1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 /// @{
161 /// Metadata attribute names
162 static const char *const LLVMLoopVectorizeFollowupAll =
163     "llvm.loop.vectorize.followup_all";
164 static const char *const LLVMLoopVectorizeFollowupVectorized =
165     "llvm.loop.vectorize.followup_vectorized";
166 static const char *const LLVMLoopVectorizeFollowupEpilogue =
167     "llvm.loop.vectorize.followup_epilogue";
168 /// @}
169 
170 STATISTIC(LoopsVectorized, "Number of loops vectorized");
171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
172 
173 /// Loops with a known constant trip count below this number are vectorized only
174 /// if no scalar iteration overheads are incurred.
175 static cl::opt<unsigned> TinyTripCountVectorThreshold(
176     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
177     cl::desc("Loops with a constant trip count that is smaller than this "
178              "value are vectorized only if no scalar iteration overheads "
179              "are incurred."));
180 
181 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
182 // that predication is preferred, and this lists all options. I.e., the
183 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
184 // and predicate the instructions accordingly. If tail-folding fails, there are
185 // different fallback strategies depending on these values:
186 namespace PreferPredicateTy {
187   enum Option {
188     ScalarEpilogue = 0,
189     PredicateElseScalarEpilogue,
190     PredicateOrDontVectorize
191   };
192 } // namespace PreferPredicateTy
193 
194 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
195     "prefer-predicate-over-epilogue",
196     cl::init(PreferPredicateTy::ScalarEpilogue),
197     cl::Hidden,
198     cl::desc("Tail-folding and predication preferences over creating a scalar "
199              "epilogue loop."),
200     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
201                          "scalar-epilogue",
202                          "Don't tail-predicate loops, create scalar epilogue"),
203               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
204                          "predicate-else-scalar-epilogue",
205                          "prefer tail-folding, create scalar epilogue if tail "
206                          "folding fails."),
207               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
208                          "predicate-dont-vectorize",
209                          "prefers tail-folding, don't attempt vectorization if "
210                          "tail-folding fails.")));
211 
212 static cl::opt<bool> MaximizeBandwidth(
213     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
214     cl::desc("Maximize bandwidth when selecting vectorization factor which "
215              "will be determined by the smallest type in loop."));
216 
217 static cl::opt<bool> EnableInterleavedMemAccesses(
218     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
219     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
220 
221 /// An interleave-group may need masking if it resides in a block that needs
222 /// predication, or in order to mask away gaps.
223 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
224     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
225     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
226 
227 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
228     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
229     cl::desc("We don't interleave loops with a estimated constant trip count "
230              "below this number"));
231 
232 static cl::opt<unsigned> ForceTargetNumScalarRegs(
233     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
234     cl::desc("A flag that overrides the target's number of scalar registers."));
235 
236 static cl::opt<unsigned> ForceTargetNumVectorRegs(
237     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
238     cl::desc("A flag that overrides the target's number of vector registers."));
239 
240 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
241     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
242     cl::desc("A flag that overrides the target's max interleave factor for "
243              "scalar loops."));
244 
245 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
246     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
247     cl::desc("A flag that overrides the target's max interleave factor for "
248              "vectorized loops."));
249 
250 static cl::opt<unsigned> ForceTargetInstructionCost(
251     "force-target-instruction-cost", cl::init(0), cl::Hidden,
252     cl::desc("A flag that overrides the target's expected cost for "
253              "an instruction to a single constant value. Mostly "
254              "useful for getting consistent testing."));
255 
256 static cl::opt<unsigned> SmallLoopCost(
257     "small-loop-cost", cl::init(20), cl::Hidden,
258     cl::desc(
259         "The cost of a loop that is considered 'small' by the interleaver."));
260 
261 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
262     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
263     cl::desc("Enable the use of the block frequency analysis to access PGO "
264              "heuristics minimizing code growth in cold regions and being more "
265              "aggressive in hot regions."));
266 
267 // Runtime interleave loops for load/store throughput.
268 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
269     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
270     cl::desc(
271         "Enable runtime interleaving until load/store ports are saturated"));
272 
273 /// Interleave small loops with scalar reductions.
274 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
275     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
276     cl::desc("Enable interleaving for loops with small iteration counts that "
277              "contain scalar reductions to expose ILP."));
278 
279 /// The number of stores in a loop that are allowed to need predication.
