;
4955     }
4956     if (isScalarWithPredication(I, VF)) {
4957       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4958                         << *I << "\n");
4959       return;
4960     }
4961     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4962     Worklist.insert(I);
4963   };
4964 
4965   // Start with the conditional branch. If the branch condition is an
4966   // instruction contained in the loop that is only used by the branch, it is
4967   // uniform.
4968   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4969   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4970     addToWorklistIfAllowed(Cmp);
4971 
4972   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4973     InstWidening WideningDecision = getWideningDecision(I, VF);
4974     assert(WideningDecision != CM_Unknown &&
4975            "Widening decision should be ready at this moment");
4976 
4977     // A uniform memory op is itself uniform.  We exclude uniform stores
4978     // here as they demand the last lane, not the first one.
4979     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4980       assert(WideningDecision == CM_Scalarize);
4981       return true;
4982     }
4983 
4984     return (WideningDecision == CM_Widen ||
4985             WideningDecision == CM_Widen_Reverse ||
4986             WideningDecision == CM_Interleave);
4987   };
4988 
4989 
4990   // Returns true if Ptr is the pointer operand of a memory access instruction
4991   // I, and I is known to not require scalarization.
4992   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4993     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4994   };
4995 
4996   // Holds a list of values which are known to have at least one uniform use.
4997   // Note that there may be other uses which aren't uniform.  A "uniform use"
4998   // here is something which only demands lane 0 of the unrolled iterations;
4999   // it does not imply that all lanes produce the same value (e.g. this is not
5000   // the usual meaning of uniform)
5001   SetVector<Value *> HasUniformUse;
5002 
5003   // Scan the loop for instructions which are either a) known to have only
5004   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5005   for (auto *BB : TheLoop->blocks())
5006     for (auto &I : *BB) {
5007       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5008         switch (II->getIntrinsicID()) {
5009         case Intrinsic::sideeffect:
5010         case Intrinsic::experimental_noalias_scope_decl:
5011         case Intrinsic::assume:
5012         case Intrinsic::lifetime_start:
5013         case Intrinsic::lifetime_end:
5014           if (TheLoop->hasLoopInvariantOperands(&I))
5015             addToWorklistIfAllowed(&I);
5016           break;
5017         default:
5018           break;
5019         }
5020       }
5021 
5022       // ExtractValue instructions must be uniform, because the operands are
5023       // known to be loop-invariant.
5024       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5025         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5026                "Expected aggregate value to be loop invariant");
5027         addToWorklistIfAllowed(EVI);
5028         continue;
5029       }
5030 
5031       // If there's no pointer operand, there's nothing to do.
5032       auto *Ptr = getLoadStorePointerOperand(&I);
5033       if (!Ptr)
5034         continue;
5035 
5036       // A uniform memory op is itself uniform.  We exclude uniform stores
5037       // here as they demand the last lane, not the first one.
5038       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5039         addToWorklistIfAllowed(&I);
5040 
5041       if (isUniformDecision(&I, VF)) {
5042         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5043         HasUniformUse.insert(Ptr);
5044       }
5045     }
5046 
5047   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5048   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5049   // disallows uses outside the loop as well.
5050   for (auto *V : HasUniformUse) {
5051     if (isOutOfScope(V))
5052       continue;
5053     auto *I = cast<Instruction>(V);
5054     auto UsersAreMemAccesses =
5055       llvm::all_of(I->users(), [&](User *U) -> bool {
5056         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5057       });
5058     if (UsersAreMemAccesses)
5059       addToWorklistIfAllowed(I);
5060   }
5061 
5062   // Expand Worklist in topological order: whenever a new instruction
5063   // is added , its users should be already inside Worklist.  It ensures
5064   // a uniform instruction will only be used by uniform instructions.
5065   unsigned idx = 0;
5066   while (idx != Worklist.size()) {
5067     Instruction *I = Worklist[idx++];
5068 
5069     for (auto OV : I->operand_values()) {
5070       // isOutOfScope operands cannot be uniform instructions.
5071       if (isOutOfScope(OV))
5072         continue;
5073       // First order recurrence Phi's should typically be considered
5074       // non-uniform.
5075       auto *OP = dyn_cast<PHINode>(OV);
5076       if (OP && Legal->isFirstOrderRecurrence(OP))
5077         continue;
5078       // If all the users of the operand are uniform, then add the
5079       // operand into the uniform worklist.
5080       auto *OI = cast<Instruction>(OV);
5081       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5082             auto *J = cast<Instruction>(U);
5083             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5084           }))
5085         addToWorklistIfAllowed(OI);
5086     }
5087   }
5088 
5089   // For an instruction to be added into Worklist above, all its users inside
5090   // the loop should also be in Worklist. However, this condition cannot be
5091   // true for phi nodes that form a cyclic dependence. We must process phi
5092   // nodes separately. An induction variable will remain uniform if all users
5093   // of the induction variable and induction variable update remain uniform.
5094   // The code below handles both pointer and non-pointer induction variables.
5095   for (auto &Induction : Legal->getInductionVars()) {
5096     auto *Ind = Induction.first;
5097     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5098 
5099     // Determine if all users of the induction variable are uniform after
5100     // vectorization.
5101     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5102       auto *I = cast<Instruction>(U);
5103       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5104              isVectorizedMemAccessUse(I, Ind);
5105     });
5106     if (!UniformInd)
5107       continue;
5108 
5109     // Determine if all users of the induction variable update instruction are
5110     // uniform after vectorization.
5111     auto UniformIndUpdate =
5112         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5113           auto *I = cast<Instruction>(U);
5114           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5115                  isVectorizedMemAccessUse(I, IndUpdate);
5116         });
5117     if (!UniformIndUpdate)
5118       continue;
5119 
5120     // The induction variable and its update instruction will remain uniform.
5121     addToWorklistIfAllowed(Ind);
5122     addToWorklistIfAllowed(IndUpdate);
5123   }
5124 
5125   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5126 }
5127 
5128 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5129   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5130 
5131   if (Legal->getRuntimePointerChecking()->Need) {
5132     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5133         "runtime pointer checks needed. Enable vectorization of this "
5134         "loop with '#pragma clang loop vectorize(enable)' when "
5135         "compiling with -Os/-Oz",
5136         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5137     return true;
5138   }
5139 
5140   if (!PSE.getPredicate().isAlwaysTrue()) {
5141     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5142         "runtime SCEV checks needed. Enable vectorization of this "
5143         "loop with '#pragma clang loop vectorize(enable)' when "
5144         "compiling with -Os/-Oz",
5145         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5146     return true;
5147   }
5148 
5149   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5150   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5151     reportVectorizationFailure("Runtime stride check for small trip count",
5152         "runtime stride == 1 checks needed. Enable vectorization of "
5153         "this loop without such check by compiling with -Os/-Oz",
5154         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5155     return true;
5156   }
5157 
5158   return false;
5159 }
5160 
5161 ElementCount
5162 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5163   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5164     return ElementCount::getScalable(0);
5165 
5166   if (Hints->isScalableVectorizationDisabled()) {
5167     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5168                             "ScalableVectorizationDisabled", ORE, TheLoop);
5169     return ElementCount::getScalable(0);
5170   }
5171 
5172   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5173 
5174   auto MaxScalableVF = ElementCount::getScalable(
5175       std::numeric_limits<ElementCount::ScalarTy>::max());
5176 
5177   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5178   // FIXME: While for scalable vectors this is currently sufficient, this should
5179   // be replaced by a more detailed mechanism that filters out specific VFs,
5180   // instead of invalidating vectorization for a whole set of VFs based on the
5181   // MaxVF.
5182 
5183   // Disable scalable vectorization if the loop contains unsupported reductions.
5184   if (!canVectorizeReductions(MaxScalableVF)) {
5185     reportVectorizationInfo(
5186         "Scalable vectorization not supported for the reduction "
5187         "operations found in this loop.",
5188         "ScalableVFUnfeasible", ORE, TheLoop);
5189     return ElementCount::getScalable(0);
5190   }
5191 
5192   // Disable scalable vectorization if the loop contains any instructions
5193   // with element types not supported for scalable vectors.
5194   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5195         return !Ty->isVoidTy() &&
5196                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5197       })) {
5198     reportVectorizationInfo("Scalable vectorization is not supported "
5199                             "for all element types found in this loop.",
5200                             "ScalableVFUnfeasible", ORE, TheLoop);
5201     return ElementCount::getScalable(0);
5202   }
5203 
5204   if (Legal->isSafeForAnyVectorWidth())
5205     return MaxScalableVF;
5206 
5207   // Limit MaxScalableVF by the maximum safe dependence distance.
5208   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5209   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5210     MaxVScale =
5211         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5212   MaxScalableVF = ElementCount::getScalable(
5213       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5214   if (!MaxScalableVF)
5215     reportVectorizationInfo(
5216         "Max legal vector width too small, scalable vectorization "
5217         "unfeasible.",
5218         "ScalableVFUnfeasible", ORE, TheLoop);
5219 
5220   return MaxScalableVF;
5221 }
5222 
5223 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5224     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5225   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5226   unsigned SmallestType, WidestType;
5227   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5228 
5229   // Get the maximum safe dependence distance in bits computed by LAA.
5230   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5231   // the memory accesses that is most restrictive (involved in the smallest
5232   // dependence distance).
5233   unsigned MaxSafeElements =
5234       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5235 
5236   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5237   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5238 
5239   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5240                     << ".\n");
5241   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5242                     << ".\n");
5243 
5244   // First analyze the UserVF, fall back if the UserVF should be ignored.
5245   if (UserVF) {
5246     auto MaxSafeUserVF =
5247         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5248 
5249     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5250       // If `VF=vscale x N` is safe, then so is `VF=N`
5251       if (UserVF.isScalable())
5252         return FixedScalableVFPair(
5253             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5254       else
5255         return UserVF;
5256     }
5257 
5258     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5259 
5260     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5261     // is better to ignore the hint and let the compiler choose a suitable VF.
5262     if (!UserVF.isScalable()) {
5263       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5264                         << " is unsafe, clamping to max safe VF="
5265                         << MaxSafeFixedVF << ".\n");
5266       ORE->emit([&]() {
5267         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5268                                           TheLoop->getStartLoc(),
5269                                           TheLoop->getHeader())
5270                << "User-specified vectorization factor "
5271                << ore::NV("UserVectorizationFactor", UserVF)
5272                << " is unsafe, clamping to maximum safe vectorization factor "
5273                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5274       });
5275       return MaxSafeFixedVF;
5276     }
5277 
5278     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5279       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5280                         << " is ignored because scalable vectors are not "
5281                            "available.\n");
5282       ORE->emit([&]() {
5283         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5284                                           TheLoop->getStartLoc(),
5285                                           TheLoop->getHeader())
5286                << "User-specified vectorization factor "
5287                << ore::NV("UserVectorizationFactor", UserVF)
5288                << " is ignored because the target does not support scalable "
5289                   "vectors. The compiler will pick a more suitable value.";
5290       });
5291     } else {
5292       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5293                         << " is unsafe. Ignoring scalable UserVF.\n");
5294       ORE->emit([&]() {
5295         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5296                                           TheLoop->getStartLoc(),
5297                                           TheLoop->getHeader())
5298                << "User-specified vectorization factor "
5299                << ore::NV("UserVectorizationFactor", UserVF)
5300                << " is unsafe. Ignoring the hint to let the compiler pick a "
5301                   "more suitable value.";
5302       });
5303     }
5304   }
5305 
5306   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5307                     << " / " << WidestType << " bits.\n");
5308 
5309   FixedScalableVFPair Result(ElementCount::getFixed(1),
5310                              ElementCount::getScalable(0));
5311   if (auto MaxVF =
5312           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5313                                   MaxSafeFixedVF, FoldTailByMasking))
5314     Result.FixedVF = MaxVF;
5315 
5316   if (auto MaxVF =
5317           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5318                                   MaxSafeScalableVF, FoldTailByMasking))
5319     if (MaxVF.isScalable()) {
5320       Result.ScalableVF = MaxVF;
5321       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5322                         << "\n");
5323     }
5324 
5325   return Result;
5326 }
5327 
5328 FixedScalableVFPair
5329 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5330   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5331     // TODO: It may by useful to do since it's still likely to be dynamically
5332     // uniform if the target can skip.
5333     reportVectorizationFailure(
5334         "Not inserting runtime ptr check for divergent target",
5335         "runtime pointer checks needed. Not enabled for divergent target",
5336         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5337     return FixedScalableVFPair::getNone();
5338   }
5339 
5340   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5341   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5342   if (TC == 1) {
5343     reportVectorizationFailure("Single iteration (non) loop",
5344         "loop trip count is one, irrelevant for vectorization",
5345         "SingleIterationLoop", ORE, TheLoop);
5346     return FixedScalableVFPair::getNone();
5347   }
5348 
5349   switch (ScalarEpilogueStatus) {
5350   case CM_ScalarEpilogueAllowed:
5351     return computeFeasibleMaxVF(TC, UserVF, false);
5352   case CM_ScalarEpilogueNotAllowedUsePredicate:
5353     LLVM_FALLTHROUGH;
5354   case CM_ScalarEpilogueNotNeededUsePredicate:
5355     LLVM_DEBUG(
5356         dbgs() << "LV: vector predicate hint/switch found.\n"
5357                << "LV: Not allowing scalar epilogue, creating predicated "
5358                << "vector loop.\n");
5359     break;
5360   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5361     // fallthrough as a special case of OptForSize
5362   case CM_ScalarEpilogueNotAllowedOptSize:
5363     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5364       LLVM_DEBUG(
5365           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5366     else
5367       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5368                         << "count.\n");
5369 
5370     // Bail if runtime checks are required, which are not good when optimising
5371     // for size.
5372     if (runtimeChecksRequired())
5373       return FixedScalableVFPair::getNone();
5374 
5375     break;
5376   }
5377 
5378   // The only loops we can vectorize without a scalar epilogue, are loops with
5379   // a bottom-test and a single exiting block. We'd have to handle the fact
5380   // that not every instruction executes on the last iteration.  This will
5381   // require a lane mask which varies through the vector loop body.  (TODO)
5382   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5383     // If there was a tail-folding hint/switch, but we can't fold the tail by
5384     // masking, fallback to a vectorization with a scalar epilogue.
5385     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5386       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5387                            "scalar epilogue instead.\n");
5388       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5389       return computeFeasibleMaxVF(TC, UserVF, false);
5390     }
5391     return FixedScalableVFPair::getNone();
5392   }
5393 
5394   // Now try the tail folding
5395 
5396   // Invalidate interleave groups that require an epilogue if we can't mask
5397   // the interleave-group.
5398   if (!useMaskedInterleavedAccesses(TTI)) {
5399     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5400            "No decisions should have been taken at this point");
5401     // Note: There is no need to invalidate any cost modeling decisions here, as
5402     // non where taken so far.
5403     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5404   }
5405 
5406   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5407   // Avoid tail folding if the trip count is known to be a multiple of any VF
5408   // we chose.
5409   // FIXME: The condition below pessimises the case for fixed-width vectors,
5410   // when scalable VFs are also candidates for vectorization.
5411   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5412     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5413     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5414            "MaxFixedVF must be a power of 2");
5415     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5416                                    : MaxFixedVF.getFixedValue();
5417     ScalarEvolution *SE = PSE.getSE();
5418     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5419     const SCEV *ExitCount = SE->getAddExpr(
5420         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5421     const SCEV *Rem = SE->getURemExpr(
5422         SE->applyLoopGuards(ExitCount, TheLoop),
5423         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5424     if (Rem->isZero()) {
5425       // Accept MaxFixedVF if we do not have a tail.
5426       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5427       return MaxFactors;
5428     }
5429   }
5430 
5431   // For scalable vectors don't use tail folding for low trip counts or
5432   // optimizing for code size. We only permit this if the user has explicitly
5433   // requested it.
5434   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5435       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5436       MaxFactors.ScalableVF.isVector())
5437     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5438 
5439   // If we don't know the precise trip count, or if the trip count that we
5440   // found modulo the vectorization factor is not zero, try to fold the tail
5441   // by masking.
5442   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5443   if (Legal->prepareToFoldTailByMasking()) {
5444     FoldTailByMasking = true;
5445     return MaxFactors;
5446   }
5447 
5448   // If there was a tail-folding hint/switch, but we can't fold the tail by
5449   // masking, fallback to a vectorization with a scalar epilogue.
5450   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5451     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5452                          "scalar epilogue instead.\n");
5453     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5454     return MaxFactors;
5455   }
5456 
5457   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5458     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5459     return FixedScalableVFPair::getNone();
5460   }
5461 
5462   if (TC == 0) {
5463     reportVectorizationFailure(
5464         "Unable to calculate the loop count due to complex control flow",
5465         "unable to calculate the loop count due to complex control flow",
5466         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5467     return FixedScalableVFPair::getNone();
5468   }
5469 
5470   reportVectorizationFailure(
5471       "Cannot optimize for size and vectorize at the same time.",
5472       "cannot optimize for size and vectorize at the same time. "
5473       "Enable vectorization of this loop with '#pragma clang loop "
5474       "vectorize(enable)' when compiling with -Os/-Oz",
5475       "NoTailLoopWithOptForSize", ORE, TheLoop);
5476   return FixedScalableVFPair::getNone();
5477 }
5478 
5479 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5480     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5481     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5482   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5483   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5484       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5485                            : TargetTransformInfo::RGK_FixedWidthVector);
5486 
5487   // Convenience function to return the minimum of two ElementCounts.
5488   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5489     assert((LHS.isScalable() == RHS.isScalable()) &&
5490            "Scalable flags must match");
5491     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5492   };
5493 
5494   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5495   // Note that both WidestRegister and WidestType may not be a powers of 2.
5496   auto MaxVectorElementCount = ElementCount::get(
5497       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5498       ComputeScalableMaxVF);
5499   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5500   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5501                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5502 
5503   if (!MaxVectorElementCount) {
5504     LLVM_DEBUG(dbgs() << "LV: The target has no "
5505                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5506                       << " vector registers.\n");
5507     return ElementCount::getFixed(1);
5508   }
5509 
5510   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5511   if (ConstTripCount &&
5512       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5513       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5514     // If loop trip count (TC) is known at compile time there is no point in
5515     // choosing VF greater than TC (as done in the loop below). Select maximum
5516     // power of two which doesn't exceed TC.
5517     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5518     // when the TC is less than or equal to the known number of lanes.
5519     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5520     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5521                          "exceeding the constant trip count: "
5522                       << ClampedConstTripCount << "\n");
5523     return ElementCount::getFixed(ClampedConstTripCount);
5524   }
5525 
5526   ElementCount MaxVF = MaxVectorElementCount;
5527   if (TTI.shouldMaximizeVectorBandwidth() ||
5528       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5529     auto MaxVectorElementCountMaxBW = ElementCount::get(
5530         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5531         ComputeScalableMaxVF);
5532     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5533 
5534     // Collect all viable vectorization factors larger than the default MaxVF
5535     // (i.e. MaxVectorElementCount).
5536     SmallVector<ElementCount, 8> VFs;
5537     for (ElementCount VS = MaxVectorElementCount * 2;
5538          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5539       VFs.push_back(VS);
5540 
5541     // For each VF calculate its register usage.
5542     auto RUs = calculateRegisterUsage(VFs);
5543 
5544     // Select the largest VF which doesn't require more registers than existing
5545     // ones.
5546     for (int i = RUs.size() - 1; i >= 0; --i) {
5547       bool Selected = true;
5548       for (auto &pair : RUs[i].MaxLocalUsers) {
5549         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5550         if (pair.second > TargetNumRegisters)
5551           Selected = false;
5552       }
5553       if (Selected) {
5554         MaxVF = VFs[i];
5555         break;
5556       }
5557     }
5558     if (ElementCount MinVF =
5559             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5560       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5561         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5562                           << ") with target's minimum: " << MinVF << '\n');
5563         MaxVF = MinVF;
5564       }
5565     }
5566   }
5567   return MaxVF;
5568 }
5569 
5570 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5571   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5572     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5573     auto Min = Attr.getVScaleRangeMin();
5574     auto Max = Attr.getVScaleRangeMax();
5575     if (Max && Min == Max)
5576       return Max;
5577   }
5578 
5579   return TTI.getVScaleForTuning();
5580 }
5581 
5582 bool LoopVectorizationCostModel::isMoreProfitable(
5583     const VectorizationFactor &A, const VectorizationFactor &B) const {
5584   InstructionCost CostA = A.Cost;
5585   InstructionCost CostB = B.Cost;
5586 
5587   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5588 
5589   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5590       MaxTripCount) {
5591     // If we are folding the tail and the trip count is a known (possibly small)
5592     // constant, the trip count will be rounded up to an integer number of
5593     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5594     // which we compare directly. When not folding the tail, the total cost will
5595     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5596     // approximated with the per-lane cost below instead of using the tripcount
5597     // as here.
5598     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5599     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5600     return RTCostA < RTCostB;
5601   }
5602 
5603   // Improve estimate for the vector width if it is scalable.
5604   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5605   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5606   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5607     if (A.Width.isScalable())
5608       EstimatedWidthA *= VScale.getValue();
5609     if (B.Width.isScalable())
5610       EstimatedWidthB *= VScale.getValue();
5611   }
5612 
5613   // Assume vscale may be larger than 1 (or the value being tuned for),
5614   // so that scalable vectorization is slightly favorable over fixed-width
5615   // vectorization.
5616   if (A.Width.isScalable() && !B.Width.isScalable())
5617     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5618 
5619   // To avoid the need for FP division:
5620   //      (CostA / A.Width) < (CostB / B.Width)
5621   // <=>  (CostA * B.Width) < (CostB * A.Width)
5622   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5623 }
5624 
5625 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5626     const ElementCountSet &VFCandidates) {
5627   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5628   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5629   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5630   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5631          "Expected Scalar VF to be a candidate");
5632 
5633   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5634   VectorizationFactor ChosenFactor = ScalarCost;
5635 
5636   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5637   if (ForceVectorization && VFCandidates.size() > 1) {
5638     // Ignore scalar width, because the user explicitly wants vectorization.
5639     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5640     // evaluation.
5641     ChosenFactor.Cost = InstructionCost::getMax();
5642   }
5643 
5644   SmallVector<InstructionVFPair> InvalidCosts;
5645   for (const auto &i : VFCandidates) {
5646     // The cost for scalar VF=1 is already calculated, so ignore it.
5647     if (i.isScalar())
5648       continue;
5649 
5650     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5651     VectorizationFactor Candidate(i, C.first);
5652 
5653 #ifndef NDEBUG
5654     unsigned AssumedMinimumVscale = 1;
5655     if (Optional<unsigned> VScale = getVScaleForTuning())
5656       AssumedMinimumVscale = VScale.getValue();
5657     unsigned Width =
5658         Candidate.Width.isScalable()
5659             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5660             : Candidate.Width.getFixedValue();
5661     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5662                       << " costs: " << (Candidate.Cost / Width));
5663     if (i.isScalable())
5664       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5665                         << AssumedMinimumVscale << ")");
5666     LLVM_DEBUG(dbgs() << ".\n");
5667 #endif
5668 
5669     if (!C.second && !ForceVectorization) {
5670       LLVM_DEBUG(
5671           dbgs() << "LV: Not considering vector loop of width " << i
5672                  << " because it will not generate any vector instructions.\n");
5673       continue;
5674     }
5675 
5676     // If profitable add it to ProfitableVF list.
5677     if (isMoreProfitable(Candidate, ScalarCost))
5678       ProfitableVFs.push_back(Candidate);
5679 
5680     if (isMoreProfitable(Candidate, ChosenFactor))
5681       ChosenFactor = Candidate;
5682   }
5683 
5684   // Emit a report of VFs with invalid costs in the loop.
5685   if (!InvalidCosts.empty()) {
5686     // Group the remarks per instruction, keeping the instruction order from
5687     // InvalidCosts.
5688     std::map<Instruction *, unsigned> Numbering;
5689     unsigned I = 0;
5690     for (auto &Pair : InvalidCosts)
5691       if (!Numbering.count(Pair.first))
5692         Numbering[Pair.first] = I++;
5693 
5694     // Sort the list, first on instruction(number) then on VF.
