1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 182 // that predication is preferred, and this lists all options. I.e., the 183 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 184 // and predicate the instructions accordingly. If tail-folding fails, there are 185 // different fallback strategies depending on these values: 186 namespace PreferPredicateTy { 187 enum Option { 188 ScalarEpilogue = 0, 189 PredicateElseScalarEpilogue, 190 PredicateOrDontVectorize 191 }; 192 } // namespace PreferPredicateTy 193 194 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 195 "prefer-predicate-over-epilogue", 196 cl::init(PreferPredicateTy::ScalarEpilogue), 197 cl::Hidden, 198 cl::desc("Tail-folding and predication preferences over creating a scalar " 199 "epilogue loop."), 200 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 201 "scalar-epilogue", 202 "Don't tail-predicate loops, create scalar epilogue"), 203 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 204 "predicate-else-scalar-epilogue", 205 "prefer tail-folding, create scalar epilogue if tail " 206 "folding fails."), 207 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 208 "predicate-dont-vectorize", 209 "prefers tail-folding, don't attempt vectorization if " 210 "tail-folding fails."))); 211 212 static cl::opt<bool> MaximizeBandwidth( 213 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 214 cl::desc("Maximize bandwidth when selecting vectorization factor which " 215 "will be determined by the smallest type in loop.")); 216 217 static cl::opt<bool> EnableInterleavedMemAccesses( 218 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 219 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 220 221 /// An interleave-group may need masking if it resides in a block that needs 222 /// predication, or in order to mask away gaps. 223 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 224 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 225 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 226 227 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 228 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 229 cl::desc("We don't interleave loops with a estimated constant trip count " 230 "below this number")); 231 232 static cl::opt<unsigned> ForceTargetNumScalarRegs( 233 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 234 cl::desc("A flag that overrides the target's number of scalar registers.")); 235 236 static cl::opt<unsigned> ForceTargetNumVectorRegs( 237 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 238 cl::desc("A flag that overrides the target's number of vector registers.")); 239 240 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 241 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 242 cl::desc("A flag that overrides the target's max interleave factor for " 243 "scalar loops.")); 244 245 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 246 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 247 cl::desc("A flag that overrides the target's max interleave factor for " 248 "vectorized loops.")); 249 250 static cl::opt<unsigned> ForceTargetInstructionCost( 251 "force-target-instruction-cost", cl::init(0), cl::Hidden, 252 cl::desc("A flag that overrides the target's expected cost for " 253 "an instruction to a single constant value. Mostly " 254 "useful for getting consistent testing.")); 255 256 static cl::opt<unsigned> SmallLoopCost( 257 "small-loop-cost", cl::init(20), cl::Hidden, 258 cl::desc( 259 "The cost of a loop that is considered 'small' by the interleaver.")); 260 261 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 262 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 263 cl::desc("Enable the use of the block frequency analysis to access PGO " 264 "heuristics minimizing code growth in cold regions and being more " 265 "aggressive in hot regions.")); 266 267 // Runtime interleave loops for load/store throughput. 268 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 269 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 270 cl::desc( 271 "Enable runtime interleaving until load/store ports are saturated")); 272 273 /// Interleave small loops with scalar reductions. 274 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 275 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 276 cl::desc("Enable interleaving for loops with small iteration counts that " 277 "contain scalar reductions to expose ILP.")); 278 279 /// The number of stores in a loop that are allowed to need predication. 280 static cl::opt<unsigned> NumberOfStoresToPredicate( 281 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 282 cl::desc("Max number of stores to be predicated behind an if.")); 283 284 static cl::opt<bool> EnableIndVarRegisterHeur( 285 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 286 cl::desc("Count the induction variable only once when interleaving")); 287 288 static cl::opt<bool> EnableCondStoresVectorization( 289 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 290 cl::desc("Enable if predication of stores during vectorization.")); 291 292 static cl::opt<unsigned> MaxNestedScalarReductionIC( 293 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 294 cl::desc("The maximum interleave count to use when interleaving a scalar " 295 "reduction in a nested loop.")); 296 297 static cl::opt<bool> 298 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 299 cl::Hidden, 300 cl::desc("Prefer in-loop vector reductions, " 301 "overriding the targets preference.")); 302 303 static cl::opt<bool> PreferPredicatedReductionSelect( 304 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 305 cl::desc( 306 "Prefer predicating a reduction operation over an after loop select.")); 307 308 cl::opt<bool> EnableVPlanNativePath( 309 "enable-vplan-native-path", cl::init(false), cl::Hidden, 310 cl::desc("Enable VPlan-native vectorization path with " 311 "support for outer loop vectorization.")); 312 313 // FIXME: Remove this switch once we have divergence analysis. Currently we 314 // assume divergent non-backedge branches when this switch is true. 315 cl::opt<bool> EnableVPlanPredication( 316 "enable-vplan-predication", cl::init(false), cl::Hidden, 317 cl::desc("Enable VPlan-native vectorization path predicator with " 318 "support for outer loop vectorization.")); 319 320 // This flag enables the stress testing of the VPlan H-CFG construction in the 321 // VPlan-native vectorization path. It must be used in conjuction with 322 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 323 // verification of the H-CFGs built. 324 static cl::opt<bool> VPlanBuildStressTest( 325 "vplan-build-stress-test", cl::init(false), cl::Hidden, 326 cl::desc( 327 "Build VPlan for every supported loop nest in the function and bail " 328 "out right after the build (stress test the VPlan H-CFG construction " 329 "in the VPlan-native vectorization path).")); 330 331 cl::opt<bool> llvm::EnableLoopInterleaving( 332 "interleave-loops", cl::init(true), cl::Hidden, 333 cl::desc("Enable loop interleaving in Loop vectorization passes")); 334 cl::opt<bool> llvm::EnableLoopVectorization( 335 "vectorize-loops", cl::init(true), cl::Hidden, 336 cl::desc("Run the Loop vectorization passes")); 337 338 /// A helper function that returns the type of loaded or stored value. 339 static Type *getMemInstValueType(Value *I) { 340 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 341 "Expected Load or Store instruction"); 342 if (auto *LI = dyn_cast<LoadInst>(I)) 343 return LI->getType(); 344 return cast<StoreInst>(I)->getValueOperand()->getType(); 345 } 346 347 /// A helper function that returns true if the given type is irregular. The 348 /// type is irregular if its allocated size doesn't equal the store size of an 349 /// element of the corresponding vector type at the given vectorization factor. 350 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 351 assert(!VF.isScalable() && "scalable vectors not yet supported."); 352 // Determine if an array of VF elements of type Ty is "bitcast compatible" 353 // with a <VF x Ty> vector. 354 if (VF.isVector()) { 355 auto *VectorTy = VectorType::get(Ty, VF); 356 return TypeSize::get(VF.getKnownMinValue() * 357 DL.getTypeAllocSize(Ty).getFixedValue(), 358 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 359 } 360 361 // If the vectorization factor is one, we just check if an array of type Ty 362 // requires padding between elements. 363 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 364 } 365 366 /// A helper function that returns the reciprocal of the block probability of 367 /// predicated blocks. If we return X, we are assuming the predicated block 368 /// will execute once for every X iterations of the loop header. 369 /// 370 /// TODO: We should use actual block probability here, if available. Currently, 371 /// we always assume predicated blocks have a 50% chance of executing. 372 static unsigned getReciprocalPredBlockProb() { return 2; } 373 374 /// A helper function that adds a 'fast' flag to floating-point operations. 375 static Value *addFastMathFlag(Value *V) { 376 if (isa<FPMathOperator>(V)) 377 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 378 return V; 379 } 380 381 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 382 if (isa<FPMathOperator>(V)) 383 cast<Instruction>(V)->setFastMathFlags(FMF); 384 return V; 385 } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 namespace llvm { 418 419 /// InnerLoopVectorizer vectorizes loops which contain only one basic 420 /// block to a specified vectorization factor (VF). 421 /// This class performs the widening of scalars into vectors, or multiple 422 /// scalars. This class also implements the following features: 423 /// * It inserts an epilogue loop for handling loops that don't have iteration 424 /// counts that are known to be a multiple of the vectorization factor. 425 /// * It handles the code generation for reduction variables. 426 /// * Scalarization (implementation using scalars) of un-vectorizable 427 /// instructions. 428 /// InnerLoopVectorizer does not perform any vectorization-legality 429 /// checks, and relies on the caller to check for the different legality 430 /// aspects. The InnerLoopVectorizer relies on the 431 /// LoopVectorizationLegality class to provide information about the induction 432 /// and reduction variables that were found to a given vectorization factor. 433 class InnerLoopVectorizer { 434 public: 435 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 436 LoopInfo *LI, DominatorTree *DT, 437 const TargetLibraryInfo *TLI, 438 const TargetTransformInfo *TTI, AssumptionCache *AC, 439 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 440 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 441 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 442 ProfileSummaryInfo *PSI) 443 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 444 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 445 Builder(PSE.getSE()->getContext()), 446 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 447 BFI(BFI), PSI(PSI) { 448 // Query this against the original loop and save it here because the profile 449 // of the original loop header may change as the transformation happens. 450 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 451 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 452 } 453 454 virtual ~InnerLoopVectorizer() = default; 455 456 /// Create a new empty loop that will contain vectorized instructions later 457 /// on, while the old loop will be used as the scalar remainder. Control flow 458 /// is generated around the vectorized (and scalar epilogue) loops consisting 459 /// of various checks and bypasses. Return the pre-header block of the new 460 /// loop. 461 BasicBlock *createVectorizedLoopSkeleton(); 462 463 /// Widen a single instruction within the innermost loop. 464 void widenInstruction(Instruction &I, VPUser &Operands, 465 VPTransformState &State); 466 467 /// Widen a single call instruction within the innermost loop. 468 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 469 VPTransformState &State); 470 471 /// Widen a single select instruction within the innermost loop. 472 void widenSelectInstruction(SelectInst &I, VPUser &Operands, 473 bool InvariantCond, VPTransformState &State); 474 475 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 476 void fixVectorizedLoop(); 477 478 // Return true if any runtime check is added. 479 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 480 481 /// A type for vectorized values in the new loop. Each value from the 482 /// original loop, when vectorized, is represented by UF vector values in the 483 /// new unrolled loop, where UF is the unroll factor. 484 using VectorParts = SmallVector<Value *, 2>; 485 486 /// Vectorize a single GetElementPtrInst based on information gathered and 487 /// decisions taken during planning. 488 void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF, 489 ElementCount VF, bool IsPtrLoopInvariant, 490 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 491 492 /// Vectorize a single PHINode in a block. This method handles the induction 493 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 494 /// arbitrary length vectors. 495 void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF); 496 497 /// A helper function to scalarize a single Instruction in the innermost loop. 498 /// Generates a sequence of scalar instances for each lane between \p MinLane 499 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 500 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 501 /// Instr's operands. 502 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 503 const VPIteration &Instance, bool IfPredicateInstr, 504 VPTransformState &State); 505 506 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 507 /// is provided, the integer induction variable will first be truncated to 508 /// the corresponding type. 509 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 510 511 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 512 /// vector or scalar value on-demand if one is not yet available. When 513 /// vectorizing a loop, we visit the definition of an instruction before its 514 /// uses. When visiting the definition, we either vectorize or scalarize the 515 /// instruction, creating an entry for it in the corresponding map. (In some 516 /// cases, such as induction variables, we will create both vector and scalar 517 /// entries.) Then, as we encounter uses of the definition, we derive values 518 /// for each scalar or vector use unless such a value is already available. 519 /// For example, if we scalarize a definition and one of its uses is vector, 520 /// we build the required vector on-demand with an insertelement sequence 521 /// when visiting the use. Otherwise, if the use is scalar, we can use the 522 /// existing scalar definition. 523 /// 524 /// Return a value in the new loop corresponding to \p V from the original 525 /// loop at unroll index \p Part. If the value has already been vectorized, 526 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 527 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 528 /// a new vector value on-demand by inserting the scalar values into a vector 529 /// with an insertelement sequence. If the value has been neither vectorized 530 /// nor scalarized, it must be loop invariant, so we simply broadcast the 531 /// value into a vector. 532 Value *getOrCreateVectorValue(Value *V, unsigned Part); 533 534 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 535 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 536 } 537 538 /// Return a value in the new loop corresponding to \p V from the original 539 /// loop at unroll and vector indices \p Instance. If the value has been 540 /// vectorized but not scalarized, the necessary extractelement instruction 541 /// will be generated. 542 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 543 544 /// Construct the vector value of a scalarized value \p V one lane at a time. 545 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 546 547 /// Try to vectorize interleaved access group \p Group with the base address 548 /// given in \p Addr, optionally masking the vector operations if \p 549 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 550 /// values in the vectorized loop. 551 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 552 VPTransformState &State, VPValue *Addr, 553 VPValue *BlockInMask = nullptr); 554 555 /// Vectorize Load and Store instructions with the base address given in \p 556 /// Addr, optionally masking the vector operations if \p BlockInMask is 557 /// non-null. Use \p State to translate given VPValues to IR values in the 558 /// vectorized loop. 559 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 560 VPValue *Def, VPValue *Addr, 561 VPValue *StoredValue, VPValue *BlockInMask); 562 563 /// Set the debug location in the builder using the debug location in 564 /// the instruction. 565 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 566 567 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 568 void fixNonInductionPHIs(void); 569 570 protected: 571 friend class LoopVectorizationPlanner; 572 573 /// A small list of PHINodes. 574 using PhiVector = SmallVector<PHINode *, 4>; 575 576 /// A type for scalarized values in the new loop. Each value from the 577 /// original loop, when scalarized, is represented by UF x VF scalar values 578 /// in the new unrolled loop, where UF is the unroll factor and VF is the 579 /// vectorization factor. 580 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 581 582 /// Set up the values of the IVs correctly when exiting the vector loop. 583 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 584 Value *CountRoundDown, Value *EndValue, 585 BasicBlock *MiddleBlock); 586 587 /// Create a new induction variable inside L. 588 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 589 Value *Step, Instruction *DL); 590 591 /// Handle all cross-iteration phis in the header. 592 void fixCrossIterationPHIs(); 593 594 /// Fix a first-order recurrence. This is the second phase of vectorizing 595 /// this phi node. 596 void fixFirstOrderRecurrence(PHINode *Phi); 597 598 /// Fix a reduction cross-iteration phi. This is the second phase of 599 /// vectorizing this phi node. 600 void fixReduction(PHINode *Phi); 601 602 /// Clear NSW/NUW flags from reduction instructions if necessary. 603 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 604 605 /// The Loop exit block may have single value PHI nodes with some 606 /// incoming value. While vectorizing we only handled real values 607 /// that were defined inside the loop and we should have one value for 608 /// each predecessor of its parent basic block. See PR14725. 609 void fixLCSSAPHIs(); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(); 618 619 /// Create a broadcast instruction. This method generates a broadcast 620 /// instruction (shuffle) for loop invariant values and for the induction 621 /// value. If this is the induction variable then we extend it to N, N+1, ... 622 /// this is needed because each iteration in the loop corresponds to a SIMD 623 /// element. 624 virtual Value *getBroadcastInstrs(Value *V); 625 626 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 627 /// to each vector element of Val. The sequence starts at StartIndex. 628 /// \p Opcode is relevant for FP induction variable. 629 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 630 Instruction::BinaryOps Opcode = 631 Instruction::BinaryOpsEnd); 632 633 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 634 /// variable on which to base the steps, \p Step is the size of the step, and 635 /// \p EntryVal is the value from the original loop that maps to the steps. 636 /// Note that \p EntryVal doesn't have to be an induction variable - it 637 /// can also be a truncate instruction. 638 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 639 const InductionDescriptor &ID); 640 641 /// Create a vector induction phi node based on an existing scalar one. \p 642 /// EntryVal is the value from the original loop that maps to the vector phi 643 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 644 /// truncate instruction, instead of widening the original IV, we widen a 645 /// version of the IV truncated to \p EntryVal's type. 646 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 647 Value *Step, Instruction *EntryVal); 648 649 /// Returns true if an instruction \p I should be scalarized instead of 650 /// vectorized for the chosen vectorization factor. 651 bool shouldScalarizeInstruction(Instruction *I) const; 652 653 /// Returns true if we should generate a scalar version of \p IV. 654 bool needsScalarInduction(Instruction *IV) const; 655 656 /// If there is a cast involved in the induction variable \p ID, which should 657 /// be ignored in the vectorized loop body, this function records the 658 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 659 /// cast. We had already proved that the casted Phi is equal to the uncasted 660 /// Phi in the vectorized loop (under a runtime guard), and therefore 661 /// there is no need to vectorize the cast - the same value can be used in the 662 /// vector loop for both the Phi and the cast. 663 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 664 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 665 /// 666 /// \p EntryVal is the value from the original loop that maps to the vector 667 /// phi node and is used to distinguish what is the IV currently being 668 /// processed - original one (if \p EntryVal is a phi corresponding to the 669 /// original IV) or the "newly-created" one based on the proof mentioned above 670 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 671 /// latter case \p EntryVal is a TruncInst and we must not record anything for 672 /// that IV, but it's error-prone to expect callers of this routine to care 673 /// about that, hence this explicit parameter. 674 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 675 const Instruction *EntryVal, 676 Value *VectorLoopValue, 677 unsigned Part, 678 unsigned Lane = UINT_MAX); 679 680 /// Generate a shuffle sequence that will reverse the vector Vec. 681 virtual Value *reverseVector(Value *Vec); 682 683 /// Returns (and creates if needed) the original loop trip count. 684 Value *getOrCreateTripCount(Loop *NewLoop); 685 686 /// Returns (and creates if needed) the trip count of the widened loop. 687 Value *getOrCreateVectorTripCount(Loop *NewLoop); 688 689 /// Returns a bitcasted value to the requested vector type. 690 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 691 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 692 const DataLayout &DL); 693 694 /// Emit a bypass check to see if the vector trip count is zero, including if 695 /// it overflows. 696 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 697 698 /// Emit a bypass check to see if all of the SCEV assumptions we've 699 /// had to make are correct. 700 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 701 702 /// Emit bypass checks to check any memory assumptions we may have made. 703 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 void createInductionResumeValues(Loop *L, Value *VectorTripCount); 724 725 /// Complete the loop skeleton by adding debug MDs, creating appropriate 726 /// conditional branches in the middle block, preparing the builder and 727 /// running the verifier. Take in the vector loop \p L as argument, and return 728 /// the preheader of the completed vector loop. 729 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 730 731 /// Add additional metadata to \p To that was not present on \p Orig. 732 /// 733 /// Currently this is used to add the noalias annotations based on the 734 /// inserted memchecks. Use this for instructions that are *cloned* into the 735 /// vector loop. 736 void addNewMetadata(Instruction *To, const Instruction *Orig); 737 738 /// Add metadata from one instruction to another. 739 /// 740 /// This includes both the original MDs from \p From and additional ones (\see 741 /// addNewMetadata). Use this for *newly created* instructions in the vector 742 /// loop. 743 void addMetadata(Instruction *To, Instruction *From); 744 745 /// Similar to the previous function but it adds the metadata to a 746 /// vector of instructions. 747 void addMetadata(ArrayRef<Value *> To, Instruction *From); 748 749 /// The original loop. 750 Loop *OrigLoop; 751 752 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 753 /// dynamic knowledge to simplify SCEV expressions and converts them to a 754 /// more usable form. 755 PredicatedScalarEvolution &PSE; 756 757 /// Loop Info. 758 LoopInfo *LI; 759 760 /// Dominator Tree. 761 DominatorTree *DT; 762 763 /// Alias Analysis. 764 AAResults *AA; 765 766 /// Target Library Info. 767 const TargetLibraryInfo *TLI; 768 769 /// Target Transform Info. 770 const TargetTransformInfo *TTI; 771 772 /// Assumption Cache. 773 AssumptionCache *AC; 774 775 /// Interface to emit optimization remarks. 776 OptimizationRemarkEmitter *ORE; 777 778 /// LoopVersioning. It's only set up (non-null) if memchecks were 779 /// used. 780 /// 781 /// This is currently only used to add no-alias metadata based on the 782 /// memchecks. The actually versioning is performed manually. 783 std::unique_ptr<LoopVersioning> LVer; 784 785 /// The vectorization SIMD factor to use. Each vector will have this many 786 /// vector elements. 787 ElementCount VF; 788 789 /// The vectorization unroll factor to use. Each scalar is vectorized to this 790 /// many different vector instructions. 791 unsigned UF; 792 793 /// The builder that we use 794 IRBuilder<> Builder; 795 796 // --- Vectorization state --- 797 798 /// The vector-loop preheader. 799 BasicBlock *LoopVectorPreHeader; 800 801 /// The scalar-loop preheader. 802 BasicBlock *LoopScalarPreHeader; 803 804 /// Middle Block between the vector and the scalar. 805 BasicBlock *LoopMiddleBlock; 806 807 /// The ExitBlock of the scalar loop. 808 BasicBlock *LoopExitBlock; 809 810 /// The vector loop body. 811 BasicBlock *LoopVectorBody; 812 813 /// The scalar loop body. 814 BasicBlock *LoopScalarBody; 815 816 /// A list of all bypass blocks. The first block is the entry of the loop. 817 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 818 819 /// The new Induction variable which was added to the new block. 820 PHINode *Induction = nullptr; 821 822 /// The induction variable of the old basic block. 823 PHINode *OldInduction = nullptr; 824 825 /// Maps values from the original loop to their corresponding values in the 826 /// vectorized loop. A key value can map to either vector values, scalar 827 /// values or both kinds of values, depending on whether the key was 828 /// vectorized and scalarized. 829 VectorizerValueMap VectorLoopValueMap; 830 831 /// Store instructions that were predicated. 832 SmallVector<Instruction *, 4> PredicatedInstructions; 833 834 /// Trip count of the original loop. 835 Value *TripCount = nullptr; 836 837 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 838 Value *VectorTripCount = nullptr; 839 840 /// The legality analysis. 841 LoopVectorizationLegality *Legal; 842 843 /// The profitablity analysis. 844 LoopVectorizationCostModel *Cost; 845 846 // Record whether runtime checks are added. 847 bool AddedSafetyChecks = false; 848 849 // Holds the end values for each induction variable. We save the end values 850 // so we can later fix-up the external users of the induction variables. 851 DenseMap<PHINode *, Value *> IVEndValues; 852 853 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 854 // fixed up at the end of vector code generation. 855 SmallVector<PHINode *, 8> OrigPHIsToFix; 856 857 /// BFI and PSI are used to check for profile guided size optimizations. 858 BlockFrequencyInfo *BFI; 859 ProfileSummaryInfo *PSI; 860 861 // Whether this loop should be optimized for size based on profile guided size 862 // optimizatios. 863 bool OptForSizeBasedOnProfile; 864 }; 865 866 class InnerLoopUnroller : public InnerLoopVectorizer { 867 public: 868 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 869 LoopInfo *LI, DominatorTree *DT, 870 const TargetLibraryInfo *TLI, 871 const TargetTransformInfo *TTI, AssumptionCache *AC, 872 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 873 LoopVectorizationLegality *LVL, 874 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 875 ProfileSummaryInfo *PSI) 876 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 877 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 878 BFI, PSI) {} 879 880 private: 881 Value *getBroadcastInstrs(Value *V) override; 882 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 883 Instruction::BinaryOps Opcode = 884 Instruction::BinaryOpsEnd) override; 885 Value *reverseVector(Value *Vec) override; 886 }; 887 888 } // end namespace llvm 889 890 /// Look for a meaningful debug location on the instruction or it's 891 /// operands. 892 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 893 if (!I) 894 return I; 895 896 DebugLoc Empty; 897 if (I->getDebugLoc() != Empty) 898 return I; 899 900 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 901 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 902 if (OpInst->getDebugLoc() != Empty) 903 return OpInst; 904 } 905 906 return I; 907 } 908 909 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 910 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 911 const DILocation *DIL = Inst->getDebugLoc(); 912 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 913 !isa<DbgInfoIntrinsic>(Inst)) { 914 assert(!VF.isScalable() && "scalable vectors not yet supported."); 915 auto NewDIL = 916 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 917 if (NewDIL) 918 B.SetCurrentDebugLocation(NewDIL.getValue()); 919 else 920 LLVM_DEBUG(dbgs() 921 << "Failed to create new discriminator: " 922 << DIL->getFilename() << " Line: " << DIL->getLine()); 923 } 924 else 925 B.SetCurrentDebugLocation(DIL); 926 } else 927 B.SetCurrentDebugLocation(DebugLoc()); 928 } 929 930 /// Write a record \p DebugMsg about vectorization failure to the debug 931 /// output stream. If \p I is passed, it is an instruction that prevents 932 /// vectorization. 933 #ifndef NDEBUG 934 static void debugVectorizationFailure(const StringRef DebugMsg, 935 Instruction *I) { 936 dbgs() << "LV: Not vectorizing: " << DebugMsg; 937 if (I != nullptr) 938 dbgs() << " " << *I; 939 else 940 dbgs() << '.'; 941 dbgs() << '\n'; 942 } 943 #endif 944 945 /// Create an analysis remark that explains why vectorization failed 946 /// 947 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 948 /// RemarkName is the identifier for the remark. If \p I is passed it is an 949 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 950 /// the location of the remark. \return the remark object that can be 951 /// streamed to. 952 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 953 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 954 Value *CodeRegion = TheLoop->getHeader(); 955 DebugLoc DL = TheLoop->getStartLoc(); 956 957 if (I) { 958 CodeRegion = I->getParent(); 959 // If there is no debug location attached to the instruction, revert back to 960 // using the loop's. 961 if (I->getDebugLoc()) 962 DL = I->getDebugLoc(); 963 } 964 965 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 966 R << "loop not vectorized: "; 967 return R; 968 } 969 970 namespace llvm { 971 972 void reportVectorizationFailure(const StringRef DebugMsg, 973 const StringRef OREMsg, const StringRef ORETag, 974 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 975 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 976 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 977 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 978 ORETag, TheLoop, I) << OREMsg); 979 } 980 981 } // end namespace llvm 982 983 #ifndef NDEBUG 984 /// \return string containing a file name and a line # for the given loop. 985 static std::string getDebugLocString(const Loop *L) { 986 std::string Result; 987 if (L) { 988 raw_string_ostream OS(Result); 989 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 990 LoopDbgLoc.print(OS); 991 else 992 // Just print the module name. 993 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 994 OS.flush(); 995 } 996 return Result; 997 } 998 #endif 999 1000 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1001 const Instruction *Orig) { 1002 // If the loop was versioned with memchecks, add the corresponding no-alias 1003 // metadata. 1004 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1005 LVer->annotateInstWithNoAlias(To, Orig); 1006 } 1007 1008 void InnerLoopVectorizer::addMetadata(Instruction *To, 1009 Instruction *From) { 1010 propagateMetadata(To, From); 1011 addNewMetadata(To, From); 1012 } 1013 1014 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1015 Instruction *From) { 1016 for (Value *V : To) { 1017 if (Instruction *I = dyn_cast<Instruction>(V)) 1018 addMetadata(I, From); 1019 } 1020 } 1021 1022 namespace llvm { 1023 1024 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1025 // lowered. 1026 enum ScalarEpilogueLowering { 1027 1028 // The default: allowing scalar epilogues. 1029 CM_ScalarEpilogueAllowed, 1030 1031 // Vectorization with OptForSize: don't allow epilogues. 1032 CM_ScalarEpilogueNotAllowedOptSize, 1033 1034 // A special case of vectorisation with OptForSize: loops with a very small 1035 // trip count are considered for vectorization under OptForSize, thereby 1036 // making sure the cost of their loop body is dominant, free of runtime 1037 // guards and scalar iteration overheads. 1038 CM_ScalarEpilogueNotAllowedLowTripLoop, 1039 1040 // Loop hint predicate indicating an epilogue is undesired. 1041 CM_ScalarEpilogueNotNeededUsePredicate 1042 }; 1043 1044 /// LoopVectorizationCostModel - estimates the expected speedups due to 1045 /// vectorization. 1046 /// In many cases vectorization is not profitable. This can happen because of 1047 /// a number of reasons. In this class we mainly attempt to predict the 1048 /// expected speedup/slowdowns due to the supported instruction set. We use the 1049 /// TargetTransformInfo to query the different backends for the cost of 1050 /// different operations. 1051 class LoopVectorizationCostModel { 1052 public: 1053 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1054 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1055 LoopVectorizationLegality *Legal, 1056 const TargetTransformInfo &TTI, 1057 const TargetLibraryInfo *TLI, DemandedBits *DB, 1058 AssumptionCache *AC, 1059 OptimizationRemarkEmitter *ORE, const Function *F, 1060 const LoopVectorizeHints *Hints, 1061 InterleavedAccessInfo &IAI) 1062 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1063 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1064 Hints(Hints), InterleaveInfo(IAI) {} 1065 1066 /// \return An upper bound for the vectorization factor, or None if 1067 /// vectorization and interleaving should be avoided up front. 1068 Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC); 1069 1070 /// \return True if runtime checks are required for vectorization, and false 1071 /// otherwise. 1072 bool runtimeChecksRequired(); 1073 1074 /// \return The most profitable vectorization factor and the cost of that VF. 1075 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1076 /// then this vectorization factor will be selected if vectorization is 1077 /// possible. 1078 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1079 1080 /// Setup cost-based decisions for user vectorization factor. 1081 void selectUserVectorizationFactor(ElementCount UserVF) { 1082 collectUniformsAndScalars(UserVF); 1083 collectInstsToScalarize(UserVF); 1084 } 1085 1086 /// \return The size (in bits) of the smallest and widest types in the code 1087 /// that needs to be vectorized. We ignore values that remain scalar such as 1088 /// 64 bit loop indices. 1089 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1090 1091 /// \return The desired interleave count. 1092 /// If interleave count has been specified by metadata it will be returned. 1093 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1094 /// are the selected vectorization factor and the cost of the selected VF. 1095 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1096 1097 /// Memory access instruction may be vectorized in more than one way. 1098 /// Form of instruction after vectorization depends on cost. 1099 /// This function takes cost-based decisions for Load/Store instructions 1100 /// and collects them in a map. This decisions map is used for building 1101 /// the lists of loop-uniform and loop-scalar instructions. 1102 /// The calculated cost is saved with widening decision in order to 1103 /// avoid redundant calculations. 1104 void setCostBasedWideningDecision(ElementCount VF); 1105 1106 /// A struct that represents some properties of the register usage 1107 /// of a loop. 1108 struct RegisterUsage { 1109 /// Holds the number of loop invariant values that are used in the loop. 1110 /// The key is ClassID of target-provided register class. 1111 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1112 /// Holds the maximum number of concurrent live intervals in the loop. 1113 /// The key is ClassID of target-provided register class. 1114 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1115 }; 1116 1117 /// \return Returns information about the register usages of the loop for the 1118 /// given vectorization factors. 1119 SmallVector<RegisterUsage, 8> 1120 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1121 1122 /// Collect values we want to ignore in the cost model. 1123 void collectValuesToIgnore(); 1124 1125 /// Split reductions into those that happen in the loop, and those that happen 1126 /// outside. In loop reductions are collected into InLoopReductionChains. 1127 void collectInLoopReductions(); 1128 1129 /// \returns The smallest bitwidth each instruction can be represented with. 1130 /// The vector equivalents of these instructions should be truncated to this 1131 /// type. 1132 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1133 return MinBWs; 1134 } 1135 1136 /// \returns True if it is more profitable to scalarize instruction \p I for 1137 /// vectorization factor \p VF. 1138 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1139 assert(VF.isVector() && 1140 "Profitable to scalarize relevant only for VF > 1."); 1141 1142 // Cost model is not run in the VPlan-native path - return conservative 1143 // result until this changes. 1144 if (EnableVPlanNativePath) 1145 return false; 1146 1147 auto Scalars = InstsToScalarize.find(VF); 1148 assert(Scalars != InstsToScalarize.end() && 1149 "VF not yet analyzed for scalarization profitability"); 1150 return Scalars->second.find(I) != Scalars->second.end(); 1151 } 1152 1153 /// Returns true if \p I is known to be uniform after vectorization. 1154 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1155 if (VF.isScalar()) 1156 return true; 1157 1158 // Cost model is not run in the VPlan-native path - return conservative 1159 // result until this changes. 1160 if (EnableVPlanNativePath) 1161 return false; 1162 1163 auto UniformsPerVF = Uniforms.find(VF); 1164 assert(UniformsPerVF != Uniforms.end() && 1165 "VF not yet analyzed for uniformity"); 1166 return UniformsPerVF->second.count(I); 1167 } 1168 1169 /// Returns true if \p I is known to be scalar after vectorization. 1170 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1171 if (VF.isScalar()) 1172 return true; 1173 1174 // Cost model is not run in the VPlan-native path - return conservative 1175 // result until this changes. 1176 if (EnableVPlanNativePath) 1177 return false; 1178 1179 auto ScalarsPerVF = Scalars.find(VF); 1180 assert(ScalarsPerVF != Scalars.end() && 1181 "Scalar values are not calculated for VF"); 1182 return ScalarsPerVF->second.count(I); 1183 } 1184 1185 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1186 /// for vectorization factor \p VF. 1187 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1188 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1189 !isProfitableToScalarize(I, VF) && 1190 !isScalarAfterVectorization(I, VF); 1191 } 1192 1193 /// Decision that was taken during cost calculation for memory instruction. 1194 enum InstWidening { 1195 CM_Unknown, 1196 CM_Widen, // For consecutive accesses with stride +1. 1197 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1198 CM_Interleave, 1199 CM_GatherScatter, 1200 CM_Scalarize 1201 }; 1202 1203 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1204 /// instruction \p I and vector width \p VF. 1205 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1206 unsigned Cost) { 1207 assert(VF.isVector() && "Expected VF >=2"); 1208 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1209 } 1210 1211 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1212 /// interleaving group \p Grp and vector width \p VF. 1213 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1214 ElementCount VF, InstWidening W, unsigned Cost) { 1215 assert(VF.isVector() && "Expected VF >=2"); 1216 /// Broadcast this decicion to all instructions inside the group. 1217 /// But the cost will be assigned to one instruction only. 1218 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1219 if (auto *I = Grp->getMember(i)) { 1220 if (Grp->getInsertPos() == I) 1221 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1222 else 1223 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1224 } 1225 } 1226 } 1227 1228 /// Return the cost model decision for the given instruction \p I and vector 1229 /// width \p VF. Return CM_Unknown if this instruction did not pass 1230 /// through the cost modeling. 1231 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1232 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1233 assert(VF.isVector() && "Expected VF >=2"); 1234 1235 // Cost model is not run in the VPlan-native path - return conservative 1236 // result until this changes. 1237 if (EnableVPlanNativePath) 1238 return CM_GatherScatter; 1239 1240 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1241 auto Itr = WideningDecisions.find(InstOnVF); 1242 if (Itr == WideningDecisions.end()) 1243 return CM_Unknown; 1244 return Itr->second.first; 1245 } 1246 1247 /// Return the vectorization cost for the given instruction \p I and vector 1248 /// width \p VF. 1249 unsigned getWideningCost(Instruction *I, ElementCount VF) { 1250 assert(VF.isVector() && "Expected VF >=2"); 1251 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1252 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1253 "The cost is not calculated"); 1254 return WideningDecisions[InstOnVF].second; 1255 } 1256 1257 /// Return True if instruction \p I is an optimizable truncate whose operand 1258 /// is an induction variable. Such a truncate will be removed by adding a new 1259 /// induction variable with the destination type. 1260 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1261 // If the instruction is not a truncate, return false. 