1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "VPlan.h" 51 #include "VPlanBuilder.h" 52 #include "llvm/ADT/APInt.h" 53 #include "llvm/ADT/ArrayRef.h" 54 #include "llvm/ADT/DenseMap.h" 55 #include "llvm/ADT/DenseMapInfo.h" 56 #include "llvm/ADT/Hashing.h" 57 #include "llvm/ADT/MapVector.h" 58 #include "llvm/ADT/None.h" 59 #include "llvm/ADT/Optional.h" 60 #include "llvm/ADT/SCCIterator.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallPtrSet.h" 64 #include "llvm/ADT/SmallSet.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/Statistic.h" 67 #include "llvm/ADT/StringRef.h" 68 #include "llvm/ADT/Twine.h" 69 #include "llvm/ADT/iterator_range.h" 70 #include "llvm/Analysis/AssumptionCache.h" 71 #include "llvm/Analysis/BasicAliasAnalysis.h" 72 #include "llvm/Analysis/BlockFrequencyInfo.h" 73 #include "llvm/Analysis/CodeMetrics.h" 74 #include "llvm/Analysis/DemandedBits.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/LoopAccessAnalysis.h" 77 #include "llvm/Analysis/LoopAnalysisManager.h" 78 #include "llvm/Analysis/LoopInfo.h" 79 #include "llvm/Analysis/LoopIterator.h" 80 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 81 #include "llvm/Analysis/ScalarEvolution.h" 82 #include "llvm/Analysis/ScalarEvolutionExpander.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/TargetTransformInfo.h" 86 #include "llvm/Analysis/VectorUtils.h" 87 #include "llvm/IR/Attributes.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DebugInfoMetadata.h" 94 #include "llvm/IR/DebugLoc.h" 95 #include "llvm/IR/DerivedTypes.h" 96 #include "llvm/IR/DiagnosticInfo.h" 97 #include "llvm/IR/Dominators.h" 98 #include "llvm/IR/Function.h" 99 #include "llvm/IR/IRBuilder.h" 100 #include "llvm/IR/InstrTypes.h" 101 #include "llvm/IR/Instruction.h" 102 #include "llvm/IR/Instructions.h" 103 #include "llvm/IR/IntrinsicInst.h" 104 #include "llvm/IR/Intrinsics.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/Metadata.h" 107 #include "llvm/IR/Module.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/Type.h" 110 #include "llvm/IR/Use.h" 111 #include "llvm/IR/User.h" 112 #include "llvm/IR/Value.h" 113 #include "llvm/IR/ValueHandle.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/Pass.h" 116 #include "llvm/Support/Casting.h" 117 #include "llvm/Support/CommandLine.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/ErrorHandling.h" 121 #include "llvm/Support/MathExtras.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 124 #include "llvm/Transforms/Utils/LoopSimplify.h" 125 #include "llvm/Transforms/Utils/LoopUtils.h" 126 #include "llvm/Transforms/Utils/LoopVersioning.h" 127 #include <algorithm> 128 #include <cassert> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <functional> 132 #include <iterator> 133 #include <limits> 134 #include <memory> 135 #include <string> 136 #include <tuple> 137 #include <utility> 138 #include <vector> 139 140 using namespace llvm; 141 142 #define LV_NAME "loop-vectorize" 143 #define DEBUG_TYPE LV_NAME 144 145 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 146 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 147 148 static cl::opt<bool> 149 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 150 cl::desc("Enable if-conversion during vectorization.")); 151 152 /// Loops with a known constant trip count below this number are vectorized only 153 /// if no scalar iteration overheads are incurred. 154 static cl::opt<unsigned> TinyTripCountVectorThreshold( 155 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 156 cl::desc("Loops with a constant trip count that is smaller than this " 157 "value are vectorized only if no scalar iteration overheads " 158 "are incurred.")); 159 160 static cl::opt<bool> MaximizeBandwidth( 161 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 162 cl::desc("Maximize bandwidth when selecting vectorization factor which " 163 "will be determined by the smallest type in loop.")); 164 165 static cl::opt<bool> EnableInterleavedMemAccesses( 166 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 167 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 168 169 /// Maximum factor for an interleaved memory access. 170 static cl::opt<unsigned> MaxInterleaveGroupFactor( 171 "max-interleave-group-factor", cl::Hidden, 172 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 173 cl::init(8)); 174 175 /// We don't interleave loops with a known constant trip count below this 176 /// number. 177 static const unsigned TinyTripCountInterleaveThreshold = 128; 178 179 static cl::opt<unsigned> ForceTargetNumScalarRegs( 180 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 181 cl::desc("A flag that overrides the target's number of scalar registers.")); 182 183 static cl::opt<unsigned> ForceTargetNumVectorRegs( 184 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's number of vector registers.")); 186 187 /// Maximum vectorization interleave count. 188 static const unsigned MaxInterleaveFactor = 16; 189 190 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 191 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 192 cl::desc("A flag that overrides the target's max interleave factor for " 193 "scalar loops.")); 194 195 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 196 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 197 cl::desc("A flag that overrides the target's max interleave factor for " 198 "vectorized loops.")); 199 200 static cl::opt<unsigned> ForceTargetInstructionCost( 201 "force-target-instruction-cost", cl::init(0), cl::Hidden, 202 cl::desc("A flag that overrides the target's expected cost for " 203 "an instruction to a single constant value. Mostly " 204 "useful for getting consistent testing.")); 205 206 static cl::opt<unsigned> SmallLoopCost( 207 "small-loop-cost", cl::init(20), cl::Hidden, 208 cl::desc( 209 "The cost of a loop that is considered 'small' by the interleaver.")); 210 211 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 212 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 213 cl::desc("Enable the use of the block frequency analysis to access PGO " 214 "heuristics minimizing code growth in cold regions and being more " 215 "aggressive in hot regions.")); 216 217 // Runtime interleave loops for load/store throughput. 218 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 219 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 220 cl::desc( 221 "Enable runtime interleaving until load/store ports are saturated")); 222 223 /// The number of stores in a loop that are allowed to need predication. 224 static cl::opt<unsigned> NumberOfStoresToPredicate( 225 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 226 cl::desc("Max number of stores to be predicated behind an if.")); 227 228 static cl::opt<bool> EnableIndVarRegisterHeur( 229 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 230 cl::desc("Count the induction variable only once when interleaving")); 231 232 static cl::opt<bool> EnableCondStoresVectorization( 233 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 234 cl::desc("Enable if predication of stores during vectorization.")); 235 236 static cl::opt<unsigned> MaxNestedScalarReductionIC( 237 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 238 cl::desc("The maximum interleave count to use when interleaving a scalar " 239 "reduction in a nested loop.")); 240 241 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 242 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 243 cl::desc("The maximum allowed number of runtime memory checks with a " 244 "vectorize(enable) pragma.")); 245 246 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 247 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 248 cl::desc("The maximum number of SCEV checks allowed.")); 249 250 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 251 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 252 cl::desc("The maximum number of SCEV checks allowed with a " 253 "vectorize(enable) pragma")); 254 255 /// Create an analysis remark that explains why vectorization failed 256 /// 257 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 258 /// RemarkName is the identifier for the remark. If \p I is passed it is an 259 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 260 /// the location of the remark. \return the remark object that can be 261 /// streamed to. 262 static OptimizationRemarkAnalysis 263 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 264 Instruction *I = nullptr) { 265 Value *CodeRegion = TheLoop->getHeader(); 266 DebugLoc DL = TheLoop->getStartLoc(); 267 268 if (I) { 269 CodeRegion = I->getParent(); 270 // If there is no debug location attached to the instruction, revert back to 271 // using the loop's. 272 if (I->getDebugLoc()) 273 DL = I->getDebugLoc(); 274 } 275 276 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 277 R << "loop not vectorized: "; 278 return R; 279 } 280 281 namespace { 282 283 class LoopVectorizationLegality; 284 class LoopVectorizationCostModel; 285 class LoopVectorizationRequirements; 286 287 } // end anonymous namespace 288 289 /// Returns true if the given loop body has a cycle, excluding the loop 290 /// itself. 291 static bool hasCyclesInLoopBody(const Loop &L) { 292 if (!L.empty()) 293 return true; 294 295 for (const auto &SCC : 296 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 297 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 298 if (SCC.size() > 1) { 299 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 300 DEBUG(L.dump()); 301 return true; 302 } 303 } 304 return false; 305 } 306 307 /// A helper function for converting Scalar types to vector types. 308 /// If the incoming type is void, we return void. If the VF is 1, we return 309 /// the scalar type. 310 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 311 if (Scalar->isVoidTy() || VF == 1) 312 return Scalar; 313 return VectorType::get(Scalar, VF); 314 } 315 316 // FIXME: The following helper functions have multiple implementations 317 // in the project. They can be effectively organized in a common Load/Store 318 // utilities unit. 319 320 /// A helper function that returns the pointer operand of a load or store 321 /// instruction. 322 static Value *getPointerOperand(Value *I) { 323 if (auto *LI = dyn_cast<LoadInst>(I)) 324 return LI->getPointerOperand(); 325 if (auto *SI = dyn_cast<StoreInst>(I)) 326 return SI->getPointerOperand(); 327 return nullptr; 328 } 329 330 /// A helper function that returns the type of loaded or stored value. 331 static Type *getMemInstValueType(Value *I) { 332 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 333 "Expected Load or Store instruction"); 334 if (auto *LI = dyn_cast<LoadInst>(I)) 335 return LI->getType(); 336 return cast<StoreInst>(I)->getValueOperand()->getType(); 337 } 338 339 /// A helper function that returns the alignment of load or store instruction. 340 static unsigned getMemInstAlignment(Value *I) { 341 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 342 "Expected Load or Store instruction"); 343 if (auto *LI = dyn_cast<LoadInst>(I)) 344 return LI->getAlignment(); 345 return cast<StoreInst>(I)->getAlignment(); 346 } 347 348 /// A helper function that returns the address space of the pointer operand of 349 /// load or store instruction. 350 static unsigned getMemInstAddressSpace(Value *I) { 351 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 352 "Expected Load or Store instruction"); 353 if (auto *LI = dyn_cast<LoadInst>(I)) 354 return LI->getPointerAddressSpace(); 355 return cast<StoreInst>(I)->getPointerAddressSpace(); 356 } 357 358 /// A helper function that returns true if the given type is irregular. The 359 /// type is irregular if its allocated size doesn't equal the store size of an 360 /// element of the corresponding vector type at the given vectorization factor. 361 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 362 // Determine if an array of VF elements of type Ty is "bitcast compatible" 363 // with a <VF x Ty> vector. 364 if (VF > 1) { 365 auto *VectorTy = VectorType::get(Ty, VF); 366 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 367 } 368 369 // If the vectorization factor is one, we just check if an array of type Ty 370 // requires padding between elements. 371 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 372 } 373 374 /// A helper function that returns the reciprocal of the block probability of 375 /// predicated blocks. If we return X, we are assuming the predicated block 376 /// will execute once for for every X iterations of the loop header. 377 /// 378 /// TODO: We should use actual block probability here, if available. Currently, 379 /// we always assume predicated blocks have a 50% chance of executing. 380 static unsigned getReciprocalPredBlockProb() { return 2; } 381 382 /// A helper function that adds a 'fast' flag to floating-point operations. 383 static Value *addFastMathFlag(Value *V) { 384 if (isa<FPMathOperator>(V)) { 385 FastMathFlags Flags; 386 Flags.setFast(); 387 cast<Instruction>(V)->setFastMathFlags(Flags); 388 } 389 return V; 390 } 391 392 /// A helper function that returns an integer or floating-point constant with 393 /// value C. 394 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 395 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 396 : ConstantFP::get(Ty, C); 397 } 398 399 namespace llvm { 400 401 /// InnerLoopVectorizer vectorizes loops which contain only one basic 402 /// block to a specified vectorization factor (VF). 403 /// This class performs the widening of scalars into vectors, or multiple 404 /// scalars. This class also implements the following features: 405 /// * It inserts an epilogue loop for handling loops that don't have iteration 406 /// counts that are known to be a multiple of the vectorization factor. 407 /// * It handles the code generation for reduction variables. 408 /// * Scalarization (implementation using scalars) of un-vectorizable 409 /// instructions. 410 /// InnerLoopVectorizer does not perform any vectorization-legality 411 /// checks, and relies on the caller to check for the different legality 412 /// aspects. The InnerLoopVectorizer relies on the 413 /// LoopVectorizationLegality class to provide information about the induction 414 /// and reduction variables that were found to a given vectorization factor. 415 class InnerLoopVectorizer { 416 public: 417 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 418 LoopInfo *LI, DominatorTree *DT, 419 const TargetLibraryInfo *TLI, 420 const TargetTransformInfo *TTI, AssumptionCache *AC, 421 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 422 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 423 LoopVectorizationCostModel *CM) 424 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 425 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 426 Builder(PSE.getSE()->getContext()), 427 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 428 virtual ~InnerLoopVectorizer() = default; 429 430 /// Create a new empty loop. Unlink the old loop and connect the new one. 431 /// Return the pre-header block of the new loop. 432 BasicBlock *createVectorizedLoopSkeleton(); 433 434 /// Widen a single instruction within the innermost loop. 435 void widenInstruction(Instruction &I); 436 437 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 438 void fixVectorizedLoop(); 439 440 // Return true if any runtime check is added. 441 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 442 443 /// A type for vectorized values in the new loop. Each value from the 444 /// original loop, when vectorized, is represented by UF vector values in the 445 /// new unrolled loop, where UF is the unroll factor. 446 using VectorParts = SmallVector<Value *, 2>; 447 448 /// Vectorize a single PHINode in a block. This method handles the induction 449 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 450 /// arbitrary length vectors. 451 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 452 453 /// A helper function to scalarize a single Instruction in the innermost loop. 454 /// Generates a sequence of scalar instances for each lane between \p MinLane 455 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 456 /// inclusive.. 457 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 458 bool IfPredicateInstr); 459 460 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 461 /// is provided, the integer induction variable will first be truncated to 462 /// the corresponding type. 463 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 464 465 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 466 /// vector or scalar value on-demand if one is not yet available. When 467 /// vectorizing a loop, we visit the definition of an instruction before its 468 /// uses. When visiting the definition, we either vectorize or scalarize the 469 /// instruction, creating an entry for it in the corresponding map. (In some 470 /// cases, such as induction variables, we will create both vector and scalar 471 /// entries.) Then, as we encounter uses of the definition, we derive values 472 /// for each scalar or vector use unless such a value is already available. 473 /// For example, if we scalarize a definition and one of its uses is vector, 474 /// we build the required vector on-demand with an insertelement sequence 475 /// when visiting the use. Otherwise, if the use is scalar, we can use the 476 /// existing scalar definition. 477 /// 478 /// Return a value in the new loop corresponding to \p V from the original 479 /// loop at unroll index \p Part. If the value has already been vectorized, 480 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 481 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 482 /// a new vector value on-demand by inserting the scalar values into a vector 483 /// with an insertelement sequence. If the value has been neither vectorized 484 /// nor scalarized, it must be loop invariant, so we simply broadcast the 485 /// value into a vector. 486 Value *getOrCreateVectorValue(Value *V, unsigned Part); 487 488 /// Return a value in the new loop corresponding to \p V from the original 489 /// loop at unroll and vector indices \p Instance. If the value has been 490 /// vectorized but not scalarized, the necessary extractelement instruction 491 /// will be generated. 492 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 493 494 /// Construct the vector value of a scalarized value \p V one lane at a time. 495 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 496 497 /// Try to vectorize the interleaved access group that \p Instr belongs to. 498 void vectorizeInterleaveGroup(Instruction *Instr); 499 500 /// Vectorize Load and Store instructions, optionally masking the vector 501 /// operations if \p BlockInMask is non-null. 502 void vectorizeMemoryInstruction(Instruction *Instr, 503 VectorParts *BlockInMask = nullptr); 504 505 /// \brief Set the debug location in the builder using the debug location in 506 /// the instruction. 507 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 508 509 protected: 510 friend class LoopVectorizationPlanner; 511 512 /// A small list of PHINodes. 513 using PhiVector = SmallVector<PHINode *, 4>; 514 515 /// A type for scalarized values in the new loop. Each value from the 516 /// original loop, when scalarized, is represented by UF x VF scalar values 517 /// in the new unrolled loop, where UF is the unroll factor and VF is the 518 /// vectorization factor. 519 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 520 521 /// Set up the values of the IVs correctly when exiting the vector loop. 522 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 523 Value *CountRoundDown, Value *EndValue, 524 BasicBlock *MiddleBlock); 525 526 /// Create a new induction variable inside L. 527 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 528 Value *Step, Instruction *DL); 529 530 /// Handle all cross-iteration phis in the header. 531 void fixCrossIterationPHIs(); 532 533 /// Fix a first-order recurrence. This is the second phase of vectorizing 534 /// this phi node. 535 void fixFirstOrderRecurrence(PHINode *Phi); 536 537 /// Fix a reduction cross-iteration phi. This is the second phase of 538 /// vectorizing this phi node. 539 void fixReduction(PHINode *Phi); 540 541 /// \brief The Loop exit block may have single value PHI nodes with some 542 /// incoming value. While vectorizing we only handled real values 543 /// that were defined inside the loop and we should have one value for 544 /// each predecessor of its parent basic block. See PR14725. 545 void fixLCSSAPHIs(); 546 547 /// Iteratively sink the scalarized operands of a predicated instruction into 548 /// the block that was created for it. 549 void sinkScalarOperands(Instruction *PredInst); 550 551 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 552 /// represented as. 553 void truncateToMinimalBitwidths(); 554 555 /// Insert the new loop to the loop hierarchy and pass manager 556 /// and update the analysis passes. 557 void updateAnalysis(); 558 559 /// Create a broadcast instruction. This method generates a broadcast 560 /// instruction (shuffle) for loop invariant values and for the induction 561 /// value. If this is the induction variable then we extend it to N, N+1, ... 562 /// this is needed because each iteration in the loop corresponds to a SIMD 563 /// element. 564 virtual Value *getBroadcastInstrs(Value *V); 565 566 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 567 /// to each vector element of Val. The sequence starts at StartIndex. 568 /// \p Opcode is relevant for FP induction variable. 569 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 570 Instruction::BinaryOps Opcode = 571 Instruction::BinaryOpsEnd); 572 573 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 574 /// variable on which to base the steps, \p Step is the size of the step, and 575 /// \p EntryVal is the value from the original loop that maps to the steps. 576 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 577 /// can be a truncate instruction). 578 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 579 const InductionDescriptor &ID); 580 581 /// Create a vector induction phi node based on an existing scalar one. \p 582 /// EntryVal is the value from the original loop that maps to the vector phi 583 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 584 /// truncate instruction, instead of widening the original IV, we widen a 585 /// version of the IV truncated to \p EntryVal's type. 586 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 587 Value *Step, Instruction *EntryVal); 588 589 /// Returns true if an instruction \p I should be scalarized instead of 590 /// vectorized for the chosen vectorization factor. 591 bool shouldScalarizeInstruction(Instruction *I) const; 592 593 /// Returns true if we should generate a scalar version of \p IV. 594 bool needsScalarInduction(Instruction *IV) const; 595 596 /// If there is a cast involved in the induction variable \p ID, which should 597 /// be ignored in the vectorized loop body, this function records the 598 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 599 /// cast. We had already proved that the casted Phi is equal to the uncasted 600 /// Phi in the vectorized loop (under a runtime guard), and therefore 601 /// there is no need to vectorize the cast - the same value can be used in the 602 /// vector loop for both the Phi and the cast. 603 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 604 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 605 void recordVectorLoopValueForInductionCast (const InductionDescriptor &ID, 606 Value *VectorLoopValue, 607 unsigned Part, 608 unsigned Lane = UINT_MAX); 609 610 /// Generate a shuffle sequence that will reverse the vector Vec. 611 virtual Value *reverseVector(Value *Vec); 612 613 /// Returns (and creates if needed) the original loop trip count. 614 Value *getOrCreateTripCount(Loop *NewLoop); 615 616 /// Returns (and creates if needed) the trip count of the widened loop. 617 Value *getOrCreateVectorTripCount(Loop *NewLoop); 618 619 /// Returns a bitcasted value to the requested vector type. 620 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 621 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 622 const DataLayout &DL); 623 624 /// Emit a bypass check to see if the vector trip count is zero, including if 625 /// it overflows. 626 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 627 628 /// Emit a bypass check to see if all of the SCEV assumptions we've 629 /// had to make are correct. 630 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Emit bypass checks to check any memory assumptions we may have made. 633 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 634 635 /// Add additional metadata to \p To that was not present on \p Orig. 636 /// 637 /// Currently this is used to add the noalias annotations based on the 638 /// inserted memchecks. Use this for instructions that are *cloned* into the 639 /// vector loop. 640 void addNewMetadata(Instruction *To, const Instruction *Orig); 641 642 /// Add metadata from one instruction to another. 643 /// 644 /// This includes both the original MDs from \p From and additional ones (\see 645 /// addNewMetadata). Use this for *newly created* instructions in the vector 646 /// loop. 647 void addMetadata(Instruction *To, Instruction *From); 648 649 /// \brief Similar to the previous function but it adds the metadata to a 650 /// vector of instructions. 651 void addMetadata(ArrayRef<Value *> To, Instruction *From); 652 653 /// The original loop. 654 Loop *OrigLoop; 655 656 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 657 /// dynamic knowledge to simplify SCEV expressions and converts them to a 658 /// more usable form. 659 PredicatedScalarEvolution &PSE; 660 661 /// Loop Info. 662 LoopInfo *LI; 663 664 /// Dominator Tree. 665 DominatorTree *DT; 666 667 /// Alias Analysis. 668 AliasAnalysis *AA; 669 670 /// Target Library Info. 671 const TargetLibraryInfo *TLI; 672 673 /// Target Transform Info. 674 const TargetTransformInfo *TTI; 675 676 /// Assumption Cache. 677 AssumptionCache *AC; 678 679 /// Interface to emit optimization remarks. 680 OptimizationRemarkEmitter *ORE; 681 682 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 683 /// used. 684 /// 685 /// This is currently only used to add no-alias metadata based on the 686 /// memchecks. The actually versioning is performed manually. 687 std::unique_ptr<LoopVersioning> LVer; 688 689 /// The vectorization SIMD factor to use. Each vector will have this many 690 /// vector elements. 691 unsigned VF; 692 693 /// The vectorization unroll factor to use. Each scalar is vectorized to this 694 /// many different vector instructions. 695 unsigned UF; 696 697 /// The builder that we use 698 IRBuilder<> Builder; 699 700 // --- Vectorization state --- 701 702 /// The vector-loop preheader. 703 BasicBlock *LoopVectorPreHeader; 704 705 /// The scalar-loop preheader. 706 BasicBlock *LoopScalarPreHeader; 707 708 /// Middle Block between the vector and the scalar. 709 BasicBlock *LoopMiddleBlock; 710 711 /// The ExitBlock of the scalar loop. 712 BasicBlock *LoopExitBlock; 713 714 /// The vector loop body. 715 BasicBlock *LoopVectorBody; 716 717 /// The scalar loop body. 718 BasicBlock *LoopScalarBody; 719 720 /// A list of all bypass blocks. The first block is the entry of the loop. 721 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 722 723 /// The new Induction variable which was added to the new block. 724 PHINode *Induction = nullptr; 725 726 /// The induction variable of the old basic block. 727 PHINode *OldInduction = nullptr; 728 729 /// Maps values from the original loop to their corresponding values in the 730 /// vectorized loop. A key value can map to either vector values, scalar 731 /// values or both kinds of values, depending on whether the key was 732 /// vectorized and scalarized. 733 VectorizerValueMap VectorLoopValueMap; 734 735 /// Store instructions that were predicated. 736 SmallVector<Instruction *, 4> PredicatedInstructions; 737 738 /// Trip count of the original loop. 739 Value *TripCount = nullptr; 740 741 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 742 Value *VectorTripCount = nullptr; 743 744 /// The legality analysis. 745 LoopVectorizationLegality *Legal; 746 747 /// The profitablity analysis. 748 LoopVectorizationCostModel *Cost; 749 750 // Record whether runtime checks are added. 751 bool AddedSafetyChecks = false; 752 753 // Holds the end values for each induction variable. We save the end values 754 // so we can later fix-up the external users of the induction variables. 755 DenseMap<PHINode *, Value *> IVEndValues; 756 }; 757 758 class InnerLoopUnroller : public InnerLoopVectorizer { 759 public: 760 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 761 LoopInfo *LI, DominatorTree *DT, 762 const TargetLibraryInfo *TLI, 763 const TargetTransformInfo *TTI, AssumptionCache *AC, 764 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 765 LoopVectorizationLegality *LVL, 766 LoopVectorizationCostModel *CM) 767 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 768 UnrollFactor, LVL, CM) {} 769 770 private: 771 Value *getBroadcastInstrs(Value *V) override; 772 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 773 Instruction::BinaryOps Opcode = 774 Instruction::BinaryOpsEnd) override; 775 Value *reverseVector(Value *Vec) override; 776 }; 777 778 } // end namespace llvm 779 780 /// \brief Look for a meaningful debug location on the instruction or it's 781 /// operands. 782 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 783 if (!I) 784 return I; 785 786 DebugLoc Empty; 787 if (I->getDebugLoc() != Empty) 788 return I; 789 790 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 791 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 792 if (OpInst->getDebugLoc() != Empty) 793 return OpInst; 794 } 795 796 return I; 797 } 798 799 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 800 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 801 const DILocation *DIL = Inst->getDebugLoc(); 802 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 803 !isa<DbgInfoIntrinsic>(Inst)) 804 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 805 else 806 B.SetCurrentDebugLocation(DIL); 807 } else 808 B.SetCurrentDebugLocation(DebugLoc()); 809 } 810 811 #ifndef NDEBUG 812 /// \return string containing a file name and a line # for the given loop. 813 static std::string getDebugLocString(const Loop *L) { 814 std::string Result; 815 if (L) { 816 raw_string_ostream OS(Result); 817 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 818 LoopDbgLoc.print(OS); 819 else 820 // Just print the module name. 821 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 822 OS.flush(); 823 } 824 return Result; 825 } 826 #endif 827 828 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 829 const Instruction *Orig) { 830 // If the loop was versioned with memchecks, add the corresponding no-alias 831 // metadata. 832 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 833 LVer->annotateInstWithNoAlias(To, Orig); 834 } 835 836 void InnerLoopVectorizer::addMetadata(Instruction *To, 837 Instruction *From) { 838 propagateMetadata(To, From); 839 addNewMetadata(To, From); 840 } 841 842 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 843 Instruction *From) { 844 for (Value *V : To) { 845 if (Instruction *I = dyn_cast<Instruction>(V)) 846 addMetadata(I, From); 847 } 848 } 849 850 namespace llvm { 851 852 /// \brief The group of interleaved loads/stores sharing the same stride and 853 /// close to each other. 854 /// 855 /// Each member in this group has an index starting from 0, and the largest 856 /// index should be less than interleaved factor, which is equal to the absolute 857 /// value of the access's stride. 858 /// 859 /// E.g. An interleaved load group of factor 4: 860 /// for (unsigned i = 0; i < 1024; i+=4) { 861 /// a = A[i]; // Member of index 0 862 /// b = A[i+1]; // Member of index 1 863 /// d = A[i+3]; // Member of index 3 864 /// ... 865 /// } 866 /// 867 /// An interleaved store group of factor 4: 868 /// for (unsigned i = 0; i < 1024; i+=4) { 869 /// ... 870 /// A[i] = a; // Member of index 0 871 /// A[i+1] = b; // Member of index 1 872 /// A[i+2] = c; // Member of index 2 873 /// A[i+3] = d; // Member of index 3 874 /// } 875 /// 876 /// Note: the interleaved load group could have gaps (missing members), but 877 /// the interleaved store group doesn't allow gaps. 878 class InterleaveGroup { 879 public: 880 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 881 : Align(Align), InsertPos(Instr) { 882 assert(Align && "The alignment should be non-zero"); 883 884 Factor = std::abs(Stride); 885 assert(Factor > 1 && "Invalid interleave factor"); 886 887 Reverse = Stride < 0; 888 Members[0] = Instr; 889 } 890 891 bool isReverse() const { return Reverse; } 892 unsigned getFactor() const { return Factor; } 893 unsigned getAlignment() const { return Align; } 894 unsigned getNumMembers() const { return Members.size(); } 895 896 /// \brief Try to insert a new member \p Instr with index \p Index and 897 /// alignment \p NewAlign. The index is related to the leader and it could be 898 /// negative if it is the new leader. 899 /// 900 /// \returns false if the instruction doesn't belong to the group. 901 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 902 assert(NewAlign && "The new member's alignment should be non-zero"); 903 904 int Key = Index + SmallestKey; 905 906 // Skip if there is already a member with the same index. 907 if (Members.count(Key)) 908 return false; 909 910 if (Key > LargestKey) { 911 // The largest index is always less than the interleave factor. 912 if (Index >= static_cast<int>(Factor)) 913 return false; 914 915 LargestKey = Key; 916 } else if (Key < SmallestKey) { 917 // The largest index is always less than the interleave factor. 918 if (LargestKey - Key >= static_cast<int>(Factor)) 919 return false; 920 921 SmallestKey = Key; 922 } 923 924 // It's always safe to select the minimum alignment. 925 Align = std::min(Align, NewAlign); 926 Members[Key] = Instr; 927 return true; 928 } 929 930 /// \brief Get the member with the given index \p Index 931 /// 932 /// \returns nullptr if contains no such member. 933 Instruction *getMember(unsigned Index) const { 934 int Key = SmallestKey + Index; 935 if (!Members.count(Key)) 936 return nullptr; 937 938 return Members.find(Key)->second; 939 } 940 941 /// \brief Get the index for the given member. Unlike the key in the member 942 /// map, the index starts from 0. 943 unsigned getIndex(Instruction *Instr) const { 944 for (auto I : Members) 945 if (I.second == Instr) 946 return I.first - SmallestKey; 947 948 llvm_unreachable("InterleaveGroup contains no such member"); 949 } 950 951 Instruction *getInsertPos() const { return InsertPos; } 952 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 953 954 /// Add metadata (e.g. alias info) from the instructions in this group to \p 955 /// NewInst. 956 /// 957 /// FIXME: this function currently does not add noalias metadata a'la 958 /// addNewMedata. To do that we need to compute the intersection of the 959 /// noalias info from all members. 960 void addMetadata(Instruction *NewInst) const { 961 SmallVector<Value *, 4> VL; 962 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 963 [](std::pair<int, Instruction *> p) { return p.second; }); 964 propagateMetadata(NewInst, VL); 965 } 966 967 private: 968 unsigned Factor; // Interleave Factor. 969 bool Reverse; 970 unsigned Align; 971 DenseMap<int, Instruction *> Members; 972 int SmallestKey = 0; 973 int LargestKey = 0; 974 975 // To avoid breaking dependences, vectorized instructions of an interleave 976 // group should be inserted at either the first load or the last store in 977 // program order. 978 // 979 // E.g. %even = load i32 // Insert Position 980 // %add = add i32 %even // Use of %even 981 // %odd = load i32 982 // 983 // store i32 %even 984 // %odd = add i32 // Def of %odd 985 // store i32 %odd // Insert Position 986 Instruction *InsertPos; 987 }; 988 } // end namespace llvm 989 990 namespace { 991 992 /// \brief Drive the analysis of interleaved memory accesses in the loop. 993 /// 994 /// Use this class to analyze interleaved accesses only when we can vectorize 995 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 996 /// on interleaved accesses is unsafe. 997 /// 998 /// The analysis collects interleave groups and records the relationships 999 /// between the member and the group in a map. 1000 class InterleavedAccessInfo { 1001 public: 1002 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1003 DominatorTree *DT, LoopInfo *LI) 1004 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 1005 1006 ~InterleavedAccessInfo() { 1007 SmallSet<InterleaveGroup *, 4> DelSet; 1008 // Avoid releasing a pointer twice. 1009 for (auto &I : InterleaveGroupMap) 1010 DelSet.insert(I.second); 1011 for (auto *Ptr : DelSet) 1012 delete Ptr; 1013 } 1014 1015 /// \brief Analyze the interleaved accesses and collect them in interleave 1016 /// groups. Substitute symbolic strides using \p Strides. 1017 void analyzeInterleaving(const ValueToValueMap &Strides); 1018 1019 /// \brief Check if \p Instr belongs to any interleave group. 1020 bool isInterleaved(Instruction *Instr) const { 1021 return InterleaveGroupMap.count(Instr); 1022 } 1023 1024 /// \brief Get the interleave group that \p Instr belongs to. 1025 /// 1026 /// \returns nullptr if doesn't have such group. 1027 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1028 if (InterleaveGroupMap.count(Instr)) 1029 return InterleaveGroupMap.find(Instr)->second; 1030 return nullptr; 1031 } 1032 1033 /// \brief Returns true if an interleaved group that may access memory 1034 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1035 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1036 1037 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1038 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1039 1040 private: 1041 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1042 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1043 /// The interleaved access analysis can also add new predicates (for example 1044 /// by versioning strides of pointers). 1045 PredicatedScalarEvolution &PSE; 1046 1047 Loop *TheLoop; 1048 DominatorTree *DT; 1049 LoopInfo *LI; 1050 const LoopAccessInfo *LAI = nullptr; 1051 1052 /// True if the loop may contain non-reversed interleaved groups with 1053 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1054 /// out-of-bounds by executing at least one scalar epilogue iteration. 1055 bool RequiresScalarEpilogue = false; 1056 1057 /// Holds the relationships between the members and the interleave group. 1058 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1059 1060 /// Holds dependences among the memory accesses in the loop. It maps a source 1061 /// access to a set of dependent sink accesses. 1062 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1063 1064 /// \brief The descriptor for a strided memory access. 1065 struct StrideDescriptor { 1066 StrideDescriptor() = default; 1067 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1068 unsigned Align) 1069 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1070 1071 // The access's stride. It is negative for a reverse access. 1072 int64_t Stride = 0; 1073 1074 // The scalar expression of this access. 1075 const SCEV *Scev = nullptr; 1076 1077 // The size of the memory object. 1078 uint64_t Size = 0; 1079 1080 // The alignment of this access. 1081 unsigned Align = 0; 1082 }; 1083 1084 /// \brief A type for holding instructions and their stride descriptors. 1085 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1086 1087 /// \brief Create a new interleave group with the given instruction \p Instr, 1088 /// stride \p Stride and alignment \p Align. 1089 /// 1090 /// \returns the newly created interleave group. 1091 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1092 unsigned Align) { 1093 assert(!InterleaveGroupMap.count(Instr) && 1094 "Already in an interleaved access group"); 1095 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1096 return InterleaveGroupMap[Instr]; 1097 } 1098 1099 /// \brief Release the group and remove all the relationships. 1100 void releaseGroup(InterleaveGroup *Group) { 1101 for (unsigned i = 0; i < Group->getFactor(); i++) 1102 if (Instruction *Member = Group->getMember(i)) 1103 InterleaveGroupMap.erase(Member); 1104 1105 delete Group; 1106 } 1107 1108 /// \brief Collect all the accesses with a constant stride in program order. 1109 void collectConstStrideAccesses( 1110 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1111 const ValueToValueMap &Strides); 1112 1113 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1114 static bool isStrided(int Stride) { 1115 unsigned Factor = std::abs(Stride); 1116 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1117 } 1118 1119 /// \brief Returns true if \p BB is a predicated block. 1120 bool isPredicated(BasicBlock *BB) const { 1121 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1122 } 1123 1124 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1125 bool areDependencesValid() const { 1126 return LAI && LAI->getDepChecker().getDependences(); 1127 } 1128 1129 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1130 /// necessary, when constructing interleaved groups. 1131 /// 1132 /// \p A must precede \p B in program order. We return false if reordering is 1133 /// not necessary or is prevented because \p A and \p B may be dependent. 1134 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1135 StrideEntry *B) const { 1136 // Code motion for interleaved accesses can potentially hoist strided loads 1137 // and sink strided stores. The code below checks the legality of the 1138 // following two conditions: 1139 // 1140 // 1. Potentially moving a strided load (B) before any store (A) that 1141 // precedes B, or 1142 // 1143 // 2. Potentially moving a strided store (A) after any load or store (B) 1144 // that A precedes. 1145 // 1146 // It's legal to reorder A and B if we know there isn't a dependence from A 1147 // to B. Note that this determination is conservative since some 1148 // dependences could potentially be reordered safely. 1149 1150 // A is potentially the source of a dependence. 1151 auto *Src = A->first; 1152 auto SrcDes = A->second; 1153 1154 // B is potentially the sink of a dependence. 1155 auto *Sink = B->first; 1156 auto SinkDes = B->second; 1157 1158 // Code motion for interleaved accesses can't violate WAR dependences. 1159 // Thus, reordering is legal if the source isn't a write. 1160 if (!Src->mayWriteToMemory()) 1161 return true; 1162 1163 // At least one of the accesses must be strided. 1164 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1165 return true; 1166 1167 // If dependence information is not available from LoopAccessInfo, 1168 // conservatively assume the instructions can't be reordered. 1169 if (!areDependencesValid()) 1170 return false; 1171 1172 // If we know there is a dependence from source to sink, assume the 1173 // instructions can't be reordered. Otherwise, reordering is legal. 