5695     llvm::sort(InvalidCosts,
5696                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5697                  if (Numbering[A.first] != Numbering[B.first])
5698                    return Numbering[A.first] < Numbering[B.first];
5699                  ElementCountComparator ECC;
5700                  return ECC(A.second, B.second);
5701                });
5702 
5703     // For a list of ordered instruction-vf pairs:
5704     //   [(load, vf1), (load, vf2), (store, vf1)]
5705     // Group the instructions together to emit separate remarks for:
5706     //   load  (vf1, vf2)
5707     //   store (vf1)
5708     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5709     auto Subset = ArrayRef<InstructionVFPair>();
5710     do {
5711       if (Subset.empty())
5712         Subset = Tail.take_front(1);
5713 
5714       Instruction *I = Subset.front().first;
5715 
5716       // If the next instruction is different, or if there are no other pairs,
5717       // emit a remark for the collated subset. e.g.
5718       //   [(load, vf1), (load, vf2))]
5719       // to emit:
5720       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5721       if (Subset == Tail || Tail[Subset.size()].first != I) {
5722         std::string OutString;
5723         raw_string_ostream OS(OutString);
5724         assert(!Subset.empty() && "Unexpected empty range");
5725         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5726         for (auto &Pair : Subset)
5727           OS << (Pair.second == Subset.front().second ? "" : ", ")
5728              << Pair.second;
5729         OS << "):";
5730         if (auto *CI = dyn_cast<CallInst>(I))
5731           OS << " call to " << CI->getCalledFunction()->getName();
5732         else
5733           OS << " " << I->getOpcodeName();
5734         OS.flush();
5735         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5736         Tail = Tail.drop_front(Subset.size());
5737         Subset = {};
5738       } else
5739         // Grow the subset by one element
5740         Subset = Tail.take_front(Subset.size() + 1);
5741     } while (!Tail.empty());
5742   }
5743 
5744   if (!EnableCondStoresVectorization && NumPredStores) {
5745     reportVectorizationFailure("There are conditional stores.",
5746         "store that is conditionally executed prevents vectorization",
5747         "ConditionalStore", ORE, TheLoop);
5748     ChosenFactor = ScalarCost;
5749   }
5750 
5751   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5752                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5753              << "LV: Vectorization seems to be not beneficial, "
5754              << "but was forced by a user.\n");
5755   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5756   return ChosenFactor;
5757 }
5758 
5759 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5760     const Loop &L, ElementCount VF) const {
5761   // Cross iteration phis such as reductions need special handling and are
5762   // currently unsupported.
5763   if (any_of(L.getHeader()->phis(),
5764              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5765     return false;
5766 
5767   // Phis with uses outside of the loop require special handling and are
5768   // currently unsupported.
5769   for (auto &Entry : Legal->getInductionVars()) {
5770     // Look for uses of the value of the induction at the last iteration.
5771     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5772     for (User *U : PostInc->users())
5773       if (!L.contains(cast<Instruction>(U)))
5774         return false;
5775     // Look for uses of penultimate value of the induction.
5776     for (User *U : Entry.first->users())
5777       if (!L.contains(cast<Instruction>(U)))
5778         return false;
5779   }
5780 
5781   // Induction variables that are widened require special handling that is
5782   // currently not supported.
5783   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5784         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5785                  this->isProfitableToScalarize(Entry.first, VF));
5786       }))
5787     return false;
5788 
5789   // Epilogue vectorization code has not been auditted to ensure it handles
5790   // non-latch exits properly.  It may be fine, but it needs auditted and
5791   // tested.
5792   if (L.getExitingBlock() != L.getLoopLatch())
5793     return false;
5794 
5795   return true;
5796 }
5797 
5798 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5799     const ElementCount VF) const {
5800   // FIXME: We need a much better cost-model to take different parameters such
5801   // as register pressure, code size increase and cost of extra branches into
5802   // account. For now we apply a very crude heuristic and only consider loops
5803   // with vectorization factors larger than a certain value.
5804   // We also consider epilogue vectorization unprofitable for targets that don't
5805   // consider interleaving beneficial (eg. MVE).
5806   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5807     return false;
5808   // FIXME: We should consider changing the threshold for scalable
5809   // vectors to take VScaleForTuning into account.
5810   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5811     return true;
5812   return false;
5813 }
5814 
5815 VectorizationFactor
5816 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5817     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5818   VectorizationFactor Result = VectorizationFactor::Disabled();
5819   if (!EnableEpilogueVectorization) {
5820     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5821     return Result;
5822   }
5823 
5824   if (!isScalarEpilogueAllowed()) {
5825     LLVM_DEBUG(
5826         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5827                   "allowed.\n";);
5828     return Result;
5829   }
5830 
5831   // Not really a cost consideration, but check for unsupported cases here to
5832   // simplify the logic.
5833   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5834     LLVM_DEBUG(
5835         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5836                   "not a supported candidate.\n";);
5837     return Result;
5838   }
5839 
5840   if (EpilogueVectorizationForceVF > 1) {
5841     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5842     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5843     if (LVP.hasPlanWithVF(ForcedEC))
5844       return {ForcedEC, 0};
5845     else {
5846       LLVM_DEBUG(
5847           dbgs()
5848               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5849       return Result;
5850     }
5851   }
5852 
5853   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5854       TheLoop->getHeader()->getParent()->hasMinSize()) {
5855     LLVM_DEBUG(
5856         dbgs()
5857             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5858     return Result;
5859   }
5860 
5861   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5862     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5863                          "this loop\n");
5864     return Result;
5865   }
5866 
5867   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5868   // the main loop handles 8 lanes per iteration. We could still benefit from
5869   // vectorizing the epilogue loop with VF=4.
5870   ElementCount EstimatedRuntimeVF = MainLoopVF;
5871   if (MainLoopVF.isScalable()) {
5872     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5873     if (Optional<unsigned> VScale = getVScaleForTuning())
5874       EstimatedRuntimeVF *= VScale.getValue();
5875   }
5876 
5877   for (auto &NextVF : ProfitableVFs)
5878     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5879           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5880          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5881         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5882         LVP.hasPlanWithVF(NextVF.Width))
5883       Result = NextVF;
5884 
5885   if (Result != VectorizationFactor::Disabled())
5886     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5887                       << Result.Width << "\n";);
5888   return Result;
5889 }
5890 
5891 std::pair<unsigned, unsigned>
5892 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5893   unsigned MinWidth = -1U;
5894   unsigned MaxWidth = 8;
5895   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5896   // For in-loop reductions, no element types are added to ElementTypesInLoop
5897   // if there are no loads/stores in the loop. In this case, check through the
5898   // reduction variables to determine the maximum width.
5899   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5900     // Reset MaxWidth so that we can find the smallest type used by recurrences
5901     // in the loop.
5902     MaxWidth = -1U;
5903     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5904       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5905       // When finding the min width used by the recurrence we need to account
5906       // for casts on the input operands of the recurrence.
5907       MaxWidth = std::min<unsigned>(
5908           MaxWidth, std::min<unsigned>(
5909                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5910                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5911     }
5912   } else {
5913     for (Type *T : ElementTypesInLoop) {
5914       MinWidth = std::min<unsigned>(
5915           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5916       MaxWidth = std::max<unsigned>(
5917           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5918     }
5919   }
5920   return {MinWidth, MaxWidth};
5921 }
5922 
5923 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5924   ElementTypesInLoop.clear();
5925   // For each block.
5926   for (BasicBlock *BB : TheLoop->blocks()) {
5927     // For each instruction in the loop.
5928     for (Instruction &I : BB->instructionsWithoutDebug()) {
5929       Type *T = I.getType();
5930 
5931       // Skip ignored values.
5932       if (ValuesToIgnore.count(&I))
5933         continue;
5934 
5935       // Only examine Loads, Stores and PHINodes.
5936       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5937         continue;
5938 
5939       // Examine PHI nodes that are reduction variables. Update the type to
5940       // account for the recurrence type.
5941       if (auto *PN = dyn_cast<PHINode>(&I)) {
5942         if (!Legal->isReductionVariable(PN))
5943           continue;
5944         const RecurrenceDescriptor &RdxDesc =
5945             Legal->getReductionVars().find(PN)->second;
5946         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5947             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5948                                       RdxDesc.getRecurrenceType(),
5949                                       TargetTransformInfo::ReductionFlags()))
5950           continue;
5951         T = RdxDesc.getRecurrenceType();
5952       }
5953 
5954       // Examine the stored values.
5955       if (auto *ST = dyn_cast<StoreInst>(&I))
5956         T = ST->getValueOperand()->getType();
5957 
5958       assert(T->isSized() &&
5959              "Expected the load/store/recurrence type to be sized");
5960 
5961       ElementTypesInLoop.insert(T);
5962     }
5963   }
5964 }
5965 
5966 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5967                                                            unsigned LoopCost) {
5968   // -- The interleave heuristics --
5969   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5970   // There are many micro-architectural considerations that we can't predict
5971   // at this level. For example, frontend pressure (on decode or fetch) due to
5972   // code size, or the number and capabilities of the execution ports.
5973   //
5974   // We use the following heuristics to select the interleave count:
5975   // 1. If the code has reductions, then we interleave to break the cross
5976   // iteration dependency.
5977   // 2. If the loop is really small, then we interleave to reduce the loop
5978   // overhead.
5979   // 3. We don't interleave if we think that we will spill registers to memory
5980   // due to the increased register pressure.
5981 
5982   if (!isScalarEpilogueAllowed())
5983     return 1;
5984 
5985   // We used the distance for the interleave count.
5986   if (Legal->getMaxSafeDepDistBytes() != -1U)
5987     return 1;
5988 
5989   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5990   const bool HasReductions = !Legal->getReductionVars().empty();
5991   // Do not interleave loops with a relatively small known or estimated trip
5992   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5993   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5994   // because with the above conditions interleaving can expose ILP and break
5995   // cross iteration dependences for reductions.
5996   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5997       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5998     return 1;
5999 
6000   RegisterUsage R = calculateRegisterUsage({VF})[0];
6001   // We divide by these constants so assume that we have at least one
6002   // instruction that uses at least one register.
6003   for (auto& pair : R.MaxLocalUsers) {
6004     pair.second = std::max(pair.second, 1U);
6005   }
6006 
6007   // We calculate the interleave count using the following formula.
6008   // Subtract the number of loop invariants from the number of available
6009   // registers. These registers are used by all of the interleaved instances.
6010   // Next, divide the remaining registers by the number of registers that is
6011   // required by the loop, in order to estimate how many parallel instances
6012   // fit without causing spills. All of this is rounded down if necessary to be
6013   // a power of two. We want power of two interleave count to simplify any
6014   // addressing operations or alignment considerations.
6015   // We also want power of two interleave counts to ensure that the induction
6016   // variable of the vector loop wraps to zero, when tail is folded by masking;
6017   // this currently happens when OptForSize, in which case IC is set to 1 above.
6018   unsigned IC = UINT_MAX;
6019 
6020   for (auto& pair : R.MaxLocalUsers) {
6021     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6022     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6023                       << " registers of "
6024                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6025     if (VF.isScalar()) {
6026       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6027         TargetNumRegisters = ForceTargetNumScalarRegs;
6028     } else {
6029       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6030         TargetNumRegisters = ForceTargetNumVectorRegs;
6031     }
6032     unsigned MaxLocalUsers = pair.second;
6033     unsigned LoopInvariantRegs = 0;
6034     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6035       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6036 
6037     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6038     // Don't count the induction variable as interleaved.
6039     if (EnableIndVarRegisterHeur) {
6040       TmpIC =
6041           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6042                         std::max(1U, (MaxLocalUsers - 1)));
6043     }
6044 
6045     IC = std::min(IC, TmpIC);
6046   }
6047 
6048   // Clamp the interleave ranges to reasonable counts.
6049   unsigned MaxInterleaveCount =
6050       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6051 
6052   // Check if the user has overridden the max.
6053   if (VF.isScalar()) {
6054     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6055       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6056   } else {
6057     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6058       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6059   }
6060 
6061   // If trip count is known or estimated compile time constant, limit the
6062   // interleave count to be less than the trip count divided by VF, provided it
6063   // is at least 1.
6064   //
6065   // For scalable vectors we can't know if interleaving is beneficial. It may
6066   // not be beneficial for small loops if none of the lanes in the second vector
6067   // iterations is enabled. However, for larger loops, there is likely to be a
6068   // similar benefit as for fixed-width vectors. For now, we choose to leave
6069   // the InterleaveCount as if vscale is '1', although if some information about
6070   // the vector is known (e.g. min vector size), we can make a better decision.
6071   if (BestKnownTC) {
6072     MaxInterleaveCount =
6073         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6074     // Make sure MaxInterleaveCount is greater than 0.
6075     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6076   }
6077 
6078   assert(MaxInterleaveCount > 0 &&
6079          "Maximum interleave count must be greater than 0");
6080 
6081   // Clamp the calculated IC to be between the 1 and the max interleave count
6082   // that the target and trip count allows.
6083   if (IC > MaxInterleaveCount)
6084     IC = MaxInterleaveCount;
6085   else
6086     // Make sure IC is greater than 0.
6087     IC = std::max(1u, IC);
6088 
6089   assert(IC > 0 && "Interleave count must be greater than 0.");
6090 
6091   // If we did not calculate the cost for VF (because the user selected the VF)
6092   // then we calculate the cost of VF here.
6093   if (LoopCost == 0) {
6094     InstructionCost C = expectedCost(VF).first;
6095     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6096     LoopCost = *C.getValue();
6097   }
6098 
6099   assert(LoopCost && "Non-zero loop cost expected");
6100 
6101   // Interleave if we vectorized this loop and there is a reduction that could
6102   // benefit from interleaving.
6103   if (VF.isVector() && HasReductions) {
6104     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6105     return IC;
6106   }
6107 
6108   // For any scalar loop that either requires runtime checks or predication we
6109   // are better off leaving this to the unroller. Note that if we've already
6110   // vectorized the loop we will have done the runtime check and so interleaving
6111   // won't require further checks.
6112   bool ScalarInterleavingRequiresPredication =
6113       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
6114          return Legal->blockNeedsPredication(BB);
6115        }));
6116   bool ScalarInterleavingRequiresRuntimePointerCheck =
6117       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6118 
6119   // We want to interleave small loops in order to reduce the loop overhead and
6120   // potentially expose ILP opportunities.
6121   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6122                     << "LV: IC is " << IC << '\n'
6123                     << "LV: VF is " << VF << '\n');
6124   const bool AggressivelyInterleaveReductions =
6125       TTI.enableAggressiveInterleaving(HasReductions);
6126   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
6127       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
6128     // We assume that the cost overhead is 1 and we use the cost model
6129     // to estimate the cost of the loop and interleave until the cost of the
6130     // loop overhead is about 5% of the cost of the loop.
6131     unsigned SmallIC =
6132         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6133 
6134     // Interleave until store/load ports (estimated by max interleave count) are
6135     // saturated.
6136     unsigned NumStores = Legal->getNumStores();
6137     unsigned NumLoads = Legal->getNumLoads();
6138     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6139     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6140 
6141     // There is little point in interleaving for reductions containing selects
6142     // and compares when VF=1 since it may just create more overhead than it's
6143     // worth for loops with small trip counts. This is because we still have to
6144     // do the final reduction after the loop.
6145     bool HasSelectCmpReductions =
6146         HasReductions &&
6147         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6148           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6149           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6150               RdxDesc.getRecurrenceKind());
6151         });
6152     if (HasSelectCmpReductions) {
6153       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6154       return 1;
6155     }
6156 
6157     // If we have a scalar reduction (vector reductions are already dealt with
6158     // by this point), we can increase the critical path length if the loop
6159     // we're interleaving is inside another loop. For tree-wise reductions
6160     // set the limit to 2, and for ordered reductions it's best to disable
6161     // interleaving entirely.
6162     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6163       bool HasOrderedReductions =
6164           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6165             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6166             return RdxDesc.isOrdered();
6167           });
6168       if (HasOrderedReductions) {
6169         LLVM_DEBUG(
6170             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6171         return 1;
6172       }
6173 
6174       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6175       SmallIC = std::min(SmallIC, F);
6176       StoresIC = std::min(StoresIC, F);
6177       LoadsIC = std::min(LoadsIC, F);
6178     }
6179 
6180     if (EnableLoadStoreRuntimeInterleave &&
6181         std::max(StoresIC, LoadsIC) > SmallIC) {
6182       LLVM_DEBUG(
6183           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6184       return std::max(StoresIC, LoadsIC);
6185     }
6186 
6187     // If there are scalar reductions and TTI has enabled aggressive
6188     // interleaving for reductions, we will interleave to expose ILP.
6189     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6190         AggressivelyInterleaveReductions) {
6191       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6192       // Interleave no less than SmallIC but not as aggressive as the normal IC
6193       // to satisfy the rare situation when resources are too limited.
6194       return std::max(IC / 2, SmallIC);
6195     } else {
6196       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6197       return SmallIC;
6198     }
6199   }
6200 
6201   // Interleave if this is a large loop (small loops are already dealt with by
6202   // this point) that could benefit from interleaving.
6203   if (AggressivelyInterleaveReductions) {
6204     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6205     return IC;
6206   }
6207 
6208   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6209   return 1;
6210 }
6211 
6212 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6213 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6214   // This function calculates the register usage by measuring the highest number
6215   // of values that are alive at a single location. Obviously, this is a very
6216   // rough estimation. We scan the loop in a topological order in order and
6217   // assign a number to each instruction. We use RPO to ensure that defs are
6218   // met before their users. We assume that each instruction that has in-loop
6219   // users starts an interval. We record every time that an in-loop value is
6220   // used, so we have a list of the first and last occurrences of each
6221   // instruction. Next, we transpose this data structure into a multi map that
6222   // holds the list of intervals that *end* at a specific location. This multi
6223   // map allows us to perform a linear search. We scan the instructions linearly
6224   // and record each time that a new interval starts, by placing it in a set.
6225   // If we find this value in the multi-map then we remove it from the set.
6226   // The max register usage is the maximum size of the set.
6227   // We also search for instructions that are defined outside the loop, but are
6228   // used inside the loop. We need this number separately from the max-interval
6229   // usage number because when we unroll, loop-invariant values do not take
6230   // more register.
6231   LoopBlocksDFS DFS(TheLoop);
6232   DFS.perform(LI);
6233 
6234   RegisterUsage RU;
6235 
6236   // Each 'key' in the map opens a new interval. The values
6237   // of the map are the index of the 'last seen' usage of the
6238   // instruction that is the key.
6239   using IntervalMap = DenseMap<Instruction *, unsigned>;
6240 
6241   // Maps instruction to its index.
6242   SmallVector<Instruction *, 64> IdxToInstr;
6243   // Marks the end of each interval.
6244   IntervalMap EndPoint;
6245   // Saves the list of instruction indices that are used in the loop.
6246   SmallPtrSet<Instruction *, 8> Ends;
6247   // Saves the list of values that are used in the loop but are
6248   // defined outside the loop, such as arguments and constants.
6249   SmallPtrSet<Value *, 8> LoopInvariants;
6250 
6251   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6252     for (Instruction &I : BB->instructionsWithoutDebug()) {
6253       IdxToInstr.push_back(&I);
6254 
6255       // Save the end location of each USE.
6256       for (Value *U : I.operands()) {
6257         auto *Instr = dyn_cast<Instruction>(U);
6258 
6259         // Ignore non-instruction values such as arguments, constants, etc.
6260         if (!Instr)
6261           continue;
6262 
6263         // If this instruction is outside the loop then record it and continue.
6264         if (!TheLoop->contains(Instr)) {
6265           LoopInvariants.insert(Instr);
6266           continue;
6267         }
6268 
6269         // Overwrite previous end points.
6270         EndPoint[Instr] = IdxToInstr.size();
6271         Ends.insert(Instr);
6272       }
6273     }
6274   }
6275 
6276   // Saves the list of intervals that end with the index in 'key'.
6277   using InstrList = SmallVector<Instruction *, 2>;
6278   DenseMap<unsigned, InstrList> TransposeEnds;
6279 
6280   // Transpose the EndPoints to a list of values that end at each index.
6281   for (auto &Interval : EndPoint)
6282     TransposeEnds[Interval.second].push_back(Interval.first);
6283 
6284   SmallPtrSet<Instruction *, 8> OpenIntervals;
6285   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6286   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6287 
6288   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6289 
6290   // A lambda that gets the register usage for the given type and VF.
6291   const auto &TTICapture = TTI;
6292   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6293     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6294       return 0;
6295     InstructionCost::CostType RegUsage =
6296         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6297     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6298            "Nonsensical values for register usage.");
6299     return RegUsage;
6300   };
6301 
6302   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6303     Instruction *I = IdxToInstr[i];
6304 
6305     // Remove all of the instructions that end at this location.
6306     InstrList &List = TransposeEnds[i];
6307     for (Instruction *ToRemove : List)
6308       OpenIntervals.erase(ToRemove);
6309 
6310     // Ignore instructions that are never used within the loop.
6311     if (!Ends.count(I))
6312       continue;
6313 
6314     // Skip ignored values.
6315     if (ValuesToIgnore.count(I))
6316       continue;
6317 
6318     // For each VF find the maximum usage of registers.
6319     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6320       // Count the number of live intervals.
6321       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6322 
6323       if (VFs[j].isScalar()) {
6324         for (auto Inst : OpenIntervals) {
6325           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6326           if (RegUsage.find(ClassID) == RegUsage.end())
6327             RegUsage[ClassID] = 1;
6328           else
6329             RegUsage[ClassID] += 1;
6330         }
6331       } else {
6332         collectUniformsAndScalars(VFs[j]);
6333         for (auto Inst : OpenIntervals) {
6334           // Skip ignored values for VF > 1.
6335           if (VecValuesToIgnore.count(Inst))
6336             continue;
6337           if (isScalarAfterVectorization(Inst, VFs[j])) {
6338             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6339             if (RegUsage.find(ClassID) == RegUsage.end())
6340               RegUsage[ClassID] = 1;
6341             else
6342               RegUsage[ClassID] += 1;
6343           } else {
6344             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6345             if (RegUsage.find(ClassID) == RegUsage.end())
6346               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6347             else
6348               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6349           }
6350         }
6351       }
6352 
6353       for (auto& pair : RegUsage) {
6354         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6355           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6356         else
6357           MaxUsages[j][pair.first] = pair.second;
6358       }
6359     }
6360 
6361     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6362                       << OpenIntervals.size() << '\n');
6363 
6364     // Add the current instruction to the list of open intervals.
6365     OpenIntervals.insert(I);
6366   }
6367 
6368   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6369     SmallMapVector<unsigned, unsigned, 4> Invariant;
6370 
6371     for (auto Inst : LoopInvariants) {
6372       unsigned Usage =
6373           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6374       unsigned ClassID =
6375           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6376       if (Invariant.find(ClassID) == Invariant.end())
6377         Invariant[ClassID] = Usage;
6378       else
6379         Invariant[ClassID] += Usage;
6380     }
6381 
6382     LLVM_DEBUG({
6383       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6384       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6385              << " item\n";
6386       for (const auto &pair : MaxUsages[i]) {
6387         dbgs() << "LV(REG): RegisterClass: "
6388                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6389                << " registers\n";
6390       }
6391       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6392              << " item\n";
6393       for (const auto &pair : Invariant) {
6394         dbgs() << "LV(REG): RegisterClass: "
6395                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6396                << " registers\n";
6397       }
6398     });
6399 
6400     RU.LoopInvariantRegs = Invariant;
6401     RU.MaxLocalUsers = MaxUsages[i];
6402     RUs[i] = RU;
6403   }
6404 
6405   return RUs;
6406 }
6407 
6408 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6409                                                            ElementCount VF) {
6410   // TODO: Cost model for emulated masked load/store is completely
6411   // broken. This hack guides the cost model to use an artificially
6412   // high enough value to practically disable vectorization with such
6413   // operations, except where previously deployed legality hack allowed
6414   // using very low cost values. This is to avoid regressions coming simply
6415   // from moving "masked load/store" check from legality to cost model.
6416   // Masked Load/Gather emulation was previously never allowed.
6417   // Limited number of Masked Store/Scatter emulation was allowed.
6418   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6419   return isa<LoadInst>(I) ||
6420          (isa<StoreInst>(I) &&
6421           NumPredStores > NumberOfStoresToPredicate);
6422 }
6423 
6424 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6425   // If we aren't vectorizing the loop, or if we've already collected the
6426   // instructions to scalarize, there's nothing to do. Collection may already
6427   // have occurred if we have a user-selected VF and are now computing the
6428   // expected cost for interleaving.