1262 auto *Trunc = dyn_cast<TruncInst>(I); 1263 if (!Trunc) 1264 return false; 1265 1266 // Get the source and destination types of the truncate. 1267 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1268 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1269 1270 // If the truncate is free for the given types, return false. Replacing a 1271 // free truncate with an induction variable would add an induction variable 1272 // update instruction to each iteration of the loop. We exclude from this 1273 // check the primary induction variable since it will need an update 1274 // instruction regardless. 1275 Value *Op = Trunc->getOperand(0); 1276 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1277 return false; 1278 1279 // If the truncated value is not an induction variable, return false. 1280 return Legal->isInductionPhi(Op); 1281 } 1282 1283 /// Collects the instructions to scalarize for each predicated instruction in 1284 /// the loop. 1285 void collectInstsToScalarize(ElementCount VF); 1286 1287 /// Collect Uniform and Scalar values for the given \p VF. 1288 /// The sets depend on CM decision for Load/Store instructions 1289 /// that may be vectorized as interleave, gather-scatter or scalarized. 1290 void collectUniformsAndScalars(ElementCount VF) { 1291 // Do the analysis once. 1292 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1293 return; 1294 setCostBasedWideningDecision(VF); 1295 collectLoopUniforms(VF); 1296 collectLoopScalars(VF); 1297 } 1298 1299 /// Returns true if the target machine supports masked store operation 1300 /// for the given \p DataType and kind of access to \p Ptr. 1301 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1302 return Legal->isConsecutivePtr(Ptr) && 1303 TTI.isLegalMaskedStore(DataType, Alignment); 1304 } 1305 1306 /// Returns true if the target machine supports masked load operation 1307 /// for the given \p DataType and kind of access to \p Ptr. 1308 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1309 return Legal->isConsecutivePtr(Ptr) && 1310 TTI.isLegalMaskedLoad(DataType, Alignment); 1311 } 1312 1313 /// Returns true if the target machine supports masked scatter operation 1314 /// for the given \p DataType. 1315 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1316 return TTI.isLegalMaskedScatter(DataType, Alignment); 1317 } 1318 1319 /// Returns true if the target machine supports masked gather operation 1320 /// for the given \p DataType. 1321 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1322 return TTI.isLegalMaskedGather(DataType, Alignment); 1323 } 1324 1325 /// Returns true if the target machine can represent \p V as a masked gather 1326 /// or scatter operation. 1327 bool isLegalGatherOrScatter(Value *V) { 1328 bool LI = isa<LoadInst>(V); 1329 bool SI = isa<StoreInst>(V); 1330 if (!LI && !SI) 1331 return false; 1332 auto *Ty = getMemInstValueType(V); 1333 Align Align = getLoadStoreAlignment(V); 1334 return (LI && isLegalMaskedGather(Ty, Align)) || 1335 (SI && isLegalMaskedScatter(Ty, Align)); 1336 } 1337 1338 /// Returns true if \p I is an instruction that will be scalarized with 1339 /// predication. Such instructions include conditional stores and 1340 /// instructions that may divide by zero. 1341 /// If a non-zero VF has been calculated, we check if I will be scalarized 1342 /// predication for that VF. 1343 bool isScalarWithPredication(Instruction *I, 1344 ElementCount VF = ElementCount::getFixed(1)); 1345 1346 // Returns true if \p I is an instruction that will be predicated either 1347 // through scalar predication or masked load/store or masked gather/scatter. 1348 // Superset of instructions that return true for isScalarWithPredication. 1349 bool isPredicatedInst(Instruction *I) { 1350 if (!blockNeedsPredication(I->getParent())) 1351 return false; 1352 // Loads and stores that need some form of masked operation are predicated 1353 // instructions. 1354 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1355 return Legal->isMaskRequired(I); 1356 return isScalarWithPredication(I); 1357 } 1358 1359 /// Returns true if \p I is a memory instruction with consecutive memory 1360 /// access that can be widened. 1361 bool 1362 memoryInstructionCanBeWidened(Instruction *I, 1363 ElementCount VF = ElementCount::getFixed(1)); 1364 1365 /// Returns true if \p I is a memory instruction in an interleaved-group 1366 /// of memory accesses that can be vectorized with wide vector loads/stores 1367 /// and shuffles. 1368 bool 1369 interleavedAccessCanBeWidened(Instruction *I, 1370 ElementCount VF = ElementCount::getFixed(1)); 1371 1372 /// Check if \p Instr belongs to any interleaved access group. 1373 bool isAccessInterleaved(Instruction *Instr) { 1374 return InterleaveInfo.isInterleaved(Instr); 1375 } 1376 1377 /// Get the interleaved access group that \p Instr belongs to. 1378 const InterleaveGroup<Instruction> * 1379 getInterleavedAccessGroup(Instruction *Instr) { 1380 return InterleaveInfo.getInterleaveGroup(Instr); 1381 } 1382 1383 /// Returns true if an interleaved group requires a scalar iteration 1384 /// to handle accesses with gaps, and there is nothing preventing us from 1385 /// creating a scalar epilogue. 1386 bool requiresScalarEpilogue() const { 1387 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1388 } 1389 1390 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1391 /// loop hint annotation. 1392 bool isScalarEpilogueAllowed() const { 1393 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1394 } 1395 1396 /// Returns true if all loop blocks should be masked to fold tail loop. 1397 bool foldTailByMasking() const { return FoldTailByMasking; } 1398 1399 bool blockNeedsPredication(BasicBlock *BB) { 1400 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1401 } 1402 1403 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1404 /// nodes to the chain of instructions representing the reductions. Uses a 1405 /// MapVector to ensure deterministic iteration order. 1406 using ReductionChainMap = 1407 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1408 1409 /// Return the chain of instructions representing an inloop reduction. 1410 const ReductionChainMap &getInLoopReductionChains() const { 1411 return InLoopReductionChains; 1412 } 1413 1414 /// Returns true if the Phi is part of an inloop reduction. 1415 bool isInLoopReduction(PHINode *Phi) const { 1416 return InLoopReductionChains.count(Phi); 1417 } 1418 1419 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1420 /// with factor VF. Return the cost of the instruction, including 1421 /// scalarization overhead if it's needed. 1422 unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1423 1424 /// Estimate cost of a call instruction CI if it were vectorized with factor 1425 /// VF. Return the cost of the instruction, including scalarization overhead 1426 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1427 /// scalarized - 1428 /// i.e. either vector version isn't available, or is too expensive. 1429 unsigned getVectorCallCost(CallInst *CI, ElementCount VF, 1430 bool &NeedToScalarize); 1431 1432 /// Invalidates decisions already taken by the cost model. 1433 void invalidateCostModelingDecisions() { 1434 WideningDecisions.clear(); 1435 Uniforms.clear(); 1436 Scalars.clear(); 1437 } 1438 1439 private: 1440 unsigned NumPredStores = 0; 1441 1442 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1443 /// than zero. One is returned if vectorization should best be avoided due 1444 /// to cost. 1445 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1446 1447 /// The vectorization cost is a combination of the cost itself and a boolean 1448 /// indicating whether any of the contributing operations will actually 1449 /// operate on 1450 /// vector values after type legalization in the backend. If this latter value 1451 /// is 1452 /// false, then all operations will be scalarized (i.e. no vectorization has 1453 /// actually taken place). 1454 using VectorizationCostTy = std::pair<unsigned, bool>; 1455 1456 /// Returns the expected execution cost. The unit of the cost does 1457 /// not matter because we use the 'cost' units to compare different 1458 /// vector widths. The cost that is returned is *not* normalized by 1459 /// the factor width. 1460 VectorizationCostTy expectedCost(ElementCount VF); 1461 1462 /// Returns the execution time cost of an instruction for a given vector 1463 /// width. Vector width of one means scalar. 1464 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1465 1466 /// The cost-computation logic from getInstructionCost which provides 1467 /// the vector type as an output parameter. 1468 unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy); 1469 1470 /// Calculate vectorization cost of memory instruction \p I. 1471 unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF); 1472 1473 /// The cost computation for scalarized memory instruction. 1474 unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1475 1476 /// The cost computation for interleaving group of memory instructions. 1477 unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF); 1478 1479 /// The cost computation for Gather/Scatter instruction. 1480 unsigned getGatherScatterCost(Instruction *I, ElementCount VF); 1481 1482 /// The cost computation for widening instruction \p I with consecutive 1483 /// memory access. 1484 unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1485 1486 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1487 /// Load: scalar load + broadcast. 1488 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1489 /// element) 1490 unsigned getUniformMemOpCost(Instruction *I, ElementCount VF); 1491 1492 /// Estimate the overhead of scalarizing an instruction. This is a 1493 /// convenience wrapper for the type-based getScalarizationOverhead API. 1494 unsigned getScalarizationOverhead(Instruction *I, ElementCount VF); 1495 1496 /// Returns whether the instruction is a load or store and will be a emitted 1497 /// as a vector operation. 1498 bool isConsecutiveLoadOrStore(Instruction *I); 1499 1500 /// Returns true if an artificially high cost for emulated masked memrefs 1501 /// should be used. 1502 bool useEmulatedMaskMemRefHack(Instruction *I); 1503 1504 /// Map of scalar integer values to the smallest bitwidth they can be legally 1505 /// represented as. The vector equivalents of these values should be truncated 1506 /// to this type. 1507 MapVector<Instruction *, uint64_t> MinBWs; 1508 1509 /// A type representing the costs for instructions if they were to be 1510 /// scalarized rather than vectorized. The entries are Instruction-Cost 1511 /// pairs. 1512 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1513 1514 /// A set containing all BasicBlocks that are known to present after 1515 /// vectorization as a predicated block. 1516 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1517 1518 /// Records whether it is allowed to have the original scalar loop execute at 1519 /// least once. This may be needed as a fallback loop in case runtime 1520 /// aliasing/dependence checks fail, or to handle the tail/remainder 1521 /// iterations when the trip count is unknown or doesn't divide by the VF, 1522 /// or as a peel-loop to handle gaps in interleave-groups. 1523 /// Under optsize and when the trip count is very small we don't allow any 1524 /// iterations to execute in the scalar loop. 1525 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1526 1527 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1528 bool FoldTailByMasking = false; 1529 1530 /// A map holding scalar costs for different vectorization factors. The 1531 /// presence of a cost for an instruction in the mapping indicates that the 1532 /// instruction will be scalarized when vectorizing with the associated 1533 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1534 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1535 1536 /// Holds the instructions known to be uniform after vectorization. 1537 /// The data is collected per VF. 1538 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1539 1540 /// Holds the instructions known to be scalar after vectorization. 1541 /// The data is collected per VF. 1542 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1543 1544 /// Holds the instructions (address computations) that are forced to be 1545 /// scalarized. 1546 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1547 1548 /// PHINodes of the reductions that should be expanded in-loop along with 1549 /// their associated chains of reduction operations, in program order from top 1550 /// (PHI) to bottom 1551 ReductionChainMap InLoopReductionChains; 1552 1553 /// Returns the expected difference in cost from scalarizing the expression 1554 /// feeding a predicated instruction \p PredInst. The instructions to 1555 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1556 /// non-negative return value implies the expression will be scalarized. 1557 /// Currently, only single-use chains are considered for scalarization. 1558 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1559 ElementCount VF); 1560 1561 /// Collect the instructions that are uniform after vectorization. An 1562 /// instruction is uniform if we represent it with a single scalar value in 1563 /// the vectorized loop corresponding to each vector iteration. Examples of 1564 /// uniform instructions include pointer operands of consecutive or 1565 /// interleaved memory accesses. Note that although uniformity implies an 1566 /// instruction will be scalar, the reverse is not true. In general, a 1567 /// scalarized instruction will be represented by VF scalar values in the 1568 /// vectorized loop, each corresponding to an iteration of the original 1569 /// scalar loop. 1570 void collectLoopUniforms(ElementCount VF); 1571 1572 /// Collect the instructions that are scalar after vectorization. An 1573 /// instruction is scalar if it is known to be uniform or will be scalarized 1574 /// during vectorization. Non-uniform scalarized instructions will be 1575 /// represented by VF values in the vectorized loop, each corresponding to an 1576 /// iteration of the original scalar loop. 1577 void collectLoopScalars(ElementCount VF); 1578 1579 /// Keeps cost model vectorization decision and cost for instructions. 1580 /// Right now it is used for memory instructions only. 1581 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1582 std::pair<InstWidening, unsigned>>; 1583 1584 DecisionList WideningDecisions; 1585 1586 /// Returns true if \p V is expected to be vectorized and it needs to be 1587 /// extracted. 1588 bool needsExtract(Value *V, ElementCount VF) const { 1589 Instruction *I = dyn_cast<Instruction>(V); 1590 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1591 TheLoop->isLoopInvariant(I)) 1592 return false; 1593 1594 // Assume we can vectorize V (and hence we need extraction) if the 1595 // scalars are not computed yet. This can happen, because it is called 1596 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1597 // the scalars are collected. That should be a safe assumption in most 1598 // cases, because we check if the operands have vectorizable types 1599 // beforehand in LoopVectorizationLegality. 1600 return Scalars.find(VF) == Scalars.end() || 1601 !isScalarAfterVectorization(I, VF); 1602 }; 1603 1604 /// Returns a range containing only operands needing to be extracted. 1605 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1606 ElementCount VF) { 1607 return SmallVector<Value *, 4>(make_filter_range( 1608 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1609 } 1610 1611 public: 1612 /// The loop that we evaluate. 1613 Loop *TheLoop; 1614 1615 /// Predicated scalar evolution analysis. 1616 PredicatedScalarEvolution &PSE; 1617 1618 /// Loop Info analysis. 1619 LoopInfo *LI; 1620 1621 /// Vectorization legality. 1622 LoopVectorizationLegality *Legal; 1623 1624 /// Vector target information. 1625 const TargetTransformInfo &TTI; 1626 1627 /// Target Library Info. 1628 const TargetLibraryInfo *TLI; 1629 1630 /// Demanded bits analysis. 1631 DemandedBits *DB; 1632 1633 /// Assumption cache. 1634 AssumptionCache *AC; 1635 1636 /// Interface to emit optimization remarks. 1637 OptimizationRemarkEmitter *ORE; 1638 1639 const Function *TheFunction; 1640 1641 /// Loop Vectorize Hint. 1642 const LoopVectorizeHints *Hints; 1643 1644 /// The interleave access information contains groups of interleaved accesses 1645 /// with the same stride and close to each other. 1646 InterleavedAccessInfo &InterleaveInfo; 1647 1648 /// Values to ignore in the cost model. 1649 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1650 1651 /// Values to ignore in the cost model when VF > 1. 1652 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1653 }; 1654 1655 } // end namespace llvm 1656 1657 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1658 // vectorization. The loop needs to be annotated with #pragma omp simd 1659 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1660 // vector length information is not provided, vectorization is not considered 1661 // explicit. Interleave hints are not allowed either. These limitations will be 1662 // relaxed in the future. 1663 // Please, note that we are currently forced to abuse the pragma 'clang 1664 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1665 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1666 // provides *explicit vectorization hints* (LV can bypass legal checks and 1667 // assume that vectorization is legal). However, both hints are implemented 1668 // using the same metadata (llvm.loop.vectorize, processed by 1669 // LoopVectorizeHints). This will be fixed in the future when the native IR 1670 // representation for pragma 'omp simd' is introduced. 1671 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1672 OptimizationRemarkEmitter *ORE) { 1673 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1674 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1675 1676 // Only outer loops with an explicit vectorization hint are supported. 1677 // Unannotated outer loops are ignored. 1678 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1679 return false; 1680 1681 Function *Fn = OuterLp->getHeader()->getParent(); 1682 if (!Hints.allowVectorization(Fn, OuterLp, 1683 true /*VectorizeOnlyWhenForced*/)) { 1684 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1685 return false; 1686 } 1687 1688 if (Hints.getInterleave() > 1) { 1689 // TODO: Interleave support is future work. 1690 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1691 "outer loops.\n"); 1692 Hints.emitRemarkWithHints(); 1693 return false; 1694 } 1695 1696 return true; 1697 } 1698 1699 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1700 OptimizationRemarkEmitter *ORE, 1701 SmallVectorImpl<Loop *> &V) { 1702 // Collect inner loops and outer loops without irreducible control flow. For 1703 // now, only collect outer loops that have explicit vectorization hints. If we 1704 // are stress testing the VPlan H-CFG construction, we collect the outermost 1705 // loop of every loop nest. 1706 if (L.isInnermost() || VPlanBuildStressTest || 1707 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1708 LoopBlocksRPO RPOT(&L); 1709 RPOT.perform(LI); 1710 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1711 V.push_back(&L); 1712 // TODO: Collect inner loops inside marked outer loops in case 1713 // vectorization fails for the outer loop. Do not invoke 1714 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1715 // already known to be reducible. We can use an inherited attribute for 1716 // that. 1717 return; 1718 } 1719 } 1720 for (Loop *InnerL : L) 1721 collectSupportedLoops(*InnerL, LI, ORE, V); 1722 } 1723 1724 namespace { 1725 1726 /// The LoopVectorize Pass. 1727 struct LoopVectorize : public FunctionPass { 1728 /// Pass identification, replacement for typeid 1729 static char ID; 1730 1731 LoopVectorizePass Impl; 1732 1733 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1734 bool VectorizeOnlyWhenForced = false) 1735 : FunctionPass(ID), 1736 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1737 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1738 } 1739 1740 bool runOnFunction(Function &F) override { 1741 if (skipFunction(F)) 1742 return false; 1743 1744 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1745 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1746 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1747 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1748 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1749 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1750 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1751 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1752 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1753 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1754 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1755 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1756 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1757 1758 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1759 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1760 1761 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1762 GetLAA, *ORE, PSI).MadeAnyChange; 1763 } 1764 1765 void getAnalysisUsage(AnalysisUsage &AU) const override { 1766 AU.addRequired<AssumptionCacheTracker>(); 1767 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1768 AU.addRequired<DominatorTreeWrapperPass>(); 1769 AU.addRequired<LoopInfoWrapperPass>(); 1770 AU.addRequired<ScalarEvolutionWrapperPass>(); 1771 AU.addRequired<TargetTransformInfoWrapperPass>(); 1772 AU.addRequired<AAResultsWrapperPass>(); 1773 AU.addRequired<LoopAccessLegacyAnalysis>(); 1774 AU.addRequired<DemandedBitsWrapperPass>(); 1775 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1776 AU.addRequired<InjectTLIMappingsLegacy>(); 1777 1778 // We currently do not preserve loopinfo/dominator analyses with outer loop 1779 // vectorization. Until this is addressed, mark these analyses as preserved 1780 // only for non-VPlan-native path. 1781 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1782 if (!EnableVPlanNativePath) { 1783 AU.addPreserved<LoopInfoWrapperPass>(); 1784 AU.addPreserved<DominatorTreeWrapperPass>(); 1785 } 1786 1787 AU.addPreserved<BasicAAWrapperPass>(); 1788 AU.addPreserved<GlobalsAAWrapperPass>(); 1789 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1790 } 1791 }; 1792 1793 } // end anonymous namespace 1794 1795 //===----------------------------------------------------------------------===// 1796 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1797 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1798 //===----------------------------------------------------------------------===// 1799 1800 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1801 // We need to place the broadcast of invariant variables outside the loop, 1802 // but only if it's proven safe to do so. Else, broadcast will be inside 1803 // vector loop body. 1804 Instruction *Instr = dyn_cast<Instruction>(V); 1805 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1806 (!Instr || 1807 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1808 // Place the code for broadcasting invariant variables in the new preheader. 1809 IRBuilder<>::InsertPointGuard Guard(Builder); 1810 if (SafeToHoist) 1811 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1812 1813 // Broadcast the scalar into all locations in the vector. 1814 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1815 1816 return Shuf; 1817 } 1818 1819 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1820 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1821 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1822 "Expected either an induction phi-node or a truncate of it!"); 1823 Value *Start = II.getStartValue(); 1824 1825 // Construct the initial value of the vector IV in the vector loop preheader 1826 auto CurrIP = Builder.saveIP(); 1827 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1828 if (isa<TruncInst>(EntryVal)) { 1829 assert(Start->getType()->isIntegerTy() && 1830 "Truncation requires an integer type"); 1831 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1832 Step = Builder.CreateTrunc(Step, TruncType); 1833 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1834 } 1835 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1836 Value *SteppedStart = 1837 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1838 1839 // We create vector phi nodes for both integer and floating-point induction 1840 // variables. Here, we determine the kind of arithmetic we will perform. 1841 Instruction::BinaryOps AddOp; 1842 Instruction::BinaryOps MulOp; 1843 if (Step->getType()->isIntegerTy()) { 1844 AddOp = Instruction::Add; 1845 MulOp = Instruction::Mul; 1846 } else { 1847 AddOp = II.getInductionOpcode(); 1848 MulOp = Instruction::FMul; 1849 } 1850 1851 // Multiply the vectorization factor by the step using integer or 1852 // floating-point arithmetic as appropriate. 1853 Value *ConstVF = 1854 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 1855 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1856 1857 // Create a vector splat to use in the induction update. 1858 // 1859 // FIXME: If the step is non-constant, we create the vector splat with 1860 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1861 // handle a constant vector splat. 1862 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1863 Value *SplatVF = isa<Constant>(Mul) 1864 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1865 : Builder.CreateVectorSplat(VF, Mul); 1866 Builder.restoreIP(CurrIP); 1867 1868 // We may need to add the step a number of times, depending on the unroll 1869 // factor. The last of those goes into the PHI. 1870 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1871 &*LoopVectorBody->getFirstInsertionPt()); 1872 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1873 Instruction *LastInduction = VecInd; 1874 for (unsigned Part = 0; Part < UF; ++Part) { 1875 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1876 1877 if (isa<TruncInst>(EntryVal)) 1878 addMetadata(LastInduction, EntryVal); 1879 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1880 1881 LastInduction = cast<Instruction>(addFastMathFlag( 1882 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1883 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1884 } 1885 1886 // Move the last step to the end of the latch block. This ensures consistent 1887 // placement of all induction updates. 1888 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1889 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1890 auto *ICmp = cast<Instruction>(Br->getCondition()); 1891 LastInduction->moveBefore(ICmp); 1892 LastInduction->setName("vec.ind.next"); 1893 1894 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1895 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1896 } 1897 1898 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1899 return Cost->isScalarAfterVectorization(I, VF) || 1900 Cost->isProfitableToScalarize(I, VF); 1901 } 1902 1903 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1904 if (shouldScalarizeInstruction(IV)) 1905 return true; 1906 auto isScalarInst = [&](User *U) -> bool { 1907 auto *I = cast<Instruction>(U); 1908 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1909 }; 1910 return llvm::any_of(IV->users(), isScalarInst); 1911 } 1912 1913 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1914 const InductionDescriptor &ID, const Instruction *EntryVal, 1915 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1916 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1917 "Expected either an induction phi-node or a truncate of it!"); 1918 1919 // This induction variable is not the phi from the original loop but the 1920 // newly-created IV based on the proof that casted Phi is equal to the 1921 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1922 // re-uses the same InductionDescriptor that original IV uses but we don't 1923 // have to do any recording in this case - that is done when original IV is 1924 // processed. 1925 if (isa<TruncInst>(EntryVal)) 1926 return; 1927 1928 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1929 if (Casts.empty()) 1930 return; 1931 // Only the first Cast instruction in the Casts vector is of interest. 1932 // The rest of the Casts (if exist) have no uses outside the 1933 // induction update chain itself. 1934 Instruction *CastInst = *Casts.begin(); 1935 if (Lane < UINT_MAX) 1936 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1937 else 1938 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1939 } 1940 1941 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1942 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1943 "Primary induction variable must have an integer type"); 1944 1945 auto II = Legal->getInductionVars().find(IV); 1946 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1947 1948 auto ID = II->second; 1949 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1950 1951 // The value from the original loop to which we are mapping the new induction 1952 // variable. 1953 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1954 1955 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1956 1957 // Generate code for the induction step. Note that induction steps are 1958 // required to be loop-invariant 1959 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1960 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1961 "Induction step should be loop invariant"); 1962 if (PSE.getSE()->isSCEVable(IV->getType())) { 1963 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1964 return Exp.expandCodeFor(Step, Step->getType(), 1965 LoopVectorPreHeader->getTerminator()); 1966 } 1967 return cast<SCEVUnknown>(Step)->getValue(); 1968 }; 1969 1970 // The scalar value to broadcast. This is derived from the canonical 1971 // induction variable. If a truncation type is given, truncate the canonical 1972 // induction variable and step. Otherwise, derive these values from the 1973 // induction descriptor. 1974 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1975 Value *ScalarIV = Induction; 1976 if (IV != OldInduction) { 1977 ScalarIV = IV->getType()->isIntegerTy() 1978 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1979 : Builder.CreateCast(Instruction::SIToFP, Induction, 1980 IV->getType()); 1981 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1982 ScalarIV->setName("offset.idx"); 1983 } 1984 if (Trunc) { 1985 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1986 assert(Step->getType()->isIntegerTy() && 1987 "Truncation requires an integer step"); 1988 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1989 Step = Builder.CreateTrunc(Step, TruncType); 1990 } 1991 return ScalarIV; 1992 }; 1993 1994 // Create the vector values from the scalar IV, in the absence of creating a 1995 // vector IV. 1996 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1997 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1998 for (unsigned Part = 0; Part < UF; ++Part) { 1999 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2000 Value *EntryPart = 2001 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2002 ID.getInductionOpcode()); 2003 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2004 if (Trunc) 2005 addMetadata(EntryPart, Trunc); 2006 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2007 } 2008 }; 2009 2010 // Now do the actual transformations, and start with creating the step value. 2011 Value *Step = CreateStepValue(ID.getStep()); 2012 if (VF.isZero() || VF.isScalar()) { 2013 Value *ScalarIV = CreateScalarIV(Step); 2014 CreateSplatIV(ScalarIV, Step); 2015 return; 2016 } 2017 2018 // Determine if we want a scalar version of the induction variable. This is 2019 // true if the induction variable itself is not widened, or if it has at 2020 // least one user in the loop that is not widened. 2021 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2022 if (!NeedsScalarIV) { 2023 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2024 return; 2025 } 2026 2027 // Try to create a new independent vector induction variable. If we can't 2028 // create the phi node, we will splat the scalar induction variable in each 2029 // loop iteration. 2030 if (!shouldScalarizeInstruction(EntryVal)) { 2031 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2032 Value *ScalarIV = CreateScalarIV(Step); 2033 // Create scalar steps that can be used by instructions we will later 2034 // scalarize. Note that the addition of the scalar steps will not increase 2035 // the number of instructions in the loop in the common case prior to 2036 // InstCombine. We will be trading one vector extract for each scalar step. 2037 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2038 return; 2039 } 2040 2041 // All IV users are scalar instructions, so only emit a scalar IV, not a 2042 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2043 // predicate used by the masked loads/stores. 2044 Value *ScalarIV = CreateScalarIV(Step); 2045 if (!Cost->isScalarEpilogueAllowed()) 2046 CreateSplatIV(ScalarIV, Step); 2047 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2048 } 2049 2050 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2051 Instruction::BinaryOps BinOp) { 2052 // Create and check the types. 2053 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2054 int VLen = ValVTy->getNumElements(); 2055 2056 Type *STy = Val->getType()->getScalarType(); 2057 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2058 "Induction Step must be an integer or FP"); 2059 assert(Step->getType() == STy && "Step has wrong type"); 2060 2061 SmallVector<Constant *, 8> Indices; 2062 2063 if (STy->isIntegerTy()) { 2064 // Create a vector of consecutive numbers from zero to VF. 2065 for (int i = 0; i < VLen; ++i) 2066 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2067 2068 // Add the consecutive indices to the vector value. 2069 Constant *Cv = ConstantVector::get(Indices); 2070 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2071 Step = Builder.CreateVectorSplat(VLen, Step); 2072 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2073 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2074 // which can be found from the original scalar operations. 2075 Step = Builder.CreateMul(Cv, Step); 2076 return Builder.CreateAdd(Val, Step, "induction"); 2077 } 2078 2079 // Floating point induction. 2080 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2081 "Binary Opcode should be specified for FP induction"); 2082 // Create a vector of consecutive numbers from zero to VF. 2083 for (int i = 0; i < VLen; ++i) 2084 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2085 2086 // Add the consecutive indices to the vector value. 2087 Constant *Cv = ConstantVector::get(Indices); 2088 2089 Step = Builder.CreateVectorSplat(VLen, Step); 2090 2091 // Floating point operations had to be 'fast' to enable the induction. 2092 FastMathFlags Flags; 2093 Flags.setFast(); 2094 2095 Value *MulOp = Builder.CreateFMul(Cv, Step); 2096 if (isa<Instruction>(MulOp)) 2097 // Have to check, MulOp may be a constant 2098 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2099 2100 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2101 if (isa<Instruction>(BOp)) 2102 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2103 return BOp; 2104 } 2105 2106 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2107 Instruction *EntryVal, 2108 const InductionDescriptor &ID) { 2109 // We shouldn't have to build scalar steps if we aren't vectorizing. 2110 assert(VF.isVector() && "VF should be greater than one"); 2111 assert(!VF.isScalable() && 2112 "the code below assumes a fixed number of elements at compile time"); 2113 // Get the value type and ensure it and the step have the same integer type. 2114 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2115 assert(ScalarIVTy == Step->getType() && 2116 "Val and Step should have the same type"); 2117 2118 // We build scalar steps for both integer and floating-point induction 2119 // variables. Here, we determine the kind of arithmetic we will perform. 2120 Instruction::BinaryOps AddOp; 2121 Instruction::BinaryOps MulOp; 2122 if (ScalarIVTy->isIntegerTy()) { 2123 AddOp = Instruction::Add; 2124 MulOp = Instruction::Mul; 2125 } else { 2126 AddOp = ID.getInductionOpcode(); 2127 MulOp = Instruction::FMul; 2128 } 2129 2130 // Determine the number of scalars we need to generate for each unroll 2131 // iteration. If EntryVal is uniform, we only need to generate the first 2132 // lane. Otherwise, we generate all VF values. 2133 unsigned Lanes = 2134 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2135 ? 1 2136 : VF.getKnownMinValue(); 2137 // Compute the scalar steps and save the results in VectorLoopValueMap. 2138 for (unsigned Part = 0; Part < UF; ++Part) { 2139 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2140 auto *StartIdx = getSignedIntOrFpConstant( 2141 ScalarIVTy, VF.getKnownMinValue() * Part + Lane); 2142 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2143 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2144 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2145 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2146 } 2147 } 2148 } 2149 2150 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2151 assert(V != Induction && "The new induction variable should not be used."); 2152 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2153 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2154 2155 // If we have a stride that is replaced by one, do it here. Defer this for 2156 // the VPlan-native path until we start running Legal checks in that path. 2157 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2158 V = ConstantInt::get(V->getType(), 1); 2159 2160 // If we have a vector mapped to this value, return it. 2161 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2162 return VectorLoopValueMap.getVectorValue(V, Part); 2163 2164 // If the value has not been vectorized, check if it has been scalarized 2165 // instead. If it has been scalarized, and we actually need the value in 2166 // vector form, we will construct the vector values on demand. 2167 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2168 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2169 2170 // If we've scalarized a value, that value should be an instruction. 2171 auto *I = cast<Instruction>(V); 2172 2173 // If we aren't vectorizing, we can just copy the scalar map values over to 2174 // the vector map. 2175 if (VF.isScalar()) { 2176 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2177 return ScalarValue; 2178 } 2179 2180 // Get the last scalar instruction we generated for V and Part. If the value 2181 // is known to be uniform after vectorization, this corresponds to lane zero 2182 // of the Part unroll iteration. Otherwise, the last instruction is the one 2183 // we created for the last vector lane of the Part unroll iteration. 2184 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2185 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2186 ? 0 2187 : VF.getKnownMinValue() - 1; 2188 auto *LastInst = cast<Instruction>( 2189 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2190 2191 // Set the insert point after the last scalarized instruction. This ensures 2192 // the insertelement sequence will directly follow the scalar definitions. 2193 auto OldIP = Builder.saveIP(); 2194 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2195 Builder.SetInsertPoint(&*NewIP); 2196 2197 // However, if we are vectorizing, we need to construct the vector values. 2198 // If the value is known to be uniform after vectorization, we can just 2199 // broadcast the scalar value corresponding to lane zero for each unroll 2200 // iteration. Otherwise, we construct the vector values using insertelement 2201 // instructions. Since the resulting vectors are stored in 2202 // VectorLoopValueMap, we will only generate the insertelements once. 2203 Value *VectorValue = nullptr; 2204 if (Cost->isUniformAfterVectorization(I, VF)) { 2205 VectorValue = getBroadcastInstrs(ScalarValue); 2206 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2207 } else { 2208 // Initialize packing with insertelements to start from undef. 2209 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2210 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2211 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2212 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2213 packScalarIntoVectorValue(V, {Part, Lane}); 2214 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2215 } 2216 Builder.restoreIP(OldIP); 2217 return VectorValue; 2218 } 2219 2220 // If this scalar is unknown, assume that it is a constant or that it is 2221 // loop invariant. Broadcast V and save the value for future uses. 2222 Value *B = getBroadcastInstrs(V); 2223 VectorLoopValueMap.setVectorValue(V, Part, B); 2224 return B; 2225 } 2226 2227 Value * 2228 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2229 const VPIteration &Instance) { 2230 // If the value is not an instruction contained in the loop, it should 2231 // already be scalar. 2232 if (OrigLoop->isLoopInvariant(V)) 2233 return V; 2234 2235 assert(Instance.Lane > 0 2236 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2237 : true && "Uniform values only have lane zero"); 2238 2239 // If the value from the original loop has not been vectorized, it is 2240 // represented by UF x VF scalar values in the new loop. Return the requested 2241 // scalar value. 2242 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2243 return VectorLoopValueMap.getScalarValue(V, Instance); 2244 2245 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2246 // for the given unroll part. If this entry is not a vector type (i.e., the 2247 // vectorization factor is one), there is no need to generate an 2248 // extractelement instruction. 2249 auto *U = getOrCreateVectorValue(V, Instance.Part); 2250 if (!U->getType()->isVectorTy()) { 2251 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2252 return U; 2253 } 2254 2255 // Otherwise, the value from the original loop has been vectorized and is 2256 // represented by UF vector values. Extract and return the requested scalar 2257 // value from the appropriate vector lane. 2258 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2259 } 2260 2261 void InnerLoopVectorizer::packScalarIntoVectorValue( 2262 Value *V, const VPIteration &Instance) { 2263 assert(V != Induction && "The new induction variable should not be used."); 2264 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2265 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2266 2267 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2268 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2269 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2270 Builder.getInt32(Instance.Lane)); 2271 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2272 } 2273 2274 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2275 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2276 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2277 SmallVector<int, 8> ShuffleMask; 2278 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2279 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2280 2281 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2282 } 2283 2284 // Return whether we allow using masked interleave-groups (for dealing with 2285 // strided loads/stores that reside in predicated blocks, or for dealing 2286 // with gaps). 