1174 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1175 } 1176 1177 /// \brief Collect the dependences from LoopAccessInfo. 1178 /// 1179 /// We process the dependences once during the interleaved access analysis to 1180 /// enable constant-time dependence queries. 1181 void collectDependences() { 1182 if (!areDependencesValid()) 1183 return; 1184 auto *Deps = LAI->getDepChecker().getDependences(); 1185 for (auto Dep : *Deps) 1186 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1187 } 1188 }; 1189 1190 /// Utility class for getting and setting loop vectorizer hints in the form 1191 /// of loop metadata. 1192 /// This class keeps a number of loop annotations locally (as member variables) 1193 /// and can, upon request, write them back as metadata on the loop. It will 1194 /// initially scan the loop for existing metadata, and will update the local 1195 /// values based on information in the loop. 1196 /// We cannot write all values to metadata, as the mere presence of some info, 1197 /// for example 'force', means a decision has been made. So, we need to be 1198 /// careful NOT to add them if the user hasn't specifically asked so. 1199 class LoopVectorizeHints { 1200 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1201 1202 /// Hint - associates name and validation with the hint value. 1203 struct Hint { 1204 const char *Name; 1205 unsigned Value; // This may have to change for non-numeric values. 1206 HintKind Kind; 1207 1208 Hint(const char *Name, unsigned Value, HintKind Kind) 1209 : Name(Name), Value(Value), Kind(Kind) {} 1210 1211 bool validate(unsigned Val) { 1212 switch (Kind) { 1213 case HK_WIDTH: 1214 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1215 case HK_UNROLL: 1216 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1217 case HK_FORCE: 1218 return (Val <= 1); 1219 case HK_ISVECTORIZED: 1220 return (Val==0 || Val==1); 1221 } 1222 return false; 1223 } 1224 }; 1225 1226 /// Vectorization width. 1227 Hint Width; 1228 1229 /// Vectorization interleave factor. 1230 Hint Interleave; 1231 1232 /// Vectorization forced 1233 Hint Force; 1234 1235 /// Already Vectorized 1236 Hint IsVectorized; 1237 1238 /// Return the loop metadata prefix. 1239 static StringRef Prefix() { return "llvm.loop."; } 1240 1241 /// True if there is any unsafe math in the loop. 1242 bool PotentiallyUnsafe = false; 1243 1244 public: 1245 enum ForceKind { 1246 FK_Undefined = -1, ///< Not selected. 1247 FK_Disabled = 0, ///< Forcing disabled. 1248 FK_Enabled = 1, ///< Forcing enabled. 1249 }; 1250 1251 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1252 OptimizationRemarkEmitter &ORE) 1253 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1254 HK_WIDTH), 1255 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1256 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1257 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1258 // Populate values with existing loop metadata. 1259 getHintsFromMetadata(); 1260 1261 // force-vector-interleave overrides DisableInterleaving. 1262 if (VectorizerParams::isInterleaveForced()) 1263 Interleave.Value = VectorizerParams::VectorizationInterleave; 1264 1265 if (IsVectorized.Value != 1) 1266 // If the vectorization width and interleaving count are both 1 then 1267 // consider the loop to have been already vectorized because there's 1268 // nothing more that we can do. 1269 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1270 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1271 << "LV: Interleaving disabled by the pass manager\n"); 1272 } 1273 1274 /// Mark the loop L as already vectorized by setting the width to 1. 1275 void setAlreadyVectorized() { 1276 IsVectorized.Value = 1; 1277 Hint Hints[] = {IsVectorized}; 1278 writeHintsToMetadata(Hints); 1279 } 1280 1281 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1282 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1283 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1284 emitRemarkWithHints(); 1285 return false; 1286 } 1287 1288 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1289 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1290 emitRemarkWithHints(); 1291 return false; 1292 } 1293 1294 if (getIsVectorized() == 1) { 1295 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1296 // FIXME: Add interleave.disable metadata. This will allow 1297 // vectorize.disable to be used without disabling the pass and errors 1298 // to differentiate between disabled vectorization and a width of 1. 1299 ORE.emit([&]() { 1300 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1301 "AllDisabled", L->getStartLoc(), 1302 L->getHeader()) 1303 << "loop not vectorized: vectorization and interleaving are " 1304 "explicitly disabled, or the loop has already been " 1305 "vectorized"; 1306 }); 1307 return false; 1308 } 1309 1310 return true; 1311 } 1312 1313 /// Dumps all the hint information. 1314 void emitRemarkWithHints() const { 1315 using namespace ore; 1316 1317 ORE.emit([&]() { 1318 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1319 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1320 TheLoop->getStartLoc(), 1321 TheLoop->getHeader()) 1322 << "loop not vectorized: vectorization is explicitly disabled"; 1323 else { 1324 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1325 TheLoop->getStartLoc(), 1326 TheLoop->getHeader()); 1327 R << "loop not vectorized"; 1328 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1329 R << " (Force=" << NV("Force", true); 1330 if (Width.Value != 0) 1331 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1332 if (Interleave.Value != 0) 1333 R << ", Interleave Count=" 1334 << NV("InterleaveCount", Interleave.Value); 1335 R << ")"; 1336 } 1337 return R; 1338 } 1339 }); 1340 } 1341 1342 unsigned getWidth() const { return Width.Value; } 1343 unsigned getInterleave() const { return Interleave.Value; } 1344 unsigned getIsVectorized() const { return IsVectorized.Value; } 1345 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1346 1347 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1348 /// pass name to force the frontend to print the diagnostic. 1349 const char *vectorizeAnalysisPassName() const { 1350 if (getWidth() == 1) 1351 return LV_NAME; 1352 if (getForce() == LoopVectorizeHints::FK_Disabled) 1353 return LV_NAME; 1354 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1355 return LV_NAME; 1356 return OptimizationRemarkAnalysis::AlwaysPrint; 1357 } 1358 1359 bool allowReordering() const { 1360 // When enabling loop hints are provided we allow the vectorizer to change 1361 // the order of operations that is given by the scalar loop. This is not 1362 // enabled by default because can be unsafe or inefficient. For example, 1363 // reordering floating-point operations will change the way round-off 1364 // error accumulates in the loop. 1365 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1366 } 1367 1368 bool isPotentiallyUnsafe() const { 1369 // Avoid FP vectorization if the target is unsure about proper support. 1370 // This may be related to the SIMD unit in the target not handling 1371 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1372 // Otherwise, a sequence of vectorized loops, even without reduction, 1373 // could lead to different end results on the destination vectors. 1374 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1375 } 1376 1377 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1378 1379 private: 1380 /// Find hints specified in the loop metadata and update local values. 1381 void getHintsFromMetadata() { 1382 MDNode *LoopID = TheLoop->getLoopID(); 1383 if (!LoopID) 1384 return; 1385 1386 // First operand should refer to the loop id itself. 1387 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1388 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1389 1390 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1391 const MDString *S = nullptr; 1392 SmallVector<Metadata *, 4> Args; 1393 1394 // The expected hint is either a MDString or a MDNode with the first 1395 // operand a MDString. 1396 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1397 if (!MD || MD->getNumOperands() == 0) 1398 continue; 1399 S = dyn_cast<MDString>(MD->getOperand(0)); 1400 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1401 Args.push_back(MD->getOperand(i)); 1402 } else { 1403 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1404 assert(Args.size() == 0 && "too many arguments for MDString"); 1405 } 1406 1407 if (!S) 1408 continue; 1409 1410 // Check if the hint starts with the loop metadata prefix. 1411 StringRef Name = S->getString(); 1412 if (Args.size() == 1) 1413 setHint(Name, Args[0]); 1414 } 1415 } 1416 1417 /// Checks string hint with one operand and set value if valid. 1418 void setHint(StringRef Name, Metadata *Arg) { 1419 if (!Name.startswith(Prefix())) 1420 return; 1421 Name = Name.substr(Prefix().size(), StringRef::npos); 1422 1423 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1424 if (!C) 1425 return; 1426 unsigned Val = C->getZExtValue(); 1427 1428 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1429 for (auto H : Hints) { 1430 if (Name == H->Name) { 1431 if (H->validate(Val)) 1432 H->Value = Val; 1433 else 1434 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1435 break; 1436 } 1437 } 1438 } 1439 1440 /// Create a new hint from name / value pair. 1441 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1442 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1443 Metadata *MDs[] = {MDString::get(Context, Name), 1444 ConstantAsMetadata::get( 1445 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1446 return MDNode::get(Context, MDs); 1447 } 1448 1449 /// Matches metadata with hint name. 1450 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1451 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1452 if (!Name) 1453 return false; 1454 1455 for (auto H : HintTypes) 1456 if (Name->getString().endswith(H.Name)) 1457 return true; 1458 return false; 1459 } 1460 1461 /// Sets current hints into loop metadata, keeping other values intact. 1462 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1463 if (HintTypes.empty()) 1464 return; 1465 1466 // Reserve the first element to LoopID (see below). 1467 SmallVector<Metadata *, 4> MDs(1); 1468 // If the loop already has metadata, then ignore the existing operands. 1469 MDNode *LoopID = TheLoop->getLoopID(); 1470 if (LoopID) { 1471 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1472 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1473 // If node in update list, ignore old value. 1474 if (!matchesHintMetadataName(Node, HintTypes)) 1475 MDs.push_back(Node); 1476 } 1477 } 1478 1479 // Now, add the missing hints. 1480 for (auto H : HintTypes) 1481 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1482 1483 // Replace current metadata node with new one. 1484 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1485 MDNode *NewLoopID = MDNode::get(Context, MDs); 1486 // Set operand 0 to refer to the loop id itself. 1487 NewLoopID->replaceOperandWith(0, NewLoopID); 1488 1489 TheLoop->setLoopID(NewLoopID); 1490 } 1491 1492 /// The loop these hints belong to. 1493 const Loop *TheLoop; 1494 1495 /// Interface to emit optimization remarks. 1496 OptimizationRemarkEmitter &ORE; 1497 }; 1498 1499 } // end anonymous namespace 1500 1501 static void emitMissedWarning(Function *F, Loop *L, 1502 const LoopVectorizeHints &LH, 1503 OptimizationRemarkEmitter *ORE) { 1504 LH.emitRemarkWithHints(); 1505 1506 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1507 if (LH.getWidth() != 1) 1508 ORE->emit(DiagnosticInfoOptimizationFailure( 1509 DEBUG_TYPE, "FailedRequestedVectorization", 1510 L->getStartLoc(), L->getHeader()) 1511 << "loop not vectorized: " 1512 << "failed explicitly specified loop vectorization"); 1513 else if (LH.getInterleave() != 1) 1514 ORE->emit(DiagnosticInfoOptimizationFailure( 1515 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1516 L->getHeader()) 1517 << "loop not interleaved: " 1518 << "failed explicitly specified loop interleaving"); 1519 } 1520 } 1521 1522 namespace { 1523 1524 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1525 /// to what vectorization factor. 1526 /// This class does not look at the profitability of vectorization, only the 1527 /// legality. This class has two main kinds of checks: 1528 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1529 /// will change the order of memory accesses in a way that will change the 1530 /// correctness of the program. 1531 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1532 /// checks for a number of different conditions, such as the availability of a 1533 /// single induction variable, that all types are supported and vectorize-able, 1534 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1535 /// This class is also used by InnerLoopVectorizer for identifying 1536 /// induction variable and the different reduction variables. 1537 class LoopVectorizationLegality { 1538 public: 1539 LoopVectorizationLegality( 1540 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1541 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1542 const TargetTransformInfo *TTI, 1543 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1544 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1545 LoopVectorizeHints *H) 1546 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1547 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H) {} 1548 1549 /// ReductionList contains the reduction descriptors for all 1550 /// of the reductions that were found in the loop. 1551 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1552 1553 /// InductionList saves induction variables and maps them to the 1554 /// induction descriptor. 1555 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1556 1557 /// RecurrenceSet contains the phi nodes that are recurrences other than 1558 /// inductions and reductions. 1559 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1560 1561 /// Returns true if it is legal to vectorize this loop. 1562 /// This does not mean that it is profitable to vectorize this 1563 /// loop, only that it is legal to do so. 1564 bool canVectorize(); 1565 1566 /// Returns the primary induction variable. 1567 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1568 1569 /// Returns the reduction variables found in the loop. 1570 ReductionList *getReductionVars() { return &Reductions; } 1571 1572 /// Returns the induction variables found in the loop. 1573 InductionList *getInductionVars() { return &Inductions; } 1574 1575 /// Return the first-order recurrences found in the loop. 1576 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1577 1578 /// Return the set of instructions to sink to handle first-order recurrences. 1579 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1580 1581 /// Returns the widest induction type. 1582 Type *getWidestInductionType() { return WidestIndTy; } 1583 1584 /// Returns True if V is a Phi node of an induction variable in this loop. 1585 bool isInductionPhi(const Value *V); 1586 1587 /// Returns True if V is a cast that is part of an induction def-use chain, 1588 /// and had been proven to be redundant under a runtime guard (in other 1589 /// words, the cast has the same SCEV expression as the induction phi). 1590 bool isCastedInductionVariable(const Value *V); 1591 1592 /// Returns True if V can be considered as an induction variable in this 1593 /// loop. V can be the induction phi, or some redundant cast in the def-use 1594 /// chain of the inducion phi. 1595 bool isInductionVariable(const Value *V); 1596 1597 /// Returns True if PN is a reduction variable in this loop. 1598 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1599 1600 /// Returns True if Phi is a first-order recurrence in this loop. 1601 bool isFirstOrderRecurrence(const PHINode *Phi); 1602 1603 /// Return true if the block BB needs to be predicated in order for the loop 1604 /// to be vectorized. 1605 bool blockNeedsPredication(BasicBlock *BB); 1606 1607 /// Check if this pointer is consecutive when vectorizing. This happens 1608 /// when the last index of the GEP is the induction variable, or that the 1609 /// pointer itself is an induction variable. 1610 /// This check allows us to vectorize A[idx] into a wide load/store. 1611 /// Returns: 1612 /// 0 - Stride is unknown or non-consecutive. 1613 /// 1 - Address is consecutive. 1614 /// -1 - Address is consecutive, and decreasing. 1615 /// NOTE: This method must only be used before modifying the original scalar 1616 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). 1617 int isConsecutivePtr(Value *Ptr); 1618 1619 /// Returns true if the value V is uniform within the loop. 1620 bool isUniform(Value *V); 1621 1622 /// Returns the information that we collected about runtime memory check. 1623 const RuntimePointerChecking *getRuntimePointerChecking() const { 1624 return LAI->getRuntimePointerChecking(); 1625 } 1626 1627 const LoopAccessInfo *getLAI() const { return LAI; } 1628 1629 /// \brief Check if \p Instr belongs to any interleaved access group. 1630 bool isAccessInterleaved(Instruction *Instr) { 1631 return InterleaveInfo.isInterleaved(Instr); 1632 } 1633 1634 /// \brief Get the interleaved access group that \p Instr belongs to. 1635 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1636 return InterleaveInfo.getInterleaveGroup(Instr); 1637 } 1638 1639 /// \brief Returns true if an interleaved group requires a scalar iteration 1640 /// to handle accesses with gaps. 1641 bool requiresScalarEpilogue() const { 1642 return InterleaveInfo.requiresScalarEpilogue(); 1643 } 1644 1645 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1646 1647 uint64_t getMaxSafeRegisterWidth() const { 1648 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1649 } 1650 1651 bool hasStride(Value *V) { return LAI->hasStride(V); } 1652 1653 /// Returns true if the target machine supports masked store operation 1654 /// for the given \p DataType and kind of access to \p Ptr. 1655 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1656 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1657 } 1658 1659 /// Returns true if the target machine supports masked load operation 1660 /// for the given \p DataType and kind of access to \p Ptr. 1661 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1662 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1663 } 1664 1665 /// Returns true if the target machine supports masked scatter operation 1666 /// for the given \p DataType. 1667 bool isLegalMaskedScatter(Type *DataType) { 1668 return TTI->isLegalMaskedScatter(DataType); 1669 } 1670 1671 /// Returns true if the target machine supports masked gather operation 1672 /// for the given \p DataType. 1673 bool isLegalMaskedGather(Type *DataType) { 1674 return TTI->isLegalMaskedGather(DataType); 1675 } 1676 1677 /// Returns true if the target machine can represent \p V as a masked gather 1678 /// or scatter operation. 1679 bool isLegalGatherOrScatter(Value *V) { 1680 auto *LI = dyn_cast<LoadInst>(V); 1681 auto *SI = dyn_cast<StoreInst>(V); 1682 if (!LI && !SI) 1683 return false; 1684 auto *Ptr = getPointerOperand(V); 1685 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1686 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1687 } 1688 1689 /// Returns true if vector representation of the instruction \p I 1690 /// requires mask. 1691 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1692 1693 unsigned getNumStores() const { return LAI->getNumStores(); } 1694 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1695 unsigned getNumPredStores() const { return NumPredStores; } 1696 1697 /// Returns true if \p I is an instruction that will be scalarized with 1698 /// predication. Such instructions include conditional stores and 1699 /// instructions that may divide by zero. 1700 bool isScalarWithPredication(Instruction *I); 1701 1702 /// Returns true if \p I is a memory instruction with consecutive memory 1703 /// access that can be widened. 1704 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1705 1706 // Returns true if the NoNaN attribute is set on the function. 1707 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1708 1709 private: 1710 /// Check if a single basic block loop is vectorizable. 1711 /// At this point we know that this is a loop with a constant trip count 1712 /// and we only need to check individual instructions. 1713 bool canVectorizeInstrs(); 1714 1715 /// When we vectorize loops we may change the order in which 1716 /// we read and write from memory. This method checks if it is 1717 /// legal to vectorize the code, considering only memory constrains. 1718 /// Returns true if the loop is vectorizable 1719 bool canVectorizeMemory(); 1720 1721 /// Return true if we can vectorize this loop using the IF-conversion 1722 /// transformation. 1723 bool canVectorizeWithIfConvert(); 1724 1725 /// Return true if all of the instructions in the block can be speculatively 1726 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1727 /// and we know that we can read from them without segfault. 1728 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1729 1730 /// Updates the vectorization state by adding \p Phi to the inductions list. 1731 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1732 /// better choice for the main induction than the existing one. 1733 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1734 SmallPtrSetImpl<Value *> &AllowedExit); 1735 1736 /// Create an analysis remark that explains why vectorization failed 1737 /// 1738 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1739 /// an instruction that prevents vectorization. Otherwise the loop is used 1740 /// for the location of the remark. \return the remark object that can be 1741 /// streamed to. 1742 OptimizationRemarkAnalysis 1743 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1744 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1745 RemarkName, TheLoop, I); 1746 } 1747 1748 /// \brief If an access has a symbolic strides, this maps the pointer value to 1749 /// the stride symbol. 1750 const ValueToValueMap *getSymbolicStrides() { 1751 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1752 // it's collected. This happens from canVectorizeWithIfConvert, when the 1753 // pointer is checked to reference consecutive elements suitable for a 1754 // masked access. 1755 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1756 } 1757 1758 unsigned NumPredStores = 0; 1759 1760 /// The loop that we evaluate. 1761 Loop *TheLoop; 1762 1763 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1764 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1765 /// of existing SCEV assumptions. The analysis will also add a minimal set 1766 /// of new predicates if this is required to enable vectorization and 1767 /// unrolling. 1768 PredicatedScalarEvolution &PSE; 1769 1770 /// Target Library Info. 1771 TargetLibraryInfo *TLI; 1772 1773 /// Target Transform Info 1774 const TargetTransformInfo *TTI; 1775 1776 /// Dominator Tree. 1777 DominatorTree *DT; 1778 1779 // LoopAccess analysis. 1780 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1781 1782 // And the loop-accesses info corresponding to this loop. This pointer is 1783 // null until canVectorizeMemory sets it up. 1784 const LoopAccessInfo *LAI = nullptr; 1785 1786 /// Interface to emit optimization remarks. 1787 OptimizationRemarkEmitter *ORE; 1788 1789 /// The interleave access information contains groups of interleaved accesses 1790 /// with the same stride and close to each other. 1791 InterleavedAccessInfo InterleaveInfo; 1792 1793 // --- vectorization state --- // 1794 1795 /// Holds the primary induction variable. This is the counter of the 1796 /// loop. 1797 PHINode *PrimaryInduction = nullptr; 1798 1799 /// Holds the reduction variables. 1800 ReductionList Reductions; 1801 1802 /// Holds all of the induction variables that we found in the loop. 1803 /// Notice that inductions don't need to start at zero and that induction 1804 /// variables can be pointers. 1805 InductionList Inductions; 1806 1807 /// Holds all the casts that participate in the update chain of the induction 1808 /// variables, and that have been proven to be redundant (possibly under a 1809 /// runtime guard). These casts can be ignored when creating the vectorized 1810 /// loop body. 1811 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; 1812 1813 /// Holds the phi nodes that are first-order recurrences. 1814 RecurrenceSet FirstOrderRecurrences; 1815 1816 /// Holds instructions that need to sink past other instructions to handle 1817 /// first-order recurrences. 1818 DenseMap<Instruction *, Instruction *> SinkAfter; 1819 1820 /// Holds the widest induction type encountered. 1821 Type *WidestIndTy = nullptr; 1822 1823 /// Allowed outside users. This holds the induction and reduction 1824 /// vars which can be accessed from outside the loop. 1825 SmallPtrSet<Value *, 4> AllowedExit; 1826 1827 /// Can we assume the absence of NaNs. 1828 bool HasFunNoNaNAttr = false; 1829 1830 /// Vectorization requirements that will go through late-evaluation. 1831 LoopVectorizationRequirements *Requirements; 1832 1833 /// Used to emit an analysis of any legality issues. 1834 LoopVectorizeHints *Hints; 1835 1836 /// While vectorizing these instructions we have to generate a 1837 /// call to the appropriate masked intrinsic 1838 SmallPtrSet<const Instruction *, 8> MaskedOp; 1839 }; 1840 1841 /// LoopVectorizationCostModel - estimates the expected speedups due to 1842 /// vectorization. 1843 /// In many cases vectorization is not profitable. This can happen because of 1844 /// a number of reasons. In this class we mainly attempt to predict the 1845 /// expected speedup/slowdowns due to the supported instruction set. We use the 1846 /// TargetTransformInfo to query the different backends for the cost of 1847 /// different operations. 1848 class LoopVectorizationCostModel { 1849 public: 1850 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1851 LoopInfo *LI, LoopVectorizationLegality *Legal, 1852 const TargetTransformInfo &TTI, 1853 const TargetLibraryInfo *TLI, DemandedBits *DB, 1854 AssumptionCache *AC, 1855 OptimizationRemarkEmitter *ORE, const Function *F, 1856 const LoopVectorizeHints *Hints) 1857 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1858 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1859 1860 /// \return An upper bound for the vectorization factor, or None if 1861 /// vectorization should be avoided up front. 1862 Optional<unsigned> computeMaxVF(bool OptForSize); 1863 1864 /// Information about vectorization costs 1865 struct VectorizationFactor { 1866 // Vector width with best cost 1867 unsigned Width; 1868 1869 // Cost of the loop with that width 1870 unsigned Cost; 1871 }; 1872 1873 /// \return The most profitable vectorization factor and the cost of that VF. 1874 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1875 /// then this vectorization factor will be selected if vectorization is 1876 /// possible. 1877 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1878 1879 /// Setup cost-based decisions for user vectorization factor. 1880 void selectUserVectorizationFactor(unsigned UserVF) { 1881 collectUniformsAndScalars(UserVF); 1882 collectInstsToScalarize(UserVF); 1883 } 1884 1885 /// \return The size (in bits) of the smallest and widest types in the code 1886 /// that needs to be vectorized. We ignore values that remain scalar such as 1887 /// 64 bit loop indices. 1888 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1889 1890 /// \return The desired interleave count. 1891 /// If interleave count has been specified by metadata it will be returned. 1892 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1893 /// are the selected vectorization factor and the cost of the selected VF. 1894 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1895 unsigned LoopCost); 1896 1897 /// Memory access instruction may be vectorized in more than one way. 1898 /// Form of instruction after vectorization depends on cost. 1899 /// This function takes cost-based decisions for Load/Store instructions 1900 /// and collects them in a map. This decisions map is used for building 1901 /// the lists of loop-uniform and loop-scalar instructions. 1902 /// The calculated cost is saved with widening decision in order to 1903 /// avoid redundant calculations. 1904 void setCostBasedWideningDecision(unsigned VF); 1905 1906 /// \brief A struct that represents some properties of the register usage 1907 /// of a loop. 1908 struct RegisterUsage { 1909 /// Holds the number of loop invariant values that are used in the loop. 1910 unsigned LoopInvariantRegs; 1911 1912 /// Holds the maximum number of concurrent live intervals in the loop. 1913 unsigned MaxLocalUsers; 1914 1915 /// Holds the number of instructions in the loop. 1916 unsigned NumInstructions; 1917 }; 1918 1919 /// \return Returns information about the register usages of the loop for the 1920 /// given vectorization factors. 1921 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1922 1923 /// Collect values we want to ignore in the cost model. 1924 void collectValuesToIgnore(); 1925 1926 /// \returns The smallest bitwidth each instruction can be represented with. 1927 /// The vector equivalents of these instructions should be truncated to this 1928 /// type. 1929 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1930 return MinBWs; 1931 } 1932 1933 /// \returns True if it is more profitable to scalarize instruction \p I for 1934 /// vectorization factor \p VF. 1935 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1936 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1937 auto Scalars = InstsToScalarize.find(VF); 1938 assert(Scalars != InstsToScalarize.end() && 1939 "VF not yet analyzed for scalarization profitability"); 1940 return Scalars->second.count(I); 1941 } 1942 1943 /// Returns true if \p I is known to be uniform after vectorization. 1944 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1945 if (VF == 1) 1946 return true; 1947 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1948 auto UniformsPerVF = Uniforms.find(VF); 1949 return UniformsPerVF->second.count(I); 1950 } 1951 1952 /// Returns true if \p I is known to be scalar after vectorization. 1953 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1954 if (VF == 1) 1955 return true; 1956 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1957 auto ScalarsPerVF = Scalars.find(VF); 1958 return ScalarsPerVF->second.count(I); 1959 } 1960 1961 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1962 /// for vectorization factor \p VF. 1963 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1964 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1965 !isScalarAfterVectorization(I, VF); 1966 } 1967 1968 /// Decision that was taken during cost calculation for memory instruction. 1969 enum InstWidening { 1970 CM_Unknown, 1971 CM_Widen, // For consecutive accesses with stride +1. 1972 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1973 CM_Interleave, 1974 CM_GatherScatter, 1975 CM_Scalarize 1976 }; 1977 1978 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1979 /// instruction \p I and vector width \p VF. 1980 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1981 unsigned Cost) { 1982 assert(VF >= 2 && "Expected VF >=2"); 1983 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1984 } 1985 1986 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1987 /// interleaving group \p Grp and vector width \p VF. 1988 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1989 InstWidening W, unsigned Cost) { 1990 assert(VF >= 2 && "Expected VF >=2"); 1991 /// Broadcast this decicion to all instructions inside the group. 1992 /// But the cost will be assigned to one instruction only. 1993 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1994 if (auto *I = Grp->getMember(i)) { 1995 if (Grp->getInsertPos() == I) 1996 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1997 else 1998 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1999 } 2000 } 2001 } 2002 2003 /// Return the cost model decision for the given instruction \p I and vector 2004 /// width \p VF. Return CM_Unknown if this instruction did not pass 2005 /// through the cost modeling. 2006 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 2007 assert(VF >= 2 && "Expected VF >=2"); 2008 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2009 auto Itr = WideningDecisions.find(InstOnVF); 2010 if (Itr == WideningDecisions.end()) 2011 return CM_Unknown; 2012 return Itr->second.first; 2013 } 2014 2015 /// Return the vectorization cost for the given instruction \p I and vector 2016 /// width \p VF. 2017 unsigned getWideningCost(Instruction *I, unsigned VF) { 2018 assert(VF >= 2 && "Expected VF >=2"); 2019 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2020 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2021 return WideningDecisions[InstOnVF].second; 2022 } 2023 2024 /// Return True if instruction \p I is an optimizable truncate whose operand 2025 /// is an induction variable. Such a truncate will be removed by adding a new 2026 /// induction variable with the destination type. 2027 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2028 // If the instruction is not a truncate, return false. 2029 auto *Trunc = dyn_cast<TruncInst>(I); 2030 if (!Trunc) 2031 return false; 2032 2033 // Get the source and destination types of the truncate. 2034 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2035 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2036 2037 // If the truncate is free for the given types, return false. Replacing a 2038 // free truncate with an induction variable would add an induction variable 2039 // update instruction to each iteration of the loop. We exclude from this 2040 // check the primary induction variable since it will need an update 2041 // instruction regardless. 2042 Value *Op = Trunc->getOperand(0); 2043 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2044 return false; 2045 2046 // If the truncated value is not an induction variable, return false. 2047 return Legal->isInductionPhi(Op); 2048 } 2049 2050 /// Collects the instructions to scalarize for each predicated instruction in 2051 /// the loop. 2052 void collectInstsToScalarize(unsigned VF); 2053 2054 /// Collect Uniform and Scalar values for the given \p VF. 2055 /// The sets depend on CM decision for Load/Store instructions 2056 /// that may be vectorized as interleave, gather-scatter or scalarized. 2057 void collectUniformsAndScalars(unsigned VF) { 2058 // Do the analysis once. 2059 if (VF == 1 || Uniforms.count(VF)) 2060 return; 2061 setCostBasedWideningDecision(VF); 2062 collectLoopUniforms(VF); 2063 collectLoopScalars(VF); 2064 } 2065 2066 private: 2067 /// \return An upper bound for the vectorization factor, larger than zero. 2068 /// One is returned if vectorization should best be avoided due to cost. 2069 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2070 2071 /// The vectorization cost is a combination of the cost itself and a boolean 2072 /// indicating whether any of the contributing operations will actually 2073 /// operate on 2074 /// vector values after type legalization in the backend. If this latter value 2075 /// is 2076 /// false, then all operations will be scalarized (i.e. no vectorization has 2077 /// actually taken place). 2078 using VectorizationCostTy = std::pair<unsigned, bool>; 2079 2080 /// Returns the expected execution cost. The unit of the cost does 2081 /// not matter because we use the 'cost' units to compare different 2082 /// vector widths. The cost that is returned is *not* normalized by 2083 /// the factor width. 2084 VectorizationCostTy expectedCost(unsigned VF); 2085 2086 /// Returns the execution time cost of an instruction for a given vector 2087 /// width. Vector width of one means scalar. 2088 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2089 2090 /// The cost-computation logic from getInstructionCost which provides 2091 /// the vector type as an output parameter. 2092 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2093 2094 /// Calculate vectorization cost of memory instruction \p I. 2095 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2096 2097 /// The cost computation for scalarized memory instruction. 2098 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2099 2100 /// The cost computation for interleaving group of memory instructions. 2101 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2102 2103 /// The cost computation for Gather/Scatter instruction. 2104 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2105 2106 /// The cost computation for widening instruction \p I with consecutive 2107 /// memory access. 2108 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2109 2110 /// The cost calculation for Load instruction \p I with uniform pointer - 2111 /// scalar load + broadcast. 2112 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2113 2114 /// Returns whether the instruction is a load or store and will be a emitted 2115 /// as a vector operation. 2116 bool isConsecutiveLoadOrStore(Instruction *I); 2117 2118 /// Create an analysis remark that explains why vectorization failed 2119 /// 2120 /// \p RemarkName is the identifier for the remark. \return the remark object 2121 /// that can be streamed to. 2122 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2123 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2124 RemarkName, TheLoop); 2125 } 2126 2127 /// Map of scalar integer values to the smallest bitwidth they can be legally 2128 /// represented as. The vector equivalents of these values should be truncated 2129 /// to this type. 2130 MapVector<Instruction *, uint64_t> MinBWs; 2131 2132 /// A type representing the costs for instructions if they were to be 2133 /// scalarized rather than vectorized. The entries are Instruction-Cost 2134 /// pairs. 2135 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2136 2137 /// A set containing all BasicBlocks that are known to present after 2138 /// vectorization as a predicated block. 2139 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2140 2141 /// A map holding scalar costs for different vectorization factors. The 2142 /// presence of a cost for an instruction in the mapping indicates that the 2143 /// instruction will be scalarized when vectorizing with the associated 2144 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2145 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2146 2147 /// Holds the instructions known to be uniform after vectorization. 2148 /// The data is collected per VF. 2149 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2150 2151 /// Holds the instructions known to be scalar after vectorization. 2152 /// The data is collected per VF. 2153 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2154 2155 /// Holds the instructions (address computations) that are forced to be 2156 /// scalarized. 2157 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2158 2159 /// Returns the expected difference in cost from scalarizing the expression 2160 /// feeding a predicated instruction \p PredInst. The instructions to 2161 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2162 /// non-negative return value implies the expression will be scalarized. 2163 /// Currently, only single-use chains are considered for scalarization. 2164 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2165 unsigned VF); 2166 2167 /// Collect the instructions that are uniform after vectorization. An 2168 /// instruction is uniform if we represent it with a single scalar value in 2169 /// the vectorized loop corresponding to each vector iteration. Examples of 2170 /// uniform instructions include pointer operands of consecutive or 2171 /// interleaved memory accesses. Note that although uniformity implies an 2172 /// instruction will be scalar, the reverse is not true. In general, a 2173 /// scalarized instruction will be represented by VF scalar values in the 2174 /// vectorized loop, each corresponding to an iteration of the original 2175 /// scalar loop. 2176 void collectLoopUniforms(unsigned VF); 2177 2178 /// Collect the instructions that are scalar after vectorization. An 2179 /// instruction is scalar if it is known to be uniform or will be scalarized 2180 /// during vectorization. Non-uniform scalarized instructions will be 2181 /// represented by VF values in the vectorized loop, each corresponding to an 2182 /// iteration of the original scalar loop. 2183 void collectLoopScalars(unsigned VF); 2184 2185 /// Keeps cost model vectorization decision and cost for instructions. 2186 /// Right now it is used for memory instructions only. 2187 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2188 std::pair<InstWidening, unsigned>>; 2189 2190 DecisionList WideningDecisions; 2191 2192 public: 2193 /// The loop that we evaluate. 2194 Loop *TheLoop; 2195 2196 /// Predicated scalar evolution analysis. 2197 PredicatedScalarEvolution &PSE; 2198 2199 /// Loop Info analysis. 2200 LoopInfo *LI; 2201 2202 /// Vectorization legality. 2203 LoopVectorizationLegality *Legal; 2204 2205 /// Vector target information. 2206 const TargetTransformInfo &TTI; 2207 2208 /// Target Library Info. 2209 const TargetLibraryInfo *TLI; 2210 2211 /// Demanded bits analysis. 2212 DemandedBits *DB; 2213 2214 /// Assumption cache. 2215 AssumptionCache *AC; 2216 2217 /// Interface to emit optimization remarks. 2218 OptimizationRemarkEmitter *ORE; 2219 2220 const Function *TheFunction; 2221 2222 /// Loop Vectorize Hint. 2223 const LoopVectorizeHints *Hints; 2224 2225 /// Values to ignore in the cost model. 2226 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2227 2228 /// Values to ignore in the cost model when VF > 1. 2229 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2230 }; 2231 2232 } // end anonymous namespace 2233 2234 namespace llvm { 2235 2236 /// InnerLoopVectorizer vectorizes loops which contain only one basic 2237 /// LoopVectorizationPlanner - drives the vectorization process after having 2238 /// passed Legality checks. 2239 /// The planner builds and optimizes the Vectorization Plans which record the 2240 /// decisions how to vectorize the given loop. In particular, represent the 2241 /// control-flow of the vectorized version, the replication of instructions that 2242 /// are to be scalarized, and interleave access groups. 2243 class LoopVectorizationPlanner { 2244 /// The loop that we evaluate. 2245 Loop *OrigLoop; 2246 2247 /// Loop Info analysis. 2248 LoopInfo *LI; 2249 2250 /// Target Library Info. 2251 const TargetLibraryInfo *TLI; 2252 2253 /// Target Transform Info. 2254 const TargetTransformInfo *TTI; 2255 2256 /// The legality analysis. 2257 LoopVectorizationLegality *Legal; 2258 2259 /// The profitablity analysis. 2260 LoopVectorizationCostModel &CM; 2261 2262 using VPlanPtr = std::unique_ptr<VPlan>; 2263 2264 SmallVector<VPlanPtr, 4> VPlans; 2265 2266 /// This class is used to enable the VPlan to invoke a method of ILV. This is 2267 /// needed until the method is refactored out of ILV and becomes reusable. 