280 static cl::opt<unsigned> NumberOfStoresToPredicate(
281     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
282     cl::desc("Max number of stores to be predicated behind an if."));
283 
284 static cl::opt<bool> EnableIndVarRegisterHeur(
285     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
286     cl::desc("Count the induction variable only once when interleaving"));
287 
288 static cl::opt<bool> EnableCondStoresVectorization(
289     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
290     cl::desc("Enable if predication of stores during vectorization."));
291 
292 static cl::opt<unsigned> MaxNestedScalarReductionIC(
293     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
294     cl::desc("The maximum interleave count to use when interleaving a scalar "
295              "reduction in a nested loop."));
296 
297 static cl::opt<bool>
298     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
299                            cl::Hidden,
300                            cl::desc("Prefer in-loop vector reductions, "
301                                     "overriding the targets preference."));
302 
303 static cl::opt<bool> PreferPredicatedReductionSelect(
304     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
305     cl::desc(
306         "Prefer predicating a reduction operation over an after loop select."));
307 
308 cl::opt<bool> EnableVPlanNativePath(
309     "enable-vplan-native-path", cl::init(false), cl::Hidden,
310     cl::desc("Enable VPlan-native vectorization path with "
311              "support for outer loop vectorization."));
312 
313 // FIXME: Remove this switch once we have divergence analysis. Currently we
314 // assume divergent non-backedge branches when this switch is true.
315 cl::opt<bool> EnableVPlanPredication(
316     "enable-vplan-predication", cl::init(false), cl::Hidden,
317     cl::desc("Enable VPlan-native vectorization path predicator with "
318              "support for outer loop vectorization."));
319 
320 // This flag enables the stress testing of the VPlan H-CFG construction in the
321 // VPlan-native vectorization path. It must be used in conjuction with
322 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
323 // verification of the H-CFGs built.
324 static cl::opt<bool> VPlanBuildStressTest(
325     "vplan-build-stress-test", cl::init(false), cl::Hidden,
326     cl::desc(
327         "Build VPlan for every supported loop nest in the function and bail "
328         "out right after the build (stress test the VPlan H-CFG construction "
329         "in the VPlan-native vectorization path)."));
330 
331 cl::opt<bool> llvm::EnableLoopInterleaving(
332     "interleave-loops", cl::init(true), cl::Hidden,
333     cl::desc("Enable loop interleaving in Loop vectorization passes"));
334 cl::opt<bool> llvm::EnableLoopVectorization(
335     "vectorize-loops", cl::init(true), cl::Hidden,
336     cl::desc("Run the Loop vectorization passes"));
337 
338 /// A helper function that returns the type of loaded or stored value.
339 static Type *getMemInstValueType(Value *I) {
340   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
341          "Expected Load or Store instruction");
342   if (auto *LI = dyn_cast<LoadInst>(I))
343     return LI->getType();
344   return cast<StoreInst>(I)->getValueOperand()->getType();
345 }
346 
347 /// A helper function that returns true if the given type is irregular. The
348 /// type is irregular if its allocated size doesn't equal the store size of an
349 /// element of the corresponding vector type at the given vectorization factor.
350 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) {
351   assert(!VF.isScalable() && "scalable vectors not yet supported.");
352   // Determine if an array of VF elements of type Ty is "bitcast compatible"
353   // with a <VF x Ty> vector.
354   if (VF.isVector()) {
355     auto *VectorTy = VectorType::get(Ty, VF);
356     return TypeSize::get(VF.getKnownMinValue() *
357                              DL.getTypeAllocSize(Ty).getFixedValue(),
358                          VF.isScalable()) != DL.getTypeStoreSize(VectorTy);
359   }
360 
361   // If the vectorization factor is one, we just check if an array of type Ty
362   // requires padding between elements.
363   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
364 }
365 
366 /// A helper function that returns the reciprocal of the block probability of
367 /// predicated blocks. If we return X, we are assuming the predicated block
368 /// will execute once for every X iterations of the loop header.
369 ///
370 /// TODO: We should use actual block probability here, if available. Currently,
371 ///       we always assume predicated blocks have a 50% chance of executing.
372 static unsigned getReciprocalPredBlockProb() { return 2; }
373 
374 /// A helper function that adds a 'fast' flag to floating-point operations.