2287 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2288 // If an override option has been passed in for interleaved accesses, use it. 2289 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2290 return EnableMaskedInterleavedMemAccesses; 2291 2292 return TTI.enableMaskedInterleavedAccessVectorization(); 2293 } 2294 2295 // Try to vectorize the interleave group that \p Instr belongs to. 2296 // 2297 // E.g. Translate following interleaved load group (factor = 3): 2298 // for (i = 0; i < N; i+=3) { 2299 // R = Pic[i]; // Member of index 0 2300 // G = Pic[i+1]; // Member of index 1 2301 // B = Pic[i+2]; // Member of index 2 2302 // ... // do something to R, G, B 2303 // } 2304 // To: 2305 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2306 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2307 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2308 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2309 // 2310 // Or translate following interleaved store group (factor = 3): 2311 // for (i = 0; i < N; i+=3) { 2312 // ... do something to R, G, B 2313 // Pic[i] = R; // Member of index 0 2314 // Pic[i+1] = G; // Member of index 1 2315 // Pic[i+2] = B; // Member of index 2 2316 // } 2317 // To: 2318 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2319 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2320 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2321 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2322 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2323 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2324 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2325 VPValue *Addr, VPValue *BlockInMask) { 2326 Instruction *Instr = Group->getInsertPos(); 2327 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2328 2329 // Prepare for the vector type of the interleaved load/store. 2330 Type *ScalarTy = getMemInstValueType(Instr); 2331 unsigned InterleaveFactor = Group->getFactor(); 2332 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2333 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2334 2335 // Prepare for the new pointers. 2336 SmallVector<Value *, 2> AddrParts; 2337 unsigned Index = Group->getIndex(Instr); 2338 2339 // TODO: extend the masked interleaved-group support to reversed access. 2340 assert((!BlockInMask || !Group->isReverse()) && 2341 "Reversed masked interleave-group not supported."); 2342 2343 // If the group is reverse, adjust the index to refer to the last vector lane 2344 // instead of the first. We adjust the index from the first vector lane, 2345 // rather than directly getting the pointer for lane VF - 1, because the 2346 // pointer operand of the interleaved access is supposed to be uniform. For 2347 // uniform instructions, we're only required to generate a value for the 2348 // first vector lane in each unroll iteration. 2349 assert(!VF.isScalable() && 2350 "scalable vector reverse operation is not implemented"); 2351 if (Group->isReverse()) 2352 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2353 2354 for (unsigned Part = 0; Part < UF; Part++) { 2355 Value *AddrPart = State.get(Addr, {Part, 0}); 2356 setDebugLocFromInst(Builder, AddrPart); 2357 2358 // Notice current instruction could be any index. Need to adjust the address 2359 // to the member of index 0. 2360 // 2361 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2362 // b = A[i]; // Member of index 0 2363 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2364 // 2365 // E.g. A[i+1] = a; // Member of index 1 2366 // A[i] = b; // Member of index 0 2367 // A[i+2] = c; // Member of index 2 (Current instruction) 2368 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2369 2370 bool InBounds = false; 2371 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2372 InBounds = gep->isInBounds(); 2373 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2374 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2375 2376 // Cast to the vector pointer type. 2377 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2378 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2379 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2380 } 2381 2382 setDebugLocFromInst(Builder, Instr); 2383 Value *UndefVec = UndefValue::get(VecTy); 2384 2385 Value *MaskForGaps = nullptr; 2386 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2387 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2388 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2389 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2390 } 2391 2392 // Vectorize the interleaved load group. 2393 if (isa<LoadInst>(Instr)) { 2394 // For each unroll part, create a wide load for the group. 2395 SmallVector<Value *, 2> NewLoads; 2396 for (unsigned Part = 0; Part < UF; Part++) { 2397 Instruction *NewLoad; 2398 if (BlockInMask || MaskForGaps) { 2399 assert(useMaskedInterleavedAccesses(*TTI) && 2400 "masked interleaved groups are not allowed."); 2401 Value *GroupMask = MaskForGaps; 2402 if (BlockInMask) { 2403 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2404 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2405 Value *ShuffledMask = Builder.CreateShuffleVector( 2406 BlockInMaskPart, 2407 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2408 "interleaved.mask"); 2409 GroupMask = MaskForGaps 2410 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2411 MaskForGaps) 2412 : ShuffledMask; 2413 } 2414 NewLoad = 2415 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2416 GroupMask, UndefVec, "wide.masked.vec"); 2417 } 2418 else 2419 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2420 Group->getAlign(), "wide.vec"); 2421 Group->addMetadata(NewLoad); 2422 NewLoads.push_back(NewLoad); 2423 } 2424 2425 // For each member in the group, shuffle out the appropriate data from the 2426 // wide loads. 2427 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2428 Instruction *Member = Group->getMember(I); 2429 2430 // Skip the gaps in the group. 2431 if (!Member) 2432 continue; 2433 2434 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2435 auto StrideMask = 2436 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2437 for (unsigned Part = 0; Part < UF; Part++) { 2438 Value *StridedVec = Builder.CreateShuffleVector( 2439 NewLoads[Part], StrideMask, "strided.vec"); 2440 2441 // If this member has different type, cast the result type. 2442 if (Member->getType() != ScalarTy) { 2443 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2444 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2445 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2446 } 2447 2448 if (Group->isReverse()) 2449 StridedVec = reverseVector(StridedVec); 2450 2451 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2452 } 2453 } 2454 return; 2455 } 2456 2457 // The sub vector type for current instruction. 2458 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2459 auto *SubVT = VectorType::get(ScalarTy, VF); 2460 2461 // Vectorize the interleaved store group. 2462 for (unsigned Part = 0; Part < UF; Part++) { 2463 // Collect the stored vector from each member. 2464 SmallVector<Value *, 4> StoredVecs; 2465 for (unsigned i = 0; i < InterleaveFactor; i++) { 2466 // Interleaved store group doesn't allow a gap, so each index has a member 2467 Instruction *Member = Group->getMember(i); 2468 assert(Member && "Fail to get a member from an interleaved store group"); 2469 2470 Value *StoredVec = getOrCreateVectorValue( 2471 cast<StoreInst>(Member)->getValueOperand(), Part); 2472 if (Group->isReverse()) 2473 StoredVec = reverseVector(StoredVec); 2474 2475 // If this member has different type, cast it to a unified type. 2476 2477 if (StoredVec->getType() != SubVT) 2478 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2479 2480 StoredVecs.push_back(StoredVec); 2481 } 2482 2483 // Concatenate all vectors into a wide vector. 2484 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2485 2486 // Interleave the elements in the wide vector. 2487 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2488 Value *IVec = Builder.CreateShuffleVector( 2489 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2490 "interleaved.vec"); 2491 2492 Instruction *NewStoreInstr; 2493 if (BlockInMask) { 2494 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2495 Value *ShuffledMask = Builder.CreateShuffleVector( 2496 BlockInMaskPart, 2497 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2498 "interleaved.mask"); 2499 NewStoreInstr = Builder.CreateMaskedStore( 2500 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2501 } 2502 else 2503 NewStoreInstr = 2504 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2505 2506 Group->addMetadata(NewStoreInstr); 2507 } 2508 } 2509 2510 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2511 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2512 VPValue *StoredValue, VPValue *BlockInMask) { 2513 // Attempt to issue a wide load. 2514 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2515 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2516 2517 assert((LI || SI) && "Invalid Load/Store instruction"); 2518 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2519 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2520 2521 LoopVectorizationCostModel::InstWidening Decision = 2522 Cost->getWideningDecision(Instr, VF); 2523 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2524 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2525 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2526 "CM decision is not to widen the memory instruction"); 2527 2528 Type *ScalarDataTy = getMemInstValueType(Instr); 2529 2530 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2531 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2532 const Align Alignment = getLoadStoreAlignment(Instr); 2533 2534 // Determine if the pointer operand of the access is either consecutive or 2535 // reverse consecutive. 2536 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2537 bool ConsecutiveStride = 2538 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2539 bool CreateGatherScatter = 2540 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2541 2542 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2543 // gather/scatter. Otherwise Decision should have been to Scalarize. 2544 assert((ConsecutiveStride || CreateGatherScatter) && 2545 "The instruction should be scalarized"); 2546 (void)ConsecutiveStride; 2547 2548 VectorParts BlockInMaskParts(UF); 2549 bool isMaskRequired = BlockInMask; 2550 if (isMaskRequired) 2551 for (unsigned Part = 0; Part < UF; ++Part) 2552 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2553 2554 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2555 // Calculate the pointer for the specific unroll-part. 2556 GetElementPtrInst *PartPtr = nullptr; 2557 2558 bool InBounds = false; 2559 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2560 InBounds = gep->isInBounds(); 2561 2562 if (Reverse) { 2563 // If the address is consecutive but reversed, then the 2564 // wide store needs to start at the last vector element. 2565 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2566 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2567 PartPtr->setIsInBounds(InBounds); 2568 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2569 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2570 PartPtr->setIsInBounds(InBounds); 2571 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2572 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2573 } else { 2574 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2575 ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue()))); 2576 PartPtr->setIsInBounds(InBounds); 2577 } 2578 2579 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2580 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2581 }; 2582 2583 // Handle Stores: 2584 if (SI) { 2585 setDebugLocFromInst(Builder, SI); 2586 2587 for (unsigned Part = 0; Part < UF; ++Part) { 2588 Instruction *NewSI = nullptr; 2589 Value *StoredVal = State.get(StoredValue, Part); 2590 if (CreateGatherScatter) { 2591 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2592 Value *VectorGep = State.get(Addr, Part); 2593 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2594 MaskPart); 2595 } else { 2596 if (Reverse) { 2597 // If we store to reverse consecutive memory locations, then we need 2598 // to reverse the order of elements in the stored value. 2599 StoredVal = reverseVector(StoredVal); 2600 // We don't want to update the value in the map as it might be used in 2601 // another expression. So don't call resetVectorValue(StoredVal). 2602 } 2603 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2604 if (isMaskRequired) 2605 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2606 BlockInMaskParts[Part]); 2607 else 2608 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2609 } 2610 addMetadata(NewSI, SI); 2611 } 2612 return; 2613 } 2614 2615 // Handle loads. 2616 assert(LI && "Must have a load instruction"); 2617 setDebugLocFromInst(Builder, LI); 2618 for (unsigned Part = 0; Part < UF; ++Part) { 2619 Value *NewLI; 2620 if (CreateGatherScatter) { 2621 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2622 Value *VectorGep = State.get(Addr, Part); 2623 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2624 nullptr, "wide.masked.gather"); 2625 addMetadata(NewLI, LI); 2626 } else { 2627 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2628 if (isMaskRequired) 2629 NewLI = Builder.CreateMaskedLoad( 2630 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2631 "wide.masked.load"); 2632 else 2633 NewLI = 2634 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2635 2636 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2637 addMetadata(NewLI, LI); 2638 if (Reverse) 2639 NewLI = reverseVector(NewLI); 2640 } 2641 2642 State.set(Def, Instr, NewLI, Part); 2643 } 2644 } 2645 2646 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2647 const VPIteration &Instance, 2648 bool IfPredicateInstr, 2649 VPTransformState &State) { 2650 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2651 2652 setDebugLocFromInst(Builder, Instr); 2653 2654 // Does this instruction return a value ? 2655 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2656 2657 Instruction *Cloned = Instr->clone(); 2658 if (!IsVoidRetTy) 2659 Cloned->setName(Instr->getName() + ".cloned"); 2660 2661 // Replace the operands of the cloned instructions with their scalar 2662 // equivalents in the new loop. 2663 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2664 auto *NewOp = State.get(User.getOperand(op), Instance); 2665 Cloned->setOperand(op, NewOp); 2666 } 2667 addNewMetadata(Cloned, Instr); 2668 2669 // Place the cloned scalar in the new loop. 2670 Builder.Insert(Cloned); 2671 2672 // Add the cloned scalar to the scalar map entry. 2673 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2674 2675 // If we just cloned a new assumption, add it the assumption cache. 2676 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2677 if (II->getIntrinsicID() == Intrinsic::assume) 2678 AC->registerAssumption(II); 2679 2680 // End if-block. 2681 if (IfPredicateInstr) 2682 PredicatedInstructions.push_back(Cloned); 2683 } 2684 2685 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2686 Value *End, Value *Step, 2687 Instruction *DL) { 2688 BasicBlock *Header = L->getHeader(); 2689 BasicBlock *Latch = L->getLoopLatch(); 2690 // As we're just creating this loop, it's possible no latch exists 2691 // yet. If so, use the header as this will be a single block loop. 2692 if (!Latch) 2693 Latch = Header; 2694 2695 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2696 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2697 setDebugLocFromInst(Builder, OldInst); 2698 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2699 2700 Builder.SetInsertPoint(Latch->getTerminator()); 2701 setDebugLocFromInst(Builder, OldInst); 2702 2703 // Create i+1 and fill the PHINode. 2704 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2705 Induction->addIncoming(Start, L->getLoopPreheader()); 2706 Induction->addIncoming(Next, Latch); 2707 // Create the compare. 2708 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2709 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2710 2711 // Now we have two terminators. Remove the old one from the block. 2712 Latch->getTerminator()->eraseFromParent(); 2713 2714 return Induction; 2715 } 2716 2717 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2718 if (TripCount) 2719 return TripCount; 2720 2721 assert(L && "Create Trip Count for null loop."); 2722 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2723 // Find the loop boundaries. 2724 ScalarEvolution *SE = PSE.getSE(); 2725 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2726 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2727 "Invalid loop count"); 2728 2729 Type *IdxTy = Legal->getWidestInductionType(); 2730 assert(IdxTy && "No type for induction"); 2731 2732 // The exit count might have the type of i64 while the phi is i32. This can 2733 // happen if we have an induction variable that is sign extended before the 2734 // compare. The only way that we get a backedge taken count is that the 2735 // induction variable was signed and as such will not overflow. In such a case 2736 // truncation is legal. 2737 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2738 IdxTy->getPrimitiveSizeInBits()) 2739 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2740 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2741 2742 // Get the total trip count from the count by adding 1. 2743 const SCEV *ExitCount = SE->getAddExpr( 2744 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2745 2746 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2747 2748 // Expand the trip count and place the new instructions in the preheader. 2749 // Notice that the pre-header does not change, only the loop body. 2750 SCEVExpander Exp(*SE, DL, "induction"); 2751 2752 // Count holds the overall loop count (N). 2753 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2754 L->getLoopPreheader()->getTerminator()); 2755 2756 if (TripCount->getType()->isPointerTy()) 2757 TripCount = 2758 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2759 L->getLoopPreheader()->getTerminator()); 2760 2761 return TripCount; 2762 } 2763 2764 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2765 if (VectorTripCount) 2766 return VectorTripCount; 2767 2768 Value *TC = getOrCreateTripCount(L); 2769 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2770 2771 Type *Ty = TC->getType(); 2772 // This is where we can make the step a runtime constant. 2773 assert(!VF.isScalable() && "scalable vectorization is not supported yet"); 2774 Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF); 2775 2776 // If the tail is to be folded by masking, round the number of iterations N 2777 // up to a multiple of Step instead of rounding down. This is done by first 2778 // adding Step-1 and then rounding down. Note that it's ok if this addition 2779 // overflows: the vector induction variable will eventually wrap to zero given 2780 // that it starts at zero and its Step is a power of two; the loop will then 2781 // exit, with the last early-exit vector comparison also producing all-true. 2782 if (Cost->foldTailByMasking()) { 2783 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2784 "VF*UF must be a power of 2 when folding tail by masking"); 2785 TC = Builder.CreateAdd( 2786 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2787 } 2788 2789 // Now we need to generate the expression for the part of the loop that the 2790 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2791 // iterations are not required for correctness, or N - Step, otherwise. Step 2792 // is equal to the vectorization factor (number of SIMD elements) times the 2793 // unroll factor (number of SIMD instructions). 2794 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2795 2796 // If there is a non-reversed interleaved group that may speculatively access 2797 // memory out-of-bounds, we need to ensure that there will be at least one 2798 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2799 // the trip count, we set the remainder to be equal to the step. If the step 2800 // does not evenly divide the trip count, no adjustment is necessary since 2801 // there will already be scalar iterations. Note that the minimum iterations 2802 // check ensures that N >= Step. 2803 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 2804 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2805 R = Builder.CreateSelect(IsZero, Step, R); 2806 } 2807 2808 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2809 2810 return VectorTripCount; 2811 } 2812 2813 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2814 const DataLayout &DL) { 2815 // Verify that V is a vector type with same number of elements as DstVTy. 2816 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2817 unsigned VF = DstFVTy->getNumElements(); 2818 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2819 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2820 Type *SrcElemTy = SrcVecTy->getElementType(); 2821 Type *DstElemTy = DstFVTy->getElementType(); 2822 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2823 "Vector elements must have same size"); 2824 2825 // Do a direct cast if element types are castable. 2826 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2827 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2828 } 2829 // V cannot be directly casted to desired vector type. 2830 // May happen when V is a floating point vector but DstVTy is a vector of 2831 // pointers or vice-versa. Handle this using a two-step bitcast using an 2832 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2833 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2834 "Only one type should be a pointer type"); 2835 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2836 "Only one type should be a floating point type"); 2837 Type *IntTy = 2838 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2839 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2840 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2841 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2842 } 2843 2844 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2845 BasicBlock *Bypass) { 2846 Value *Count = getOrCreateTripCount(L); 2847 // Reuse existing vector loop preheader for TC checks. 2848 // Note that new preheader block is generated for vector loop. 2849 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2850 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2851 2852 // Generate code to check if the loop's trip count is less than VF * UF, or 2853 // equal to it in case a scalar epilogue is required; this implies that the 2854 // vector trip count is zero. This check also covers the case where adding one 2855 // to the backedge-taken count overflowed leading to an incorrect trip count 2856 // of zero. In this case we will also jump to the scalar loop. 2857 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2858 : ICmpInst::ICMP_ULT; 2859 2860 // If tail is to be folded, vector loop takes care of all iterations. 2861 Value *CheckMinIters = Builder.getFalse(); 2862 if (!Cost->foldTailByMasking()) { 2863 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2864 CheckMinIters = Builder.CreateICmp( 2865 P, Count, 2866 ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF), 2867 "min.iters.check"); 2868 } 2869 // Create new preheader for vector loop. 2870 LoopVectorPreHeader = 2871 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2872 "vector.ph"); 2873 2874 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2875 DT->getNode(Bypass)->getIDom()) && 2876 "TC check is expected to dominate Bypass"); 2877 2878 // Update dominator for Bypass & LoopExit. 2879 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2880 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2881 2882 ReplaceInstWithInst( 2883 TCCheckBlock->getTerminator(), 2884 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2885 LoopBypassBlocks.push_back(TCCheckBlock); 2886 } 2887 2888 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2889 // Reuse existing vector loop preheader for SCEV checks. 2890 // Note that new preheader block is generated for vector loop. 2891 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2892 2893 // Generate the code to check that the SCEV assumptions that we made. 2894 // We want the new basic block to start at the first instruction in a 2895 // sequence of instructions that form a check. 2896 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2897 "scev.check"); 2898 Value *SCEVCheck = Exp.expandCodeForPredicate( 2899 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2900 2901 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2902 if (C->isZero()) 2903 return; 2904 2905 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2906 (OptForSizeBasedOnProfile && 2907 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 2908 "Cannot SCEV check stride or overflow when optimizing for size"); 2909 2910 SCEVCheckBlock->setName("vector.scevcheck"); 2911 // Create new preheader for vector loop. 2912 LoopVectorPreHeader = 2913 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2914 nullptr, "vector.ph"); 2915 2916 // Update dominator only if this is first RT check. 2917 if (LoopBypassBlocks.empty()) { 2918 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2919 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2920 } 2921 2922 ReplaceInstWithInst( 2923 SCEVCheckBlock->getTerminator(), 2924 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2925 LoopBypassBlocks.push_back(SCEVCheckBlock); 2926 AddedSafetyChecks = true; 2927 } 2928 2929 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2930 // VPlan-native path does not do any analysis for runtime checks currently. 2931 if (EnableVPlanNativePath) 2932 return; 2933 2934 // Reuse existing vector loop preheader for runtime memory checks. 2935 // Note that new preheader block is generated for vector loop. 2936 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2937 2938 // Generate the code that checks in runtime if arrays overlap. We put the 2939 // checks into a separate block to make the more common case of few elements 2940 // faster. 2941 auto *LAI = Legal->getLAI(); 2942 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2943 if (!RtPtrChecking.Need) 2944 return; 2945 2946 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2947 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2948 "Cannot emit memory checks when optimizing for size, unless forced " 2949 "to vectorize."); 2950 ORE->emit([&]() { 2951 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2952 L->getStartLoc(), L->getHeader()) 2953 << "Code-size may be reduced by not forcing " 2954 "vectorization, or by source-code modifications " 2955 "eliminating the need for runtime checks " 2956 "(e.g., adding 'restrict')."; 2957 }); 2958 } 2959 2960 MemCheckBlock->setName("vector.memcheck"); 2961 // Create new preheader for vector loop. 2962 LoopVectorPreHeader = 2963 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2964 "vector.ph"); 2965 2966 auto *CondBranch = cast<BranchInst>( 2967 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 2968 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 2969 LoopBypassBlocks.push_back(MemCheckBlock); 2970 AddedSafetyChecks = true; 2971 2972 // Update dominator only if this is first RT check. 2973 if (LoopBypassBlocks.empty()) { 2974 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2975 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2976 } 2977 2978 Instruction *FirstCheckInst; 2979 Instruction *MemRuntimeCheck; 2980 std::tie(FirstCheckInst, MemRuntimeCheck) = 2981 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2982 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2983 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2984 "claimed checks are required"); 2985 CondBranch->setCondition(MemRuntimeCheck); 2986 2987 // We currently don't use LoopVersioning for the actual loop cloning but we 2988 // still use it to add the noalias metadata. 2989 LVer = std::make_unique<LoopVersioning>( 2990 *Legal->getLAI(), 2991 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 2992 DT, PSE.getSE()); 2993 LVer->prepareNoAliasMetadata(); 2994 } 2995 2996 Value *InnerLoopVectorizer::emitTransformedIndex( 2997 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2998 const InductionDescriptor &ID) const { 2999 3000 SCEVExpander Exp(*SE, DL, "induction"); 3001 auto Step = ID.getStep(); 3002 auto StartValue = ID.getStartValue(); 3003 assert(Index->getType() == Step->getType() && 3004 "Index type does not match StepValue type"); 3005 3006 // Note: the IR at this point is broken. We cannot use SE to create any new 3007 // SCEV and then expand it, hoping that SCEV's simplification will give us 3008 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3009 // lead to various SCEV crashes. So all we can do is to use builder and rely 3010 // on InstCombine for future simplifications. Here we handle some trivial 3011 // cases only. 3012 auto CreateAdd = [&B](Value *X, Value *Y) { 3013 assert(X->getType() == Y->getType() && "Types don't match!"); 3014 if (auto *CX = dyn_cast<ConstantInt>(X)) 3015 if (CX->isZero()) 3016 return Y; 3017 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3018 if (CY->isZero()) 3019 return X; 3020 return B.CreateAdd(X, Y); 3021 }; 3022 3023 auto CreateMul = [&B](Value *X, Value *Y) { 3024 assert(X->getType() == Y->getType() && "Types don't match!"); 3025 if (auto *CX = dyn_cast<ConstantInt>(X)) 3026 if (CX->isOne()) 3027 return Y; 3028 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3029 if (CY->isOne()) 3030 return X; 3031 return B.CreateMul(X, Y); 3032 }; 3033 3034 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3035 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3036 // the DomTree is not kept up-to-date for additional blocks generated in the 3037 // vector loop. By using the header as insertion point, we guarantee that the 3038 // expanded instructions dominate all their uses. 3039 auto GetInsertPoint = [this, &B]() { 3040 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3041 if (InsertBB != LoopVectorBody && 3042 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3043 return LoopVectorBody->getTerminator(); 3044 return &*B.GetInsertPoint(); 3045 }; 3046 switch (ID.getKind()) { 3047 case InductionDescriptor::IK_IntInduction: { 3048 assert(Index->getType() == StartValue->getType() && 3049 "Index type does not match StartValue type"); 3050 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3051 return B.CreateSub(StartValue, Index); 3052 auto *Offset = CreateMul( 3053 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3054 return CreateAdd(StartValue, Offset); 3055 } 3056 case InductionDescriptor::IK_PtrInduction: { 3057 assert(isa<SCEVConstant>(Step) && 3058 "Expected constant step for pointer induction"); 3059 return B.CreateGEP( 3060 StartValue->getType()->getPointerElementType(), StartValue, 3061 CreateMul(Index, 3062 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3063 } 3064 case InductionDescriptor::IK_FpInduction: { 3065 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3066 auto InductionBinOp = ID.getInductionBinOp(); 3067 assert(InductionBinOp && 3068 (InductionBinOp->getOpcode() == Instruction::FAdd || 3069 InductionBinOp->getOpcode() == Instruction::FSub) && 3070 "Original bin op should be defined for FP induction"); 3071 3072 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3073 3074 // Floating point operations had to be 'fast' to enable the induction. 3075 FastMathFlags Flags; 3076 Flags.setFast(); 3077 3078 Value *MulExp = B.CreateFMul(StepValue, Index); 3079 if (isa<Instruction>(MulExp)) 3080 // We have to check, the MulExp may be a constant. 3081 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3082 3083 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3084 "induction"); 3085 if (isa<Instruction>(BOp)) 3086 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3087 3088 return BOp; 3089 } 3090 case InductionDescriptor::IK_NoInduction: 3091 return nullptr; 3092 } 3093 llvm_unreachable("invalid enum"); 3094 } 3095 3096 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3097 LoopScalarBody = OrigLoop->getHeader(); 3098 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3099 LoopExitBlock = OrigLoop->getExitBlock(); 3100 assert(LoopExitBlock && "Must have an exit block"); 3101 assert(LoopVectorPreHeader && "Invalid loop structure"); 3102 3103 LoopMiddleBlock = 3104 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3105 LI, nullptr, Twine(Prefix) + "middle.block"); 3106 LoopScalarPreHeader = 3107 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3108 nullptr, Twine(Prefix) + "scalar.ph"); 3109 // We intentionally don't let SplitBlock to update LoopInfo since 3110 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3111 // LoopVectorBody is explicitly added to the correct place few lines later. 3112 LoopVectorBody = 3113 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3114 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3115 3116 // Update dominator for loop exit. 3117 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3118 3119 // Create and register the new vector loop. 3120 Loop *Lp = LI->AllocateLoop(); 3121 Loop *ParentLoop = OrigLoop->getParentLoop(); 3122 3123 // Insert the new loop into the loop nest and register the new basic blocks 3124 // before calling any utilities such as SCEV that require valid LoopInfo. 3125 if (ParentLoop) { 3126 ParentLoop->addChildLoop(Lp); 3127 } else { 3128 LI->addTopLevelLoop(Lp); 3129 } 3130 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3131 return Lp; 3132 } 3133 3134 void InnerLoopVectorizer::createInductionResumeValues(Loop *L, 3135 Value *VectorTripCount) { 3136 assert(VectorTripCount && L && "Expected valid arguments"); 3137 // We are going to resume the execution of the scalar loop. 3138 // Go over all of the induction variables that we found and fix the 3139 // PHIs that are left in the scalar version of the loop. 3140 // The starting values of PHI nodes depend on the counter of the last 3141 // iteration in the vectorized loop. 3142 // If we come from a bypass edge then we need to start from the original 3143 // start value. 3144 for (auto &InductionEntry : Legal->getInductionVars()) { 3145 PHINode *OrigPhi = InductionEntry.first; 3146 InductionDescriptor II = InductionEntry.second; 3147 3148 // Create phi nodes to merge from the backedge-taken check block. 3149 PHINode *BCResumeVal = 3150 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3151 LoopScalarPreHeader->getTerminator()); 3152 // Copy original phi DL over to the new one. 3153 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3154 Value *&EndValue = IVEndValues[OrigPhi]; 3155 if (OrigPhi == OldInduction) { 3156 // We know what the end value is. 3157 EndValue = VectorTripCount; 3158 } else { 3159 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3160 Type *StepType = II.getStep()->getType(); 3161 Instruction::CastOps CastOp = 3162 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3163 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3164 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3165 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3166 EndValue->setName("ind.end"); 3167 } 3168 3169 // The new PHI merges the original incoming value, in case of a bypass, 3170 // or the value at the end of the vectorized loop. 3171 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3172 3173 // Fix the scalar body counter (PHI node). 3174 // The old induction's phi node in the scalar body needs the truncated 3175 // value. 3176 for (BasicBlock *BB : LoopBypassBlocks) 3177 BCResumeVal->addIncoming(II.getStartValue(), BB); 3178 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3179 } 3180 } 3181 3182 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3183 MDNode *OrigLoopID) { 3184 assert(L && "Expected valid loop."); 3185 3186 // The trip counts should be cached by now. 3187 Value *Count = getOrCreateTripCount(L); 3188 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3189 3190 // We need the OrigLoop (scalar loop part) latch terminator to help 3191 // produce correct debug info for the middle block BB instructions. 3192 // The legality check stage guarantees that the loop will have a single 3193 // latch. 3194 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3195 "Scalar loop latch terminator isn't a branch"); 3196 BranchInst *ScalarLatchBr = 3197 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3198 3199 // Add a check in the middle block to see if we have completed 3200 // all of the iterations in the first vector loop. 3201 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3202 // If tail is to be folded, we know we don't need to run the remainder. 3203 Value *CmpN = Builder.getTrue(); 3204 if (!Cost->foldTailByMasking()) { 3205 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3206 VectorTripCount, "cmp.n", 3207 LoopMiddleBlock->getTerminator()); 3208 3209 // Here we use the same DebugLoc as the scalar loop latch branch instead 3210 // of the corresponding compare because they may have ended up with 3211 // different line numbers and we want to avoid awkward line stepping while 3212 // debugging. Eg. if the compare has got a line number inside the loop. 3213 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3214 } 3215 3216 BranchInst *BrInst = 3217 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3218 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3219 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3220 3221 // Get ready to start creating new instructions into the vectorized body. 3222 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3223 "Inconsistent vector loop preheader"); 3224 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3225 3226 Optional<MDNode *> VectorizedLoopID = 3227 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3228 LLVMLoopVectorizeFollowupVectorized}); 3229 if (VectorizedLoopID.hasValue()) { 3230 L->setLoopID(VectorizedLoopID.getValue()); 3231 3232 // Do not setAlreadyVectorized if loop attributes have been defined 3233 // explicitly. 3234 return LoopVectorPreHeader; 3235 } 3236 3237 // Keep all loop hints from the original loop on the vector loop (we'll 3238 // replace the vectorizer-specific hints below). 3239 if (MDNode *LID = OrigLoop->getLoopID()) 3240 L->setLoopID(LID); 3241 3242 LoopVectorizeHints Hints(L, true, *ORE); 3243 Hints.setAlreadyVectorized(); 3244 3245 #ifdef EXPENSIVE_CHECKS 3246 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3247 LI->verify(*DT); 3248 #endif 3249 3250 return LoopVectorPreHeader; 3251 } 3252 3253 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3254 /* 3255 In this function we generate a new loop. The new loop will contain 3256 the vectorized instructions while the old loop will continue to run the 3257 scalar remainder. 3258 3259 [ ] <-- loop iteration number check. 3260 / | 3261 / v 3262 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3263 | / | 3264 | / v 3265 || [ ] <-- vector pre header. 3266 |/ | 3267 | v 3268 | [ ] \ 3269 | [ ]_| <-- vector loop. 3270 | | 3271 | v 3272 | -[ ] <--- middle-block. 3273 | / | 3274 | / v 3275 -|- >[ ] <--- new preheader. 3276 | | 3277 | v 3278 | [ ] \ 3279 | [ ]_| <-- old scalar loop to handle remainder. 3280 \ | 3281 \ v 3282 >[ ] <-- exit block. 3283 ... 3284 */ 3285 3286 // Get the metadata of the original loop before it gets modified. 3287 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3288 3289 // Create an empty vector loop, and prepare basic blocks for the runtime 3290 // checks. 3291 Loop *Lp = createVectorLoopSkeleton(""); 3292 3293 // Now, compare the new count to zero. If it is zero skip the vector loop and 3294 // jump to the scalar loop. This check also covers the case where the 3295 // backedge-taken count is uint##_max: adding one to it will overflow leading 3296 // to an incorrect trip count of zero. In this (rare) case we will also jump 3297 // to the scalar loop. 3298 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3299 3300 // Generate the code to check any assumptions that we've made for SCEV 3301 // expressions. 3302 emitSCEVChecks(Lp, LoopScalarPreHeader); 3303 3304 // Generate the code that checks in runtime if arrays overlap. We put the 3305 // checks into a separate block to make the more common case of few elements 3306 // faster. 3307 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3308 3309 // Some loops have a single integer induction variable, while other loops 3310 // don't. One example is c++ iterators that often have multiple pointer 3311 // induction variables. In the code below we also support a case where we 3312 // don't have a single induction variable. 3313 // 3314 // We try to obtain an induction variable from the original loop as hard 3315 // as possible. However if we don't find one that: 3316 // - is an integer 3317 // - counts from zero, stepping by one 3318 // - is the size of the widest induction variable type 3319 // then we create a new one. 3320 OldInduction = Legal->getPrimaryInduction(); 3321 Type *IdxTy = Legal->getWidestInductionType(); 3322 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3323 // The loop step is equal to the vectorization factor (num of SIMD elements) 3324 // times the unroll factor (num of SIMD instructions). 3325 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3326 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 3327 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3328 Induction = 3329 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3330 getDebugLocFromInstOrOperands(OldInduction)); 3331 3332 // Emit phis for the new starting index of the scalar loop. 3333 createInductionResumeValues(Lp, CountRoundDown); 3334 3335 return completeLoopSkeleton(Lp, OrigLoopID); 3336 } 3337 3338 // Fix up external users of the induction variable. At this point, we are 3339 // in LCSSA form, with all external PHIs that use the IV having one input value, 3340 // coming from the remainder loop. We need those PHIs to also have a correct 3341 // value for the IV when arriving directly from the middle block. 