2268 struct VPCallbackILV : public VPCallback { 2269 InnerLoopVectorizer &ILV; 2270 2271 VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {} 2272 2273 Value *getOrCreateVectorValues(Value *V, unsigned Part) override { 2274 return ILV.getOrCreateVectorValue(V, Part); 2275 } 2276 }; 2277 2278 /// A builder used to construct the current plan. 2279 VPBuilder Builder; 2280 2281 /// When we if-convert we need to create edge masks. We have to cache values 2282 /// so that we don't end up with exponential recursion/IR. Note that 2283 /// if-conversion currently takes place during VPlan-construction, so these 2284 /// caches are only used at that stage. 2285 using EdgeMaskCacheTy = 2286 DenseMap<std::pair<BasicBlock *, BasicBlock *>, VPValue *>; 2287 using BlockMaskCacheTy = DenseMap<BasicBlock *, VPValue *>; 2288 EdgeMaskCacheTy EdgeMaskCache; 2289 BlockMaskCacheTy BlockMaskCache; 2290 2291 unsigned BestVF = 0; 2292 unsigned BestUF = 0; 2293 2294 public: 2295 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 2296 const TargetTransformInfo *TTI, 2297 LoopVectorizationLegality *Legal, 2298 LoopVectorizationCostModel &CM) 2299 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {} 2300 2301 /// Plan how to best vectorize, return the best VF and its cost. 2302 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2303 unsigned UserVF); 2304 2305 /// Finalize the best decision and dispose of all other VPlans. 2306 void setBestPlan(unsigned VF, unsigned UF); 2307 2308 /// Generate the IR code for the body of the vectorized loop according to the 2309 /// best selected VPlan. 2310 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 2311 2312 void printPlans(raw_ostream &O) { 2313 for (const auto &Plan : VPlans) 2314 O << *Plan; 2315 } 2316 2317 protected: 2318 /// Collect the instructions from the original loop that would be trivially 2319 /// dead in the vectorized loop if generated. 2320 void collectTriviallyDeadInstructions( 2321 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2322 2323 /// A range of powers-of-2 vectorization factors with fixed start and 2324 /// adjustable end. The range includes start and excludes end, e.g.,: 2325 /// [1, 9) = {1, 2, 4, 8} 2326 struct VFRange { 2327 // A power of 2. 2328 const unsigned Start; 2329 2330 // Need not be a power of 2. If End <= Start range is empty. 2331 unsigned End; 2332 }; 2333 2334 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 2335 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 2336 /// returned value holds for the entire \p Range. 2337 bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, 2338 VFRange &Range); 2339 2340 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 2341 /// according to the information gathered by Legal when it checked if it is 2342 /// legal to vectorize the loop. 2343 void buildVPlans(unsigned MinVF, unsigned MaxVF); 2344 2345 private: 2346 /// A helper function that computes the predicate of the block BB, assuming 2347 /// that the header block of the loop is set to True. It returns the *entry* 2348 /// mask for the block BB. 2349 VPValue *createBlockInMask(BasicBlock *BB, VPlanPtr &Plan); 2350 2351 /// A helper function that computes the predicate of the edge between SRC 2352 /// and DST. 2353 VPValue *createEdgeMask(BasicBlock *Src, BasicBlock *Dst, VPlanPtr &Plan); 2354 2355 /// Check if \I belongs to an Interleave Group within the given VF \p Range, 2356 /// \return true in the first returned value if so and false otherwise. 2357 /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG 2358 /// for \p Range.Start, and provide it as the second returned value. 2359 /// Note that if \I is an adjunct member of an IG for \p Range.Start, the 2360 /// \return value is <true, nullptr>, as it is handled by another recipe. 2361 /// \p Range.End may be decreased to ensure same decision from \p Range.Start 2362 /// to \p Range.End. 2363 VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range); 2364 2365 // Check if \I is a memory instruction to be widened for \p Range.Start and 2366 // potentially masked. Such instructions are handled by a recipe that takes an 2367 // additional VPInstruction for the mask. 2368 VPWidenMemoryInstructionRecipe *tryToWidenMemory(Instruction *I, 2369 VFRange &Range, 2370 VPlanPtr &Plan); 2371 2372 /// Check if an induction recipe should be constructed for \I within the given 2373 /// VF \p Range. If so build and return it. If not, return null. \p Range.End 2374 /// may be decreased to ensure same decision from \p Range.Start to 2375 /// \p Range.End. 2376 VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, 2377 VFRange &Range); 2378 2379 /// Handle non-loop phi nodes. Currently all such phi nodes are turned into 2380 /// a sequence of select instructions as the vectorizer currently performs 2381 /// full if-conversion. 2382 VPBlendRecipe *tryToBlend(Instruction *I, VPlanPtr &Plan); 2383 2384 /// Check if \p I can be widened within the given VF \p Range. If \p I can be 2385 /// widened for \p Range.Start, check if the last recipe of \p VPBB can be 2386 /// extended to include \p I or else build a new VPWidenRecipe for it and 2387 /// append it to \p VPBB. Return true if \p I can be widened for Range.Start, 2388 /// false otherwise. Range.End may be decreased to ensure same decision from 2389 /// \p Range.Start to \p Range.End. 2390 bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range); 2391 2392 /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it 2393 /// is predicated. \return \p VPBB augmented with this new recipe if \p I is 2394 /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new 2395 /// Region. Update the packing decision of predicated instructions if they 2396 /// feed \p I. Range.End may be decreased to ensure same recipe behavior from 2397 /// \p Range.Start to \p Range.End. 2398 VPBasicBlock *handleReplication( 2399 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 2400 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 2401 VPlanPtr &Plan); 2402 2403 /// Create a replicating region for instruction \p I that requires 2404 /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. 2405 VPRegionBlock *createReplicateRegion(Instruction *I, VPRecipeBase *PredRecipe, 2406 VPlanPtr &Plan); 2407 2408 /// Build a VPlan according to the information gathered by Legal. \return a 2409 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 2410 /// exclusive, possibly decreasing \p Range.End. 2411 VPlanPtr buildVPlan(VFRange &Range, 2412 const SmallPtrSetImpl<Value *> &NeedDef); 2413 }; 2414 2415 } // end namespace llvm 2416 2417 namespace { 2418 2419 /// \brief This holds vectorization requirements that must be verified late in 2420 /// the process. The requirements are set by legalize and costmodel. Once 2421 /// vectorization has been determined to be possible and profitable the 2422 /// requirements can be verified by looking for metadata or compiler options. 2423 /// For example, some loops require FP commutativity which is only allowed if 2424 /// vectorization is explicitly specified or if the fast-math compiler option 2425 /// has been provided. 2426 /// Late evaluation of these requirements allows helpful diagnostics to be 2427 /// composed that tells the user what need to be done to vectorize the loop. For 2428 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2429 /// evaluation should be used only when diagnostics can generated that can be 2430 /// followed by a non-expert user. 2431 class LoopVectorizationRequirements { 2432 public: 2433 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2434 2435 void addUnsafeAlgebraInst(Instruction *I) { 2436 // First unsafe algebra instruction. 2437 if (!UnsafeAlgebraInst) 2438 UnsafeAlgebraInst = I; 2439 } 2440 2441 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2442 2443 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2444 const char *PassName = Hints.vectorizeAnalysisPassName(); 2445 bool Failed = false; 2446 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2447 ORE.emit([&]() { 2448 return OptimizationRemarkAnalysisFPCommute( 2449 PassName, "CantReorderFPOps", 2450 UnsafeAlgebraInst->getDebugLoc(), 2451 UnsafeAlgebraInst->getParent()) 2452 << "loop not vectorized: cannot prove it is safe to reorder " 2453 "floating-point operations"; 2454 }); 2455 Failed = true; 2456 } 2457 2458 // Test if runtime memcheck thresholds are exceeded. 2459 bool PragmaThresholdReached = 2460 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2461 bool ThresholdReached = 2462 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2463 if ((ThresholdReached && !Hints.allowReordering()) || 2464 PragmaThresholdReached) { 2465 ORE.emit([&]() { 2466 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2467 L->getStartLoc(), 2468 L->getHeader()) 2469 << "loop not vectorized: cannot prove it is safe to reorder " 2470 "memory operations"; 2471 }); 2472 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2473 Failed = true; 2474 } 2475 2476 return Failed; 2477 } 2478 2479 private: 2480 unsigned NumRuntimePointerChecks = 0; 2481 Instruction *UnsafeAlgebraInst = nullptr; 2482 2483 /// Interface to emit optimization remarks. 2484 OptimizationRemarkEmitter &ORE; 2485 }; 2486 2487 } // end anonymous namespace 2488 2489 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2490 if (L.empty()) { 2491 if (!hasCyclesInLoopBody(L)) 2492 V.push_back(&L); 2493 return; 2494 } 2495 for (Loop *InnerL : L) 2496 addAcyclicInnerLoop(*InnerL, V); 2497 } 2498 2499 namespace { 2500 2501 /// The LoopVectorize Pass. 2502 struct LoopVectorize : public FunctionPass { 2503 /// Pass identification, replacement for typeid 2504 static char ID; 2505 2506 LoopVectorizePass Impl; 2507 2508 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2509 : FunctionPass(ID) { 2510 Impl.DisableUnrolling = NoUnrolling; 2511 Impl.AlwaysVectorize = AlwaysVectorize; 2512 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2513 } 2514 2515 bool runOnFunction(Function &F) override { 2516 if (skipFunction(F)) 2517 return false; 2518 2519 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2520 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2521 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2522 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2523 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2524 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2525 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2526 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2527 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2528 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2529 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2530 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2531 2532 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2533 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2534 2535 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2536 GetLAA, *ORE); 2537 } 2538 2539 void getAnalysisUsage(AnalysisUsage &AU) const override { 2540 AU.addRequired<AssumptionCacheTracker>(); 2541 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2542 AU.addRequired<DominatorTreeWrapperPass>(); 2543 AU.addRequired<LoopInfoWrapperPass>(); 2544 AU.addRequired<ScalarEvolutionWrapperPass>(); 2545 AU.addRequired<TargetTransformInfoWrapperPass>(); 2546 AU.addRequired<AAResultsWrapperPass>(); 2547 AU.addRequired<LoopAccessLegacyAnalysis>(); 2548 AU.addRequired<DemandedBitsWrapperPass>(); 2549 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2550 AU.addPreserved<LoopInfoWrapperPass>(); 2551 AU.addPreserved<DominatorTreeWrapperPass>(); 2552 AU.addPreserved<BasicAAWrapperPass>(); 2553 AU.addPreserved<GlobalsAAWrapperPass>(); 2554 } 2555 }; 2556 2557 } // end anonymous namespace 2558 2559 //===----------------------------------------------------------------------===// 2560 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2561 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2562 //===----------------------------------------------------------------------===// 2563 2564 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2565 // We need to place the broadcast of invariant variables outside the loop. 2566 Instruction *Instr = dyn_cast<Instruction>(V); 2567 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2568 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2569 2570 // Place the code for broadcasting invariant variables in the new preheader. 2571 IRBuilder<>::InsertPointGuard Guard(Builder); 2572 if (Invariant) 2573 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2574 2575 // Broadcast the scalar into all locations in the vector. 2576 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2577 2578 return Shuf; 2579 } 2580 2581 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2582 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2583 Value *Start = II.getStartValue(); 2584 2585 // Construct the initial value of the vector IV in the vector loop preheader 2586 auto CurrIP = Builder.saveIP(); 2587 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2588 if (isa<TruncInst>(EntryVal)) { 2589 assert(Start->getType()->isIntegerTy() && 2590 "Truncation requires an integer type"); 2591 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2592 Step = Builder.CreateTrunc(Step, TruncType); 2593 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2594 } 2595 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2596 Value *SteppedStart = 2597 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2598 2599 // We create vector phi nodes for both integer and floating-point induction 2600 // variables. Here, we determine the kind of arithmetic we will perform. 2601 Instruction::BinaryOps AddOp; 2602 Instruction::BinaryOps MulOp; 2603 if (Step->getType()->isIntegerTy()) { 2604 AddOp = Instruction::Add; 2605 MulOp = Instruction::Mul; 2606 } else { 2607 AddOp = II.getInductionOpcode(); 2608 MulOp = Instruction::FMul; 2609 } 2610 2611 // Multiply the vectorization factor by the step using integer or 2612 // floating-point arithmetic as appropriate. 2613 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2614 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2615 2616 // Create a vector splat to use in the induction update. 2617 // 2618 // FIXME: If the step is non-constant, we create the vector splat with 2619 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2620 // handle a constant vector splat. 2621 Value *SplatVF = isa<Constant>(Mul) 2622 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2623 : Builder.CreateVectorSplat(VF, Mul); 2624 Builder.restoreIP(CurrIP); 2625 2626 // We may need to add the step a number of times, depending on the unroll 2627 // factor. The last of those goes into the PHI. 2628 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2629 &*LoopVectorBody->getFirstInsertionPt()); 2630 Instruction *LastInduction = VecInd; 2631 for (unsigned Part = 0; Part < UF; ++Part) { 2632 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2633 recordVectorLoopValueForInductionCast(II, LastInduction, Part); 2634 if (isa<TruncInst>(EntryVal)) 2635 addMetadata(LastInduction, EntryVal); 2636 LastInduction = cast<Instruction>(addFastMathFlag( 2637 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2638 } 2639 2640 // Move the last step to the end of the latch block. This ensures consistent 2641 // placement of all induction updates. 2642 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2643 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2644 auto *ICmp = cast<Instruction>(Br->getCondition()); 2645 LastInduction->moveBefore(ICmp); 2646 LastInduction->setName("vec.ind.next"); 2647 2648 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2649 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2650 } 2651 2652 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2653 return Cost->isScalarAfterVectorization(I, VF) || 2654 Cost->isProfitableToScalarize(I, VF); 2655 } 2656 2657 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2658 if (shouldScalarizeInstruction(IV)) 2659 return true; 2660 auto isScalarInst = [&](User *U) -> bool { 2661 auto *I = cast<Instruction>(U); 2662 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2663 }; 2664 return llvm::any_of(IV->users(), isScalarInst); 2665 } 2666 2667 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2668 const InductionDescriptor &ID, Value *VectorLoopVal, unsigned Part, 2669 unsigned Lane) { 2670 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2671 if (Casts.empty()) 2672 return; 2673 // Only the first Cast instruction in the Casts vector is of interest. 2674 // The rest of the Casts (if exist) have no uses outside the 2675 // induction update chain itself. 2676 Instruction *CastInst = *Casts.begin(); 2677 if (Lane < UINT_MAX) 2678 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2679 else 2680 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2681 } 2682 2683 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2684 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2685 "Primary induction variable must have an integer type"); 2686 2687 auto II = Legal->getInductionVars()->find(IV); 2688 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2689 2690 auto ID = II->second; 2691 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2692 2693 // The scalar value to broadcast. This will be derived from the canonical 2694 // induction variable. 2695 Value *ScalarIV = nullptr; 2696 2697 // The value from the original loop to which we are mapping the new induction 2698 // variable. 2699 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2700 2701 // True if we have vectorized the induction variable. 2702 auto VectorizedIV = false; 2703 2704 // Determine if we want a scalar version of the induction variable. This is 2705 // true if the induction variable itself is not widened, or if it has at 2706 // least one user in the loop that is not widened. 2707 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2708 2709 // Generate code for the induction step. Note that induction steps are 2710 // required to be loop-invariant 2711 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2712 "Induction step should be loop invariant"); 2713 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2714 Value *Step = nullptr; 2715 if (PSE.getSE()->isSCEVable(IV->getType())) { 2716 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2717 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2718 LoopVectorPreHeader->getTerminator()); 2719 } else { 2720 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2721 } 2722 2723 // Try to create a new independent vector induction variable. If we can't 2724 // create the phi node, we will splat the scalar induction variable in each 2725 // loop iteration. 2726 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2727 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2728 VectorizedIV = true; 2729 } 2730 2731 // If we haven't yet vectorized the induction variable, or if we will create 2732 // a scalar one, we need to define the scalar induction variable and step 2733 // values. If we were given a truncation type, truncate the canonical 2734 // induction variable and step. Otherwise, derive these values from the 2735 // induction descriptor. 2736 if (!VectorizedIV || NeedsScalarIV) { 2737 ScalarIV = Induction; 2738 if (IV != OldInduction) { 2739 ScalarIV = IV->getType()->isIntegerTy() 2740 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2741 : Builder.CreateCast(Instruction::SIToFP, Induction, 2742 IV->getType()); 2743 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2744 ScalarIV->setName("offset.idx"); 2745 } 2746 if (Trunc) { 2747 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2748 assert(Step->getType()->isIntegerTy() && 2749 "Truncation requires an integer step"); 2750 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2751 Step = Builder.CreateTrunc(Step, TruncType); 2752 } 2753 } 2754 2755 // If we haven't yet vectorized the induction variable, splat the scalar 2756 // induction variable, and build the necessary step vectors. 2757 if (!VectorizedIV) { 2758 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2759 for (unsigned Part = 0; Part < UF; ++Part) { 2760 Value *EntryPart = 2761 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2762 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2763 recordVectorLoopValueForInductionCast(ID, EntryPart, Part); 2764 if (Trunc) 2765 addMetadata(EntryPart, Trunc); 2766 } 2767 } 2768 2769 // If an induction variable is only used for counting loop iterations or 2770 // calculating addresses, it doesn't need to be widened. Create scalar steps 2771 // that can be used by instructions we will later scalarize. Note that the 2772 // addition of the scalar steps will not increase the number of instructions 2773 // in the loop in the common case prior to InstCombine. We will be trading 2774 // one vector extract for each scalar step. 2775 if (NeedsScalarIV) 2776 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2777 } 2778 2779 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2780 Instruction::BinaryOps BinOp) { 2781 // Create and check the types. 2782 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2783 int VLen = Val->getType()->getVectorNumElements(); 2784 2785 Type *STy = Val->getType()->getScalarType(); 2786 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2787 "Induction Step must be an integer or FP"); 2788 assert(Step->getType() == STy && "Step has wrong type"); 2789 2790 SmallVector<Constant *, 8> Indices; 2791 2792 if (STy->isIntegerTy()) { 2793 // Create a vector of consecutive numbers from zero to VF. 2794 for (int i = 0; i < VLen; ++i) 2795 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2796 2797 // Add the consecutive indices to the vector value. 2798 Constant *Cv = ConstantVector::get(Indices); 2799 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2800 Step = Builder.CreateVectorSplat(VLen, Step); 2801 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2802 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2803 // which can be found from the original scalar operations. 2804 Step = Builder.CreateMul(Cv, Step); 2805 return Builder.CreateAdd(Val, Step, "induction"); 2806 } 2807 2808 // Floating point induction. 2809 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2810 "Binary Opcode should be specified for FP induction"); 2811 // Create a vector of consecutive numbers from zero to VF. 2812 for (int i = 0; i < VLen; ++i) 2813 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2814 2815 // Add the consecutive indices to the vector value. 2816 Constant *Cv = ConstantVector::get(Indices); 2817 2818 Step = Builder.CreateVectorSplat(VLen, Step); 2819 2820 // Floating point operations had to be 'fast' to enable the induction. 2821 FastMathFlags Flags; 2822 Flags.setFast(); 2823 2824 Value *MulOp = Builder.CreateFMul(Cv, Step); 2825 if (isa<Instruction>(MulOp)) 2826 // Have to check, MulOp may be a constant 2827 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2828 2829 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2830 if (isa<Instruction>(BOp)) 2831 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2832 return BOp; 2833 } 2834 2835 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2836 Value *EntryVal, 2837 const InductionDescriptor &ID) { 2838 // We shouldn't have to build scalar steps if we aren't vectorizing. 2839 assert(VF > 1 && "VF should be greater than one"); 2840 2841 // Get the value type and ensure it and the step have the same integer type. 2842 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2843 assert(ScalarIVTy == Step->getType() && 2844 "Val and Step should have the same type"); 2845 2846 // We build scalar steps for both integer and floating-point induction 2847 // variables. Here, we determine the kind of arithmetic we will perform. 2848 Instruction::BinaryOps AddOp; 2849 Instruction::BinaryOps MulOp; 2850 if (ScalarIVTy->isIntegerTy()) { 2851 AddOp = Instruction::Add; 2852 MulOp = Instruction::Mul; 2853 } else { 2854 AddOp = ID.getInductionOpcode(); 2855 MulOp = Instruction::FMul; 2856 } 2857 2858 // Determine the number of scalars we need to generate for each unroll 2859 // iteration. If EntryVal is uniform, we only need to generate the first 2860 // lane. Otherwise, we generate all VF values. 2861 unsigned Lanes = 2862 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2863 : VF; 2864 // Compute the scalar steps and save the results in VectorLoopValueMap. 2865 for (unsigned Part = 0; Part < UF; ++Part) { 2866 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2867 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2868 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2869 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2870 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2871 recordVectorLoopValueForInductionCast(ID, Add, Part, Lane); 2872 } 2873 } 2874 } 2875 2876 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2877 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2878 ValueToValueMap(); 2879 2880 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2881 if (Stride == 1 || Stride == -1) 2882 return Stride; 2883 return 0; 2884 } 2885 2886 bool LoopVectorizationLegality::isUniform(Value *V) { 2887 return LAI->isUniform(V); 2888 } 2889 2890 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2891 assert(V != Induction && "The new induction variable should not be used."); 2892 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2893 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2894 2895 // If we have a stride that is replaced by one, do it here. 2896 if (Legal->hasStride(V)) 2897 V = ConstantInt::get(V->getType(), 1); 2898 2899 // If we have a vector mapped to this value, return it. 2900 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2901 return VectorLoopValueMap.getVectorValue(V, Part); 2902 2903 // If the value has not been vectorized, check if it has been scalarized 2904 // instead. If it has been scalarized, and we actually need the value in 2905 // vector form, we will construct the vector values on demand. 2906 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2907 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2908 2909 // If we've scalarized a value, that value should be an instruction. 2910 auto *I = cast<Instruction>(V); 2911 2912 // If we aren't vectorizing, we can just copy the scalar map values over to 2913 // the vector map. 2914 if (VF == 1) { 2915 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2916 return ScalarValue; 2917 } 2918 2919 // Get the last scalar instruction we generated for V and Part. If the value 2920 // is known to be uniform after vectorization, this corresponds to lane zero 2921 // of the Part unroll iteration. Otherwise, the last instruction is the one 2922 // we created for the last vector lane of the Part unroll iteration. 2923 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2924 auto *LastInst = cast<Instruction>( 2925 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2926 2927 // Set the insert point after the last scalarized instruction. This ensures 2928 // the insertelement sequence will directly follow the scalar definitions. 2929 auto OldIP = Builder.saveIP(); 2930 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2931 Builder.SetInsertPoint(&*NewIP); 2932 2933 // However, if we are vectorizing, we need to construct the vector values. 2934 // If the value is known to be uniform after vectorization, we can just 2935 // broadcast the scalar value corresponding to lane zero for each unroll 2936 // iteration. Otherwise, we construct the vector values using insertelement 2937 // instructions. Since the resulting vectors are stored in 2938 // VectorLoopValueMap, we will only generate the insertelements once. 2939 Value *VectorValue = nullptr; 2940 if (Cost->isUniformAfterVectorization(I, VF)) { 2941 VectorValue = getBroadcastInstrs(ScalarValue); 2942 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2943 } else { 2944 // Initialize packing with insertelements to start from undef. 2945 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2946 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2947 for (unsigned Lane = 0; Lane < VF; ++Lane) 2948 packScalarIntoVectorValue(V, {Part, Lane}); 2949 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2950 } 2951 Builder.restoreIP(OldIP); 2952 return VectorValue; 2953 } 2954 2955 // If this scalar is unknown, assume that it is a constant or that it is 2956 // loop invariant. Broadcast V and save the value for future uses. 2957 Value *B = getBroadcastInstrs(V); 2958 VectorLoopValueMap.setVectorValue(V, Part, B); 2959 return B; 2960 } 2961 2962 Value * 2963 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2964 const VPIteration &Instance) { 2965 // If the value is not an instruction contained in the loop, it should 2966 // already be scalar. 2967 if (OrigLoop->isLoopInvariant(V)) 2968 return V; 2969 2970 assert(Instance.Lane > 0 2971 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2972 : true && "Uniform values only have lane zero"); 2973 2974 // If the value from the original loop has not been vectorized, it is 2975 // represented by UF x VF scalar values in the new loop. Return the requested 2976 // scalar value. 2977 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2978 return VectorLoopValueMap.getScalarValue(V, Instance); 2979 2980 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2981 // for the given unroll part. If this entry is not a vector type (i.e., the 2982 // vectorization factor is one), there is no need to generate an 2983 // extractelement instruction. 2984 auto *U = getOrCreateVectorValue(V, Instance.Part); 2985 if (!U->getType()->isVectorTy()) { 2986 assert(VF == 1 && "Value not scalarized has non-vector type"); 2987 return U; 2988 } 2989 2990 // Otherwise, the value from the original loop has been vectorized and is 2991 // represented by UF vector values. Extract and return the requested scalar 2992 // value from the appropriate vector lane. 2993 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2994 } 2995 2996 void InnerLoopVectorizer::packScalarIntoVectorValue( 2997 Value *V, const VPIteration &Instance) { 2998 assert(V != Induction && "The new induction variable should not be used."); 2999 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 3000 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 3001 3002 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 3003 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 3004 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 3005 Builder.getInt32(Instance.Lane)); 3006 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 3007 } 3008 3009 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 3010 assert(Vec->getType()->isVectorTy() && "Invalid type"); 3011 SmallVector<Constant *, 8> ShuffleMask; 3012 for (unsigned i = 0; i < VF; ++i) 3013 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 3014 3015 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 3016 ConstantVector::get(ShuffleMask), 3017 "reverse"); 3018 } 3019 3020 // Try to vectorize the interleave group that \p Instr belongs to. 3021 // 3022 // E.g. Translate following interleaved load group (factor = 3): 3023 // for (i = 0; i < N; i+=3) { 3024 // R = Pic[i]; // Member of index 0 3025 // G = Pic[i+1]; // Member of index 1 3026 // B = Pic[i+2]; // Member of index 2 3027 // ... // do something to R, G, B 3028 // } 3029 // To: 3030 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 3031 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 3032 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 3033 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 3034 // 3035 // Or translate following interleaved store group (factor = 3): 3036 // for (i = 0; i < N; i+=3) { 3037 // ... do something to R, G, B 3038 // Pic[i] = R; // Member of index 0 3039 // Pic[i+1] = G; // Member of index 1 3040 // Pic[i+2] = B; // Member of index 2 3041 // } 3042 // To: 3043 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 3044 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 3045 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 3046 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 3047 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 3048 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 3049 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 3050 assert(Group && "Fail to get an interleaved access group."); 3051 3052 // Skip if current instruction is not the insert position. 3053 if (Instr != Group->getInsertPos()) 3054 return; 3055 3056 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3057 Value *Ptr = getPointerOperand(Instr); 3058 3059 // Prepare for the vector type of the interleaved load/store. 3060 Type *ScalarTy = getMemInstValueType(Instr); 3061 unsigned InterleaveFactor = Group->getFactor(); 3062 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 3063 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 3064 3065 // Prepare for the new pointers. 3066 setDebugLocFromInst(Builder, Ptr); 3067 SmallVector<Value *, 2> NewPtrs; 3068 unsigned Index = Group->getIndex(Instr); 3069 3070 // If the group is reverse, adjust the index to refer to the last vector lane 3071 // instead of the first. We adjust the index from the first vector lane, 3072 // rather than directly getting the pointer for lane VF - 1, because the 3073 // pointer operand of the interleaved access is supposed to be uniform. For 3074 // uniform instructions, we're only required to generate a value for the 3075 // first vector lane in each unroll iteration. 3076 if (Group->isReverse()) 3077 Index += (VF - 1) * Group->getFactor(); 3078 3079 for (unsigned Part = 0; Part < UF; Part++) { 3080 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 3081 3082 // Notice current instruction could be any index. Need to adjust the address 3083 // to the member of index 0. 3084 // 3085 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 3086 // b = A[i]; // Member of index 0 3087 // Current pointer is pointed to A[i+1], adjust it to A[i]. 3088 // 3089 // E.g. A[i+1] = a; // Member of index 1 3090 // A[i] = b; // Member of index 0 3091 // A[i+2] = c; // Member of index 2 (Current instruction) 3092 // Current pointer is pointed to A[i+2], adjust it to A[i]. 3093 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 3094 3095 // Cast to the vector pointer type. 3096 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 3097 } 3098 3099 setDebugLocFromInst(Builder, Instr); 3100 Value *UndefVec = UndefValue::get(VecTy); 3101 3102 // Vectorize the interleaved load group. 3103 if (isa<LoadInst>(Instr)) { 3104 // For each unroll part, create a wide load for the group. 3105 SmallVector<Value *, 2> NewLoads; 3106 for (unsigned Part = 0; Part < UF; Part++) { 3107 auto *NewLoad = Builder.CreateAlignedLoad( 3108 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 3109 Group->addMetadata(NewLoad); 3110 NewLoads.push_back(NewLoad); 3111 } 3112 3113 // For each member in the group, shuffle out the appropriate data from the 3114 // wide loads. 3115 for (unsigned I = 0; I < InterleaveFactor; ++I) { 3116 Instruction *Member = Group->getMember(I); 3117 3118 // Skip the gaps in the group. 3119 if (!Member) 3120 continue; 3121 3122 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 3123 for (unsigned Part = 0; Part < UF; Part++) { 3124 Value *StridedVec = Builder.CreateShuffleVector( 3125 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 3126 3127 // If this member has different type, cast the result type. 3128 if (Member->getType() != ScalarTy) { 3129 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 3130 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 3131 } 3132 3133 if (Group->isReverse()) 3134 StridedVec = reverseVector(StridedVec); 3135 3136 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 3137 } 3138 } 3139 return; 3140 } 3141 3142 // The sub vector type for current instruction. 3143 VectorType *SubVT = VectorType::get(ScalarTy, VF); 3144 3145 // Vectorize the interleaved store group. 3146 for (unsigned Part = 0; Part < UF; Part++) { 3147 // Collect the stored vector from each member. 3148 SmallVector<Value *, 4> StoredVecs; 3149 for (unsigned i = 0; i < InterleaveFactor; i++) { 3150 // Interleaved store group doesn't allow a gap, so each index has a member 3151 Instruction *Member = Group->getMember(i); 3152 assert(Member && "Fail to get a member from an interleaved store group"); 3153 3154 Value *StoredVec = getOrCreateVectorValue( 3155 cast<StoreInst>(Member)->getValueOperand(), Part); 3156 if (Group->isReverse()) 3157 StoredVec = reverseVector(StoredVec); 3158 3159 // If this member has different type, cast it to a unified type. 3160 3161 if (StoredVec->getType() != SubVT) 3162 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 3163 3164 StoredVecs.push_back(StoredVec); 3165 } 3166 3167 // Concatenate all vectors into a wide vector. 3168 Value *WideVec = concatenateVectors(Builder, StoredVecs); 3169 3170 // Interleave the elements in the wide vector. 3171 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 3172 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 3173 "interleaved.vec"); 3174 3175 Instruction *NewStoreInstr = 3176 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 3177 3178 Group->addMetadata(NewStoreInstr); 3179 } 3180 } 3181 3182 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 3183 VectorParts *BlockInMask) { 3184 // Attempt to issue a wide load. 3185 LoadInst *LI = dyn_cast<LoadInst>(Instr); 3186 StoreInst *SI = dyn_cast<StoreInst>(Instr); 3187 3188 assert((LI || SI) && "Invalid Load/Store instruction"); 3189 3190 LoopVectorizationCostModel::InstWidening Decision = 3191 Cost->getWideningDecision(Instr, VF); 3192 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3193 "CM decision should be taken at this point"); 3194 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3195 return vectorizeInterleaveGroup(Instr); 3196 3197 Type *ScalarDataTy = getMemInstValueType(Instr); 3198 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3199 Value *Ptr = getPointerOperand(Instr); 3200 unsigned Alignment = getMemInstAlignment(Instr); 3201 // An alignment of 0 means target abi alignment. We need to use the scalar's 3202 // target abi alignment in such a case. 3203 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3204 if (!Alignment) 3205 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3206 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3207 3208 // Determine if the pointer operand of the access is either consecutive or 3209 // reverse consecutive. 3210 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 3211 bool ConsecutiveStride = 3212 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 3213 bool CreateGatherScatter = 3214 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3215 3216 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3217 // gather/scatter. Otherwise Decision should have been to Scalarize. 3218 assert((ConsecutiveStride || CreateGatherScatter) && 3219 "The instruction should be scalarized"); 3220 3221 // Handle consecutive loads/stores. 3222 if (ConsecutiveStride) 3223 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3224 3225 VectorParts Mask; 3226 bool isMaskRequired = BlockInMask; 3227 if (isMaskRequired) 3228 Mask = *BlockInMask; 3229 3230 // Handle Stores: 3231 if (SI) { 3232 assert(!Legal->isUniform(SI->getPointerOperand()) && 3233 "We do not allow storing to uniform addresses"); 3234 setDebugLocFromInst(Builder, SI); 3235 3236 for (unsigned Part = 0; Part < UF; ++Part) { 3237 Instruction *NewSI = nullptr; 3238 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3239 if (CreateGatherScatter) { 3240 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3241 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3242 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3243 MaskPart); 3244 } else { 3245 // Calculate the pointer for the specific unroll-part. 3246 Value *PartPtr = 3247 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3248 3249 if (Reverse) { 3250 // If we store to reverse consecutive memory locations, then we need 3251 // to reverse the order of elements in the stored value. 3252 StoredVal = reverseVector(StoredVal); 3253 // We don't want to update the value in the map as it might be used in 3254 // another expression. So don't call resetVectorValue(StoredVal). 3255 3256 // If the address is consecutive but reversed, then the 3257 // wide store needs to start at the last vector element. 3258 PartPtr = 3259 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3260 PartPtr = 3261 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3262 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3263 Mask[Part] = reverseVector(Mask[Part]); 3264 } 3265 3266 Value *VecPtr = 3267 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3268 3269 if (isMaskRequired) 3270 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3271 Mask[Part]); 3272 else 3273 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3274 } 3275 addMetadata(NewSI, SI); 3276 } 3277 return; 3278 } 3279 3280 // Handle loads. 3281 assert(LI && "Must have a load instruction"); 3282 setDebugLocFromInst(Builder, LI); 3283 for (unsigned Part = 0; Part < UF; ++Part) { 3284 Value *NewLI; 3285 if (CreateGatherScatter) { 3286 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3287 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3288 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3289 nullptr, "wide.masked.gather"); 3290 addMetadata(NewLI, LI); 3291 } else { 3292 // Calculate the pointer for the specific unroll-part. 3293 Value *PartPtr = 3294 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3295 3296 if (Reverse) { 3297 // If the address is consecutive but reversed, then the 3298 // wide load needs to start at the last vector element. 3299 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3300 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3301 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3302 Mask[Part] = reverseVector(Mask[Part]); 3303 } 3304 3305 Value *VecPtr = 3306 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3307 if (isMaskRequired) 3308 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3309 UndefValue::get(DataTy), 3310 "wide.masked.load"); 3311 else 3312 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3313 3314 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3315 addMetadata(NewLI, LI); 3316 if (Reverse) 3317 NewLI = reverseVector(NewLI); 3318 } 3319 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3320 } 3321 } 3322 3323 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3324 const VPIteration &Instance, 3325 bool IfPredicateInstr) { 3326 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3327 3328 setDebugLocFromInst(Builder, Instr); 3329 3330 // Does this instruction return a value ? 