375 static Value *addFastMathFlag(Value *V) {
376   if (isa<FPMathOperator>(V))
377     cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
378   return V;
379 }
380 
381 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
382   if (isa<FPMathOperator>(V))
383     cast<Instruction>(V)->setFastMathFlags(FMF);
384   return V;
385 }
386 
387 /// A helper function that returns an integer or floating-point constant with
388 /// value C.
389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
390   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
391                            : ConstantFP::get(Ty, C);
392 }
393 
394 /// Returns "best known" trip count for the specified loop \p L as defined by
395 /// the following procedure:
396 ///   1) Returns exact trip count if it is known.
397 ///   2) Returns expected trip count according to profile data if any.
398 ///   3) Returns upper bound estimate if it is known.
399 ///   4) Returns None if all of the above failed.
400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
401   // Check if exact trip count is known.
402   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
403     return ExpectedTC;
404 
405   // Check if there is an expected trip count available from profile data.
406   if (LoopVectorizeWithBlockFrequency)
407     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
408       return EstimatedTC;
409 
410   // Check if upper bound estimate is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
412     return ExpectedTC;
413 
414   return None;
415 }
416 
417 namespace llvm {
418 
419 /// InnerLoopVectorizer vectorizes loops which contain only one basic
420 /// block to a specified vectorization factor (VF).
421 /// This class performs the widening of scalars into vectors, or multiple
422 /// scalars. This class also implements the following features:
423 /// * It inserts an epilogue loop for handling loops that don't have iteration
424 ///   counts that are known to be a multiple of the vectorization factor.
425 /// * It handles the code generation for reduction variables.
426 /// * Scalarization (implementation using scalars) of un-vectorizable
427 ///   instructions.
428 /// InnerLoopVectorizer does not perform any vectorization-legality
429 /// checks, and relies on the caller to check for the different legality
430 /// aspects. The InnerLoopVectorizer relies on the
431 /// LoopVectorizationLegality class to provide information about the induction
432 /// and reduction variables that were found to a given vectorization factor.
433 class InnerLoopVectorizer {
434 public:
435   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
436                       LoopInfo *LI, DominatorTree *DT,
437                       const TargetLibraryInfo *TLI,
438                       const TargetTransformInfo *TTI, AssumptionCache *AC,
439                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
440                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
441                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
442                       ProfileSummaryInfo *PSI)
443       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
444         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
445         Builder(PSE.getSE()->getContext()),
446         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM),
447         BFI(BFI), PSI(PSI) {
448     // Query this against the original loop and save it here because the profile
449     // of the original loop header may change as the transformation happens.
450     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
451         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
452   }
453 
454   virtual ~InnerLoopVectorizer() = default;
455 
456   /// Create a new empty loop that will contain vectorized instructions later
457   /// on, while the old loop will be used as the scalar remainder. Control flow
458   /// is generated around the vectorized (and scalar epilogue) loops consisting
459   /// of various checks and bypasses. Return the pre-header block of the new
460   /// loop.
461   BasicBlock *createVectorizedLoopSkeleton();
462 
463   /// Widen a single instruction within the innermost loop.
464   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
465                         VPTransformState &State);
466 
467   /// Widen a single call instruction within the innermost loop.
468   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
469                             VPTransformState &State);
470 
471   /// Widen a single select instruction within the innermost loop.
472   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
473                               bool InvariantCond, VPTransformState &State);
474 
475   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
476   void fixVectorizedLoop();
477 
478   // Return true if any runtime check is added.
479   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
480 
481   /// A type for vectorized values in the new loop. Each value from the
482   /// original loop, when vectorized, is represented by UF vector values in the
483   /// new unrolled loop, where UF is the unroll factor.
484   using VectorParts = SmallVector<Value *, 2>;
485 
486   /// Vectorize a single GetElementPtrInst based on information gathered and
487   /// decisions taken during planning.
488   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
489                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
490                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
491 
492   /// Vectorize a single PHINode in a block. This method handles the induction
493   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
494   /// arbitrary length vectors.
495   void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF);
496 
497   /// A helper function to scalarize a single Instruction in the innermost loop.
498   /// Generates a sequence of scalar instances for each lane between \p MinLane
499   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
500   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
501   /// Instr's operands.
502   void scalarizeInstruction(Instruction *Instr, VPUser &Operands,
503                             const VPIteration &Instance, bool IfPredicateInstr,
504                             VPTransformState &State);
505 
506   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
507   /// is provided, the integer induction variable will first be truncated to
508   /// the corresponding type.