6429   if (VF.isScalar() || VF.isZero() ||
6430       InstsToScalarize.find(VF) != InstsToScalarize.end())
6431     return;
6432 
6433   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6434   // not profitable to scalarize any instructions, the presence of VF in the
6435   // map will indicate that we've analyzed it already.
6436   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6437 
6438   // Find all the instructions that are scalar with predication in the loop and
6439   // determine if it would be better to not if-convert the blocks they are in.
6440   // If so, we also record the instructions to scalarize.
6441   for (BasicBlock *BB : TheLoop->blocks()) {
6442     if (!blockNeedsPredicationForAnyReason(BB))
6443       continue;
6444     for (Instruction &I : *BB)
6445       if (isScalarWithPredication(&I, VF)) {
6446         ScalarCostsTy ScalarCosts;
6447         // Do not apply discount if scalable, because that would lead to
6448         // invalid scalarization costs.
6449         // Do not apply discount logic if hacked cost is needed
6450         // for emulated masked memrefs.
6451         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6452             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6453           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6454         // Remember that BB will remain after vectorization.
6455         PredicatedBBsAfterVectorization.insert(BB);
6456       }
6457   }
6458 }
6459 
6460 int LoopVectorizationCostModel::computePredInstDiscount(
6461     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6462   assert(!isUniformAfterVectorization(PredInst, VF) &&
6463          "Instruction marked uniform-after-vectorization will be predicated");
6464 
6465   // Initialize the discount to zero, meaning that the scalar version and the
6466   // vector version cost the same.
6467   InstructionCost Discount = 0;
6468 
6469   // Holds instructions to analyze. The instructions we visit are mapped in
6470   // ScalarCosts. Those instructions are the ones that would be scalarized if
6471   // we find that the scalar version costs less.
6472   SmallVector<Instruction *, 8> Worklist;
6473 
6474   // Returns true if the given instruction can be scalarized.
6475   auto canBeScalarized = [&](Instruction *I) -> bool {
6476     // We only attempt to scalarize instructions forming a single-use chain
6477     // from the original predicated block that would otherwise be vectorized.
6478     // Although not strictly necessary, we give up on instructions we know will
6479     // already be scalar to avoid traversing chains that are unlikely to be
6480     // beneficial.
6481     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6482         isScalarAfterVectorization(I, VF))
6483       return false;
6484 
6485     // If the instruction is scalar with predication, it will be analyzed
6486     // separately. We ignore it within the context of PredInst.
6487     if (isScalarWithPredication(I, VF))
6488       return false;
6489 
6490     // If any of the instruction's operands are uniform after vectorization,
6491     // the instruction cannot be scalarized. This prevents, for example, a
6492     // masked load from being scalarized.
6493     //
6494     // We assume we will only emit a value for lane zero of an instruction
6495     // marked uniform after vectorization, rather than VF identical values.
6496     // Thus, if we scalarize an instruction that uses a uniform, we would
6497     // create uses of values corresponding to the lanes we aren't emitting code
6498     // for. This behavior can be changed by allowing getScalarValue to clone
6499     // the lane zero values for uniforms rather than asserting.
6500     for (Use &U : I->operands())
6501       if (auto *J = dyn_cast<Instruction>(U.get()))
6502         if (isUniformAfterVectorization(J, VF))
6503           return false;
6504 
6505     // Otherwise, we can scalarize the instruction.
6506     return true;
6507   };
6508 
6509   // Compute the expected cost discount from scalarizing the entire expression
6510   // feeding the predicated instruction. We currently only consider expressions
6511   // that are single-use instruction chains.
6512   Worklist.push_back(PredInst);
6513   while (!Worklist.empty()) {
6514     Instruction *I = Worklist.pop_back_val();
6515 
6516     // If we've already analyzed the instruction, there's nothing to do.
6517     if (ScalarCosts.find(I) != ScalarCosts.end())
6518       continue;
6519 
6520     // Compute the cost of the vector instruction. Note that this cost already
6521     // includes the scalarization overhead of the predicated instruction.
6522     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6523 
6524     // Compute the cost of the scalarized instruction. This cost is the cost of
6525     // the instruction as if it wasn't if-converted and instead remained in the
6526     // predicated block. We will scale this cost by block probability after
6527     // computing the scalarization overhead.
6528     InstructionCost ScalarCost =
6529         VF.getFixedValue() *
6530         getInstructionCost(I, ElementCount::getFixed(1)).first;
6531 
6532     // Compute the scalarization overhead of needed insertelement instructions
6533     // and phi nodes.
6534     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6535       ScalarCost += TTI.getScalarizationOverhead(
6536           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6537           APInt::getAllOnes(VF.getFixedValue()), true, false);
6538       ScalarCost +=
6539           VF.getFixedValue() *
6540           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6541     }
6542 
6543     // Compute the scalarization overhead of needed extractelement
6544     // instructions. For each of the instruction's operands, if the operand can
6545     // be scalarized, add it to the worklist; otherwise, account for the
6546     // overhead.
6547     for (Use &U : I->operands())
6548       if (auto *J = dyn_cast<Instruction>(U.get())) {
6549         assert(VectorType::isValidElementType(J->getType()) &&
6550                "Instruction has non-scalar type");
6551         if (canBeScalarized(J))
6552           Worklist.push_back(J);
6553         else if (needsExtract(J, VF)) {
6554           ScalarCost += TTI.getScalarizationOverhead(
6555               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6556               APInt::getAllOnes(VF.getFixedValue()), false, true);
6557         }
6558       }
6559 
6560     // Scale the total scalar cost by block probability.
6561     ScalarCost /= getReciprocalPredBlockProb();
6562 
6563     // Compute the discount. A non-negative discount means the vector version
6564     // of the instruction costs more, and scalarizing would be beneficial.
6565     Discount += VectorCost - ScalarCost;
6566     ScalarCosts[I] = ScalarCost;
6567   }
6568 
6569   return *Discount.getValue();
6570 }
6571 
6572 LoopVectorizationCostModel::VectorizationCostTy
6573 LoopVectorizationCostModel::expectedCost(
6574     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6575   VectorizationCostTy Cost;
6576 
6577   // For each block.
6578   for (BasicBlock *BB : TheLoop->blocks()) {
6579     VectorizationCostTy BlockCost;
6580 
6581     // For each instruction in the old loop.
6582     for (Instruction &I : BB->instructionsWithoutDebug()) {
6583       // Skip ignored values.
6584       if (ValuesToIgnore.count(&I) ||
6585           (VF.isVector() && VecValuesToIgnore.count(&I)))
6586         continue;
6587 
6588       VectorizationCostTy C = getInstructionCost(&I, VF);
6589 
6590       // Check if we should override the cost.
6591       if (C.first.isValid() &&
6592           ForceTargetInstructionCost.getNumOccurrences() > 0)
6593         C.first = InstructionCost(ForceTargetInstructionCost);
6594 
6595       // Keep a list of instructions with invalid costs.
6596       if (Invalid && !C.first.isValid())
6597         Invalid->emplace_back(&I, VF);
6598 
6599       BlockCost.first += C.first;
6600       BlockCost.second |= C.second;
6601       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6602                         << " for VF " << VF << " For instruction: " << I
6603                         << '\n');
6604     }
6605 
6606     // If we are vectorizing a predicated block, it will have been
6607     // if-converted. This means that the block's instructions (aside from
6608     // stores and instructions that may divide by zero) will now be
6609     // unconditionally executed. For the scalar case, we may not always execute
6610     // the predicated block, if it is an if-else block. Thus, scale the block's
6611     // cost by the probability of executing it. blockNeedsPredication from
6612     // Legal is used so as to not include all blocks in tail folded loops.
6613     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6614       BlockCost.first /= getReciprocalPredBlockProb();
6615 
6616     Cost.first += BlockCost.first;
6617     Cost.second |= BlockCost.second;
6618   }
6619 
6620   return Cost;
6621 }
6622 
6623 /// Gets Address Access SCEV after verifying that the access pattern
6624 /// is loop invariant except the induction variable dependence.
6625 ///
6626 /// This SCEV can be sent to the Target in order to estimate the address
6627 /// calculation cost.
6628 static const SCEV *getAddressAccessSCEV(
6629               Value *Ptr,
6630               LoopVectorizationLegality *Legal,
6631               PredicatedScalarEvolution &PSE,
6632               const Loop *TheLoop) {
6633 
6634   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6635   if (!Gep)
6636     return nullptr;
6637 
6638   // We are looking for a gep with all loop invariant indices except for one
6639   // which should be an induction variable.
6640   auto SE = PSE.getSE();
6641   unsigned NumOperands = Gep->getNumOperands();
6642   for (unsigned i = 1; i < NumOperands; ++i) {
6643     Value *Opd = Gep->getOperand(i);
6644     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6645         !Legal->isInductionVariable(Opd))
6646       return nullptr;
6647   }
6648 
6649   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6650   return PSE.getSCEV(Ptr);
6651 }
6652 
6653 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6654   return Legal->hasStride(I->getOperand(0)) ||
6655          Legal->hasStride(I->getOperand(1));
6656 }
6657 
6658 InstructionCost
6659 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6660                                                         ElementCount VF) {
6661   assert(VF.isVector() &&
6662          "Scalarization cost of instruction implies vectorization.");
6663   if (VF.isScalable())
6664     return InstructionCost::getInvalid();
6665 
6666   Type *ValTy = getLoadStoreType(I);
6667   auto SE = PSE.getSE();
6668 
6669   unsigned AS = getLoadStoreAddressSpace(I);
6670   Value *Ptr = getLoadStorePointerOperand(I);
6671   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6672   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6673   //       that it is being called from this specific place.
6674 
6675   // Figure out whether the access is strided and get the stride value
6676   // if it's known in compile time
6677   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6678 
6679   // Get the cost of the scalar memory instruction and address computation.
6680   InstructionCost Cost =
6681       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6682 
6683   // Don't pass *I here, since it is scalar but will actually be part of a
6684   // vectorized loop where the user of it is a vectorized instruction.
6685   const Align Alignment = getLoadStoreAlignment(I);
6686   Cost += VF.getKnownMinValue() *
6687           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6688                               AS, TTI::TCK_RecipThroughput);
6689 
6690   // Get the overhead of the extractelement and insertelement instructions
6691   // we might create due to scalarization.
6692   Cost += getScalarizationOverhead(I, VF);
6693 
6694   // If we have a predicated load/store, it will need extra i1 extracts and
6695   // conditional branches, but may not be executed for each vector lane. Scale
6696   // the cost by the probability of executing the predicated block.
6697   if (isPredicatedInst(I, VF)) {
6698     Cost /= getReciprocalPredBlockProb();
6699 
6700     // Add the cost of an i1 extract and a branch
6701     auto *Vec_i1Ty =
6702         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6703     Cost += TTI.getScalarizationOverhead(
6704         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6705         /*Insert=*/false, /*Extract=*/true);
6706     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6707 
6708     if (useEmulatedMaskMemRefHack(I, VF))
6709       // Artificially setting to a high enough value to practically disable
6710       // vectorization with such operations.
6711       Cost = 3000000;
6712   }
6713 
6714   return Cost;
6715 }
6716 
6717 InstructionCost
6718 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6719                                                     ElementCount VF) {
6720   Type *ValTy = getLoadStoreType(I);
6721   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6722   Value *Ptr = getLoadStorePointerOperand(I);
6723   unsigned AS = getLoadStoreAddressSpace(I);
6724   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6725   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6726 
6727   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6728          "Stride should be 1 or -1 for consecutive memory access");
6729   const Align Alignment = getLoadStoreAlignment(I);
6730   InstructionCost Cost = 0;
6731   if (Legal->isMaskRequired(I))
6732     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6733                                       CostKind);
6734   else
6735     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6736                                 CostKind, I);
6737 
6738   bool Reverse = ConsecutiveStride < 0;
6739   if (Reverse)
6740     Cost +=
6741         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6742   return Cost;
6743 }
6744 
6745 InstructionCost
6746 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6747                                                 ElementCount VF) {
6748   assert(Legal->isUniformMemOp(*I));
6749 
6750   Type *ValTy = getLoadStoreType(I);
6751   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6752   const Align Alignment = getLoadStoreAlignment(I);
6753   unsigned AS = getLoadStoreAddressSpace(I);
6754   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6755   if (isa<LoadInst>(I)) {
6756     return TTI.getAddressComputationCost(ValTy) +
6757            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6758                                CostKind) +
6759            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6760   }
6761   StoreInst *SI = cast<StoreInst>(I);
6762 
6763   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6764   return TTI.getAddressComputationCost(ValTy) +
6765          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6766                              CostKind) +
6767          (isLoopInvariantStoreValue
6768               ? 0
6769               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6770                                        VF.getKnownMinValue() - 1));
6771 }
6772 
6773 InstructionCost
6774 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6775                                                  ElementCount VF) {
6776   Type *ValTy = getLoadStoreType(I);
6777   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6778   const Align Alignment = getLoadStoreAlignment(I);
6779   const Value *Ptr = getLoadStorePointerOperand(I);
6780 
6781   return TTI.getAddressComputationCost(VectorTy) +
6782          TTI.getGatherScatterOpCost(
6783              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6784              TargetTransformInfo::TCK_RecipThroughput, I);
6785 }
6786 
6787 InstructionCost
6788 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6789                                                    ElementCount VF) {
6790   // TODO: Once we have support for interleaving with scalable vectors
6791   // we can calculate the cost properly here.
6792   if (VF.isScalable())
6793     return InstructionCost::getInvalid();
6794 
6795   Type *ValTy = getLoadStoreType(I);
6796   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6797   unsigned AS = getLoadStoreAddressSpace(I);
6798 
6799   auto Group = getInterleavedAccessGroup(I);
6800   assert(Group && "Fail to get an interleaved access group.");
6801 
6802   unsigned InterleaveFactor = Group->getFactor();
6803   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6804 
6805   // Holds the indices of existing members in the interleaved group.
6806   SmallVector<unsigned, 4> Indices;
6807   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6808     if (Group->getMember(IF))
6809       Indices.push_back(IF);
6810 
6811   // Calculate the cost of the whole interleaved group.
6812   bool UseMaskForGaps =
6813       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6814       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6815   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6816       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6817       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6818 
6819   if (Group->isReverse()) {
6820     // TODO: Add support for reversed masked interleaved access.
6821     assert(!Legal->isMaskRequired(I) &&
6822            "Reverse masked interleaved access not supported.");
6823     Cost +=
6824         Group->getNumMembers() *
6825         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6826   }
6827   return Cost;
6828 }
6829 
6830 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6831     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6832   using namespace llvm::PatternMatch;
6833   // Early exit for no inloop reductions
6834   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6835     return None;
6836   auto *VectorTy = cast<VectorType>(Ty);
6837 
6838   // We are looking for a pattern of, and finding the minimal acceptable cost:
6839   //  reduce(mul(ext(A), ext(B))) or
6840   //  reduce(mul(A, B)) or
6841   //  reduce(ext(A)) or
6842   //  reduce(A).
6843   // The basic idea is that we walk down the tree to do that, finding the root
6844   // reduction instruction in InLoopReductionImmediateChains. From there we find
6845   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6846   // of the components. If the reduction cost is lower then we return it for the
6847   // reduction instruction and 0 for the other instructions in the pattern. If
6848   // it is not we return an invalid cost specifying the orignal cost method
6849   // should be used.
6850   Instruction *RetI = I;
6851   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6852     if (!RetI->hasOneUser())
6853       return None;
6854     RetI = RetI->user_back();
6855   }
6856   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6857       RetI->user_back()->getOpcode() == Instruction::Add) {
6858     if (!RetI->hasOneUser())
6859       return None;
6860     RetI = RetI->user_back();
6861   }
6862 
6863   // Test if the found instruction is a reduction, and if not return an invalid
6864   // cost specifying the parent to use the original cost modelling.
6865   if (!InLoopReductionImmediateChains.count(RetI))
6866     return None;
6867 
6868   // Find the reduction this chain is a part of and calculate the basic cost of
6869   // the reduction on its own.
6870   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6871   Instruction *ReductionPhi = LastChain;
6872   while (!isa<PHINode>(ReductionPhi))
6873     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6874 
6875   const RecurrenceDescriptor &RdxDesc =
6876       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6877 
6878   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6879       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6880 
6881   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6882   // normal fmul instruction to the cost of the fadd reduction.
6883   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6884     BaseCost +=
6885         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6886 
6887   // If we're using ordered reductions then we can just return the base cost
6888   // here, since getArithmeticReductionCost calculates the full ordered
6889   // reduction cost when FP reassociation is not allowed.
6890   if (useOrderedReductions(RdxDesc))
6891     return BaseCost;
6892 
6893   // Get the operand that was not the reduction chain and match it to one of the
6894   // patterns, returning the better cost if it is found.
6895   Instruction *RedOp = RetI->getOperand(1) == LastChain
6896                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6897                            : dyn_cast<Instruction>(RetI->getOperand(1));
6898 
6899   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6900 
6901   Instruction *Op0, *Op1;
6902   if (RedOp &&
6903       match(RedOp,
6904             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6905       match(Op0, m_ZExtOrSExt(m_Value())) &&
6906       Op0->getOpcode() == Op1->getOpcode() &&
6907       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6908       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6909       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6910 
6911     // Matched reduce(ext(mul(ext(A), ext(B)))
6912     // Note that the extend opcodes need to all match, or if A==B they will have
6913     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6914     // which is equally fine.
6915     bool IsUnsigned = isa<ZExtInst>(Op0);
6916     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6917     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6918 
6919     InstructionCost ExtCost =
6920         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6921                              TTI::CastContextHint::None, CostKind, Op0);
6922     InstructionCost MulCost =
6923         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6924     InstructionCost Ext2Cost =
6925         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6926                              TTI::CastContextHint::None, CostKind, RedOp);
6927 
6928     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6929         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6930         CostKind);
6931 
6932     if (RedCost.isValid() &&
6933         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6934       return I == RetI ? RedCost : 0;
6935   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6936              !TheLoop->isLoopInvariant(RedOp)) {
6937     // Matched reduce(ext(A))
6938     bool IsUnsigned = isa<ZExtInst>(RedOp);
6939     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6940     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6941         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6942         CostKind);
6943 
6944     InstructionCost ExtCost =
6945         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6946                              TTI::CastContextHint::None, CostKind, RedOp);
6947     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6948       return I == RetI ? RedCost : 0;
6949   } else if (RedOp &&
6950              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6951     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6952         Op0->getOpcode() == Op1->getOpcode() &&
6953         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6954       bool IsUnsigned = isa<ZExtInst>(Op0);
6955       Type *Op0Ty = Op0->getOperand(0)->getType();
6956       Type *Op1Ty = Op1->getOperand(0)->getType();
6957       Type *LargestOpTy =
6958           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6959                                                                     : Op0Ty;
6960       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6961 
6962       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6963       // different sizes. We take the largest type as the ext to reduce, and add
6964       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6965       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6966           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6967           TTI::CastContextHint::None, CostKind, Op0);
6968       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6969           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6970           TTI::CastContextHint::None, CostKind, Op1);
6971       InstructionCost MulCost =
6972           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6973 
6974       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6975           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6976           CostKind);
6977       InstructionCost ExtraExtCost = 0;
6978       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6979         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6980         ExtraExtCost = TTI.getCastInstrCost(
6981             ExtraExtOp->getOpcode(), ExtType,
6982             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6983             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6984       }
6985 
6986       if (RedCost.isValid() &&
6987           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6988         return I == RetI ? RedCost : 0;
6989     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6990       // Matched reduce(mul())
6991       InstructionCost MulCost =
6992           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6993 
6994       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6995           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6996           CostKind);
6997 
6998       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6999         return I == RetI ? RedCost : 0;
7000     }
7001   }
7002 
7003   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7004 }
7005 
7006 InstructionCost
7007 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7008                                                      ElementCount VF) {
7009   // Calculate scalar cost only. Vectorization cost should be ready at this
7010   // moment.
7011   if (VF.isScalar()) {
7012     Type *ValTy = getLoadStoreType(I);
7013     const Align Alignment = getLoadStoreAlignment(I);
7014     unsigned AS = getLoadStoreAddressSpace(I);
7015 
7016     return TTI.getAddressComputationCost(ValTy) +
7017            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7018                                TTI::TCK_RecipThroughput, I);
7019   }
7020   return getWideningCost(I, VF);
7021 }
7022 
7023 LoopVectorizationCostModel::VectorizationCostTy
7024 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7025                                                ElementCount VF) {
7026   // If we know that this instruction will remain uniform, check the cost of
7027   // the scalar version.
7028   if (isUniformAfterVectorization(I, VF))
7029     VF = ElementCount::getFixed(1);
7030 
7031   if (VF.isVector() && isProfitableToScalarize(I, VF))
7032     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7033 
7034   // Forced scalars do not have any scalarization overhead.
7035   auto ForcedScalar = ForcedScalars.find(VF);
7036   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7037     auto InstSet = ForcedScalar->second;
7038     if (InstSet.count(I))
7039       return VectorizationCostTy(
7040           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7041            VF.getKnownMinValue()),
7042           false);
7043   }
7044 
7045   Type *VectorTy;
7046   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7047 
7048   bool TypeNotScalarized = false;
7049   if (VF.isVector() && VectorTy->isVectorTy()) {
7050     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7051     if (NumParts)
7052       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7053     else
7054       C = InstructionCost::getInvalid();
7055   }
7056   return VectorizationCostTy(C, TypeNotScalarized);
7057 }
7058 
7059 InstructionCost
7060 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7061                                                      ElementCount VF) const {
7062 
7063   // There is no mechanism yet to create a scalable scalarization loop,
7064   // so this is currently Invalid.
7065   if (VF.isScalable())
7066     return InstructionCost::getInvalid();
7067 
7068   if (VF.isScalar())
7069     return 0;
7070 
7071   InstructionCost Cost = 0;
7072   Type *RetTy = ToVectorTy(I->getType(), VF);
7073   if (!RetTy->isVoidTy() &&
7074       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7075     Cost += TTI.getScalarizationOverhead(
7076         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7077         false);
7078 
7079   // Some targets keep addresses scalar.
7080   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7081     return Cost;
7082 
7083   // Some targets support efficient element stores.
7084   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7085     return Cost;
7086 
7087   // Collect operands to consider.
7088   CallInst *CI = dyn_cast<CallInst>(I);
7089   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7090 
7091   // Skip operands that do not require extraction/scalarization and do not incur
7092   // any overhead.
7093   SmallVector<Type *> Tys;
7094   for (auto *V : filterExtractingOperands(Ops, VF))
7095     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7096   return Cost + TTI.getOperandsScalarizationOverhead(
7097                     filterExtractingOperands(Ops, VF), Tys);
7098 }
7099 
7100 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7101   if (VF.isScalar())
7102     return;
7103   NumPredStores = 0;
7104   for (BasicBlock *BB : TheLoop->blocks()) {
7105     // For each instruction in the old loop.
7106     for (Instruction &I : *BB) {
7107       Value *Ptr =  getLoadStorePointerOperand(&I);
7108       if (!Ptr)
7109         continue;
7110 
7111       // TODO: We should generate better code and update the cost model for
7112       // predicated uniform stores. Today they are treated as any other
7113       // predicated store (see added test cases in
7114       // invariant-store-vectorization.ll).
7115       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
7116         NumPredStores++;
7117 
7118       if (Legal->isUniformMemOp(I)) {
7119         // TODO: Avoid replicating loads and stores instead of
7120         // relying on instcombine to remove them.
7121         // Load: Scalar load + broadcast
7122         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7123         InstructionCost Cost;
7124         if (isa<StoreInst>(&I) && VF.isScalable() &&
7125             isLegalGatherOrScatter(&I, VF)) {
7126           Cost = getGatherScatterCost(&I, VF);
7127           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7128         } else {
7129           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7130                  "Cannot yet scalarize uniform stores");
7131           Cost = getUniformMemOpCost(&I, VF);
7132           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7133         }
7134         continue;
7135       }
7136 
7137       // We assume that widening is the best solution when possible.
7138       if (memoryInstructionCanBeWidened(&I, VF)) {
7139         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7140         int ConsecutiveStride = Legal->isConsecutivePtr(
7141             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7142         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7143                "Expected consecutive stride.");
7144         InstWidening Decision =
7145             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7146         setWideningDecision(&I, VF, Decision, Cost);
7147         continue;
7148       }
7149 
7150       // Choose between Interleaving, Gather/Scatter or Scalarization.