3342 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3343 const InductionDescriptor &II, 3344 Value *CountRoundDown, Value *EndValue, 3345 BasicBlock *MiddleBlock) { 3346 // There are two kinds of external IV usages - those that use the value 3347 // computed in the last iteration (the PHI) and those that use the penultimate 3348 // value (the value that feeds into the phi from the loop latch). 3349 // We allow both, but they, obviously, have different values. 3350 3351 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3352 3353 DenseMap<Value *, Value *> MissingVals; 3354 3355 // An external user of the last iteration's value should see the value that 3356 // the remainder loop uses to initialize its own IV. 3357 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3358 for (User *U : PostInc->users()) { 3359 Instruction *UI = cast<Instruction>(U); 3360 if (!OrigLoop->contains(UI)) { 3361 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3362 MissingVals[UI] = EndValue; 3363 } 3364 } 3365 3366 // An external user of the penultimate value need to see EndValue - Step. 3367 // The simplest way to get this is to recompute it from the constituent SCEVs, 3368 // that is Start + (Step * (CRD - 1)). 3369 for (User *U : OrigPhi->users()) { 3370 auto *UI = cast<Instruction>(U); 3371 if (!OrigLoop->contains(UI)) { 3372 const DataLayout &DL = 3373 OrigLoop->getHeader()->getModule()->getDataLayout(); 3374 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3375 3376 IRBuilder<> B(MiddleBlock->getTerminator()); 3377 Value *CountMinusOne = B.CreateSub( 3378 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3379 Value *CMO = 3380 !II.getStep()->getType()->isIntegerTy() 3381 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3382 II.getStep()->getType()) 3383 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3384 CMO->setName("cast.cmo"); 3385 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3386 Escape->setName("ind.escape"); 3387 MissingVals[UI] = Escape; 3388 } 3389 } 3390 3391 for (auto &I : MissingVals) { 3392 PHINode *PHI = cast<PHINode>(I.first); 3393 // One corner case we have to handle is two IVs "chasing" each-other, 3394 // that is %IV2 = phi [...], [ %IV1, %latch ] 3395 // In this case, if IV1 has an external use, we need to avoid adding both 3396 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3397 // don't already have an incoming value for the middle block. 3398 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3399 PHI->addIncoming(I.second, MiddleBlock); 3400 } 3401 } 3402 3403 namespace { 3404 3405 struct CSEDenseMapInfo { 3406 static bool canHandle(const Instruction *I) { 3407 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3408 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3409 } 3410 3411 static inline Instruction *getEmptyKey() { 3412 return DenseMapInfo<Instruction *>::getEmptyKey(); 3413 } 3414 3415 static inline Instruction *getTombstoneKey() { 3416 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3417 } 3418 3419 static unsigned getHashValue(const Instruction *I) { 3420 assert(canHandle(I) && "Unknown instruction!"); 3421 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3422 I->value_op_end())); 3423 } 3424 3425 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3426 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3427 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3428 return LHS == RHS; 3429 return LHS->isIdenticalTo(RHS); 3430 } 3431 }; 3432 3433 } // end anonymous namespace 3434 3435 ///Perform cse of induction variable instructions. 3436 static void cse(BasicBlock *BB) { 3437 // Perform simple cse. 3438 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3439 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3440 Instruction *In = &*I++; 3441 3442 if (!CSEDenseMapInfo::canHandle(In)) 3443 continue; 3444 3445 // Check if we can replace this instruction with any of the 3446 // visited instructions. 3447 if (Instruction *V = CSEMap.lookup(In)) { 3448 In->replaceAllUsesWith(V); 3449 In->eraseFromParent(); 3450 continue; 3451 } 3452 3453 CSEMap[In] = In; 3454 } 3455 } 3456 3457 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3458 ElementCount VF, 3459 bool &NeedToScalarize) { 3460 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3461 Function *F = CI->getCalledFunction(); 3462 Type *ScalarRetTy = CI->getType(); 3463 SmallVector<Type *, 4> Tys, ScalarTys; 3464 for (auto &ArgOp : CI->arg_operands()) 3465 ScalarTys.push_back(ArgOp->getType()); 3466 3467 // Estimate cost of scalarized vector call. The source operands are assumed 3468 // to be vectors, so we need to extract individual elements from there, 3469 // execute VF scalar calls, and then gather the result into the vector return 3470 // value. 3471 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3472 TTI::TCK_RecipThroughput); 3473 if (VF.isScalar()) 3474 return ScalarCallCost; 3475 3476 // Compute corresponding vector type for return value and arguments. 3477 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3478 for (Type *ScalarTy : ScalarTys) 3479 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3480 3481 // Compute costs of unpacking argument values for the scalar calls and 3482 // packing the return values to a vector. 3483 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3484 3485 unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3486 3487 // If we can't emit a vector call for this function, then the currently found 3488 // cost is the cost we need to return. 3489 NeedToScalarize = true; 3490 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3491 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3492 3493 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3494 return Cost; 3495 3496 // If the corresponding vector cost is cheaper, return its cost. 3497 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3498 TTI::TCK_RecipThroughput); 3499 if (VectorCallCost < Cost) { 3500 NeedToScalarize = false; 3501 return VectorCallCost; 3502 } 3503 return Cost; 3504 } 3505 3506 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3507 ElementCount VF) { 3508 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3509 assert(ID && "Expected intrinsic call!"); 3510 3511 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3512 return TTI.getIntrinsicInstrCost(CostAttrs, 3513 TargetTransformInfo::TCK_RecipThroughput); 3514 } 3515 3516 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3517 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3518 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3519 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3520 } 3521 3522 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3523 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3524 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3525 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3526 } 3527 3528 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3529 // For every instruction `I` in MinBWs, truncate the operands, create a 3530 // truncated version of `I` and reextend its result. InstCombine runs 3531 // later and will remove any ext/trunc pairs. 3532 SmallPtrSet<Value *, 4> Erased; 3533 for (const auto &KV : Cost->getMinimalBitwidths()) { 3534 // If the value wasn't vectorized, we must maintain the original scalar 3535 // type. The absence of the value from VectorLoopValueMap indicates that it 3536 // wasn't vectorized. 3537 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3538 continue; 3539 for (unsigned Part = 0; Part < UF; ++Part) { 3540 Value *I = getOrCreateVectorValue(KV.first, Part); 3541 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3542 continue; 3543 Type *OriginalTy = I->getType(); 3544 Type *ScalarTruncatedTy = 3545 IntegerType::get(OriginalTy->getContext(), KV.second); 3546 auto *TruncatedTy = FixedVectorType::get( 3547 ScalarTruncatedTy, 3548 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3549 if (TruncatedTy == OriginalTy) 3550 continue; 3551 3552 IRBuilder<> B(cast<Instruction>(I)); 3553 auto ShrinkOperand = [&](Value *V) -> Value * { 3554 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3555 if (ZI->getSrcTy() == TruncatedTy) 3556 return ZI->getOperand(0); 3557 return B.CreateZExtOrTrunc(V, TruncatedTy); 3558 }; 3559 3560 // The actual instruction modification depends on the instruction type, 3561 // unfortunately. 3562 Value *NewI = nullptr; 3563 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3564 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3565 ShrinkOperand(BO->getOperand(1))); 3566 3567 // Any wrapping introduced by shrinking this operation shouldn't be 3568 // considered undefined behavior. So, we can't unconditionally copy 3569 // arithmetic wrapping flags to NewI. 3570 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3571 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3572 NewI = 3573 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3574 ShrinkOperand(CI->getOperand(1))); 3575 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3576 NewI = B.CreateSelect(SI->getCondition(), 3577 ShrinkOperand(SI->getTrueValue()), 3578 ShrinkOperand(SI->getFalseValue())); 3579 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3580 switch (CI->getOpcode()) { 3581 default: 3582 llvm_unreachable("Unhandled cast!"); 3583 case Instruction::Trunc: 3584 NewI = ShrinkOperand(CI->getOperand(0)); 3585 break; 3586 case Instruction::SExt: 3587 NewI = B.CreateSExtOrTrunc( 3588 CI->getOperand(0), 3589 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3590 break; 3591 case Instruction::ZExt: 3592 NewI = B.CreateZExtOrTrunc( 3593 CI->getOperand(0), 3594 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3595 break; 3596 } 3597 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3598 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3599 ->getNumElements(); 3600 auto *O0 = B.CreateZExtOrTrunc( 3601 SI->getOperand(0), 3602 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3603 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3604 ->getNumElements(); 3605 auto *O1 = B.CreateZExtOrTrunc( 3606 SI->getOperand(1), 3607 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3608 3609 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3610 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3611 // Don't do anything with the operands, just extend the result. 3612 continue; 3613 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3614 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3615 ->getNumElements(); 3616 auto *O0 = B.CreateZExtOrTrunc( 3617 IE->getOperand(0), 3618 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3619 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3620 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3621 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3622 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3623 ->getNumElements(); 3624 auto *O0 = B.CreateZExtOrTrunc( 3625 EE->getOperand(0), 3626 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3627 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3628 } else { 3629 // If we don't know what to do, be conservative and don't do anything. 3630 continue; 3631 } 3632 3633 // Lastly, extend the result. 3634 NewI->takeName(cast<Instruction>(I)); 3635 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3636 I->replaceAllUsesWith(Res); 3637 cast<Instruction>(I)->eraseFromParent(); 3638 Erased.insert(I); 3639 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3640 } 3641 } 3642 3643 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3644 for (const auto &KV : Cost->getMinimalBitwidths()) { 3645 // If the value wasn't vectorized, we must maintain the original scalar 3646 // type. The absence of the value from VectorLoopValueMap indicates that it 3647 // wasn't vectorized. 3648 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3649 continue; 3650 for (unsigned Part = 0; Part < UF; ++Part) { 3651 Value *I = getOrCreateVectorValue(KV.first, Part); 3652 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3653 if (Inst && Inst->use_empty()) { 3654 Value *NewI = Inst->getOperand(0); 3655 Inst->eraseFromParent(); 3656 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3657 } 3658 } 3659 } 3660 } 3661 3662 void InnerLoopVectorizer::fixVectorizedLoop() { 3663 // Insert truncates and extends for any truncated instructions as hints to 3664 // InstCombine. 3665 if (VF.isVector()) 3666 truncateToMinimalBitwidths(); 3667 3668 // Fix widened non-induction PHIs by setting up the PHI operands. 3669 if (OrigPHIsToFix.size()) { 3670 assert(EnableVPlanNativePath && 3671 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3672 fixNonInductionPHIs(); 3673 } 3674 3675 // At this point every instruction in the original loop is widened to a 3676 // vector form. Now we need to fix the recurrences in the loop. These PHI 3677 // nodes are currently empty because we did not want to introduce cycles. 3678 // This is the second stage of vectorizing recurrences. 3679 fixCrossIterationPHIs(); 3680 3681 // Forget the original basic block. 3682 PSE.getSE()->forgetLoop(OrigLoop); 3683 3684 // Fix-up external users of the induction variables. 3685 for (auto &Entry : Legal->getInductionVars()) 3686 fixupIVUsers(Entry.first, Entry.second, 3687 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3688 IVEndValues[Entry.first], LoopMiddleBlock); 3689 3690 fixLCSSAPHIs(); 3691 for (Instruction *PI : PredicatedInstructions) 3692 sinkScalarOperands(&*PI); 3693 3694 // Remove redundant induction instructions. 3695 cse(LoopVectorBody); 3696 3697 // Set/update profile weights for the vector and remainder loops as original 3698 // loop iterations are now distributed among them. Note that original loop 3699 // represented by LoopScalarBody becomes remainder loop after vectorization. 3700 // 3701 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3702 // end up getting slightly roughened result but that should be OK since 3703 // profile is not inherently precise anyway. Note also possible bypass of 3704 // vector code caused by legality checks is ignored, assigning all the weight 3705 // to the vector loop, optimistically. 3706 assert(!VF.isScalable() && 3707 "cannot use scalable ElementCount to determine unroll factor"); 3708 setProfileInfoAfterUnrolling( 3709 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3710 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3711 } 3712 3713 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3714 // In order to support recurrences we need to be able to vectorize Phi nodes. 3715 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3716 // stage #2: We now need to fix the recurrences by adding incoming edges to 3717 // the currently empty PHI nodes. At this point every instruction in the 3718 // original loop is widened to a vector form so we can use them to construct 3719 // the incoming edges. 3720 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3721 // Handle first-order recurrences and reductions that need to be fixed. 3722 if (Legal->isFirstOrderRecurrence(&Phi)) 3723 fixFirstOrderRecurrence(&Phi); 3724 else if (Legal->isReductionVariable(&Phi)) 3725 fixReduction(&Phi); 3726 } 3727 } 3728 3729 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3730 // This is the second phase of vectorizing first-order recurrences. An 3731 // overview of the transformation is described below. Suppose we have the 3732 // following loop. 3733 // 3734 // for (int i = 0; i < n; ++i) 3735 // b[i] = a[i] - a[i - 1]; 3736 // 3737 // There is a first-order recurrence on "a". For this loop, the shorthand 3738 // scalar IR looks like: 3739 // 3740 // scalar.ph: 3741 // s_init = a[-1] 3742 // br scalar.body 3743 // 3744 // scalar.body: 3745 // i = phi [0, scalar.ph], [i+1, scalar.body] 3746 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3747 // s2 = a[i] 3748 // b[i] = s2 - s1 3749 // br cond, scalar.body, ... 3750 // 3751 // In this example, s1 is a recurrence because it's value depends on the 3752 // previous iteration. In the first phase of vectorization, we created a 3753 // temporary value for s1. We now complete the vectorization and produce the 3754 // shorthand vector IR shown below (for VF = 4, UF = 1). 3755 // 3756 // vector.ph: 3757 // v_init = vector(..., ..., ..., a[-1]) 3758 // br vector.body 3759 // 3760 // vector.body 3761 // i = phi [0, vector.ph], [i+4, vector.body] 3762 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3763 // v2 = a[i, i+1, i+2, i+3]; 3764 // v3 = vector(v1(3), v2(0, 1, 2)) 3765 // b[i, i+1, i+2, i+3] = v2 - v3 3766 // br cond, vector.body, middle.block 3767 // 3768 // middle.block: 3769 // x = v2(3) 3770 // br scalar.ph 3771 // 3772 // scalar.ph: 3773 // s_init = phi [x, middle.block], [a[-1], otherwise] 3774 // br scalar.body 3775 // 3776 // After execution completes the vector loop, we extract the next value of 3777 // the recurrence (x) to use as the initial value in the scalar loop. 3778 3779 // Get the original loop preheader and single loop latch. 3780 auto *Preheader = OrigLoop->getLoopPreheader(); 3781 auto *Latch = OrigLoop->getLoopLatch(); 3782 3783 // Get the initial and previous values of the scalar recurrence. 3784 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3785 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3786 3787 // Create a vector from the initial value. 3788 auto *VectorInit = ScalarInit; 3789 if (VF.isVector()) { 3790 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3791 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 3792 VectorInit = Builder.CreateInsertElement( 3793 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3794 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 3795 } 3796 3797 // We constructed a temporary phi node in the first phase of vectorization. 3798 // This phi node will eventually be deleted. 3799 Builder.SetInsertPoint( 3800 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3801 3802 // Create a phi node for the new recurrence. The current value will either be 3803 // the initial value inserted into a vector or loop-varying vector value. 3804 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3805 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3806 3807 // Get the vectorized previous value of the last part UF - 1. It appears last 3808 // among all unrolled iterations, due to the order of their construction. 3809 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3810 3811 // Find and set the insertion point after the previous value if it is an 3812 // instruction. 3813 BasicBlock::iterator InsertPt; 3814 // Note that the previous value may have been constant-folded so it is not 3815 // guaranteed to be an instruction in the vector loop. 3816 // FIXME: Loop invariant values do not form recurrences. We should deal with 3817 // them earlier. 3818 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3819 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3820 else { 3821 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3822 if (isa<PHINode>(PreviousLastPart)) 3823 // If the previous value is a phi node, we should insert after all the phi 3824 // nodes in the block containing the PHI to avoid breaking basic block 3825 // verification. Note that the basic block may be different to 3826 // LoopVectorBody, in case we predicate the loop. 3827 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3828 else 3829 InsertPt = ++PreviousInst->getIterator(); 3830 } 3831 Builder.SetInsertPoint(&*InsertPt); 3832 3833 // We will construct a vector for the recurrence by combining the values for 3834 // the current and previous iterations. This is the required shuffle mask. 3835 assert(!VF.isScalable()); 3836 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 3837 ShuffleMask[0] = VF.getKnownMinValue() - 1; 3838 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 3839 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 3840 3841 // The vector from which to take the initial value for the current iteration 3842 // (actual or unrolled). Initially, this is the vector phi node. 3843 Value *Incoming = VecPhi; 3844 3845 // Shuffle the current and previous vector and update the vector parts. 3846 for (unsigned Part = 0; Part < UF; ++Part) { 3847 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3848 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3849 auto *Shuffle = 3850 VF.isVector() 3851 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 3852 : Incoming; 3853 PhiPart->replaceAllUsesWith(Shuffle); 3854 cast<Instruction>(PhiPart)->eraseFromParent(); 3855 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3856 Incoming = PreviousPart; 3857 } 3858 3859 // Fix the latch value of the new recurrence in the vector loop. 3860 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3861 3862 // Extract the last vector element in the middle block. This will be the 3863 // initial value for the recurrence when jumping to the scalar loop. 3864 auto *ExtractForScalar = Incoming; 3865 if (VF.isVector()) { 3866 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3867 ExtractForScalar = Builder.CreateExtractElement( 3868 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 3869 "vector.recur.extract"); 3870 } 3871 // Extract the second last element in the middle block if the 3872 // Phi is used outside the loop. We need to extract the phi itself 3873 // and not the last element (the phi update in the current iteration). This 3874 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3875 // when the scalar loop is not run at all. 3876 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3877 if (VF.isVector()) 3878 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3879 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 3880 "vector.recur.extract.for.phi"); 3881 // When loop is unrolled without vectorizing, initialize 3882 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3883 // `Incoming`. This is analogous to the vectorized case above: extracting the 3884 // second last element when VF > 1. 3885 else if (UF > 1) 3886 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3887 3888 // Fix the initial value of the original recurrence in the scalar loop. 3889 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3890 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3891 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3892 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3893 Start->addIncoming(Incoming, BB); 3894 } 3895 3896 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3897 Phi->setName("scalar.recur"); 3898 3899 // Finally, fix users of the recurrence outside the loop. The users will need 3900 // either the last value of the scalar recurrence or the last value of the 3901 // vector recurrence we extracted in the middle block. Since the loop is in 3902 // LCSSA form, we just need to find all the phi nodes for the original scalar 3903 // recurrence in the exit block, and then add an edge for the middle block. 3904 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3905 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3906 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3907 } 3908 } 3909 } 3910 3911 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3912 Constant *Zero = Builder.getInt32(0); 3913 3914 // Get it's reduction variable descriptor. 3915 assert(Legal->isReductionVariable(Phi) && 3916 "Unable to find the reduction variable"); 3917 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3918 3919 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3920 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3921 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3922 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3923 RdxDesc.getMinMaxRecurrenceKind(); 3924 setDebugLocFromInst(Builder, ReductionStartValue); 3925 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 3926 3927 // We need to generate a reduction vector from the incoming scalar. 3928 // To do so, we need to generate the 'identity' vector and override 3929 // one of the elements with the incoming scalar reduction. We need 3930 // to do it in the vector-loop preheader. 3931 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3932 3933 // This is the vector-clone of the value that leaves the loop. 3934 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3935 3936 // Find the reduction identity variable. Zero for addition, or, xor, 3937 // one for multiplication, -1 for And. 3938 Value *Identity; 3939 Value *VectorStart; 3940 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3941 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3942 // MinMax reduction have the start value as their identify. 3943 if (VF.isScalar() || IsInLoopReductionPhi) { 3944 VectorStart = Identity = ReductionStartValue; 3945 } else { 3946 VectorStart = Identity = 3947 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3948 } 3949 } else { 3950 // Handle other reduction kinds: 3951 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3952 RK, MinMaxKind, VecTy->getScalarType()); 3953 if (VF.isScalar() || IsInLoopReductionPhi) { 3954 Identity = Iden; 3955 // This vector is the Identity vector where the first element is the 3956 // incoming scalar reduction. 3957 VectorStart = ReductionStartValue; 3958 } else { 3959 Identity = ConstantVector::getSplat(VF, Iden); 3960 3961 // This vector is the Identity vector where the first element is the 3962 // incoming scalar reduction. 3963 VectorStart = 3964 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3965 } 3966 } 3967 3968 // Wrap flags are in general invalid after vectorization, clear them. 3969 clearReductionWrapFlags(RdxDesc); 3970 3971 // Fix the vector-loop phi. 3972 3973 // Reductions do not have to start at zero. They can start with 3974 // any loop invariant values. 3975 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3976 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3977 3978 for (unsigned Part = 0; Part < UF; ++Part) { 3979 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3980 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3981 // Make sure to add the reduction start value only to the 3982 // first unroll part. 3983 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3984 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3985 cast<PHINode>(VecRdxPhi) 3986 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3987 } 3988 3989 // Before each round, move the insertion point right between 3990 // the PHIs and the values we are going to write. 3991 // This allows us to write both PHINodes and the extractelement 3992 // instructions. 3993 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3994 3995 setDebugLocFromInst(Builder, LoopExitInst); 3996 3997 // If tail is folded by masking, the vector value to leave the loop should be 3998 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3999 // instead of the former. For an inloop reduction the reduction will already 4000 // be predicated, and does not need to be handled here. 4001 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4002 for (unsigned Part = 0; Part < UF; ++Part) { 4003 Value *VecLoopExitInst = 4004 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4005 Value *Sel = nullptr; 4006 for (User *U : VecLoopExitInst->users()) { 4007 if (isa<SelectInst>(U)) { 4008 assert(!Sel && "Reduction exit feeding two selects"); 4009 Sel = U; 4010 } else 4011 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4012 } 4013 assert(Sel && "Reduction exit feeds no select"); 4014 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4015 4016 // If the target can create a predicated operator for the reduction at no 4017 // extra cost in the loop (for example a predicated vadd), it can be 4018 // cheaper for the select to remain in the loop than be sunk out of it, 4019 // and so use the select value for the phi instead of the old 4020 // LoopExitValue. 4021 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4022 if (PreferPredicatedReductionSelect || 4023 TTI->preferPredicatedReductionSelect( 4024 RdxDesc.getRecurrenceBinOp(), Phi->getType(), 4025 TargetTransformInfo::ReductionFlags())) { 4026 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4027 VecRdxPhi->setIncomingValueForBlock( 4028 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4029 } 4030 } 4031 } 4032 4033 // If the vector reduction can be performed in a smaller type, we truncate 4034 // then extend the loop exit value to enable InstCombine to evaluate the 4035 // entire expression in the smaller type. 4036 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4037 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4038 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4039 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4040 Builder.SetInsertPoint( 4041 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4042 VectorParts RdxParts(UF); 4043 for (unsigned Part = 0; Part < UF; ++Part) { 4044 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4045 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4046 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4047 : Builder.CreateZExt(Trunc, VecTy); 4048 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4049 UI != RdxParts[Part]->user_end();) 4050 if (*UI != Trunc) { 4051 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4052 RdxParts[Part] = Extnd; 4053 } else { 4054 ++UI; 4055 } 4056 } 4057 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4058 for (unsigned Part = 0; Part < UF; ++Part) { 4059 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4060 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4061 } 4062 } 4063 4064 // Reduce all of the unrolled parts into a single vector. 4065 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4066 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4067 4068 // The middle block terminator has already been assigned a DebugLoc here (the 4069 // OrigLoop's single latch terminator). We want the whole middle block to 4070 // appear to execute on this line because: (a) it is all compiler generated, 4071 // (b) these instructions are always executed after evaluating the latch 4072 // conditional branch, and (c) other passes may add new predecessors which 4073 // terminate on this line. This is the easiest way to ensure we don't 4074 // accidentally cause an extra step back into the loop while debugging. 4075 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4076 for (unsigned Part = 1; Part < UF; ++Part) { 4077 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4078 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4079 // Floating point operations had to be 'fast' to enable the reduction. 4080 ReducedPartRdx = addFastMathFlag( 4081 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4082 ReducedPartRdx, "bin.rdx"), 4083 RdxDesc.getFastMathFlags()); 4084 else 4085 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 4086 RdxPart); 4087 } 4088 4089 // Create the reduction after the loop. Note that inloop reductions create the 4090 // target reduction in the loop using a Reduction recipe. 4091 if (VF.isVector() && !IsInLoopReductionPhi) { 4092 bool NoNaN = Legal->hasFunNoNaNAttr(); 4093 ReducedPartRdx = 4094 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4095 // If the reduction can be performed in a smaller type, we need to extend 4096 // the reduction to the wider type before we branch to the original loop. 4097 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4098 ReducedPartRdx = 4099 RdxDesc.isSigned() 4100 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4101 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4102 } 4103 4104 // Create a phi node that merges control-flow from the backedge-taken check 4105 // block and the middle block. 4106 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4107 LoopScalarPreHeader->getTerminator()); 4108 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4109 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4110 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4111 4112 // Now, we need to fix the users of the reduction variable 4113 // inside and outside of the scalar remainder loop. 4114 // We know that the loop is in LCSSA form. We need to update the 4115 // PHI nodes in the exit blocks. 4116 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4117 // All PHINodes need to have a single entry edge, or two if 4118 // we already fixed them. 4119 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4120 4121 // We found a reduction value exit-PHI. Update it with the 4122 // incoming bypass edge. 4123 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4124 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4125 } // end of the LCSSA phi scan. 4126 4127 // Fix the scalar loop reduction variable with the incoming reduction sum 4128 // from the vector body and from the backedge value. 4129 int IncomingEdgeBlockIdx = 4130 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4131 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4132 // Pick the other block. 4133 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4134 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4135 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4136 } 4137 4138 void InnerLoopVectorizer::clearReductionWrapFlags( 4139 RecurrenceDescriptor &RdxDesc) { 4140 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4141 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 4142 RK != RecurrenceDescriptor::RK_IntegerMult) 4143 return; 4144 4145 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4146 assert(LoopExitInstr && "null loop exit instruction"); 4147 SmallVector<Instruction *, 8> Worklist; 4148 SmallPtrSet<Instruction *, 8> Visited; 4149 Worklist.push_back(LoopExitInstr); 4150 Visited.insert(LoopExitInstr); 4151 4152 while (!Worklist.empty()) { 4153 Instruction *Cur = Worklist.pop_back_val(); 4154 if (isa<OverflowingBinaryOperator>(Cur)) 4155 for (unsigned Part = 0; Part < UF; ++Part) { 4156 Value *V = getOrCreateVectorValue(Cur, Part); 4157 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4158 } 4159 4160 for (User *U : Cur->users()) { 4161 Instruction *UI = cast<Instruction>(U); 4162 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4163 Visited.insert(UI).second) 4164 Worklist.push_back(UI); 4165 } 4166 } 4167 } 4168 4169 void InnerLoopVectorizer::fixLCSSAPHIs() { 4170 assert(!VF.isScalable() && "the code below assumes fixed width vectors"); 4171 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4172 if (LCSSAPhi.getNumIncomingValues() == 1) { 4173 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4174 // Non-instruction incoming values will have only one value. 4175 unsigned LastLane = 0; 4176 if (isa<Instruction>(IncomingValue)) 4177 LastLane = Cost->isUniformAfterVectorization( 4178 cast<Instruction>(IncomingValue), VF) 4179 ? 0 4180 : VF.getKnownMinValue() - 1; 4181 // Can be a loop invariant incoming value or the last scalar value to be 4182 // extracted from the vectorized loop. 4183 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4184 Value *lastIncomingValue = 4185 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4186 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4187 } 4188 } 4189 } 4190 4191 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4192 // The basic block and loop containing the predicated instruction. 4193 auto *PredBB = PredInst->getParent(); 4194 auto *VectorLoop = LI->getLoopFor(PredBB); 4195 4196 // Initialize a worklist with the operands of the predicated instruction. 4197 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4198 4199 // Holds instructions that we need to analyze again. An instruction may be 4200 // reanalyzed if we don't yet know if we can sink it or not. 4201 SmallVector<Instruction *, 8> InstsToReanalyze; 4202 4203 // Returns true if a given use occurs in the predicated block. Phi nodes use 4204 // their operands in their corresponding predecessor blocks. 4205 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4206 auto *I = cast<Instruction>(U.getUser()); 4207 BasicBlock *BB = I->getParent(); 4208 if (auto *Phi = dyn_cast<PHINode>(I)) 4209 BB = Phi->getIncomingBlock( 4210 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4211 return BB == PredBB; 4212 }; 4213 4214 // Iteratively sink the scalarized operands of the predicated instruction 4215 // into the block we created for it. When an instruction is sunk, it's 4216 // operands are then added to the worklist. The algorithm ends after one pass 4217 // through the worklist doesn't sink a single instruction. 4218 bool Changed; 4219 do { 4220 // Add the instructions that need to be reanalyzed to the worklist, and 4221 // reset the changed indicator. 4222 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4223 InstsToReanalyze.clear(); 4224 Changed = false; 4225 4226 while (!Worklist.empty()) { 4227 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4228 4229 // We can't sink an instruction if it is a phi node, is already in the 4230 // predicated block, is not in the loop, or may have side effects. 4231 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4232 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4233 continue; 4234 4235 // It's legal to sink the instruction if all its uses occur in the 4236 // predicated block. Otherwise, there's nothing to do yet, and we may 4237 // need to reanalyze the instruction. 4238 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4239 InstsToReanalyze.push_back(I); 4240 continue; 4241 } 4242 4243 // Move the instruction to the beginning of the predicated block, and add 4244 // it's operands to the worklist. 4245 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4246 Worklist.insert(I->op_begin(), I->op_end()); 4247 4248 // The sinking may have enabled other instructions to be sunk, so we will 4249 // need to iterate. 4250 Changed = true; 4251 } 4252 } while (Changed); 4253 } 4254 4255 void InnerLoopVectorizer::fixNonInductionPHIs() { 4256 for (PHINode *OrigPhi : OrigPHIsToFix) { 4257 PHINode *NewPhi = 4258 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4259 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4260 4261 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4262 predecessors(OrigPhi->getParent())); 4263 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4264 predecessors(NewPhi->getParent())); 4265 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4266 "Scalar and Vector BB should have the same number of predecessors"); 4267 4268 // The insertion point in Builder may be invalidated by the time we get 4269 // here. Force the Builder insertion point to something valid so that we do 4270 // not run into issues during insertion point restore in 4271 // getOrCreateVectorValue calls below. 4272 Builder.SetInsertPoint(NewPhi); 4273 4274 // The predecessor order is preserved and we can rely on mapping between 4275 // scalar and vector block predecessors. 4276 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4277 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4278 4279 // When looking up the new scalar/vector values to fix up, use incoming 4280 // values from original phi. 4281 Value *ScIncV = 4282 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4283 4284 // Scalar incoming value may need a broadcast 4285 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4286 NewPhi->addIncoming(NewIncV, NewPredBB); 4287 } 4288 } 4289 } 4290 4291 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands, 4292 unsigned UF, ElementCount VF, 4293 bool IsPtrLoopInvariant, 4294 SmallBitVector &IsIndexLoopInvariant, 4295 VPTransformState &State) { 4296 // Construct a vector GEP by widening the operands of the scalar GEP as 4297 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4298 // results in a vector of pointers when at least one operand of the GEP 4299 // is vector-typed. Thus, to keep the representation compact, we only use 4300 // vector-typed operands for loop-varying values. 4301 4302 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4303 // If we are vectorizing, but the GEP has only loop-invariant operands, 4304 // the GEP we build (by only using vector-typed operands for 4305 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4306 // produce a vector of pointers, we need to either arbitrarily pick an 4307 // operand to broadcast, or broadcast a clone of the original GEP. 4308 // Here, we broadcast a clone of the original. 4309 // 4310 // TODO: If at some point we decide to scalarize instructions having 4311 // loop-invariant operands, this special case will no longer be 4312 // required. We would add the scalarization decision to 4313 // collectLoopScalars() and teach getVectorValue() to broadcast 4314 // the lane-zero scalar value. 4315 auto *Clone = Builder.Insert(GEP->clone()); 4316 for (unsigned Part = 0; Part < UF; ++Part) { 4317 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4318 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4319 addMetadata(EntryPart, GEP); 4320 } 4321 } else { 4322 // If the GEP has at least one loop-varying operand, we are sure to 4323 // produce a vector of pointers. But if we are only unrolling, we want 4324 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4325 // produce with the code below will be scalar (if VF == 1) or vector 4326 // (otherwise). Note that for the unroll-only case, we still maintain 4327 // values in the vector mapping with initVector, as we do for other 4328 // instructions. 4329 for (unsigned Part = 0; Part < UF; ++Part) { 4330 // The pointer operand of the new GEP. If it's loop-invariant, we 4331 // won't broadcast it. 4332 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4333 : State.get(Operands.getOperand(0), Part); 4334 4335 // Collect all the indices for the new GEP. If any index is 4336 // loop-invariant, we won't broadcast it. 4337 SmallVector<Value *, 4> Indices; 4338 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4339 VPValue *Operand = Operands.getOperand(I); 4340 if (IsIndexLoopInvariant[I - 1]) 4341 Indices.push_back(State.get(Operand, {0, 0})); 4342 else 4343 Indices.push_back(State.get(Operand, Part)); 4344 } 4345 4346 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4347 // but it should be a vector, otherwise. 4348 auto *NewGEP = 4349 GEP->isInBounds() 4350 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4351 Indices) 4352 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4353 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4354 "NewGEP is not a pointer vector"); 4355 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4356 addMetadata(NewGEP, GEP); 4357 } 4358 } 4359 } 4360 4361 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4362 ElementCount VF) { 4363 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4364 PHINode *P = cast<PHINode>(PN); 4365 if (EnableVPlanNativePath) { 4366 // Currently we enter here in the VPlan-native path for non-induction 4367 // PHIs where all control flow is uniform. We simply widen these PHIs. 4368 // Create a vector phi with no operands - the vector phi operands will be 4369 // set at the end of vector code generation. 