509   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
510 
511   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
512   /// vector or scalar value on-demand if one is not yet available. When
513   /// vectorizing a loop, we visit the definition of an instruction before its
514   /// uses. When visiting the definition, we either vectorize or scalarize the
515   /// instruction, creating an entry for it in the corresponding map. (In some
516   /// cases, such as induction variables, we will create both vector and scalar
517   /// entries.) Then, as we encounter uses of the definition, we derive values
518   /// for each scalar or vector use unless such a value is already available.
519   /// For example, if we scalarize a definition and one of its uses is vector,
520   /// we build the required vector on-demand with an insertelement sequence
521   /// when visiting the use. Otherwise, if the use is scalar, we can use the
522   /// existing scalar definition.
523   ///
524   /// Return a value in the new loop corresponding to \p V from the original
525   /// loop at unroll index \p Part. If the value has already been vectorized,
526   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
527   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
528   /// a new vector value on-demand by inserting the scalar values into a vector
529   /// with an insertelement sequence. If the value has been neither vectorized
530   /// nor scalarized, it must be loop invariant, so we simply broadcast the
531   /// value into a vector.
532   Value *getOrCreateVectorValue(Value *V, unsigned Part);
533 
534   void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) {
535     VectorLoopValueMap.setVectorValue(Scalar, Part, Vector);
536   }
537 
538   /// Return a value in the new loop corresponding to \p V from the original
539   /// loop at unroll and vector indices \p Instance. If the value has been
540   /// vectorized but not scalarized, the necessary extractelement instruction
541   /// will be generated.
542   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
543 
544   /// Construct the vector value of a scalarized value \p V one lane at a time.
545   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
546 
547   /// Try to vectorize interleaved access group \p Group with the base address
548   /// given in \p Addr, optionally masking the vector operations if \p
549   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
550   /// values in the vectorized loop.
551   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
552                                 VPTransformState &State, VPValue *Addr,
553                                 VPValue *BlockInMask = nullptr);
554 
555   /// Vectorize Load and Store instructions with the base address given in \p
556   /// Addr, optionally masking the vector operations if \p BlockInMask is
557   /// non-null. Use \p State to translate given VPValues to IR values in the
558   /// vectorized loop.
559   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
560                                   VPValue *Def, VPValue *Addr,
561                                   VPValue *StoredValue, VPValue *BlockInMask);
562 
563   /// Set the debug location in the builder using the debug location in
564   /// the instruction.
565   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
566 
567   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
568   void fixNonInductionPHIs(void);
569 
570 protected:
571   friend class LoopVectorizationPlanner;
572 
573   /// A small list of PHINodes.
574   using PhiVector = SmallVector<PHINode *, 4>;
575 
576   /// A type for scalarized values in the new loop. Each value from the
577   /// original loop, when scalarized, is represented by UF x VF scalar values
578   /// in the new unrolled loop, where UF is the unroll factor and VF is the
579   /// vectorization factor.
580   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
581 
582   /// Set up the values of the IVs correctly when exiting the vector loop.
583   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
584                     Value *CountRoundDown, Value *EndValue,
585                     BasicBlock *MiddleBlock);
586 
587   /// Create a new induction variable inside L.
588   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
589                                    Value *Step, Instruction *DL);
590 
591   /// Handle all cross-iteration phis in the header.
592   void fixCrossIterationPHIs();
593 
594   /// Fix a first-order recurrence. This is the second phase of vectorizing
595   /// this phi node.
596   void fixFirstOrderRecurrence(PHINode *Phi);
597 
598   /// Fix a reduction cross-iteration phi. This is the second phase of
599   /// vectorizing this phi node.
600   void fixReduction(PHINode *Phi);
601 
602   /// Clear NSW/NUW flags from reduction instructions if necessary.
603   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
604 
605   /// The Loop exit block may have single value PHI nodes with some
606   /// incoming value. While vectorizing we only handled real values
607   /// that were defined inside the loop and we should have one value for
608   /// each predecessor of its parent basic block. See PR14725.
609   void fixLCSSAPHIs();
610 
611   /// Iteratively sink the scalarized operands of a predicated instruction into
612   /// the block that was created for it.
613   void sinkScalarOperands(Instruction *PredInst);
614 
615   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
616   /// represented as.