7151       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7152       unsigned NumAccesses = 1;
7153       if (isAccessInterleaved(&I)) {
7154         auto Group = getInterleavedAccessGroup(&I);
7155         assert(Group && "Fail to get an interleaved access group.");
7156 
7157         // Make one decision for the whole group.
7158         if (getWideningDecision(&I, VF) != CM_Unknown)
7159           continue;
7160 
7161         NumAccesses = Group->getNumMembers();
7162         if (interleavedAccessCanBeWidened(&I, VF))
7163           InterleaveCost = getInterleaveGroupCost(&I, VF);
7164       }
7165 
7166       InstructionCost GatherScatterCost =
7167           isLegalGatherOrScatter(&I, VF)
7168               ? getGatherScatterCost(&I, VF) * NumAccesses
7169               : InstructionCost::getInvalid();
7170 
7171       InstructionCost ScalarizationCost =
7172           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7173 
7174       // Choose better solution for the current VF,
7175       // write down this decision and use it during vectorization.
7176       InstructionCost Cost;
7177       InstWidening Decision;
7178       if (InterleaveCost <= GatherScatterCost &&
7179           InterleaveCost < ScalarizationCost) {
7180         Decision = CM_Interleave;
7181         Cost = InterleaveCost;
7182       } else if (GatherScatterCost < ScalarizationCost) {
7183         Decision = CM_GatherScatter;
7184         Cost = GatherScatterCost;
7185       } else {
7186         Decision = CM_Scalarize;
7187         Cost = ScalarizationCost;
7188       }
7189       // If the instructions belongs to an interleave group, the whole group
7190       // receives the same decision. The whole group receives the cost, but
7191       // the cost will actually be assigned to one instruction.
7192       if (auto Group = getInterleavedAccessGroup(&I))
7193         setWideningDecision(Group, VF, Decision, Cost);
7194       else
7195         setWideningDecision(&I, VF, Decision, Cost);
7196     }
7197   }
7198 
7199   // Make sure that any load of address and any other address computation
7200   // remains scalar unless there is gather/scatter support. This avoids
7201   // inevitable extracts into address registers, and also has the benefit of
7202   // activating LSR more, since that pass can't optimize vectorized
7203   // addresses.
7204   if (TTI.prefersVectorizedAddressing())
7205     return;
7206 
7207   // Start with all scalar pointer uses.
7208   SmallPtrSet<Instruction *, 8> AddrDefs;
7209   for (BasicBlock *BB : TheLoop->blocks())
7210     for (Instruction &I : *BB) {
7211       Instruction *PtrDef =
7212         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7213       if (PtrDef && TheLoop->contains(PtrDef) &&
7214           getWideningDecision(&I, VF) != CM_GatherScatter)
7215         AddrDefs.insert(PtrDef);
7216     }
7217 
7218   // Add all instructions used to generate the addresses.
7219   SmallVector<Instruction *, 4> Worklist;
7220   append_range(Worklist, AddrDefs);
7221   while (!Worklist.empty()) {
7222     Instruction *I = Worklist.pop_back_val();
7223     for (auto &Op : I->operands())
7224       if (auto *InstOp = dyn_cast<Instruction>(Op))
7225         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7226             AddrDefs.insert(InstOp).second)
7227           Worklist.push_back(InstOp);
7228   }
7229 
7230   for (auto *I : AddrDefs) {
7231     if (isa<LoadInst>(I)) {
7232       // Setting the desired widening decision should ideally be handled in
7233       // by cost functions, but since this involves the task of finding out
7234       // if the loaded register is involved in an address computation, it is
7235       // instead changed here when we know this is the case.
7236       InstWidening Decision = getWideningDecision(I, VF);
7237       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7238         // Scalarize a widened load of address.
7239         setWideningDecision(
7240             I, VF, CM_Scalarize,
7241             (VF.getKnownMinValue() *
7242              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7243       else if (auto Group = getInterleavedAccessGroup(I)) {
7244         // Scalarize an interleave group of address loads.
7245         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7246           if (Instruction *Member = Group->getMember(I))
7247             setWideningDecision(
7248                 Member, VF, CM_Scalarize,
7249                 (VF.getKnownMinValue() *
7250                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7251         }
7252       }
7253     } else
7254       // Make sure I gets scalarized and a cost estimate without
7255       // scalarization overhead.
7256       ForcedScalars[VF].insert(I);
7257   }
7258 }
7259 
7260 InstructionCost
7261 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7262                                                Type *&VectorTy) {
7263   Type *RetTy = I->getType();
7264   if (canTruncateToMinimalBitwidth(I, VF))
7265     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7266   auto SE = PSE.getSE();
7267   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7268 
7269   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7270                                                 ElementCount VF) -> bool {
7271     if (VF.isScalar())
7272       return true;
7273 
7274     auto Scalarized = InstsToScalarize.find(VF);
7275     assert(Scalarized != InstsToScalarize.end() &&
7276            "VF not yet analyzed for scalarization profitability");
7277     return !Scalarized->second.count(I) &&
7278            llvm::all_of(I->users(), [&](User *U) {
7279              auto *UI = cast<Instruction>(U);
7280              return !Scalarized->second.count(UI);
7281            });
7282   };
7283   (void) hasSingleCopyAfterVectorization;
7284 
7285   if (isScalarAfterVectorization(I, VF)) {
7286     // With the exception of GEPs and PHIs, after scalarization there should
7287     // only be one copy of the instruction generated in the loop. This is
7288     // because the VF is either 1, or any instructions that need scalarizing
7289     // have already been dealt with by the the time we get here. As a result,
7290     // it means we don't have to multiply the instruction cost by VF.
7291     assert(I->getOpcode() == Instruction::GetElementPtr ||
7292            I->getOpcode() == Instruction::PHI ||
7293            (I->getOpcode() == Instruction::BitCast &&
7294             I->getType()->isPointerTy()) ||
7295            hasSingleCopyAfterVectorization(I, VF));
7296     VectorTy = RetTy;
7297   } else
7298     VectorTy = ToVectorTy(RetTy, VF);
7299 
7300   // TODO: We need to estimate the cost of intrinsic calls.
7301   switch (I->getOpcode()) {
7302   case Instruction::GetElementPtr:
7303     // We mark this instruction as zero-cost because the cost of GEPs in
7304     // vectorized code depends on whether the corresponding memory instruction
7305     // is scalarized or not. Therefore, we handle GEPs with the memory
7306     // instruction cost.
7307     return 0;
7308   case Instruction::Br: {
7309     // In cases of scalarized and predicated instructions, there will be VF
7310     // predicated blocks in the vectorized loop. Each branch around these
7311     // blocks requires also an extract of its vector compare i1 element.
7312     bool ScalarPredicatedBB = false;
7313     BranchInst *BI = cast<BranchInst>(I);
7314     if (VF.isVector() && BI->isConditional() &&
7315         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7316          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7317       ScalarPredicatedBB = true;
7318 
7319     if (ScalarPredicatedBB) {
7320       // Not possible to scalarize scalable vector with predicated instructions.
7321       if (VF.isScalable())
7322         return InstructionCost::getInvalid();
7323       // Return cost for branches around scalarized and predicated blocks.
7324       auto *Vec_i1Ty =
7325           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7326       return (
7327           TTI.getScalarizationOverhead(
7328               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7329           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7330     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7331       // The back-edge branch will remain, as will all scalar branches.
7332       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7333     else
7334       // This branch will be eliminated by if-conversion.
7335       return 0;
7336     // Note: We currently assume zero cost for an unconditional branch inside
7337     // a predicated block since it will become a fall-through, although we
7338     // may decide in the future to call TTI for all branches.
7339   }
7340   case Instruction::PHI: {
7341     auto *Phi = cast<PHINode>(I);
7342 
7343     // First-order recurrences are replaced by vector shuffles inside the loop.
7344     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7345     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7346       return TTI.getShuffleCost(
7347           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7348           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7349 
7350     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7351     // converted into select instructions. We require N - 1 selects per phi
7352     // node, where N is the number of incoming values.
7353     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7354       return (Phi->getNumIncomingValues() - 1) *
7355              TTI.getCmpSelInstrCost(
7356                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7357                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7358                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7359 
7360     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7361   }
7362   case Instruction::UDiv:
7363   case Instruction::SDiv:
7364   case Instruction::URem:
7365   case Instruction::SRem:
7366     // If we have a predicated instruction, it may not be executed for each
7367     // vector lane. Get the scalarization cost and scale this amount by the
7368     // probability of executing the predicated block. If the instruction is not
7369     // predicated, we fall through to the next case.
7370     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7371       InstructionCost Cost = 0;
7372 
7373       // These instructions have a non-void type, so account for the phi nodes
7374       // that we will create. This cost is likely to be zero. The phi node
7375       // cost, if any, should be scaled by the block probability because it
7376       // models a copy at the end of each predicated block.
7377       Cost += VF.getKnownMinValue() *
7378               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7379 
7380       // The cost of the non-predicated instruction.
7381       Cost += VF.getKnownMinValue() *
7382               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7383 
7384       // The cost of insertelement and extractelement instructions needed for
7385       // scalarization.
7386       Cost += getScalarizationOverhead(I, VF);
7387 
7388       // Scale the cost by the probability of executing the predicated blocks.
7389       // This assumes the predicated block for each vector lane is equally
7390       // likely.
7391       return Cost / getReciprocalPredBlockProb();
7392     }
7393     LLVM_FALLTHROUGH;
7394   case Instruction::Add:
7395   case Instruction::FAdd:
7396   case Instruction::Sub:
7397   case Instruction::FSub:
7398   case Instruction::Mul:
7399   case Instruction::FMul:
7400   case Instruction::FDiv:
7401   case Instruction::FRem:
7402   case Instruction::Shl:
7403   case Instruction::LShr:
7404   case Instruction::AShr:
7405   case Instruction::And:
7406   case Instruction::Or:
7407   case Instruction::Xor: {
7408     // Since we will replace the stride by 1 the multiplication should go away.
7409     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7410       return 0;
7411 
7412     // Detect reduction patterns
7413     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7414       return *RedCost;
7415 
7416     // Certain instructions can be cheaper to vectorize if they have a constant
7417     // second vector operand. One example of this are shifts on x86.
7418     Value *Op2 = I->getOperand(1);
7419     TargetTransformInfo::OperandValueProperties Op2VP;
7420     TargetTransformInfo::OperandValueKind Op2VK =
7421         TTI.getOperandInfo(Op2, Op2VP);
7422     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7423       Op2VK = TargetTransformInfo::OK_UniformValue;
7424 
7425     SmallVector<const Value *, 4> Operands(I->operand_values());
7426     return TTI.getArithmeticInstrCost(
7427         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7428         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7429   }
7430   case Instruction::FNeg: {
7431     return TTI.getArithmeticInstrCost(
7432         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7433         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7434         TargetTransformInfo::OP_None, I->getOperand(0), I);
7435   }
7436   case Instruction::Select: {
7437     SelectInst *SI = cast<SelectInst>(I);
7438     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7439     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7440 
7441     const Value *Op0, *Op1;
7442     using namespace llvm::PatternMatch;
7443     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7444                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7445       // select x, y, false --> x & y
7446       // select x, true, y --> x | y
7447       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7448       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7449       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7450       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7451       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7452               Op1->getType()->getScalarSizeInBits() == 1);
7453 
7454       SmallVector<const Value *, 2> Operands{Op0, Op1};
7455       return TTI.getArithmeticInstrCost(
7456           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7457           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7458     }
7459 
7460     Type *CondTy = SI->getCondition()->getType();
7461     if (!ScalarCond)
7462       CondTy = VectorType::get(CondTy, VF);
7463 
7464     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7465     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7466       Pred = Cmp->getPredicate();
7467     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7468                                   CostKind, I);
7469   }
7470   case Instruction::ICmp:
7471   case Instruction::FCmp: {
7472     Type *ValTy = I->getOperand(0)->getType();
7473     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7474     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7475       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7476     VectorTy = ToVectorTy(ValTy, VF);
7477     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7478                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7479                                   I);
7480   }
7481   case Instruction::Store:
7482   case Instruction::Load: {
7483     ElementCount Width = VF;
7484     if (Width.isVector()) {
7485       InstWidening Decision = getWideningDecision(I, Width);
7486       assert(Decision != CM_Unknown &&
7487              "CM decision should be taken at this point");
7488       if (Decision == CM_Scalarize)
7489         Width = ElementCount::getFixed(1);
7490     }
7491     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7492     return getMemoryInstructionCost(I, VF);
7493   }
7494   case Instruction::BitCast:
7495     if (I->getType()->isPointerTy())
7496       return 0;
7497     LLVM_FALLTHROUGH;
7498   case Instruction::ZExt:
7499   case Instruction::SExt:
7500   case Instruction::FPToUI:
7501   case Instruction::FPToSI:
7502   case Instruction::FPExt:
7503   case Instruction::PtrToInt:
7504   case Instruction::IntToPtr:
7505   case Instruction::SIToFP:
7506   case Instruction::UIToFP:
7507   case Instruction::Trunc:
7508   case Instruction::FPTrunc: {
7509     // Computes the CastContextHint from a Load/Store instruction.
7510     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7511       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7512              "Expected a load or a store!");
7513 
7514       if (VF.isScalar() || !TheLoop->contains(I))
7515         return TTI::CastContextHint::Normal;
7516 
7517       switch (getWideningDecision(I, VF)) {
7518       case LoopVectorizationCostModel::CM_GatherScatter:
7519         return TTI::CastContextHint::GatherScatter;
7520       case LoopVectorizationCostModel::CM_Interleave:
7521         return TTI::CastContextHint::Interleave;
7522       case LoopVectorizationCostModel::CM_Scalarize:
7523       case LoopVectorizationCostModel::CM_Widen:
7524         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7525                                         : TTI::CastContextHint::Normal;
7526       case LoopVectorizationCostModel::CM_Widen_Reverse:
7527         return TTI::CastContextHint::Reversed;
7528       case LoopVectorizationCostModel::CM_Unknown:
7529         llvm_unreachable("Instr did not go through cost modelling?");
7530       }
7531 
7532       llvm_unreachable("Unhandled case!");
7533     };
7534 
7535     unsigned Opcode = I->getOpcode();
7536     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7537     // For Trunc, the context is the only user, which must be a StoreInst.
7538     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7539       if (I->hasOneUse())
7540         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7541           CCH = ComputeCCH(Store);
7542     }
7543     // For Z/Sext, the context is the operand, which must be a LoadInst.
7544     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7545              Opcode == Instruction::FPExt) {
7546       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7547         CCH = ComputeCCH(Load);
7548     }
7549 
7550     // We optimize the truncation of induction variables having constant
7551     // integer steps. The cost of these truncations is the same as the scalar
7552     // operation.
7553     if (isOptimizableIVTruncate(I, VF)) {
7554       auto *Trunc = cast<TruncInst>(I);
7555       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7556                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7557     }
7558 
7559     // Detect reduction patterns
7560     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7561       return *RedCost;
7562 
7563     Type *SrcScalarTy = I->getOperand(0)->getType();
7564     Type *SrcVecTy =
7565         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7566     if (canTruncateToMinimalBitwidth(I, VF)) {
7567       // This cast is going to be shrunk. This may remove the cast or it might
7568       // turn it into slightly different cast. For example, if MinBW == 16,
7569       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7570       //
7571       // Calculate the modified src and dest types.
7572       Type *MinVecTy = VectorTy;
7573       if (Opcode == Instruction::Trunc) {
7574         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7575         VectorTy =
7576             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7577       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7578         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7579         VectorTy =
7580             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7581       }
7582     }
7583 
7584     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7585   }
7586   case Instruction::Call: {
7587     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7588       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7589         return *RedCost;
7590     bool NeedToScalarize;
7591     CallInst *CI = cast<CallInst>(I);
7592     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7593     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7594       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7595       return std::min(CallCost, IntrinsicCost);
7596     }
7597     return CallCost;
7598   }
7599   case Instruction::ExtractValue:
7600     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7601   case Instruction::Alloca:
7602     // We cannot easily widen alloca to a scalable alloca, as
7603     // the result would need to be a vector of pointers.
7604     if (VF.isScalable())
7605       return InstructionCost::getInvalid();
7606     LLVM_FALLTHROUGH;
7607   default:
7608     // This opcode is unknown. Assume that it is the same as 'mul'.
7609     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7610   } // end of switch.
7611 }
7612 
7613 char LoopVectorize::ID = 0;
7614 
7615 static const char lv_name[] = "Loop Vectorization";
7616 
7617 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7618 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7619 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7620 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7621 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7622 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7623 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7624 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7625 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7626 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7627 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7628 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7629 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7630 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7631 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7632 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7633 
7634 namespace llvm {
7635 
7636 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7637 
7638 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7639                               bool VectorizeOnlyWhenForced) {
7640   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7641 }
7642 
7643 } // end namespace llvm
7644 
7645 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7646   // Check if the pointer operand of a load or store instruction is
7647   // consecutive.
7648   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7649     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7650   return false;
7651 }
7652 
7653 void LoopVectorizationCostModel::collectValuesToIgnore() {
7654   // Ignore ephemeral values.
7655   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7656 
7657   // Ignore type-promoting instructions we identified during reduction
7658   // detection.
7659   for (auto &Reduction : Legal->getReductionVars()) {
7660     const RecurrenceDescriptor &RedDes = Reduction.second;
7661     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7662     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7663   }
7664   // Ignore type-casting instructions we identified during induction
7665   // detection.
7666   for (auto &Induction : Legal->getInductionVars()) {
7667     const InductionDescriptor &IndDes = Induction.second;
7668     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7669     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7670   }
7671 }
7672 
7673 void LoopVectorizationCostModel::collectInLoopReductions() {
7674   for (auto &Reduction : Legal->getReductionVars()) {
7675     PHINode *Phi = Reduction.first;
7676     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7677 
7678     // We don't collect reductions that are type promoted (yet).
7679     if (RdxDesc.getRecurrenceType() != Phi->getType())
7680       continue;
7681 
7682     // If the target would prefer this reduction to happen "in-loop", then we
7683     // want to record it as such.
7684     unsigned Opcode = RdxDesc.getOpcode();
7685     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7686         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7687                                    TargetTransformInfo::ReductionFlags()))
7688       continue;
7689 
7690     // Check that we can correctly put the reductions into the loop, by
7691     // finding the chain of operations that leads from the phi to the loop
7692     // exit value.
7693     SmallVector<Instruction *, 4> ReductionOperations =
7694         RdxDesc.getReductionOpChain(Phi, TheLoop);
7695     bool InLoop = !ReductionOperations.empty();
7696     if (InLoop) {
7697       InLoopReductionChains[Phi] = ReductionOperations;
7698       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7699       Instruction *LastChain = Phi;
7700       for (auto *I : ReductionOperations) {
7701         InLoopReductionImmediateChains[I] = LastChain;
7702         LastChain = I;
7703       }
7704     }
7705     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7706                       << " reduction for phi: " << *Phi << "\n");
7707   }
7708 }
7709 
7710 // TODO: we could return a pair of values that specify the max VF and
7711 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7712 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7713 // doesn't have a cost model that can choose which plan to execute if
7714 // more than one is generated.
7715 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7716                                  LoopVectorizationCostModel &CM) {
7717   unsigned WidestType;
7718   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7719   return WidestVectorRegBits / WidestType;
7720 }
7721 
7722 VectorizationFactor
7723 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7724   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7725   ElementCount VF = UserVF;
7726   // Outer loop handling: They may require CFG and instruction level
7727   // transformations before even evaluating whether vectorization is profitable.
7728   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7729   // the vectorization pipeline.
7730   if (!OrigLoop->isInnermost()) {
7731     // If the user doesn't provide a vectorization factor, determine a
7732     // reasonable one.
7733     if (UserVF.isZero()) {
7734       VF = ElementCount::getFixed(determineVPlanVF(
7735           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7736               .getFixedSize(),
7737           CM));
7738       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7739 
7740       // Make sure we have a VF > 1 for stress testing.
7741       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7742         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7743                           << "overriding computed VF.\n");
7744         VF = ElementCount::getFixed(4);
7745       }
7746     }
7747     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7748     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7749            "VF needs to be a power of two");
7750     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7751                       << "VF " << VF << " to build VPlans.\n");
7752     buildVPlans(VF, VF);
7753 
7754     // For VPlan build stress testing, we bail out after VPlan construction.
7755     if (VPlanBuildStressTest)
7756       return VectorizationFactor::Disabled();
7757 
7758     return {VF, 0 /*Cost*/};
7759   }
7760 
7761   LLVM_DEBUG(
7762       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7763                 "VPlan-native path.\n");
7764   return VectorizationFactor::Disabled();
7765 }
7766 
7767 Optional<VectorizationFactor>
7768 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7769   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7770   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7771   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7772     return None;
7773 
7774   // Invalidate interleave groups if all blocks of loop will be predicated.
7775   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7776       !useMaskedInterleavedAccesses(*TTI)) {
7777     LLVM_DEBUG(
7778         dbgs()
7779         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7780            "which requires masked-interleaved support.\n");
7781     if (CM.InterleaveInfo.invalidateGroups())
7782       // Invalidating interleave groups also requires invalidating all decisions
7783       // based on them, which includes widening decisions and uniform and scalar
7784       // values.
7785       CM.invalidateCostModelingDecisions();
7786   }
7787 
7788   ElementCount MaxUserVF =
7789       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7790   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7791   if (!UserVF.isZero() && UserVFIsLegal) {
7792     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7793            "VF needs to be a power of two");
7794     // Collect the instructions (and their associated costs) that will be more
7795     // profitable to scalarize.
7796     if (CM.selectUserVectorizationFactor(UserVF)) {
7797       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7798       CM.collectInLoopReductions();
7799       buildVPlansWithVPRecipes(UserVF, UserVF);
7800       LLVM_DEBUG(printPlans(dbgs()));
7801       return {{UserVF, 0}};
7802     } else
7803       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7804                               "InvalidCost", ORE, OrigLoop);
7805   }
7806 
7807   // Populate the set of Vectorization Factor Candidates.
7808   ElementCountSet VFCandidates;
7809   for (auto VF = ElementCount::getFixed(1);
7810        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7811     VFCandidates.insert(VF);
7812   for (auto VF = ElementCount::getScalable(1);
7813        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7814     VFCandidates.insert(VF);
7815 
7816   for (const auto &VF : VFCandidates) {
7817     // Collect Uniform and Scalar instructions after vectorization with VF.
7818     CM.collectUniformsAndScalars(VF);
7819 
7820     // Collect the instructions (and their associated costs) that will be more
7821     // profitable to scalarize.
7822     if (VF.isVector())
7823       CM.collectInstsToScalarize(VF);
7824   }
7825 
7826   CM.collectInLoopReductions();
7827   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7828   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7829 
7830   LLVM_DEBUG(printPlans(dbgs()));
7831   if (!MaxFactors.hasVector())
7832     return VectorizationFactor::Disabled();
7833 
7834   // Select the optimal vectorization factor.
7835   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7836 
7837   // Check if it is profitable to vectorize with runtime checks.
7838   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7839   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7840     bool PragmaThresholdReached =
7841         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7842     bool ThresholdReached =
7843         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7844     if ((ThresholdReached && !Hints.allowReordering()) ||
7845         PragmaThresholdReached) {
7846       ORE->emit([&]() {
7847         return OptimizationRemarkAnalysisAliasing(
7848                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7849                    OrigLoop->getHeader())
7850                << "loop not vectorized: cannot prove it is safe to reorder "
7851                   "memory operations";
7852       });
7853       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7854       Hints.emitRemarkWithHints();
7855       return VectorizationFactor::Disabled();
7856     }
7857   }
7858   return SelectedVF;
7859 }
7860 
7861 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7862   assert(count_if(VPlans,
7863                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7864              1 &&
7865          "Best VF has not a single VPlan.");
7866 
7867   for (const VPlanPtr &Plan : VPlans) {
7868     if (Plan->hasVF(VF))
7869       return *Plan.get();
7870   }
7871   llvm_unreachable("No plan found!");
7872 }
7873 
7874 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7875   SmallVector<Metadata *, 4> MDs;
7876   // Reserve first location for self reference to the LoopID metadata node.