4370 Type *VecTy = 4371 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4372 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4373 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4374 OrigPHIsToFix.push_back(P); 4375 4376 return; 4377 } 4378 4379 assert(PN->getParent() == OrigLoop->getHeader() && 4380 "Non-header phis should have been handled elsewhere"); 4381 4382 // In order to support recurrences we need to be able to vectorize Phi nodes. 4383 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4384 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4385 // this value when we vectorize all of the instructions that use the PHI. 4386 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4387 for (unsigned Part = 0; Part < UF; ++Part) { 4388 // This is phase one of vectorizing PHIs. 4389 bool ScalarPHI = 4390 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4391 Type *VecTy = 4392 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4393 Value *EntryPart = PHINode::Create( 4394 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4395 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4396 } 4397 return; 4398 } 4399 4400 setDebugLocFromInst(Builder, P); 4401 4402 // This PHINode must be an induction variable. 4403 // Make sure that we know about it. 4404 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4405 4406 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4407 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4408 4409 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4410 // which can be found from the original scalar operations. 4411 switch (II.getKind()) { 4412 case InductionDescriptor::IK_NoInduction: 4413 llvm_unreachable("Unknown induction"); 4414 case InductionDescriptor::IK_IntInduction: 4415 case InductionDescriptor::IK_FpInduction: 4416 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4417 case InductionDescriptor::IK_PtrInduction: { 4418 // Handle the pointer induction variable case. 4419 assert(P->getType()->isPointerTy() && "Unexpected type."); 4420 4421 if (Cost->isScalarAfterVectorization(P, VF)) { 4422 // This is the normalized GEP that starts counting at zero. 4423 Value *PtrInd = 4424 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4425 // Determine the number of scalars we need to generate for each unroll 4426 // iteration. If the instruction is uniform, we only need to generate the 4427 // first lane. Otherwise, we generate all VF values. 4428 unsigned Lanes = 4429 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4430 for (unsigned Part = 0; Part < UF; ++Part) { 4431 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4432 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4433 Lane + Part * VF.getKnownMinValue()); 4434 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4435 Value *SclrGep = 4436 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4437 SclrGep->setName("next.gep"); 4438 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4439 } 4440 } 4441 return; 4442 } 4443 assert(isa<SCEVConstant>(II.getStep()) && 4444 "Induction step not a SCEV constant!"); 4445 Type *PhiType = II.getStep()->getType(); 4446 4447 // Build a pointer phi 4448 Value *ScalarStartValue = II.getStartValue(); 4449 Type *ScStValueType = ScalarStartValue->getType(); 4450 PHINode *NewPointerPhi = 4451 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4452 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4453 4454 // A pointer induction, performed by using a gep 4455 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4456 Instruction *InductionLoc = LoopLatch->getTerminator(); 4457 const SCEV *ScalarStep = II.getStep(); 4458 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4459 Value *ScalarStepValue = 4460 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4461 Value *InductionGEP = GetElementPtrInst::Create( 4462 ScStValueType->getPointerElementType(), NewPointerPhi, 4463 Builder.CreateMul( 4464 ScalarStepValue, 4465 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4466 "ptr.ind", InductionLoc); 4467 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4468 4469 // Create UF many actual address geps that use the pointer 4470 // phi as base and a vectorized version of the step value 4471 // (<step*0, ..., step*N>) as offset. 4472 for (unsigned Part = 0; Part < UF; ++Part) { 4473 SmallVector<Constant *, 8> Indices; 4474 // Create a vector of consecutive numbers from zero to VF. 4475 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4476 Indices.push_back( 4477 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4478 Constant *StartOffset = ConstantVector::get(Indices); 4479 4480 Value *GEP = Builder.CreateGEP( 4481 ScStValueType->getPointerElementType(), NewPointerPhi, 4482 Builder.CreateMul( 4483 StartOffset, 4484 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4485 "vector.gep")); 4486 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4487 } 4488 } 4489 } 4490 } 4491 4492 /// A helper function for checking whether an integer division-related 4493 /// instruction may divide by zero (in which case it must be predicated if 4494 /// executed conditionally in the scalar code). 4495 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4496 /// Non-zero divisors that are non compile-time constants will not be 4497 /// converted into multiplication, so we will still end up scalarizing 4498 /// the division, but can do so w/o predication. 4499 static bool mayDivideByZero(Instruction &I) { 4500 assert((I.getOpcode() == Instruction::UDiv || 4501 I.getOpcode() == Instruction::SDiv || 4502 I.getOpcode() == Instruction::URem || 4503 I.getOpcode() == Instruction::SRem) && 4504 "Unexpected instruction"); 4505 Value *Divisor = I.getOperand(1); 4506 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4507 return !CInt || CInt->isZero(); 4508 } 4509 4510 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4511 VPTransformState &State) { 4512 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4513 switch (I.getOpcode()) { 4514 case Instruction::Call: 4515 case Instruction::Br: 4516 case Instruction::PHI: 4517 case Instruction::GetElementPtr: 4518 case Instruction::Select: 4519 llvm_unreachable("This instruction is handled by a different recipe."); 4520 case Instruction::UDiv: 4521 case Instruction::SDiv: 4522 case Instruction::SRem: 4523 case Instruction::URem: 4524 case Instruction::Add: 4525 case Instruction::FAdd: 4526 case Instruction::Sub: 4527 case Instruction::FSub: 4528 case Instruction::FNeg: 4529 case Instruction::Mul: 4530 case Instruction::FMul: 4531 case Instruction::FDiv: 4532 case Instruction::FRem: 4533 case Instruction::Shl: 4534 case Instruction::LShr: 4535 case Instruction::AShr: 4536 case Instruction::And: 4537 case Instruction::Or: 4538 case Instruction::Xor: { 4539 // Just widen unops and binops. 4540 setDebugLocFromInst(Builder, &I); 4541 4542 for (unsigned Part = 0; Part < UF; ++Part) { 4543 SmallVector<Value *, 2> Ops; 4544 for (VPValue *VPOp : User.operands()) 4545 Ops.push_back(State.get(VPOp, Part)); 4546 4547 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4548 4549 if (auto *VecOp = dyn_cast<Instruction>(V)) 4550 VecOp->copyIRFlags(&I); 4551 4552 // Use this vector value for all users of the original instruction. 4553 VectorLoopValueMap.setVectorValue(&I, Part, V); 4554 addMetadata(V, &I); 4555 } 4556 4557 break; 4558 } 4559 case Instruction::ICmp: 4560 case Instruction::FCmp: { 4561 // Widen compares. Generate vector compares. 4562 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4563 auto *Cmp = cast<CmpInst>(&I); 4564 setDebugLocFromInst(Builder, Cmp); 4565 for (unsigned Part = 0; Part < UF; ++Part) { 4566 Value *A = State.get(User.getOperand(0), Part); 4567 Value *B = State.get(User.getOperand(1), Part); 4568 Value *C = nullptr; 4569 if (FCmp) { 4570 // Propagate fast math flags. 4571 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4572 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4573 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4574 } else { 4575 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4576 } 4577 VectorLoopValueMap.setVectorValue(&I, Part, C); 4578 addMetadata(C, &I); 4579 } 4580 4581 break; 4582 } 4583 4584 case Instruction::ZExt: 4585 case Instruction::SExt: 4586 case Instruction::FPToUI: 4587 case Instruction::FPToSI: 4588 case Instruction::FPExt: 4589 case Instruction::PtrToInt: 4590 case Instruction::IntToPtr: 4591 case Instruction::SIToFP: 4592 case Instruction::UIToFP: 4593 case Instruction::Trunc: 4594 case Instruction::FPTrunc: 4595 case Instruction::BitCast: { 4596 auto *CI = cast<CastInst>(&I); 4597 setDebugLocFromInst(Builder, CI); 4598 4599 /// Vectorize casts. 4600 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4601 Type *DestTy = 4602 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4603 4604 for (unsigned Part = 0; Part < UF; ++Part) { 4605 Value *A = State.get(User.getOperand(0), Part); 4606 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4607 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4608 addMetadata(Cast, &I); 4609 } 4610 break; 4611 } 4612 default: 4613 // This instruction is not vectorized by simple widening. 4614 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4615 llvm_unreachable("Unhandled instruction!"); 4616 } // end of switch. 4617 } 4618 4619 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4620 VPTransformState &State) { 4621 assert(!isa<DbgInfoIntrinsic>(I) && 4622 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4623 setDebugLocFromInst(Builder, &I); 4624 4625 Module *M = I.getParent()->getParent()->getParent(); 4626 auto *CI = cast<CallInst>(&I); 4627 4628 SmallVector<Type *, 4> Tys; 4629 for (Value *ArgOperand : CI->arg_operands()) 4630 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4631 4632 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4633 4634 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4635 // version of the instruction. 4636 // Is it beneficial to perform intrinsic call compared to lib call? 4637 bool NeedToScalarize = false; 4638 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4639 bool UseVectorIntrinsic = 4640 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4641 assert((UseVectorIntrinsic || !NeedToScalarize) && 4642 "Instruction should be scalarized elsewhere."); 4643 4644 for (unsigned Part = 0; Part < UF; ++Part) { 4645 SmallVector<Value *, 4> Args; 4646 for (auto &I : enumerate(ArgOperands.operands())) { 4647 // Some intrinsics have a scalar argument - don't replace it with a 4648 // vector. 4649 Value *Arg; 4650 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4651 Arg = State.get(I.value(), Part); 4652 else 4653 Arg = State.get(I.value(), {0, 0}); 4654 Args.push_back(Arg); 4655 } 4656 4657 Function *VectorF; 4658 if (UseVectorIntrinsic) { 4659 // Use vector version of the intrinsic. 4660 Type *TysForDecl[] = {CI->getType()}; 4661 if (VF.isVector()) { 4662 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4663 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4664 } 4665 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4666 assert(VectorF && "Can't retrieve vector intrinsic."); 4667 } else { 4668 // Use vector version of the function call. 4669 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4670 #ifndef NDEBUG 4671 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4672 "Can't create vector function."); 4673 #endif 4674 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4675 } 4676 SmallVector<OperandBundleDef, 1> OpBundles; 4677 CI->getOperandBundlesAsDefs(OpBundles); 4678 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4679 4680 if (isa<FPMathOperator>(V)) 4681 V->copyFastMathFlags(CI); 4682 4683 VectorLoopValueMap.setVectorValue(&I, Part, V); 4684 addMetadata(V, &I); 4685 } 4686 } 4687 4688 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4689 VPUser &Operands, 4690 bool InvariantCond, 4691 VPTransformState &State) { 4692 setDebugLocFromInst(Builder, &I); 4693 4694 // The condition can be loop invariant but still defined inside the 4695 // loop. This means that we can't just use the original 'cond' value. 4696 // We have to take the 'vectorized' value and pick the first lane. 4697 // Instcombine will make this a no-op. 4698 auto *InvarCond = 4699 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4700 4701 for (unsigned Part = 0; Part < UF; ++Part) { 4702 Value *Cond = 4703 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4704 Value *Op0 = State.get(Operands.getOperand(1), Part); 4705 Value *Op1 = State.get(Operands.getOperand(2), Part); 4706 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4707 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4708 addMetadata(Sel, &I); 4709 } 4710 } 4711 4712 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4713 // We should not collect Scalars more than once per VF. Right now, this 4714 // function is called from collectUniformsAndScalars(), which already does 4715 // this check. Collecting Scalars for VF=1 does not make any sense. 4716 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4717 "This function should not be visited twice for the same VF"); 4718 4719 SmallSetVector<Instruction *, 8> Worklist; 4720 4721 // These sets are used to seed the analysis with pointers used by memory 4722 // accesses that will remain scalar. 4723 SmallSetVector<Instruction *, 8> ScalarPtrs; 4724 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4725 auto *Latch = TheLoop->getLoopLatch(); 4726 4727 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4728 // The pointer operands of loads and stores will be scalar as long as the 4729 // memory access is not a gather or scatter operation. The value operand of a 4730 // store will remain scalar if the store is scalarized. 4731 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4732 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4733 assert(WideningDecision != CM_Unknown && 4734 "Widening decision should be ready at this moment"); 4735 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4736 if (Ptr == Store->getValueOperand()) 4737 return WideningDecision == CM_Scalarize; 4738 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4739 "Ptr is neither a value or pointer operand"); 4740 return WideningDecision != CM_GatherScatter; 4741 }; 4742 4743 // A helper that returns true if the given value is a bitcast or 4744 // getelementptr instruction contained in the loop. 4745 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4746 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4747 isa<GetElementPtrInst>(V)) && 4748 !TheLoop->isLoopInvariant(V); 4749 }; 4750 4751 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4752 if (!isa<PHINode>(Ptr) || 4753 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4754 return false; 4755 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4756 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4757 return false; 4758 return isScalarUse(MemAccess, Ptr); 4759 }; 4760 4761 // A helper that evaluates a memory access's use of a pointer. If the 4762 // pointer is actually the pointer induction of a loop, it is being 4763 // inserted into Worklist. If the use will be a scalar use, and the 4764 // pointer is only used by memory accesses, we place the pointer in 4765 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4766 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4767 if (isScalarPtrInduction(MemAccess, Ptr)) { 4768 Worklist.insert(cast<Instruction>(Ptr)); 4769 Instruction *Update = cast<Instruction>( 4770 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4771 Worklist.insert(Update); 4772 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4773 << "\n"); 4774 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4775 << "\n"); 4776 return; 4777 } 4778 // We only care about bitcast and getelementptr instructions contained in 4779 // the loop. 4780 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4781 return; 4782 4783 // If the pointer has already been identified as scalar (e.g., if it was 4784 // also identified as uniform), there's nothing to do. 4785 auto *I = cast<Instruction>(Ptr); 4786 if (Worklist.count(I)) 4787 return; 4788 4789 // If the use of the pointer will be a scalar use, and all users of the 4790 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4791 // place the pointer in PossibleNonScalarPtrs. 4792 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4793 return isa<LoadInst>(U) || isa<StoreInst>(U); 4794 })) 4795 ScalarPtrs.insert(I); 4796 else 4797 PossibleNonScalarPtrs.insert(I); 4798 }; 4799 4800 // We seed the scalars analysis with three classes of instructions: (1) 4801 // instructions marked uniform-after-vectorization and (2) bitcast, 4802 // getelementptr and (pointer) phi instructions used by memory accesses 4803 // requiring a scalar use. 4804 // 4805 // (1) Add to the worklist all instructions that have been identified as 4806 // uniform-after-vectorization. 4807 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4808 4809 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4810 // memory accesses requiring a scalar use. The pointer operands of loads and 4811 // stores will be scalar as long as the memory accesses is not a gather or 4812 // scatter operation. The value operand of a store will remain scalar if the 4813 // store is scalarized. 4814 for (auto *BB : TheLoop->blocks()) 4815 for (auto &I : *BB) { 4816 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4817 evaluatePtrUse(Load, Load->getPointerOperand()); 4818 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4819 evaluatePtrUse(Store, Store->getPointerOperand()); 4820 evaluatePtrUse(Store, Store->getValueOperand()); 4821 } 4822 } 4823 for (auto *I : ScalarPtrs) 4824 if (!PossibleNonScalarPtrs.count(I)) { 4825 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4826 Worklist.insert(I); 4827 } 4828 4829 // Insert the forced scalars. 4830 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4831 // induction variable when the PHI user is scalarized. 4832 auto ForcedScalar = ForcedScalars.find(VF); 4833 if (ForcedScalar != ForcedScalars.end()) 4834 for (auto *I : ForcedScalar->second) 4835 Worklist.insert(I); 4836 4837 // Expand the worklist by looking through any bitcasts and getelementptr 4838 // instructions we've already identified as scalar. This is similar to the 4839 // expansion step in collectLoopUniforms(); however, here we're only 4840 // expanding to include additional bitcasts and getelementptr instructions. 4841 unsigned Idx = 0; 4842 while (Idx != Worklist.size()) { 4843 Instruction *Dst = Worklist[Idx++]; 4844 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4845 continue; 4846 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4847 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4848 auto *J = cast<Instruction>(U); 4849 return !TheLoop->contains(J) || Worklist.count(J) || 4850 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4851 isScalarUse(J, Src)); 4852 })) { 4853 Worklist.insert(Src); 4854 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4855 } 4856 } 4857 4858 // An induction variable will remain scalar if all users of the induction 4859 // variable and induction variable update remain scalar. 4860 for (auto &Induction : Legal->getInductionVars()) { 4861 auto *Ind = Induction.first; 4862 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4863 4864 // If tail-folding is applied, the primary induction variable will be used 4865 // to feed a vector compare. 4866 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4867 continue; 4868 4869 // Determine if all users of the induction variable are scalar after 4870 // vectorization. 4871 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4872 auto *I = cast<Instruction>(U); 4873 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4874 }); 4875 if (!ScalarInd) 4876 continue; 4877 4878 // Determine if all users of the induction variable update instruction are 4879 // scalar after vectorization. 4880 auto ScalarIndUpdate = 4881 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4882 auto *I = cast<Instruction>(U); 4883 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4884 }); 4885 if (!ScalarIndUpdate) 4886 continue; 4887 4888 // The induction variable and its update instruction will remain scalar. 4889 Worklist.insert(Ind); 4890 Worklist.insert(IndUpdate); 4891 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4892 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4893 << "\n"); 4894 } 4895 4896 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4897 } 4898 4899 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 4900 ElementCount VF) { 4901 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4902 if (!blockNeedsPredication(I->getParent())) 4903 return false; 4904 switch(I->getOpcode()) { 4905 default: 4906 break; 4907 case Instruction::Load: 4908 case Instruction::Store: { 4909 if (!Legal->isMaskRequired(I)) 4910 return false; 4911 auto *Ptr = getLoadStorePointerOperand(I); 4912 auto *Ty = getMemInstValueType(I); 4913 // We have already decided how to vectorize this instruction, get that 4914 // result. 4915 if (VF.isVector()) { 4916 InstWidening WideningDecision = getWideningDecision(I, VF); 4917 assert(WideningDecision != CM_Unknown && 4918 "Widening decision should be ready at this moment"); 4919 return WideningDecision == CM_Scalarize; 4920 } 4921 const Align Alignment = getLoadStoreAlignment(I); 4922 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4923 isLegalMaskedGather(Ty, Alignment)) 4924 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4925 isLegalMaskedScatter(Ty, Alignment)); 4926 } 4927 case Instruction::UDiv: 4928 case Instruction::SDiv: 4929 case Instruction::SRem: 4930 case Instruction::URem: 4931 return mayDivideByZero(*I); 4932 } 4933 return false; 4934 } 4935 4936 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4937 Instruction *I, ElementCount VF) { 4938 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4939 assert(getWideningDecision(I, VF) == CM_Unknown && 4940 "Decision should not be set yet."); 4941 auto *Group = getInterleavedAccessGroup(I); 4942 assert(Group && "Must have a group."); 4943 4944 // If the instruction's allocated size doesn't equal it's type size, it 4945 // requires padding and will be scalarized. 4946 auto &DL = I->getModule()->getDataLayout(); 4947 auto *ScalarTy = getMemInstValueType(I); 4948 if (hasIrregularType(ScalarTy, DL, VF)) 4949 return false; 4950 4951 // Check if masking is required. 4952 // A Group may need masking for one of two reasons: it resides in a block that 4953 // needs predication, or it was decided to use masking to deal with gaps. 4954 bool PredicatedAccessRequiresMasking = 4955 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4956 bool AccessWithGapsRequiresMasking = 4957 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4958 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4959 return true; 4960 4961 // If masked interleaving is required, we expect that the user/target had 4962 // enabled it, because otherwise it either wouldn't have been created or 4963 // it should have been invalidated by the CostModel. 4964 assert(useMaskedInterleavedAccesses(TTI) && 4965 "Masked interleave-groups for predicated accesses are not enabled."); 4966 4967 auto *Ty = getMemInstValueType(I); 4968 const Align Alignment = getLoadStoreAlignment(I); 4969 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4970 : TTI.isLegalMaskedStore(Ty, Alignment); 4971 } 4972 4973 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4974 Instruction *I, ElementCount VF) { 4975 // Get and ensure we have a valid memory instruction. 4976 LoadInst *LI = dyn_cast<LoadInst>(I); 4977 StoreInst *SI = dyn_cast<StoreInst>(I); 4978 assert((LI || SI) && "Invalid memory instruction"); 4979 4980 auto *Ptr = getLoadStorePointerOperand(I); 4981 4982 // In order to be widened, the pointer should be consecutive, first of all. 4983 if (!Legal->isConsecutivePtr(Ptr)) 4984 return false; 4985 4986 // If the instruction is a store located in a predicated block, it will be 4987 // scalarized. 4988 if (isScalarWithPredication(I)) 4989 return false; 4990 4991 // If the instruction's allocated size doesn't equal it's type size, it 4992 // requires padding and will be scalarized. 4993 auto &DL = I->getModule()->getDataLayout(); 4994 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4995 if (hasIrregularType(ScalarTy, DL, VF)) 4996 return false; 4997 4998 return true; 4999 } 5000 5001 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5002 // We should not collect Uniforms more than once per VF. Right now, 5003 // this function is called from collectUniformsAndScalars(), which 5004 // already does this check. Collecting Uniforms for VF=1 does not make any 5005 // sense. 5006 5007 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5008 "This function should not be visited twice for the same VF"); 5009 5010 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5011 // not analyze again. Uniforms.count(VF) will return 1. 5012 Uniforms[VF].clear(); 5013 5014 // We now know that the loop is vectorizable! 5015 // Collect instructions inside the loop that will remain uniform after 5016 // vectorization. 5017 5018 // Global values, params and instructions outside of current loop are out of 5019 // scope. 5020 auto isOutOfScope = [&](Value *V) -> bool { 5021 Instruction *I = dyn_cast<Instruction>(V); 5022 return (!I || !TheLoop->contains(I)); 5023 }; 5024 5025 SetVector<Instruction *> Worklist; 5026 BasicBlock *Latch = TheLoop->getLoopLatch(); 5027 5028 // Instructions that are scalar with predication must not be considered 5029 // uniform after vectorization, because that would create an erroneous 5030 // replicating region where only a single instance out of VF should be formed. 5031 // TODO: optimize such seldom cases if found important, see PR40816. 5032 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5033 if (isScalarWithPredication(I, VF)) { 5034 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5035 << *I << "\n"); 5036 return; 5037 } 5038 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5039 Worklist.insert(I); 5040 }; 5041 5042 // Start with the conditional branch. If the branch condition is an 5043 // instruction contained in the loop that is only used by the branch, it is 5044 // uniform. 5045 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5046 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5047 addToWorklistIfAllowed(Cmp); 5048 5049 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5050 // are pointers that are treated like consecutive pointers during 5051 // vectorization. The pointer operands of interleaved accesses are an 5052 // example. 5053 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5054 5055 // Holds pointer operands of instructions that are possibly non-uniform. 5056 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5057 5058 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5059 InstWidening WideningDecision = getWideningDecision(I, VF); 5060 assert(WideningDecision != CM_Unknown && 5061 "Widening decision should be ready at this moment"); 5062 5063 return (WideningDecision == CM_Widen || 5064 WideningDecision == CM_Widen_Reverse || 5065 WideningDecision == CM_Interleave); 5066 }; 5067 // Iterate over the instructions in the loop, and collect all 5068 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5069 // that a consecutive-like pointer operand will be scalarized, we collect it 5070 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5071 // getelementptr instruction can be used by both vectorized and scalarized 5072 // memory instructions. For example, if a loop loads and stores from the same 5073 // location, but the store is conditional, the store will be scalarized, and 5074 // the getelementptr won't remain uniform. 5075 for (auto *BB : TheLoop->blocks()) 5076 for (auto &I : *BB) { 5077 // If there's no pointer operand, there's nothing to do. 5078 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5079 if (!Ptr) 5080 continue; 5081 5082 // True if all users of Ptr are memory accesses that have Ptr as their 5083 // pointer operand. 5084 auto UsersAreMemAccesses = 5085 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5086 return getLoadStorePointerOperand(U) == Ptr; 5087 }); 5088 5089 // Ensure the memory instruction will not be scalarized or used by 5090 // gather/scatter, making its pointer operand non-uniform. If the pointer 5091 // operand is used by any instruction other than a memory access, we 5092 // conservatively assume the pointer operand may be non-uniform. 5093 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5094 PossibleNonUniformPtrs.insert(Ptr); 5095 5096 // If the memory instruction will be vectorized and its pointer operand 5097 // is consecutive-like, or interleaving - the pointer operand should 5098 // remain uniform. 5099 else 5100 ConsecutiveLikePtrs.insert(Ptr); 5101 } 5102 5103 // Add to the Worklist all consecutive and consecutive-like pointers that 5104 // aren't also identified as possibly non-uniform. 5105 for (auto *V : ConsecutiveLikePtrs) 5106 if (!PossibleNonUniformPtrs.count(V)) 5107 addToWorklistIfAllowed(V); 5108 5109 // Expand Worklist in topological order: whenever a new instruction 5110 // is added , its users should be already inside Worklist. It ensures 5111 // a uniform instruction will only be used by uniform instructions. 5112 unsigned idx = 0; 5113 while (idx != Worklist.size()) { 5114 Instruction *I = Worklist[idx++]; 5115 5116 for (auto OV : I->operand_values()) { 5117 // isOutOfScope operands cannot be uniform instructions. 5118 if (isOutOfScope(OV)) 5119 continue; 5120 // First order recurrence Phi's should typically be considered 5121 // non-uniform. 5122 auto *OP = dyn_cast<PHINode>(OV); 5123 if (OP && Legal->isFirstOrderRecurrence(OP)) 5124 continue; 5125 // If all the users of the operand are uniform, then add the 5126 // operand into the uniform worklist. 5127 auto *OI = cast<Instruction>(OV); 5128 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5129 auto *J = cast<Instruction>(U); 5130 return Worklist.count(J) || 5131 (OI == getLoadStorePointerOperand(J) && 5132 isUniformDecision(J, VF)); 5133 })) 5134 addToWorklistIfAllowed(OI); 5135 } 5136 } 5137 5138 // Returns true if Ptr is the pointer operand of a memory access instruction 5139 // I, and I is known to not require scalarization. 5140 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5141 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5142 }; 5143 5144 // For an instruction to be added into Worklist above, all its users inside 5145 // the loop should also be in Worklist. However, this condition cannot be 5146 // true for phi nodes that form a cyclic dependence. We must process phi 5147 // nodes separately. An induction variable will remain uniform if all users 5148 // of the induction variable and induction variable update remain uniform. 5149 // The code below handles both pointer and non-pointer induction variables. 5150 for (auto &Induction : Legal->getInductionVars()) { 5151 auto *Ind = Induction.first; 5152 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5153 5154 // Determine if all users of the induction variable are uniform after 5155 // vectorization. 5156 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5157 auto *I = cast<Instruction>(U); 5158 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5159 isVectorizedMemAccessUse(I, Ind); 5160 }); 5161 if (!UniformInd) 5162 continue; 5163 5164 // Determine if all users of the induction variable update instruction are 5165 // uniform after vectorization. 5166 auto UniformIndUpdate = 5167 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5168 auto *I = cast<Instruction>(U); 5169 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5170 isVectorizedMemAccessUse(I, IndUpdate); 5171 }); 5172 if (!UniformIndUpdate) 5173 continue; 5174 5175 // The induction variable and its update instruction will remain uniform. 5176 addToWorklistIfAllowed(Ind); 5177 addToWorklistIfAllowed(IndUpdate); 5178 } 5179 5180 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5181 } 5182 5183 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5184 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5185 5186 if (Legal->getRuntimePointerChecking()->Need) { 5187 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5188 "runtime pointer checks needed. Enable vectorization of this " 5189 "loop with '#pragma clang loop vectorize(enable)' when " 5190 "compiling with -Os/-Oz", 5191 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5192 return true; 5193 } 5194 5195 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5196 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5197 "runtime SCEV checks needed. Enable vectorization of this " 5198 "loop with '#pragma clang loop vectorize(enable)' when " 5199 "compiling with -Os/-Oz", 5200 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5201 return true; 5202 } 5203 5204 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5205 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5206 reportVectorizationFailure("Runtime stride check for small trip count", 5207 "runtime stride == 1 checks needed. Enable vectorization of " 5208 "this loop without such check by compiling with -Os/-Oz", 5209 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5210 return true; 5211 } 5212 5213 return false; 5214 } 5215 5216 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF, 5217 unsigned UserIC) { 5218 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5219 // TODO: It may by useful to do since it's still likely to be dynamically 5220 // uniform if the target can skip. 5221 reportVectorizationFailure( 5222 "Not inserting runtime ptr check for divergent target", 5223 "runtime pointer checks needed. Not enabled for divergent target", 5224 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5225 return None; 5226 } 5227 5228 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5229 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5230 if (TC == 1) { 5231 reportVectorizationFailure("Single iteration (non) loop", 5232 "loop trip count is one, irrelevant for vectorization", 5233 "SingleIterationLoop", ORE, TheLoop); 5234 return None; 5235 } 5236 5237 switch (ScalarEpilogueStatus) { 5238 case CM_ScalarEpilogueAllowed: 5239 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 5240 case CM_ScalarEpilogueNotNeededUsePredicate: 5241 LLVM_DEBUG( 5242 dbgs() << "LV: vector predicate hint/switch found.\n" 5243 << "LV: Not allowing scalar epilogue, creating predicated " 5244 << "vector loop.\n"); 5245 break; 5246 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5247 // fallthrough as a special case of OptForSize 5248 case CM_ScalarEpilogueNotAllowedOptSize: 5249 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5250 LLVM_DEBUG( 5251 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5252 else 5253 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5254 << "count.\n"); 5255 5256 // Bail if runtime checks are required, which are not good when optimising 5257 // for size. 5258 if (runtimeChecksRequired()) 5259 return None; 5260 break; 5261 } 5262 5263 // Now try the tail folding 5264 5265 // Invalidate interleave groups that require an epilogue if we can't mask 5266 // the interleave-group. 5267 if (!useMaskedInterleavedAccesses(TTI)) { 5268 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5269 "No decisions should have been taken at this point"); 5270 // Note: There is no need to invalidate any cost modeling decisions here, as 5271 // non where taken so far. 5272 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5273 } 5274 5275 unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5276 assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2"); 5277 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF; 5278 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5279 // Accept MaxVF if we do not have a tail. 5280 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5281 return MaxVF; 5282 } 5283 5284 // If we don't know the precise trip count, or if the trip count that we 5285 // found modulo the vectorization factor is not zero, try to fold the tail 5286 // by masking. 5287 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5288 if (Legal->prepareToFoldTailByMasking()) { 5289 FoldTailByMasking = true; 5290 return MaxVF; 5291 } 5292 5293 // If there was a tail-folding hint/switch, but we can't fold the tail by 5294 // masking, fallback to a vectorization with a scalar epilogue. 5295 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5296 if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) { 5297 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5298 return None; 5299 } 5300 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5301 "scalar epilogue instead.\n"); 5302 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5303 return MaxVF; 5304 } 5305 5306 if (TC == 0) { 5307 reportVectorizationFailure( 5308 "Unable to calculate the loop count due to complex control flow", 5309 "unable to calculate the loop count due to complex control flow", 5310 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5311 return None; 5312 } 5313 5314 reportVectorizationFailure( 5315 "Cannot optimize for size and vectorize at the same time.", 5316 "cannot optimize for size and vectorize at the same time. " 5317 "Enable vectorization of this loop with '#pragma clang loop " 5318 "vectorize(enable)' when compiling with -Os/-Oz", 5319 "NoTailLoopWithOptForSize", ORE, TheLoop); 5320 return None; 5321 } 5322 5323 unsigned 5324 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5325 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5326 unsigned SmallestType, WidestType; 5327 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5328 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5329 5330 // Get the maximum safe dependence distance in bits computed by LAA. 5331 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5332 // the memory accesses that is most restrictive (involved in the smallest 5333 // dependence distance). 5334 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5335 5336 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5337 5338 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5339 // Note that both WidestRegister and WidestType may not be a powers of 2. 5340 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5341 5342 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5343 << " / " << WidestType << " bits.\n"); 5344 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5345 << WidestRegister << " bits.\n"); 5346 5347 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5348 " into one vector!"); 5349 if (MaxVectorSize == 0) { 5350 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5351 MaxVectorSize = 1; 5352 return MaxVectorSize; 5353 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5354 isPowerOf2_32(ConstTripCount)) { 5355 // We need to clamp the VF to be the ConstTripCount. There is no point in 5356 // choosing a higher viable VF as done in the loop below. 5357 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5358 << ConstTripCount << "\n"); 5359 MaxVectorSize = ConstTripCount; 5360 return MaxVectorSize; 5361 } 5362 5363 unsigned MaxVF = MaxVectorSize; 5364 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5365 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5366 // Collect all viable vectorization factors larger than the default MaxVF 5367 // (i.e. MaxVectorSize). 5368 SmallVector<ElementCount, 8> VFs; 5369 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5370 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5371 VFs.push_back(ElementCount::getFixed(VS)); 5372 5373 // For each VF calculate its register usage. 5374 auto RUs = calculateRegisterUsage(VFs); 5375 5376 // Select the largest VF which doesn't require more registers than existing 5377 // ones. 5378 for (int i = RUs.size() - 1; i >= 0; --i) { 5379 bool Selected = true; 5380 for (auto& pair : RUs[i].MaxLocalUsers) { 5381 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5382 if (pair.second > TargetNumRegisters) 5383 Selected = false; 5384 } 5385 if (Selected) { 5386 MaxVF = VFs[i].getKnownMinValue(); 5387 break; 5388 } 5389 } 5390 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5391 if (MaxVF < MinVF) { 5392 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5393 << ") with target's minimum: " << MinVF << '\n'); 5394 MaxVF = MinVF; 5395 } 5396 } 5397 } 5398 return MaxVF; 5399 } 5400 5401 VectorizationFactor 5402 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5403 float Cost = expectedCost(ElementCount::getFixed(1)).first; 5404 const float ScalarCost = Cost; 5405 unsigned Width = 1; 5406 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5407 5408 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5409 if (ForceVectorization && MaxVF > 1) { 5410 // Ignore scalar width, because the user explicitly wants vectorization. 5411 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5412 // evaluation. 5413 Cost = std::numeric_limits<float>::max(); 5414 } 5415 5416 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5417 // Notice that the vector loop needs to be executed less times, so 5418 // we need to divide the cost of the vector loops by the width of 5419 // the vector elements. 5420 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5421 float VectorCost = C.first / (float)i; 5422 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5423 << " costs: " << (int)VectorCost << ".\n"); 5424 if (!C.second && !ForceVectorization) { 5425 LLVM_DEBUG( 5426 dbgs() << "LV: Not considering vector loop of width " << i 5427 << " because it will not generate any vector instructions.\n"); 5428 continue; 5429 } 5430 if (VectorCost < Cost) { 5431 Cost = VectorCost; 5432 Width = i; 5433 } 5434 } 5435 5436 if (!EnableCondStoresVectorization && NumPredStores) { 5437 reportVectorizationFailure("There are conditional stores.", 5438 "store that is conditionally executed prevents vectorization", 5439 "ConditionalStore", ORE, TheLoop); 5440 Width = 1; 5441 Cost = ScalarCost; 5442 } 5443 5444 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5445 << "LV: Vectorization seems to be not beneficial, " 5446 << "but was forced by a user.\n"); 5447 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5448 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5449 (unsigned)(Width * Cost)}; 5450 return Factor; 5451 } 5452 5453 std::pair<unsigned, unsigned> 5454 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5455 unsigned MinWidth = -1U; 5456 unsigned MaxWidth = 8; 5457 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5458 5459 // For each block. 