617   void truncateToMinimalBitwidths();
618 
619   /// Create a broadcast instruction. This method generates a broadcast
620   /// instruction (shuffle) for loop invariant values and for the induction
621   /// value. If this is the induction variable then we extend it to N, N+1, ...
622   /// this is needed because each iteration in the loop corresponds to a SIMD
623   /// element.
624   virtual Value *getBroadcastInstrs(Value *V);
625 
626   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
627   /// to each vector element of Val. The sequence starts at StartIndex.
628   /// \p Opcode is relevant for FP induction variable.
629   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
630                                Instruction::BinaryOps Opcode =
631                                Instruction::BinaryOpsEnd);
632 
633   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
634   /// variable on which to base the steps, \p Step is the size of the step, and
635   /// \p EntryVal is the value from the original loop that maps to the steps.
636   /// Note that \p EntryVal doesn't have to be an induction variable - it
637   /// can also be a truncate instruction.
638   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
639                         const InductionDescriptor &ID);
640 
641   /// Create a vector induction phi node based on an existing scalar one. \p
642   /// EntryVal is the value from the original loop that maps to the vector phi
643   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
644   /// truncate instruction, instead of widening the original IV, we widen a
645   /// version of the IV truncated to \p EntryVal's type.
646   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
647                                        Value *Step, Instruction *EntryVal);
648 
649   /// Returns true if an instruction \p I should be scalarized instead of
650   /// vectorized for the chosen vectorization factor.
651   bool shouldScalarizeInstruction(Instruction *I) const;
652 
653   /// Returns true if we should generate a scalar version of \p IV.
654   bool needsScalarInduction(Instruction *IV) const;
655 
656   /// If there is a cast involved in the induction variable \p ID, which should
657   /// be ignored in the vectorized loop body, this function records the
658   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
659   /// cast. We had already proved that the casted Phi is equal to the uncasted
660   /// Phi in the vectorized loop (under a runtime guard), and therefore
661   /// there is no need to vectorize the cast - the same value can be used in the
662   /// vector loop for both the Phi and the cast.
663   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
664   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
665   ///
666   /// \p EntryVal is the value from the original loop that maps to the vector
667   /// phi node and is used to distinguish what is the IV currently being
668   /// processed - original one (if \p EntryVal is a phi corresponding to the
669   /// original IV) or the "newly-created" one based on the proof mentioned above
670   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
671   /// latter case \p EntryVal is a TruncInst and we must not record anything for
672   /// that IV, but it's error-prone to expect callers of this routine to care
673   /// about that, hence this explicit parameter.
674   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
675                                              const Instruction *EntryVal,
676                                              Value *VectorLoopValue,
677                                              unsigned Part,
678                                              unsigned Lane = UINT_MAX);
679 
680   /// Generate a shuffle sequence that will reverse the vector Vec.
681   virtual Value *reverseVector(Value *Vec);
682 
683   /// Returns (and creates if needed) the original loop trip count.
684   Value *getOrCreateTripCount(Loop *NewLoop);
685 
686   /// Returns (and creates if needed) the trip count of the widened loop.
687   Value *getOrCreateVectorTripCount(Loop *NewLoop);
688 
689   /// Returns a bitcasted value to the requested vector type.
690   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
691   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
692                                 const DataLayout &DL);
693 
694   /// Emit a bypass check to see if the vector trip count is zero, including if
695   /// it overflows.
696   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
697 
698   /// Emit a bypass check to see if all of the SCEV assumptions we've
699   /// had to make are correct.
700   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
701 
702   /// Emit bypass checks to check any memory assumptions we may have made.
703   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
704 
705   /// Compute the transformed value of Index at offset StartValue using step
706   /// StepValue.
707   /// For integer induction, returns StartValue + Index * StepValue.
708   /// For pointer induction, returns StartValue[Index * StepValue].
709   /// FIXME: The newly created binary instructions should contain nsw/nuw
710   /// flags, which can be found from the original scalar operations.
711   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
712                               const DataLayout &DL,
713                               const InductionDescriptor &ID) const;
714 
715   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
716   /// vector loop preheader, middle block and scalar preheader. Also
717   /// allocate a loop object for the new vector loop and return it.
718   Loop *createVectorLoopSkeleton(StringRef Prefix);
719 
720   /// Create new phi nodes for the induction variables to resume iteration count
721   /// in the scalar epilogue, from where the vectorized loop left off (given by
722   /// \p VectorTripCount).