7877   MDs.push_back(nullptr);
7878   bool IsUnrollMetadata = false;
7879   MDNode *LoopID = L->getLoopID();
7880   if (LoopID) {
7881     // First find existing loop unrolling disable metadata.
7882     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7883       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7884       if (MD) {
7885         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7886         IsUnrollMetadata =
7887             S && S->getString().startswith("llvm.loop.unroll.disable");
7888       }
7889       MDs.push_back(LoopID->getOperand(i));
7890     }
7891   }
7892 
7893   if (!IsUnrollMetadata) {
7894     // Add runtime unroll disable metadata.
7895     LLVMContext &Context = L->getHeader()->getContext();
7896     SmallVector<Metadata *, 1> DisableOperands;
7897     DisableOperands.push_back(
7898         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7899     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7900     MDs.push_back(DisableNode);
7901     MDNode *NewLoopID = MDNode::get(Context, MDs);
7902     // Set operand 0 to refer to the loop id itself.
7903     NewLoopID->replaceOperandWith(0, NewLoopID);
7904     L->setLoopID(NewLoopID);
7905   }
7906 }
7907 
7908 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7909                                            VPlan &BestVPlan,
7910                                            InnerLoopVectorizer &ILV,
7911                                            DominatorTree *DT) {
7912   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7913                     << '\n');
7914 
7915   // Perform the actual loop transformation.
7916 
7917   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7918   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7919   Value *CanonicalIVStartValue;
7920   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7921       ILV.createVectorizedLoopSkeleton();
7922   ILV.collectPoisonGeneratingRecipes(State);
7923 
7924   ILV.printDebugTracesAtStart();
7925 
7926   //===------------------------------------------------===//
7927   //
7928   // Notice: any optimization or new instruction that go
7929   // into the code below should also be implemented in
7930   // the cost-model.
7931   //
7932   //===------------------------------------------------===//
7933 
7934   // 2. Copy and widen instructions from the old loop into the new loop.
7935   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7936                              ILV.getOrCreateVectorTripCount(nullptr),
7937                              CanonicalIVStartValue, State);
7938   BestVPlan.execute(&State);
7939 
7940   // Keep all loop hints from the original loop on the vector loop (we'll
7941   // replace the vectorizer-specific hints below).
7942   MDNode *OrigLoopID = OrigLoop->getLoopID();
7943 
7944   Optional<MDNode *> VectorizedLoopID =
7945       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7946                                       LLVMLoopVectorizeFollowupVectorized});
7947 
7948   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7949   if (VectorizedLoopID.hasValue())
7950     L->setLoopID(VectorizedLoopID.getValue());
7951   else {
7952     // Keep all loop hints from the original loop on the vector loop (we'll
7953     // replace the vectorizer-specific hints below).
7954     if (MDNode *LID = OrigLoop->getLoopID())
7955       L->setLoopID(LID);
7956 
7957     LoopVectorizeHints Hints(L, true, *ORE);
7958     Hints.setAlreadyVectorized();
7959   }
7960   // Disable runtime unrolling when vectorizing the epilogue loop.
7961   if (CanonicalIVStartValue)
7962     AddRuntimeUnrollDisableMetaData(L);
7963 
7964   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7965   //    predication, updating analyses.
7966   ILV.fixVectorizedLoop(State);
7967 
7968   ILV.printDebugTracesAtEnd();
7969 }
7970 
7971 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7972 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7973   for (const auto &Plan : VPlans)
7974     if (PrintVPlansInDotFormat)
7975       Plan->printDOT(O);
7976     else
7977       Plan->print(O);
7978 }
7979 #endif
7980 
7981 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7982     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7983 
7984   // We create new control-flow for the vectorized loop, so the original exit
7985   // conditions will be dead after vectorization if it's only used by the
7986   // terminator
7987   SmallVector<BasicBlock*> ExitingBlocks;
7988   OrigLoop->getExitingBlocks(ExitingBlocks);
7989   for (auto *BB : ExitingBlocks) {
7990     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7991     if (!Cmp || !Cmp->hasOneUse())
7992       continue;
7993 
7994     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7995     if (!DeadInstructions.insert(Cmp).second)
7996       continue;
7997 
7998     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7999     // TODO: can recurse through operands in general
8000     for (Value *Op : Cmp->operands()) {
8001       if (isa<TruncInst>(Op) && Op->hasOneUse())
8002           DeadInstructions.insert(cast<Instruction>(Op));
8003     }
8004   }
8005 
8006   // We create new "steps" for induction variable updates to which the original
8007   // induction variables map. An original update instruction will be dead if
8008   // all its users except the induction variable are dead.
8009   auto *Latch = OrigLoop->getLoopLatch();
8010   for (auto &Induction : Legal->getInductionVars()) {
8011     PHINode *Ind = Induction.first;
8012     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8013 
8014     // If the tail is to be folded by masking, the primary induction variable,
8015     // if exists, isn't dead: it will be used for masking. Don't kill it.
8016     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8017       continue;
8018 
8019     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8020           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8021         }))
8022       DeadInstructions.insert(IndUpdate);
8023   }
8024 }
8025 
8026 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8027 
8028 //===--------------------------------------------------------------------===//
8029 // EpilogueVectorizerMainLoop
8030 //===--------------------------------------------------------------------===//
8031 
8032 /// This function is partially responsible for generating the control flow
8033 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8034 std::pair<BasicBlock *, Value *>
8035 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8036   MDNode *OrigLoopID = OrigLoop->getLoopID();
8037   Loop *Lp = createVectorLoopSkeleton("");
8038 
8039   // Generate the code to check the minimum iteration count of the vector
8040   // epilogue (see below).
8041   EPI.EpilogueIterationCountCheck =
8042       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8043   EPI.EpilogueIterationCountCheck->setName("iter.check");
8044 
8045   // Generate the code to check any assumptions that we've made for SCEV
8046   // expressions.
8047   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8048 
8049   // Generate the code that checks at runtime if arrays overlap. We put the
8050   // checks into a separate block to make the more common case of few elements
8051   // faster.
8052   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8053 
8054   // Generate the iteration count check for the main loop, *after* the check
8055   // for the epilogue loop, so that the path-length is shorter for the case
8056   // that goes directly through the vector epilogue. The longer-path length for
8057   // the main loop is compensated for, by the gain from vectorizing the larger
8058   // trip count. Note: the branch will get updated later on when we vectorize
8059   // the epilogue.
8060   EPI.MainLoopIterationCountCheck =
8061       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8062 
8063   // Generate the induction variable.
8064   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8065   EPI.VectorTripCount = CountRoundDown;
8066   createHeaderBranch(Lp);
8067 
8068   // Skip induction resume value creation here because they will be created in
8069   // the second pass. If we created them here, they wouldn't be used anyway,
8070   // because the vplan in the second pass still contains the inductions from the
8071   // original loop.
8072 
8073   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
8074 }
8075 
8076 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8077   LLVM_DEBUG({
8078     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8079            << "Main Loop VF:" << EPI.MainLoopVF
8080            << ", Main Loop UF:" << EPI.MainLoopUF
8081            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8082            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8083   });
8084 }
8085 
8086 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8087   DEBUG_WITH_TYPE(VerboseDebug, {
8088     dbgs() << "intermediate fn:\n"
8089            << *OrigLoop->getHeader()->getParent() << "\n";
8090   });
8091 }
8092 
8093 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8094     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8095   assert(L && "Expected valid Loop.");
8096   assert(Bypass && "Expected valid bypass basic block.");
8097   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8098   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8099   Value *Count = getOrCreateTripCount(L);
8100   // Reuse existing vector loop preheader for TC checks.
8101   // Note that new preheader block is generated for vector loop.
8102   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8103   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8104 
8105   // Generate code to check if the loop's trip count is less than VF * UF of the
8106   // main vector loop.
8107   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8108       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8109 
8110   Value *CheckMinIters = Builder.CreateICmp(
8111       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8112       "min.iters.check");
8113 
8114   if (!ForEpilogue)
8115     TCCheckBlock->setName("vector.main.loop.iter.check");
8116 
8117   // Create new preheader for vector loop.
8118   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8119                                    DT, LI, nullptr, "vector.ph");
8120 
8121   if (ForEpilogue) {
8122     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8123                                  DT->getNode(Bypass)->getIDom()) &&
8124            "TC check is expected to dominate Bypass");
8125 
8126     // Update dominator for Bypass & LoopExit.
8127     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8128     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8129       // For loops with multiple exits, there's no edge from the middle block
8130       // to exit blocks (as the epilogue must run) and thus no need to update
8131       // the immediate dominator of the exit blocks.
8132       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8133 
8134     LoopBypassBlocks.push_back(TCCheckBlock);
8135 
8136     // Save the trip count so we don't have to regenerate it in the
8137     // vec.epilog.iter.check. This is safe to do because the trip count
8138     // generated here dominates the vector epilog iter check.
8139     EPI.TripCount = Count;
8140   }
8141 
8142   ReplaceInstWithInst(
8143       TCCheckBlock->getTerminator(),
8144       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8145 
8146   return TCCheckBlock;
8147 }
8148 
8149 //===--------------------------------------------------------------------===//
8150 // EpilogueVectorizerEpilogueLoop
8151 //===--------------------------------------------------------------------===//
8152 
8153 /// This function is partially responsible for generating the control flow
8154 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8155 std::pair<BasicBlock *, Value *>
8156 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8157   MDNode *OrigLoopID = OrigLoop->getLoopID();
8158   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8159 
8160   // Now, compare the remaining count and if there aren't enough iterations to
8161   // execute the vectorized epilogue skip to the scalar part.
8162   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8163   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8164   LoopVectorPreHeader =
8165       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8166                  LI, nullptr, "vec.epilog.ph");
8167   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8168                                           VecEpilogueIterationCountCheck);
8169 
8170   // Adjust the control flow taking the state info from the main loop
8171   // vectorization into account.
8172   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8173          "expected this to be saved from the previous pass.");
8174   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8175       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8176 
8177   DT->changeImmediateDominator(LoopVectorPreHeader,
8178                                EPI.MainLoopIterationCountCheck);
8179 
8180   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8181       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8182 
8183   if (EPI.SCEVSafetyCheck)
8184     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8185         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8186   if (EPI.MemSafetyCheck)
8187     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8188         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8189 
8190   DT->changeImmediateDominator(
8191       VecEpilogueIterationCountCheck,
8192       VecEpilogueIterationCountCheck->getSinglePredecessor());
8193 
8194   DT->changeImmediateDominator(LoopScalarPreHeader,
8195                                EPI.EpilogueIterationCountCheck);
8196   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8197     // If there is an epilogue which must run, there's no edge from the
8198     // middle block to exit blocks  and thus no need to update the immediate
8199     // dominator of the exit blocks.
8200     DT->changeImmediateDominator(LoopExitBlock,
8201                                  EPI.EpilogueIterationCountCheck);
8202 
8203   // Keep track of bypass blocks, as they feed start values to the induction
8204   // phis in the scalar loop preheader.
8205   if (EPI.SCEVSafetyCheck)
8206     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8207   if (EPI.MemSafetyCheck)
8208     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8209   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8210 
8211   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
8212   // merge control-flow from the latch block and the middle block. Update the
8213   // incoming values here and move the Phi into the preheader.
8214   SmallVector<PHINode *, 4> PhisInBlock;
8215   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8216     PhisInBlock.push_back(&Phi);
8217 
8218   for (PHINode *Phi : PhisInBlock) {
8219     Phi->replaceIncomingBlockWith(
8220         VecEpilogueIterationCountCheck->getSinglePredecessor(),
8221         VecEpilogueIterationCountCheck);
8222     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8223     if (EPI.SCEVSafetyCheck)
8224       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8225     if (EPI.MemSafetyCheck)
8226       Phi->removeIncomingValue(EPI.MemSafetyCheck);
8227     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8228   }
8229 
8230   // Generate a resume induction for the vector epilogue and put it in the
8231   // vector epilogue preheader
8232   Type *IdxTy = Legal->getWidestInductionType();
8233   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8234                                          LoopVectorPreHeader->getFirstNonPHI());
8235   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8236   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8237                            EPI.MainLoopIterationCountCheck);
8238 
8239   // Generate the induction variable.
8240   createHeaderBranch(Lp);
8241 
8242   // Generate induction resume values. These variables save the new starting
8243   // indexes for the scalar loop. They are used to test if there are any tail
8244   // iterations left once the vector loop has completed.
8245   // Note that when the vectorized epilogue is skipped due to iteration count
8246   // check, then the resume value for the induction variable comes from
8247   // the trip count of the main vector loop, hence passing the AdditionalBypass
8248   // argument.
8249   createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck,
8250                                    EPI.VectorTripCount} /* AdditionalBypass */);
8251 
8252   return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal};
8253 }
8254 
8255 BasicBlock *
8256 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8257     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8258 
8259   assert(EPI.TripCount &&
8260          "Expected trip count to have been safed in the first pass.");
8261   assert(
8262       (!isa<Instruction>(EPI.TripCount) ||
8263        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8264       "saved trip count does not dominate insertion point.");
8265   Value *TC = EPI.TripCount;
8266   IRBuilder<> Builder(Insert->getTerminator());
8267   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8268 
8269   // Generate code to check if the loop's trip count is less than VF * UF of the
8270   // vector epilogue loop.
8271   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8272       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8273 
8274   Value *CheckMinIters =
8275       Builder.CreateICmp(P, Count,
8276                          createStepForVF(Builder, Count->getType(),
8277                                          EPI.EpilogueVF, EPI.EpilogueUF),
8278                          "min.epilog.iters.check");
8279 
8280   ReplaceInstWithInst(
8281       Insert->getTerminator(),
8282       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8283 
8284   LoopBypassBlocks.push_back(Insert);
8285   return Insert;
8286 }
8287 
8288 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8289   LLVM_DEBUG({
8290     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8291            << "Epilogue Loop VF:" << EPI.EpilogueVF
8292            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8293   });
8294 }
8295 
8296 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8297   DEBUG_WITH_TYPE(VerboseDebug, {
8298     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8299   });
8300 }
8301 
8302 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8303     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8304   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8305   bool PredicateAtRangeStart = Predicate(Range.Start);
8306 
8307   for (ElementCount TmpVF = Range.Start * 2;
8308        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8309     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8310       Range.End = TmpVF;
8311       break;
8312     }
8313 
8314   return PredicateAtRangeStart;
8315 }
8316 
8317 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8318 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8319 /// of VF's starting at a given VF and extending it as much as possible. Each
8320 /// vectorization decision can potentially shorten this sub-range during
8321 /// buildVPlan().
8322 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8323                                            ElementCount MaxVF) {
8324   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8325   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8326     VFRange SubRange = {VF, MaxVFPlusOne};
8327     VPlans.push_back(buildVPlan(SubRange));
8328     VF = SubRange.End;
8329   }
8330 }
8331 
8332 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8333                                          VPlanPtr &Plan) {
8334   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8335 
8336   // Look for cached value.
8337   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8338   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8339   if (ECEntryIt != EdgeMaskCache.end())
8340     return ECEntryIt->second;
8341 
8342   VPValue *SrcMask = createBlockInMask(Src, Plan);
8343 
8344   // The terminator has to be a branch inst!
8345   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8346   assert(BI && "Unexpected terminator found");
8347 
8348   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8349     return EdgeMaskCache[Edge] = SrcMask;
8350 
8351   // If source is an exiting block, we know the exit edge is dynamically dead
8352   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8353   // adding uses of an otherwise potentially dead instruction.
8354   if (OrigLoop->isLoopExiting(Src))
8355     return EdgeMaskCache[Edge] = SrcMask;
8356 
8357   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8358   assert(EdgeMask && "No Edge Mask found for condition");
8359 
8360   if (BI->getSuccessor(0) != Dst)
8361     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8362 
8363   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8364     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8365     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8366     // The select version does not introduce new UB if SrcMask is false and
8367     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8368     VPValue *False = Plan->getOrAddVPValue(
8369         ConstantInt::getFalse(BI->getCondition()->getType()));
8370     EdgeMask =
8371         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8372   }
8373 
8374   return EdgeMaskCache[Edge] = EdgeMask;
8375 }
8376 
8377 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8378   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8379 
8380   // Look for cached value.
8381   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8382   if (BCEntryIt != BlockMaskCache.end())
8383     return BCEntryIt->second;
8384 
8385   // All-one mask is modelled as no-mask following the convention for masked
8386   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8387   VPValue *BlockMask = nullptr;
8388 
8389   if (OrigLoop->getHeader() == BB) {
8390     if (!CM.blockNeedsPredicationForAnyReason(BB))
8391       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8392 
8393     // Introduce the early-exit compare IV <= BTC to form header block mask.
8394     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8395     // constructing the desired canonical IV in the header block as its first
8396     // non-phi instructions.
8397     assert(CM.foldTailByMasking() && "must fold the tail");
8398     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8399     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8400     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8401     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8402 
8403     VPBuilder::InsertPointGuard Guard(Builder);
8404     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8405     if (CM.TTI.emitGetActiveLaneMask()) {
8406       VPValue *TC = Plan->getOrCreateTripCount();
8407       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8408     } else {
8409       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8410       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8411     }
8412     return BlockMaskCache[BB] = BlockMask;
8413   }
8414 
8415   // This is the block mask. We OR all incoming edges.
8416   for (auto *Predecessor : predecessors(BB)) {
8417     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8418     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8419       return BlockMaskCache[BB] = EdgeMask;
8420 
8421     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8422       BlockMask = EdgeMask;
8423       continue;
8424     }
8425 
8426     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8427   }
8428 
8429   return BlockMaskCache[BB] = BlockMask;
8430 }
8431 
8432 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8433                                                 ArrayRef<VPValue *> Operands,
8434                                                 VFRange &Range,
8435                                                 VPlanPtr &Plan) {
8436   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8437          "Must be called with either a load or store");
8438 
8439   auto willWiden = [&](ElementCount VF) -> bool {
8440     if (VF.isScalar())
8441       return false;
8442     LoopVectorizationCostModel::InstWidening Decision =
8443         CM.getWideningDecision(I, VF);
8444     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8445            "CM decision should be taken at this point.");
8446     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8447       return true;
8448     if (CM.isScalarAfterVectorization(I, VF) ||
8449         CM.isProfitableToScalarize(I, VF))
8450       return false;
8451     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8452   };
8453 
8454   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8455     return nullptr;
8456 
8457   VPValue *Mask = nullptr;
8458   if (Legal->isMaskRequired(I))
8459     Mask = createBlockInMask(I->getParent(), Plan);
8460 
8461   // Determine if the pointer operand of the access is either consecutive or
8462   // reverse consecutive.
8463   LoopVectorizationCostModel::InstWidening Decision =
8464       CM.getWideningDecision(I, Range.Start);
8465   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8466   bool Consecutive =
8467       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8468 
8469   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8470     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8471                                               Consecutive, Reverse);
8472 
8473   StoreInst *Store = cast<StoreInst>(I);
8474   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8475                                             Mask, Consecutive, Reverse);
8476 }
8477 
8478 static VPWidenIntOrFpInductionRecipe *
8479 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8480                            VPValue *Start, const InductionDescriptor &IndDesc,
8481                            LoopVectorizationCostModel &CM, Loop &OrigLoop,
8482                            VFRange &Range) {
8483   // Returns true if an instruction \p I should be scalarized instead of
8484   // vectorized for the chosen vectorization factor.
8485   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8486     return CM.isScalarAfterVectorization(I, VF) ||
8487            CM.isProfitableToScalarize(I, VF);
8488   };
8489 
8490   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8491       [&](ElementCount VF) {
8492         // Returns true if we should generate a scalar version of \p IV.
8493         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8494           return true;
8495         auto isScalarInst = [&](User *U) -> bool {
8496           auto *I = cast<Instruction>(U);
8497           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8498         };
8499         return any_of(PhiOrTrunc->users(), isScalarInst);
8500       },
8501       Range);
8502   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8503       [&](ElementCount VF) {
8504         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8505       },
8506       Range);
8507   assert(IndDesc.getStartValue() ==
8508          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8509   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8510     return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI,
8511                                              NeedsScalarIV, !NeedsScalarIVOnly);
8512   }
8513   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8514   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8515                                            !NeedsScalarIVOnly);
8516 }
8517 
8518 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
8519     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8520 
8521   // Check if this is an integer or fp induction. If so, build the recipe that
8522   // produces its scalar and vector values.
8523   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8524     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop,
8525                                       Range);
8526 
8527   return nullptr;
8528 }
8529 
8530 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8531     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8532     VPlan &Plan) const {
8533   // Optimize the special case where the source is a constant integer
8534   // induction variable. Notice that we can only optimize the 'trunc' case
8535   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8536   // (c) other casts depend on pointer size.
8537 
8538   // Determine whether \p K is a truncation based on an induction variable that
8539   // can be optimized.
8540   auto isOptimizableIVTruncate =
8541       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8542     return [=](ElementCount VF) -> bool {
8543       return CM.isOptimizableIVTruncate(K, VF);
8544     };
8545   };
8546 
8547   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8548           isOptimizableIVTruncate(I), Range)) {
8549 
8550     auto *Phi = cast<PHINode>(I->getOperand(0));
8551     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8552     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8553     return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range);
8554   }
8555   return nullptr;
8556 }
8557 
8558 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8559                                                 ArrayRef<VPValue *> Operands,
8560                                                 VPlanPtr &Plan) {
8561   // If all incoming values are equal, the incoming VPValue can be used directly
8562   // instead of creating a new VPBlendRecipe.
8563   VPValue *FirstIncoming = Operands[0];
8564   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8565         return FirstIncoming == Inc;
8566       })) {
8567     return Operands[0];
8568   }
8569 
8570   unsigned NumIncoming = Phi->getNumIncomingValues();
8571   // For in-loop reductions, we do not need to create an additional select.
8572   VPValue *InLoopVal = nullptr;
8573   for (unsigned In = 0; In < NumIncoming; In++) {
8574     PHINode *PhiOp =
8575         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8576     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8577       assert(!InLoopVal && "Found more than one in-loop reduction!");
8578       InLoopVal = Operands[In];
8579     }
8580   }
8581 
8582   assert((!InLoopVal || NumIncoming == 2) &&
8583          "Found an in-loop reduction for PHI with unexpected number of "
8584          "incoming values");
8585   if (InLoopVal)
8586     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8587 
8588   // We know that all PHIs in non-header blocks are converted into selects, so
8589   // we don't have to worry about the insertion order and we can just use the
8590   // builder. At this point we generate the predication tree. There may be
8591   // duplications since this is a simple recursive scan, but future
8592   // optimizations will clean it up.
8593   SmallVector<VPValue *, 2> OperandsWithMask;
8594 
8595   for (unsigned In = 0; In < NumIncoming; In++) {
8596     VPValue *EdgeMask =
8597       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8598     assert((EdgeMask || NumIncoming == 1) &&
8599            "Multiple predecessors with one having a full mask");
8600     OperandsWithMask.push_back(Operands[In]);
8601     if (EdgeMask)
8602       OperandsWithMask.push_back(EdgeMask);
8603   }
8604   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8605 }
8606 
8607 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8608                                                    ArrayRef<VPValue *> Operands,
8609                                                    VFRange &Range) const {
8610 
8611   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8612       [this, CI](ElementCount VF) {
8613         return CM.isScalarWithPredication(CI, VF);
8614       },
8615       Range);
8616 
8617   if (IsPredicated)
8618     return nullptr;
8619 
8620   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8621   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8622              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8623              ID == Intrinsic::pseudoprobe ||
8624              ID == Intrinsic::experimental_noalias_scope_decl))
8625     return nullptr;
8626 
8627   auto willWiden = [&](ElementCount VF) -> bool {
8628     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8629     // The following case may be scalarized depending on the VF.
8630     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8631     // version of the instruction.
8632     // Is it beneficial to perform intrinsic call compared to lib call?
8633     bool NeedToScalarize = false;
8634     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8635     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8636     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8637     return UseVectorIntrinsic || !NeedToScalarize;
8638   };
8639 
8640   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8641     return nullptr;
8642 
8643   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8644   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8645 }
8646 
8647 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8648   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8649          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8650   // Instruction should be widened, unless it is scalar after vectorization,
8651   // scalarization is profitable or it is predicated.