5460 for (BasicBlock *BB : TheLoop->blocks()) { 5461 // For each instruction in the loop. 5462 for (Instruction &I : BB->instructionsWithoutDebug()) { 5463 Type *T = I.getType(); 5464 5465 // Skip ignored values. 5466 if (ValuesToIgnore.count(&I)) 5467 continue; 5468 5469 // Only examine Loads, Stores and PHINodes. 5470 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5471 continue; 5472 5473 // Examine PHI nodes that are reduction variables. Update the type to 5474 // account for the recurrence type. 5475 if (auto *PN = dyn_cast<PHINode>(&I)) { 5476 if (!Legal->isReductionVariable(PN)) 5477 continue; 5478 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5479 T = RdxDesc.getRecurrenceType(); 5480 } 5481 5482 // Examine the stored values. 5483 if (auto *ST = dyn_cast<StoreInst>(&I)) 5484 T = ST->getValueOperand()->getType(); 5485 5486 // Ignore loaded pointer types and stored pointer types that are not 5487 // vectorizable. 5488 // 5489 // FIXME: The check here attempts to predict whether a load or store will 5490 // be vectorized. We only know this for certain after a VF has 5491 // been selected. Here, we assume that if an access can be 5492 // vectorized, it will be. We should also look at extending this 5493 // optimization to non-pointer types. 5494 // 5495 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5496 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5497 continue; 5498 5499 MinWidth = std::min(MinWidth, 5500 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5501 MaxWidth = std::max(MaxWidth, 5502 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5503 } 5504 } 5505 5506 return {MinWidth, MaxWidth}; 5507 } 5508 5509 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5510 unsigned LoopCost) { 5511 // -- The interleave heuristics -- 5512 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5513 // There are many micro-architectural considerations that we can't predict 5514 // at this level. For example, frontend pressure (on decode or fetch) due to 5515 // code size, or the number and capabilities of the execution ports. 5516 // 5517 // We use the following heuristics to select the interleave count: 5518 // 1. If the code has reductions, then we interleave to break the cross 5519 // iteration dependency. 5520 // 2. If the loop is really small, then we interleave to reduce the loop 5521 // overhead. 5522 // 3. We don't interleave if we think that we will spill registers to memory 5523 // due to the increased register pressure. 5524 5525 if (!isScalarEpilogueAllowed()) 5526 return 1; 5527 5528 // We used the distance for the interleave count. 5529 if (Legal->getMaxSafeDepDistBytes() != -1U) 5530 return 1; 5531 5532 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5533 const bool HasReductions = !Legal->getReductionVars().empty(); 5534 // Do not interleave loops with a relatively small known or estimated trip 5535 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5536 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5537 // because with the above conditions interleaving can expose ILP and break 5538 // cross iteration dependences for reductions. 5539 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5540 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5541 return 1; 5542 5543 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5544 // We divide by these constants so assume that we have at least one 5545 // instruction that uses at least one register. 5546 for (auto& pair : R.MaxLocalUsers) { 5547 pair.second = std::max(pair.second, 1U); 5548 } 5549 5550 // We calculate the interleave count using the following formula. 5551 // Subtract the number of loop invariants from the number of available 5552 // registers. These registers are used by all of the interleaved instances. 5553 // Next, divide the remaining registers by the number of registers that is 5554 // required by the loop, in order to estimate how many parallel instances 5555 // fit without causing spills. All of this is rounded down if necessary to be 5556 // a power of two. We want power of two interleave count to simplify any 5557 // addressing operations or alignment considerations. 5558 // We also want power of two interleave counts to ensure that the induction 5559 // variable of the vector loop wraps to zero, when tail is folded by masking; 5560 // this currently happens when OptForSize, in which case IC is set to 1 above. 5561 unsigned IC = UINT_MAX; 5562 5563 for (auto& pair : R.MaxLocalUsers) { 5564 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5565 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5566 << " registers of " 5567 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5568 if (VF.isScalar()) { 5569 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5570 TargetNumRegisters = ForceTargetNumScalarRegs; 5571 } else { 5572 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5573 TargetNumRegisters = ForceTargetNumVectorRegs; 5574 } 5575 unsigned MaxLocalUsers = pair.second; 5576 unsigned LoopInvariantRegs = 0; 5577 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5578 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5579 5580 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5581 // Don't count the induction variable as interleaved. 5582 if (EnableIndVarRegisterHeur) { 5583 TmpIC = 5584 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5585 std::max(1U, (MaxLocalUsers - 1))); 5586 } 5587 5588 IC = std::min(IC, TmpIC); 5589 } 5590 5591 // Clamp the interleave ranges to reasonable counts. 5592 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5593 unsigned MaxInterleaveCount = 5594 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5595 5596 // Check if the user has overridden the max. 5597 if (VF.isScalar()) { 5598 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5599 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5600 } else { 5601 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5602 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5603 } 5604 5605 // If trip count is known or estimated compile time constant, limit the 5606 // interleave count to be less than the trip count divided by VF, provided it 5607 // is at least 1. 5608 if (BestKnownTC) { 5609 MaxInterleaveCount = 5610 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5611 // Make sure MaxInterleaveCount is greater than 0. 5612 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5613 } 5614 5615 assert(MaxInterleaveCount > 0 && 5616 "Maximum interleave count must be greater than 0"); 5617 5618 // Clamp the calculated IC to be between the 1 and the max interleave count 5619 // that the target and trip count allows. 5620 if (IC > MaxInterleaveCount) 5621 IC = MaxInterleaveCount; 5622 else 5623 // Make sure IC is greater than 0. 5624 IC = std::max(1u, IC); 5625 5626 assert(IC > 0 && "Interleave count must be greater than 0."); 5627 5628 // If we did not calculate the cost for VF (because the user selected the VF) 5629 // then we calculate the cost of VF here. 5630 if (LoopCost == 0) 5631 LoopCost = expectedCost(VF).first; 5632 5633 assert(LoopCost && "Non-zero loop cost expected"); 5634 5635 // Interleave if we vectorized this loop and there is a reduction that could 5636 // benefit from interleaving. 5637 if (VF.isVector() && HasReductions) { 5638 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5639 return IC; 5640 } 5641 5642 // Note that if we've already vectorized the loop we will have done the 5643 // runtime check and so interleaving won't require further checks. 5644 bool InterleavingRequiresRuntimePointerCheck = 5645 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5646 5647 // We want to interleave small loops in order to reduce the loop overhead and 5648 // potentially expose ILP opportunities. 5649 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5650 << "LV: IC is " << IC << '\n' 5651 << "LV: VF is " << VF.getKnownMinValue() << '\n'); 5652 const bool AggressivelyInterleaveReductions = 5653 TTI.enableAggressiveInterleaving(HasReductions); 5654 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5655 // We assume that the cost overhead is 1 and we use the cost model 5656 // to estimate the cost of the loop and interleave until the cost of the 5657 // loop overhead is about 5% of the cost of the loop. 5658 unsigned SmallIC = 5659 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5660 5661 // Interleave until store/load ports (estimated by max interleave count) are 5662 // saturated. 5663 unsigned NumStores = Legal->getNumStores(); 5664 unsigned NumLoads = Legal->getNumLoads(); 5665 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5666 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5667 5668 // If we have a scalar reduction (vector reductions are already dealt with 5669 // by this point), we can increase the critical path length if the loop 5670 // we're interleaving is inside another loop. Limit, by default to 2, so the 5671 // critical path only gets increased by one reduction operation. 5672 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5673 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5674 SmallIC = std::min(SmallIC, F); 5675 StoresIC = std::min(StoresIC, F); 5676 LoadsIC = std::min(LoadsIC, F); 5677 } 5678 5679 if (EnableLoadStoreRuntimeInterleave && 5680 std::max(StoresIC, LoadsIC) > SmallIC) { 5681 LLVM_DEBUG( 5682 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5683 return std::max(StoresIC, LoadsIC); 5684 } 5685 5686 // If there are scalar reductions and TTI has enabled aggressive 5687 // interleaving for reductions, we will interleave to expose ILP. 5688 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5689 AggressivelyInterleaveReductions) { 5690 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5691 // Interleave no less than SmallIC but not as aggressive as the normal IC 5692 // to satisfy the rare situation when resources are too limited. 5693 return std::max(IC / 2, SmallIC); 5694 } else { 5695 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5696 return SmallIC; 5697 } 5698 } 5699 5700 // Interleave if this is a large loop (small loops are already dealt with by 5701 // this point) that could benefit from interleaving. 5702 if (AggressivelyInterleaveReductions) { 5703 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5704 return IC; 5705 } 5706 5707 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5708 return 1; 5709 } 5710 5711 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5712 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5713 // This function calculates the register usage by measuring the highest number 5714 // of values that are alive at a single location. Obviously, this is a very 5715 // rough estimation. We scan the loop in a topological order in order and 5716 // assign a number to each instruction. We use RPO to ensure that defs are 5717 // met before their users. We assume that each instruction that has in-loop 5718 // users starts an interval. We record every time that an in-loop value is 5719 // used, so we have a list of the first and last occurrences of each 5720 // instruction. Next, we transpose this data structure into a multi map that 5721 // holds the list of intervals that *end* at a specific location. This multi 5722 // map allows us to perform a linear search. We scan the instructions linearly 5723 // and record each time that a new interval starts, by placing it in a set. 5724 // If we find this value in the multi-map then we remove it from the set. 5725 // The max register usage is the maximum size of the set. 5726 // We also search for instructions that are defined outside the loop, but are 5727 // used inside the loop. We need this number separately from the max-interval 5728 // usage number because when we unroll, loop-invariant values do not take 5729 // more register. 5730 LoopBlocksDFS DFS(TheLoop); 5731 DFS.perform(LI); 5732 5733 RegisterUsage RU; 5734 5735 // Each 'key' in the map opens a new interval. The values 5736 // of the map are the index of the 'last seen' usage of the 5737 // instruction that is the key. 5738 using IntervalMap = DenseMap<Instruction *, unsigned>; 5739 5740 // Maps instruction to its index. 5741 SmallVector<Instruction *, 64> IdxToInstr; 5742 // Marks the end of each interval. 5743 IntervalMap EndPoint; 5744 // Saves the list of instruction indices that are used in the loop. 5745 SmallPtrSet<Instruction *, 8> Ends; 5746 // Saves the list of values that are used in the loop but are 5747 // defined outside the loop, such as arguments and constants. 5748 SmallPtrSet<Value *, 8> LoopInvariants; 5749 5750 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5751 for (Instruction &I : BB->instructionsWithoutDebug()) { 5752 IdxToInstr.push_back(&I); 5753 5754 // Save the end location of each USE. 5755 for (Value *U : I.operands()) { 5756 auto *Instr = dyn_cast<Instruction>(U); 5757 5758 // Ignore non-instruction values such as arguments, constants, etc. 5759 if (!Instr) 5760 continue; 5761 5762 // If this instruction is outside the loop then record it and continue. 5763 if (!TheLoop->contains(Instr)) { 5764 LoopInvariants.insert(Instr); 5765 continue; 5766 } 5767 5768 // Overwrite previous end points. 5769 EndPoint[Instr] = IdxToInstr.size(); 5770 Ends.insert(Instr); 5771 } 5772 } 5773 } 5774 5775 // Saves the list of intervals that end with the index in 'key'. 5776 using InstrList = SmallVector<Instruction *, 2>; 5777 DenseMap<unsigned, InstrList> TransposeEnds; 5778 5779 // Transpose the EndPoints to a list of values that end at each index. 5780 for (auto &Interval : EndPoint) 5781 TransposeEnds[Interval.second].push_back(Interval.first); 5782 5783 SmallPtrSet<Instruction *, 8> OpenIntervals; 5784 5785 // Get the size of the widest register. 5786 unsigned MaxSafeDepDist = -1U; 5787 if (Legal->getMaxSafeDepDistBytes() != -1U) 5788 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5789 unsigned WidestRegister = 5790 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5791 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5792 5793 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5794 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5795 5796 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5797 5798 // A lambda that gets the register usage for the given type and VF. 5799 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, ElementCount VF) { 5800 if (Ty->isTokenTy()) 5801 return 0U; 5802 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5803 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5804 return std::max<unsigned>(1, VF.getKnownMinValue() * TypeSize / 5805 WidestRegister); 5806 }; 5807 5808 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5809 Instruction *I = IdxToInstr[i]; 5810 5811 // Remove all of the instructions that end at this location. 5812 InstrList &List = TransposeEnds[i]; 5813 for (Instruction *ToRemove : List) 5814 OpenIntervals.erase(ToRemove); 5815 5816 // Ignore instructions that are never used within the loop. 5817 if (!Ends.count(I)) 5818 continue; 5819 5820 // Skip ignored values. 5821 if (ValuesToIgnore.count(I)) 5822 continue; 5823 5824 // For each VF find the maximum usage of registers. 5825 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5826 // Count the number of live intervals. 5827 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5828 5829 if (VFs[j].isScalar()) { 5830 for (auto Inst : OpenIntervals) { 5831 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5832 if (RegUsage.find(ClassID) == RegUsage.end()) 5833 RegUsage[ClassID] = 1; 5834 else 5835 RegUsage[ClassID] += 1; 5836 } 5837 } else { 5838 collectUniformsAndScalars(VFs[j]); 5839 for (auto Inst : OpenIntervals) { 5840 // Skip ignored values for VF > 1. 5841 if (VecValuesToIgnore.count(Inst)) 5842 continue; 5843 if (isScalarAfterVectorization(Inst, VFs[j])) { 5844 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5845 if (RegUsage.find(ClassID) == RegUsage.end()) 5846 RegUsage[ClassID] = 1; 5847 else 5848 RegUsage[ClassID] += 1; 5849 } else { 5850 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5851 if (RegUsage.find(ClassID) == RegUsage.end()) 5852 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5853 else 5854 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5855 } 5856 } 5857 } 5858 5859 for (auto& pair : RegUsage) { 5860 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5861 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5862 else 5863 MaxUsages[j][pair.first] = pair.second; 5864 } 5865 } 5866 5867 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5868 << OpenIntervals.size() << '\n'); 5869 5870 // Add the current instruction to the list of open intervals. 5871 OpenIntervals.insert(I); 5872 } 5873 5874 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5875 SmallMapVector<unsigned, unsigned, 4> Invariant; 5876 5877 for (auto Inst : LoopInvariants) { 5878 unsigned Usage = 5879 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5880 unsigned ClassID = 5881 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 5882 if (Invariant.find(ClassID) == Invariant.end()) 5883 Invariant[ClassID] = Usage; 5884 else 5885 Invariant[ClassID] += Usage; 5886 } 5887 5888 LLVM_DEBUG({ 5889 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5890 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5891 << " item\n"; 5892 for (const auto &pair : MaxUsages[i]) { 5893 dbgs() << "LV(REG): RegisterClass: " 5894 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5895 << " registers\n"; 5896 } 5897 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5898 << " item\n"; 5899 for (const auto &pair : Invariant) { 5900 dbgs() << "LV(REG): RegisterClass: " 5901 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5902 << " registers\n"; 5903 } 5904 }); 5905 5906 RU.LoopInvariantRegs = Invariant; 5907 RU.MaxLocalUsers = MaxUsages[i]; 5908 RUs[i] = RU; 5909 } 5910 5911 return RUs; 5912 } 5913 5914 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5915 // TODO: Cost model for emulated masked load/store is completely 5916 // broken. This hack guides the cost model to use an artificially 5917 // high enough value to practically disable vectorization with such 5918 // operations, except where previously deployed legality hack allowed 5919 // using very low cost values. This is to avoid regressions coming simply 5920 // from moving "masked load/store" check from legality to cost model. 5921 // Masked Load/Gather emulation was previously never allowed. 5922 // Limited number of Masked Store/Scatter emulation was allowed. 5923 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5924 return isa<LoadInst>(I) || 5925 (isa<StoreInst>(I) && 5926 NumPredStores > NumberOfStoresToPredicate); 5927 } 5928 5929 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 5930 // If we aren't vectorizing the loop, or if we've already collected the 5931 // instructions to scalarize, there's nothing to do. Collection may already 5932 // have occurred if we have a user-selected VF and are now computing the 5933 // expected cost for interleaving. 5934 if (VF.isScalar() || VF.isZero() || 5935 InstsToScalarize.find(VF) != InstsToScalarize.end()) 5936 return; 5937 5938 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5939 // not profitable to scalarize any instructions, the presence of VF in the 5940 // map will indicate that we've analyzed it already. 5941 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5942 5943 // Find all the instructions that are scalar with predication in the loop and 5944 // determine if it would be better to not if-convert the blocks they are in. 5945 // If so, we also record the instructions to scalarize. 5946 for (BasicBlock *BB : TheLoop->blocks()) { 5947 if (!blockNeedsPredication(BB)) 5948 continue; 5949 for (Instruction &I : *BB) 5950 if (isScalarWithPredication(&I)) { 5951 ScalarCostsTy ScalarCosts; 5952 // Do not apply discount logic if hacked cost is needed 5953 // for emulated masked memrefs. 5954 if (!useEmulatedMaskMemRefHack(&I) && 5955 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5956 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5957 // Remember that BB will remain after vectorization. 5958 PredicatedBBsAfterVectorization.insert(BB); 5959 } 5960 } 5961 } 5962 5963 int LoopVectorizationCostModel::computePredInstDiscount( 5964 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5965 ElementCount VF) { 5966 assert(!isUniformAfterVectorization(PredInst, VF) && 5967 "Instruction marked uniform-after-vectorization will be predicated"); 5968 5969 // Initialize the discount to zero, meaning that the scalar version and the 5970 // vector version cost the same. 5971 int Discount = 0; 5972 5973 // Holds instructions to analyze. The instructions we visit are mapped in 5974 // ScalarCosts. Those instructions are the ones that would be scalarized if 5975 // we find that the scalar version costs less. 5976 SmallVector<Instruction *, 8> Worklist; 5977 5978 // Returns true if the given instruction can be scalarized. 5979 auto canBeScalarized = [&](Instruction *I) -> bool { 5980 // We only attempt to scalarize instructions forming a single-use chain 5981 // from the original predicated block that would otherwise be vectorized. 5982 // Although not strictly necessary, we give up on instructions we know will 5983 // already be scalar to avoid traversing chains that are unlikely to be 5984 // beneficial. 5985 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5986 isScalarAfterVectorization(I, VF)) 5987 return false; 5988 5989 // If the instruction is scalar with predication, it will be analyzed 5990 // separately. We ignore it within the context of PredInst. 5991 if (isScalarWithPredication(I)) 5992 return false; 5993 5994 // If any of the instruction's operands are uniform after vectorization, 5995 // the instruction cannot be scalarized. This prevents, for example, a 5996 // masked load from being scalarized. 5997 // 5998 // We assume we will only emit a value for lane zero of an instruction 5999 // marked uniform after vectorization, rather than VF identical values. 6000 // Thus, if we scalarize an instruction that uses a uniform, we would 6001 // create uses of values corresponding to the lanes we aren't emitting code 6002 // for. This behavior can be changed by allowing getScalarValue to clone 6003 // the lane zero values for uniforms rather than asserting. 6004 for (Use &U : I->operands()) 6005 if (auto *J = dyn_cast<Instruction>(U.get())) 6006 if (isUniformAfterVectorization(J, VF)) 6007 return false; 6008 6009 // Otherwise, we can scalarize the instruction. 6010 return true; 6011 }; 6012 6013 // Compute the expected cost discount from scalarizing the entire expression 6014 // feeding the predicated instruction. We currently only consider expressions 6015 // that are single-use instruction chains. 6016 Worklist.push_back(PredInst); 6017 while (!Worklist.empty()) { 6018 Instruction *I = Worklist.pop_back_val(); 6019 6020 // If we've already analyzed the instruction, there's nothing to do. 6021 if (ScalarCosts.find(I) != ScalarCosts.end()) 6022 continue; 6023 6024 // Compute the cost of the vector instruction. Note that this cost already 6025 // includes the scalarization overhead of the predicated instruction. 6026 unsigned VectorCost = getInstructionCost(I, VF).first; 6027 6028 // Compute the cost of the scalarized instruction. This cost is the cost of 6029 // the instruction as if it wasn't if-converted and instead remained in the 6030 // predicated block. We will scale this cost by block probability after 6031 // computing the scalarization overhead. 6032 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6033 unsigned ScalarCost = 6034 VF.getKnownMinValue() * 6035 getInstructionCost(I, ElementCount::getFixed(1)).first; 6036 6037 // Compute the scalarization overhead of needed insertelement instructions 6038 // and phi nodes. 6039 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6040 ScalarCost += TTI.getScalarizationOverhead( 6041 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6042 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6043 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6044 ScalarCost += 6045 VF.getKnownMinValue() * 6046 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6047 } 6048 6049 // Compute the scalarization overhead of needed extractelement 6050 // instructions. For each of the instruction's operands, if the operand can 6051 // be scalarized, add it to the worklist; otherwise, account for the 6052 // overhead. 6053 for (Use &U : I->operands()) 6054 if (auto *J = dyn_cast<Instruction>(U.get())) { 6055 assert(VectorType::isValidElementType(J->getType()) && 6056 "Instruction has non-scalar type"); 6057 if (canBeScalarized(J)) 6058 Worklist.push_back(J); 6059 else if (needsExtract(J, VF)) { 6060 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6061 ScalarCost += TTI.getScalarizationOverhead( 6062 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6063 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6064 } 6065 } 6066 6067 // Scale the total scalar cost by block probability. 6068 ScalarCost /= getReciprocalPredBlockProb(); 6069 6070 // Compute the discount. A non-negative discount means the vector version 6071 // of the instruction costs more, and scalarizing would be beneficial. 6072 Discount += VectorCost - ScalarCost; 6073 ScalarCosts[I] = ScalarCost; 6074 } 6075 6076 return Discount; 6077 } 6078 6079 LoopVectorizationCostModel::VectorizationCostTy 6080 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6081 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6082 VectorizationCostTy Cost; 6083 6084 // For each block. 6085 for (BasicBlock *BB : TheLoop->blocks()) { 6086 VectorizationCostTy BlockCost; 6087 6088 // For each instruction in the old loop. 6089 for (Instruction &I : BB->instructionsWithoutDebug()) { 6090 // Skip ignored values. 6091 if (ValuesToIgnore.count(&I) || 6092 (VF.isVector() && VecValuesToIgnore.count(&I))) 6093 continue; 6094 6095 VectorizationCostTy C = getInstructionCost(&I, VF); 6096 6097 // Check if we should override the cost. 6098 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6099 C.first = ForceTargetInstructionCost; 6100 6101 BlockCost.first += C.first; 6102 BlockCost.second |= C.second; 6103 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6104 << " for VF " << VF << " For instruction: " << I 6105 << '\n'); 6106 } 6107 6108 // If we are vectorizing a predicated block, it will have been 6109 // if-converted. This means that the block's instructions (aside from 6110 // stores and instructions that may divide by zero) will now be 6111 // unconditionally executed. For the scalar case, we may not always execute 6112 // the predicated block. Thus, scale the block's cost by the probability of 6113 // executing it. 6114 if (VF.isScalar() && blockNeedsPredication(BB)) 6115 BlockCost.first /= getReciprocalPredBlockProb(); 6116 6117 Cost.first += BlockCost.first; 6118 Cost.second |= BlockCost.second; 6119 } 6120 6121 return Cost; 6122 } 6123 6124 /// Gets Address Access SCEV after verifying that the access pattern 6125 /// is loop invariant except the induction variable dependence. 6126 /// 6127 /// This SCEV can be sent to the Target in order to estimate the address 6128 /// calculation cost. 6129 static const SCEV *getAddressAccessSCEV( 6130 Value *Ptr, 6131 LoopVectorizationLegality *Legal, 6132 PredicatedScalarEvolution &PSE, 6133 const Loop *TheLoop) { 6134 6135 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6136 if (!Gep) 6137 return nullptr; 6138 6139 // We are looking for a gep with all loop invariant indices except for one 6140 // which should be an induction variable. 6141 auto SE = PSE.getSE(); 6142 unsigned NumOperands = Gep->getNumOperands(); 6143 for (unsigned i = 1; i < NumOperands; ++i) { 6144 Value *Opd = Gep->getOperand(i); 6145 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6146 !Legal->isInductionVariable(Opd)) 6147 return nullptr; 6148 } 6149 6150 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6151 return PSE.getSCEV(Ptr); 6152 } 6153 6154 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6155 return Legal->hasStride(I->getOperand(0)) || 6156 Legal->hasStride(I->getOperand(1)); 6157 } 6158 6159 unsigned 6160 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6161 ElementCount VF) { 6162 assert(VF.isVector() && 6163 "Scalarization cost of instruction implies vectorization."); 6164 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6165 Type *ValTy = getMemInstValueType(I); 6166 auto SE = PSE.getSE(); 6167 6168 unsigned AS = getLoadStoreAddressSpace(I); 6169 Value *Ptr = getLoadStorePointerOperand(I); 6170 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6171 6172 // Figure out whether the access is strided and get the stride value 6173 // if it's known in compile time 6174 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6175 6176 // Get the cost of the scalar memory instruction and address computation. 6177 unsigned Cost = 6178 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6179 6180 // Don't pass *I here, since it is scalar but will actually be part of a 6181 // vectorized loop where the user of it is a vectorized instruction. 6182 const Align Alignment = getLoadStoreAlignment(I); 6183 Cost += VF.getKnownMinValue() * 6184 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6185 AS, TTI::TCK_RecipThroughput); 6186 6187 // Get the overhead of the extractelement and insertelement instructions 6188 // we might create due to scalarization. 6189 Cost += getScalarizationOverhead(I, VF); 6190 6191 // If we have a predicated store, it may not be executed for each vector 6192 // lane. Scale the cost by the probability of executing the predicated 6193 // block. 6194 if (isPredicatedInst(I)) { 6195 Cost /= getReciprocalPredBlockProb(); 6196 6197 if (useEmulatedMaskMemRefHack(I)) 6198 // Artificially setting to a high enough value to practically disable 6199 // vectorization with such operations. 6200 Cost = 3000000; 6201 } 6202 6203 return Cost; 6204 } 6205 6206 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6207 ElementCount VF) { 6208 Type *ValTy = getMemInstValueType(I); 6209 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6210 Value *Ptr = getLoadStorePointerOperand(I); 6211 unsigned AS = getLoadStoreAddressSpace(I); 6212 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6213 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6214 6215 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6216 "Stride should be 1 or -1 for consecutive memory access"); 6217 const Align Alignment = getLoadStoreAlignment(I); 6218 unsigned Cost = 0; 6219 if (Legal->isMaskRequired(I)) 6220 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6221 CostKind); 6222 else 6223 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6224 CostKind, I); 6225 6226 bool Reverse = ConsecutiveStride < 0; 6227 if (Reverse) 6228 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6229 return Cost; 6230 } 6231 6232 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6233 ElementCount VF) { 6234 Type *ValTy = getMemInstValueType(I); 6235 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6236 const Align Alignment = getLoadStoreAlignment(I); 6237 unsigned AS = getLoadStoreAddressSpace(I); 6238 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6239 if (isa<LoadInst>(I)) { 6240 return TTI.getAddressComputationCost(ValTy) + 6241 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6242 CostKind) + 6243 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6244 } 6245 StoreInst *SI = cast<StoreInst>(I); 6246 6247 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6248 return TTI.getAddressComputationCost(ValTy) + 6249 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6250 CostKind) + 6251 (isLoopInvariantStoreValue 6252 ? 0 6253 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6254 VF.getKnownMinValue() - 1)); 6255 } 6256 6257 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6258 ElementCount VF) { 6259 Type *ValTy = getMemInstValueType(I); 6260 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6261 const Align Alignment = getLoadStoreAlignment(I); 6262 const Value *Ptr = getLoadStorePointerOperand(I); 6263 6264 return TTI.getAddressComputationCost(VectorTy) + 6265 TTI.getGatherScatterOpCost( 6266 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6267 TargetTransformInfo::TCK_RecipThroughput, I); 6268 } 6269 6270 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6271 ElementCount VF) { 6272 Type *ValTy = getMemInstValueType(I); 6273 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6274 unsigned AS = getLoadStoreAddressSpace(I); 6275 6276 auto Group = getInterleavedAccessGroup(I); 6277 assert(Group && "Fail to get an interleaved access group."); 6278 6279 unsigned InterleaveFactor = Group->getFactor(); 6280 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6281 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6282 6283 // Holds the indices of existing members in an interleaved load group. 6284 // An interleaved store group doesn't need this as it doesn't allow gaps. 6285 SmallVector<unsigned, 4> Indices; 6286 if (isa<LoadInst>(I)) { 6287 for (unsigned i = 0; i < InterleaveFactor; i++) 6288 if (Group->getMember(i)) 6289 Indices.push_back(i); 6290 } 6291 6292 // Calculate the cost of the whole interleaved group. 6293 bool UseMaskForGaps = 6294 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6295 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6296 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6297 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6298 6299 if (Group->isReverse()) { 6300 // TODO: Add support for reversed masked interleaved access. 6301 assert(!Legal->isMaskRequired(I) && 6302 "Reverse masked interleaved access not supported."); 6303 Cost += Group->getNumMembers() * 6304 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6305 } 6306 return Cost; 6307 } 6308 6309 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6310 ElementCount VF) { 6311 // Calculate scalar cost only. Vectorization cost should be ready at this 6312 // moment. 6313 if (VF.isScalar()) { 6314 Type *ValTy = getMemInstValueType(I); 6315 const Align Alignment = getLoadStoreAlignment(I); 6316 unsigned AS = getLoadStoreAddressSpace(I); 6317 6318 return TTI.getAddressComputationCost(ValTy) + 6319 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6320 TTI::TCK_RecipThroughput, I); 6321 } 6322 return getWideningCost(I, VF); 6323 } 6324 6325 LoopVectorizationCostModel::VectorizationCostTy 6326 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6327 ElementCount VF) { 6328 assert(!VF.isScalable() && 6329 "the cost model is not yet implemented for scalable vectorization"); 6330 // If we know that this instruction will remain uniform, check the cost of 6331 // the scalar version. 6332 if (isUniformAfterVectorization(I, VF)) 6333 VF = ElementCount::getFixed(1); 6334 6335 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6336 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6337 6338 // Forced scalars do not have any scalarization overhead. 6339 auto ForcedScalar = ForcedScalars.find(VF); 6340 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6341 auto InstSet = ForcedScalar->second; 6342 if (InstSet.count(I)) 6343 return VectorizationCostTy( 6344 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6345 VF.getKnownMinValue()), 6346 false); 6347 } 6348 6349 Type *VectorTy; 6350 unsigned C = getInstructionCost(I, VF, VectorTy); 6351 6352 bool TypeNotScalarized = 6353 VF.isVector() && VectorTy->isVectorTy() && 6354 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6355 return VectorizationCostTy(C, TypeNotScalarized); 6356 } 6357 6358 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6359 ElementCount VF) { 6360 6361 assert(!VF.isScalable() && 6362 "cannot compute scalarization overhead for scalable vectorization"); 6363 if (VF.isScalar()) 6364 return 0; 6365 6366 unsigned Cost = 0; 6367 Type *RetTy = ToVectorTy(I->getType(), VF); 6368 if (!RetTy->isVoidTy() && 6369 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6370 Cost += TTI.getScalarizationOverhead( 6371 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6372 true, false); 6373 6374 // Some targets keep addresses scalar. 6375 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6376 return Cost; 6377 6378 // Some targets support efficient element stores. 6379 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6380 return Cost; 6381 6382 // Collect operands to consider. 6383 CallInst *CI = dyn_cast<CallInst>(I); 6384 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6385 6386 // Skip operands that do not require extraction/scalarization and do not incur 6387 // any overhead. 6388 return Cost + TTI.getOperandsScalarizationOverhead( 6389 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6390 } 6391 6392 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6393 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6394 if (VF.isScalar()) 6395 return; 6396 NumPredStores = 0; 6397 for (BasicBlock *BB : TheLoop->blocks()) { 6398 // For each instruction in the old loop. 6399 for (Instruction &I : *BB) { 6400 Value *Ptr = getLoadStorePointerOperand(&I); 6401 if (!Ptr) 6402 continue; 6403 6404 // TODO: We should generate better code and update the cost model for 6405 // predicated uniform stores. Today they are treated as any other 6406 // predicated store (see added test cases in 6407 // invariant-store-vectorization.ll). 6408 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6409 NumPredStores++; 6410 6411 if (Legal->isUniform(Ptr) && 6412 // Conditional loads and stores should be scalarized and predicated. 6413 // isScalarWithPredication cannot be used here since masked 6414 // gather/scatters are not considered scalar with predication. 6415 !Legal->blockNeedsPredication(I.getParent())) { 6416 // TODO: Avoid replicating loads and stores instead of 6417 // relying on instcombine to remove them. 6418 // Load: Scalar load + broadcast 6419 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6420 unsigned Cost = getUniformMemOpCost(&I, VF); 6421 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6422 continue; 6423 } 6424 6425 // We assume that widening is the best solution when possible. 6426 if (memoryInstructionCanBeWidened(&I, VF)) { 6427 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6428 int ConsecutiveStride = 6429 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6430 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6431 "Expected consecutive stride."); 6432 InstWidening Decision = 6433 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6434 setWideningDecision(&I, VF, Decision, Cost); 6435 continue; 6436 } 6437 6438 // Choose between Interleaving, Gather/Scatter or Scalarization. 6439 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6440 unsigned NumAccesses = 1; 6441 if (isAccessInterleaved(&I)) { 6442 auto Group = getInterleavedAccessGroup(&I); 6443 assert(Group && "Fail to get an interleaved access group."); 6444 6445 // Make one decision for the whole group. 6446 if (getWideningDecision(&I, VF) != CM_Unknown) 6447 continue; 6448 6449 NumAccesses = Group->getNumMembers(); 6450 if (interleavedAccessCanBeWidened(&I, VF)) 6451 InterleaveCost = getInterleaveGroupCost(&I, VF); 6452 } 6453 6454 unsigned GatherScatterCost = 6455 isLegalGatherOrScatter(&I) 6456 ? getGatherScatterCost(&I, VF) * NumAccesses 6457 : std::numeric_limits<unsigned>::max(); 6458 6459 unsigned ScalarizationCost = 6460 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6461 6462 // Choose better solution for the current VF, 6463 // write down this decision and use it during vectorization. 6464 unsigned Cost; 6465 InstWidening Decision; 6466 if (InterleaveCost <= GatherScatterCost && 6467 InterleaveCost < ScalarizationCost) { 6468 Decision = CM_Interleave; 6469 Cost = InterleaveCost; 6470 } else if (GatherScatterCost < ScalarizationCost) { 6471 Decision = CM_GatherScatter; 6472 Cost = GatherScatterCost; 6473 } else { 6474 Decision = CM_Scalarize; 6475 Cost = ScalarizationCost; 6476 } 6477 // If the instructions belongs to an interleave group, the whole group 6478 // receives the same decision. The whole group receives the cost, but 6479 // the cost will actually be assigned to one instruction. 6480 if (auto Group = getInterleavedAccessGroup(&I)) 6481 setWideningDecision(Group, VF, Decision, Cost); 6482 else 6483 setWideningDecision(&I, VF, Decision, Cost); 6484 } 6485 } 6486 6487 // Make sure that any load of address and any other address computation 6488 // remains scalar unless there is gather/scatter support. This avoids 6489 // inevitable extracts into address registers, and also has the benefit of 6490 // activating LSR more, since that pass can't optimize vectorized 6491 // addresses. 6492 if (TTI.prefersVectorizedAddressing()) 6493 return; 6494 6495 // Start with all scalar pointer uses. 6496 SmallPtrSet<Instruction *, 8> AddrDefs; 6497 for (BasicBlock *BB : TheLoop->blocks()) 6498 for (Instruction &I : *BB) { 6499 Instruction *PtrDef = 6500 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6501 if (PtrDef && TheLoop->contains(PtrDef) && 6502 getWideningDecision(&I, VF) != CM_GatherScatter) 6503 AddrDefs.insert(PtrDef); 6504 } 6505 6506 // Add all instructions used to generate the addresses. 6507 SmallVector<Instruction *, 4> Worklist; 6508 for (auto *I : AddrDefs) 6509 Worklist.push_back(I); 6510 while (!Worklist.empty()) { 6511 Instruction *I = Worklist.pop_back_val(); 6512 for (auto &Op : I->operands()) 6513 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6514 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6515 AddrDefs.insert(InstOp).second) 6516 Worklist.push_back(InstOp); 6517 } 6518 6519 for (auto *I : AddrDefs) { 6520 if (isa<LoadInst>(I)) { 6521 // Setting the desired widening decision should ideally be handled in 6522 // by cost functions, but since this involves the task of finding out 6523 // if the loaded register is involved in an address computation, it is 6524 // instead changed here when we know this is the case. 6525 InstWidening Decision = getWideningDecision(I, VF); 6526 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6527 // Scalarize a widened load of address. 6528 setWideningDecision( 6529 I, VF, CM_Scalarize, 6530 (VF.getKnownMinValue() * 6531 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6532 else if (auto Group = getInterleavedAccessGroup(I)) { 6533 // Scalarize an interleave group of address loads. 6534 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6535 if (Instruction *Member = Group->getMember(I)) 6536 setWideningDecision( 6537 Member, VF, CM_Scalarize, 6538 (VF.getKnownMinValue() * 6539 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6540 } 6541 } 6542 } else 6543 // Make sure I gets scalarized and a cost estimate without 6544 // scalarization overhead. 