723   void createInductionResumeValues(Loop *L, Value *VectorTripCount);
724 
725   /// Complete the loop skeleton by adding debug MDs, creating appropriate
726   /// conditional branches in the middle block, preparing the builder and
727   /// running the verifier. Take in the vector loop \p L as argument, and return
728   /// the preheader of the completed vector loop.
729   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
730 
731   /// Add additional metadata to \p To that was not present on \p Orig.
732   ///
733   /// Currently this is used to add the noalias annotations based on the
734   /// inserted memchecks.  Use this for instructions that are *cloned* into the
735   /// vector loop.
736   void addNewMetadata(Instruction *To, const Instruction *Orig);
737 
738   /// Add metadata from one instruction to another.
739   ///
740   /// This includes both the original MDs from \p From and additional ones (\see
741   /// addNewMetadata).  Use this for *newly created* instructions in the vector
742   /// loop.
743   void addMetadata(Instruction *To, Instruction *From);
744 
745   /// Similar to the previous function but it adds the metadata to a
746   /// vector of instructions.
747   void addMetadata(ArrayRef<Value *> To, Instruction *From);
748 
749   /// The original loop.
750   Loop *OrigLoop;
751 
752   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
753   /// dynamic knowledge to simplify SCEV expressions and converts them to a
754   /// more usable form.
755   PredicatedScalarEvolution &PSE;
756 
757   /// Loop Info.
758   LoopInfo *LI;
759 
760   /// Dominator Tree.
761   DominatorTree *DT;
762 
763   /// Alias Analysis.
764   AAResults *AA;
765 
766   /// Target Library Info.
767   const TargetLibraryInfo *TLI;
768 
769   /// Target Transform Info.
770   const TargetTransformInfo *TTI;
771 
772   /// Assumption Cache.
773   AssumptionCache *AC;
774 
775   /// Interface to emit optimization remarks.
776   OptimizationRemarkEmitter *ORE;
777 
778   /// LoopVersioning.  It's only set up (non-null) if memchecks were
779   /// used.
780   ///
781   /// This is currently only used to add no-alias metadata based on the
782   /// memchecks.  The actually versioning is performed manually.
783   std::unique_ptr<LoopVersioning> LVer;
784 
785   /// The vectorization SIMD factor to use. Each vector will have this many
786   /// vector elements.
787   ElementCount VF;
788 
789   /// The vectorization unroll factor to use. Each scalar is vectorized to this
790   /// many different vector instructions.
791   unsigned UF;
792 
793   /// The builder that we use
794   IRBuilder<> Builder;
795 
796   // --- Vectorization state ---
797 
798   /// The vector-loop preheader.
799   BasicBlock *LoopVectorPreHeader;
800 
801   /// The scalar-loop preheader.
802   BasicBlock *LoopScalarPreHeader;
803 
804   /// Middle Block between the vector and the scalar.
805   BasicBlock *LoopMiddleBlock;
806 
807   /// The ExitBlock of the scalar loop.
808   BasicBlock *LoopExitBlock;
809 
810   /// The vector loop body.
811   BasicBlock *LoopVectorBody;
812 
813   /// The scalar loop body.
814   BasicBlock *LoopScalarBody;
815 
816   /// A list of all bypass blocks. The first block is the entry of the loop.
817   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
818 
819   /// The new Induction variable which was added to the new block.
820   PHINode *Induction = nullptr;
821 
822   /// The induction variable of the old basic block.
823   PHINode *OldInduction = nullptr;
824 
825   /// Maps values from the original loop to their corresponding values in the
826   /// vectorized loop. A key value can map to either vector values, scalar
827   /// values or both kinds of values, depending on whether the key was
828   /// vectorized and scalarized.
829   VectorizerValueMap VectorLoopValueMap;
830 
831   /// Store instructions that were predicated.
832   SmallVector<Instruction *, 4> PredicatedInstructions;
833 
834   /// Trip count of the original loop.
835   Value *TripCount = nullptr;
836 
837   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
838   Value *VectorTripCount = nullptr;
839 
840   /// The legality analysis.
841   LoopVectorizationLegality *Legal;
842 
843   /// The profitablity analysis.
844   LoopVectorizationCostModel *Cost;
845 
846   // Record whether runtime checks are added.
847   bool AddedSafetyChecks = false;
848 
849   // Holds the end values for each induction variable. We save the end values
850   // so we can later fix-up the external users of the induction variables.