8652   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8653     return CM.isScalarAfterVectorization(I, VF) ||
8654            CM.isProfitableToScalarize(I, VF) ||
8655            CM.isScalarWithPredication(I, VF);
8656   };
8657   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8658                                                              Range);
8659 }
8660 
8661 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8662                                            ArrayRef<VPValue *> Operands) const {
8663   auto IsVectorizableOpcode = [](unsigned Opcode) {
8664     switch (Opcode) {
8665     case Instruction::Add:
8666     case Instruction::And:
8667     case Instruction::AShr:
8668     case Instruction::BitCast:
8669     case Instruction::FAdd:
8670     case Instruction::FCmp:
8671     case Instruction::FDiv:
8672     case Instruction::FMul:
8673     case Instruction::FNeg:
8674     case Instruction::FPExt:
8675     case Instruction::FPToSI:
8676     case Instruction::FPToUI:
8677     case Instruction::FPTrunc:
8678     case Instruction::FRem:
8679     case Instruction::FSub:
8680     case Instruction::ICmp:
8681     case Instruction::IntToPtr:
8682     case Instruction::LShr:
8683     case Instruction::Mul:
8684     case Instruction::Or:
8685     case Instruction::PtrToInt:
8686     case Instruction::SDiv:
8687     case Instruction::Select:
8688     case Instruction::SExt:
8689     case Instruction::Shl:
8690     case Instruction::SIToFP:
8691     case Instruction::SRem:
8692     case Instruction::Sub:
8693     case Instruction::Trunc:
8694     case Instruction::UDiv:
8695     case Instruction::UIToFP:
8696     case Instruction::URem:
8697     case Instruction::Xor:
8698     case Instruction::ZExt:
8699       return true;
8700     }
8701     return false;
8702   };
8703 
8704   if (!IsVectorizableOpcode(I->getOpcode()))
8705     return nullptr;
8706 
8707   // Success: widen this instruction.
8708   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8709 }
8710 
8711 void VPRecipeBuilder::fixHeaderPhis() {
8712   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8713   for (VPHeaderPHIRecipe *R : PhisToFix) {
8714     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8715     VPRecipeBase *IncR =
8716         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8717     R->addOperand(IncR->getVPSingleValue());
8718   }
8719 }
8720 
8721 VPBasicBlock *VPRecipeBuilder::handleReplication(
8722     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8723     VPlanPtr &Plan) {
8724   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8725       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8726       Range);
8727 
8728   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8729       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8730       Range);
8731 
8732   // Even if the instruction is not marked as uniform, there are certain
8733   // intrinsic calls that can be effectively treated as such, so we check for
8734   // them here. Conservatively, we only do this for scalable vectors, since
8735   // for fixed-width VFs we can always fall back on full scalarization.
8736   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8737     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8738     case Intrinsic::assume:
8739     case Intrinsic::lifetime_start:
8740     case Intrinsic::lifetime_end:
8741       // For scalable vectors if one of the operands is variant then we still
8742       // want to mark as uniform, which will generate one instruction for just
8743       // the first lane of the vector. We can't scalarize the call in the same
8744       // way as for fixed-width vectors because we don't know how many lanes
8745       // there are.
8746       //
8747       // The reasons for doing it this way for scalable vectors are:
8748       //   1. For the assume intrinsic generating the instruction for the first
8749       //      lane is still be better than not generating any at all. For
8750       //      example, the input may be a splat across all lanes.
8751       //   2. For the lifetime start/end intrinsics the pointer operand only
8752       //      does anything useful when the input comes from a stack object,
8753       //      which suggests it should always be uniform. For non-stack objects
8754       //      the effect is to poison the object, which still allows us to
8755       //      remove the call.
8756       IsUniform = true;
8757       break;
8758     default:
8759       break;
8760     }
8761   }
8762 
8763   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8764                                        IsUniform, IsPredicated);
8765   setRecipe(I, Recipe);
8766   Plan->addVPValue(I, Recipe);
8767 
8768   // Find if I uses a predicated instruction. If so, it will use its scalar
8769   // value. Avoid hoisting the insert-element which packs the scalar value into
8770   // a vector value, as that happens iff all users use the vector value.
8771   for (VPValue *Op : Recipe->operands()) {
8772     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8773     if (!PredR)
8774       continue;
8775     auto *RepR =
8776         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8777     assert(RepR->isPredicated() &&
8778            "expected Replicate recipe to be predicated");
8779     RepR->setAlsoPack(false);
8780   }
8781 
8782   // Finalize the recipe for Instr, first if it is not predicated.
8783   if (!IsPredicated) {
8784     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8785     VPBB->appendRecipe(Recipe);
8786     return VPBB;
8787   }
8788   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8789 
8790   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8791   assert(SingleSucc && "VPBB must have a single successor when handling "
8792                        "predicated replication.");
8793   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8794   // Record predicated instructions for above packing optimizations.
8795   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8796   VPBlockUtils::insertBlockAfter(Region, VPBB);
8797   auto *RegSucc = new VPBasicBlock();
8798   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8799   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8800   return RegSucc;
8801 }
8802 
8803 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8804                                                       VPRecipeBase *PredRecipe,
8805                                                       VPlanPtr &Plan) {
8806   // Instructions marked for predication are replicated and placed under an
8807   // if-then construct to prevent side-effects.
8808 
8809   // Generate recipes to compute the block mask for this region.
8810   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8811 
8812   // Build the triangular if-then region.
8813   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8814   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8815   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8816   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8817   auto *PHIRecipe = Instr->getType()->isVoidTy()
8818                         ? nullptr
8819                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8820   if (PHIRecipe) {
8821     Plan->removeVPValueFor(Instr);
8822     Plan->addVPValue(Instr, PHIRecipe);
8823   }
8824   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8825   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8826   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8827 
8828   // Note: first set Entry as region entry and then connect successors starting
8829   // from it in order, to propagate the "parent" of each VPBasicBlock.
8830   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8831   VPBlockUtils::connectBlocks(Pred, Exit);
8832 
8833   return Region;
8834 }
8835 
8836 VPRecipeOrVPValueTy
8837 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8838                                         ArrayRef<VPValue *> Operands,
8839                                         VFRange &Range, VPlanPtr &Plan) {
8840   // First, check for specific widening recipes that deal with calls, memory
8841   // operations, inductions and Phi nodes.
8842   if (auto *CI = dyn_cast<CallInst>(Instr))
8843     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8844 
8845   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8846     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8847 
8848   VPRecipeBase *Recipe;
8849   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8850     if (Phi->getParent() != OrigLoop->getHeader())
8851       return tryToBlend(Phi, Operands, Plan);
8852     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8853       return toVPRecipeResult(Recipe);
8854 
8855     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8856     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8857       VPValue *StartV = Operands[0];
8858       if (Legal->isReductionVariable(Phi)) {
8859         const RecurrenceDescriptor &RdxDesc =
8860             Legal->getReductionVars().find(Phi)->second;
8861         assert(RdxDesc.getRecurrenceStartValue() ==
8862                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8863         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8864                                              CM.isInLoopReduction(Phi),
8865                                              CM.useOrderedReductions(RdxDesc));
8866       } else {
8867         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8868       }
8869 
8870       // Record the incoming value from the backedge, so we can add the incoming
8871       // value from the backedge after all recipes have been created.
8872       recordRecipeOf(cast<Instruction>(
8873           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8874       PhisToFix.push_back(PhiRecipe);
8875     } else {
8876       // TODO: record backedge value for remaining pointer induction phis.
8877       assert(Phi->getType()->isPointerTy() &&
8878              "only pointer phis should be handled here");
8879       assert(Legal->getInductionVars().count(Phi) &&
8880              "Not an induction variable");
8881       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8882       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8883       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8884     }
8885 
8886     return toVPRecipeResult(PhiRecipe);
8887   }
8888 
8889   if (isa<TruncInst>(Instr) &&
8890       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8891                                                Range, *Plan)))
8892     return toVPRecipeResult(Recipe);
8893 
8894   if (!shouldWiden(Instr, Range))
8895     return nullptr;
8896 
8897   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8898     return toVPRecipeResult(new VPWidenGEPRecipe(
8899         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8900 
8901   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8902     bool InvariantCond =
8903         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8904     return toVPRecipeResult(new VPWidenSelectRecipe(
8905         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8906   }
8907 
8908   return toVPRecipeResult(tryToWiden(Instr, Operands));
8909 }
8910 
8911 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8912                                                         ElementCount MaxVF) {
8913   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8914 
8915   // Collect instructions from the original loop that will become trivially dead
8916   // in the vectorized loop. We don't need to vectorize these instructions. For
8917   // example, original induction update instructions can become dead because we
8918   // separately emit induction "steps" when generating code for the new loop.
8919   // Similarly, we create a new latch condition when setting up the structure
8920   // of the new loop, so the old one can become dead.
8921   SmallPtrSet<Instruction *, 4> DeadInstructions;
8922   collectTriviallyDeadInstructions(DeadInstructions);
8923 
8924   // Add assume instructions we need to drop to DeadInstructions, to prevent
8925   // them from being added to the VPlan.
8926   // TODO: We only need to drop assumes in blocks that get flattend. If the
8927   // control flow is preserved, we should keep them.
8928   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8929   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8930 
8931   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8932   // Dead instructions do not need sinking. Remove them from SinkAfter.
8933   for (Instruction *I : DeadInstructions)
8934     SinkAfter.erase(I);
8935 
8936   // Cannot sink instructions after dead instructions (there won't be any
8937   // recipes for them). Instead, find the first non-dead previous instruction.
8938   for (auto &P : Legal->getSinkAfter()) {
8939     Instruction *SinkTarget = P.second;
8940     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8941     (void)FirstInst;
8942     while (DeadInstructions.contains(SinkTarget)) {
8943       assert(
8944           SinkTarget != FirstInst &&
8945           "Must find a live instruction (at least the one feeding the "
8946           "first-order recurrence PHI) before reaching beginning of the block");
8947       SinkTarget = SinkTarget->getPrevNode();
8948       assert(SinkTarget != P.first &&
8949              "sink source equals target, no sinking required");
8950     }
8951     P.second = SinkTarget;
8952   }
8953 
8954   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8955   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8956     VFRange SubRange = {VF, MaxVFPlusOne};
8957     VPlans.push_back(
8958         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8959     VF = SubRange.End;
8960   }
8961 }
8962 
8963 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8964 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8965 // BranchOnCount VPInstruction to the latch.
8966 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8967                                   bool HasNUW, bool IsVPlanNative) {
8968   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8969   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8970 
8971   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8972   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8973   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8974   if (IsVPlanNative)
8975     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8976   Header->insert(CanonicalIVPHI, Header->begin());
8977 
8978   auto *CanonicalIVIncrement =
8979       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8980                                : VPInstruction::CanonicalIVIncrement,
8981                         {CanonicalIVPHI}, DL);
8982   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8983 
8984   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8985   if (IsVPlanNative) {
8986     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
8987     EB->setCondBit(nullptr);
8988   }
8989   EB->appendRecipe(CanonicalIVIncrement);
8990 
8991   auto *BranchOnCount =
8992       new VPInstruction(VPInstruction::BranchOnCount,
8993                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8994   EB->appendRecipe(BranchOnCount);
8995 }
8996 
8997 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8998     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8999     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9000 
9001   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9002 
9003   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9004 
9005   // ---------------------------------------------------------------------------
9006   // Pre-construction: record ingredients whose recipes we'll need to further
9007   // process after constructing the initial VPlan.
9008   // ---------------------------------------------------------------------------
9009 
9010   // Mark instructions we'll need to sink later and their targets as
9011   // ingredients whose recipe we'll need to record.
9012   for (auto &Entry : SinkAfter) {
9013     RecipeBuilder.recordRecipeOf(Entry.first);
9014     RecipeBuilder.recordRecipeOf(Entry.second);
9015   }
9016   for (auto &Reduction : CM.getInLoopReductionChains()) {
9017     PHINode *Phi = Reduction.first;
9018     RecurKind Kind =
9019         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
9020     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9021 
9022     RecipeBuilder.recordRecipeOf(Phi);
9023     for (auto &R : ReductionOperations) {
9024       RecipeBuilder.recordRecipeOf(R);
9025       // For min/max reducitons, where we have a pair of icmp/select, we also
9026       // need to record the ICmp recipe, so it can be removed later.
9027       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9028              "Only min/max recurrences allowed for inloop reductions");
9029       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9030         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9031     }
9032   }
9033 
9034   // For each interleave group which is relevant for this (possibly trimmed)
9035   // Range, add it to the set of groups to be later applied to the VPlan and add
9036   // placeholders for its members' Recipes which we'll be replacing with a
9037   // single VPInterleaveRecipe.
9038   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9039     auto applyIG = [IG, this](ElementCount VF) -> bool {
9040       return (VF.isVector() && // Query is illegal for VF == 1
9041               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9042                   LoopVectorizationCostModel::CM_Interleave);
9043     };
9044     if (!getDecisionAndClampRange(applyIG, Range))
9045       continue;
9046     InterleaveGroups.insert(IG);
9047     for (unsigned i = 0; i < IG->getFactor(); i++)
9048       if (Instruction *Member = IG->getMember(i))
9049         RecipeBuilder.recordRecipeOf(Member);
9050   };
9051 
9052   // ---------------------------------------------------------------------------
9053   // Build initial VPlan: Scan the body of the loop in a topological order to
9054   // visit each basic block after having visited its predecessor basic blocks.
9055   // ---------------------------------------------------------------------------
9056 
9057   // Create initial VPlan skeleton, with separate header and latch blocks.
9058   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
9059   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
9060   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
9061   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
9062   auto Plan = std::make_unique<VPlan>(TopRegion);
9063 
9064   Instruction *DLInst =
9065       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
9066   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
9067                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
9068                         !CM.foldTailByMasking(), false);
9069 
9070   // Scan the body of the loop in a topological order to visit each basic block
9071   // after having visited its predecessor basic blocks.
9072   LoopBlocksDFS DFS(OrigLoop);
9073   DFS.perform(LI);
9074 
9075   VPBasicBlock *VPBB = HeaderVPBB;
9076   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9077   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9078     // Relevant instructions from basic block BB will be grouped into VPRecipe
9079     // ingredients and fill a new VPBasicBlock.
9080     unsigned VPBBsForBB = 0;
9081     VPBB->setName(BB->getName());
9082     Builder.setInsertPoint(VPBB);
9083 
9084     // Introduce each ingredient into VPlan.
9085     // TODO: Model and preserve debug instrinsics in VPlan.
9086     for (Instruction &I : BB->instructionsWithoutDebug()) {
9087       Instruction *Instr = &I;
9088 
9089       // First filter out irrelevant instructions, to ensure no recipes are
9090       // built for them.
9091       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9092         continue;
9093 
9094       SmallVector<VPValue *, 4> Operands;
9095       auto *Phi = dyn_cast<PHINode>(Instr);
9096       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9097         Operands.push_back(Plan->getOrAddVPValue(
9098             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9099       } else {
9100         auto OpRange = Plan->mapToVPValues(Instr->operands());
9101         Operands = {OpRange.begin(), OpRange.end()};
9102       }
9103       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9104               Instr, Operands, Range, Plan)) {
9105         // If Instr can be simplified to an existing VPValue, use it.
9106         if (RecipeOrValue.is<VPValue *>()) {
9107           auto *VPV = RecipeOrValue.get<VPValue *>();
9108           Plan->addVPValue(Instr, VPV);
9109           // If the re-used value is a recipe, register the recipe for the
9110           // instruction, in case the recipe for Instr needs to be recorded.
9111           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9112             RecipeBuilder.setRecipe(Instr, R);
9113           continue;
9114         }
9115         // Otherwise, add the new recipe.
9116         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9117         for (auto *Def : Recipe->definedValues()) {
9118           auto *UV = Def->getUnderlyingValue();
9119           Plan->addVPValue(UV, Def);
9120         }
9121 
9122         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9123             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9124           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9125           // of the header block. That can happen for truncates of induction
9126           // variables. Those recipes are moved to the phi section of the header
9127           // block after applying SinkAfter, which relies on the original
9128           // position of the trunc.
9129           assert(isa<TruncInst>(Instr));
9130           InductionsToMove.push_back(
9131               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9132         }
9133         RecipeBuilder.setRecipe(Instr, Recipe);
9134         VPBB->appendRecipe(Recipe);
9135         continue;
9136       }
9137 
9138       // Otherwise, if all widening options failed, Instruction is to be
9139       // replicated. This may create a successor for VPBB.
9140       VPBasicBlock *NextVPBB =
9141           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9142       if (NextVPBB != VPBB) {
9143         VPBB = NextVPBB;
9144         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9145                                     : "");
9146       }
9147     }
9148 
9149     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
9150     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9151   }
9152 
9153   // Fold the last, empty block into its predecessor.
9154   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
9155   assert(VPBB && "expected to fold last (empty) block");
9156   // After here, VPBB should not be used.
9157   VPBB = nullptr;
9158 
9159   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9160          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9161          "entry block must be set to a VPRegionBlock having a non-empty entry "
9162          "VPBasicBlock");
9163   RecipeBuilder.fixHeaderPhis();
9164 
9165   // ---------------------------------------------------------------------------
9166   // Transform initial VPlan: Apply previously taken decisions, in order, to
9167   // bring the VPlan to its final state.
9168   // ---------------------------------------------------------------------------
9169 
9170   // Apply Sink-After legal constraints.
9171   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9172     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9173     if (Region && Region->isReplicator()) {
9174       assert(Region->getNumSuccessors() == 1 &&
9175              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9176       assert(R->getParent()->size() == 1 &&
9177              "A recipe in an original replicator region must be the only "
9178              "recipe in its block");
9179       return Region;
9180     }
9181     return nullptr;
9182   };
9183   for (auto &Entry : SinkAfter) {
9184     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9185     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9186 
9187     auto *TargetRegion = GetReplicateRegion(Target);
9188     auto *SinkRegion = GetReplicateRegion(Sink);
9189     if (!SinkRegion) {
9190       // If the sink source is not a replicate region, sink the recipe directly.
9191       if (TargetRegion) {
9192         // The target is in a replication region, make sure to move Sink to
9193         // the block after it, not into the replication region itself.
9194         VPBasicBlock *NextBlock =
9195             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9196         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9197       } else
9198         Sink->moveAfter(Target);
9199       continue;
9200     }
9201 
9202     // The sink source is in a replicate region. Unhook the region from the CFG.
9203     auto *SinkPred = SinkRegion->getSinglePredecessor();
9204     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9205     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9206     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9207     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9208 
9209     if (TargetRegion) {
9210       // The target recipe is also in a replicate region, move the sink region
9211       // after the target region.
9212       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9213       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9214       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9215       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9216     } else {
9217       // The sink source is in a replicate region, we need to move the whole
9218       // replicate region, which should only contain a single recipe in the
9219       // main block.
9220       auto *SplitBlock =
9221           Target->getParent()->splitAt(std::next(Target->getIterator()));
9222 
9223       auto *SplitPred = SplitBlock->getSinglePredecessor();
9224 
9225       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9226       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9227       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9228     }
9229   }
9230 
9231   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
9232   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9233 
9234   // Now that sink-after is done, move induction recipes for optimized truncates
9235   // to the phi section of the header block.
9236   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9237     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9238 
9239   // Adjust the recipes for any inloop reductions.
9240   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9241                              RecipeBuilder, Range.Start);
9242 
9243   // Introduce a recipe to combine the incoming and previous values of a
9244   // first-order recurrence.
9245   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9246     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9247     if (!RecurPhi)
9248       continue;
9249 
9250     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9251     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9252     auto *Region = GetReplicateRegion(PrevRecipe);
9253     if (Region)
9254       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9255     if (Region || PrevRecipe->isPhi())
9256       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9257     else
9258       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9259 
9260     auto *RecurSplice = cast<VPInstruction>(
9261         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9262                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9263 
9264     RecurPhi->replaceAllUsesWith(RecurSplice);
9265     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9266     // all users.
9267     RecurSplice->setOperand(0, RecurPhi);
9268   }
9269 
9270   // Interleave memory: for each Interleave Group we marked earlier as relevant
9271   // for this VPlan, replace the Recipes widening its memory instructions with a
9272   // single VPInterleaveRecipe at its insertion point.
9273   for (auto IG : InterleaveGroups) {
9274     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9275         RecipeBuilder.getRecipe(IG->getInsertPos()));
9276     SmallVector<VPValue *, 4> StoredValues;
9277     for (unsigned i = 0; i < IG->getFactor(); ++i)
9278       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9279         auto *StoreR =
9280             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9281         StoredValues.push_back(StoreR->getStoredValue());
9282       }
9283 
9284     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9285                                         Recipe->getMask());
9286     VPIG->insertBefore(Recipe);
9287     unsigned J = 0;
9288     for (unsigned i = 0; i < IG->getFactor(); ++i)
9289       if (Instruction *Member = IG->getMember(i)) {
9290         if (!Member->getType()->isVoidTy()) {
9291           VPValue *OriginalV = Plan->getVPValue(Member);
9292           Plan->removeVPValueFor(Member);
9293           Plan->addVPValue(Member, VPIG->getVPValue(J));
9294           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9295           J++;
9296         }
9297         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9298       }
9299   }
9300 
9301   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9302   // in ways that accessing values using original IR values is incorrect.
9303   Plan->disableValue2VPValue();
9304 
9305   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9306   VPlanTransforms::sinkScalarOperands(*Plan);
9307   VPlanTransforms::mergeReplicateRegions(*Plan);
9308   VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop);
9309 
9310   std::string PlanName;
9311   raw_string_ostream RSO(PlanName);
9312   ElementCount VF = Range.Start;
9313   Plan->addVF(VF);
9314   RSO << "Initial VPlan for VF={" << VF;
9315   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9316     Plan->addVF(VF);
9317     RSO << "," << VF;
9318   }
9319   RSO << "},UF>=1";
9320   RSO.flush();
9321   Plan->setName(PlanName);
9322 
9323   // Fold Exit block into its predecessor if possible.
9324   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9325   // VPBasicBlock as exit.
9326   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9327 
9328   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9329   return Plan;
9330 }
9331 
9332 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9333   // Outer loop handling: They may require CFG and instruction level
9334   // transformations before even evaluating whether vectorization is profitable.
9335   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9336   // the vectorization pipeline.
9337   assert(!OrigLoop->isInnermost());
9338   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9339 
9340   // Create new empty VPlan
9341   auto Plan = std::make_unique<VPlan>();
9342 
9343   // Build hierarchical CFG
9344   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9345   HCFGBuilder.buildHierarchicalCFG();
9346 
9347   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9348        VF *= 2)
9349     Plan->addVF(VF);
9350 
9351   if (EnableVPlanPredication) {
9352     VPlanPredicator VPP(*Plan);
9353     VPP.predicate();
9354 
9355     // Avoid running transformation to recipes until masked code generation in
9356     // VPlan-native path is in place.
9357     return Plan;
9358   }
9359 
9360   SmallPtrSet<Instruction *, 1> DeadInstructions;
9361   VPlanTransforms::VPInstructionsToVPRecipes(
9362       OrigLoop, Plan,
9363       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9364       DeadInstructions, *PSE.getSE());
9365 
9366   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9367                         true, true);
9368   return Plan;
9369 }
9370 
9371 // Adjust the recipes for reductions. For in-loop reductions the chain of
9372 // instructions leading from the loop exit instr to the phi need to be converted
9373 // to reductions, with one operand being vector and the other being the scalar
9374 // reduction chain. For other reductions, a select is introduced between the phi
9375 // and live-out recipes when folding the tail.
9376 void LoopVectorizationPlanner::adjustRecipesForReductions(
9377     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9378     ElementCount MinVF) {
9379   for (auto &Reduction : CM.getInLoopReductionChains()) {
9380     PHINode *Phi = Reduction.first;
9381     const RecurrenceDescriptor &RdxDesc =
9382         Legal->getReductionVars().find(Phi)->second;
9383     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9384 
9385     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9386       continue;
9387 
9388     // ReductionOperations are orders top-down from the phi's use to the
9389     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9390     // which of the two operands will remain scalar and which will be reduced.
9391     // For minmax the chain will be the select instructions.
9392     Instruction *Chain = Phi;
9393     for (Instruction *R : ReductionOperations) {
9394       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9395       RecurKind Kind = RdxDesc.getRecurrenceKind();
9396 
9397       VPValue *ChainOp = Plan->getVPValue(Chain);
9398       unsigned FirstOpId;
9399       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9400              "Only min/max recurrences allowed for inloop reductions");
9401       // Recognize a call to the llvm.fmuladd intrinsic.