6545 ForcedScalars[VF].insert(I); 6546 } 6547 } 6548 6549 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6550 ElementCount VF, 6551 Type *&VectorTy) { 6552 Type *RetTy = I->getType(); 6553 if (canTruncateToMinimalBitwidth(I, VF)) 6554 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6555 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6556 auto SE = PSE.getSE(); 6557 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6558 6559 // TODO: We need to estimate the cost of intrinsic calls. 6560 switch (I->getOpcode()) { 6561 case Instruction::GetElementPtr: 6562 // We mark this instruction as zero-cost because the cost of GEPs in 6563 // vectorized code depends on whether the corresponding memory instruction 6564 // is scalarized or not. Therefore, we handle GEPs with the memory 6565 // instruction cost. 6566 return 0; 6567 case Instruction::Br: { 6568 // In cases of scalarized and predicated instructions, there will be VF 6569 // predicated blocks in the vectorized loop. Each branch around these 6570 // blocks requires also an extract of its vector compare i1 element. 6571 bool ScalarPredicatedBB = false; 6572 BranchInst *BI = cast<BranchInst>(I); 6573 if (VF.isVector() && BI->isConditional() && 6574 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6575 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6576 ScalarPredicatedBB = true; 6577 6578 if (ScalarPredicatedBB) { 6579 // Return cost for branches around scalarized and predicated blocks. 6580 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6581 auto *Vec_i1Ty = 6582 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6583 return (TTI.getScalarizationOverhead( 6584 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6585 false, true) + 6586 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 6587 VF.getKnownMinValue())); 6588 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6589 // The back-edge branch will remain, as will all scalar branches. 6590 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6591 else 6592 // This branch will be eliminated by if-conversion. 6593 return 0; 6594 // Note: We currently assume zero cost for an unconditional branch inside 6595 // a predicated block since it will become a fall-through, although we 6596 // may decide in the future to call TTI for all branches. 6597 } 6598 case Instruction::PHI: { 6599 auto *Phi = cast<PHINode>(I); 6600 6601 // First-order recurrences are replaced by vector shuffles inside the loop. 6602 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6603 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 6604 return TTI.getShuffleCost( 6605 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 6606 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 6607 6608 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6609 // converted into select instructions. We require N - 1 selects per phi 6610 // node, where N is the number of incoming values. 6611 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 6612 return (Phi->getNumIncomingValues() - 1) * 6613 TTI.getCmpSelInstrCost( 6614 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6615 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6616 CostKind); 6617 6618 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6619 } 6620 case Instruction::UDiv: 6621 case Instruction::SDiv: 6622 case Instruction::URem: 6623 case Instruction::SRem: 6624 // If we have a predicated instruction, it may not be executed for each 6625 // vector lane. Get the scalarization cost and scale this amount by the 6626 // probability of executing the predicated block. If the instruction is not 6627 // predicated, we fall through to the next case. 6628 if (VF.isVector() && isScalarWithPredication(I)) { 6629 unsigned Cost = 0; 6630 6631 // These instructions have a non-void type, so account for the phi nodes 6632 // that we will create. This cost is likely to be zero. The phi node 6633 // cost, if any, should be scaled by the block probability because it 6634 // models a copy at the end of each predicated block. 6635 Cost += VF.getKnownMinValue() * 6636 TTI.getCFInstrCost(Instruction::PHI, CostKind); 6637 6638 // The cost of the non-predicated instruction. 6639 Cost += VF.getKnownMinValue() * 6640 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6641 6642 // The cost of insertelement and extractelement instructions needed for 6643 // scalarization. 6644 Cost += getScalarizationOverhead(I, VF); 6645 6646 // Scale the cost by the probability of executing the predicated blocks. 6647 // This assumes the predicated block for each vector lane is equally 6648 // likely. 6649 return Cost / getReciprocalPredBlockProb(); 6650 } 6651 LLVM_FALLTHROUGH; 6652 case Instruction::Add: 6653 case Instruction::FAdd: 6654 case Instruction::Sub: 6655 case Instruction::FSub: 6656 case Instruction::Mul: 6657 case Instruction::FMul: 6658 case Instruction::FDiv: 6659 case Instruction::FRem: 6660 case Instruction::Shl: 6661 case Instruction::LShr: 6662 case Instruction::AShr: 6663 case Instruction::And: 6664 case Instruction::Or: 6665 case Instruction::Xor: { 6666 // Since we will replace the stride by 1 the multiplication should go away. 6667 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6668 return 0; 6669 // Certain instructions can be cheaper to vectorize if they have a constant 6670 // second vector operand. One example of this are shifts on x86. 6671 Value *Op2 = I->getOperand(1); 6672 TargetTransformInfo::OperandValueProperties Op2VP; 6673 TargetTransformInfo::OperandValueKind Op2VK = 6674 TTI.getOperandInfo(Op2, Op2VP); 6675 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6676 Op2VK = TargetTransformInfo::OK_UniformValue; 6677 6678 SmallVector<const Value *, 4> Operands(I->operand_values()); 6679 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6680 return N * TTI.getArithmeticInstrCost( 6681 I->getOpcode(), VectorTy, CostKind, 6682 TargetTransformInfo::OK_AnyValue, 6683 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6684 } 6685 case Instruction::FNeg: { 6686 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6687 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6688 return N * TTI.getArithmeticInstrCost( 6689 I->getOpcode(), VectorTy, CostKind, 6690 TargetTransformInfo::OK_AnyValue, 6691 TargetTransformInfo::OK_AnyValue, 6692 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6693 I->getOperand(0), I); 6694 } 6695 case Instruction::Select: { 6696 SelectInst *SI = cast<SelectInst>(I); 6697 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6698 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6699 Type *CondTy = SI->getCondition()->getType(); 6700 if (!ScalarCond) { 6701 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6702 CondTy = VectorType::get(CondTy, VF); 6703 } 6704 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6705 CostKind, I); 6706 } 6707 case Instruction::ICmp: 6708 case Instruction::FCmp: { 6709 Type *ValTy = I->getOperand(0)->getType(); 6710 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6711 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6712 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6713 VectorTy = ToVectorTy(ValTy, VF); 6714 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6715 I); 6716 } 6717 case Instruction::Store: 6718 case Instruction::Load: { 6719 ElementCount Width = VF; 6720 if (Width.isVector()) { 6721 InstWidening Decision = getWideningDecision(I, Width); 6722 assert(Decision != CM_Unknown && 6723 "CM decision should be taken at this point"); 6724 if (Decision == CM_Scalarize) 6725 Width = ElementCount::getFixed(1); 6726 } 6727 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6728 return getMemoryInstructionCost(I, VF); 6729 } 6730 case Instruction::ZExt: 6731 case Instruction::SExt: 6732 case Instruction::FPToUI: 6733 case Instruction::FPToSI: 6734 case Instruction::FPExt: 6735 case Instruction::PtrToInt: 6736 case Instruction::IntToPtr: 6737 case Instruction::SIToFP: 6738 case Instruction::UIToFP: 6739 case Instruction::Trunc: 6740 case Instruction::FPTrunc: 6741 case Instruction::BitCast: { 6742 // Computes the CastContextHint from a Load/Store instruction. 6743 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 6744 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6745 "Expected a load or a store!"); 6746 6747 if (VF.isScalar() || !TheLoop->contains(I)) 6748 return TTI::CastContextHint::Normal; 6749 6750 switch (getWideningDecision(I, VF)) { 6751 case LoopVectorizationCostModel::CM_GatherScatter: 6752 return TTI::CastContextHint::GatherScatter; 6753 case LoopVectorizationCostModel::CM_Interleave: 6754 return TTI::CastContextHint::Interleave; 6755 case LoopVectorizationCostModel::CM_Scalarize: 6756 case LoopVectorizationCostModel::CM_Widen: 6757 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 6758 : TTI::CastContextHint::Normal; 6759 case LoopVectorizationCostModel::CM_Widen_Reverse: 6760 return TTI::CastContextHint::Reversed; 6761 case LoopVectorizationCostModel::CM_Unknown: 6762 llvm_unreachable("Instr did not go through cost modelling?"); 6763 } 6764 6765 llvm_unreachable("Unhandled case!"); 6766 }; 6767 6768 unsigned Opcode = I->getOpcode(); 6769 TTI::CastContextHint CCH = TTI::CastContextHint::None; 6770 // For Trunc, the context is the only user, which must be a StoreInst. 6771 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 6772 if (I->hasOneUse()) 6773 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 6774 CCH = ComputeCCH(Store); 6775 } 6776 // For Z/Sext, the context is the operand, which must be a LoadInst. 6777 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 6778 Opcode == Instruction::FPExt) { 6779 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 6780 CCH = ComputeCCH(Load); 6781 } 6782 6783 // We optimize the truncation of induction variables having constant 6784 // integer steps. The cost of these truncations is the same as the scalar 6785 // operation. 6786 if (isOptimizableIVTruncate(I, VF)) { 6787 auto *Trunc = cast<TruncInst>(I); 6788 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6789 Trunc->getSrcTy(), CCH, CostKind, Trunc); 6790 } 6791 6792 Type *SrcScalarTy = I->getOperand(0)->getType(); 6793 Type *SrcVecTy = 6794 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6795 if (canTruncateToMinimalBitwidth(I, VF)) { 6796 // This cast is going to be shrunk. This may remove the cast or it might 6797 // turn it into slightly different cast. For example, if MinBW == 16, 6798 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6799 // 6800 // Calculate the modified src and dest types. 6801 Type *MinVecTy = VectorTy; 6802 if (Opcode == Instruction::Trunc) { 6803 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6804 VectorTy = 6805 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6806 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 6807 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6808 VectorTy = 6809 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6810 } 6811 } 6812 6813 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 6814 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6815 return N * 6816 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 6817 } 6818 case Instruction::Call: { 6819 bool NeedToScalarize; 6820 CallInst *CI = cast<CallInst>(I); 6821 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6822 if (getVectorIntrinsicIDForCall(CI, TLI)) 6823 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6824 return CallCost; 6825 } 6826 default: 6827 // The cost of executing VF copies of the scalar instruction. This opcode 6828 // is unknown. Assume that it is the same as 'mul'. 6829 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 6830 Instruction::Mul, VectorTy, CostKind) + 6831 getScalarizationOverhead(I, VF); 6832 } // end of switch. 6833 } 6834 6835 char LoopVectorize::ID = 0; 6836 6837 static const char lv_name[] = "Loop Vectorization"; 6838 6839 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6840 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6841 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6842 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6843 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6844 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6845 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6846 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6847 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6848 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6849 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6850 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6851 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6852 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6853 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6854 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6855 6856 namespace llvm { 6857 6858 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6859 6860 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6861 bool VectorizeOnlyWhenForced) { 6862 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6863 } 6864 6865 } // end namespace llvm 6866 6867 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6868 // Check if the pointer operand of a load or store instruction is 6869 // consecutive. 6870 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6871 return Legal->isConsecutivePtr(Ptr); 6872 return false; 6873 } 6874 6875 void LoopVectorizationCostModel::collectValuesToIgnore() { 6876 // Ignore ephemeral values. 6877 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6878 6879 // Ignore type-promoting instructions we identified during reduction 6880 // detection. 6881 for (auto &Reduction : Legal->getReductionVars()) { 6882 RecurrenceDescriptor &RedDes = Reduction.second; 6883 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6884 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6885 } 6886 // Ignore type-casting instructions we identified during induction 6887 // detection. 6888 for (auto &Induction : Legal->getInductionVars()) { 6889 InductionDescriptor &IndDes = Induction.second; 6890 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6891 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6892 } 6893 } 6894 6895 void LoopVectorizationCostModel::collectInLoopReductions() { 6896 for (auto &Reduction : Legal->getReductionVars()) { 6897 PHINode *Phi = Reduction.first; 6898 RecurrenceDescriptor &RdxDesc = Reduction.second; 6899 6900 // We don't collect reductions that are type promoted (yet). 6901 if (RdxDesc.getRecurrenceType() != Phi->getType()) 6902 continue; 6903 6904 // If the target would prefer this reduction to happen "in-loop", then we 6905 // want to record it as such. 6906 unsigned Opcode = RdxDesc.getRecurrenceBinOp(); 6907 if (!PreferInLoopReductions && 6908 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 6909 TargetTransformInfo::ReductionFlags())) 6910 continue; 6911 6912 // Check that we can correctly put the reductions into the loop, by 6913 // finding the chain of operations that leads from the phi to the loop 6914 // exit value. 6915 SmallVector<Instruction *, 4> ReductionOperations = 6916 RdxDesc.getReductionOpChain(Phi, TheLoop); 6917 bool InLoop = !ReductionOperations.empty(); 6918 if (InLoop) 6919 InLoopReductionChains[Phi] = ReductionOperations; 6920 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 6921 << " reduction for phi: " << *Phi << "\n"); 6922 } 6923 } 6924 6925 // TODO: we could return a pair of values that specify the max VF and 6926 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6927 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6928 // doesn't have a cost model that can choose which plan to execute if 6929 // more than one is generated. 6930 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6931 LoopVectorizationCostModel &CM) { 6932 unsigned WidestType; 6933 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6934 return WidestVectorRegBits / WidestType; 6935 } 6936 6937 VectorizationFactor 6938 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 6939 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 6940 ElementCount VF = UserVF; 6941 // Outer loop handling: They may require CFG and instruction level 6942 // transformations before even evaluating whether vectorization is profitable. 6943 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6944 // the vectorization pipeline. 6945 if (!OrigLoop->isInnermost()) { 6946 // If the user doesn't provide a vectorization factor, determine a 6947 // reasonable one. 6948 if (UserVF.isZero()) { 6949 VF = ElementCount::getFixed( 6950 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 6951 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6952 6953 // Make sure we have a VF > 1 for stress testing. 6954 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 6955 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6956 << "overriding computed VF.\n"); 6957 VF = ElementCount::getFixed(4); 6958 } 6959 } 6960 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6961 assert(isPowerOf2_32(VF.getKnownMinValue()) && 6962 "VF needs to be a power of two"); 6963 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 6964 << "VF " << VF << " to build VPlans.\n"); 6965 buildVPlans(VF.getKnownMinValue(), VF.getKnownMinValue()); 6966 6967 // For VPlan build stress testing, we bail out after VPlan construction. 6968 if (VPlanBuildStressTest) 6969 return VectorizationFactor::Disabled(); 6970 6971 return {VF, 0 /*Cost*/}; 6972 } 6973 6974 LLVM_DEBUG( 6975 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6976 "VPlan-native path.\n"); 6977 return VectorizationFactor::Disabled(); 6978 } 6979 6980 Optional<VectorizationFactor> 6981 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 6982 assert(!UserVF.isScalable() && "scalable vectorization not yet handled"); 6983 assert(OrigLoop->isInnermost() && "Inner loop expected."); 6984 Optional<unsigned> MaybeMaxVF = 6985 CM.computeMaxVF(UserVF.getKnownMinValue(), UserIC); 6986 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6987 return None; 6988 6989 // Invalidate interleave groups if all blocks of loop will be predicated. 6990 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6991 !useMaskedInterleavedAccesses(*TTI)) { 6992 LLVM_DEBUG( 6993 dbgs() 6994 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6995 "which requires masked-interleaved support.\n"); 6996 if (CM.InterleaveInfo.invalidateGroups()) 6997 // Invalidating interleave groups also requires invalidating all decisions 6998 // based on them, which includes widening decisions and uniform and scalar 6999 // values. 7000 CM.invalidateCostModelingDecisions(); 7001 } 7002 7003 if (!UserVF.isZero()) { 7004 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7005 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7006 "VF needs to be a power of two"); 7007 // Collect the instructions (and their associated costs) that will be more 7008 // profitable to scalarize. 7009 CM.selectUserVectorizationFactor(UserVF); 7010 CM.collectInLoopReductions(); 7011 buildVPlansWithVPRecipes(UserVF.getKnownMinValue(), 7012 UserVF.getKnownMinValue()); 7013 LLVM_DEBUG(printPlans(dbgs())); 7014 return {{UserVF, 0}}; 7015 } 7016 7017 unsigned MaxVF = MaybeMaxVF.getValue(); 7018 assert(MaxVF != 0 && "MaxVF is zero."); 7019 7020 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7021 // Collect Uniform and Scalar instructions after vectorization with VF. 7022 CM.collectUniformsAndScalars(ElementCount::getFixed(VF)); 7023 7024 // Collect the instructions (and their associated costs) that will be more 7025 // profitable to scalarize. 7026 if (VF > 1) 7027 CM.collectInstsToScalarize(ElementCount::getFixed(VF)); 7028 } 7029 7030 CM.collectInLoopReductions(); 7031 7032 buildVPlansWithVPRecipes(1, MaxVF); 7033 LLVM_DEBUG(printPlans(dbgs())); 7034 if (MaxVF == 1) 7035 return VectorizationFactor::Disabled(); 7036 7037 // Select the optimal vectorization factor. 7038 return CM.selectVectorizationFactor(MaxVF); 7039 } 7040 7041 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7042 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7043 << '\n'); 7044 BestVF = VF; 7045 BestUF = UF; 7046 7047 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7048 return !Plan->hasVF(VF); 7049 }); 7050 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7051 } 7052 7053 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7054 DominatorTree *DT) { 7055 // Perform the actual loop transformation. 7056 7057 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7058 VPCallbackILV CallbackILV(ILV); 7059 7060 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7061 7062 VPTransformState State{*BestVF, BestUF, LI, 7063 DT, ILV.Builder, ILV.VectorLoopValueMap, 7064 &ILV, CallbackILV}; 7065 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7066 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7067 State.CanonicalIV = ILV.Induction; 7068 7069 //===------------------------------------------------===// 7070 // 7071 // Notice: any optimization or new instruction that go 7072 // into the code below should also be implemented in 7073 // the cost-model. 7074 // 7075 //===------------------------------------------------===// 7076 7077 // 2. Copy and widen instructions from the old loop into the new loop. 7078 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7079 VPlans.front()->execute(&State); 7080 7081 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7082 // predication, updating analyses. 7083 ILV.fixVectorizedLoop(); 7084 } 7085 7086 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7087 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7088 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7089 7090 // We create new control-flow for the vectorized loop, so the original 7091 // condition will be dead after vectorization if it's only used by the 7092 // branch. 7093 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7094 if (Cmp && Cmp->hasOneUse()) { 7095 DeadInstructions.insert(Cmp); 7096 7097 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7098 for (Value *Op : Cmp->operands()) { 7099 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7100 DeadInstructions.insert(cast<Instruction>(Op)); 7101 } 7102 } 7103 7104 // We create new "steps" for induction variable updates to which the original 7105 // induction variables map. An original update instruction will be dead if 7106 // all its users except the induction variable are dead. 7107 for (auto &Induction : Legal->getInductionVars()) { 7108 PHINode *Ind = Induction.first; 7109 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7110 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7111 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7112 })) 7113 DeadInstructions.insert(IndUpdate); 7114 7115 // We record as "Dead" also the type-casting instructions we had identified 7116 // during induction analysis. We don't need any handling for them in the 7117 // vectorized loop because we have proven that, under a proper runtime 7118 // test guarding the vectorized loop, the value of the phi, and the casted 7119 // value of the phi, are the same. The last instruction in this casting chain 7120 // will get its scalar/vector/widened def from the scalar/vector/widened def 7121 // of the respective phi node. Any other casts in the induction def-use chain 7122 // have no other uses outside the phi update chain, and will be ignored. 7123 InductionDescriptor &IndDes = Induction.second; 7124 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7125 DeadInstructions.insert(Casts.begin(), Casts.end()); 7126 } 7127 } 7128 7129 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7130 7131 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7132 7133 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7134 Instruction::BinaryOps BinOp) { 7135 // When unrolling and the VF is 1, we only need to add a simple scalar. 7136 Type *Ty = Val->getType(); 7137 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7138 7139 if (Ty->isFloatingPointTy()) { 7140 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7141 7142 // Floating point operations had to be 'fast' to enable the unrolling. 7143 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7144 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7145 } 7146 Constant *C = ConstantInt::get(Ty, StartIdx); 7147 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7148 } 7149 7150 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7151 SmallVector<Metadata *, 4> MDs; 7152 // Reserve first location for self reference to the LoopID metadata node. 7153 MDs.push_back(nullptr); 7154 bool IsUnrollMetadata = false; 7155 MDNode *LoopID = L->getLoopID(); 7156 if (LoopID) { 7157 // First find existing loop unrolling disable metadata. 7158 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7159 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7160 if (MD) { 7161 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7162 IsUnrollMetadata = 7163 S && S->getString().startswith("llvm.loop.unroll.disable"); 7164 } 7165 MDs.push_back(LoopID->getOperand(i)); 7166 } 7167 } 7168 7169 if (!IsUnrollMetadata) { 7170 // Add runtime unroll disable metadata. 7171 LLVMContext &Context = L->getHeader()->getContext(); 7172 SmallVector<Metadata *, 1> DisableOperands; 7173 DisableOperands.push_back( 7174 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7175 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7176 MDs.push_back(DisableNode); 7177 MDNode *NewLoopID = MDNode::get(Context, MDs); 7178 // Set operand 0 to refer to the loop id itself. 7179 NewLoopID->replaceOperandWith(0, NewLoopID); 7180 L->setLoopID(NewLoopID); 7181 } 7182 } 7183 7184 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7185 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7186 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7187 bool PredicateAtRangeStart = Predicate(ElementCount::getFixed(Range.Start)); 7188 7189 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7190 if (Predicate(ElementCount::getFixed(TmpVF)) != PredicateAtRangeStart) { 7191 Range.End = TmpVF; 7192 break; 7193 } 7194 7195 return PredicateAtRangeStart; 7196 } 7197 7198 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7199 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7200 /// of VF's starting at a given VF and extending it as much as possible. Each 7201 /// vectorization decision can potentially shorten this sub-range during 7202 /// buildVPlan(). 7203 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7204 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7205 VFRange SubRange = {VF, MaxVF + 1}; 7206 VPlans.push_back(buildVPlan(SubRange)); 7207 VF = SubRange.End; 7208 } 7209 } 7210 7211 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7212 VPlanPtr &Plan) { 7213 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7214 7215 // Look for cached value. 7216 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7217 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7218 if (ECEntryIt != EdgeMaskCache.end()) 7219 return ECEntryIt->second; 7220 7221 VPValue *SrcMask = createBlockInMask(Src, Plan); 7222 7223 // The terminator has to be a branch inst! 7224 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7225 assert(BI && "Unexpected terminator found"); 7226 7227 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7228 return EdgeMaskCache[Edge] = SrcMask; 7229 7230 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7231 assert(EdgeMask && "No Edge Mask found for condition"); 7232 7233 if (BI->getSuccessor(0) != Dst) 7234 EdgeMask = Builder.createNot(EdgeMask); 7235 7236 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7237 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7238 7239 return EdgeMaskCache[Edge] = EdgeMask; 7240 } 7241 7242 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 7243 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7244 7245 // Look for cached value. 7246 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7247 if (BCEntryIt != BlockMaskCache.end()) 7248 return BCEntryIt->second; 7249 7250 // All-one mask is modelled as no-mask following the convention for masked 7251 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7252 VPValue *BlockMask = nullptr; 7253 7254 if (OrigLoop->getHeader() == BB) { 7255 if (!CM.blockNeedsPredication(BB)) 7256 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 7257 7258 // Create the block in mask as the first non-phi instruction in the block. 7259 VPBuilder::InsertPointGuard Guard(Builder); 7260 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 7261 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 7262 7263 // Introduce the early-exit compare IV <= BTC to form header block mask. 7264 // This is used instead of IV < TC because TC may wrap, unlike BTC. 7265 // Start by constructing the desired canonical IV. 7266 VPValue *IV = nullptr; 7267 if (Legal->getPrimaryInduction()) 7268 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 7269 else { 7270 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 7271 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 7272 IV = IVRecipe->getVPValue(); 7273 } 7274 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 7275 bool TailFolded = !CM.isScalarEpilogueAllowed(); 7276 7277 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 7278 // While ActiveLaneMask is a binary op that consumes the loop tripcount 7279 // as a second argument, we only pass the IV here and extract the 7280 // tripcount from the transform state where codegen of the VP instructions 7281 // happen. 7282 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 7283 } else { 7284 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 7285 } 7286 return BlockMaskCache[BB] = BlockMask; 7287 } 7288 7289 // This is the block mask. We OR all incoming edges. 7290 for (auto *Predecessor : predecessors(BB)) { 7291 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7292 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7293 return BlockMaskCache[BB] = EdgeMask; 7294 7295 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7296 BlockMask = EdgeMask; 7297 continue; 7298 } 7299 7300 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7301 } 7302 7303 return BlockMaskCache[BB] = BlockMask; 7304 } 7305 7306 VPWidenMemoryInstructionRecipe * 7307 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 7308 VPlanPtr &Plan) { 7309 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7310 "Must be called with either a load or store"); 7311 7312 auto willWiden = [&](ElementCount VF) -> bool { 7313 assert(!VF.isScalable() && "unexpected scalable ElementCount"); 7314 if (VF.isScalar()) 7315 return false; 7316 LoopVectorizationCostModel::InstWidening Decision = 7317 CM.getWideningDecision(I, VF); 7318 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7319 "CM decision should be taken at this point."); 7320 if (Decision == LoopVectorizationCostModel::CM_Interleave) 7321 return true; 7322 if (CM.isScalarAfterVectorization(I, VF) || 7323 CM.isProfitableToScalarize(I, VF)) 7324 return false; 7325 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7326 }; 7327 7328 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7329 return nullptr; 7330 7331 VPValue *Mask = nullptr; 7332 if (Legal->isMaskRequired(I)) 7333 Mask = createBlockInMask(I->getParent(), Plan); 7334 7335 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 7336 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 7337 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 7338 7339 StoreInst *Store = cast<StoreInst>(I); 7340 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 7341 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 7342 } 7343 7344 VPWidenIntOrFpInductionRecipe * 7345 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 7346 // Check if this is an integer or fp induction. If so, build the recipe that 7347 // produces its scalar and vector values. 7348 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 7349 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7350 II.getKind() == InductionDescriptor::IK_FpInduction) 7351 return new VPWidenIntOrFpInductionRecipe(Phi); 7352 7353 return nullptr; 7354 } 7355 7356 VPWidenIntOrFpInductionRecipe * 7357 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 7358 VFRange &Range) const { 7359 // Optimize the special case where the source is a constant integer 7360 // induction variable. Notice that we can only optimize the 'trunc' case 7361 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7362 // (c) other casts depend on pointer size. 7363 7364 // Determine whether \p K is a truncation based on an induction variable that 7365 // can be optimized. 7366 auto isOptimizableIVTruncate = 7367 [&](Instruction *K) -> std::function<bool(ElementCount)> { 7368 return [=](ElementCount VF) -> bool { 7369 return CM.isOptimizableIVTruncate(K, VF); 7370 }; 7371 }; 7372 7373 if (LoopVectorizationPlanner::getDecisionAndClampRange( 7374 isOptimizableIVTruncate(I), Range)) 7375 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7376 I); 7377 return nullptr; 7378 } 7379 7380 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 7381 // We know that all PHIs in non-header blocks are converted into selects, so 7382 // we don't have to worry about the insertion order and we can just use the 7383 // builder. At this point we generate the predication tree. There may be 7384 // duplications since this is a simple recursive scan, but future 7385 // optimizations will clean it up. 7386 7387 SmallVector<VPValue *, 2> Operands; 7388 unsigned NumIncoming = Phi->getNumIncomingValues(); 7389 for (unsigned In = 0; In < NumIncoming; In++) { 7390 VPValue *EdgeMask = 7391 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7392 assert((EdgeMask || NumIncoming == 1) && 7393 "Multiple predecessors with one having a full mask"); 7394 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 7395 if (EdgeMask) 7396 Operands.push_back(EdgeMask); 7397 } 7398 return new VPBlendRecipe(Phi, Operands); 7399 } 7400 7401 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7402 VPlan &Plan) const { 7403 7404 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7405 [this, CI](ElementCount VF) { 7406 return CM.isScalarWithPredication(CI, VF); 7407 }, 7408 Range); 7409 7410 if (IsPredicated) 7411 return nullptr; 7412 7413 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7414 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7415 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7416 return nullptr; 7417 7418 auto willWiden = [&](ElementCount VF) -> bool { 7419 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7420 // The following case may be scalarized depending on the VF. 7421 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7422 // version of the instruction. 7423 // Is it beneficial to perform intrinsic call compared to lib call? 7424 bool NeedToScalarize = false; 7425 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7426 bool UseVectorIntrinsic = 7427 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7428 return UseVectorIntrinsic || !NeedToScalarize; 7429 }; 7430 7431 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7432 return nullptr; 7433 7434 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7435 } 7436 7437 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7438 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7439 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7440 // Instruction should be widened, unless it is scalar after vectorization, 7441 // scalarization is profitable or it is predicated. 7442 auto WillScalarize = [this, I](ElementCount VF) -> bool { 7443 return CM.isScalarAfterVectorization(I, VF) || 7444 CM.isProfitableToScalarize(I, VF) || 7445 CM.isScalarWithPredication(I, VF); 7446 }; 7447 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7448 Range); 7449 } 7450 7451 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7452 auto IsVectorizableOpcode = [](unsigned Opcode) { 7453 switch (Opcode) { 7454 case Instruction::Add: 7455 case Instruction::And: 7456 case Instruction::AShr: 7457 case Instruction::BitCast: 7458 case Instruction::FAdd: 7459 case Instruction::FCmp: 7460 case Instruction::FDiv: 7461 case Instruction::FMul: 7462 case Instruction::FNeg: 7463 case Instruction::FPExt: 7464 case Instruction::FPToSI: 7465 case Instruction::FPToUI: 7466 case Instruction::FPTrunc: 7467 case Instruction::FRem: 7468 case Instruction::FSub: 7469 case Instruction::ICmp: 7470 case Instruction::IntToPtr: 7471 case Instruction::LShr: 7472 case Instruction::Mul: 7473 case Instruction::Or: 7474 case Instruction::PtrToInt: 7475 case Instruction::SDiv: 7476 case Instruction::Select: 7477 case Instruction::SExt: 7478 case Instruction::Shl: 7479 case Instruction::SIToFP: 7480 case Instruction::SRem: 7481 case Instruction::Sub: 7482 case Instruction::Trunc: 7483 case Instruction::UDiv: 7484 case Instruction::UIToFP: 7485 case Instruction::URem: 7486 case Instruction::Xor: 7487 case Instruction::ZExt: 7488 return true; 7489 } 7490 return false; 7491 }; 7492 7493 if (!IsVectorizableOpcode(I->getOpcode())) 7494 return nullptr; 7495 7496 // Success: widen this instruction. 7497 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7498 } 7499 7500 VPBasicBlock *VPRecipeBuilder::handleReplication( 7501 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7502 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7503 VPlanPtr &Plan) { 7504 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7505 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 7506 Range); 7507 7508 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7509 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 7510 Range); 7511 7512 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7513 IsUniform, IsPredicated); 7514 setRecipe(I, Recipe); 7515 7516 // Find if I uses a predicated instruction. If so, it will use its scalar 7517 // value. Avoid hoisting the insert-element which packs the scalar value into 7518 // a vector value, as that happens iff all users use the vector value. 7519 for (auto &Op : I->operands()) 7520 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7521 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7522 PredInst2Recipe[PredInst]->setAlsoPack(false); 7523 7524 // Finalize the recipe for Instr, first if it is not predicated. 7525 if (!IsPredicated) { 7526 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7527 VPBB->appendRecipe(Recipe); 7528 return VPBB; 7529 } 7530 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7531 assert(VPBB->getSuccessors().empty() && 7532 "VPBB has successors when handling predicated replication."); 7533 // Record predicated instructions for above packing optimizations. 7534 PredInst2Recipe[I] = Recipe; 7535 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7536 VPBlockUtils::insertBlockAfter(Region, VPBB); 7537 auto *RegSucc = new VPBasicBlock(); 7538 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7539 return RegSucc; 7540 } 7541 7542 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7543 VPRecipeBase *PredRecipe, 7544 VPlanPtr &Plan) { 7545 // Instructions marked for predication are replicated and placed under an 7546 // if-then construct to prevent side-effects. 7547 7548 // Generate recipes to compute the block mask for this region. 7549 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7550 7551 // Build the triangular if-then region. 7552 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7553 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7554 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7555 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7556 auto *PHIRecipe = 7557 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7558 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7559 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7560 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7561 7562 // Note: first set Entry as region entry and then connect successors starting 7563 // from it in order, to propagate the "parent" of each VPBasicBlock. 7564 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7565 VPBlockUtils::connectBlocks(Pred, Exit); 7566 7567 return Region; 7568 } 7569 7570 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7571 VFRange &Range, 7572 VPlanPtr &Plan) { 7573 // First, check for specific widening recipes that deal with calls, memory 7574 // operations, inductions and Phi nodes. 7575 if (auto *CI = dyn_cast<CallInst>(Instr)) 7576 return tryToWidenCall(CI, Range, *Plan); 7577 7578 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7579 return tryToWidenMemory(Instr, Range, Plan); 7580 7581 VPRecipeBase *Recipe; 7582 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7583 if (Phi->getParent() != OrigLoop->getHeader()) 7584 return tryToBlend(Phi, Plan); 7585 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7586 return Recipe; 7587 return new VPWidenPHIRecipe(Phi); 7588 } 7589 7590 if (isa<TruncInst>(Instr) && 7591 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7592 return Recipe; 7593 7594 if (!shouldWiden(Instr, Range)) 7595 return nullptr; 7596 7597 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7598 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7599 OrigLoop); 7600 7601 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7602 bool InvariantCond = 7603 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7604 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7605 InvariantCond); 7606 } 7607 7608 return tryToWiden(Instr, *Plan); 7609 } 7610 7611 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7612 unsigned MaxVF) { 7613 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7614 7615 // Collect conditions feeding internal conditional branches; they need to be 7616 // represented in VPlan for it to model masking. 7617 SmallPtrSet<Value *, 1> NeedDef; 7618 7619 auto *Latch = OrigLoop->getLoopLatch(); 7620 for (BasicBlock *BB : OrigLoop->blocks()) { 7621 if (BB == Latch) 7622 continue; 7623 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7624 if (Branch && Branch->isConditional()) 7625 NeedDef.insert(Branch->getCondition()); 7626 } 7627 7628 // If the tail is to be folded by masking, the primary induction variable, if 7629 // exists needs to be represented in VPlan for it to model early-exit masking. 7630 // Also, both the Phi and the live-out instruction of each reduction are 7631 // required in order to introduce a select between them in VPlan. 