851   DenseMap<PHINode *, Value *> IVEndValues;
852 
853   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
854   // fixed up at the end of vector code generation.
855   SmallVector<PHINode *, 8> OrigPHIsToFix;
856 
857   /// BFI and PSI are used to check for profile guided size optimizations.
858   BlockFrequencyInfo *BFI;
859   ProfileSummaryInfo *PSI;
860 
861   // Whether this loop should be optimized for size based on profile guided size
862   // optimizatios.
863   bool OptForSizeBasedOnProfile;
864 };
865 
866 class InnerLoopUnroller : public InnerLoopVectorizer {
867 public:
868   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
869                     LoopInfo *LI, DominatorTree *DT,
870                     const TargetLibraryInfo *TLI,
871                     const TargetTransformInfo *TTI, AssumptionCache *AC,
872                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
873                     LoopVectorizationLegality *LVL,
874                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
875                     ProfileSummaryInfo *PSI)
876       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
877                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
878                             BFI, PSI) {}
879 
880 private:
881   Value *getBroadcastInstrs(Value *V) override;
882   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
883                        Instruction::BinaryOps Opcode =
884                        Instruction::BinaryOpsEnd) override;
885   Value *reverseVector(Value *Vec) override;
886 };
887 
888 } // end namespace llvm
889 
890 /// Look for a meaningful debug location on the instruction or it's
891 /// operands.
892 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
893   if (!I)
894     return I;
895 
896   DebugLoc Empty;
897   if (I->getDebugLoc() != Empty)
898     return I;
899 
900   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
901     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
902       if (OpInst->getDebugLoc() != Empty)
903         return OpInst;
904   }
905 
906   return I;
907 }
908 
909 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
910   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
911     const DILocation *DIL = Inst->getDebugLoc();
912     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
913         !isa<DbgInfoIntrinsic>(Inst)) {
914       assert(!VF.isScalable() && "scalable vectors not yet supported.");
915       auto NewDIL =
916           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
917       if (NewDIL)
918         B.SetCurrentDebugLocation(NewDIL.getValue());
919       else
920         LLVM_DEBUG(dbgs()
921                    << "Failed to create new discriminator: "
922                    << DIL->getFilename() << " Line: " << DIL->getLine());
923     }
924     else
925       B.SetCurrentDebugLocation(DIL);
926   } else
927     B.SetCurrentDebugLocation(DebugLoc());
928 }
929 
930 /// Write a record \p DebugMsg about vectorization failure to the debug
931 /// output stream. If \p I is passed, it is an instruction that prevents
932 /// vectorization.
933 #ifndef NDEBUG
934 static void debugVectorizationFailure(const StringRef DebugMsg,
935     Instruction *I) {
936   dbgs() << "LV: Not vectorizing: " << DebugMsg;
937   if (I != nullptr)
938     dbgs() << " " << *I;
939   else
940     dbgs() << '.';
941   dbgs() << '\n';
942 }
943 #endif
944 
945 /// Create an analysis remark that explains why vectorization failed
946 ///
947 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
948 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
949 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
950 /// the location of the remark.  \return the remark object that can be
951 /// streamed to.
952 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
953     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
954   Value *CodeRegion = TheLoop->getHeader();
955   DebugLoc DL = TheLoop->getStartLoc();
956 
957   if (I) {
958     CodeRegion = I->getParent();
959     // If there is no debug location attached to the instruction, revert back to
960     // using the loop's.
961     if (I->getDebugLoc())
962       DL = I->getDebugLoc();
963   }
964 
965   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
966   R << "loop not vectorized: ";
967   return R;
968 }
969 
970 namespace llvm {
971 
972 void reportVectorizationFailure(const StringRef DebugMsg,
973     const StringRef OREMsg, const StringRef ORETag,
974     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
975   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
976   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
977   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
978                 ORETag, TheLoop, I) << OREMsg);
979 }
980 
981 } // end namespace llvm
982 
983 #ifndef NDEBUG
984 /// \return string containing a file name and a line # for the given loop.
985 static std::string getDebugLocString(const Loop *L) {
986   std::string Result;
987   if (L) {
988     raw_string_ostream OS(Result);
989     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
990       LoopDbgLoc.print(OS);
991     else
992       // Just print the module name.
993       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
994     OS.flush();
995   }
996   return Result;
997 }
998 #endif
999 
1000 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1001                                          const Instruction *Orig) {
1002   // If the loop was versioned with memchecks, add the corresponding no-alias
1003   // metadata.