9402       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9403       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9404              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9405       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9406         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9407                "Expected to replace a VPWidenSelectSC");
9408         FirstOpId = 1;
9409       } else {
9410         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9411                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9412                "Expected to replace a VPWidenSC");
9413         FirstOpId = 0;
9414       }
9415       unsigned VecOpId =
9416           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9417       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9418 
9419       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9420                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9421                          : nullptr;
9422 
9423       if (IsFMulAdd) {
9424         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9425         // need to create an fmul recipe to use as the vector operand for the
9426         // fadd reduction.
9427         VPInstruction *FMulRecipe = new VPInstruction(
9428             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9429         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9430         WidenRecipe->getParent()->insert(FMulRecipe,
9431                                          WidenRecipe->getIterator());
9432         VecOp = FMulRecipe;
9433       }
9434       VPReductionRecipe *RedRecipe =
9435           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9436       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9437       Plan->removeVPValueFor(R);
9438       Plan->addVPValue(R, RedRecipe);
9439       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9440       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9441       WidenRecipe->eraseFromParent();
9442 
9443       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9444         VPRecipeBase *CompareRecipe =
9445             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9446         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9447                "Expected to replace a VPWidenSC");
9448         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9449                "Expected no remaining users");
9450         CompareRecipe->eraseFromParent();
9451       }
9452       Chain = R;
9453     }
9454   }
9455 
9456   // If tail is folded by masking, introduce selects between the phi
9457   // and the live-out instruction of each reduction, at the beginning of the
9458   // dedicated latch block.
9459   if (CM.foldTailByMasking()) {
9460     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9461     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9462       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9463       if (!PhiR || PhiR->isInLoop())
9464         continue;
9465       VPValue *Cond =
9466           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9467       VPValue *Red = PhiR->getBackedgeValue();
9468       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9469              "reduction recipe must be defined before latch");
9470       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9471     }
9472   }
9473 }
9474 
9475 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9476 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9477                                VPSlotTracker &SlotTracker) const {
9478   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9479   IG->getInsertPos()->printAsOperand(O, false);
9480   O << ", ";
9481   getAddr()->printAsOperand(O, SlotTracker);
9482   VPValue *Mask = getMask();
9483   if (Mask) {
9484     O << ", ";
9485     Mask->printAsOperand(O, SlotTracker);
9486   }
9487 
9488   unsigned OpIdx = 0;
9489   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9490     if (!IG->getMember(i))
9491       continue;
9492     if (getNumStoreOperands() > 0) {
9493       O << "\n" << Indent << "  store ";
9494       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9495       O << " to index " << i;
9496     } else {
9497       O << "\n" << Indent << "  ";
9498       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9499       O << " = load from index " << i;
9500     }
9501     ++OpIdx;
9502   }
9503 }
9504 #endif
9505 
9506 void VPWidenCallRecipe::execute(VPTransformState &State) {
9507   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9508                                   *this, State);
9509 }
9510 
9511 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9512   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9513   State.ILV->setDebugLocFromInst(&I);
9514 
9515   // The condition can be loop invariant  but still defined inside the
9516   // loop. This means that we can't just use the original 'cond' value.
9517   // We have to take the 'vectorized' value and pick the first lane.
9518   // Instcombine will make this a no-op.
9519   auto *InvarCond =
9520       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9521 
9522   for (unsigned Part = 0; Part < State.UF; ++Part) {
9523     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9524     Value *Op0 = State.get(getOperand(1), Part);
9525     Value *Op1 = State.get(getOperand(2), Part);
9526     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9527     State.set(this, Sel, Part);
9528     State.ILV->addMetadata(Sel, &I);
9529   }
9530 }
9531 
9532 void VPWidenRecipe::execute(VPTransformState &State) {
9533   auto &I = *cast<Instruction>(getUnderlyingValue());
9534   auto &Builder = State.Builder;
9535   switch (I.getOpcode()) {
9536   case Instruction::Call:
9537   case Instruction::Br:
9538   case Instruction::PHI:
9539   case Instruction::GetElementPtr:
9540   case Instruction::Select:
9541     llvm_unreachable("This instruction is handled by a different recipe.");
9542   case Instruction::UDiv:
9543   case Instruction::SDiv:
9544   case Instruction::SRem:
9545   case Instruction::URem:
9546   case Instruction::Add:
9547   case Instruction::FAdd:
9548   case Instruction::Sub:
9549   case Instruction::FSub:
9550   case Instruction::FNeg:
9551   case Instruction::Mul:
9552   case Instruction::FMul:
9553   case Instruction::FDiv:
9554   case Instruction::FRem:
9555   case Instruction::Shl:
9556   case Instruction::LShr:
9557   case Instruction::AShr:
9558   case Instruction::And:
9559   case Instruction::Or:
9560   case Instruction::Xor: {
9561     // Just widen unops and binops.
9562     State.ILV->setDebugLocFromInst(&I);
9563 
9564     for (unsigned Part = 0; Part < State.UF; ++Part) {
9565       SmallVector<Value *, 2> Ops;
9566       for (VPValue *VPOp : operands())
9567         Ops.push_back(State.get(VPOp, Part));
9568 
9569       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9570 
9571       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9572         VecOp->copyIRFlags(&I);
9573 
9574         // If the instruction is vectorized and was in a basic block that needed
9575         // predication, we can't propagate poison-generating flags (nuw/nsw,
9576         // exact, etc.). The control flow has been linearized and the
9577         // instruction is no longer guarded by the predicate, which could make
9578         // the flag properties to no longer hold.
9579         if (State.MayGeneratePoisonRecipes.contains(this))
9580           VecOp->dropPoisonGeneratingFlags();
9581       }
9582 
9583       // Use this vector value for all users of the original instruction.
9584       State.set(this, V, Part);
9585       State.ILV->addMetadata(V, &I);
9586     }
9587 
9588     break;
9589   }
9590   case Instruction::ICmp:
9591   case Instruction::FCmp: {
9592     // Widen compares. Generate vector compares.
9593     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9594     auto *Cmp = cast<CmpInst>(&I);
9595     State.ILV->setDebugLocFromInst(Cmp);
9596     for (unsigned Part = 0; Part < State.UF; ++Part) {
9597       Value *A = State.get(getOperand(0), Part);
9598       Value *B = State.get(getOperand(1), Part);
9599       Value *C = nullptr;
9600       if (FCmp) {
9601         // Propagate fast math flags.
9602         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9603         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9604         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9605       } else {
9606         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9607       }
9608       State.set(this, C, Part);
9609       State.ILV->addMetadata(C, &I);
9610     }
9611 
9612     break;
9613   }
9614 
9615   case Instruction::ZExt:
9616   case Instruction::SExt:
9617   case Instruction::FPToUI:
9618   case Instruction::FPToSI:
9619   case Instruction::FPExt:
9620   case Instruction::PtrToInt:
9621   case Instruction::IntToPtr:
9622   case Instruction::SIToFP:
9623   case Instruction::UIToFP:
9624   case Instruction::Trunc:
9625   case Instruction::FPTrunc:
9626   case Instruction::BitCast: {
9627     auto *CI = cast<CastInst>(&I);
9628     State.ILV->setDebugLocFromInst(CI);
9629 
9630     /// Vectorize casts.
9631     Type *DestTy = (State.VF.isScalar())
9632                        ? CI->getType()
9633                        : VectorType::get(CI->getType(), State.VF);
9634 
9635     for (unsigned Part = 0; Part < State.UF; ++Part) {
9636       Value *A = State.get(getOperand(0), Part);
9637       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9638       State.set(this, Cast, Part);
9639       State.ILV->addMetadata(Cast, &I);
9640     }
9641     break;
9642   }
9643   default:
9644     // This instruction is not vectorized by simple widening.
9645     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9646     llvm_unreachable("Unhandled instruction!");
9647   } // end of switch.
9648 }
9649 
9650 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9651   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9652   // Construct a vector GEP by widening the operands of the scalar GEP as
9653   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9654   // results in a vector of pointers when at least one operand of the GEP
9655   // is vector-typed. Thus, to keep the representation compact, we only use
9656   // vector-typed operands for loop-varying values.
9657 
9658   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9659     // If we are vectorizing, but the GEP has only loop-invariant operands,
9660     // the GEP we build (by only using vector-typed operands for
9661     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9662     // produce a vector of pointers, we need to either arbitrarily pick an
9663     // operand to broadcast, or broadcast a clone of the original GEP.
9664     // Here, we broadcast a clone of the original.
9665     //
9666     // TODO: If at some point we decide to scalarize instructions having
9667     //       loop-invariant operands, this special case will no longer be
9668     //       required. We would add the scalarization decision to
9669     //       collectLoopScalars() and teach getVectorValue() to broadcast
9670     //       the lane-zero scalar value.
9671     auto *Clone = State.Builder.Insert(GEP->clone());
9672     for (unsigned Part = 0; Part < State.UF; ++Part) {
9673       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9674       State.set(this, EntryPart, Part);
9675       State.ILV->addMetadata(EntryPart, GEP);
9676     }
9677   } else {
9678     // If the GEP has at least one loop-varying operand, we are sure to
9679     // produce a vector of pointers. But if we are only unrolling, we want
9680     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9681     // produce with the code below will be scalar (if VF == 1) or vector
9682     // (otherwise). Note that for the unroll-only case, we still maintain
9683     // values in the vector mapping with initVector, as we do for other
9684     // instructions.
9685     for (unsigned Part = 0; Part < State.UF; ++Part) {
9686       // The pointer operand of the new GEP. If it's loop-invariant, we
9687       // won't broadcast it.
9688       auto *Ptr = IsPtrLoopInvariant
9689                       ? State.get(getOperand(0), VPIteration(0, 0))
9690                       : State.get(getOperand(0), Part);
9691 
9692       // Collect all the indices for the new GEP. If any index is
9693       // loop-invariant, we won't broadcast it.
9694       SmallVector<Value *, 4> Indices;
9695       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9696         VPValue *Operand = getOperand(I);
9697         if (IsIndexLoopInvariant[I - 1])
9698           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9699         else
9700           Indices.push_back(State.get(Operand, Part));
9701       }
9702 
9703       // If the GEP instruction is vectorized and was in a basic block that
9704       // needed predication, we can't propagate the poison-generating 'inbounds'
9705       // flag. The control flow has been linearized and the GEP is no longer
9706       // guarded by the predicate, which could make the 'inbounds' properties to
9707       // no longer hold.
9708       bool IsInBounds =
9709           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9710 
9711       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9712       // but it should be a vector, otherwise.
9713       auto *NewGEP = IsInBounds
9714                          ? State.Builder.CreateInBoundsGEP(
9715                                GEP->getSourceElementType(), Ptr, Indices)
9716                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9717                                                    Ptr, Indices);
9718       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9719              "NewGEP is not a pointer vector");
9720       State.set(this, NewGEP, Part);
9721       State.ILV->addMetadata(NewGEP, GEP);
9722     }
9723   }
9724 }
9725 
9726 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9727   assert(!State.Instance && "Int or FP induction being replicated.");
9728   auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9729   State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV);
9730 }
9731 
9732 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9733   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9734 
9735   // Fast-math-flags propagate from the original induction instruction.
9736   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9737   if (IndDesc.getInductionBinOp() &&
9738       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9739     State.Builder.setFastMathFlags(
9740         IndDesc.getInductionBinOp()->getFastMathFlags());
9741 
9742   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9743   auto *Trunc = dyn_cast<TruncInst>(getUnderlyingValue());
9744   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9745     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9746     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9747     if (!isCanonical() || CanonicalIV->getType() != IV->getType()) {
9748       ScalarIV = IV->getType()->isIntegerTy()
9749                      ? State.Builder.CreateSExtOrTrunc(ScalarIV, IV->getType())
9750                      : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV,
9751                                                 IV->getType());
9752       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9753                                       getStartValue()->getLiveInIRValue(), Step,
9754                                       IndDesc);
9755       ScalarIV->setName("offset.idx");
9756     }
9757     if (Trunc) {
9758       auto *TruncType = cast<IntegerType>(Trunc->getType());
9759       assert(Step->getType()->isIntegerTy() &&
9760              "Truncation requires an integer step");
9761       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncType);
9762       Step = State.Builder.CreateTrunc(Step, TruncType);
9763     }
9764     return ScalarIV;
9765   };
9766 
9767   Value *ScalarIV = CreateScalarIV(Step);
9768   if (State.VF.isVector()) {
9769     buildScalarSteps(ScalarIV, Step, IV, IndDesc, this, State);
9770     return;
9771   }
9772 
9773   for (unsigned Part = 0; Part < State.UF; ++Part) {
9774     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9775     Value *EntryPart;
9776     if (Step->getType()->isFloatingPointTy()) {
9777       Value *StartIdx =
9778           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9779       // Floating-point operations inherit FMF via the builder's flags.
9780       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9781       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9782                                             ScalarIV, MulOp);
9783     } else {
9784       Value *StartIdx =
9785           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9786       EntryPart = State.Builder.CreateAdd(
9787           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9788     }
9789     State.set(this, EntryPart, Part);
9790     if (Trunc)
9791       State.ILV->addMetadata(EntryPart, Trunc);
9792   }
9793 }
9794 
9795 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9796   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9797                                  State);
9798 }
9799 
9800 void VPBlendRecipe::execute(VPTransformState &State) {
9801   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9802   // We know that all PHIs in non-header blocks are converted into
9803   // selects, so we don't have to worry about the insertion order and we
9804   // can just use the builder.
9805   // At this point we generate the predication tree. There may be
9806   // duplications since this is a simple recursive scan, but future
9807   // optimizations will clean it up.
9808 
9809   unsigned NumIncoming = getNumIncomingValues();
9810 
9811   // Generate a sequence of selects of the form:
9812   // SELECT(Mask3, In3,
9813   //        SELECT(Mask2, In2,
9814   //               SELECT(Mask1, In1,
9815   //                      In0)))
9816   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9817   // are essentially undef are taken from In0.
9818   InnerLoopVectorizer::VectorParts Entry(State.UF);
9819   for (unsigned In = 0; In < NumIncoming; ++In) {
9820     for (unsigned Part = 0; Part < State.UF; ++Part) {
9821       // We might have single edge PHIs (blocks) - use an identity
9822       // 'select' for the first PHI operand.
9823       Value *In0 = State.get(getIncomingValue(In), Part);
9824       if (In == 0)
9825         Entry[Part] = In0; // Initialize with the first incoming value.
9826       else {
9827         // Select between the current value and the previous incoming edge
9828         // based on the incoming mask.
9829         Value *Cond = State.get(getMask(In), Part);
9830         Entry[Part] =
9831             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9832       }
9833     }
9834   }
9835   for (unsigned Part = 0; Part < State.UF; ++Part)
9836     State.set(this, Entry[Part], Part);
9837 }
9838 
9839 void VPInterleaveRecipe::execute(VPTransformState &State) {
9840   assert(!State.Instance && "Interleave group being replicated.");
9841   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9842                                       getStoredValues(), getMask());
9843 }
9844 
9845 void VPReductionRecipe::execute(VPTransformState &State) {
9846   assert(!State.Instance && "Reduction being replicated.");
9847   Value *PrevInChain = State.get(getChainOp(), 0);
9848   RecurKind Kind = RdxDesc->getRecurrenceKind();
9849   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9850   // Propagate the fast-math flags carried by the underlying instruction.
9851   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9852   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9853   for (unsigned Part = 0; Part < State.UF; ++Part) {
9854     Value *NewVecOp = State.get(getVecOp(), Part);
9855     if (VPValue *Cond = getCondOp()) {
9856       Value *NewCond = State.get(Cond, Part);
9857       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9858       Value *Iden = RdxDesc->getRecurrenceIdentity(
9859           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9860       Value *IdenVec =
9861           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9862       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9863       NewVecOp = Select;
9864     }
9865     Value *NewRed;
9866     Value *NextInChain;
9867     if (IsOrdered) {
9868       if (State.VF.isVector())
9869         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9870                                         PrevInChain);
9871       else
9872         NewRed = State.Builder.CreateBinOp(
9873             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9874             NewVecOp);
9875       PrevInChain = NewRed;
9876     } else {
9877       PrevInChain = State.get(getChainOp(), Part);
9878       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9879     }
9880     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9881       NextInChain =
9882           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9883                          NewRed, PrevInChain);
9884     } else if (IsOrdered)
9885       NextInChain = NewRed;
9886     else
9887       NextInChain = State.Builder.CreateBinOp(
9888           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9889           PrevInChain);
9890     State.set(this, NextInChain, Part);
9891   }
9892 }
9893 
9894 void VPReplicateRecipe::execute(VPTransformState &State) {
9895   if (State.Instance) { // Generate a single instance.
9896     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9897     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9898                                     IsPredicated, State);
9899     // Insert scalar instance packing it into a vector.
9900     if (AlsoPack && State.VF.isVector()) {
9901       // If we're constructing lane 0, initialize to start from poison.
9902       if (State.Instance->Lane.isFirstLane()) {
9903         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9904         Value *Poison = PoisonValue::get(
9905             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9906         State.set(this, Poison, State.Instance->Part);
9907       }
9908       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9909     }
9910     return;
9911   }
9912 
9913   // Generate scalar instances for all VF lanes of all UF parts, unless the
9914   // instruction is uniform inwhich case generate only the first lane for each
9915   // of the UF parts.
9916   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9917   assert((!State.VF.isScalable() || IsUniform) &&
9918          "Can't scalarize a scalable vector");
9919   for (unsigned Part = 0; Part < State.UF; ++Part)
9920     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9921       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9922                                       VPIteration(Part, Lane), IsPredicated,
9923                                       State);
9924 }
9925 
9926 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9927   assert(State.Instance && "Branch on Mask works only on single instance.");
9928 
9929   unsigned Part = State.Instance->Part;
9930   unsigned Lane = State.Instance->Lane.getKnownLane();
9931 
9932   Value *ConditionBit = nullptr;
9933   VPValue *BlockInMask = getMask();
9934   if (BlockInMask) {
9935     ConditionBit = State.get(BlockInMask, Part);
9936     if (ConditionBit->getType()->isVectorTy())
9937       ConditionBit = State.Builder.CreateExtractElement(
9938           ConditionBit, State.Builder.getInt32(Lane));
9939   } else // Block in mask is all-one.
9940     ConditionBit = State.Builder.getTrue();
9941 
9942   // Replace the temporary unreachable terminator with a new conditional branch,
9943   // whose two destinations will be set later when they are created.
9944   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9945   assert(isa<UnreachableInst>(CurrentTerminator) &&
9946          "Expected to replace unreachable terminator with conditional branch.");
9947   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9948   CondBr->setSuccessor(0, nullptr);
9949   ReplaceInstWithInst(CurrentTerminator, CondBr);
9950 }
9951 
9952 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9953   assert(State.Instance && "Predicated instruction PHI works per instance.");
9954   Instruction *ScalarPredInst =
9955       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9956   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9957   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9958   assert(PredicatingBB && "Predicated block has no single predecessor.");
9959   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9960          "operand must be VPReplicateRecipe");
9961 
9962   // By current pack/unpack logic we need to generate only a single phi node: if
9963   // a vector value for the predicated instruction exists at this point it means
9964   // the instruction has vector users only, and a phi for the vector value is
9965   // needed. In this case the recipe of the predicated instruction is marked to
9966   // also do that packing, thereby "hoisting" the insert-element sequence.
9967   // Otherwise, a phi node for the scalar value is needed.
9968   unsigned Part = State.Instance->Part;
9969   if (State.hasVectorValue(getOperand(0), Part)) {
9970     Value *VectorValue = State.get(getOperand(0), Part);
9971     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9972     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9973     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9974     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9975     if (State.hasVectorValue(this, Part))
9976       State.reset(this, VPhi, Part);
9977     else
9978       State.set(this, VPhi, Part);
9979     // NOTE: Currently we need to update the value of the operand, so the next
9980     // predicated iteration inserts its generated value in the correct vector.
9981     State.reset(getOperand(0), VPhi, Part);
9982   } else {
9983     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9984     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9985     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9986                      PredicatingBB);
9987     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9988     if (State.hasScalarValue(this, *State.Instance))
9989       State.reset(this, Phi, *State.Instance);
9990     else
9991       State.set(this, Phi, *State.Instance);
9992     // NOTE: Currently we need to update the value of the operand, so the next
9993     // predicated iteration inserts its generated value in the correct vector.
9994     State.reset(getOperand(0), Phi, *State.Instance);
9995   }
9996 }
9997 
9998 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9999   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
10000 
10001   // Attempt to issue a wide load.
10002   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
10003   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
10004 
10005   assert((LI || SI) && "Invalid Load/Store instruction");
10006   assert((!SI || StoredValue) && "No stored value provided for widened store");
10007   assert((!LI || !StoredValue) && "Stored value provided for widened load");
10008 
10009   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
10010 
10011   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
10012   const Align Alignment = getLoadStoreAlignment(&Ingredient);
10013   bool CreateGatherScatter = !Consecutive;
10014 
10015   auto &Builder = State.Builder;
10016   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
10017   bool isMaskRequired = getMask();
10018   if (isMaskRequired)
10019     for (unsigned Part = 0; Part < State.UF; ++Part)
10020       BlockInMaskParts[Part] = State.get(getMask(), Part);
10021 
10022   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
10023     // Calculate the pointer for the specific unroll-part.
10024     GetElementPtrInst *PartPtr = nullptr;
10025 
10026     bool InBounds = false;
10027     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
10028       InBounds = gep->isInBounds();
10029     if (Reverse) {
10030       // If the address is consecutive but reversed, then the
10031       // wide store needs to start at the last vector element.
10032       // RunTimeVF =  VScale * VF.getKnownMinValue()
10033       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
10034       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
10035       // NumElt = -Part * RunTimeVF
10036       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
10037       // LastLane = 1 - RunTimeVF
10038       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
10039       PartPtr =
10040           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
10041       PartPtr->setIsInBounds(InBounds);
10042       PartPtr = cast<GetElementPtrInst>(
10043           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
10044       PartPtr->setIsInBounds(InBounds);
10045       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
10046         BlockInMaskParts[Part] =
10047             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
10048     } else {
10049       Value *Increment =
10050           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
10051       PartPtr = cast<GetElementPtrInst>(
10052           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
10053       PartPtr->setIsInBounds(InBounds);
10054     }
10055 
10056     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
10057     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
10058   };
10059 
10060   // Handle Stores:
10061   if (SI) {
10062     State.ILV->setDebugLocFromInst(SI);
10063 
10064     for (unsigned Part = 0; Part < State.UF; ++Part) {
10065       Instruction *NewSI = nullptr;
10066       Value *StoredVal = State.get(StoredValue, Part);
10067       if (CreateGatherScatter) {
10068         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10069         Value *VectorGep = State.get(getAddr(), Part);
10070         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
10071                                             MaskPart);
10072       } else {
10073         if (Reverse) {
10074           // If we store to reverse consecutive memory locations, then we need
10075           // to reverse the order of elements in the stored value.
10076           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10077           // We don't want to update the value in the map as it might be used in
10078           // another expression. So don't call resetVectorValue(StoredVal).
10079         }
10080         auto *VecPtr =
10081             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10082         if (isMaskRequired)
10083           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10084                                             BlockInMaskParts[Part]);
10085         else
10086           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10087       }
10088       State.ILV->addMetadata(NewSI, SI);
10089     }
10090     return;
10091   }
10092 
10093   // Handle loads.
10094   assert(LI && "Must have a load instruction");
10095   State.ILV->setDebugLocFromInst(LI);
10096   for (unsigned Part = 0; Part < State.UF; ++Part) {
10097     Value *NewLI;
10098     if (CreateGatherScatter) {
10099       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10100       Value *VectorGep = State.get(getAddr(), Part);
10101       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10102                                          nullptr, "wide.masked.gather");
10103       State.ILV->addMetadata(NewLI, LI);
10104     } else {
10105       auto *VecPtr =
10106           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10107       if (isMaskRequired)
10108         NewLI = Builder.CreateMaskedLoad(
10109             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10110             PoisonValue::get(DataTy), "wide.masked.load");
10111       else
10112         NewLI =
10113             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10114 
10115       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10116       State.ILV->addMetadata(NewLI, LI);
10117       if (Reverse)
10118         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10119     }
10120 
10121     State.set(this, NewLI, Part);
10122   }
10123 }
10124 
10125 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10126 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10127 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10128 // for predication.