3331 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3332 3333 Instruction *Cloned = Instr->clone(); 3334 if (!IsVoidRetTy) 3335 Cloned->setName(Instr->getName() + ".cloned"); 3336 3337 // Replace the operands of the cloned instructions with their scalar 3338 // equivalents in the new loop. 3339 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3340 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3341 Cloned->setOperand(op, NewOp); 3342 } 3343 addNewMetadata(Cloned, Instr); 3344 3345 // Place the cloned scalar in the new loop. 3346 Builder.Insert(Cloned); 3347 3348 // Add the cloned scalar to the scalar map entry. 3349 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3350 3351 // If we just cloned a new assumption, add it the assumption cache. 3352 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3353 if (II->getIntrinsicID() == Intrinsic::assume) 3354 AC->registerAssumption(II); 3355 3356 // End if-block. 3357 if (IfPredicateInstr) 3358 PredicatedInstructions.push_back(Cloned); 3359 } 3360 3361 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3362 Value *End, Value *Step, 3363 Instruction *DL) { 3364 BasicBlock *Header = L->getHeader(); 3365 BasicBlock *Latch = L->getLoopLatch(); 3366 // As we're just creating this loop, it's possible no latch exists 3367 // yet. If so, use the header as this will be a single block loop. 3368 if (!Latch) 3369 Latch = Header; 3370 3371 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3372 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3373 setDebugLocFromInst(Builder, OldInst); 3374 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3375 3376 Builder.SetInsertPoint(Latch->getTerminator()); 3377 setDebugLocFromInst(Builder, OldInst); 3378 3379 // Create i+1 and fill the PHINode. 3380 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3381 Induction->addIncoming(Start, L->getLoopPreheader()); 3382 Induction->addIncoming(Next, Latch); 3383 // Create the compare. 3384 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3385 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3386 3387 // Now we have two terminators. Remove the old one from the block. 3388 Latch->getTerminator()->eraseFromParent(); 3389 3390 return Induction; 3391 } 3392 3393 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3394 if (TripCount) 3395 return TripCount; 3396 3397 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3398 // Find the loop boundaries. 3399 ScalarEvolution *SE = PSE.getSE(); 3400 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3401 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3402 "Invalid loop count"); 3403 3404 Type *IdxTy = Legal->getWidestInductionType(); 3405 3406 // The exit count might have the type of i64 while the phi is i32. This can 3407 // happen if we have an induction variable that is sign extended before the 3408 // compare. The only way that we get a backedge taken count is that the 3409 // induction variable was signed and as such will not overflow. In such a case 3410 // truncation is legal. 3411 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3412 IdxTy->getPrimitiveSizeInBits()) 3413 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3414 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3415 3416 // Get the total trip count from the count by adding 1. 3417 const SCEV *ExitCount = SE->getAddExpr( 3418 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3419 3420 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3421 3422 // Expand the trip count and place the new instructions in the preheader. 3423 // Notice that the pre-header does not change, only the loop body. 3424 SCEVExpander Exp(*SE, DL, "induction"); 3425 3426 // Count holds the overall loop count (N). 3427 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3428 L->getLoopPreheader()->getTerminator()); 3429 3430 if (TripCount->getType()->isPointerTy()) 3431 TripCount = 3432 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3433 L->getLoopPreheader()->getTerminator()); 3434 3435 return TripCount; 3436 } 3437 3438 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3439 if (VectorTripCount) 3440 return VectorTripCount; 3441 3442 Value *TC = getOrCreateTripCount(L); 3443 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3444 3445 // Now we need to generate the expression for the part of the loop that the 3446 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3447 // iterations are not required for correctness, or N - Step, otherwise. Step 3448 // is equal to the vectorization factor (number of SIMD elements) times the 3449 // unroll factor (number of SIMD instructions). 3450 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3451 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3452 3453 // If there is a non-reversed interleaved group that may speculatively access 3454 // memory out-of-bounds, we need to ensure that there will be at least one 3455 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3456 // the trip count, we set the remainder to be equal to the step. If the step 3457 // does not evenly divide the trip count, no adjustment is necessary since 3458 // there will already be scalar iterations. Note that the minimum iterations 3459 // check ensures that N >= Step. 3460 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3461 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3462 R = Builder.CreateSelect(IsZero, Step, R); 3463 } 3464 3465 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3466 3467 return VectorTripCount; 3468 } 3469 3470 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3471 const DataLayout &DL) { 3472 // Verify that V is a vector type with same number of elements as DstVTy. 3473 unsigned VF = DstVTy->getNumElements(); 3474 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3475 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3476 Type *SrcElemTy = SrcVecTy->getElementType(); 3477 Type *DstElemTy = DstVTy->getElementType(); 3478 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3479 "Vector elements must have same size"); 3480 3481 // Do a direct cast if element types are castable. 3482 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3483 return Builder.CreateBitOrPointerCast(V, DstVTy); 3484 } 3485 // V cannot be directly casted to desired vector type. 3486 // May happen when V is a floating point vector but DstVTy is a vector of 3487 // pointers or vice-versa. Handle this using a two-step bitcast using an 3488 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3489 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3490 "Only one type should be a pointer type"); 3491 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3492 "Only one type should be a floating point type"); 3493 Type *IntTy = 3494 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3495 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3496 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3497 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3498 } 3499 3500 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3501 BasicBlock *Bypass) { 3502 Value *Count = getOrCreateTripCount(L); 3503 BasicBlock *BB = L->getLoopPreheader(); 3504 IRBuilder<> Builder(BB->getTerminator()); 3505 3506 // Generate code to check if the loop's trip count is less than VF * UF, or 3507 // equal to it in case a scalar epilogue is required; this implies that the 3508 // vector trip count is zero. This check also covers the case where adding one 3509 // to the backedge-taken count overflowed leading to an incorrect trip count 3510 // of zero. In this case we will also jump to the scalar loop. 3511 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3512 : ICmpInst::ICMP_ULT; 3513 Value *CheckMinIters = Builder.CreateICmp( 3514 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3515 3516 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3517 // Update dominator tree immediately if the generated block is a 3518 // LoopBypassBlock because SCEV expansions to generate loop bypass 3519 // checks may query it before the current function is finished. 3520 DT->addNewBlock(NewBB, BB); 3521 if (L->getParentLoop()) 3522 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3523 ReplaceInstWithInst(BB->getTerminator(), 3524 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3525 LoopBypassBlocks.push_back(BB); 3526 } 3527 3528 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3529 BasicBlock *BB = L->getLoopPreheader(); 3530 3531 // Generate the code to check that the SCEV assumptions that we made. 3532 // We want the new basic block to start at the first instruction in a 3533 // sequence of instructions that form a check. 3534 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3535 "scev.check"); 3536 Value *SCEVCheck = 3537 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3538 3539 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3540 if (C->isZero()) 3541 return; 3542 3543 // Create a new block containing the stride check. 3544 BB->setName("vector.scevcheck"); 3545 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3546 // Update dominator tree immediately if the generated block is a 3547 // LoopBypassBlock because SCEV expansions to generate loop bypass 3548 // checks may query it before the current function is finished. 3549 DT->addNewBlock(NewBB, BB); 3550 if (L->getParentLoop()) 3551 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3552 ReplaceInstWithInst(BB->getTerminator(), 3553 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3554 LoopBypassBlocks.push_back(BB); 3555 AddedSafetyChecks = true; 3556 } 3557 3558 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3559 BasicBlock *BB = L->getLoopPreheader(); 3560 3561 // Generate the code that checks in runtime if arrays overlap. We put the 3562 // checks into a separate block to make the more common case of few elements 3563 // faster. 3564 Instruction *FirstCheckInst; 3565 Instruction *MemRuntimeCheck; 3566 std::tie(FirstCheckInst, MemRuntimeCheck) = 3567 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3568 if (!MemRuntimeCheck) 3569 return; 3570 3571 // Create a new block containing the memory check. 3572 BB->setName("vector.memcheck"); 3573 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3574 // Update dominator tree immediately if the generated block is a 3575 // LoopBypassBlock because SCEV expansions to generate loop bypass 3576 // checks may query it before the current function is finished. 3577 DT->addNewBlock(NewBB, BB); 3578 if (L->getParentLoop()) 3579 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3580 ReplaceInstWithInst(BB->getTerminator(), 3581 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3582 LoopBypassBlocks.push_back(BB); 3583 AddedSafetyChecks = true; 3584 3585 // We currently don't use LoopVersioning for the actual loop cloning but we 3586 // still use it to add the noalias metadata. 3587 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3588 PSE.getSE()); 3589 LVer->prepareNoAliasMetadata(); 3590 } 3591 3592 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3593 /* 3594 In this function we generate a new loop. The new loop will contain 3595 the vectorized instructions while the old loop will continue to run the 3596 scalar remainder. 3597 3598 [ ] <-- loop iteration number check. 3599 / | 3600 / v 3601 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3602 | / | 3603 | / v 3604 || [ ] <-- vector pre header. 3605 |/ | 3606 | v 3607 | [ ] \ 3608 | [ ]_| <-- vector loop. 3609 | | 3610 | v 3611 | -[ ] <--- middle-block. 3612 | / | 3613 | / v 3614 -|- >[ ] <--- new preheader. 3615 | | 3616 | v 3617 | [ ] \ 3618 | [ ]_| <-- old scalar loop to handle remainder. 3619 \ | 3620 \ v 3621 >[ ] <-- exit block. 3622 ... 3623 */ 3624 3625 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3626 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3627 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3628 assert(VectorPH && "Invalid loop structure"); 3629 assert(ExitBlock && "Must have an exit block"); 3630 3631 // Some loops have a single integer induction variable, while other loops 3632 // don't. One example is c++ iterators that often have multiple pointer 3633 // induction variables. In the code below we also support a case where we 3634 // don't have a single induction variable. 3635 // 3636 // We try to obtain an induction variable from the original loop as hard 3637 // as possible. However if we don't find one that: 3638 // - is an integer 3639 // - counts from zero, stepping by one 3640 // - is the size of the widest induction variable type 3641 // then we create a new one. 3642 OldInduction = Legal->getPrimaryInduction(); 3643 Type *IdxTy = Legal->getWidestInductionType(); 3644 3645 // Split the single block loop into the two loop structure described above. 3646 BasicBlock *VecBody = 3647 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3648 BasicBlock *MiddleBlock = 3649 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3650 BasicBlock *ScalarPH = 3651 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3652 3653 // Create and register the new vector loop. 3654 Loop *Lp = LI->AllocateLoop(); 3655 Loop *ParentLoop = OrigLoop->getParentLoop(); 3656 3657 // Insert the new loop into the loop nest and register the new basic blocks 3658 // before calling any utilities such as SCEV that require valid LoopInfo. 3659 if (ParentLoop) { 3660 ParentLoop->addChildLoop(Lp); 3661 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3662 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3663 } else { 3664 LI->addTopLevelLoop(Lp); 3665 } 3666 Lp->addBasicBlockToLoop(VecBody, *LI); 3667 3668 // Find the loop boundaries. 3669 Value *Count = getOrCreateTripCount(Lp); 3670 3671 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3672 3673 // Now, compare the new count to zero. If it is zero skip the vector loop and 3674 // jump to the scalar loop. This check also covers the case where the 3675 // backedge-taken count is uint##_max: adding one to it will overflow leading 3676 // to an incorrect trip count of zero. In this (rare) case we will also jump 3677 // to the scalar loop. 3678 emitMinimumIterationCountCheck(Lp, ScalarPH); 3679 3680 // Generate the code to check any assumptions that we've made for SCEV 3681 // expressions. 3682 emitSCEVChecks(Lp, ScalarPH); 3683 3684 // Generate the code that checks in runtime if arrays overlap. We put the 3685 // checks into a separate block to make the more common case of few elements 3686 // faster. 3687 emitMemRuntimeChecks(Lp, ScalarPH); 3688 3689 // Generate the induction variable. 3690 // The loop step is equal to the vectorization factor (num of SIMD elements) 3691 // times the unroll factor (num of SIMD instructions). 3692 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3693 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3694 Induction = 3695 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3696 getDebugLocFromInstOrOperands(OldInduction)); 3697 3698 // We are going to resume the execution of the scalar loop. 3699 // Go over all of the induction variables that we found and fix the 3700 // PHIs that are left in the scalar version of the loop. 3701 // The starting values of PHI nodes depend on the counter of the last 3702 // iteration in the vectorized loop. 3703 // If we come from a bypass edge then we need to start from the original 3704 // start value. 3705 3706 // This variable saves the new starting index for the scalar loop. It is used 3707 // to test if there are any tail iterations left once the vector loop has 3708 // completed. 3709 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3710 for (auto &InductionEntry : *List) { 3711 PHINode *OrigPhi = InductionEntry.first; 3712 InductionDescriptor II = InductionEntry.second; 3713 3714 // Create phi nodes to merge from the backedge-taken check block. 3715 PHINode *BCResumeVal = PHINode::Create( 3716 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3717 Value *&EndValue = IVEndValues[OrigPhi]; 3718 if (OrigPhi == OldInduction) { 3719 // We know what the end value is. 3720 EndValue = CountRoundDown; 3721 } else { 3722 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3723 Type *StepType = II.getStep()->getType(); 3724 Instruction::CastOps CastOp = 3725 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3726 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3727 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3728 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3729 EndValue->setName("ind.end"); 3730 } 3731 3732 // The new PHI merges the original incoming value, in case of a bypass, 3733 // or the value at the end of the vectorized loop. 3734 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3735 3736 // Fix the scalar body counter (PHI node). 3737 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3738 3739 // The old induction's phi node in the scalar body needs the truncated 3740 // value. 3741 for (BasicBlock *BB : LoopBypassBlocks) 3742 BCResumeVal->addIncoming(II.getStartValue(), BB); 3743 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3744 } 3745 3746 // Add a check in the middle block to see if we have completed 3747 // all of the iterations in the first vector loop. 3748 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3749 Value *CmpN = 3750 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3751 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3752 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3753 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3754 3755 // Get ready to start creating new instructions into the vectorized body. 3756 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3757 3758 // Save the state. 3759 LoopVectorPreHeader = Lp->getLoopPreheader(); 3760 LoopScalarPreHeader = ScalarPH; 3761 LoopMiddleBlock = MiddleBlock; 3762 LoopExitBlock = ExitBlock; 3763 LoopVectorBody = VecBody; 3764 LoopScalarBody = OldBasicBlock; 3765 3766 // Keep all loop hints from the original loop on the vector loop (we'll 3767 // replace the vectorizer-specific hints below). 3768 if (MDNode *LID = OrigLoop->getLoopID()) 3769 Lp->setLoopID(LID); 3770 3771 LoopVectorizeHints Hints(Lp, true, *ORE); 3772 Hints.setAlreadyVectorized(); 3773 3774 return LoopVectorPreHeader; 3775 } 3776 3777 // Fix up external users of the induction variable. At this point, we are 3778 // in LCSSA form, with all external PHIs that use the IV having one input value, 3779 // coming from the remainder loop. We need those PHIs to also have a correct 3780 // value for the IV when arriving directly from the middle block. 3781 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3782 const InductionDescriptor &II, 3783 Value *CountRoundDown, Value *EndValue, 3784 BasicBlock *MiddleBlock) { 3785 // There are two kinds of external IV usages - those that use the value 3786 // computed in the last iteration (the PHI) and those that use the penultimate 3787 // value (the value that feeds into the phi from the loop latch). 3788 // We allow both, but they, obviously, have different values. 3789 3790 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3791 3792 DenseMap<Value *, Value *> MissingVals; 3793 3794 // An external user of the last iteration's value should see the value that 3795 // the remainder loop uses to initialize its own IV. 3796 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3797 for (User *U : PostInc->users()) { 3798 Instruction *UI = cast<Instruction>(U); 3799 if (!OrigLoop->contains(UI)) { 3800 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3801 MissingVals[UI] = EndValue; 3802 } 3803 } 3804 3805 // An external user of the penultimate value need to see EndValue - Step. 3806 // The simplest way to get this is to recompute it from the constituent SCEVs, 3807 // that is Start + (Step * (CRD - 1)). 3808 for (User *U : OrigPhi->users()) { 3809 auto *UI = cast<Instruction>(U); 3810 if (!OrigLoop->contains(UI)) { 3811 const DataLayout &DL = 3812 OrigLoop->getHeader()->getModule()->getDataLayout(); 3813 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3814 3815 IRBuilder<> B(MiddleBlock->getTerminator()); 3816 Value *CountMinusOne = B.CreateSub( 3817 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3818 Value *CMO = 3819 !II.getStep()->getType()->isIntegerTy() 3820 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3821 II.getStep()->getType()) 3822 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3823 CMO->setName("cast.cmo"); 3824 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3825 Escape->setName("ind.escape"); 3826 MissingVals[UI] = Escape; 3827 } 3828 } 3829 3830 for (auto &I : MissingVals) { 3831 PHINode *PHI = cast<PHINode>(I.first); 3832 // One corner case we have to handle is two IVs "chasing" each-other, 3833 // that is %IV2 = phi [...], [ %IV1, %latch ] 3834 // In this case, if IV1 has an external use, we need to avoid adding both 3835 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3836 // don't already have an incoming value for the middle block. 3837 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3838 PHI->addIncoming(I.second, MiddleBlock); 3839 } 3840 } 3841 3842 namespace { 3843 3844 struct CSEDenseMapInfo { 3845 static bool canHandle(const Instruction *I) { 3846 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3847 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3848 } 3849 3850 static inline Instruction *getEmptyKey() { 3851 return DenseMapInfo<Instruction *>::getEmptyKey(); 3852 } 3853 3854 static inline Instruction *getTombstoneKey() { 3855 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3856 } 3857 3858 static unsigned getHashValue(const Instruction *I) { 3859 assert(canHandle(I) && "Unknown instruction!"); 3860 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3861 I->value_op_end())); 3862 } 3863 3864 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3865 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3866 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3867 return LHS == RHS; 3868 return LHS->isIdenticalTo(RHS); 3869 } 3870 }; 3871 3872 } // end anonymous namespace 3873 3874 ///\brief Perform cse of induction variable instructions. 3875 static void cse(BasicBlock *BB) { 3876 // Perform simple cse. 3877 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3878 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3879 Instruction *In = &*I++; 3880 3881 if (!CSEDenseMapInfo::canHandle(In)) 3882 continue; 3883 3884 // Check if we can replace this instruction with any of the 3885 // visited instructions. 3886 if (Instruction *V = CSEMap.lookup(In)) { 3887 In->replaceAllUsesWith(V); 3888 In->eraseFromParent(); 3889 continue; 3890 } 3891 3892 CSEMap[In] = In; 3893 } 3894 } 3895 3896 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3897 /// convenience wrapper for the type-based getScalarizationOverhead API. 3898 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3899 const TargetTransformInfo &TTI) { 3900 if (VF == 1) 3901 return 0; 3902 3903 unsigned Cost = 0; 3904 Type *RetTy = ToVectorTy(I->getType(), VF); 3905 if (!RetTy->isVoidTy() && 3906 (!isa<LoadInst>(I) || 3907 !TTI.supportsEfficientVectorElementLoadStore())) 3908 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3909 3910 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3911 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3912 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3913 } 3914 else if (!isa<StoreInst>(I) || 3915 !TTI.supportsEfficientVectorElementLoadStore()) { 3916 SmallVector<const Value *, 4> Operands(I->operand_values()); 3917 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3918 } 3919 3920 return Cost; 3921 } 3922 3923 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3924 // Return the cost of the instruction, including scalarization overhead if it's 3925 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3926 // i.e. either vector version isn't available, or is too expensive. 3927 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3928 const TargetTransformInfo &TTI, 3929 const TargetLibraryInfo *TLI, 3930 bool &NeedToScalarize) { 3931 Function *F = CI->getCalledFunction(); 3932 StringRef FnName = CI->getCalledFunction()->getName(); 3933 Type *ScalarRetTy = CI->getType(); 3934 SmallVector<Type *, 4> Tys, ScalarTys; 3935 for (auto &ArgOp : CI->arg_operands()) 3936 ScalarTys.push_back(ArgOp->getType()); 3937 3938 // Estimate cost of scalarized vector call. The source operands are assumed 3939 // to be vectors, so we need to extract individual elements from there, 3940 // execute VF scalar calls, and then gather the result into the vector return 3941 // value. 3942 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3943 if (VF == 1) 3944 return ScalarCallCost; 3945 3946 // Compute corresponding vector type for return value and arguments. 3947 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3948 for (Type *ScalarTy : ScalarTys) 3949 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3950 3951 // Compute costs of unpacking argument values for the scalar calls and 3952 // packing the return values to a vector. 3953 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3954 3955 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3956 3957 // If we can't emit a vector call for this function, then the currently found 3958 // cost is the cost we need to return. 3959 NeedToScalarize = true; 3960 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3961 return Cost; 3962 3963 // If the corresponding vector cost is cheaper, return its cost. 3964 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3965 if (VectorCallCost < Cost) { 3966 NeedToScalarize = false; 3967 return VectorCallCost; 3968 } 3969 return Cost; 3970 } 3971 3972 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3973 // factor VF. Return the cost of the instruction, including scalarization 3974 // overhead if it's needed. 3975 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3976 const TargetTransformInfo &TTI, 3977 const TargetLibraryInfo *TLI) { 3978 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3979 assert(ID && "Expected intrinsic call!"); 3980 3981 FastMathFlags FMF; 3982 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3983 FMF = FPMO->getFastMathFlags(); 3984 3985 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3986 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3987 } 3988 3989 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3990 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3991 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3992 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3993 } 3994 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3995 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3996 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3997 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3998 } 3999 4000 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 4001 // For every instruction `I` in MinBWs, truncate the operands, create a 4002 // truncated version of `I` and reextend its result. InstCombine runs 4003 // later and will remove any ext/trunc pairs. 4004 SmallPtrSet<Value *, 4> Erased; 4005 for (const auto &KV : Cost->getMinimalBitwidths()) { 4006 // If the value wasn't vectorized, we must maintain the original scalar 4007 // type. The absence of the value from VectorLoopValueMap indicates that it 4008 // wasn't vectorized. 4009 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4010 continue; 4011 for (unsigned Part = 0; Part < UF; ++Part) { 4012 Value *I = getOrCreateVectorValue(KV.first, Part); 4013 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 4014 continue; 4015 Type *OriginalTy = I->getType(); 4016 Type *ScalarTruncatedTy = 4017 IntegerType::get(OriginalTy->getContext(), KV.second); 4018 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 4019 OriginalTy->getVectorNumElements()); 4020 if (TruncatedTy == OriginalTy) 4021 continue; 4022 4023 IRBuilder<> B(cast<Instruction>(I)); 4024 auto ShrinkOperand = [&](Value *V) -> Value * { 4025 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4026 if (ZI->getSrcTy() == TruncatedTy) 4027 return ZI->getOperand(0); 4028 return B.CreateZExtOrTrunc(V, TruncatedTy); 4029 }; 4030 4031 // The actual instruction modification depends on the instruction type, 4032 // unfortunately. 4033 Value *NewI = nullptr; 4034 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4035 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4036 ShrinkOperand(BO->getOperand(1))); 4037 4038 // Any wrapping introduced by shrinking this operation shouldn't be 4039 // considered undefined behavior. So, we can't unconditionally copy 4040 // arithmetic wrapping flags to NewI. 4041 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4042 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4043 NewI = 4044 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4045 ShrinkOperand(CI->getOperand(1))); 4046 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4047 NewI = B.CreateSelect(SI->getCondition(), 4048 ShrinkOperand(SI->getTrueValue()), 4049 ShrinkOperand(SI->getFalseValue())); 4050 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4051 switch (CI->getOpcode()) { 4052 default: 4053 llvm_unreachable("Unhandled cast!"); 4054 case Instruction::Trunc: 4055 NewI = ShrinkOperand(CI->getOperand(0)); 4056 break; 4057 case Instruction::SExt: 4058 NewI = B.CreateSExtOrTrunc( 4059 CI->getOperand(0), 4060 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4061 break; 4062 case Instruction::ZExt: 4063 NewI = B.CreateZExtOrTrunc( 4064 CI->getOperand(0), 4065 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4066 break; 4067 } 4068 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4069 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 4070 auto *O0 = B.CreateZExtOrTrunc( 4071 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4072 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 4073 auto *O1 = B.CreateZExtOrTrunc( 4074 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4075 4076 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 4077 } else if (isa<LoadInst>(I)) { 4078 // Don't do anything with the operands, just extend the result. 4079 continue; 4080 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4081 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 4082 auto *O0 = B.CreateZExtOrTrunc( 4083 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4084 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4085 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4086 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4087 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 4088 auto *O0 = B.CreateZExtOrTrunc( 4089 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4090 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4091 } else { 4092 llvm_unreachable("Unhandled instruction type!"); 4093 } 4094 4095 // Lastly, extend the result. 4096 NewI->takeName(cast<Instruction>(I)); 4097 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4098 I->replaceAllUsesWith(Res); 4099 cast<Instruction>(I)->eraseFromParent(); 4100 Erased.insert(I); 4101 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 4102 } 4103 } 4104 4105 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4106 for (const auto &KV : Cost->getMinimalBitwidths()) { 4107 // If the value wasn't vectorized, we must maintain the original scalar 4108 // type. The absence of the value from VectorLoopValueMap indicates that it 4109 // wasn't vectorized. 4110 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4111 continue; 4112 for (unsigned Part = 0; Part < UF; ++Part) { 4113 Value *I = getOrCreateVectorValue(KV.first, Part); 4114 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4115 if (Inst && Inst->use_empty()) { 4116 Value *NewI = Inst->getOperand(0); 4117 Inst->eraseFromParent(); 4118 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 4119 } 4120 } 4121 } 4122 } 4123 4124 void InnerLoopVectorizer::fixVectorizedLoop() { 4125 // Insert truncates and extends for any truncated instructions as hints to 4126 // InstCombine. 4127 if (VF > 1) 4128 truncateToMinimalBitwidths(); 4129 4130 // At this point every instruction in the original loop is widened to a 4131 // vector form. Now we need to fix the recurrences in the loop. These PHI 4132 // nodes are currently empty because we did not want to introduce cycles. 4133 // This is the second stage of vectorizing recurrences. 4134 fixCrossIterationPHIs(); 4135 4136 // Update the dominator tree. 4137 // 4138 // FIXME: After creating the structure of the new loop, the dominator tree is 4139 // no longer up-to-date, and it remains that way until we update it 4140 // here. An out-of-date dominator tree is problematic for SCEV, 4141 // because SCEVExpander uses it to guide code generation. The 4142 // vectorizer use SCEVExpanders in several places. Instead, we should 4143 // keep the dominator tree up-to-date as we go. 4144 updateAnalysis(); 4145 4146 // Fix-up external users of the induction variables. 4147 for (auto &Entry : *Legal->getInductionVars()) 4148 fixupIVUsers(Entry.first, Entry.second, 4149 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4150 IVEndValues[Entry.first], LoopMiddleBlock); 4151 4152 fixLCSSAPHIs(); 4153 for (Instruction *PI : PredicatedInstructions) 4154 sinkScalarOperands(&*PI); 4155 4156 // Remove redundant induction instructions. 4157 cse(LoopVectorBody); 4158 } 4159 4160 void InnerLoopVectorizer::fixCrossIterationPHIs() { 4161 // In order to support recurrences we need to be able to vectorize Phi nodes. 4162 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4163 // stage #2: We now need to fix the recurrences by adding incoming edges to 4164 // the currently empty PHI nodes. At this point every instruction in the 4165 // original loop is widened to a vector form so we can use them to construct 4166 // the incoming edges. 4167 for (Instruction &I : *OrigLoop->getHeader()) { 4168 PHINode *Phi = dyn_cast<PHINode>(&I); 4169 if (!Phi) 4170 break; 4171 // Handle first-order recurrences and reductions that need to be fixed. 4172 if (Legal->isFirstOrderRecurrence(Phi)) 4173 fixFirstOrderRecurrence(Phi); 4174 else if (Legal->isReductionVariable(Phi)) 4175 fixReduction(Phi); 4176 } 4177 } 4178 4179 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4180 // This is the second phase of vectorizing first-order recurrences. An 4181 // overview of the transformation is described below. Suppose we have the 4182 // following loop. 4183 // 4184 // for (int i = 0; i < n; ++i) 4185 // b[i] = a[i] - a[i - 1]; 4186 // 4187 // There is a first-order recurrence on "a". For this loop, the shorthand 4188 // scalar IR looks like: 4189 // 4190 // scalar.ph: 4191 // s_init = a[-1] 4192 // br scalar.body 4193 // 4194 // scalar.body: 4195 // i = phi [0, scalar.ph], [i+1, scalar.body] 4196 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4197 // s2 = a[i] 4198 // b[i] = s2 - s1 4199 // br cond, scalar.body, ... 4200 // 4201 // In this example, s1 is a recurrence because it's value depends on the 4202 // previous iteration. In the first phase of vectorization, we created a 4203 // temporary value for s1. We now complete the vectorization and produce the 4204 // shorthand vector IR shown below (for VF = 4, UF = 1). 4205 // 4206 // vector.ph: 4207 // v_init = vector(..., ..., ..., a[-1]) 4208 // br vector.body 4209 // 4210 // vector.body 4211 // i = phi [0, vector.ph], [i+4, vector.body] 4212 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4213 // v2 = a[i, i+1, i+2, i+3]; 4214 // v3 = vector(v1(3), v2(0, 1, 2)) 4215 // b[i, i+1, i+2, i+3] = v2 - v3 4216 // br cond, vector.body, middle.block 4217 // 4218 // middle.block: 4219 // x = v2(3) 4220 // br scalar.ph 4221 // 4222 // scalar.ph: 4223 // s_init = phi [x, middle.block], [a[-1], otherwise] 4224 // br scalar.body 4225 // 4226 // After execution completes the vector loop, we extract the next value of 4227 // the recurrence (x) to use as the initial value in the scalar loop. 4228 4229 // Get the original loop preheader and single loop latch. 4230 auto *Preheader = OrigLoop->getLoopPreheader(); 4231 auto *Latch = OrigLoop->getLoopLatch(); 4232 4233 // Get the initial and previous values of the scalar recurrence. 4234 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4235 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4236 4237 // Create a vector from the initial value. 4238 auto *VectorInit = ScalarInit; 4239 if (VF > 1) { 4240 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4241 VectorInit = Builder.CreateInsertElement( 4242 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4243 Builder.getInt32(VF - 1), "vector.recur.init"); 4244 } 4245 4246 // We constructed a temporary phi node in the first phase of vectorization. 4247 // This phi node will eventually be deleted. 4248 Builder.SetInsertPoint( 4249 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4250 4251 // Create a phi node for the new recurrence. The current value will either be 4252 // the initial value inserted into a vector or loop-varying vector value. 4253 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4254 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4255 4256 // Get the vectorized previous value of the last part UF - 1. It appears last 4257 // among all unrolled iterations, due to the order of their construction. 4258 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4259 4260 // Set the insertion point after the previous value if it is an instruction. 4261 // Note that the previous value may have been constant-folded so it is not 4262 // guaranteed to be an instruction in the vector loop. Also, if the previous 4263 // value is a phi node, we should insert after all the phi nodes to avoid 4264 // breaking basic block verification. 4265 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4266 isa<PHINode>(PreviousLastPart)) 4267 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4268 else 4269 Builder.SetInsertPoint( 4270 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4271 4272 // We will construct a vector for the recurrence by combining the values for 4273 // the current and previous iterations. This is the required shuffle mask. 4274 SmallVector<Constant *, 8> ShuffleMask(VF); 4275 ShuffleMask[0] = Builder.getInt32(VF - 1); 4276 for (unsigned I = 1; I < VF; ++I) 4277 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4278 4279 // The vector from which to take the initial value for the current iteration 4280 // (actual or unrolled). Initially, this is the vector phi node. 4281 Value *Incoming = VecPhi; 4282 4283 // Shuffle the current and previous vector and update the vector parts. 4284 for (unsigned Part = 0; Part < UF; ++Part) { 4285 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4286 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4287 auto *Shuffle = 4288 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4289 ConstantVector::get(ShuffleMask)) 4290 : Incoming; 4291 PhiPart->replaceAllUsesWith(Shuffle); 4292 cast<Instruction>(PhiPart)->eraseFromParent(); 4293 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4294 Incoming = PreviousPart; 4295 } 4296 4297 // Fix the latch value of the new recurrence in the vector loop. 4298 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4299 4300 // Extract the last vector element in the middle block. This will be the 4301 // initial value for the recurrence when jumping to the scalar loop. 4302 auto *ExtractForScalar = Incoming; 4303 if (VF > 1) { 4304 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4305 ExtractForScalar = Builder.CreateExtractElement( 4306 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4307 } 4308 // Extract the second last element in the middle block if the 4309 // Phi is used outside the loop. We need to extract the phi itself 4310 // and not the last element (the phi update in the current iteration). This 4311 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4312 // when the scalar loop is not run at all. 4313 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4314 if (VF > 1) 4315 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4316 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4317 // When loop is unrolled without vectorizing, initialize 4318 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4319 // `Incoming`. This is analogous to the vectorized case above: extracting the 4320 // second last element when VF > 1. 4321 else if (UF > 1) 4322 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4323 4324 // Fix the initial value of the original recurrence in the scalar loop. 4325 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4326 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4327 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4328 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4329 Start->addIncoming(Incoming, BB); 4330 } 4331 4332 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4333 Phi->setName("scalar.recur"); 4334 4335 // Finally, fix users of the recurrence outside the loop. The users will need 4336 // either the last value of the scalar recurrence or the last value of the 4337 // vector recurrence we extracted in the middle block. Since the loop is in 4338 // LCSSA form, we just need to find the phi node for the original scalar 4339 // recurrence in the exit block, and then add an edge for the middle block. 4340 for (auto &I : *LoopExitBlock) { 4341 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4342 if (!LCSSAPhi) 4343 break; 4344 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4345 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4346 break; 4347 } 4348 } 4349 } 4350 4351 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4352 Constant *Zero = Builder.getInt32(0); 4353 4354 // Get it's reduction variable descriptor. 4355 assert(Legal->isReductionVariable(Phi) && 4356 "Unable to find the reduction variable"); 4357 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4358 4359 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4360 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4361 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4362 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4363 RdxDesc.getMinMaxRecurrenceKind(); 4364 setDebugLocFromInst(Builder, ReductionStartValue); 4365 4366 // We need to generate a reduction vector from the incoming scalar. 4367 // To do so, we need to generate the 'identity' vector and override 4368 // one of the elements with the incoming scalar reduction. We need 4369 // to do it in the vector-loop preheader. 4370 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4371 4372 // This is the vector-clone of the value that leaves the loop. 4373 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4374 4375 // Find the reduction identity variable. Zero for addition, or, xor, 4376 // one for multiplication, -1 for And. 4377 Value *Identity; 4378 Value *VectorStart; 4379 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4380 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4381 // MinMax reduction have the start value as their identify. 