7632 if (CM.foldTailByMasking()) { 7633 if (Legal->getPrimaryInduction()) 7634 NeedDef.insert(Legal->getPrimaryInduction()); 7635 for (auto &Reduction : Legal->getReductionVars()) { 7636 NeedDef.insert(Reduction.first); 7637 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7638 } 7639 } 7640 7641 // Collect instructions from the original loop that will become trivially dead 7642 // in the vectorized loop. We don't need to vectorize these instructions. For 7643 // example, original induction update instructions can become dead because we 7644 // separately emit induction "steps" when generating code for the new loop. 7645 // Similarly, we create a new latch condition when setting up the structure 7646 // of the new loop, so the old one can become dead. 7647 SmallPtrSet<Instruction *, 4> DeadInstructions; 7648 collectTriviallyDeadInstructions(DeadInstructions); 7649 7650 // Add assume instructions we need to drop to DeadInstructions, to prevent 7651 // them from being added to the VPlan. 7652 // TODO: We only need to drop assumes in blocks that get flattend. If the 7653 // control flow is preserved, we should keep them. 7654 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7655 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7656 7657 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7658 // Dead instructions do not need sinking. Remove them from SinkAfter. 7659 for (Instruction *I : DeadInstructions) 7660 SinkAfter.erase(I); 7661 7662 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7663 VFRange SubRange = {VF, MaxVF + 1}; 7664 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7665 DeadInstructions, SinkAfter)); 7666 VF = SubRange.End; 7667 } 7668 } 7669 7670 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7671 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7672 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7673 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7674 7675 // Hold a mapping from predicated instructions to their recipes, in order to 7676 // fix their AlsoPack behavior if a user is determined to replicate and use a 7677 // scalar instead of vector value. 7678 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7679 7680 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7681 7682 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7683 7684 // --------------------------------------------------------------------------- 7685 // Pre-construction: record ingredients whose recipes we'll need to further 7686 // process after constructing the initial VPlan. 7687 // --------------------------------------------------------------------------- 7688 7689 // Mark instructions we'll need to sink later and their targets as 7690 // ingredients whose recipe we'll need to record. 7691 for (auto &Entry : SinkAfter) { 7692 RecipeBuilder.recordRecipeOf(Entry.first); 7693 RecipeBuilder.recordRecipeOf(Entry.second); 7694 } 7695 for (auto &Reduction : CM.getInLoopReductionChains()) { 7696 PHINode *Phi = Reduction.first; 7697 RecurrenceDescriptor::RecurrenceKind Kind = 7698 Legal->getReductionVars()[Phi].getRecurrenceKind(); 7699 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7700 7701 RecipeBuilder.recordRecipeOf(Phi); 7702 for (auto &R : ReductionOperations) { 7703 RecipeBuilder.recordRecipeOf(R); 7704 // For min/max reducitons, where we have a pair of icmp/select, we also 7705 // need to record the ICmp recipe, so it can be removed later. 7706 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7707 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7708 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 7709 } 7710 } 7711 } 7712 7713 // For each interleave group which is relevant for this (possibly trimmed) 7714 // Range, add it to the set of groups to be later applied to the VPlan and add 7715 // placeholders for its members' Recipes which we'll be replacing with a 7716 // single VPInterleaveRecipe. 7717 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7718 auto applyIG = [IG, this](ElementCount VF) -> bool { 7719 return (VF.isVector() && // Query is illegal for VF == 1 7720 CM.getWideningDecision(IG->getInsertPos(), VF) == 7721 LoopVectorizationCostModel::CM_Interleave); 7722 }; 7723 if (!getDecisionAndClampRange(applyIG, Range)) 7724 continue; 7725 InterleaveGroups.insert(IG); 7726 for (unsigned i = 0; i < IG->getFactor(); i++) 7727 if (Instruction *Member = IG->getMember(i)) 7728 RecipeBuilder.recordRecipeOf(Member); 7729 }; 7730 7731 // --------------------------------------------------------------------------- 7732 // Build initial VPlan: Scan the body of the loop in a topological order to 7733 // visit each basic block after having visited its predecessor basic blocks. 7734 // --------------------------------------------------------------------------- 7735 7736 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7737 auto Plan = std::make_unique<VPlan>(); 7738 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7739 Plan->setEntry(VPBB); 7740 7741 // Represent values that will have defs inside VPlan. 7742 for (Value *V : NeedDef) 7743 Plan->addVPValue(V); 7744 7745 // Scan the body of the loop in a topological order to visit each basic block 7746 // after having visited its predecessor basic blocks. 7747 LoopBlocksDFS DFS(OrigLoop); 7748 DFS.perform(LI); 7749 7750 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7751 // Relevant instructions from basic block BB will be grouped into VPRecipe 7752 // ingredients and fill a new VPBasicBlock. 7753 unsigned VPBBsForBB = 0; 7754 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7755 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7756 VPBB = FirstVPBBForBB; 7757 Builder.setInsertPoint(VPBB); 7758 7759 // Introduce each ingredient into VPlan. 7760 // TODO: Model and preserve debug instrinsics in VPlan. 7761 for (Instruction &I : BB->instructionsWithoutDebug()) { 7762 Instruction *Instr = &I; 7763 7764 // First filter out irrelevant instructions, to ensure no recipes are 7765 // built for them. 7766 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7767 continue; 7768 7769 if (auto Recipe = 7770 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7771 // Check if the recipe can be converted to a VPValue. We need the extra 7772 // down-casting step until VPRecipeBase inherits from VPValue. 7773 VPValue *MaybeVPValue = Recipe->toVPValue(); 7774 if (!Instr->getType()->isVoidTy() && MaybeVPValue) { 7775 if (NeedDef.contains(Instr)) 7776 Plan->addOrReplaceVPValue(Instr, MaybeVPValue); 7777 else 7778 Plan->addVPValue(Instr, MaybeVPValue); 7779 } 7780 7781 RecipeBuilder.setRecipe(Instr, Recipe); 7782 VPBB->appendRecipe(Recipe); 7783 continue; 7784 } 7785 7786 // Otherwise, if all widening options failed, Instruction is to be 7787 // replicated. This may create a successor for VPBB. 7788 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7789 Instr, Range, VPBB, PredInst2Recipe, Plan); 7790 if (NextVPBB != VPBB) { 7791 VPBB = NextVPBB; 7792 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7793 : ""); 7794 } 7795 } 7796 } 7797 7798 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7799 // may also be empty, such as the last one VPBB, reflecting original 7800 // basic-blocks with no recipes. 7801 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7802 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7803 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7804 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7805 delete PreEntry; 7806 7807 // --------------------------------------------------------------------------- 7808 // Transform initial VPlan: Apply previously taken decisions, in order, to 7809 // bring the VPlan to its final state. 7810 // --------------------------------------------------------------------------- 7811 7812 // Apply Sink-After legal constraints. 7813 for (auto &Entry : SinkAfter) { 7814 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7815 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7816 Sink->moveAfter(Target); 7817 } 7818 7819 // Interleave memory: for each Interleave Group we marked earlier as relevant 7820 // for this VPlan, replace the Recipes widening its memory instructions with a 7821 // single VPInterleaveRecipe at its insertion point. 7822 for (auto IG : InterleaveGroups) { 7823 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7824 RecipeBuilder.getRecipe(IG->getInsertPos())); 7825 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7826 ->insertBefore(Recipe); 7827 7828 for (unsigned i = 0; i < IG->getFactor(); ++i) 7829 if (Instruction *Member = IG->getMember(i)) { 7830 if (!Member->getType()->isVoidTy()) { 7831 VPValue *OriginalV = Plan->getVPValue(Member); 7832 Plan->removeVPValueFor(Member); 7833 OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member)); 7834 } 7835 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7836 } 7837 } 7838 7839 // Adjust the recipes for any inloop reductions. 7840 if (Range.Start > 1) 7841 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 7842 7843 // Finally, if tail is folded by masking, introduce selects between the phi 7844 // and the live-out instruction of each reduction, at the end of the latch. 7845 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 7846 Builder.setInsertPoint(VPBB); 7847 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7848 for (auto &Reduction : Legal->getReductionVars()) { 7849 if (CM.isInLoopReduction(Reduction.first)) 7850 continue; 7851 VPValue *Phi = Plan->getVPValue(Reduction.first); 7852 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7853 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7854 } 7855 } 7856 7857 std::string PlanName; 7858 raw_string_ostream RSO(PlanName); 7859 ElementCount VF = ElementCount::getFixed(Range.Start); 7860 Plan->addVF(VF); 7861 RSO << "Initial VPlan for VF={" << VF; 7862 for (VF *= 2; VF.getKnownMinValue() < Range.End; VF *= 2) { 7863 Plan->addVF(VF); 7864 RSO << "," << VF; 7865 } 7866 RSO << "},UF>=1"; 7867 RSO.flush(); 7868 Plan->setName(PlanName); 7869 7870 return Plan; 7871 } 7872 7873 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7874 // Outer loop handling: They may require CFG and instruction level 7875 // transformations before even evaluating whether vectorization is profitable. 7876 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7877 // the vectorization pipeline. 7878 assert(!OrigLoop->isInnermost()); 7879 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7880 7881 // Create new empty VPlan 7882 auto Plan = std::make_unique<VPlan>(); 7883 7884 // Build hierarchical CFG 7885 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7886 HCFGBuilder.buildHierarchicalCFG(); 7887 7888 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7889 Plan->addVF(ElementCount::getFixed(VF)); 7890 7891 if (EnableVPlanPredication) { 7892 VPlanPredicator VPP(*Plan); 7893 VPP.predicate(); 7894 7895 // Avoid running transformation to recipes until masked code generation in 7896 // VPlan-native path is in place. 7897 return Plan; 7898 } 7899 7900 SmallPtrSet<Instruction *, 1> DeadInstructions; 7901 VPlanTransforms::VPInstructionsToVPRecipes( 7902 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7903 return Plan; 7904 } 7905 7906 // Adjust the recipes for any inloop reductions. The chain of instructions 7907 // leading from the loop exit instr to the phi need to be converted to 7908 // reductions, with one operand being vector and the other being the scalar 7909 // reduction chain. 7910 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 7911 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 7912 for (auto &Reduction : CM.getInLoopReductionChains()) { 7913 PHINode *Phi = Reduction.first; 7914 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 7915 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7916 7917 // ReductionOperations are orders top-down from the phi's use to the 7918 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 7919 // which of the two operands will remain scalar and which will be reduced. 7920 // For minmax the chain will be the select instructions. 7921 Instruction *Chain = Phi; 7922 for (Instruction *R : ReductionOperations) { 7923 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 7924 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind(); 7925 7926 VPValue *ChainOp = Plan->getVPValue(Chain); 7927 unsigned FirstOpId; 7928 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7929 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7930 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 7931 "Expected to replace a VPWidenSelectSC"); 7932 FirstOpId = 1; 7933 } else { 7934 assert(isa<VPWidenRecipe>(WidenRecipe) && 7935 "Expected to replace a VPWidenSC"); 7936 FirstOpId = 0; 7937 } 7938 unsigned VecOpId = 7939 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 7940 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 7941 7942 auto *CondOp = CM.foldTailByMasking() 7943 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 7944 : nullptr; 7945 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 7946 &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI); 7947 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 7948 WidenRecipe->eraseFromParent(); 7949 7950 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7951 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7952 VPRecipeBase *CompareRecipe = 7953 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 7954 assert(isa<VPWidenRecipe>(CompareRecipe) && 7955 "Expected to replace a VPWidenSC"); 7956 CompareRecipe->eraseFromParent(); 7957 } 7958 Chain = R; 7959 } 7960 } 7961 } 7962 7963 Value* LoopVectorizationPlanner::VPCallbackILV:: 7964 getOrCreateVectorValues(Value *V, unsigned Part) { 7965 return ILV.getOrCreateVectorValue(V, Part); 7966 } 7967 7968 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7969 Value *V, const VPIteration &Instance) { 7970 return ILV.getOrCreateScalarValue(V, Instance); 7971 } 7972 7973 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7974 VPSlotTracker &SlotTracker) const { 7975 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7976 IG->getInsertPos()->printAsOperand(O, false); 7977 O << ", "; 7978 getAddr()->printAsOperand(O, SlotTracker); 7979 VPValue *Mask = getMask(); 7980 if (Mask) { 7981 O << ", "; 7982 Mask->printAsOperand(O, SlotTracker); 7983 } 7984 for (unsigned i = 0; i < IG->getFactor(); ++i) 7985 if (Instruction *I = IG->getMember(i)) 7986 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7987 } 7988 7989 void VPWidenCallRecipe::execute(VPTransformState &State) { 7990 State.ILV->widenCallInstruction(Ingredient, *this, State); 7991 } 7992 7993 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7994 State.ILV->widenSelectInstruction(Ingredient, *this, InvariantCond, State); 7995 } 7996 7997 void VPWidenRecipe::execute(VPTransformState &State) { 7998 State.ILV->widenInstruction(Ingredient, *this, State); 7999 } 8000 8001 void VPWidenGEPRecipe::execute(VPTransformState &State) { 8002 State.ILV->widenGEP(GEP, *this, State.UF, State.VF, IsPtrLoopInvariant, 8003 IsIndexLoopInvariant, State); 8004 } 8005 8006 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8007 assert(!State.Instance && "Int or FP induction being replicated."); 8008 State.ILV->widenIntOrFpInduction(IV, Trunc); 8009 } 8010 8011 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8012 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8013 } 8014 8015 void VPBlendRecipe::execute(VPTransformState &State) { 8016 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8017 // We know that all PHIs in non-header blocks are converted into 8018 // selects, so we don't have to worry about the insertion order and we 8019 // can just use the builder. 8020 // At this point we generate the predication tree. There may be 8021 // duplications since this is a simple recursive scan, but future 8022 // optimizations will clean it up. 8023 8024 unsigned NumIncoming = getNumIncomingValues(); 8025 8026 // Generate a sequence of selects of the form: 8027 // SELECT(Mask3, In3, 8028 // SELECT(Mask2, In2, 8029 // SELECT(Mask1, In1, 8030 // In0))) 8031 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8032 // are essentially undef are taken from In0. 8033 InnerLoopVectorizer::VectorParts Entry(State.UF); 8034 for (unsigned In = 0; In < NumIncoming; ++In) { 8035 for (unsigned Part = 0; Part < State.UF; ++Part) { 8036 // We might have single edge PHIs (blocks) - use an identity 8037 // 'select' for the first PHI operand. 8038 Value *In0 = State.get(getIncomingValue(In), Part); 8039 if (In == 0) 8040 Entry[Part] = In0; // Initialize with the first incoming value. 8041 else { 8042 // Select between the current value and the previous incoming edge 8043 // based on the incoming mask. 8044 Value *Cond = State.get(getMask(In), Part); 8045 Entry[Part] = 8046 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8047 } 8048 } 8049 } 8050 for (unsigned Part = 0; Part < State.UF; ++Part) 8051 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8052 } 8053 8054 void VPInterleaveRecipe::execute(VPTransformState &State) { 8055 assert(!State.Instance && "Interleave group being replicated."); 8056 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 8057 } 8058 8059 void VPReductionRecipe::execute(VPTransformState &State) { 8060 assert(!State.Instance && "Reduction being replicated."); 8061 for (unsigned Part = 0; Part < State.UF; ++Part) { 8062 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind(); 8063 Value *NewVecOp = State.get(VecOp, Part); 8064 if (CondOp) { 8065 Value *NewCond = State.get(CondOp, Part); 8066 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8067 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8068 Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType()); 8069 Constant *IdenVec = 8070 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8071 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8072 NewVecOp = Select; 8073 } 8074 Value *NewRed = 8075 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN); 8076 Value *PrevInChain = State.get(ChainOp, Part); 8077 Value *NextInChain; 8078 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8079 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8080 NextInChain = 8081 createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(), 8082 NewRed, PrevInChain); 8083 } else { 8084 NextInChain = State.Builder.CreateBinOp( 8085 (Instruction::BinaryOps)I->getOpcode(), NewRed, PrevInChain); 8086 } 8087 State.ValueMap.setVectorValue(I, Part, NextInChain); 8088 } 8089 } 8090 8091 void VPReplicateRecipe::execute(VPTransformState &State) { 8092 if (State.Instance) { // Generate a single instance. 8093 State.ILV->scalarizeInstruction(Ingredient, *this, *State.Instance, 8094 IsPredicated, State); 8095 // Insert scalar instance packing it into a vector. 8096 if (AlsoPack && State.VF.isVector()) { 8097 // If we're constructing lane 0, initialize to start from undef. 8098 if (State.Instance->Lane == 0) { 8099 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8100 Value *Undef = 8101 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8102 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8103 } 8104 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8105 } 8106 return; 8107 } 8108 8109 // Generate scalar instances for all VF lanes of all UF parts, unless the 8110 // instruction is uniform inwhich case generate only the first lane for each 8111 // of the UF parts. 8112 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8113 for (unsigned Part = 0; Part < State.UF; ++Part) 8114 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8115 State.ILV->scalarizeInstruction(Ingredient, *this, {Part, Lane}, 8116 IsPredicated, State); 8117 } 8118 8119 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8120 assert(State.Instance && "Branch on Mask works only on single instance."); 8121 8122 unsigned Part = State.Instance->Part; 8123 unsigned Lane = State.Instance->Lane; 8124 8125 Value *ConditionBit = nullptr; 8126 VPValue *BlockInMask = getMask(); 8127 if (BlockInMask) { 8128 ConditionBit = State.get(BlockInMask, Part); 8129 if (ConditionBit->getType()->isVectorTy()) 8130 ConditionBit = State.Builder.CreateExtractElement( 8131 ConditionBit, State.Builder.getInt32(Lane)); 8132 } else // Block in mask is all-one. 8133 ConditionBit = State.Builder.getTrue(); 8134 8135 // Replace the temporary unreachable terminator with a new conditional branch, 8136 // whose two destinations will be set later when they are created. 8137 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8138 assert(isa<UnreachableInst>(CurrentTerminator) && 8139 "Expected to replace unreachable terminator with conditional branch."); 8140 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8141 CondBr->setSuccessor(0, nullptr); 8142 ReplaceInstWithInst(CurrentTerminator, CondBr); 8143 } 8144 8145 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8146 assert(State.Instance && "Predicated instruction PHI works per instance."); 8147 Instruction *ScalarPredInst = cast<Instruction>( 8148 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8149 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8150 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8151 assert(PredicatingBB && "Predicated block has no single predecessor."); 8152 8153 // By current pack/unpack logic we need to generate only a single phi node: if 8154 // a vector value for the predicated instruction exists at this point it means 8155 // the instruction has vector users only, and a phi for the vector value is 8156 // needed. In this case the recipe of the predicated instruction is marked to 8157 // also do that packing, thereby "hoisting" the insert-element sequence. 8158 // Otherwise, a phi node for the scalar value is needed. 8159 unsigned Part = State.Instance->Part; 8160 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8161 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8162 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8163 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8164 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8165 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8166 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8167 } else { 8168 Type *PredInstType = PredInst->getType(); 8169 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8170 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8171 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8172 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8173 } 8174 } 8175 8176 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8177 Instruction *Instr = getUnderlyingInstr(); 8178 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 8179 State.ILV->vectorizeMemoryInstruction(Instr, State, 8180 StoredValue ? nullptr : this, getAddr(), 8181 StoredValue, getMask()); 8182 } 8183 8184 // Determine how to lower the scalar epilogue, which depends on 1) optimising 8185 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 8186 // predication, and 4) a TTI hook that analyses whether the loop is suitable 8187 // for predication. 8188 static ScalarEpilogueLowering getScalarEpilogueLowering( 8189 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 8190 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 8191 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 8192 LoopVectorizationLegality &LVL) { 8193 // 1) OptSize takes precedence over all other options, i.e. if this is set, 8194 // don't look at hints or options, and don't request a scalar epilogue. 8195 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 8196 // LoopAccessInfo (due to code dependency and not being able to reliably get 8197 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 8198 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 8199 // versioning when the vectorization is forced, unlike hasOptSize. So revert 8200 // back to the old way and vectorize with versioning when forced. See D81345.) 8201 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 8202 PGSOQueryType::IRPass) && 8203 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 8204 return CM_ScalarEpilogueNotAllowedOptSize; 8205 8206 bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() && 8207 !PreferPredicateOverEpilogue; 8208 8209 // 2) Next, if disabling predication is requested on the command line, honour 8210 // this and request a scalar epilogue. 8211 if (PredicateOptDisabled) 8212 return CM_ScalarEpilogueAllowed; 8213 8214 // 3) and 4) look if enabling predication is requested on the command line, 8215 // with a loop hint, or if the TTI hook indicates this is profitable, request 8216 // predication. 8217 if (PreferPredicateOverEpilogue || 8218 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 8219 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 8220 LVL.getLAI()) && 8221 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 8222 return CM_ScalarEpilogueNotNeededUsePredicate; 8223 8224 return CM_ScalarEpilogueAllowed; 8225 } 8226 8227 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 8228 unsigned Part) { 8229 set(Def, V, Part); 8230 ILV->setVectorValue(IRDef, Part, V); 8231 } 8232 8233 // Process the loop in the VPlan-native vectorization path. This path builds 8234 // VPlan upfront in the vectorization pipeline, which allows to apply 8235 // VPlan-to-VPlan transformations from the very beginning without modifying the 8236 // input LLVM IR. 8237 static bool processLoopInVPlanNativePath( 8238 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 8239 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 8240 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 8241 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 8242 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 8243 8244 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 8245 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 8246 return false; 8247 } 8248 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 8249 Function *F = L->getHeader()->getParent(); 8250 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 8251 8252 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8253 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 8254 8255 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 8256 &Hints, IAI); 8257 // Use the planner for outer loop vectorization. 8258 // TODO: CM is not used at this point inside the planner. Turn CM into an 8259 // optional argument if we don't need it in the future. 8260 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 8261 8262 // Get user vectorization factor. 8263 const unsigned UserVF = Hints.getWidth(); 8264 8265 // Plan how to best vectorize, return the best VF and its cost. 8266 const VectorizationFactor VF = 8267 LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF)); 8268 8269 // If we are stress testing VPlan builds, do not attempt to generate vector 8270 // code. Masked vector code generation support will follow soon. 8271 // Also, do not attempt to vectorize if no vector code will be produced. 8272 if (VPlanBuildStressTest || EnableVPlanPredication || 8273 VectorizationFactor::Disabled() == VF) 8274 return false; 8275 8276 LVP.setBestPlan(VF.Width, 1); 8277 8278 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 8279 &CM, BFI, PSI); 8280 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 8281 << L->getHeader()->getParent()->getName() << "\"\n"); 8282 LVP.executePlan(LB, DT); 8283 8284 // Mark the loop as already vectorized to avoid vectorizing again. 8285 Hints.setAlreadyVectorized(); 8286 8287 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8288 return true; 8289 } 8290 8291 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 8292 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 8293 !EnableLoopInterleaving), 8294 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 8295 !EnableLoopVectorization) {} 8296 8297 bool LoopVectorizePass::processLoop(Loop *L) { 8298 assert((EnableVPlanNativePath || L->isInnermost()) && 8299 "VPlan-native path is not enabled. Only process inner loops."); 8300 8301 #ifndef NDEBUG 8302 const std::string DebugLocStr = getDebugLocString(L); 8303 #endif /* NDEBUG */ 8304 8305 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8306 << L->getHeader()->getParent()->getName() << "\" from " 8307 << DebugLocStr << "\n"); 8308 8309 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 8310 8311 LLVM_DEBUG( 8312 dbgs() << "LV: Loop hints:" 8313 << " force=" 8314 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8315 ? "disabled" 8316 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8317 ? "enabled" 8318 : "?")) 8319 << " width=" << Hints.getWidth() 8320 << " unroll=" << Hints.getInterleave() << "\n"); 8321 8322 // Function containing loop 8323 Function *F = L->getHeader()->getParent(); 8324 8325 // Looking at the diagnostic output is the only way to determine if a loop 8326 // was vectorized (other than looking at the IR or machine code), so it 8327 // is important to generate an optimization remark for each loop. Most of 8328 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8329 // generated as OptimizationRemark and OptimizationRemarkMissed are 8330 // less verbose reporting vectorized loops and unvectorized loops that may 8331 // benefit from vectorization, respectively. 8332 8333 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 8334 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8335 return false; 8336 } 8337 8338 PredicatedScalarEvolution PSE(*SE, *L); 8339 8340 // Check if it is legal to vectorize the loop. 8341 LoopVectorizationRequirements Requirements(*ORE); 8342 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 8343 &Requirements, &Hints, DB, AC, BFI, PSI); 8344 if (!LVL.canVectorize(EnableVPlanNativePath)) { 8345 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8346 Hints.emitRemarkWithHints(); 8347 return false; 8348 } 8349 8350 // Check the function attributes and profiles to find out if this function 8351 // should be optimized for size. 8352 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8353 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 8354 8355 // Entrance to the VPlan-native vectorization path. Outer loops are processed 8356 // here. They may require CFG and instruction level transformations before 8357 // even evaluating whether vectorization is profitable. Since we cannot modify 8358 // the incoming IR, we need to build VPlan upfront in the vectorization 8359 // pipeline. 8360 if (!L->isInnermost()) 8361 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 8362 ORE, BFI, PSI, Hints); 8363 8364 assert(L->isInnermost() && "Inner loop expected."); 8365 8366 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8367 // count by optimizing for size, to minimize overheads. 8368 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 8369 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 8370 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8371 << "This loop is worth vectorizing only if no scalar " 8372 << "iteration overheads are incurred."); 8373 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8374 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8375 else { 8376 LLVM_DEBUG(dbgs() << "\n"); 8377 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 8378 } 8379 } 8380 8381 // Check the function attributes to see if implicit floats are allowed. 8382 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8383 // an integer loop and the vector instructions selected are purely integer 8384 // vector instructions? 8385 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8386 reportVectorizationFailure( 8387 "Can't vectorize when the NoImplicitFloat attribute is used", 8388 "loop not vectorized due to NoImplicitFloat attribute", 8389 "NoImplicitFloat", ORE, L); 8390 Hints.emitRemarkWithHints(); 8391 return false; 8392 } 8393 8394 // Check if the target supports potentially unsafe FP vectorization. 8395 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8396 // for the target we're vectorizing for, to make sure none of the 8397 // additional fp-math flags can help. 8398 if (Hints.isPotentiallyUnsafe() && 8399 TTI->isFPVectorizationPotentiallyUnsafe()) { 8400 reportVectorizationFailure( 8401 "Potentially unsafe FP op prevents vectorization", 8402 "loop not vectorized due to unsafe FP support.", 8403 "UnsafeFP", ORE, L); 8404 Hints.emitRemarkWithHints(); 8405 return false; 8406 } 8407 8408 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 8409 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 8410 8411 // If an override option has been passed in for interleaved accesses, use it. 8412 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 8413 UseInterleaved = EnableInterleavedMemAccesses; 8414 8415 // Analyze interleaved memory accesses. 8416 if (UseInterleaved) { 8417 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 8418 } 8419 8420 // Use the cost model. 8421 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 8422 F, &Hints, IAI); 8423 CM.collectValuesToIgnore(); 8424 8425 // Use the planner for vectorization. 8426 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 8427 8428 // Get user vectorization factor and interleave count. 8429 unsigned UserVF = Hints.getWidth(); 8430 unsigned UserIC = Hints.getInterleave(); 8431 8432 // Plan how to best vectorize, return the best VF and its cost. 8433 Optional<VectorizationFactor> MaybeVF = 8434 LVP.plan(ElementCount::getFixed(UserVF), UserIC); 8435 8436 VectorizationFactor VF = VectorizationFactor::Disabled(); 8437 unsigned IC = 1; 8438 8439 if (MaybeVF) { 8440 VF = *MaybeVF; 8441 // Select the interleave count. 8442 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 8443 } 8444 8445 // Identify the diagnostic messages that should be produced. 8446 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8447 bool VectorizeLoop = true, InterleaveLoop = true; 8448 if (Requirements.doesNotMeet(F, L, Hints)) { 8449 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8450 "requirements.\n"); 8451 Hints.emitRemarkWithHints(); 8452 return false; 8453 } 8454 8455 if (VF.Width.isScalar()) { 8456 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8457 VecDiagMsg = std::make_pair( 8458 "VectorizationNotBeneficial", 8459 "the cost-model indicates that vectorization is not beneficial"); 8460 VectorizeLoop = false; 8461 } 8462 8463 if (!MaybeVF && UserIC > 1) { 8464 // Tell the user interleaving was avoided up-front, despite being explicitly 8465 // requested. 8466 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 8467 "interleaving should be avoided up front\n"); 8468 IntDiagMsg = std::make_pair( 8469 "InterleavingAvoided", 8470 "Ignoring UserIC, because interleaving was avoided up front"); 8471 InterleaveLoop = false; 8472 } else if (IC == 1 && UserIC <= 1) { 8473 // Tell the user interleaving is not beneficial. 8474 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8475 IntDiagMsg = std::make_pair( 8476 "InterleavingNotBeneficial", 8477 "the cost-model indicates that interleaving is not beneficial"); 8478 InterleaveLoop = false; 8479 if (UserIC == 1) { 8480 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8481 IntDiagMsg.second += 8482 " and is explicitly disabled or interleave count is set to 1"; 8483 } 8484 } else if (IC > 1 && UserIC == 1) { 8485 // Tell the user interleaving is beneficial, but it explicitly disabled. 8486 LLVM_DEBUG( 8487 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 8488 IntDiagMsg = std::make_pair( 8489 "InterleavingBeneficialButDisabled", 8490 "the cost-model indicates that interleaving is beneficial " 8491 "but is explicitly disabled or interleave count is set to 1"); 8492 InterleaveLoop = false; 8493 } 8494 8495 // Override IC if user provided an interleave count. 8496 IC = UserIC > 0 ? UserIC : IC; 8497 8498 // Emit diagnostic messages, if any. 8499 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8500 if (!VectorizeLoop && !InterleaveLoop) { 8501 // Do not vectorize or interleaving the loop. 8502 ORE->emit([&]() { 8503 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8504 L->getStartLoc(), L->getHeader()) 8505 << VecDiagMsg.second; 8506 }); 8507 ORE->emit([&]() { 8508 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8509 L->getStartLoc(), L->getHeader()) 8510 << IntDiagMsg.second; 8511 }); 8512 return false; 8513 } else if (!VectorizeLoop && InterleaveLoop) { 8514 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8515 ORE->emit([&]() { 8516 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8517 L->getStartLoc(), L->getHeader()) 8518 << VecDiagMsg.second; 8519 }); 8520 } else if (VectorizeLoop && !InterleaveLoop) { 8521 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8522 << ") in " << DebugLocStr << '\n'); 8523 ORE->emit([&]() { 8524 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8525 L->getStartLoc(), L->getHeader()) 8526 << IntDiagMsg.second; 8527 }); 8528 } else if (VectorizeLoop && InterleaveLoop) { 8529 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8530 << ") in " << DebugLocStr << '\n'); 8531 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8532 } 8533 8534 LVP.setBestPlan(VF.Width, IC); 8535 8536 using namespace ore; 8537 bool DisableRuntimeUnroll = false; 8538 MDNode *OrigLoopID = L->getLoopID(); 8539 8540 if (!VectorizeLoop) { 8541 assert(IC > 1 && "interleave count should not be 1 or 0"); 8542 // If we decided that it is not legal to vectorize the loop, then 8543 // interleave it. 8544 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 8545 BFI, PSI); 8546 LVP.executePlan(Unroller, DT); 8547 8548 ORE->emit([&]() { 8549 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8550 L->getHeader()) 8551 << "interleaved loop (interleaved count: " 8552 << NV("InterleaveCount", IC) << ")"; 8553 }); 8554 } else { 8555 // If we decided that it is *legal* to vectorize the loop, then do it. 8556 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8557 &LVL, &CM, BFI, PSI); 8558 LVP.executePlan(LB, DT); 8559 ++LoopsVectorized; 8560 8561 // Add metadata to disable runtime unrolling a scalar loop when there are 8562 // no runtime checks about strides and memory. A scalar loop that is 8563 // rarely used is not worth unrolling. 8564 if (!LB.areSafetyChecksAdded()) 8565 DisableRuntimeUnroll = true; 8566 8567 // Report the vectorization decision. 8568 ORE->emit([&]() { 8569 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8570 L->getHeader()) 8571 << "vectorized loop (vectorization width: " 8572 << NV("VectorizationFactor", VF.Width) 8573 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8574 }); 8575 } 8576 8577 Optional<MDNode *> RemainderLoopID = 8578 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8579 LLVMLoopVectorizeFollowupEpilogue}); 8580 if (RemainderLoopID.hasValue()) { 8581 L->setLoopID(RemainderLoopID.getValue()); 8582 } else { 8583 if (DisableRuntimeUnroll) 8584 AddRuntimeUnrollDisableMetaData(L); 8585 8586 // Mark the loop as already vectorized to avoid vectorizing again. 8587 Hints.setAlreadyVectorized(); 8588 } 8589 8590 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8591 return true; 8592 } 8593 8594 LoopVectorizeResult LoopVectorizePass::runImpl( 8595 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8596 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8597 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8598 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8599 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8600 SE = &SE_; 8601 LI = &LI_; 8602 TTI = &TTI_; 8603 DT = &DT_; 8604 BFI = &BFI_; 8605 TLI = TLI_; 8606 AA = &AA_; 8607 AC = &AC_; 8608 GetLAA = &GetLAA_; 8609 DB = &DB_; 8610 ORE = &ORE_; 8611 PSI = PSI_; 8612 8613 // Don't attempt if 8614 // 1. the target claims to have no vector registers, and 8615 // 2. interleaving won't help ILP. 8616 // 8617 // The second condition is necessary because, even if the target has no 8618 // vector registers, loop vectorization may still enable scalar 8619 // interleaving. 8620 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8621 TTI->getMaxInterleaveFactor(1) < 2) 8622 return LoopVectorizeResult(false, false); 8623 8624 bool Changed = false, CFGChanged = false; 8625 8626 // The vectorizer requires loops to be in simplified form. 8627 // Since simplification may add new inner loops, it has to run before the 8628 // legality and profitability checks. This means running the loop vectorizer 8629 // will simplify all loops, regardless of whether anything end up being 8630 // vectorized. 8631 for (auto &L : *LI) 8632 Changed |= CFGChanged |= 8633 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8634 8635 // Build up a worklist of inner-loops to vectorize. This is necessary as 8636 // the act of vectorizing or partially unrolling a loop creates new loops 8637 // and can invalidate iterators across the loops. 8638 SmallVector<Loop *, 8> Worklist; 8639 8640 for (Loop *L : *LI) 8641 collectSupportedLoops(*L, LI, ORE, Worklist); 8642 8643 LoopsAnalyzed += Worklist.size(); 8644 8645 // Now walk the identified inner loops. 8646 while (!Worklist.empty()) { 8647 Loop *L = Worklist.pop_back_val(); 8648 8649 // For the inner loops we actually process, form LCSSA to simplify the 8650 // transform. 8651 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8652 8653 Changed |= CFGChanged |= processLoop(L); 8654 } 8655 8656 // Process each loop nest in the function. 8657 return LoopVectorizeResult(Changed, CFGChanged); 8658 } 8659 8660 PreservedAnalyses LoopVectorizePass::run(Function &F, 8661 FunctionAnalysisManager &AM) { 8662 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8663 auto &LI = AM.getResult<LoopAnalysis>(F); 8664 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8665 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8666 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8667 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8668 auto &AA = AM.getResult<AAManager>(F); 8669 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8670 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8671 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8672 MemorySSA *MSSA = EnableMSSALoopDependency 8673 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8674 : nullptr; 8675 8676 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8677 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8678 [&](Loop &L) -> const LoopAccessInfo & { 8679 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 8680 TLI, TTI, nullptr, MSSA}; 8681 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8682 }; 8683 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8684 ProfileSummaryInfo *PSI = 8685 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8686 LoopVectorizeResult Result = 8687 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8688 if (!Result.MadeAnyChange) 8689 return PreservedAnalyses::all(); 8690 PreservedAnalyses PA; 8691 8692 // We currently do not preserve loopinfo/dominator analyses with outer loop 8693 // vectorization. Until this is addressed, mark these analyses as preserved 8694 // only for non-VPlan-native path. 8695 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8696 if (!EnableVPlanNativePath) { 8697 PA.preserve<LoopAnalysis>(); 8698 PA.preserve<DominatorTreeAnalysis>(); 8699 } 8700 PA.preserve<BasicAA>(); 8701 PA.preserve<GlobalsAA>(); 8702 if (!Result.MadeCFGChange) 8703 PA.preserveSet<CFGAnalyses>(); 8704 return PA; 8705 } 8706