10129 static ScalarEpilogueLowering getScalarEpilogueLowering(
10130     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10131     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10132     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10133     LoopVectorizationLegality &LVL) {
10134   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10135   // don't look at hints or options, and don't request a scalar epilogue.
10136   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10137   // LoopAccessInfo (due to code dependency and not being able to reliably get
10138   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10139   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10140   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10141   // back to the old way and vectorize with versioning when forced. See D81345.)
10142   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10143                                                       PGSOQueryType::IRPass) &&
10144                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10145     return CM_ScalarEpilogueNotAllowedOptSize;
10146 
10147   // 2) If set, obey the directives
10148   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10149     switch (PreferPredicateOverEpilogue) {
10150     case PreferPredicateTy::ScalarEpilogue:
10151       return CM_ScalarEpilogueAllowed;
10152     case PreferPredicateTy::PredicateElseScalarEpilogue:
10153       return CM_ScalarEpilogueNotNeededUsePredicate;
10154     case PreferPredicateTy::PredicateOrDontVectorize:
10155       return CM_ScalarEpilogueNotAllowedUsePredicate;
10156     };
10157   }
10158 
10159   // 3) If set, obey the hints
10160   switch (Hints.getPredicate()) {
10161   case LoopVectorizeHints::FK_Enabled:
10162     return CM_ScalarEpilogueNotNeededUsePredicate;
10163   case LoopVectorizeHints::FK_Disabled:
10164     return CM_ScalarEpilogueAllowed;
10165   };
10166 
10167   // 4) if the TTI hook indicates this is profitable, request predication.
10168   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10169                                        LVL.getLAI()))
10170     return CM_ScalarEpilogueNotNeededUsePredicate;
10171 
10172   return CM_ScalarEpilogueAllowed;
10173 }
10174 
10175 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10176   // If Values have been set for this Def return the one relevant for \p Part.
10177   if (hasVectorValue(Def, Part))
10178     return Data.PerPartOutput[Def][Part];
10179 
10180   if (!hasScalarValue(Def, {Part, 0})) {
10181     Value *IRV = Def->getLiveInIRValue();
10182     Value *B = ILV->getBroadcastInstrs(IRV);
10183     set(Def, B, Part);
10184     return B;
10185   }
10186 
10187   Value *ScalarValue = get(Def, {Part, 0});
10188   // If we aren't vectorizing, we can just copy the scalar map values over
10189   // to the vector map.
10190   if (VF.isScalar()) {
10191     set(Def, ScalarValue, Part);
10192     return ScalarValue;
10193   }
10194 
10195   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10196   bool IsUniform = RepR && RepR->isUniform();
10197 
10198   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10199   // Check if there is a scalar value for the selected lane.
10200   if (!hasScalarValue(Def, {Part, LastLane})) {
10201     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10202     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10203             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10204            "unexpected recipe found to be invariant");
10205     IsUniform = true;
10206     LastLane = 0;
10207   }
10208 
10209   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10210   // Set the insert point after the last scalarized instruction or after the
10211   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10212   // will directly follow the scalar definitions.
10213   auto OldIP = Builder.saveIP();
10214   auto NewIP =
10215       isa<PHINode>(LastInst)
10216           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10217           : std::next(BasicBlock::iterator(LastInst));
10218   Builder.SetInsertPoint(&*NewIP);
10219 
10220   // However, if we are vectorizing, we need to construct the vector values.
10221   // If the value is known to be uniform after vectorization, we can just
10222   // broadcast the scalar value corresponding to lane zero for each unroll
10223   // iteration. Otherwise, we construct the vector values using
10224   // insertelement instructions. Since the resulting vectors are stored in
10225   // State, we will only generate the insertelements once.
10226   Value *VectorValue = nullptr;
10227   if (IsUniform) {
10228     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10229     set(Def, VectorValue, Part);
10230   } else {
10231     // Initialize packing with insertelements to start from undef.
10232     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10233     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10234     set(Def, Undef, Part);
10235     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10236       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10237     VectorValue = get(Def, Part);
10238   }
10239   Builder.restoreIP(OldIP);
10240   return VectorValue;
10241 }
10242 
10243 // Process the loop in the VPlan-native vectorization path. This path builds
10244 // VPlan upfront in the vectorization pipeline, which allows to apply
10245 // VPlan-to-VPlan transformations from the very beginning without modifying the
10246 // input LLVM IR.
10247 static bool processLoopInVPlanNativePath(
10248     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10249     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10250     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10251     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10252     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10253     LoopVectorizationRequirements &Requirements) {
10254 
10255   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10256     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10257     return false;
10258   }
10259   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10260   Function *F = L->getHeader()->getParent();
10261   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10262 
10263   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10264       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10265 
10266   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10267                                 &Hints, IAI);
10268   // Use the planner for outer loop vectorization.
10269   // TODO: CM is not used at this point inside the planner. Turn CM into an
10270   // optional argument if we don't need it in the future.
10271   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10272                                Requirements, ORE);
10273 
10274   // Get user vectorization factor.
10275   ElementCount UserVF = Hints.getWidth();
10276 
10277   CM.collectElementTypesForWidening();
10278 
10279   // Plan how to best vectorize, return the best VF and its cost.
10280   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10281 
10282   // If we are stress testing VPlan builds, do not attempt to generate vector
10283   // code. Masked vector code generation support will follow soon.
10284   // Also, do not attempt to vectorize if no vector code will be produced.
10285   if (VPlanBuildStressTest || EnableVPlanPredication ||
10286       VectorizationFactor::Disabled() == VF)
10287     return false;
10288 
10289   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10290 
10291   {
10292     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10293                              F->getParent()->getDataLayout());
10294     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10295                            &CM, BFI, PSI, Checks);
10296     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10297                       << L->getHeader()->getParent()->getName() << "\"\n");
10298     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10299   }
10300 
10301   // Mark the loop as already vectorized to avoid vectorizing again.
10302   Hints.setAlreadyVectorized();
10303   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10304   return true;
10305 }
10306 
10307 // Emit a remark if there are stores to floats that required a floating point
10308 // extension. If the vectorized loop was generated with floating point there
10309 // will be a performance penalty from the conversion overhead and the change in
10310 // the vector width.
10311 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10312   SmallVector<Instruction *, 4> Worklist;
10313   for (BasicBlock *BB : L->getBlocks()) {
10314     for (Instruction &Inst : *BB) {
10315       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10316         if (S->getValueOperand()->getType()->isFloatTy())
10317           Worklist.push_back(S);
10318       }
10319     }
10320   }
10321 
10322   // Traverse the floating point stores upwards searching, for floating point
10323   // conversions.
10324   SmallPtrSet<const Instruction *, 4> Visited;
10325   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10326   while (!Worklist.empty()) {
10327     auto *I = Worklist.pop_back_val();
10328     if (!L->contains(I))
10329       continue;
10330     if (!Visited.insert(I).second)
10331       continue;
10332 
10333     // Emit a remark if the floating point store required a floating
10334     // point conversion.
10335     // TODO: More work could be done to identify the root cause such as a
10336     // constant or a function return type and point the user to it.
10337     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10338       ORE->emit([&]() {
10339         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10340                                           I->getDebugLoc(), L->getHeader())
10341                << "floating point conversion changes vector width. "
10342                << "Mixed floating point precision requires an up/down "
10343                << "cast that will negatively impact performance.";
10344       });
10345 
10346     for (Use &Op : I->operands())
10347       if (auto *OpI = dyn_cast<Instruction>(Op))
10348         Worklist.push_back(OpI);
10349   }
10350 }
10351 
10352 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10353     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10354                                !EnableLoopInterleaving),
10355       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10356                               !EnableLoopVectorization) {}
10357 
10358 bool LoopVectorizePass::processLoop(Loop *L) {
10359   assert((EnableVPlanNativePath || L->isInnermost()) &&
10360          "VPlan-native path is not enabled. Only process inner loops.");
10361 
10362 #ifndef NDEBUG
10363   const std::string DebugLocStr = getDebugLocString(L);
10364 #endif /* NDEBUG */
10365 
10366   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10367                     << L->getHeader()->getParent()->getName() << "\" from "
10368                     << DebugLocStr << "\n");
10369 
10370   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10371 
10372   LLVM_DEBUG(
10373       dbgs() << "LV: Loop hints:"
10374              << " force="
10375              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10376                      ? "disabled"
10377                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10378                             ? "enabled"
10379                             : "?"))
10380              << " width=" << Hints.getWidth()
10381              << " interleave=" << Hints.getInterleave() << "\n");
10382 
10383   // Function containing loop
10384   Function *F = L->getHeader()->getParent();
10385 
10386   // Looking at the diagnostic output is the only way to determine if a loop
10387   // was vectorized (other than looking at the IR or machine code), so it
10388   // is important to generate an optimization remark for each loop. Most of
10389   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10390   // generated as OptimizationRemark and OptimizationRemarkMissed are
10391   // less verbose reporting vectorized loops and unvectorized loops that may
10392   // benefit from vectorization, respectively.
10393 
10394   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10395     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10396     return false;
10397   }
10398 
10399   PredicatedScalarEvolution PSE(*SE, *L);
10400 
10401   // Check if it is legal to vectorize the loop.
10402   LoopVectorizationRequirements Requirements;
10403   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10404                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10405   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10406     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10407     Hints.emitRemarkWithHints();
10408     return false;
10409   }
10410 
10411   // Check the function attributes and profiles to find out if this function
10412   // should be optimized for size.
10413   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10414       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10415 
10416   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10417   // here. They may require CFG and instruction level transformations before
10418   // even evaluating whether vectorization is profitable. Since we cannot modify
10419   // the incoming IR, we need to build VPlan upfront in the vectorization
10420   // pipeline.
10421   if (!L->isInnermost())
10422     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10423                                         ORE, BFI, PSI, Hints, Requirements);
10424 
10425   assert(L->isInnermost() && "Inner loop expected.");
10426 
10427   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10428   // count by optimizing for size, to minimize overheads.
10429   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10430   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10431     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10432                       << "This loop is worth vectorizing only if no scalar "
10433                       << "iteration overheads are incurred.");
10434     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10435       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10436     else {
10437       LLVM_DEBUG(dbgs() << "\n");
10438       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10439     }
10440   }
10441 
10442   // Check the function attributes to see if implicit floats are allowed.
10443   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10444   // an integer loop and the vector instructions selected are purely integer
10445   // vector instructions?
10446   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10447     reportVectorizationFailure(
10448         "Can't vectorize when the NoImplicitFloat attribute is used",
10449         "loop not vectorized due to NoImplicitFloat attribute",
10450         "NoImplicitFloat", ORE, L);
10451     Hints.emitRemarkWithHints();
10452     return false;
10453   }
10454 
10455   // Check if the target supports potentially unsafe FP vectorization.
10456   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10457   // for the target we're vectorizing for, to make sure none of the
10458   // additional fp-math flags can help.
10459   if (Hints.isPotentiallyUnsafe() &&
10460       TTI->isFPVectorizationPotentiallyUnsafe()) {
10461     reportVectorizationFailure(
10462         "Potentially unsafe FP op prevents vectorization",
10463         "loop not vectorized due to unsafe FP support.",
10464         "UnsafeFP", ORE, L);
10465     Hints.emitRemarkWithHints();
10466     return false;
10467   }
10468 
10469   bool AllowOrderedReductions;
10470   // If the flag is set, use that instead and override the TTI behaviour.
10471   if (ForceOrderedReductions.getNumOccurrences() > 0)
10472     AllowOrderedReductions = ForceOrderedReductions;
10473   else
10474     AllowOrderedReductions = TTI->enableOrderedReductions();
10475   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10476     ORE->emit([&]() {
10477       auto *ExactFPMathInst = Requirements.getExactFPInst();
10478       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10479                                                  ExactFPMathInst->getDebugLoc(),
10480                                                  ExactFPMathInst->getParent())
10481              << "loop not vectorized: cannot prove it is safe to reorder "
10482                 "floating-point operations";
10483     });
10484     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10485                          "reorder floating-point operations\n");
10486     Hints.emitRemarkWithHints();
10487     return false;
10488   }
10489 
10490   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10491   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10492 
10493   // If an override option has been passed in for interleaved accesses, use it.
10494   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10495     UseInterleaved = EnableInterleavedMemAccesses;
10496 
10497   // Analyze interleaved memory accesses.
10498   if (UseInterleaved) {
10499     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10500   }
10501 
10502   // Use the cost model.
10503   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10504                                 F, &Hints, IAI);
10505   CM.collectValuesToIgnore();
10506   CM.collectElementTypesForWidening();
10507 
10508   // Use the planner for vectorization.
10509   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10510                                Requirements, ORE);
10511 
10512   // Get user vectorization factor and interleave count.
10513   ElementCount UserVF = Hints.getWidth();
10514   unsigned UserIC = Hints.getInterleave();
10515 
10516   // Plan how to best vectorize, return the best VF and its cost.
10517   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10518 
10519   VectorizationFactor VF = VectorizationFactor::Disabled();
10520   unsigned IC = 1;
10521 
10522   if (MaybeVF) {
10523     VF = *MaybeVF;
10524     // Select the interleave count.
10525     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10526   }
10527 
10528   // Identify the diagnostic messages that should be produced.
10529   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10530   bool VectorizeLoop = true, InterleaveLoop = true;
10531   if (VF.Width.isScalar()) {
10532     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10533     VecDiagMsg = std::make_pair(
10534         "VectorizationNotBeneficial",
10535         "the cost-model indicates that vectorization is not beneficial");
10536     VectorizeLoop = false;
10537   }
10538 
10539   if (!MaybeVF && UserIC > 1) {
10540     // Tell the user interleaving was avoided up-front, despite being explicitly
10541     // requested.
10542     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10543                          "interleaving should be avoided up front\n");
10544     IntDiagMsg = std::make_pair(
10545         "InterleavingAvoided",
10546         "Ignoring UserIC, because interleaving was avoided up front");
10547     InterleaveLoop = false;
10548   } else if (IC == 1 && UserIC <= 1) {
10549     // Tell the user interleaving is not beneficial.
10550     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10551     IntDiagMsg = std::make_pair(
10552         "InterleavingNotBeneficial",
10553         "the cost-model indicates that interleaving is not beneficial");
10554     InterleaveLoop = false;
10555     if (UserIC == 1) {
10556       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10557       IntDiagMsg.second +=
10558           " and is explicitly disabled or interleave count is set to 1";
10559     }
10560   } else if (IC > 1 && UserIC == 1) {
10561     // Tell the user interleaving is beneficial, but it explicitly disabled.
10562     LLVM_DEBUG(
10563         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10564     IntDiagMsg = std::make_pair(
10565         "InterleavingBeneficialButDisabled",
10566         "the cost-model indicates that interleaving is beneficial "
10567         "but is explicitly disabled or interleave count is set to 1");
10568     InterleaveLoop = false;
10569   }
10570 
10571   // Override IC if user provided an interleave count.
10572   IC = UserIC > 0 ? UserIC : IC;
10573 
10574   // Emit diagnostic messages, if any.
10575   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10576   if (!VectorizeLoop && !InterleaveLoop) {
10577     // Do not vectorize or interleaving the loop.
10578     ORE->emit([&]() {
10579       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10580                                       L->getStartLoc(), L->getHeader())
10581              << VecDiagMsg.second;
10582     });
10583     ORE->emit([&]() {
10584       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10585                                       L->getStartLoc(), L->getHeader())
10586              << IntDiagMsg.second;
10587     });
10588     return false;
10589   } else if (!VectorizeLoop && InterleaveLoop) {
10590     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10591     ORE->emit([&]() {
10592       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10593                                         L->getStartLoc(), L->getHeader())
10594              << VecDiagMsg.second;
10595     });
10596   } else if (VectorizeLoop && !InterleaveLoop) {
10597     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10598                       << ") in " << DebugLocStr << '\n');
10599     ORE->emit([&]() {
10600       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10601                                         L->getStartLoc(), L->getHeader())
10602              << IntDiagMsg.second;
10603     });
10604   } else if (VectorizeLoop && InterleaveLoop) {
10605     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10606                       << ") in " << DebugLocStr << '\n');
10607     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10608   }
10609 
10610   bool DisableRuntimeUnroll = false;
10611   MDNode *OrigLoopID = L->getLoopID();
10612   {
10613     // Optimistically generate runtime checks. Drop them if they turn out to not
10614     // be profitable. Limit the scope of Checks, so the cleanup happens
10615     // immediately after vector codegeneration is done.
10616     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10617                              F->getParent()->getDataLayout());
10618     if (!VF.Width.isScalar() || IC > 1)
10619       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate());
10620 
10621     using namespace ore;
10622     if (!VectorizeLoop) {
10623       assert(IC > 1 && "interleave count should not be 1 or 0");
10624       // If we decided that it is not legal to vectorize the loop, then
10625       // interleave it.
10626       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10627                                  &CM, BFI, PSI, Checks);
10628 
10629       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10630       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10631 
10632       ORE->emit([&]() {
10633         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10634                                   L->getHeader())
10635                << "interleaved loop (interleaved count: "
10636                << NV("InterleaveCount", IC) << ")";
10637       });
10638     } else {
10639       // If we decided that it is *legal* to vectorize the loop, then do it.
10640 
10641       // Consider vectorizing the epilogue too if it's profitable.
10642       VectorizationFactor EpilogueVF =
10643           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10644       if (EpilogueVF.Width.isVector()) {
10645 
10646         // The first pass vectorizes the main loop and creates a scalar epilogue
10647         // to be vectorized by executing the plan (potentially with a different
10648         // factor) again shortly afterwards.
10649         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10650         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10651                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10652 
10653         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10654         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10655                         DT);
10656         ++LoopsVectorized;
10657 
10658         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10659         formLCSSARecursively(*L, *DT, LI, SE);
10660 
10661         // Second pass vectorizes the epilogue and adjusts the control flow
10662         // edges from the first pass.
10663         EPI.MainLoopVF = EPI.EpilogueVF;
10664         EPI.MainLoopUF = EPI.EpilogueUF;
10665         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10666                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10667                                                  Checks);
10668 
10669         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10670 
10671         // Ensure that the start values for any VPReductionPHIRecipes are
10672         // updated before vectorising the epilogue loop.
10673         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10674         for (VPRecipeBase &R : Header->phis()) {
10675           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10676             if (auto *Resume = MainILV.getReductionResumeValue(
10677                     ReductionPhi->getRecurrenceDescriptor())) {
10678               VPValue *StartVal = new VPValue(Resume);
10679               BestEpiPlan.addExternalDef(StartVal);
10680               ReductionPhi->setOperand(0, StartVal);
10681             }
10682           }
10683         }
10684 
10685         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10686                         DT);
10687         ++LoopsEpilogueVectorized;
10688 
10689         if (!MainILV.areSafetyChecksAdded())
10690           DisableRuntimeUnroll = true;
10691       } else {
10692         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10693                                &LVL, &CM, BFI, PSI, Checks);
10694 
10695         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10696         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10697         ++LoopsVectorized;
10698 
10699         // Add metadata to disable runtime unrolling a scalar loop when there
10700         // are no runtime checks about strides and memory. A scalar loop that is
10701         // rarely used is not worth unrolling.
10702         if (!LB.areSafetyChecksAdded())
10703           DisableRuntimeUnroll = true;
10704       }
10705       // Report the vectorization decision.
10706       ORE->emit([&]() {
10707         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10708                                   L->getHeader())
10709                << "vectorized loop (vectorization width: "
10710                << NV("VectorizationFactor", VF.Width)
10711                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10712       });
10713     }
10714 
10715     if (ORE->allowExtraAnalysis(LV_NAME))
10716       checkMixedPrecision(L, ORE);
10717   }
10718 
10719   Optional<MDNode *> RemainderLoopID =
10720       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10721                                       LLVMLoopVectorizeFollowupEpilogue});
10722   if (RemainderLoopID.hasValue()) {
10723     L->setLoopID(RemainderLoopID.getValue());
10724   } else {
10725     if (DisableRuntimeUnroll)
10726       AddRuntimeUnrollDisableMetaData(L);
10727 
10728     // Mark the loop as already vectorized to avoid vectorizing again.
10729     Hints.setAlreadyVectorized();
10730   }
10731 
10732   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10733   return true;
10734 }
10735 
10736 LoopVectorizeResult LoopVectorizePass::runImpl(
10737     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10738     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10739     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10740     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10741     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10742   SE = &SE_;
10743   LI = &LI_;
10744   TTI = &TTI_;
10745   DT = &DT_;
10746   BFI = &BFI_;
10747   TLI = TLI_;
10748   AA = &AA_;
10749   AC = &AC_;
10750   GetLAA = &GetLAA_;
10751   DB = &DB_;
10752   ORE = &ORE_;
10753   PSI = PSI_;
10754 
10755   // Don't attempt if
10756   // 1. the target claims to have no vector registers, and
10757   // 2. interleaving won't help ILP.
10758   //
10759   // The second condition is necessary because, even if the target has no
10760   // vector registers, loop vectorization may still enable scalar
10761   // interleaving.
10762   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10763       TTI->getMaxInterleaveFactor(1) < 2)
10764     return LoopVectorizeResult(false, false);
10765 
10766   bool Changed = false, CFGChanged = false;
10767 
10768   // The vectorizer requires loops to be in simplified form.
10769   // Since simplification may add new inner loops, it has to run before the
10770   // legality and profitability checks. This means running the loop vectorizer
10771   // will simplify all loops, regardless of whether anything end up being
10772   // vectorized.
10773   for (auto &L : *LI)
10774     Changed |= CFGChanged |=
10775         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10776 
10777   // Build up a worklist of inner-loops to vectorize. This is necessary as
10778   // the act of vectorizing or partially unrolling a loop creates new loops
10779   // and can invalidate iterators across the loops.
10780   SmallVector<Loop *, 8> Worklist;
10781 
10782   for (Loop *L : *LI)
10783     collectSupportedLoops(*L, LI, ORE, Worklist);
10784 
10785   LoopsAnalyzed += Worklist.size();
10786 
10787   // Now walk the identified inner loops.
10788   while (!Worklist.empty()) {
10789     Loop *L = Worklist.pop_back_val();
10790 
10791     // For the inner loops we actually process, form LCSSA to simplify the
10792     // transform.
10793     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10794 
10795     Changed |= CFGChanged |= processLoop(L);
10796   }
10797 
10798   // Process each loop nest in the function.
10799   return LoopVectorizeResult(Changed, CFGChanged);
10800 }
10801 
10802 PreservedAnalyses LoopVectorizePass::run(Function &F,
10803                                          FunctionAnalysisManager &AM) {
10804     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10805     auto &LI = AM.getResult<LoopAnalysis>(F);
10806     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10807     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10808     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10809     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10810     auto &AA = AM.getResult<AAManager>(F);
10811     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10812     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10813     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10814 
10815     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10816     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10817         [&](Loop &L) -> const LoopAccessInfo & {
10818       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10819                                         TLI, TTI, nullptr, nullptr, nullptr};
10820       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10821     };
10822     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10823     ProfileSummaryInfo *PSI =
10824         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10825     LoopVectorizeResult Result =
10826         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10827     if (!Result.MadeAnyChange)
10828       return PreservedAnalyses::all();
10829     PreservedAnalyses PA;
10830 
10831     // We currently do not preserve loopinfo/dominator analyses with outer loop
10832     // vectorization. Until this is addressed, mark these analyses as preserved
10833     // only for non-VPlan-native path.
10834     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10835     if (!EnableVPlanNativePath) {
10836       PA.preserve<LoopAnalysis>();
10837       PA.preserve<DominatorTreeAnalysis>();
10838     }
10839 
10840     if (Result.MadeCFGChange) {
10841       // Making CFG changes likely means a loop got vectorized. Indicate that
10842       // extra simplification passes should be run.
10843       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10844       // be run if runtime checks have been added.
10845       AM.getResult<ShouldRunExtraVectorPasses>(F);
10846       PA.preserve<ShouldRunExtraVectorPasses>();
10847     } else {
10848       PA.preserveSet<CFGAnalyses>();
10849     }
10850     return PA;
10851 }
10852 
10853 void LoopVectorizePass::printPipeline(
10854     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10855   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10856       OS, MapClassName2PassName);
10857 
10858   OS << "<";
10859   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10860   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10861   OS << ">";
10862 }
10863