4382 if (VF == 1) { 4383 VectorStart = Identity = ReductionStartValue; 4384 } else { 4385 VectorStart = Identity = 4386 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4387 } 4388 } else { 4389 // Handle other reduction kinds: 4390 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4391 RK, VecTy->getScalarType()); 4392 if (VF == 1) { 4393 Identity = Iden; 4394 // This vector is the Identity vector where the first element is the 4395 // incoming scalar reduction. 4396 VectorStart = ReductionStartValue; 4397 } else { 4398 Identity = ConstantVector::getSplat(VF, Iden); 4399 4400 // This vector is the Identity vector where the first element is the 4401 // incoming scalar reduction. 4402 VectorStart = 4403 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4404 } 4405 } 4406 4407 // Fix the vector-loop phi. 4408 4409 // Reductions do not have to start at zero. They can start with 4410 // any loop invariant values. 4411 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4412 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4413 for (unsigned Part = 0; Part < UF; ++Part) { 4414 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4415 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4416 // Make sure to add the reduction stat value only to the 4417 // first unroll part. 4418 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4419 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4420 cast<PHINode>(VecRdxPhi) 4421 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4422 } 4423 4424 // Before each round, move the insertion point right between 4425 // the PHIs and the values we are going to write. 4426 // This allows us to write both PHINodes and the extractelement 4427 // instructions. 4428 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4429 4430 setDebugLocFromInst(Builder, LoopExitInst); 4431 4432 // If the vector reduction can be performed in a smaller type, we truncate 4433 // then extend the loop exit value to enable InstCombine to evaluate the 4434 // entire expression in the smaller type. 4435 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4436 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4437 Builder.SetInsertPoint( 4438 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4439 VectorParts RdxParts(UF); 4440 for (unsigned Part = 0; Part < UF; ++Part) { 4441 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4442 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4443 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4444 : Builder.CreateZExt(Trunc, VecTy); 4445 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4446 UI != RdxParts[Part]->user_end();) 4447 if (*UI != Trunc) { 4448 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4449 RdxParts[Part] = Extnd; 4450 } else { 4451 ++UI; 4452 } 4453 } 4454 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4455 for (unsigned Part = 0; Part < UF; ++Part) { 4456 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4457 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4458 } 4459 } 4460 4461 // Reduce all of the unrolled parts into a single vector. 4462 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4463 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4464 setDebugLocFromInst(Builder, ReducedPartRdx); 4465 for (unsigned Part = 1; Part < UF; ++Part) { 4466 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4467 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4468 // Floating point operations had to be 'fast' to enable the reduction. 4469 ReducedPartRdx = addFastMathFlag( 4470 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4471 ReducedPartRdx, "bin.rdx")); 4472 else 4473 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4474 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4475 } 4476 4477 if (VF > 1) { 4478 bool NoNaN = Legal->hasFunNoNaNAttr(); 4479 ReducedPartRdx = 4480 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4481 // If the reduction can be performed in a smaller type, we need to extend 4482 // the reduction to the wider type before we branch to the original loop. 4483 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4484 ReducedPartRdx = 4485 RdxDesc.isSigned() 4486 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4487 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4488 } 4489 4490 // Create a phi node that merges control-flow from the backedge-taken check 4491 // block and the middle block. 4492 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4493 LoopScalarPreHeader->getTerminator()); 4494 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4495 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4496 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4497 4498 // Now, we need to fix the users of the reduction variable 4499 // inside and outside of the scalar remainder loop. 4500 // We know that the loop is in LCSSA form. We need to update the 4501 // PHI nodes in the exit blocks. 4502 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4503 LEE = LoopExitBlock->end(); 4504 LEI != LEE; ++LEI) { 4505 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4506 if (!LCSSAPhi) 4507 break; 4508 4509 // All PHINodes need to have a single entry edge, or two if 4510 // we already fixed them. 4511 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4512 4513 // We found a reduction value exit-PHI. Update it with the 4514 // incoming bypass edge. 4515 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4516 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4517 } // end of the LCSSA phi scan. 4518 4519 // Fix the scalar loop reduction variable with the incoming reduction sum 4520 // from the vector body and from the backedge value. 4521 int IncomingEdgeBlockIdx = 4522 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4523 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4524 // Pick the other block. 4525 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4526 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4527 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4528 } 4529 4530 void InnerLoopVectorizer::fixLCSSAPHIs() { 4531 for (Instruction &LEI : *LoopExitBlock) { 4532 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4533 if (!LCSSAPhi) 4534 break; 4535 if (LCSSAPhi->getNumIncomingValues() == 1) { 4536 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4537 "Incoming value isn't loop invariant"); 4538 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4539 } 4540 } 4541 } 4542 4543 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4544 // The basic block and loop containing the predicated instruction. 4545 auto *PredBB = PredInst->getParent(); 4546 auto *VectorLoop = LI->getLoopFor(PredBB); 4547 4548 // Initialize a worklist with the operands of the predicated instruction. 4549 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4550 4551 // Holds instructions that we need to analyze again. An instruction may be 4552 // reanalyzed if we don't yet know if we can sink it or not. 4553 SmallVector<Instruction *, 8> InstsToReanalyze; 4554 4555 // Returns true if a given use occurs in the predicated block. Phi nodes use 4556 // their operands in their corresponding predecessor blocks. 4557 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4558 auto *I = cast<Instruction>(U.getUser()); 4559 BasicBlock *BB = I->getParent(); 4560 if (auto *Phi = dyn_cast<PHINode>(I)) 4561 BB = Phi->getIncomingBlock( 4562 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4563 return BB == PredBB; 4564 }; 4565 4566 // Iteratively sink the scalarized operands of the predicated instruction 4567 // into the block we created for it. When an instruction is sunk, it's 4568 // operands are then added to the worklist. The algorithm ends after one pass 4569 // through the worklist doesn't sink a single instruction. 4570 bool Changed; 4571 do { 4572 // Add the instructions that need to be reanalyzed to the worklist, and 4573 // reset the changed indicator. 4574 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4575 InstsToReanalyze.clear(); 4576 Changed = false; 4577 4578 while (!Worklist.empty()) { 4579 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4580 4581 // We can't sink an instruction if it is a phi node, is already in the 4582 // predicated block, is not in the loop, or may have side effects. 4583 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4584 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4585 continue; 4586 4587 // It's legal to sink the instruction if all its uses occur in the 4588 // predicated block. Otherwise, there's nothing to do yet, and we may 4589 // need to reanalyze the instruction. 4590 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4591 InstsToReanalyze.push_back(I); 4592 continue; 4593 } 4594 4595 // Move the instruction to the beginning of the predicated block, and add 4596 // it's operands to the worklist. 4597 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4598 Worklist.insert(I->op_begin(), I->op_end()); 4599 4600 // The sinking may have enabled other instructions to be sunk, so we will 4601 // need to iterate. 4602 Changed = true; 4603 } 4604 } while (Changed); 4605 } 4606 4607 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4608 unsigned VF) { 4609 assert(PN->getParent() == OrigLoop->getHeader() && 4610 "Non-header phis should have been handled elsewhere"); 4611 4612 PHINode *P = cast<PHINode>(PN); 4613 // In order to support recurrences we need to be able to vectorize Phi nodes. 4614 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4615 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4616 // this value when we vectorize all of the instructions that use the PHI. 4617 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4618 for (unsigned Part = 0; Part < UF; ++Part) { 4619 // This is phase one of vectorizing PHIs. 4620 Type *VecTy = 4621 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4622 Value *EntryPart = PHINode::Create( 4623 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4624 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4625 } 4626 return; 4627 } 4628 4629 setDebugLocFromInst(Builder, P); 4630 4631 // This PHINode must be an induction variable. 4632 // Make sure that we know about it. 4633 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4634 4635 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4636 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4637 4638 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4639 // which can be found from the original scalar operations. 4640 switch (II.getKind()) { 4641 case InductionDescriptor::IK_NoInduction: 4642 llvm_unreachable("Unknown induction"); 4643 case InductionDescriptor::IK_IntInduction: 4644 case InductionDescriptor::IK_FpInduction: 4645 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4646 case InductionDescriptor::IK_PtrInduction: { 4647 // Handle the pointer induction variable case. 4648 assert(P->getType()->isPointerTy() && "Unexpected type."); 4649 // This is the normalized GEP that starts counting at zero. 4650 Value *PtrInd = Induction; 4651 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4652 // Determine the number of scalars we need to generate for each unroll 4653 // iteration. If the instruction is uniform, we only need to generate the 4654 // first lane. Otherwise, we generate all VF values. 4655 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4656 // These are the scalar results. Notice that we don't generate vector GEPs 4657 // because scalar GEPs result in better code. 4658 for (unsigned Part = 0; Part < UF; ++Part) { 4659 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4660 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4661 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4662 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4663 SclrGep->setName("next.gep"); 4664 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4665 } 4666 } 4667 return; 4668 } 4669 } 4670 } 4671 4672 /// A helper function for checking whether an integer division-related 4673 /// instruction may divide by zero (in which case it must be predicated if 4674 /// executed conditionally in the scalar code). 4675 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4676 /// Non-zero divisors that are non compile-time constants will not be 4677 /// converted into multiplication, so we will still end up scalarizing 4678 /// the division, but can do so w/o predication. 4679 static bool mayDivideByZero(Instruction &I) { 4680 assert((I.getOpcode() == Instruction::UDiv || 4681 I.getOpcode() == Instruction::SDiv || 4682 I.getOpcode() == Instruction::URem || 4683 I.getOpcode() == Instruction::SRem) && 4684 "Unexpected instruction"); 4685 Value *Divisor = I.getOperand(1); 4686 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4687 return !CInt || CInt->isZero(); 4688 } 4689 4690 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4691 switch (I.getOpcode()) { 4692 case Instruction::Br: 4693 case Instruction::PHI: 4694 llvm_unreachable("This instruction is handled by a different recipe."); 4695 case Instruction::GetElementPtr: { 4696 // Construct a vector GEP by widening the operands of the scalar GEP as 4697 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4698 // results in a vector of pointers when at least one operand of the GEP 4699 // is vector-typed. Thus, to keep the representation compact, we only use 4700 // vector-typed operands for loop-varying values. 4701 auto *GEP = cast<GetElementPtrInst>(&I); 4702 4703 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4704 // If we are vectorizing, but the GEP has only loop-invariant operands, 4705 // the GEP we build (by only using vector-typed operands for 4706 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4707 // produce a vector of pointers, we need to either arbitrarily pick an 4708 // operand to broadcast, or broadcast a clone of the original GEP. 4709 // Here, we broadcast a clone of the original. 4710 // 4711 // TODO: If at some point we decide to scalarize instructions having 4712 // loop-invariant operands, this special case will no longer be 4713 // required. We would add the scalarization decision to 4714 // collectLoopScalars() and teach getVectorValue() to broadcast 4715 // the lane-zero scalar value. 4716 auto *Clone = Builder.Insert(GEP->clone()); 4717 for (unsigned Part = 0; Part < UF; ++Part) { 4718 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4719 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4720 addMetadata(EntryPart, GEP); 4721 } 4722 } else { 4723 // If the GEP has at least one loop-varying operand, we are sure to 4724 // produce a vector of pointers. But if we are only unrolling, we want 4725 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4726 // produce with the code below will be scalar (if VF == 1) or vector 4727 // (otherwise). Note that for the unroll-only case, we still maintain 4728 // values in the vector mapping with initVector, as we do for other 4729 // instructions. 4730 for (unsigned Part = 0; Part < UF; ++Part) { 4731 // The pointer operand of the new GEP. If it's loop-invariant, we 4732 // won't broadcast it. 4733 auto *Ptr = 4734 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4735 ? GEP->getPointerOperand() 4736 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4737 4738 // Collect all the indices for the new GEP. If any index is 4739 // loop-invariant, we won't broadcast it. 4740 SmallVector<Value *, 4> Indices; 4741 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4742 if (OrigLoop->isLoopInvariant(U.get())) 4743 Indices.push_back(U.get()); 4744 else 4745 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4746 } 4747 4748 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4749 // but it should be a vector, otherwise. 4750 auto *NewGEP = GEP->isInBounds() 4751 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4752 : Builder.CreateGEP(Ptr, Indices); 4753 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4754 "NewGEP is not a pointer vector"); 4755 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4756 addMetadata(NewGEP, GEP); 4757 } 4758 } 4759 4760 break; 4761 } 4762 case Instruction::UDiv: 4763 case Instruction::SDiv: 4764 case Instruction::SRem: 4765 case Instruction::URem: 4766 case Instruction::Add: 4767 case Instruction::FAdd: 4768 case Instruction::Sub: 4769 case Instruction::FSub: 4770 case Instruction::Mul: 4771 case Instruction::FMul: 4772 case Instruction::FDiv: 4773 case Instruction::FRem: 4774 case Instruction::Shl: 4775 case Instruction::LShr: 4776 case Instruction::AShr: 4777 case Instruction::And: 4778 case Instruction::Or: 4779 case Instruction::Xor: { 4780 // Just widen binops. 4781 auto *BinOp = cast<BinaryOperator>(&I); 4782 setDebugLocFromInst(Builder, BinOp); 4783 4784 for (unsigned Part = 0; Part < UF; ++Part) { 4785 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4786 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4787 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4788 4789 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4790 VecOp->copyIRFlags(BinOp); 4791 4792 // Use this vector value for all users of the original instruction. 4793 VectorLoopValueMap.setVectorValue(&I, Part, V); 4794 addMetadata(V, BinOp); 4795 } 4796 4797 break; 4798 } 4799 case Instruction::Select: { 4800 // Widen selects. 4801 // If the selector is loop invariant we can create a select 4802 // instruction with a scalar condition. Otherwise, use vector-select. 4803 auto *SE = PSE.getSE(); 4804 bool InvariantCond = 4805 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4806 setDebugLocFromInst(Builder, &I); 4807 4808 // The condition can be loop invariant but still defined inside the 4809 // loop. This means that we can't just use the original 'cond' value. 4810 // We have to take the 'vectorized' value and pick the first lane. 4811 // Instcombine will make this a no-op. 4812 4813 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4814 4815 for (unsigned Part = 0; Part < UF; ++Part) { 4816 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4817 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4818 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4819 Value *Sel = 4820 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4821 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4822 addMetadata(Sel, &I); 4823 } 4824 4825 break; 4826 } 4827 4828 case Instruction::ICmp: 4829 case Instruction::FCmp: { 4830 // Widen compares. Generate vector compares. 4831 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4832 auto *Cmp = dyn_cast<CmpInst>(&I); 4833 setDebugLocFromInst(Builder, Cmp); 4834 for (unsigned Part = 0; Part < UF; ++Part) { 4835 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4836 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4837 Value *C = nullptr; 4838 if (FCmp) { 4839 // Propagate fast math flags. 4840 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4841 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4842 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4843 } else { 4844 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4845 } 4846 VectorLoopValueMap.setVectorValue(&I, Part, C); 4847 addMetadata(C, &I); 4848 } 4849 4850 break; 4851 } 4852 4853 case Instruction::ZExt: 4854 case Instruction::SExt: 4855 case Instruction::FPToUI: 4856 case Instruction::FPToSI: 4857 case Instruction::FPExt: 4858 case Instruction::PtrToInt: 4859 case Instruction::IntToPtr: 4860 case Instruction::SIToFP: 4861 case Instruction::UIToFP: 4862 case Instruction::Trunc: 4863 case Instruction::FPTrunc: 4864 case Instruction::BitCast: { 4865 auto *CI = dyn_cast<CastInst>(&I); 4866 setDebugLocFromInst(Builder, CI); 4867 4868 /// Vectorize casts. 4869 Type *DestTy = 4870 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4871 4872 for (unsigned Part = 0; Part < UF; ++Part) { 4873 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4874 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4875 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4876 addMetadata(Cast, &I); 4877 } 4878 break; 4879 } 4880 4881 case Instruction::Call: { 4882 // Ignore dbg intrinsics. 4883 if (isa<DbgInfoIntrinsic>(I)) 4884 break; 4885 setDebugLocFromInst(Builder, &I); 4886 4887 Module *M = I.getParent()->getParent()->getParent(); 4888 auto *CI = cast<CallInst>(&I); 4889 4890 StringRef FnName = CI->getCalledFunction()->getName(); 4891 Function *F = CI->getCalledFunction(); 4892 Type *RetTy = ToVectorTy(CI->getType(), VF); 4893 SmallVector<Type *, 4> Tys; 4894 for (Value *ArgOperand : CI->arg_operands()) 4895 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4896 4897 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4898 4899 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4900 // version of the instruction. 4901 // Is it beneficial to perform intrinsic call compared to lib call? 4902 bool NeedToScalarize; 4903 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4904 bool UseVectorIntrinsic = 4905 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4906 assert((UseVectorIntrinsic || !NeedToScalarize) && 4907 "Instruction should be scalarized elsewhere."); 4908 4909 for (unsigned Part = 0; Part < UF; ++Part) { 4910 SmallVector<Value *, 4> Args; 4911 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4912 Value *Arg = CI->getArgOperand(i); 4913 // Some intrinsics have a scalar argument - don't replace it with a 4914 // vector. 4915 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4916 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4917 Args.push_back(Arg); 4918 } 4919 4920 Function *VectorF; 4921 if (UseVectorIntrinsic) { 4922 // Use vector version of the intrinsic. 4923 Type *TysForDecl[] = {CI->getType()}; 4924 if (VF > 1) 4925 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4926 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4927 } else { 4928 // Use vector version of the library call. 4929 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4930 assert(!VFnName.empty() && "Vector function name is empty."); 4931 VectorF = M->getFunction(VFnName); 4932 if (!VectorF) { 4933 // Generate a declaration 4934 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4935 VectorF = 4936 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4937 VectorF->copyAttributesFrom(F); 4938 } 4939 } 4940 assert(VectorF && "Can't create vector function."); 4941 4942 SmallVector<OperandBundleDef, 1> OpBundles; 4943 CI->getOperandBundlesAsDefs(OpBundles); 4944 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4945 4946 if (isa<FPMathOperator>(V)) 4947 V->copyFastMathFlags(CI); 4948 4949 VectorLoopValueMap.setVectorValue(&I, Part, V); 4950 addMetadata(V, &I); 4951 } 4952 4953 break; 4954 } 4955 4956 default: 4957 // This instruction is not vectorized by simple widening. 4958 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4959 llvm_unreachable("Unhandled instruction!"); 4960 } // end of switch. 4961 } 4962 4963 void InnerLoopVectorizer::updateAnalysis() { 4964 // Forget the original basic block. 4965 PSE.getSE()->forgetLoop(OrigLoop); 4966 4967 // Update the dominator tree information. 4968 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4969 "Entry does not dominate exit."); 4970 4971 DT->addNewBlock(LoopMiddleBlock, 4972 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4973 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4974 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4975 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4976 DEBUG(DT->verifyDomTree()); 4977 } 4978 4979 /// \brief Check whether it is safe to if-convert this phi node. 4980 /// 4981 /// Phi nodes with constant expressions that can trap are not safe to if 4982 /// convert. 4983 static bool canIfConvertPHINodes(BasicBlock *BB) { 4984 for (Instruction &I : *BB) { 4985 auto *Phi = dyn_cast<PHINode>(&I); 4986 if (!Phi) 4987 return true; 4988 for (Value *V : Phi->incoming_values()) 4989 if (auto *C = dyn_cast<Constant>(V)) 4990 if (C->canTrap()) 4991 return false; 4992 } 4993 return true; 4994 } 4995 4996 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4997 if (!EnableIfConversion) { 4998 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4999 << "if-conversion is disabled"); 5000 return false; 5001 } 5002 5003 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5004 5005 // A list of pointers that we can safely read and write to. 5006 SmallPtrSet<Value *, 8> SafePointes; 5007 5008 // Collect safe addresses. 5009 for (BasicBlock *BB : TheLoop->blocks()) { 5010 if (blockNeedsPredication(BB)) 5011 continue; 5012 5013 for (Instruction &I : *BB) 5014 if (auto *Ptr = getPointerOperand(&I)) 5015 SafePointes.insert(Ptr); 5016 } 5017 5018 // Collect the blocks that need predication. 5019 BasicBlock *Header = TheLoop->getHeader(); 5020 for (BasicBlock *BB : TheLoop->blocks()) { 5021 // We don't support switch statements inside loops. 5022 if (!isa<BranchInst>(BB->getTerminator())) { 5023 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5024 << "loop contains a switch statement"); 5025 return false; 5026 } 5027 5028 // We must be able to predicate all blocks that need to be predicated. 5029 if (blockNeedsPredication(BB)) { 5030 if (!blockCanBePredicated(BB, SafePointes)) { 5031 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5032 << "control flow cannot be substituted for a select"); 5033 return false; 5034 } 5035 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5036 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5037 << "control flow cannot be substituted for a select"); 5038 return false; 5039 } 5040 } 5041 5042 // We can if-convert this loop. 5043 return true; 5044 } 5045 5046 bool LoopVectorizationLegality::canVectorize() { 5047 // Store the result and return it at the end instead of exiting early, in case 5048 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5049 bool Result = true; 5050 5051 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 5052 if (DoExtraAnalysis) 5053 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5054 // be canonicalized. 5055 if (!TheLoop->getLoopPreheader()) { 5056 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5057 << "loop control flow is not understood by vectorizer"); 5058 if (DoExtraAnalysis) 5059 Result = false; 5060 else 5061 return false; 5062 } 5063 5064 // FIXME: The code is currently dead, since the loop gets sent to 5065 // LoopVectorizationLegality is already an innermost loop. 5066 // 5067 // We can only vectorize innermost loops. 5068 if (!TheLoop->empty()) { 5069 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5070 << "loop is not the innermost loop"); 5071 if (DoExtraAnalysis) 5072 Result = false; 5073 else 5074 return false; 5075 } 5076 5077 // We must have a single backedge. 5078 if (TheLoop->getNumBackEdges() != 1) { 5079 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5080 << "loop control flow is not understood by vectorizer"); 5081 if (DoExtraAnalysis) 5082 Result = false; 5083 else 5084 return false; 5085 } 5086 5087 // We must have a single exiting block. 5088 if (!TheLoop->getExitingBlock()) { 5089 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5090 << "loop control flow is not understood by vectorizer"); 5091 if (DoExtraAnalysis) 5092 Result = false; 5093 else 5094 return false; 5095 } 5096 5097 // We only handle bottom-tested loops, i.e. loop in which the condition is 5098 // checked at the end of each iteration. With that we can assume that all 5099 // instructions in the loop are executed the same number of times. 5100 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5101 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5102 << "loop control flow is not understood by vectorizer"); 5103 if (DoExtraAnalysis) 5104 Result = false; 5105 else 5106 return false; 5107 } 5108 5109 // We need to have a loop header. 5110 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5111 << '\n'); 5112 5113 // Check if we can if-convert non-single-bb loops. 5114 unsigned NumBlocks = TheLoop->getNumBlocks(); 5115 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5116 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5117 if (DoExtraAnalysis) 5118 Result = false; 5119 else 5120 return false; 5121 } 5122 5123 // Check if we can vectorize the instructions and CFG in this loop. 5124 if (!canVectorizeInstrs()) { 5125 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5126 if (DoExtraAnalysis) 5127 Result = false; 5128 else 5129 return false; 5130 } 5131 5132 // Go over each instruction and look at memory deps. 5133 if (!canVectorizeMemory()) { 5134 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5135 if (DoExtraAnalysis) 5136 Result = false; 5137 else 5138 return false; 5139 } 5140 5141 DEBUG(dbgs() << "LV: We can vectorize this loop" 5142 << (LAI->getRuntimePointerChecking()->Need 5143 ? " (with a runtime bound check)" 5144 : "") 5145 << "!\n"); 5146 5147 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5148 5149 // If an override option has been passed in for interleaved accesses, use it. 5150 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5151 UseInterleaved = EnableInterleavedMemAccesses; 5152 5153 // Analyze interleaved memory accesses. 5154 if (UseInterleaved) 5155 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5156 5157 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5158 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5159 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5160 5161 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5162 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5163 << "Too many SCEV assumptions need to be made and checked " 5164 << "at runtime"); 5165 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5166 if (DoExtraAnalysis) 5167 Result = false; 5168 else 5169 return false; 5170 } 5171 5172 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5173 // we can vectorize, and at this point we don't have any other mem analysis 5174 // which may limit our maximum vectorization factor, so just return true with 5175 // no restrictions. 5176 return Result; 5177 } 5178 5179 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5180 if (Ty->isPointerTy()) 5181 return DL.getIntPtrType(Ty); 5182 5183 // It is possible that char's or short's overflow when we ask for the loop's 5184 // trip count, work around this by changing the type size. 5185 if (Ty->getScalarSizeInBits() < 32) 5186 return Type::getInt32Ty(Ty->getContext()); 5187 5188 return Ty; 5189 } 5190 5191 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5192 Ty0 = convertPointerToIntegerType(DL, Ty0); 5193 Ty1 = convertPointerToIntegerType(DL, Ty1); 5194 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5195 return Ty0; 5196 return Ty1; 5197 } 5198 5199 /// \brief Check that the instruction has outside loop users and is not an 5200 /// identified reduction variable. 5201 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5202 SmallPtrSetImpl<Value *> &AllowedExit) { 5203 // Reduction and Induction instructions are allowed to have exit users. All 5204 // other instructions must not have external users. 5205 if (!AllowedExit.count(Inst)) 5206 // Check that all of the users of the loop are inside the BB. 5207 for (User *U : Inst->users()) { 5208 Instruction *UI = cast<Instruction>(U); 5209 // This user may be a reduction exit value. 5210 if (!TheLoop->contains(UI)) { 5211 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5212 return true; 5213 } 5214 } 5215 return false; 5216 } 5217 5218 void LoopVectorizationLegality::addInductionPhi( 5219 PHINode *Phi, const InductionDescriptor &ID, 5220 SmallPtrSetImpl<Value *> &AllowedExit) { 5221 Inductions[Phi] = ID; 5222 5223 // In case this induction also comes with casts that we know we can ignore 5224 // in the vectorized loop body, record them here. All casts could be recorded 5225 // here for ignoring, but suffices to record only the first (as it is the 5226 // only one that may bw used outside the cast sequence). 5227 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 5228 if (!Casts.empty()) 5229 InductionCastsToIgnore.insert(*Casts.begin()); 5230 5231 Type *PhiTy = Phi->getType(); 5232 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5233 5234 // Get the widest type. 5235 if (!PhiTy->isFloatingPointTy()) { 5236 if (!WidestIndTy) 5237 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5238 else 5239 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5240 } 5241 5242 // Int inductions are special because we only allow one IV. 5243 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5244 ID.getConstIntStepValue() && 5245 ID.getConstIntStepValue()->isOne() && 5246 isa<Constant>(ID.getStartValue()) && 5247 cast<Constant>(ID.getStartValue())->isNullValue()) { 5248 5249 // Use the phi node with the widest type as induction. Use the last 5250 // one if there are multiple (no good reason for doing this other 5251 // than it is expedient). We've checked that it begins at zero and 5252 // steps by one, so this is a canonical induction variable. 5253 if (!PrimaryInduction || PhiTy == WidestIndTy) 5254 PrimaryInduction = Phi; 5255 } 5256 5257 // Both the PHI node itself, and the "post-increment" value feeding 5258 // back into the PHI node may have external users. 5259 // We can allow those uses, except if the SCEVs we have for them rely 5260 // on predicates that only hold within the loop, since allowing the exit 5261 // currently means re-using this SCEV outside the loop. 5262 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5263 AllowedExit.insert(Phi); 5264 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5265 } 5266 5267 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5268 } 5269 5270 bool LoopVectorizationLegality::canVectorizeInstrs() { 5271 BasicBlock *Header = TheLoop->getHeader(); 5272 5273 // Look for the attribute signaling the absence of NaNs. 5274 Function &F = *Header->getParent(); 5275 HasFunNoNaNAttr = 5276 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5277 5278 // For each block in the loop. 5279 for (BasicBlock *BB : TheLoop->blocks()) { 5280 // Scan the instructions in the block and look for hazards. 5281 for (Instruction &I : *BB) { 5282 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5283 Type *PhiTy = Phi->getType(); 5284 // Check that this PHI type is allowed. 5285 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5286 !PhiTy->isPointerTy()) { 5287 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5288 << "loop control flow is not understood by vectorizer"); 5289 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5290 return false; 5291 } 5292 5293 // If this PHINode is not in the header block, then we know that we 5294 // can convert it to select during if-conversion. No need to check if 5295 // the PHIs in this block are induction or reduction variables. 5296 if (BB != Header) { 5297 // Check that this instruction has no outside users or is an 5298 // identified reduction value with an outside user. 5299 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5300 continue; 5301 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5302 << "value could not be identified as " 5303 "an induction or reduction variable"); 5304 return false; 5305 } 5306 5307 // We only allow if-converted PHIs with exactly two incoming values. 5308 if (Phi->getNumIncomingValues() != 2) { 5309 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5310 << "control flow not understood by vectorizer"); 5311 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5312 return false; 5313 } 5314 5315 RecurrenceDescriptor RedDes; 5316 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5317 if (RedDes.hasUnsafeAlgebra()) 5318 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5319 AllowedExit.insert(RedDes.getLoopExitInstr()); 5320 Reductions[Phi] = RedDes; 5321 continue; 5322 } 5323 5324 InductionDescriptor ID; 5325 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5326 addInductionPhi(Phi, ID, AllowedExit); 5327 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5328 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5329 continue; 5330 } 5331 5332 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5333 SinkAfter, DT)) { 5334 FirstOrderRecurrences.insert(Phi); 5335 continue; 5336 } 5337 5338 // As a last resort, coerce the PHI to a AddRec expression 5339 // and re-try classifying it a an induction PHI. 5340 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5341 addInductionPhi(Phi, ID, AllowedExit); 5342 continue; 5343 } 5344 5345 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5346 << "value that could not be identified as " 5347 "reduction is used outside the loop"); 5348 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5349 return false; 5350 } // end of PHI handling 5351 5352 // We handle calls that: 5353 // * Are debug info intrinsics. 5354 // * Have a mapping to an IR intrinsic. 5355 // * Have a vector version available. 5356 auto *CI = dyn_cast<CallInst>(&I); 5357 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5358 !isa<DbgInfoIntrinsic>(CI) && 5359 !(CI->getCalledFunction() && TLI && 5360 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5361 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5362 << "call instruction cannot be vectorized"); 5363 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5364 return false; 5365 } 5366 5367 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5368 // second argument is the same (i.e. loop invariant) 5369 if (CI && hasVectorInstrinsicScalarOpd( 5370 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5371 auto *SE = PSE.getSE(); 5372 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5373 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5374 << "intrinsic instruction cannot be vectorized"); 5375 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5376 return false; 5377 } 5378 } 5379 5380 // Check that the instruction return type is vectorizable. 5381 // Also, we can't vectorize extractelement instructions. 5382 if ((!VectorType::isValidElementType(I.getType()) && 5383 !I.getType()->isVoidTy()) || 5384 isa<ExtractElementInst>(I)) { 5385 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5386 << "instruction return type cannot be vectorized"); 5387 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5388 return false; 5389 } 5390 5391 // Check that the stored type is vectorizable. 5392 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5393 Type *T = ST->getValueOperand()->getType(); 5394 if (!VectorType::isValidElementType(T)) { 5395 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5396 << "store instruction cannot be vectorized"); 5397 return false; 5398 } 5399 5400 // FP instructions can allow unsafe algebra, thus vectorizable by 5401 // non-IEEE-754 compliant SIMD units. 5402 // This applies to floating-point math operations and calls, not memory 5403 // operations, shuffles, or casts, as they don't change precision or 5404 // semantics. 5405 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5406 !I.isFast()) { 5407 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5408 Hints->setPotentiallyUnsafe(); 5409 } 5410 5411 // Reduction instructions are allowed to have exit users. 5412 // All other instructions must not have external users. 5413 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5414 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5415 << "value cannot be used outside the loop"); 5416 return false; 5417 } 5418 } // next instr. 5419 } 5420 5421 if (!PrimaryInduction) { 5422 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5423 if (Inductions.empty()) { 5424 ORE->emit(createMissedAnalysis("NoInductionVariable") 5425 << "loop induction variable could not be identified"); 5426 return false; 5427 } 5428 } 5429 5430 // Now we know the widest induction type, check if our found induction 5431 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5432 // will create another. 5433 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5434 PrimaryInduction = nullptr; 5435 5436 return true; 5437 } 5438 5439 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5440 // We should not collect Scalars more than once per VF. Right now, this 5441 // function is called from collectUniformsAndScalars(), which already does 5442 // this check. Collecting Scalars for VF=1 does not make any sense. 5443 assert(VF >= 2 && !Scalars.count(VF) && 5444 "This function should not be visited twice for the same VF"); 5445 5446 SmallSetVector<Instruction *, 8> Worklist; 5447 5448 // These sets are used to seed the analysis with pointers used by memory 5449 // accesses that will remain scalar. 5450 SmallSetVector<Instruction *, 8> ScalarPtrs; 5451 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5452 5453 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5454 // The pointer operands of loads and stores will be scalar as long as the 5455 // memory access is not a gather or scatter operation. The value operand of a 5456 // store will remain scalar if the store is scalarized. 5457 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5458 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5459 assert(WideningDecision != CM_Unknown && 5460 "Widening decision should be ready at this moment"); 5461 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5462 if (Ptr == Store->getValueOperand()) 5463 return WideningDecision == CM_Scalarize; 5464 assert(Ptr == getPointerOperand(MemAccess) && 5465 "Ptr is neither a value or pointer operand"); 5466 return WideningDecision != CM_GatherScatter; 5467 }; 5468 5469 // A helper that returns true if the given value is a bitcast or 5470 // getelementptr instruction contained in the loop. 5471 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5472 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5473 isa<GetElementPtrInst>(V)) && 5474 !TheLoop->isLoopInvariant(V); 5475 }; 5476 5477 // A helper that evaluates a memory access's use of a pointer. If the use 5478 // will be a scalar use, and the pointer is only used by memory accesses, we 5479 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5480 // PossibleNonScalarPtrs. 5481 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5482 // We only care about bitcast and getelementptr instructions contained in 5483 // the loop. 5484 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5485 return; 5486 5487 // If the pointer has already been identified as scalar (e.g., if it was 5488 // also identified as uniform), there's nothing to do. 5489 auto *I = cast<Instruction>(Ptr); 5490 if (Worklist.count(I)) 5491 return; 5492 5493 // If the use of the pointer will be a scalar use, and all users of the 5494 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5495 // place the pointer in PossibleNonScalarPtrs. 5496 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5497 return isa<LoadInst>(U) || isa<StoreInst>(U); 5498 })) 5499 ScalarPtrs.insert(I); 5500 else 5501 PossibleNonScalarPtrs.insert(I); 5502 }; 5503 5504 // We seed the scalars analysis with three classes of instructions: (1) 5505 // instructions marked uniform-after-vectorization, (2) bitcast and 5506 // getelementptr instructions used by memory accesses requiring a scalar use, 5507 // and (3) pointer induction variables and their update instructions (we 5508 // currently only scalarize these). 5509 // 5510 // (1) Add to the worklist all instructions that have been identified as 5511 // uniform-after-vectorization. 5512 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5513 5514 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5515 // memory accesses requiring a scalar use. The pointer operands of loads and 5516 // stores will be scalar as long as the memory accesses is not a gather or 5517 // scatter operation. The value operand of a store will remain scalar if the 5518 // store is scalarized. 5519 for (auto *BB : TheLoop->blocks()) 5520 for (auto &I : *BB) { 5521 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5522 evaluatePtrUse(Load, Load->getPointerOperand()); 5523 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5524 evaluatePtrUse(Store, Store->getPointerOperand()); 5525 evaluatePtrUse(Store, Store->getValueOperand()); 5526 } 5527 } 5528 for (auto *I : ScalarPtrs) 5529 if (!PossibleNonScalarPtrs.count(I)) { 5530 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5531 Worklist.insert(I); 5532 } 5533 5534 // (3) Add to the worklist all pointer induction variables and their update 5535 // instructions. 5536 // 5537 // TODO: Once we are able to vectorize pointer induction variables we should 5538 // no longer insert them into the worklist here. 5539 auto *Latch = TheLoop->getLoopLatch(); 5540 for (auto &Induction : *Legal->getInductionVars()) { 5541 auto *Ind = Induction.first; 5542 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5543 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5544 continue; 5545 Worklist.insert(Ind); 5546 Worklist.insert(IndUpdate); 5547 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5548 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5549 } 5550 5551 // Insert the forced scalars. 5552 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5553 // induction variable when the PHI user is scalarized. 5554 if (ForcedScalars.count(VF)) 5555 for (auto *I : ForcedScalars.find(VF)->second) 5556 Worklist.insert(I); 5557 5558 // Expand the worklist by looking through any bitcasts and getelementptr 5559 // instructions we've already identified as scalar. This is similar to the 5560 // expansion step in collectLoopUniforms(); however, here we're only 5561 // expanding to include additional bitcasts and getelementptr instructions. 5562 unsigned Idx = 0; 5563 while (Idx != Worklist.size()) { 5564 Instruction *Dst = Worklist[Idx++]; 5565 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5566 continue; 5567 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5568 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5569 auto *J = cast<Instruction>(U); 5570 return !TheLoop->contains(J) || Worklist.count(J) || 5571 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5572 isScalarUse(J, Src)); 5573 })) { 5574 Worklist.insert(Src); 5575 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5576 } 5577 } 5578 5579 // An induction variable will remain scalar if all users of the induction 5580 // variable and induction variable update remain scalar. 5581 for (auto &Induction : *Legal->getInductionVars()) { 5582 auto *Ind = Induction.first; 5583 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5584 5585 // We already considered pointer induction variables, so there's no reason 5586 // to look at their users again. 5587 // 5588 // TODO: Once we are able to vectorize pointer induction variables we 5589 // should no longer skip over them here. 5590 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5591 continue; 5592 5593 // Determine if all users of the induction variable are scalar after 5594 // vectorization. 5595 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5596 auto *I = cast<Instruction>(U); 5597 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5598 }); 5599 if (!ScalarInd) 5600 continue; 5601 5602 // Determine if all users of the induction variable update instruction are 5603 // scalar after vectorization. 5604 auto ScalarIndUpdate = 5605 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5606 auto *I = cast<Instruction>(U); 5607 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5608 }); 5609 if (!ScalarIndUpdate) 5610 continue; 5611 5612 // The induction variable and its update instruction will remain scalar. 5613 Worklist.insert(Ind); 5614 Worklist.insert(IndUpdate); 5615 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5616 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5617 } 5618 5619 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5620 } 5621 5622 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5623 if (!blockNeedsPredication(I->getParent())) 5624 return false; 5625 switch(I->getOpcode()) { 5626 default: 5627 break; 5628 case Instruction::Store: 5629 return !isMaskRequired(I); 5630 case Instruction::UDiv: 5631 case Instruction::SDiv: 5632 case Instruction::SRem: 5633 case Instruction::URem: 5634 return mayDivideByZero(*I); 5635 } 5636 return false; 5637 } 5638 5639 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5640 unsigned VF) { 5641 // Get and ensure we have a valid memory instruction. 5642 LoadInst *LI = dyn_cast<LoadInst>(I); 5643 StoreInst *SI = dyn_cast<StoreInst>(I); 5644 assert((LI || SI) && "Invalid memory instruction"); 5645 5646 auto *Ptr = getPointerOperand(I); 5647 5648 // In order to be widened, the pointer should be consecutive, first of all. 5649 if (!isConsecutivePtr(Ptr)) 5650 return false; 5651 5652 // If the instruction is a store located in a predicated block, it will be 5653 // scalarized. 5654 if (isScalarWithPredication(I)) 5655 return false; 5656 5657 // If the instruction's allocated size doesn't equal it's type size, it 5658 // requires padding and will be scalarized. 5659 auto &DL = I->getModule()->getDataLayout(); 5660 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5661 if (hasIrregularType(ScalarTy, DL, VF)) 5662 return false; 5663 5664 return true; 5665 } 5666 5667 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5668 // We should not collect Uniforms more than once per VF. Right now, 5669 // this function is called from collectUniformsAndScalars(), which 5670 // already does this check. Collecting Uniforms for VF=1 does not make any 5671 // sense. 5672 5673 assert(VF >= 2 && !Uniforms.count(VF) && 5674 "This function should not be visited twice for the same VF"); 5675 5676 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5677 // not analyze again. Uniforms.count(VF) will return 1. 5678 Uniforms[VF].clear(); 5679 5680 // We now know that the loop is vectorizable! 5681 // Collect instructions inside the loop that will remain uniform after 5682 // vectorization. 5683 5684 // Global values, params and instructions outside of current loop are out of 5685 // scope. 5686 auto isOutOfScope = [&](Value *V) -> bool { 5687 Instruction *I = dyn_cast<Instruction>(V); 5688 return (!I || !TheLoop->contains(I)); 5689 }; 5690 5691 SetVector<Instruction *> Worklist; 5692 BasicBlock *Latch = TheLoop->getLoopLatch(); 5693 5694 // Start with the conditional branch. If the branch condition is an 5695 // instruction contained in the loop that is only used by the branch, it is 5696 // uniform. 5697 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5698 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5699 Worklist.insert(Cmp); 5700 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5701 } 5702 5703 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5704 // are pointers that are treated like consecutive pointers during 5705 // vectorization. The pointer operands of interleaved accesses are an 5706 // example. 5707 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5708 5709 // Holds pointer operands of instructions that are possibly non-uniform. 5710 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5711 5712 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5713 InstWidening WideningDecision = getWideningDecision(I, VF); 5714 assert(WideningDecision != CM_Unknown && 5715 "Widening decision should be ready at this moment"); 5716 5717 return (WideningDecision == CM_Widen || 5718 WideningDecision == CM_Widen_Reverse || 5719 WideningDecision == CM_Interleave); 5720 }; 5721 // Iterate over the instructions in the loop, and collect all 5722 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5723 // that a consecutive-like pointer operand will be scalarized, we collect it 5724 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5725 // getelementptr instruction can be used by both vectorized and scalarized 5726 // memory instructions. For example, if a loop loads and stores from the same 5727 // location, but the store is conditional, the store will be scalarized, and 5728 // the getelementptr won't remain uniform. 5729 for (auto *BB : TheLoop->blocks()) 5730 for (auto &I : *BB) { 5731 // If there's no pointer operand, there's nothing to do. 5732 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5733 if (!Ptr) 5734 continue; 5735 5736 // True if all users of Ptr are memory accesses that have Ptr as their 5737 // pointer operand. 5738 auto UsersAreMemAccesses = 5739 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5740 return getPointerOperand(U) == Ptr; 5741 }); 5742 5743 // Ensure the memory instruction will not be scalarized or used by 5744 // gather/scatter, making its pointer operand non-uniform. If the pointer 5745 // operand is used by any instruction other than a memory access, we 5746 // conservatively assume the pointer operand may be non-uniform. 5747 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5748 PossibleNonUniformPtrs.insert(Ptr); 5749 5750 // If the memory instruction will be vectorized and its pointer operand 5751 // is consecutive-like, or interleaving - the pointer operand should 5752 // remain uniform. 5753 else 5754 ConsecutiveLikePtrs.insert(Ptr); 5755 } 5756 5757 // Add to the Worklist all consecutive and consecutive-like pointers that 5758 // aren't also identified as possibly non-uniform. 5759 for (auto *V : ConsecutiveLikePtrs) 5760 if (!PossibleNonUniformPtrs.count(V)) { 5761 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5762 Worklist.insert(V); 5763 } 5764 5765 // Expand Worklist in topological order: whenever a new instruction 5766 // is added , its users should be either already inside Worklist, or 5767 // out of scope. It ensures a uniform instruction will only be used 5768 // by uniform instructions or out of scope instructions. 5769 unsigned idx = 0; 5770 while (idx != Worklist.size()) { 5771 Instruction *I = Worklist[idx++]; 5772 5773 for (auto OV : I->operand_values()) { 5774 if (isOutOfScope(OV)) 5775 continue; 5776 auto *OI = cast<Instruction>(OV); 5777 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5778 auto *J = cast<Instruction>(U); 5779 return !TheLoop->contains(J) || Worklist.count(J) || 5780 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5781 })) { 5782 Worklist.insert(OI); 5783 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5784 } 5785 } 5786 } 5787 5788 // Returns true if Ptr is the pointer operand of a memory access instruction 5789 // I, and I is known to not require scalarization. 5790 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5791 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5792 }; 5793 5794 // For an instruction to be added into Worklist above, all its users inside 5795 // the loop should also be in Worklist. However, this condition cannot be 5796 // true for phi nodes that form a cyclic dependence. We must process phi 5797 // nodes separately. An induction variable will remain uniform if all users 5798 // of the induction variable and induction variable update remain uniform. 5799 // The code below handles both pointer and non-pointer induction variables. 5800 for (auto &Induction : *Legal->getInductionVars()) { 5801 auto *Ind = Induction.first; 5802 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5803 5804 // Determine if all users of the induction variable are uniform after 5805 // vectorization. 5806 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5807 auto *I = cast<Instruction>(U); 5808 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5809 isVectorizedMemAccessUse(I, Ind); 5810 }); 5811 if (!UniformInd) 5812 continue; 5813 5814 // Determine if all users of the induction variable update instruction are 5815 // uniform after vectorization. 5816 auto UniformIndUpdate = 5817 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5818 auto *I = cast<Instruction>(U); 5819 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5820 isVectorizedMemAccessUse(I, IndUpdate); 5821 }); 5822 if (!UniformIndUpdate) 5823 continue; 5824 5825 // The induction variable and its update instruction will remain uniform. 5826 Worklist.insert(Ind); 5827 Worklist.insert(IndUpdate); 5828 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5829 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5830 } 5831 5832 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5833 } 5834 5835 bool LoopVectorizationLegality::canVectorizeMemory() { 5836 LAI = &(*GetLAA)(*TheLoop); 5837 InterleaveInfo.setLAI(LAI); 5838 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5839 if (LAR) { 5840 ORE->emit([&]() { 5841 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5842 "loop not vectorized: ", *LAR); 5843 }); 5844 } 5845 if (!LAI->canVectorizeMemory()) 5846 return false; 5847 5848 if (LAI->hasStoreToLoopInvariantAddress()) { 5849 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5850 << "write to a loop invariant address could not be vectorized"); 5851 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5852 return false; 5853 } 5854 5855 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5856 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5857 5858 return true; 5859 } 5860 5861 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 5862 Value *In0 = const_cast<Value *>(V); 5863 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5864 if (!PN) 5865 return false; 5866 5867 return Inductions.count(PN); 5868 } 5869 5870 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 5871 auto *Inst = dyn_cast<Instruction>(V); 5872 return (Inst && InductionCastsToIgnore.count(Inst)); 5873 } 5874 5875 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5876 return isInductionPhi(V) || isCastedInductionVariable(V); 5877 } 5878 5879 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5880 return FirstOrderRecurrences.count(Phi); 5881 } 5882 5883 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5884 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5885 } 5886 5887 bool LoopVectorizationLegality::blockCanBePredicated( 5888 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5889 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5890 5891 for (Instruction &I : *BB) { 5892 // Check that we don't have a constant expression that can trap as operand. 5893 for (Value *Operand : I.operands()) { 5894 if (auto *C = dyn_cast<Constant>(Operand)) 5895 if (C->canTrap()) 5896 return false; 5897 } 5898 // We might be able to hoist the load. 5899 if (I.mayReadFromMemory()) { 5900 auto *LI = dyn_cast<LoadInst>(&I); 5901 if (!LI) 5902 return false; 5903 if (!SafePtrs.count(LI->getPointerOperand())) { 5904 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5905 isLegalMaskedGather(LI->getType())) { 5906 MaskedOp.insert(LI); 5907 continue; 5908 } 5909 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5910 if (IsAnnotatedParallel) 5911 continue; 5912 return false; 5913 } 5914 } 5915 5916 if (I.mayWriteToMemory()) { 5917 auto *SI = dyn_cast<StoreInst>(&I); 5918 // We only support predication of stores in basic blocks with one 5919 // predecessor. 5920 if (!SI) 5921 return false; 5922 5923 // Build a masked store if it is legal for the target. 5924 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5925 SI->getPointerOperand()) || 5926 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5927 MaskedOp.insert(SI); 5928 continue; 5929 } 5930 5931 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5932 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5933 5934 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5935 !isSinglePredecessor) 5936 return false; 5937 } 5938 if (I.mayThrow()) 5939 return false; 5940 } 5941 5942 return true; 5943 } 5944 5945 void InterleavedAccessInfo::collectConstStrideAccesses( 5946 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5947 const ValueToValueMap &Strides) { 5948 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5949 5950 // Since it's desired that the load/store instructions be maintained in 5951 // "program order" for the interleaved access analysis, we have to visit the 5952 // blocks in the loop in reverse postorder (i.e., in a topological order). 5953 // Such an ordering will ensure that any load/store that may be executed 5954 // before a second load/store will precede the second load/store in 5955 // AccessStrideInfo. 5956 LoopBlocksDFS DFS(TheLoop); 5957 DFS.perform(LI); 5958 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5959 for (auto &I : *BB) { 5960 auto *LI = dyn_cast<LoadInst>(&I); 5961 auto *SI = dyn_cast<StoreInst>(&I); 5962 if (!LI && !SI) 5963 continue; 5964 5965 Value *Ptr = getPointerOperand(&I); 5966 // We don't check wrapping here because we don't know yet if Ptr will be 5967 // part of a full group or a group with gaps. Checking wrapping for all 5968 // pointers (even those that end up in groups with no gaps) will be overly 5969 // conservative. For full groups, wrapping should be ok since if we would 5970 // wrap around the address space we would do a memory access at nullptr 5971 // even without the transformation. The wrapping checks are therefore 5972 // deferred until after we've formed the interleaved groups. 5973 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5974 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5975 5976 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5977 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5978 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5979 5980 // An alignment of 0 means target ABI alignment. 5981 unsigned Align = getMemInstAlignment(&I); 5982 if (!Align) 5983 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5984 5985 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5986 } 5987 } 5988 5989 // Analyze interleaved accesses and collect them into interleaved load and 5990 // store groups. 5991 // 5992 // When generating code for an interleaved load group, we effectively hoist all 5993 // loads in the group to the location of the first load in program order. When 5994 // generating code for an interleaved store group, we sink all stores to the 5995 // location of the last store. This code motion can change the order of load 5996 // and store instructions and may break dependences. 5997 // 5998 // The code generation strategy mentioned above ensures that we won't violate 5999 // any write-after-read (WAR) dependences. 6000 // 6001 // E.g., for the WAR dependence: a = A[i]; // (1) 6002 // A[i] = b; // (2) 6003 // 6004 // The store group of (2) is always inserted at or below (2), and the load 6005 // group of (1) is always inserted at or above (1). Thus, the instructions will 6006 // never be reordered. All other dependences are checked to ensure the 6007 // correctness of the instruction reordering. 6008 // 6009 // The algorithm visits all memory accesses in the loop in bottom-up program 6010 // order. Program order is established by traversing the blocks in the loop in 6011 // reverse postorder when collecting the accesses. 6012 // 6013 // We visit the memory accesses in bottom-up order because it can simplify the 6014 // construction of store groups in the presence of write-after-write (WAW) 6015 // dependences. 6016 // 6017 // E.g., for the WAW dependence: A[i] = a; // (1) 6018 // A[i] = b; // (2) 6019 // A[i + 1] = c; // (3) 6020 // 6021 // We will first create a store group with (3) and (2). (1) can't be added to 6022 // this group because it and (2) are dependent. However, (1) can be grouped 6023 // with other accesses that may precede it in program order. Note that a 6024 // bottom-up order does not imply that WAW dependences should not be checked. 6025 void InterleavedAccessInfo::analyzeInterleaving( 6026 const ValueToValueMap &Strides) { 6027 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6028 6029 // Holds all accesses with a constant stride. 6030 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6031 collectConstStrideAccesses(AccessStrideInfo, Strides); 6032 6033 if (AccessStrideInfo.empty()) 6034 return; 6035 6036 // Collect the dependences in the loop. 6037 collectDependences(); 6038 6039 // Holds all interleaved store groups temporarily. 6040 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6041 // Holds all interleaved load groups temporarily. 6042 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6043 6044 // Search in bottom-up program order for pairs of accesses (A and B) that can 6045 // form interleaved load or store groups. In the algorithm below, access A 6046 // precedes access B in program order. We initialize a group for B in the 6047 // outer loop of the algorithm, and then in the inner loop, we attempt to 6048 // insert each A into B's group if: 6049 // 6050 // 1. A and B have the same stride, 6051 // 2. A and B have the same memory object size, and 6052 // 3. A belongs in B's group according to its distance from B. 6053 // 6054 // Special care is taken to ensure group formation will not break any 6055 // dependences. 6056 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6057 BI != E; ++BI) { 6058 Instruction *B = BI->first; 6059 StrideDescriptor DesB = BI->second; 6060 6061 // Initialize a group for B if it has an allowable stride. Even if we don't 6062 // create a group for B, we continue with the bottom-up algorithm to ensure 6063 // we don't break any of B's dependences. 6064 InterleaveGroup *Group = nullptr; 6065 if (isStrided(DesB.Stride)) { 6066 Group = getInterleaveGroup(B); 6067 if (!Group) { 6068 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6069 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6070 } 6071 if (B->mayWriteToMemory()) 6072 StoreGroups.insert(Group); 6073 else 6074 LoadGroups.insert(Group); 6075 } 6076 6077 for (auto AI = std::next(BI); AI != E; ++AI) { 6078 Instruction *A = AI->first; 6079 StrideDescriptor DesA = AI->second; 6080 6081 // Our code motion strategy implies that we can't have dependences 6082 // between accesses in an interleaved group and other accesses located 6083 // between the first and last member of the group. Note that this also 6084 // means that a group can't have more than one member at a given offset. 6085 // The accesses in a group can have dependences with other accesses, but 6086 // we must ensure we don't extend the boundaries of the group such that 6087 // we encompass those dependent accesses. 6088 // 6089 // For example, assume we have the sequence of accesses shown below in a 6090 // stride-2 loop: 6091 // 6092 // (1, 2) is a group | A[i] = a; // (1) 6093 // | A[i-1] = b; // (2) | 6094 // A[i-3] = c; // (3) 6095 // A[i] = d; // (4) | (2, 4) is not a group 6096 // 6097 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6098 // but not with (4). If we did, the dependent access (3) would be within 6099 // the boundaries of the (2, 4) group. 6100 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6101 // If a dependence exists and A is already in a group, we know that A 6102 // must be a store since A precedes B and WAR dependences are allowed. 6103 // Thus, A would be sunk below B. We release A's group to prevent this 6104 // illegal code motion. A will then be free to form another group with 6105 // instructions that precede it. 6106 if (isInterleaved(A)) { 6107 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6108 StoreGroups.remove(StoreGroup); 6109 releaseGroup(StoreGroup); 6110 } 6111 6112 // If a dependence exists and A is not already in a group (or it was 6113 // and we just released it), B might be hoisted above A (if B is a 6114 // load) or another store might be sunk below A (if B is a store). In 6115 // either case, we can't add additional instructions to B's group. B 6116 // will only form a group with instructions that it precedes. 6117 break; 6118 } 6119 6120 // At this point, we've checked for illegal code motion. If either A or B 6121 // isn't strided, there's nothing left to do. 6122 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6123 continue; 6124 6125 // Ignore A if it's already in a group or isn't the same kind of memory 6126 // operation as B. 6127 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6128 continue; 6129 6130 // Check rules 1 and 2. Ignore A if its stride or size is different from 6131 // that of B. 6132 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6133 continue; 6134 6135 // Ignore A if the memory object of A and B don't belong to the same 6136 // address space 6137 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6138 continue; 6139 6140 // Calculate the distance from A to B. 6141 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6142 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6143 if (!DistToB) 6144 continue; 6145 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6146 6147 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6148 // size. 6149 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6150 continue; 6151 6152 // Ignore A if either A or B is in a predicated block. Although we 6153 // currently prevent group formation for predicated accesses, we may be 6154 // able to relax this limitation in the future once we handle more 6155 // complicated blocks. 6156 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6157 continue; 6158 6159 // The index of A is the index of B plus A's distance to B in multiples 6160 // of the size. 6161 int IndexA = 6162 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6163 6164 // Try to insert A into B's group. 6165 if (Group->insertMember(A, IndexA, DesA.Align)) { 6166 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6167 << " into the interleave group with" << *B << '\n'); 6168 InterleaveGroupMap[A] = Group; 6169 6170 // Set the first load in program order as the insert position. 6171 if (A->mayReadFromMemory()) 6172 Group->setInsertPos(A); 6173 } 6174 } // Iteration over A accesses. 6175 } // Iteration over B accesses. 6176 6177 // Remove interleaved store groups with gaps. 6178 for (InterleaveGroup *Group : StoreGroups) 6179 if (Group->getNumMembers() != Group->getFactor()) { 6180 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 6181 "to gaps.\n"); 6182 releaseGroup(Group); 6183 } 6184 // Remove interleaved groups with gaps (currently only loads) whose memory 6185 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6186 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6187 // not check wrapping (see documentation there). 6188 // FORNOW we use Assume=false; 6189 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6190 // of runtime SCEV assumptions checks (thereby potentially failing to 6191 // vectorize altogether). 6192 // Additional optional optimizations: 6193 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6194 // wrap then we can deduce that all pointers in the group don't wrap. 6195 // This means that we can forcefully peel the loop in order to only have to 6196 // check the first pointer for no-wrap. When we'll change to use Assume=true 6197 // we'll only need at most one runtime check per interleaved group. 6198 for (InterleaveGroup *Group : LoadGroups) { 6199 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6200 // load would wrap around the address space we would do a memory access at 6201 // nullptr even without the transformation. 6202 if (Group->getNumMembers() == Group->getFactor()) 6203 continue; 6204 6205 // Case 2: If first and last members of the group don't wrap this implies 6206 // that all the pointers in the group don't wrap. 6207 // So we check only group member 0 (which is always guaranteed to exist), 6208 // and group member Factor - 1; If the latter doesn't exist we rely on 6209 // peeling (if it is a non-reveresed accsess -- see Case 3). 6210 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6211 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6212 /*ShouldCheckWrap=*/true)) { 6213 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6214 "first group member potentially pointer-wrapping.\n"); 6215 releaseGroup(Group); 6216 continue; 6217 } 6218 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6219 if (LastMember) { 6220 Value *LastMemberPtr = getPointerOperand(LastMember); 6221 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6222 /*ShouldCheckWrap=*/true)) { 6223 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6224 "last group member potentially pointer-wrapping.\n"); 6225 releaseGroup(Group); 6226 } 6227 } else { 6228 // Case 3: A non-reversed interleaved load group with gaps: We need 6229 // to execute at least one scalar epilogue iteration. This will ensure 6230 // we don't speculatively access memory out-of-bounds. We only need 6231 // to look for a member at index factor - 1, since every group must have 6232 // a member at index zero. 6233 if (Group->isReverse()) { 6234 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6235 "a reverse access with gaps.\n"); 6236 releaseGroup(Group); 6237 continue; 6238 } 6239 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6240 RequiresScalarEpilogue = true; 6241 } 6242 } 6243 } 6244 6245 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6246 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6247 ORE->emit(createMissedAnalysis("ConditionalStore") 6248 << "store that is conditionally executed prevents vectorization"); 6249 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6250 return None; 6251 } 6252 6253 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6254 // TODO: It may by useful to do since it's still likely to be dynamically 6255 // uniform if the target can skip. 6256 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6257 6258 ORE->emit( 6259 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6260 << "runtime pointer checks needed. Not enabled for divergent target"); 6261 6262 return None; 6263 } 6264 6265 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6266 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6267 return computeFeasibleMaxVF(OptForSize, TC); 6268 6269 if (Legal->getRuntimePointerChecking()->Need) { 6270 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6271 << "runtime pointer checks needed. Enable vectorization of this " 6272 "loop with '#pragma clang loop vectorize(enable)' when " 6273 "compiling with -Os/-Oz"); 6274 DEBUG(dbgs() 6275 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6276 return None; 6277 } 6278 6279 // If we optimize the program for size, avoid creating the tail loop. 6280 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6281 6282 // If we don't know the precise trip count, don't try to vectorize. 6283 if (TC < 2) { 6284 ORE->emit( 6285 createMissedAnalysis("UnknownLoopCountComplexCFG") 6286 << "unable to calculate the loop count due to complex control flow"); 6287 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6288 return None; 6289 } 6290 6291 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6292 6293 if (TC % MaxVF != 0) { 6294 // If the trip count that we found modulo the vectorization factor is not 6295 // zero then we require a tail. 6296 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6297 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6298 // smaller MaxVF that does not require a scalar epilog. 6299 6300 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6301 << "cannot optimize for size and vectorize at the " 6302 "same time. Enable vectorization of this loop " 6303 "with '#pragma clang loop vectorize(enable)' " 6304 "when compiling with -Os/-Oz"); 6305 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6306 return None; 6307 } 6308 6309 return MaxVF; 6310 } 6311 6312 unsigned 6313 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6314 unsigned ConstTripCount) { 6315 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6316 unsigned SmallestType, WidestType; 6317 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6318 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6319 6320 // Get the maximum safe dependence distance in bits computed by LAA. 6321 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6322 // the memory accesses that is most restrictive (involved in the smallest 6323 // dependence distance). 6324 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6325 6326 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6327 6328 unsigned MaxVectorSize = WidestRegister / WidestType; 6329 6330 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6331 << WidestType << " bits.\n"); 6332 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6333 << " bits.\n"); 6334 6335 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6336 " into one vector!"); 6337 if (MaxVectorSize == 0) { 6338 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6339 MaxVectorSize = 1; 6340 return MaxVectorSize; 6341 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6342 isPowerOf2_32(ConstTripCount)) { 6343 // We need to clamp the VF to be the ConstTripCount. There is no point in 6344 // choosing a higher viable VF as done in the loop below. 6345 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6346 << ConstTripCount << "\n"); 6347 MaxVectorSize = ConstTripCount; 6348 return MaxVectorSize; 6349 } 6350 6351 unsigned MaxVF = MaxVectorSize; 6352 if (MaximizeBandwidth && !OptForSize) { 6353 // Collect all viable vectorization factors larger than the default MaxVF 6354 // (i.e. MaxVectorSize). 6355 SmallVector<unsigned, 8> VFs; 6356 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6357 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6358 VFs.push_back(VS); 6359 6360 // For each VF calculate its register usage. 6361 auto RUs = calculateRegisterUsage(VFs); 6362 6363 // Select the largest VF which doesn't require more registers than existing 6364 // ones. 6365 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6366 for (int i = RUs.size() - 1; i >= 0; --i) { 6367 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6368 MaxVF = VFs[i]; 6369 break; 6370 } 6371 } 6372 } 6373 return MaxVF; 6374 } 6375 6376 LoopVectorizationCostModel::VectorizationFactor 6377 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6378 float Cost = expectedCost(1).first; 6379 #ifndef NDEBUG 6380 const float ScalarCost = Cost; 6381 #endif /* NDEBUG */ 6382 unsigned Width = 1; 6383 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6384 6385 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6386 // Ignore scalar width, because the user explicitly wants vectorization. 6387 if (ForceVectorization && MaxVF > 1) { 6388 Width = 2; 6389 Cost = expectedCost(Width).first / (float)Width; 6390 } 6391 6392 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6393 // Notice that the vector loop needs to be executed less times, so 6394 // we need to divide the cost of the vector loops by the width of 6395 // the vector elements. 6396 VectorizationCostTy C = expectedCost(i); 6397 float VectorCost = C.first / (float)i; 6398 DEBUG(dbgs() << "LV: Vector loop of width " << i 6399 << " costs: " << (int)VectorCost << ".\n"); 6400 if (!C.second && !ForceVectorization) { 6401 DEBUG( 6402 dbgs() << "LV: Not considering vector loop of width " << i 6403 << " because it will not generate any vector instructions.\n"); 6404 continue; 6405 } 6406 if (VectorCost < Cost) { 6407 Cost = VectorCost; 6408 Width = i; 6409 } 6410 } 6411 6412 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6413 << "LV: Vectorization seems to be not beneficial, " 6414 << "but was forced by a user.\n"); 6415 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6416 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6417 return Factor; 6418 } 6419 6420 std::pair<unsigned, unsigned> 6421 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6422 unsigned MinWidth = -1U; 6423 unsigned MaxWidth = 8; 6424 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6425 6426 // For each block. 6427 for (BasicBlock *BB : TheLoop->blocks()) { 6428 // For each instruction in the loop. 6429 for (Instruction &I : *BB) { 6430 Type *T = I.getType(); 6431 6432 // Skip ignored values. 6433 if (ValuesToIgnore.count(&I)) 6434 continue; 6435 6436 // Only examine Loads, Stores and PHINodes. 6437 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6438 continue; 6439 6440 // Examine PHI nodes that are reduction variables. Update the type to 6441 // account for the recurrence type. 6442 if (auto *PN = dyn_cast<PHINode>(&I)) { 6443 if (!Legal->isReductionVariable(PN)) 6444 continue; 6445 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6446 T = RdxDesc.getRecurrenceType(); 6447 } 6448 6449 // Examine the stored values. 6450 if (auto *ST = dyn_cast<StoreInst>(&I)) 6451 T = ST->getValueOperand()->getType(); 6452 6453 // Ignore loaded pointer types and stored pointer types that are not 6454 // vectorizable. 6455 // 6456 // FIXME: The check here attempts to predict whether a load or store will 6457 // be vectorized. We only know this for certain after a VF has 6458 // been selected. Here, we assume that if an access can be 6459 // vectorized, it will be. We should also look at extending this 6460 // optimization to non-pointer types. 6461 // 6462 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6463 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6464 continue; 6465 6466 MinWidth = std::min(MinWidth, 6467 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6468 MaxWidth = std::max(MaxWidth, 6469 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6470 } 6471 } 6472 6473 return {MinWidth, MaxWidth}; 6474 } 6475 6476 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6477 unsigned VF, 6478 unsigned LoopCost) { 6479 // -- The interleave heuristics -- 6480 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6481 // There are many micro-architectural considerations that we can't predict 6482 // at this level. For example, frontend pressure (on decode or fetch) due to 6483 // code size, or the number and capabilities of the execution ports. 6484 // 6485 // We use the following heuristics to select the interleave count: 6486 // 1. If the code has reductions, then we interleave to break the cross 6487 // iteration dependency. 6488 // 2. If the loop is really small, then we interleave to reduce the loop 6489 // overhead. 6490 // 3. We don't interleave if we think that we will spill registers to memory 6491 // due to the increased register pressure. 6492 6493 // When we optimize for size, we don't interleave. 6494 if (OptForSize) 6495 return 1; 6496 6497 // We used the distance for the interleave count. 6498 if (Legal->getMaxSafeDepDistBytes() != -1U) 6499 return 1; 6500 6501 // Do not interleave loops with a relatively small trip count. 6502 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6503 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6504 return 1; 6505 6506 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6507 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6508 << " registers\n"); 6509 6510 if (VF == 1) { 6511 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6512 TargetNumRegisters = ForceTargetNumScalarRegs; 6513 } else { 6514 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6515 TargetNumRegisters = ForceTargetNumVectorRegs; 6516 } 6517 6518 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6519 // We divide by these constants so assume that we have at least one 6520 // instruction that uses at least one register. 6521 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6522 R.NumInstructions = std::max(R.NumInstructions, 1U); 6523 6524 // We calculate the interleave count using the following formula. 6525 // Subtract the number of loop invariants from the number of available 6526 // registers. These registers are used by all of the interleaved instances. 6527 // Next, divide the remaining registers by the number of registers that is 6528 // required by the loop, in order to estimate how many parallel instances 6529 // fit without causing spills. All of this is rounded down if necessary to be 6530 // a power of two. We want power of two interleave count to simplify any 6531 // addressing operations or alignment considerations. 6532 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6533 R.MaxLocalUsers); 6534 6535 // Don't count the induction variable as interleaved. 6536 if (EnableIndVarRegisterHeur) 6537 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6538 std::max(1U, (R.MaxLocalUsers - 1))); 6539 6540 // Clamp the interleave ranges to reasonable counts. 6541 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6542 6543 // Check if the user has overridden the max. 6544 if (VF == 1) { 6545 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6546 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6547 } else { 6548 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6549 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6550 } 6551 6552 // If we did not calculate the cost for VF (because the user selected the VF) 6553 // then we calculate the cost of VF here. 6554 if (LoopCost == 0) 6555 LoopCost = expectedCost(VF).first; 6556 6557 // Clamp the calculated IC to be between the 1 and the max interleave count 6558 // that the target allows. 6559 if (IC > MaxInterleaveCount) 6560 IC = MaxInterleaveCount; 6561 else if (IC < 1) 6562 IC = 1; 6563 6564 // Interleave if we vectorized this loop and there is a reduction that could 6565 // benefit from interleaving. 6566 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6567 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6568 return IC; 6569 } 6570 6571 // Note that if we've already vectorized the loop we will have done the 6572 // runtime check and so interleaving won't require further checks. 6573 bool InterleavingRequiresRuntimePointerCheck = 6574 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6575 6576 // We want to interleave small loops in order to reduce the loop overhead and 6577 // potentially expose ILP opportunities. 6578 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6579 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6580 // We assume that the cost overhead is 1 and we use the cost model 6581 // to estimate the cost of the loop and interleave until the cost of the 6582 // loop overhead is about 5% of the cost of the loop. 6583 unsigned SmallIC = 6584 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6585 6586 // Interleave until store/load ports (estimated by max interleave count) are 6587 // saturated. 6588 unsigned NumStores = Legal->getNumStores(); 6589 unsigned NumLoads = Legal->getNumLoads(); 6590 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6591 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6592 6593 // If we have a scalar reduction (vector reductions are already dealt with 6594 // by this point), we can increase the critical path length if the loop 6595 // we're interleaving is inside another loop. Limit, by default to 2, so the 6596 // critical path only gets increased by one reduction operation. 6597 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6598 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6599 SmallIC = std::min(SmallIC, F); 6600 StoresIC = std::min(StoresIC, F); 6601 LoadsIC = std::min(LoadsIC, F); 6602 } 6603 6604 if (EnableLoadStoreRuntimeInterleave && 6605 std::max(StoresIC, LoadsIC) > SmallIC) { 6606 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6607 return std::max(StoresIC, LoadsIC); 6608 } 6609 6610 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6611 return SmallIC; 6612 } 6613 6614 // Interleave if this is a large loop (small loops are already dealt with by 6615 // this point) that could benefit from interleaving. 6616 bool HasReductions = !Legal->getReductionVars()->empty(); 6617 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6618 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6619 return IC; 6620 } 6621 6622 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6623 return 1; 6624 } 6625 6626 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6627 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6628 // This function calculates the register usage by measuring the highest number 6629 // of values that are alive at a single location. Obviously, this is a very 6630 // rough estimation. We scan the loop in a topological order in order and 6631 // assign a number to each instruction. We use RPO to ensure that defs are 6632 // met before their users. We assume that each instruction that has in-loop 6633 // users starts an interval. We record every time that an in-loop value is 6634 // used, so we have a list of the first and last occurrences of each 6635 // instruction. Next, we transpose this data structure into a multi map that 6636 // holds the list of intervals that *end* at a specific location. This multi 6637 // map allows us to perform a linear search. We scan the instructions linearly 6638 // and record each time that a new interval starts, by placing it in a set. 6639 // If we find this value in the multi-map then we remove it from the set. 6640 // The max register usage is the maximum size of the set. 6641 // We also search for instructions that are defined outside the loop, but are 6642 // used inside the loop. We need this number separately from the max-interval 6643 // usage number because when we unroll, loop-invariant values do not take 6644 // more register. 6645 LoopBlocksDFS DFS(TheLoop); 6646 DFS.perform(LI); 6647 6648 RegisterUsage RU; 6649 RU.NumInstructions = 0; 6650 6651 // Each 'key' in the map opens a new interval. The values 6652 // of the map are the index of the 'last seen' usage of the 6653 // instruction that is the key. 6654 using IntervalMap = DenseMap<Instruction *, unsigned>; 6655 6656 // Maps instruction to its index. 6657 DenseMap<unsigned, Instruction *> IdxToInstr; 6658 // Marks the end of each interval. 6659 IntervalMap EndPoint; 6660 // Saves the list of instruction indices that are used in the loop. 6661 SmallSet<Instruction *, 8> Ends; 6662 // Saves the list of values that are used in the loop but are 6663 // defined outside the loop, such as arguments and constants. 6664 SmallPtrSet<Value *, 8> LoopInvariants; 6665 6666 unsigned Index = 0; 6667 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6668 RU.NumInstructions += BB->size(); 6669 for (Instruction &I : *BB) { 6670 IdxToInstr[Index++] = &I; 6671 6672 // Save the end location of each USE. 6673 for (Value *U : I.operands()) { 6674 auto *Instr = dyn_cast<Instruction>(U); 6675 6676 // Ignore non-instruction values such as arguments, constants, etc. 6677 if (!Instr) 6678 continue; 6679 6680 // If this instruction is outside the loop then record it and continue. 6681 if (!TheLoop->contains(Instr)) { 6682 LoopInvariants.insert(Instr); 6683 continue; 6684 } 6685 6686 // Overwrite previous end points. 6687 EndPoint[Instr] = Index; 6688 Ends.insert(Instr); 6689 } 6690 } 6691 } 6692 6693 // Saves the list of intervals that end with the index in 'key'. 6694 using InstrList = SmallVector<Instruction *, 2>; 6695 DenseMap<unsigned, InstrList> TransposeEnds; 6696 6697 // Transpose the EndPoints to a list of values that end at each index. 6698 for (auto &Interval : EndPoint) 6699 TransposeEnds[Interval.second].push_back(Interval.first); 6700 6701 SmallSet<Instruction *, 8> OpenIntervals; 6702 6703 // Get the size of the widest register. 6704 unsigned MaxSafeDepDist = -1U; 6705 if (Legal->getMaxSafeDepDistBytes() != -1U) 6706 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6707 unsigned WidestRegister = 6708 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6709 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6710 6711 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6712 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6713 6714 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6715 6716 // A lambda that gets the register usage for the given type and VF. 6717 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6718 if (Ty->isTokenTy()) 6719 return 0U; 6720 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6721 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6722 }; 6723 6724 for (unsigned int i = 0; i < Index; ++i) { 6725 Instruction *I = IdxToInstr[i]; 6726 6727 // Remove all of the instructions that end at this location. 6728 InstrList &List = TransposeEnds[i]; 6729 for (Instruction *ToRemove : List) 6730 OpenIntervals.erase(ToRemove); 6731 6732 // Ignore instructions that are never used within the loop. 6733 if (!Ends.count(I)) 6734 continue; 6735 6736 // Skip ignored values. 6737 if (ValuesToIgnore.count(I)) 6738 continue; 6739 6740 // For each VF find the maximum usage of registers. 6741 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6742 if (VFs[j] == 1) { 6743 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6744 continue; 6745 } 6746 collectUniformsAndScalars(VFs[j]); 6747 // Count the number of live intervals. 6748 unsigned RegUsage = 0; 6749 for (auto Inst : OpenIntervals) { 6750 // Skip ignored values for VF > 1. 6751 if (VecValuesToIgnore.count(Inst) || 6752 isScalarAfterVectorization(Inst, VFs[j])) 6753 continue; 6754 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6755 } 6756 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6757 } 6758 6759 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6760 << OpenIntervals.size() << '\n'); 6761 6762 // Add the current instruction to the list of open intervals. 6763 OpenIntervals.insert(I); 6764 } 6765 6766 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6767 unsigned Invariant = 0; 6768 if (VFs[i] == 1) 6769 Invariant = LoopInvariants.size(); 6770 else { 6771 for (auto Inst : LoopInvariants) 6772 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6773 } 6774 6775 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6776 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6777 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6778 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6779 6780 RU.LoopInvariantRegs = Invariant; 6781 RU.MaxLocalUsers = MaxUsages[i]; 6782 RUs[i] = RU; 6783 } 6784 6785 return RUs; 6786 } 6787 6788 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6789 // If we aren't vectorizing the loop, or if we've already collected the 6790 // instructions to scalarize, there's nothing to do. Collection may already 6791 // have occurred if we have a user-selected VF and are now computing the 6792 // expected cost for interleaving. 6793 if (VF < 2 || InstsToScalarize.count(VF)) 6794 return; 6795 6796 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6797 // not profitable to scalarize any instructions, the presence of VF in the 6798 // map will indicate that we've analyzed it already. 6799 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6800 6801 // Find all the instructions that are scalar with predication in the loop and 6802 // determine if it would be better to not if-convert the blocks they are in. 6803 // If so, we also record the instructions to scalarize. 6804 for (BasicBlock *BB : TheLoop->blocks()) { 6805 if (!Legal->blockNeedsPredication(BB)) 6806 continue; 6807 for (Instruction &I : *BB) 6808 if (Legal->isScalarWithPredication(&I)) { 6809 ScalarCostsTy ScalarCosts; 6810 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6811 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6812 6813 // Remember that BB will remain after vectorization. 6814 PredicatedBBsAfterVectorization.insert(BB); 6815 } 6816 } 6817 } 6818 6819 int LoopVectorizationCostModel::computePredInstDiscount( 6820 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6821 unsigned VF) { 6822 assert(!isUniformAfterVectorization(PredInst, VF) && 6823 "Instruction marked uniform-after-vectorization will be predicated"); 6824 6825 // Initialize the discount to zero, meaning that the scalar version and the 6826 // vector version cost the same. 6827 int Discount = 0; 6828 6829 // Holds instructions to analyze. The instructions we visit are mapped in 6830 // ScalarCosts. Those instructions are the ones that would be scalarized if 6831 // we find that the scalar version costs less. 6832 SmallVector<Instruction *, 8> Worklist; 6833 6834 // Returns true if the given instruction can be scalarized. 6835 auto canBeScalarized = [&](Instruction *I) -> bool { 6836 // We only attempt to scalarize instructions forming a single-use chain 6837 // from the original predicated block that would otherwise be vectorized. 6838 // Although not strictly necessary, we give up on instructions we know will 6839 // already be scalar to avoid traversing chains that are unlikely to be 6840 // beneficial. 6841 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6842 isScalarAfterVectorization(I, VF)) 6843 return false; 6844 6845 // If the instruction is scalar with predication, it will be analyzed 6846 // separately. We ignore it within the context of PredInst. 6847 if (Legal->isScalarWithPredication(I)) 6848 return false; 6849 6850 // If any of the instruction's operands are uniform after vectorization, 6851 // the instruction cannot be scalarized. This prevents, for example, a 6852 // masked load from being scalarized. 6853 // 6854 // We assume we will only emit a value for lane zero of an instruction 6855 // marked uniform after vectorization, rather than VF identical values. 6856 // Thus, if we scalarize an instruction that uses a uniform, we would 6857 // create uses of values corresponding to the lanes we aren't emitting code 6858 // for. This behavior can be changed by allowing getScalarValue to clone 6859 // the lane zero values for uniforms rather than asserting. 6860 for (Use &U : I->operands()) 6861 if (auto *J = dyn_cast<Instruction>(U.get())) 6862 if (isUniformAfterVectorization(J, VF)) 6863 return false; 6864 6865 // Otherwise, we can scalarize the instruction. 6866 return true; 6867 }; 6868 6869 // Returns true if an operand that cannot be scalarized must be extracted 6870 // from a vector. We will account for this scalarization overhead below. Note 6871 // that the non-void predicated instructions are placed in their own blocks, 6872 // and their return values are inserted into vectors. Thus, an extract would 6873 // still be required. 6874 auto needsExtract = [&](Instruction *I) -> bool { 6875 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6876 }; 6877 6878 // Compute the expected cost discount from scalarizing the entire expression 6879 // feeding the predicated instruction. We currently only consider expressions 6880 // that are single-use instruction chains. 6881 Worklist.push_back(PredInst); 6882 while (!Worklist.empty()) { 6883 Instruction *I = Worklist.pop_back_val(); 6884 6885 // If we've already analyzed the instruction, there's nothing to do. 6886 if (ScalarCosts.count(I)) 6887 continue; 6888 6889 // Compute the cost of the vector instruction. Note that this cost already 6890 // includes the scalarization overhead of the predicated instruction. 6891 unsigned VectorCost = getInstructionCost(I, VF).first; 6892 6893 // Compute the cost of the scalarized instruction. This cost is the cost of 6894 // the instruction as if it wasn't if-converted and instead remained in the 6895 // predicated block. We will scale this cost by block probability after 6896 // computing the scalarization overhead. 6897 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6898 6899 // Compute the scalarization overhead of needed insertelement instructions 6900 // and phi nodes. 6901 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6902 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6903 true, false); 6904 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6905 } 6906 6907 // Compute the scalarization overhead of needed extractelement 6908 // instructions. For each of the instruction's operands, if the operand can 6909 // be scalarized, add it to the worklist; otherwise, account for the 6910 // overhead. 6911 for (Use &U : I->operands()) 6912 if (auto *J = dyn_cast<Instruction>(U.get())) { 6913 assert(VectorType::isValidElementType(J->getType()) && 6914 "Instruction has non-scalar type"); 6915 if (canBeScalarized(J)) 6916 Worklist.push_back(J); 6917 else if (needsExtract(J)) 6918 ScalarCost += TTI.getScalarizationOverhead( 6919 ToVectorTy(J->getType(),VF), false, true); 6920 } 6921 6922 // Scale the total scalar cost by block probability. 6923 ScalarCost /= getReciprocalPredBlockProb(); 6924 6925 // Compute the discount. A non-negative discount means the vector version 6926 // of the instruction costs more, and scalarizing would be beneficial. 6927 Discount += VectorCost - ScalarCost; 6928 ScalarCosts[I] = ScalarCost; 6929 } 6930 6931 return Discount; 6932 } 6933 6934 LoopVectorizationCostModel::VectorizationCostTy 6935 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6936 VectorizationCostTy Cost; 6937 6938 // For each block. 6939 for (BasicBlock *BB : TheLoop->blocks()) { 6940 VectorizationCostTy BlockCost; 6941 6942 // For each instruction in the old loop. 6943 for (Instruction &I : *BB) { 6944 // Skip dbg intrinsics. 6945 if (isa<DbgInfoIntrinsic>(I)) 6946 continue; 6947 6948 // Skip ignored values. 6949 if (ValuesToIgnore.count(&I) || 6950 (VF > 1 && VecValuesToIgnore.count(&I))) 6951 continue; 6952 6953 VectorizationCostTy C = getInstructionCost(&I, VF); 6954 6955 // Check if we should override the cost. 6956 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6957 C.first = ForceTargetInstructionCost; 6958 6959 BlockCost.first += C.first; 6960 BlockCost.second |= C.second; 6961 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6962 << VF << " For instruction: " << I << '\n'); 6963 } 6964 6965 // If we are vectorizing a predicated block, it will have been 6966 // if-converted. This means that the block's instructions (aside from 6967 // stores and instructions that may divide by zero) will now be 6968 // unconditionally executed. For the scalar case, we may not always execute 6969 // the predicated block. Thus, scale the block's cost by the probability of 6970 // executing it. 6971 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6972 BlockCost.first /= getReciprocalPredBlockProb(); 6973 6974 Cost.first += BlockCost.first; 6975 Cost.second |= BlockCost.second; 6976 } 6977 6978 return Cost; 6979 } 6980 6981 /// \brief Gets Address Access SCEV after verifying that the access pattern 6982 /// is loop invariant except the induction variable dependence. 6983 /// 6984 /// This SCEV can be sent to the Target in order to estimate the address 6985 /// calculation cost. 6986 static const SCEV *getAddressAccessSCEV( 6987 Value *Ptr, 6988 LoopVectorizationLegality *Legal, 6989 PredicatedScalarEvolution &PSE, 6990 const Loop *TheLoop) { 6991 6992 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6993 if (!Gep) 6994 return nullptr; 6995 6996 // We are looking for a gep with all loop invariant indices except for one 6997 // which should be an induction variable. 6998 auto SE = PSE.getSE(); 6999 unsigned NumOperands = Gep->getNumOperands(); 7000 for (unsigned i = 1; i < NumOperands; ++i) { 7001 Value *Opd = Gep->getOperand(i); 7002 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7003 !Legal->isInductionVariable(Opd)) 7004 return nullptr; 7005 } 7006 7007 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7008 return PSE.getSCEV(Ptr); 7009 } 7010 7011 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7012 return Legal->hasStride(I->getOperand(0)) || 7013 Legal->hasStride(I->getOperand(1)); 7014 } 7015 7016 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7017 unsigned VF) { 7018 Type *ValTy = getMemInstValueType(I); 7019 auto SE = PSE.getSE(); 7020 7021 unsigned Alignment = getMemInstAlignment(I); 7022 unsigned AS = getMemInstAddressSpace(I); 7023 Value *Ptr = getPointerOperand(I); 7024 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7025 7026 // Figure out whether the access is strided and get the stride value 7027 // if it's known in compile time 7028 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7029 7030 // Get the cost of the scalar memory instruction and address computation. 7031 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7032 7033 Cost += VF * 7034 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7035 AS, I); 7036 7037 // Get the overhead of the extractelement and insertelement instructions 7038 // we might create due to scalarization. 7039 Cost += getScalarizationOverhead(I, VF, TTI); 7040 7041 // If we have a predicated store, it may not be executed for each vector 7042 // lane. Scale the cost by the probability of executing the predicated 7043 // block. 7044 if (Legal->isScalarWithPredication(I)) 7045 Cost /= getReciprocalPredBlockProb(); 7046 7047 return Cost; 7048 } 7049 7050 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7051 unsigned VF) { 7052 Type *ValTy = getMemInstValueType(I); 7053 Type *VectorTy = ToVectorTy(ValTy, VF); 7054 unsigned Alignment = getMemInstAlignment(I); 7055 Value *Ptr = getPointerOperand(I); 7056 unsigned AS = getMemInstAddressSpace(I); 7057 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7058 7059 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7060 "Stride should be 1 or -1 for consecutive memory access"); 7061 unsigned Cost = 0; 7062 if (Legal->isMaskRequired(I)) 7063 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7064 else 7065 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7066 7067 bool Reverse = ConsecutiveStride < 0; 7068 if (Reverse) 7069 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7070 return Cost; 7071 } 7072 7073 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7074 unsigned VF) { 7075 LoadInst *LI = cast<LoadInst>(I); 7076 Type *ValTy = LI->getType(); 7077 Type *VectorTy = ToVectorTy(ValTy, VF); 7078 unsigned Alignment = LI->getAlignment(); 7079 unsigned AS = LI->getPointerAddressSpace(); 7080 7081 return TTI.getAddressComputationCost(ValTy) + 7082 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7083 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7084 } 7085 7086 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7087 unsigned VF) { 7088 Type *ValTy = getMemInstValueType(I); 7089 Type *VectorTy = ToVectorTy(ValTy, VF); 7090 unsigned Alignment = getMemInstAlignment(I); 7091 Value *Ptr = getPointerOperand(I); 7092 7093 return TTI.getAddressComputationCost(VectorTy) + 7094 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7095 Legal->isMaskRequired(I), Alignment); 7096 } 7097 7098 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7099 unsigned VF) { 7100 Type *ValTy = getMemInstValueType(I); 7101 Type *VectorTy = ToVectorTy(ValTy, VF); 7102 unsigned AS = getMemInstAddressSpace(I); 7103 7104 auto Group = Legal->getInterleavedAccessGroup(I); 7105 assert(Group && "Fail to get an interleaved access group."); 7106 7107 unsigned InterleaveFactor = Group->getFactor(); 7108 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7109 7110 // Holds the indices of existing members in an interleaved load group. 7111 // An interleaved store group doesn't need this as it doesn't allow gaps. 7112 SmallVector<unsigned, 4> Indices; 7113 if (isa<LoadInst>(I)) { 7114 for (unsigned i = 0; i < InterleaveFactor; i++) 7115 if (Group->getMember(i)) 7116 Indices.push_back(i); 7117 } 7118 7119 // Calculate the cost of the whole interleaved group. 7120 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7121 Group->getFactor(), Indices, 7122 Group->getAlignment(), AS); 7123 7124 if (Group->isReverse()) 7125 Cost += Group->getNumMembers() * 7126 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7127 return Cost; 7128 } 7129 7130 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7131 unsigned VF) { 7132 // Calculate scalar cost only. Vectorization cost should be ready at this 7133 // moment. 7134 if (VF == 1) { 7135 Type *ValTy = getMemInstValueType(I); 7136 unsigned Alignment = getMemInstAlignment(I); 7137 unsigned AS = getMemInstAddressSpace(I); 7138 7139 return TTI.getAddressComputationCost(ValTy) + 7140 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7141 } 7142 return getWideningCost(I, VF); 7143 } 7144 7145 LoopVectorizationCostModel::VectorizationCostTy 7146 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7147 // If we know that this instruction will remain uniform, check the cost of 7148 // the scalar version. 7149 if (isUniformAfterVectorization(I, VF)) 7150 VF = 1; 7151 7152 if (VF > 1 && isProfitableToScalarize(I, VF)) 7153 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7154 7155 // Forced scalars do not have any scalarization overhead. 7156 if (VF > 1 && ForcedScalars.count(VF) && 7157 ForcedScalars.find(VF)->second.count(I)) 7158 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7159 7160 Type *VectorTy; 7161 unsigned C = getInstructionCost(I, VF, VectorTy); 7162 7163 bool TypeNotScalarized = 7164 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7165 return VectorizationCostTy(C, TypeNotScalarized); 7166 } 7167 7168 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7169 if (VF == 1) 7170 return; 7171 for (BasicBlock *BB : TheLoop->blocks()) { 7172 // For each instruction in the old loop. 7173 for (Instruction &I : *BB) { 7174 Value *Ptr = getPointerOperand(&I); 7175 if (!Ptr) 7176 continue; 7177 7178 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7179 // Scalar load + broadcast 7180 unsigned Cost = getUniformMemOpCost(&I, VF); 7181 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7182 continue; 7183 } 7184 7185 // We assume that widening is the best solution when possible. 7186 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7187 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7188 int ConsecutiveStride = Legal->isConsecutivePtr(getPointerOperand(&I)); 7189 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7190 "Expected consecutive stride."); 7191 InstWidening Decision = 7192 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7193 setWideningDecision(&I, VF, Decision, Cost); 7194 continue; 7195 } 7196 7197 // Choose between Interleaving, Gather/Scatter or Scalarization. 7198 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 7199 unsigned NumAccesses = 1; 7200 if (Legal->isAccessInterleaved(&I)) { 7201 auto Group = Legal->getInterleavedAccessGroup(&I); 7202 assert(Group && "Fail to get an interleaved access group."); 7203 7204 // Make one decision for the whole group. 7205 if (getWideningDecision(&I, VF) != CM_Unknown) 7206 continue; 7207 7208 NumAccesses = Group->getNumMembers(); 7209 InterleaveCost = getInterleaveGroupCost(&I, VF); 7210 } 7211 7212 unsigned GatherScatterCost = 7213 Legal->isLegalGatherOrScatter(&I) 7214 ? getGatherScatterCost(&I, VF) * NumAccesses 7215 : std::numeric_limits<unsigned>::max(); 7216 7217 unsigned ScalarizationCost = 7218 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7219 7220 // Choose better solution for the current VF, 7221 // write down this decision and use it during vectorization. 7222 unsigned Cost; 7223 InstWidening Decision; 7224 if (InterleaveCost <= GatherScatterCost && 7225 InterleaveCost < ScalarizationCost) { 7226 Decision = CM_Interleave; 7227 Cost = InterleaveCost; 7228 } else if (GatherScatterCost < ScalarizationCost) { 7229 Decision = CM_GatherScatter; 7230 Cost = GatherScatterCost; 7231 } else { 7232 Decision = CM_Scalarize; 7233 Cost = ScalarizationCost; 7234 } 7235 // If the instructions belongs to an interleave group, the whole group 7236 // receives the same decision. The whole group receives the cost, but 7237 // the cost will actually be assigned to one instruction. 7238 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7239 setWideningDecision(Group, VF, Decision, Cost); 7240 else 7241 setWideningDecision(&I, VF, Decision, Cost); 7242 } 7243 } 7244 7245 // Make sure that any load of address and any other address computation 7246 // remains scalar unless there is gather/scatter support. This avoids 7247 // inevitable extracts into address registers, and also has the benefit of 7248 // activating LSR more, since that pass can't optimize vectorized 7249 // addresses. 7250 if (TTI.prefersVectorizedAddressing()) 7251 return; 7252 7253 // Start with all scalar pointer uses. 7254 SmallPtrSet<Instruction *, 8> AddrDefs; 7255 for (BasicBlock *BB : TheLoop->blocks()) 7256 for (Instruction &I : *BB) { 7257 Instruction *PtrDef = 7258 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7259 if (PtrDef && TheLoop->contains(PtrDef) && 7260 getWideningDecision(&I, VF) != CM_GatherScatter) 7261 AddrDefs.insert(PtrDef); 7262 } 7263 7264 // Add all instructions used to generate the addresses. 7265 SmallVector<Instruction *, 4> Worklist; 7266 for (auto *I : AddrDefs) 7267 Worklist.push_back(I); 7268 while (!Worklist.empty()) { 7269 Instruction *I = Worklist.pop_back_val(); 7270 for (auto &Op : I->operands()) 7271 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7272 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7273 AddrDefs.insert(InstOp).second) 7274 Worklist.push_back(InstOp); 7275 } 7276 7277 for (auto *I : AddrDefs) { 7278 if (isa<LoadInst>(I)) { 7279 // Setting the desired widening decision should ideally be handled in 7280 // by cost functions, but since this involves the task of finding out 7281 // if the loaded register is involved in an address computation, it is 7282 // instead changed here when we know this is the case. 7283 InstWidening Decision = getWideningDecision(I, VF); 7284 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7285 // Scalarize a widened load of address. 7286 setWideningDecision(I, VF, CM_Scalarize, 7287 (VF * getMemoryInstructionCost(I, 1))); 7288 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7289 // Scalarize an interleave group of address loads. 7290 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7291 if (Instruction *Member = Group->getMember(I)) 7292 setWideningDecision(Member, VF, CM_Scalarize, 7293 (VF * getMemoryInstructionCost(Member, 1))); 7294 } 7295 } 7296 } else 7297 // Make sure I gets scalarized and a cost estimate without 7298 // scalarization overhead. 7299 ForcedScalars[VF].insert(I); 7300 } 7301 } 7302 7303 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7304 unsigned VF, 7305 Type *&VectorTy) { 7306 Type *RetTy = I->getType(); 7307 if (canTruncateToMinimalBitwidth(I, VF)) 7308 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7309 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7310 auto SE = PSE.getSE(); 7311 7312 // TODO: We need to estimate the cost of intrinsic calls. 7313 switch (I->getOpcode()) { 7314 case Instruction::GetElementPtr: 7315 // We mark this instruction as zero-cost because the cost of GEPs in 7316 // vectorized code depends on whether the corresponding memory instruction 7317 // is scalarized or not. Therefore, we handle GEPs with the memory 7318 // instruction cost. 7319 return 0; 7320 case Instruction::Br: { 7321 // In cases of scalarized and predicated instructions, there will be VF 7322 // predicated blocks in the vectorized loop. Each branch around these 7323 // blocks requires also an extract of its vector compare i1 element. 7324 bool ScalarPredicatedBB = false; 7325 BranchInst *BI = cast<BranchInst>(I); 7326 if (VF > 1 && BI->isConditional() && 7327 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7328 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7329 ScalarPredicatedBB = true; 7330 7331 if (ScalarPredicatedBB) { 7332 // Return cost for branches around scalarized and predicated blocks. 7333 Type *Vec_i1Ty = 7334 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7335 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7336 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7337 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7338 // The back-edge branch will remain, as will all scalar branches. 7339 return TTI.getCFInstrCost(Instruction::Br); 7340 else 7341 // This branch will be eliminated by if-conversion. 7342 return 0; 7343 // Note: We currently assume zero cost for an unconditional branch inside 7344 // a predicated block since it will become a fall-through, although we 7345 // may decide in the future to call TTI for all branches. 7346 } 7347 case Instruction::PHI: { 7348 auto *Phi = cast<PHINode>(I); 7349 7350 // First-order recurrences are replaced by vector shuffles inside the loop. 7351 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7352 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7353 VectorTy, VF - 1, VectorTy); 7354 7355 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7356 // converted into select instructions. We require N - 1 selects per phi 7357 // node, where N is the number of incoming values. 7358 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7359 return (Phi->getNumIncomingValues() - 1) * 7360 TTI.getCmpSelInstrCost( 7361 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7362 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7363 7364 return TTI.getCFInstrCost(Instruction::PHI); 7365 } 7366 case Instruction::UDiv: 7367 case Instruction::SDiv: 7368 case Instruction::URem: 7369 case Instruction::SRem: 7370 // If we have a predicated instruction, it may not be executed for each 7371 // vector lane. Get the scalarization cost and scale this amount by the 7372 // probability of executing the predicated block. If the instruction is not 7373 // predicated, we fall through to the next case. 7374 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7375 unsigned Cost = 0; 7376 7377 // These instructions have a non-void type, so account for the phi nodes 7378 // that we will create. This cost is likely to be zero. The phi node 7379 // cost, if any, should be scaled by the block probability because it 7380 // models a copy at the end of each predicated block. 7381 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7382 7383 // The cost of the non-predicated instruction. 7384 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7385 7386 // The cost of insertelement and extractelement instructions needed for 7387 // scalarization. 7388 Cost += getScalarizationOverhead(I, VF, TTI); 7389 7390 // Scale the cost by the probability of executing the predicated blocks. 7391 // This assumes the predicated block for each vector lane is equally 7392 // likely. 7393 return Cost / getReciprocalPredBlockProb(); 7394 } 7395 LLVM_FALLTHROUGH; 7396 case Instruction::Add: 7397 case Instruction::FAdd: 7398 case Instruction::Sub: 7399 case Instruction::FSub: 7400 case Instruction::Mul: 7401 case Instruction::FMul: 7402 case Instruction::FDiv: 7403 case Instruction::FRem: 7404 case Instruction::Shl: 7405 case Instruction::LShr: 7406 case Instruction::AShr: 7407 case Instruction::And: 7408 case Instruction::Or: 7409 case Instruction::Xor: { 7410 // Since we will replace the stride by 1 the multiplication should go away. 7411 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7412 return 0; 7413 // Certain instructions can be cheaper to vectorize if they have a constant 7414 // second vector operand. One example of this are shifts on x86. 7415 TargetTransformInfo::OperandValueKind Op1VK = 7416 TargetTransformInfo::OK_AnyValue; 7417 TargetTransformInfo::OperandValueKind Op2VK = 7418 TargetTransformInfo::OK_AnyValue; 7419 TargetTransformInfo::OperandValueProperties Op1VP = 7420 TargetTransformInfo::OP_None; 7421 TargetTransformInfo::OperandValueProperties Op2VP = 7422 TargetTransformInfo::OP_None; 7423 Value *Op2 = I->getOperand(1); 7424 7425 // Check for a splat or for a non uniform vector of constants. 7426 if (isa<ConstantInt>(Op2)) { 7427 ConstantInt *CInt = cast<ConstantInt>(Op2); 7428 if (CInt && CInt->getValue().isPowerOf2()) 7429 Op2VP = TargetTransformInfo::OP_PowerOf2; 7430 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7431 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7432 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7433 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7434 if (SplatValue) { 7435 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7436 if (CInt && CInt->getValue().isPowerOf2()) 7437 Op2VP = TargetTransformInfo::OP_PowerOf2; 7438 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7439 } 7440 } else if (Legal->isUniform(Op2)) { 7441 Op2VK = TargetTransformInfo::OK_UniformValue; 7442 } 7443 SmallVector<const Value *, 4> Operands(I->operand_values()); 7444 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7445 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7446 Op2VK, Op1VP, Op2VP, Operands); 7447 } 7448 case Instruction::Select: { 7449 SelectInst *SI = cast<SelectInst>(I); 7450 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7451 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7452 Type *CondTy = SI->getCondition()->getType(); 7453 if (!ScalarCond) 7454 CondTy = VectorType::get(CondTy, VF); 7455 7456 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7457 } 7458 case Instruction::ICmp: 7459 case Instruction::FCmp: { 7460 Type *ValTy = I->getOperand(0)->getType(); 7461 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7462 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7463 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7464 VectorTy = ToVectorTy(ValTy, VF); 7465 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7466 } 7467 case Instruction::Store: 7468 case Instruction::Load: { 7469 unsigned Width = VF; 7470 if (Width > 1) { 7471 InstWidening Decision = getWideningDecision(I, Width); 7472 assert(Decision != CM_Unknown && 7473 "CM decision should be taken at this point"); 7474 if (Decision == CM_Scalarize) 7475 Width = 1; 7476 } 7477 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7478 return getMemoryInstructionCost(I, VF); 7479 } 7480 case Instruction::ZExt: 7481 case Instruction::SExt: 7482 case Instruction::FPToUI: 7483 case Instruction::FPToSI: 7484 case Instruction::FPExt: 7485 case Instruction::PtrToInt: 7486 case Instruction::IntToPtr: 7487 case Instruction::SIToFP: 7488 case Instruction::UIToFP: 7489 case Instruction::Trunc: 7490 case Instruction::FPTrunc: 7491 case Instruction::BitCast: { 7492 // We optimize the truncation of induction variables having constant 7493 // integer steps. The cost of these truncations is the same as the scalar 7494 // operation. 7495 if (isOptimizableIVTruncate(I, VF)) { 7496 auto *Trunc = cast<TruncInst>(I); 7497 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7498 Trunc->getSrcTy(), Trunc); 7499 } 7500 7501 Type *SrcScalarTy = I->getOperand(0)->getType(); 7502 Type *SrcVecTy = 7503 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7504 if (canTruncateToMinimalBitwidth(I, VF)) { 7505 // This cast is going to be shrunk. This may remove the cast or it might 7506 // turn it into slightly different cast. For example, if MinBW == 16, 7507 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7508 // 7509 // Calculate the modified src and dest types. 7510 Type *MinVecTy = VectorTy; 7511 if (I->getOpcode() == Instruction::Trunc) { 7512 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7513 VectorTy = 7514 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7515 } else if (I->getOpcode() == Instruction::ZExt || 7516 I->getOpcode() == Instruction::SExt) { 7517 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7518 VectorTy = 7519 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7520 } 7521 } 7522 7523 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7524 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7525 } 7526 case Instruction::Call: { 7527 bool NeedToScalarize; 7528 CallInst *CI = cast<CallInst>(I); 7529 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7530 if (getVectorIntrinsicIDForCall(CI, TLI)) 7531 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7532 return CallCost; 7533 } 7534 default: 7535 // The cost of executing VF copies of the scalar instruction. This opcode 7536 // is unknown. Assume that it is the same as 'mul'. 7537 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7538 getScalarizationOverhead(I, VF, TTI); 7539 } // end of switch. 7540 } 7541 7542 char LoopVectorize::ID = 0; 7543 7544 static const char lv_name[] = "Loop Vectorization"; 7545 7546 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7547 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7548 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7549 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7550 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7551 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7552 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7553 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7554 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7555 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7556 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7557 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7558 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7559 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7560 7561 namespace llvm { 7562 7563 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7564 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7565 } 7566 7567 } // end namespace llvm 7568 7569 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7570 // Check if the pointer operand of a load or store instruction is 7571 // consecutive. 7572 if (auto *Ptr = getPointerOperand(Inst)) 7573 return Legal->isConsecutivePtr(Ptr); 7574 return false; 7575 } 7576 7577 void LoopVectorizationCostModel::collectValuesToIgnore() { 7578 // Ignore ephemeral values. 7579 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7580 7581 // Ignore type-promoting instructions we identified during reduction 7582 // detection. 7583 for (auto &Reduction : *Legal->getReductionVars()) { 7584 RecurrenceDescriptor &RedDes = Reduction.second; 7585 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7586 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7587 } 7588 // Ignore type-casting instructions we identified during induction 7589 // detection. 7590 for (auto &Induction : *Legal->getInductionVars()) { 7591 InductionDescriptor &IndDes = Induction.second; 7592 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7593 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7594 } 7595 } 7596 7597 LoopVectorizationCostModel::VectorizationFactor 7598 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7599 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7600 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7601 0U}; 7602 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7603 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7604 return NoVectorization; 7605 7606 if (UserVF) { 7607 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7608 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7609 // Collect the instructions (and their associated costs) that will be more 7610 // profitable to scalarize. 7611 CM.selectUserVectorizationFactor(UserVF); 7612 buildVPlans(UserVF, UserVF); 7613 DEBUG(printPlans(dbgs())); 7614 return {UserVF, 0}; 7615 } 7616 7617 unsigned MaxVF = MaybeMaxVF.getValue(); 7618 assert(MaxVF != 0 && "MaxVF is zero."); 7619 7620 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7621 // Collect Uniform and Scalar instructions after vectorization with VF. 7622 CM.collectUniformsAndScalars(VF); 7623 7624 // Collect the instructions (and their associated costs) that will be more 7625 // profitable to scalarize. 7626 if (VF > 1) 7627 CM.collectInstsToScalarize(VF); 7628 } 7629 7630 buildVPlans(1, MaxVF); 7631 DEBUG(printPlans(dbgs())); 7632 if (MaxVF == 1) 7633 return NoVectorization; 7634 7635 // Select the optimal vectorization factor. 7636 return CM.selectVectorizationFactor(MaxVF); 7637 } 7638 7639 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7640 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7641 BestVF = VF; 7642 BestUF = UF; 7643 7644 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7645 return !Plan->hasVF(VF); 7646 }); 7647 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7648 } 7649 7650 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7651 DominatorTree *DT) { 7652 // Perform the actual loop transformation. 7653 7654 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7655 VPCallbackILV CallbackILV(ILV); 7656 7657 VPTransformState State{BestVF, BestUF, LI, 7658 DT, ILV.Builder, ILV.VectorLoopValueMap, 7659 &ILV, CallbackILV}; 7660 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7661 7662 //===------------------------------------------------===// 7663 // 7664 // Notice: any optimization or new instruction that go 7665 // into the code below should also be implemented in 7666 // the cost-model. 7667 // 7668 //===------------------------------------------------===// 7669 7670 // 2. Copy and widen instructions from the old loop into the new loop. 7671 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7672 VPlans.front()->execute(&State); 7673 7674 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7675 // predication, updating analyses. 7676 ILV.fixVectorizedLoop(); 7677 } 7678 7679 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7680 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7681 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7682 7683 // We create new control-flow for the vectorized loop, so the original 7684 // condition will be dead after vectorization if it's only used by the 7685 // branch. 7686 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7687 if (Cmp && Cmp->hasOneUse()) 7688 DeadInstructions.insert(Cmp); 7689 7690 // We create new "steps" for induction variable updates to which the original 7691 // induction variables map. An original update instruction will be dead if 7692 // all its users except the induction variable are dead. 7693 for (auto &Induction : *Legal->getInductionVars()) { 7694 PHINode *Ind = Induction.first; 7695 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7696 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7697 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7698 })) 7699 DeadInstructions.insert(IndUpdate); 7700 7701 // We record as "Dead" also the type-casting instructions we had identified 7702 // during induction analysis. We don't need any handling for them in the 7703 // vectorized loop because we have proven that, under a proper runtime 7704 // test guarding the vectorized loop, the value of the phi, and the casted 7705 // value of the phi, are the same. The last instruction in this casting chain 7706 // will get its scalar/vector/widened def from the scalar/vector/widened def 7707 // of the respective phi node. Any other casts in the induction def-use chain 7708 // have no other uses outside the phi update chain, and will be ignored. 7709 InductionDescriptor &IndDes = Induction.second; 7710 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7711 DeadInstructions.insert(Casts.begin(), Casts.end()); 7712 } 7713 } 7714 7715 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7716 7717 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7718 7719 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7720 Instruction::BinaryOps BinOp) { 7721 // When unrolling and the VF is 1, we only need to add a simple scalar. 7722 Type *Ty = Val->getType(); 7723 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7724 7725 if (Ty->isFloatingPointTy()) { 7726 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7727 7728 // Floating point operations had to be 'fast' to enable the unrolling. 7729 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7730 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7731 } 7732 Constant *C = ConstantInt::get(Ty, StartIdx); 7733 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7734 } 7735 7736 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7737 SmallVector<Metadata *, 4> MDs; 7738 // Reserve first location for self reference to the LoopID metadata node. 7739 MDs.push_back(nullptr); 7740 bool IsUnrollMetadata = false; 7741 MDNode *LoopID = L->getLoopID(); 7742 if (LoopID) { 7743 // First find existing loop unrolling disable metadata. 7744 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7745 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7746 if (MD) { 7747 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7748 IsUnrollMetadata = 7749 S && S->getString().startswith("llvm.loop.unroll.disable"); 7750 } 7751 MDs.push_back(LoopID->getOperand(i)); 7752 } 7753 } 7754 7755 if (!IsUnrollMetadata) { 7756 // Add runtime unroll disable metadata. 7757 LLVMContext &Context = L->getHeader()->getContext(); 7758 SmallVector<Metadata *, 1> DisableOperands; 7759 DisableOperands.push_back( 7760 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7761 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7762 MDs.push_back(DisableNode); 7763 MDNode *NewLoopID = MDNode::get(Context, MDs); 7764 // Set operand 0 to refer to the loop id itself. 7765 NewLoopID->replaceOperandWith(0, NewLoopID); 7766 L->setLoopID(NewLoopID); 7767 } 7768 } 7769 7770 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7771 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7772 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7773 bool PredicateAtRangeStart = Predicate(Range.Start); 7774 7775 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7776 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7777 Range.End = TmpVF; 7778 break; 7779 } 7780 7781 return PredicateAtRangeStart; 7782 } 7783 7784 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7785 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7786 /// of VF's starting at a given VF and extending it as much as possible. Each 7787 /// vectorization decision can potentially shorten this sub-range during 7788 /// buildVPlan(). 7789 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7790 7791 // Collect conditions feeding internal conditional branches; they need to be 7792 // represented in VPlan for it to model masking. 7793 SmallPtrSet<Value *, 1> NeedDef; 7794 7795 auto *Latch = OrigLoop->getLoopLatch(); 7796 for (BasicBlock *BB : OrigLoop->blocks()) { 7797 if (BB == Latch) 7798 continue; 7799 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7800 if (Branch && Branch->isConditional()) 7801 NeedDef.insert(Branch->getCondition()); 7802 } 7803 7804 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7805 VFRange SubRange = {VF, MaxVF + 1}; 7806 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 7807 VF = SubRange.End; 7808 } 7809 } 7810 7811 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 7812 BasicBlock *Dst, 7813 VPlanPtr &Plan) { 7814 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7815 7816 // Look for cached value. 7817 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7818 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7819 if (ECEntryIt != EdgeMaskCache.end()) 7820 return ECEntryIt->second; 7821 7822 VPValue *SrcMask = createBlockInMask(Src, Plan); 7823 7824 // The terminator has to be a branch inst! 7825 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7826 assert(BI && "Unexpected terminator found"); 7827 7828 if (!BI->isConditional()) 7829 return EdgeMaskCache[Edge] = SrcMask; 7830 7831 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7832 assert(EdgeMask && "No Edge Mask found for condition"); 7833 7834 if (BI->getSuccessor(0) != Dst) 7835 EdgeMask = Builder.createNot(EdgeMask); 7836 7837 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7838 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7839 7840 return EdgeMaskCache[Edge] = EdgeMask; 7841 } 7842 7843 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 7844 VPlanPtr &Plan) { 7845 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7846 7847 // Look for cached value. 7848 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7849 if (BCEntryIt != BlockMaskCache.end()) 7850 return BCEntryIt->second; 7851 7852 // All-one mask is modelled as no-mask following the convention for masked 7853 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7854 VPValue *BlockMask = nullptr; 7855 7856 // Loop incoming mask is all-one. 7857 if (OrigLoop->getHeader() == BB) 7858 return BlockMaskCache[BB] = BlockMask; 7859 7860 // This is the block mask. We OR all incoming edges. 7861 for (auto *Predecessor : predecessors(BB)) { 7862 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7863 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7864 return BlockMaskCache[BB] = EdgeMask; 7865 7866 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7867 BlockMask = EdgeMask; 7868 continue; 7869 } 7870 7871 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7872 } 7873 7874 return BlockMaskCache[BB] = BlockMask; 7875 } 7876 7877 VPInterleaveRecipe * 7878 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7879 VFRange &Range) { 7880 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7881 if (!IG) 7882 return nullptr; 7883 7884 // Now check if IG is relevant for VF's in the given range. 7885 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7886 return [=](unsigned VF) -> bool { 7887 return (VF >= 2 && // Query is illegal for VF == 1 7888 CM.getWideningDecision(I, VF) == 7889 LoopVectorizationCostModel::CM_Interleave); 7890 }; 7891 }; 7892 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7893 return nullptr; 7894 7895 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7896 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7897 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7898 assert(I == IG->getInsertPos() && 7899 "Generating a recipe for an adjunct member of an interleave group"); 7900 7901 return new VPInterleaveRecipe(IG); 7902 } 7903 7904 VPWidenMemoryInstructionRecipe * 7905 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 7906 VPlanPtr &Plan) { 7907 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 7908 return nullptr; 7909 7910 auto willWiden = [&](unsigned VF) -> bool { 7911 if (VF == 1) 7912 return false; 7913 if (CM.isScalarAfterVectorization(I, VF) || 7914 CM.isProfitableToScalarize(I, VF)) 7915 return false; 7916 LoopVectorizationCostModel::InstWidening Decision = 7917 CM.getWideningDecision(I, VF); 7918 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7919 "CM decision should be taken at this point."); 7920 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 7921 "Interleave memory opportunity should be caught earlier."); 7922 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7923 }; 7924 7925 if (!getDecisionAndClampRange(willWiden, Range)) 7926 return nullptr; 7927 7928 VPValue *Mask = nullptr; 7929 if (Legal->isMaskRequired(I)) 7930 Mask = createBlockInMask(I->getParent(), Plan); 7931 7932 return new VPWidenMemoryInstructionRecipe(*I, Mask); 7933 } 7934 7935 VPWidenIntOrFpInductionRecipe * 7936 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7937 VFRange &Range) { 7938 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7939 // Check if this is an integer or fp induction. If so, build the recipe that 7940 // produces its scalar and vector values. 7941 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7942 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7943 II.getKind() == InductionDescriptor::IK_FpInduction) 7944 return new VPWidenIntOrFpInductionRecipe(Phi); 7945 7946 return nullptr; 7947 } 7948 7949 // Optimize the special case where the source is a constant integer 7950 // induction variable. Notice that we can only optimize the 'trunc' case 7951 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7952 // (c) other casts depend on pointer size. 7953 7954 // Determine whether \p K is a truncation based on an induction variable that 7955 // can be optimized. 7956 auto isOptimizableIVTruncate = 7957 [&](Instruction *K) -> std::function<bool(unsigned)> { 7958 return 7959 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7960 }; 7961 7962 if (isa<TruncInst>(I) && 7963 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7964 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7965 cast<TruncInst>(I)); 7966 return nullptr; 7967 } 7968 7969 VPBlendRecipe * 7970 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 7971 PHINode *Phi = dyn_cast<PHINode>(I); 7972 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 7973 return nullptr; 7974 7975 // We know that all PHIs in non-header blocks are converted into selects, so 7976 // we don't have to worry about the insertion order and we can just use the 7977 // builder. At this point we generate the predication tree. There may be 7978 // duplications since this is a simple recursive scan, but future 7979 // optimizations will clean it up. 7980 7981 SmallVector<VPValue *, 2> Masks; 7982 unsigned NumIncoming = Phi->getNumIncomingValues(); 7983 for (unsigned In = 0; In < NumIncoming; In++) { 7984 VPValue *EdgeMask = 7985 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7986 assert((EdgeMask || NumIncoming == 1) && 7987 "Multiple predecessors with one having a full mask"); 7988 if (EdgeMask) 7989 Masks.push_back(EdgeMask); 7990 } 7991 return new VPBlendRecipe(Phi, Masks); 7992 } 7993 7994 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 7995 VFRange &Range) { 7996 if (Legal->isScalarWithPredication(I)) 7997 return false; 7998 7999 auto IsVectorizableOpcode = [](unsigned Opcode) { 8000 switch (Opcode) { 8001 case Instruction::Add: 8002 case Instruction::And: 8003 case Instruction::AShr: 8004 case Instruction::BitCast: 8005 case Instruction::Br: 8006 case Instruction::Call: 8007 case Instruction::FAdd: 8008 case Instruction::FCmp: 8009 case Instruction::FDiv: 8010 case Instruction::FMul: 8011 case Instruction::FPExt: 8012 case Instruction::FPToSI: 8013 case Instruction::FPToUI: 8014 case Instruction::FPTrunc: 8015 case Instruction::FRem: 8016 case Instruction::FSub: 8017 case Instruction::GetElementPtr: 8018 case Instruction::ICmp: 8019 case Instruction::IntToPtr: 8020 case Instruction::Load: 8021 case Instruction::LShr: 8022 case Instruction::Mul: 8023 case Instruction::Or: 8024 case Instruction::PHI: 8025 case Instruction::PtrToInt: 8026 case Instruction::SDiv: 8027 case Instruction::Select: 8028 case Instruction::SExt: 8029 case Instruction::Shl: 8030 case Instruction::SIToFP: 8031 case Instruction::SRem: 8032 case Instruction::Store: 8033 case Instruction::Sub: 8034 case Instruction::Trunc: 8035 case Instruction::UDiv: 8036 case Instruction::UIToFP: 8037 case Instruction::URem: 8038 case Instruction::Xor: 8039 case Instruction::ZExt: 8040 return true; 8041 } 8042 return false; 8043 }; 8044 8045 if (!IsVectorizableOpcode(I->getOpcode())) 8046 return false; 8047 8048 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8049 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8050 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8051 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 8052 return false; 8053 } 8054 8055 auto willWiden = [&](unsigned VF) -> bool { 8056 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 8057 CM.isProfitableToScalarize(I, VF))) 8058 return false; 8059 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8060 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8061 // The following case may be scalarized depending on the VF. 8062 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8063 // version of the instruction. 8064 // Is it beneficial to perform intrinsic call compared to lib call? 8065 bool NeedToScalarize; 8066 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 8067 bool UseVectorIntrinsic = 8068 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 8069 return UseVectorIntrinsic || !NeedToScalarize; 8070 } 8071 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 8072 assert(CM.getWideningDecision(I, VF) == 8073 LoopVectorizationCostModel::CM_Scalarize && 8074 "Memory widening decisions should have been taken care by now"); 8075 return false; 8076 } 8077 return true; 8078 }; 8079 8080 if (!getDecisionAndClampRange(willWiden, Range)) 8081 return false; 8082 8083 // Success: widen this instruction. We optimize the common case where 8084 // consecutive instructions can be represented by a single recipe. 8085 if (!VPBB->empty()) { 8086 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 8087 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 8088 return true; 8089 } 8090 8091 VPBB->appendRecipe(new VPWidenRecipe(I)); 8092 return true; 8093 } 8094 8095 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 8096 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8097 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8098 VPlanPtr &Plan) { 8099 bool IsUniform = getDecisionAndClampRange( 8100 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 8101 Range); 8102 8103 bool IsPredicated = Legal->isScalarWithPredication(I); 8104 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 8105 8106 // Find if I uses a predicated instruction. If so, it will use its scalar 8107 // value. Avoid hoisting the insert-element which packs the scalar value into 8108 // a vector value, as that happens iff all users use the vector value. 8109 for (auto &Op : I->operands()) 8110 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8111 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8112 PredInst2Recipe[PredInst]->setAlsoPack(false); 8113 8114 // Finalize the recipe for Instr, first if it is not predicated. 8115 if (!IsPredicated) { 8116 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8117 VPBB->appendRecipe(Recipe); 8118 return VPBB; 8119 } 8120 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8121 assert(VPBB->getSuccessors().empty() && 8122 "VPBB has successors when handling predicated replication."); 8123 // Record predicated instructions for above packing optimizations. 8124 PredInst2Recipe[I] = Recipe; 8125 VPBlockBase *Region = 8126 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 8127 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 8128 } 8129 8130 VPRegionBlock * 8131 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 8132 VPRecipeBase *PredRecipe, 8133 VPlanPtr &Plan) { 8134 // Instructions marked for predication are replicated and placed under an 8135 // if-then construct to prevent side-effects. 8136 8137 // Generate recipes to compute the block mask for this region. 8138 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8139 8140 // Build the triangular if-then region. 8141 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8142 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8143 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8144 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8145 auto *PHIRecipe = 8146 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 8147 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8148 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8149 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8150 8151 // Note: first set Entry as region entry and then connect successors starting 8152 // from it in order, to propagate the "parent" of each VPBasicBlock. 8153 Entry->setTwoSuccessors(Pred, Exit); 8154 Pred->setOneSuccessor(Exit); 8155 8156 return Region; 8157 } 8158 8159 LoopVectorizationPlanner::VPlanPtr 8160 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 8161 const SmallPtrSetImpl<Value *> &NeedDef) { 8162 EdgeMaskCache.clear(); 8163 BlockMaskCache.clear(); 8164 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8165 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 8166 8167 // Collect instructions from the original loop that will become trivially dead 8168 // in the vectorized loop. We don't need to vectorize these instructions. For 8169 // example, original induction update instructions can become dead because we 8170 // separately emit induction "steps" when generating code for the new loop. 8171 // Similarly, we create a new latch condition when setting up the structure 8172 // of the new loop, so the old one can become dead. 8173 SmallPtrSet<Instruction *, 4> DeadInstructions; 8174 collectTriviallyDeadInstructions(DeadInstructions); 8175 8176 // Hold a mapping from predicated instructions to their recipes, in order to 8177 // fix their AlsoPack behavior if a user is determined to replicate and use a 8178 // scalar instead of vector value. 8179 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8180 8181 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8182 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8183 auto Plan = llvm::make_unique<VPlan>(VPBB); 8184 8185 // Represent values that will have defs inside VPlan. 8186 for (Value *V : NeedDef) 8187 Plan->addVPValue(V); 8188 8189 // Scan the body of the loop in a topological order to visit each basic block 8190 // after having visited its predecessor basic blocks. 8191 LoopBlocksDFS DFS(OrigLoop); 8192 DFS.perform(LI); 8193 8194 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8195 // Relevant instructions from basic block BB will be grouped into VPRecipe 8196 // ingredients and fill a new VPBasicBlock. 8197 unsigned VPBBsForBB = 0; 8198 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8199 VPBB->setOneSuccessor(FirstVPBBForBB); 8200 VPBB = FirstVPBBForBB; 8201 Builder.setInsertPoint(VPBB); 8202 8203 std::vector<Instruction *> Ingredients; 8204 8205 // Organize the ingredients to vectorize from current basic block in the 8206 // right order. 8207 for (Instruction &I : *BB) { 8208 Instruction *Instr = &I; 8209 8210 // First filter out irrelevant instructions, to ensure no recipes are 8211 // built for them. 8212 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8213 DeadInstructions.count(Instr)) 8214 continue; 8215 8216 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8217 // member of the IG, do not construct any Recipe for it. 8218 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8219 if (IG && Instr != IG->getInsertPos() && 8220 Range.Start >= 2 && // Query is illegal for VF == 1 8221 CM.getWideningDecision(Instr, Range.Start) == 8222 LoopVectorizationCostModel::CM_Interleave) { 8223 if (SinkAfterInverse.count(Instr)) 8224 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8225 continue; 8226 } 8227 8228 // Move instructions to handle first-order recurrences, step 1: avoid 8229 // handling this instruction until after we've handled the instruction it 8230 // should follow. 8231 auto SAIt = SinkAfter.find(Instr); 8232 if (SAIt != SinkAfter.end()) { 8233 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8234 << " to vectorize a 1st order recurrence.\n"); 8235 SinkAfterInverse[SAIt->second] = Instr; 8236 continue; 8237 } 8238 8239 Ingredients.push_back(Instr); 8240 8241 // Move instructions to handle first-order recurrences, step 2: push the 8242 // instruction to be sunk at its insertion point. 8243 auto SAInvIt = SinkAfterInverse.find(Instr); 8244 if (SAInvIt != SinkAfterInverse.end()) 8245 Ingredients.push_back(SAInvIt->second); 8246 } 8247 8248 // Introduce each ingredient into VPlan. 8249 for (Instruction *Instr : Ingredients) { 8250 VPRecipeBase *Recipe = nullptr; 8251 8252 // Check if Instr should belong to an interleave memory recipe, or already 8253 // does. In the latter case Instr is irrelevant. 8254 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8255 VPBB->appendRecipe(Recipe); 8256 continue; 8257 } 8258 8259 // Check if Instr is a memory operation that should be widened. 8260 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8261 VPBB->appendRecipe(Recipe); 8262 continue; 8263 } 8264 8265 // Check if Instr should form some PHI recipe. 8266 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8267 VPBB->appendRecipe(Recipe); 8268 continue; 8269 } 8270 if ((Recipe = tryToBlend(Instr, Plan))) { 8271 VPBB->appendRecipe(Recipe); 8272 continue; 8273 } 8274 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8275 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8276 continue; 8277 } 8278 8279 // Check if Instr is to be widened by a general VPWidenRecipe, after 8280 // having first checked for specific widening recipes that deal with 8281 // Interleave Groups, Inductions and Phi nodes. 8282 if (tryToWiden(Instr, VPBB, Range)) 8283 continue; 8284 8285 // Otherwise, if all widening options failed, Instruction is to be 8286 // replicated. This may create a successor for VPBB. 8287 VPBasicBlock *NextVPBB = 8288 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8289 if (NextVPBB != VPBB) { 8290 VPBB = NextVPBB; 8291 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8292 : ""); 8293 } 8294 } 8295 } 8296 8297 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8298 // may also be empty, such as the last one VPBB, reflecting original 8299 // basic-blocks with no recipes. 8300 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8301 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8302 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8303 PreEntry->disconnectSuccessor(Entry); 8304 delete PreEntry; 8305 8306 std::string PlanName; 8307 raw_string_ostream RSO(PlanName); 8308 unsigned VF = Range.Start; 8309 Plan->addVF(VF); 8310 RSO << "Initial VPlan for VF={" << VF; 8311 for (VF *= 2; VF < Range.End; VF *= 2) { 8312 Plan->addVF(VF); 8313 RSO << "," << VF; 8314 } 8315 RSO << "},UF>=1"; 8316 RSO.flush(); 8317 Plan->setName(PlanName); 8318 8319 return Plan; 8320 } 8321 8322 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8323 O << " +\n" 8324 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8325 IG->getInsertPos()->printAsOperand(O, false); 8326 O << "\\l\""; 8327 for (unsigned i = 0; i < IG->getFactor(); ++i) 8328 if (Instruction *I = IG->getMember(i)) 8329 O << " +\n" 8330 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8331 } 8332 8333 void VPWidenRecipe::execute(VPTransformState &State) { 8334 for (auto &Instr : make_range(Begin, End)) 8335 State.ILV->widenInstruction(Instr); 8336 } 8337 8338 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8339 assert(!State.Instance && "Int or FP induction being replicated."); 8340 State.ILV->widenIntOrFpInduction(IV, Trunc); 8341 } 8342 8343 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8344 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8345 } 8346 8347 void VPBlendRecipe::execute(VPTransformState &State) { 8348 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8349 // We know that all PHIs in non-header blocks are converted into 8350 // selects, so we don't have to worry about the insertion order and we 8351 // can just use the builder. 8352 // At this point we generate the predication tree. There may be 8353 // duplications since this is a simple recursive scan, but future 8354 // optimizations will clean it up. 8355 8356 unsigned NumIncoming = Phi->getNumIncomingValues(); 8357 8358 assert((User || NumIncoming == 1) && 8359 "Multiple predecessors with predecessors having a full mask"); 8360 // Generate a sequence of selects of the form: 8361 // SELECT(Mask3, In3, 8362 // SELECT(Mask2, In2, 8363 // ( ...))) 8364 InnerLoopVectorizer::VectorParts Entry(State.UF); 8365 for (unsigned In = 0; In < NumIncoming; ++In) { 8366 for (unsigned Part = 0; Part < State.UF; ++Part) { 8367 // We might have single edge PHIs (blocks) - use an identity 8368 // 'select' for the first PHI operand. 8369 Value *In0 = 8370 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 8371 if (In == 0) 8372 Entry[Part] = In0; // Initialize with the first incoming value. 8373 else { 8374 // Select between the current value and the previous incoming edge 8375 // based on the incoming mask. 8376 Value *Cond = State.get(User->getOperand(In), Part); 8377 Entry[Part] = 8378 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8379 } 8380 } 8381 } 8382 for (unsigned Part = 0; Part < State.UF; ++Part) 8383 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8384 } 8385 8386 void VPInterleaveRecipe::execute(VPTransformState &State) { 8387 assert(!State.Instance && "Interleave group being replicated."); 8388 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 8389 } 8390 8391 void VPReplicateRecipe::execute(VPTransformState &State) { 8392 if (State.Instance) { // Generate a single instance. 8393 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8394 // Insert scalar instance packing it into a vector. 8395 if (AlsoPack && State.VF > 1) { 8396 // If we're constructing lane 0, initialize to start from undef. 8397 if (State.Instance->Lane == 0) { 8398 Value *Undef = 8399 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8400 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8401 } 8402 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8403 } 8404 return; 8405 } 8406 8407 // Generate scalar instances for all VF lanes of all UF parts, unless the 8408 // instruction is uniform inwhich case generate only the first lane for each 8409 // of the UF parts. 8410 unsigned EndLane = IsUniform ? 1 : State.VF; 8411 for (unsigned Part = 0; Part < State.UF; ++Part) 8412 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8413 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8414 } 8415 8416 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8417 assert(State.Instance && "Branch on Mask works only on single instance."); 8418 8419 unsigned Part = State.Instance->Part; 8420 unsigned Lane = State.Instance->Lane; 8421 8422 Value *ConditionBit = nullptr; 8423 if (!User) // Block in mask is all-one. 8424 ConditionBit = State.Builder.getTrue(); 8425 else { 8426 VPValue *BlockInMask = User->getOperand(0); 8427 ConditionBit = State.get(BlockInMask, Part); 8428 if (ConditionBit->getType()->isVectorTy()) 8429 ConditionBit = State.Builder.CreateExtractElement( 8430 ConditionBit, State.Builder.getInt32(Lane)); 8431 } 8432 8433 // Replace the temporary unreachable terminator with a new conditional branch, 8434 // whose two destinations will be set later when they are created. 8435 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8436 assert(isa<UnreachableInst>(CurrentTerminator) && 8437 "Expected to replace unreachable terminator with conditional branch."); 8438 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8439 CondBr->setSuccessor(0, nullptr); 8440 ReplaceInstWithInst(CurrentTerminator, CondBr); 8441 } 8442 8443 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8444 assert(State.Instance && "Predicated instruction PHI works per instance."); 8445 Instruction *ScalarPredInst = cast<Instruction>( 8446 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8447 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8448 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8449 assert(PredicatingBB && "Predicated block has no single predecessor."); 8450 8451 // By current pack/unpack logic we need to generate only a single phi node: if 8452 // a vector value for the predicated instruction exists at this point it means 8453 // the instruction has vector users only, and a phi for the vector value is 8454 // needed. In this case the recipe of the predicated instruction is marked to 8455 // also do that packing, thereby "hoisting" the insert-element sequence. 8456 // Otherwise, a phi node for the scalar value is needed. 8457 unsigned Part = State.Instance->Part; 8458 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8459 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8460 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8461 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8462 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8463 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8464 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8465 } else { 8466 Type *PredInstType = PredInst->getType(); 8467 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8468 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8469 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8470 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8471 } 8472 } 8473 8474 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8475 if (!User) 8476 return State.ILV->vectorizeMemoryInstruction(&Instr); 8477 8478 // Last (and currently only) operand is a mask. 8479 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8480 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8481 for (unsigned Part = 0; Part < State.UF; ++Part) 8482 MaskValues[Part] = State.get(Mask, Part); 8483 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8484 } 8485 8486 bool LoopVectorizePass::processLoop(Loop *L) { 8487 assert(L->empty() && "Only process inner loops."); 8488 8489 #ifndef NDEBUG 8490 const std::string DebugLocStr = getDebugLocString(L); 8491 #endif /* NDEBUG */ 8492 8493 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8494 << L->getHeader()->getParent()->getName() << "\" from " 8495 << DebugLocStr << "\n"); 8496 8497 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8498 8499 DEBUG(dbgs() << "LV: Loop hints:" 8500 << " force=" 8501 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8502 ? "disabled" 8503 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8504 ? "enabled" 8505 : "?")) 8506 << " width=" << Hints.getWidth() 8507 << " unroll=" << Hints.getInterleave() << "\n"); 8508 8509 // Function containing loop 8510 Function *F = L->getHeader()->getParent(); 8511 8512 // Looking at the diagnostic output is the only way to determine if a loop 8513 // was vectorized (other than looking at the IR or machine code), so it 8514 // is important to generate an optimization remark for each loop. Most of 8515 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8516 // generated as OptimizationRemark and OptimizationRemarkMissed are 8517 // less verbose reporting vectorized loops and unvectorized loops that may 8518 // benefit from vectorization, respectively. 8519 8520 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8521 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8522 return false; 8523 } 8524 8525 PredicatedScalarEvolution PSE(*SE, *L); 8526 8527 // Check if it is legal to vectorize the loop. 8528 LoopVectorizationRequirements Requirements(*ORE); 8529 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8530 &Requirements, &Hints); 8531 if (!LVL.canVectorize()) { 8532 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8533 emitMissedWarning(F, L, Hints, ORE); 8534 return false; 8535 } 8536 8537 // Check the function attributes to find out if this function should be 8538 // optimized for size. 8539 bool OptForSize = 8540 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8541 8542 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8543 // count by optimizing for size, to minimize overheads. 8544 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8545 bool HasExpectedTC = (ExpectedTC > 0); 8546 8547 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8548 auto EstimatedTC = getLoopEstimatedTripCount(L); 8549 if (EstimatedTC) { 8550 ExpectedTC = *EstimatedTC; 8551 HasExpectedTC = true; 8552 } 8553 } 8554 8555 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8556 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8557 << "This loop is worth vectorizing only if no scalar " 8558 << "iteration overheads are incurred."); 8559 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8560 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8561 else { 8562 DEBUG(dbgs() << "\n"); 8563 // Loops with a very small trip count are considered for vectorization 8564 // under OptForSize, thereby making sure the cost of their loop body is 8565 // dominant, free of runtime guards and scalar iteration overheads. 8566 OptForSize = true; 8567 } 8568 } 8569 8570 // Check the function attributes to see if implicit floats are allowed. 8571 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8572 // an integer loop and the vector instructions selected are purely integer 8573 // vector instructions? 8574 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8575 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8576 "attribute is used.\n"); 8577 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8578 "NoImplicitFloat", L) 8579 << "loop not vectorized due to NoImplicitFloat attribute"); 8580 emitMissedWarning(F, L, Hints, ORE); 8581 return false; 8582 } 8583 8584 // Check if the target supports potentially unsafe FP vectorization. 8585 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8586 // for the target we're vectorizing for, to make sure none of the 8587 // additional fp-math flags can help. 8588 if (Hints.isPotentiallyUnsafe() && 8589 TTI->isFPVectorizationPotentiallyUnsafe()) { 8590 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8591 ORE->emit( 8592 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8593 << "loop not vectorized due to unsafe FP support."); 8594 emitMissedWarning(F, L, Hints, ORE); 8595 return false; 8596 } 8597 8598 // Use the cost model. 8599 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8600 &Hints); 8601 CM.collectValuesToIgnore(); 8602 8603 // Use the planner for vectorization. 8604 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8605 8606 // Get user vectorization factor. 8607 unsigned UserVF = Hints.getWidth(); 8608 8609 // Plan how to best vectorize, return the best VF and its cost. 8610 LoopVectorizationCostModel::VectorizationFactor VF = 8611 LVP.plan(OptForSize, UserVF); 8612 8613 // Select the interleave count. 8614 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8615 8616 // Get user interleave count. 8617 unsigned UserIC = Hints.getInterleave(); 8618 8619 // Identify the diagnostic messages that should be produced. 8620 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8621 bool VectorizeLoop = true, InterleaveLoop = true; 8622 if (Requirements.doesNotMeet(F, L, Hints)) { 8623 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8624 "requirements.\n"); 8625 emitMissedWarning(F, L, Hints, ORE); 8626 return false; 8627 } 8628 8629 if (VF.Width == 1) { 8630 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8631 VecDiagMsg = std::make_pair( 8632 "VectorizationNotBeneficial", 8633 "the cost-model indicates that vectorization is not beneficial"); 8634 VectorizeLoop = false; 8635 } 8636 8637 if (IC == 1 && UserIC <= 1) { 8638 // Tell the user interleaving is not beneficial. 8639 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8640 IntDiagMsg = std::make_pair( 8641 "InterleavingNotBeneficial", 8642 "the cost-model indicates that interleaving is not beneficial"); 8643 InterleaveLoop = false; 8644 if (UserIC == 1) { 8645 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8646 IntDiagMsg.second += 8647 " and is explicitly disabled or interleave count is set to 1"; 8648 } 8649 } else if (IC > 1 && UserIC == 1) { 8650 // Tell the user interleaving is beneficial, but it explicitly disabled. 8651 DEBUG(dbgs() 8652 << "LV: Interleaving is beneficial but is explicitly disabled."); 8653 IntDiagMsg = std::make_pair( 8654 "InterleavingBeneficialButDisabled", 8655 "the cost-model indicates that interleaving is beneficial " 8656 "but is explicitly disabled or interleave count is set to 1"); 8657 InterleaveLoop = false; 8658 } 8659 8660 // Override IC if user provided an interleave count. 8661 IC = UserIC > 0 ? UserIC : IC; 8662 8663 // Emit diagnostic messages, if any. 8664 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8665 if (!VectorizeLoop && !InterleaveLoop) { 8666 // Do not vectorize or interleaving the loop. 8667 ORE->emit([&]() { 8668 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8669 L->getStartLoc(), L->getHeader()) 8670 << VecDiagMsg.second; 8671 }); 8672 ORE->emit([&]() { 8673 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8674 L->getStartLoc(), L->getHeader()) 8675 << IntDiagMsg.second; 8676 }); 8677 return false; 8678 } else if (!VectorizeLoop && InterleaveLoop) { 8679 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8680 ORE->emit([&]() { 8681 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8682 L->getStartLoc(), L->getHeader()) 8683 << VecDiagMsg.second; 8684 }); 8685 } else if (VectorizeLoop && !InterleaveLoop) { 8686 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8687 << DebugLocStr << '\n'); 8688 ORE->emit([&]() { 8689 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8690 L->getStartLoc(), L->getHeader()) 8691 << IntDiagMsg.second; 8692 }); 8693 } else if (VectorizeLoop && InterleaveLoop) { 8694 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8695 << DebugLocStr << '\n'); 8696 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8697 } 8698 8699 LVP.setBestPlan(VF.Width, IC); 8700 8701 using namespace ore; 8702 8703 if (!VectorizeLoop) { 8704 assert(IC > 1 && "interleave count should not be 1 or 0"); 8705 // If we decided that it is not legal to vectorize the loop, then 8706 // interleave it. 8707 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8708 &CM); 8709 LVP.executePlan(Unroller, DT); 8710 8711 ORE->emit([&]() { 8712 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8713 L->getHeader()) 8714 << "interleaved loop (interleaved count: " 8715 << NV("InterleaveCount", IC) << ")"; 8716 }); 8717 } else { 8718 // If we decided that it is *legal* to vectorize the loop, then do it. 8719 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8720 &LVL, &CM); 8721 LVP.executePlan(LB, DT); 8722 ++LoopsVectorized; 8723 8724 // Add metadata to disable runtime unrolling a scalar loop when there are 8725 // no runtime checks about strides and memory. A scalar loop that is 8726 // rarely used is not worth unrolling. 8727 if (!LB.areSafetyChecksAdded()) 8728 AddRuntimeUnrollDisableMetaData(L); 8729 8730 // Report the vectorization decision. 8731 ORE->emit([&]() { 8732 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8733 L->getHeader()) 8734 << "vectorized loop (vectorization width: " 8735 << NV("VectorizationFactor", VF.Width) 8736 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8737 }); 8738 } 8739 8740 // Mark the loop as already vectorized to avoid vectorizing again. 8741 Hints.setAlreadyVectorized(); 8742 8743 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8744 return true; 8745 } 8746 8747 bool LoopVectorizePass::runImpl( 8748 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8749 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8750 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8751 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8752 OptimizationRemarkEmitter &ORE_) { 8753 SE = &SE_; 8754 LI = &LI_; 8755 TTI = &TTI_; 8756 DT = &DT_; 8757 BFI = &BFI_; 8758 TLI = TLI_; 8759 AA = &AA_; 8760 AC = &AC_; 8761 GetLAA = &GetLAA_; 8762 DB = &DB_; 8763 ORE = &ORE_; 8764 8765 // Don't attempt if 8766 // 1. the target claims to have no vector registers, and 8767 // 2. interleaving won't help ILP. 8768 // 8769 // The second condition is necessary because, even if the target has no 8770 // vector registers, loop vectorization may still enable scalar 8771 // interleaving. 8772 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8773 return false; 8774 8775 bool Changed = false; 8776 8777 // The vectorizer requires loops to be in simplified form. 8778 // Since simplification may add new inner loops, it has to run before the 8779 // legality and profitability checks. This means running the loop vectorizer 8780 // will simplify all loops, regardless of whether anything end up being 8781 // vectorized. 8782 for (auto &L : *LI) 8783 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8784 8785 // Build up a worklist of inner-loops to vectorize. This is necessary as 8786 // the act of vectorizing or partially unrolling a loop creates new loops 8787 // and can invalidate iterators across the loops. 8788 SmallVector<Loop *, 8> Worklist; 8789 8790 for (Loop *L : *LI) 8791 addAcyclicInnerLoop(*L, Worklist); 8792 8793 LoopsAnalyzed += Worklist.size(); 8794 8795 // Now walk the identified inner loops. 8796 while (!Worklist.empty()) { 8797 Loop *L = Worklist.pop_back_val(); 8798 8799 // For the inner loops we actually process, form LCSSA to simplify the 8800 // transform. 8801 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8802 8803 Changed |= processLoop(L); 8804 } 8805 8806 // Process each loop nest in the function. 8807 return Changed; 8808 } 8809 8810 PreservedAnalyses LoopVectorizePass::run(Function &F, 8811 FunctionAnalysisManager &AM) { 8812 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8813 auto &LI = AM.getResult<LoopAnalysis>(F); 8814 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8815 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8816 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8817 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8818 auto &AA = AM.getResult<AAManager>(F); 8819 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8820 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8821 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8822 8823 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8824 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8825 [&](Loop &L) -> const LoopAccessInfo & { 8826 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 8827 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8828 }; 8829 bool Changed = 8830 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8831 if (!Changed) 8832 return PreservedAnalyses::all(); 8833 PreservedAnalyses PA; 8834 PA.preserve<LoopAnalysis>(); 8835 PA.preserve<DominatorTreeAnalysis>(); 8836 PA.preserve<BasicAA>(); 8837 PA.preserve<GlobalsAA>(); 8838 return PA; 8839 } 8840