1004   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1005     LVer->annotateInstWithNoAlias(To, Orig);
1006 }
1007 
1008 void InnerLoopVectorizer::addMetadata(Instruction *To,
1009                                       Instruction *From) {
1010   propagateMetadata(To, From);
1011   addNewMetadata(To, From);
1012 }
1013 
1014 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1015                                       Instruction *From) {
1016   for (Value *V : To) {
1017     if (Instruction *I = dyn_cast<Instruction>(V))
1018       addMetadata(I, From);
1019   }
1020 }
1021 
1022 namespace llvm {
1023 
1024 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1025 // lowered.
1026 enum ScalarEpilogueLowering {
1027 
1028   // The default: allowing scalar epilogues.
1029   CM_ScalarEpilogueAllowed,
1030 
1031   // Vectorization with OptForSize: don't allow epilogues.
1032   CM_ScalarEpilogueNotAllowedOptSize,
1033 
1034   // A special case of vectorisation with OptForSize: loops with a very small
1035   // trip count are considered for vectorization under OptForSize, thereby
1036   // making sure the cost of their loop body is dominant, free of runtime
1037   // guards and scalar iteration overheads.
1038   CM_ScalarEpilogueNotAllowedLowTripLoop,
1039 
1040   // Loop hint predicate indicating an epilogue is undesired.
1041   CM_ScalarEpilogueNotNeededUsePredicate
1042 };
1043 
1044 /// LoopVectorizationCostModel - estimates the expected speedups due to
1045 /// vectorization.
1046 /// In many cases vectorization is not profitable. This can happen because of
1047 /// a number of reasons. In this class we mainly attempt to predict the
1048 /// expected speedup/slowdowns due to the supported instruction set. We use the
1049 /// TargetTransformInfo to query the different backends for the cost of
1050 /// different operations.
1051 class LoopVectorizationCostModel {
1052 public:
1053   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1054                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1055                              LoopVectorizationLegality *Legal,
1056                              const TargetTransformInfo &TTI,
1057                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1058                              AssumptionCache *AC,
1059                              OptimizationRemarkEmitter *ORE, const Function *F,
1060                              const LoopVectorizeHints *Hints,
1061                              InterleavedAccessInfo &IAI)
1062       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1063         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1064         Hints(Hints), InterleaveInfo(IAI) {}
1065 
1066   /// \return An upper bound for the vectorization factor, or None if
1067   /// vectorization and interleaving should be avoided up front.
1068   Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC);
1069 
1070   /// \return True if runtime checks are required for vectorization, and false
1071   /// otherwise.
1072   bool runtimeChecksRequired();
1073 
1074   /// \return The most profitable vectorization factor and the cost of that VF.
1075   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1076   /// then this vectorization factor will be selected if vectorization is
1077   /// possible.
1078   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1079 
1080   /// Setup cost-based decisions for user vectorization factor.
1081   void selectUserVectorizationFactor(ElementCount UserVF) {
1082     collectUniformsAndScalars(UserVF);
1083     collectInstsToScalarize(UserVF);
1084   }
1085 
1086   /// \return The size (in bits) of the smallest and widest types in the code
1087   /// that needs to be vectorized. We ignore values that remain scalar such as
1088   /// 64 bit loop indices.
1089   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1090 
1091   /// \return The desired interleave count.
1092   /// If interleave count has been specified by metadata it will be returned.
1093   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1094   /// are the selected vectorization factor and the cost of the selected VF.
1095   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1096 
1097   /// Memory access instruction may be vectorized in more than one way.
1098   /// Form of instruction after vectorization depends on cost.
1099   /// This function takes cost-based decisions for Load/Store instructions
1100   /// and collects them in a map. This decisions map is used for building
1101   /// the lists of loop-uniform and loop-scalar instructions.
1102   /// The calculated cost is saved with widening decision in order to
1103   /// avoid redundant calculations.
1104   void setCostBasedWideningDecision(ElementCount VF);
1105 
1106   /// A struct that represents some properties of the register usage
1107   /// of a loop.
1108   struct RegisterUsage {
1109     /// Holds the number of loop invariant values that are used in the loop.
1110     /// The key is ClassID of target-provided register class.
1111     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1112     /// Holds the maximum number of concurrent live intervals in the loop.
1113     /// The key is ClassID of target-provided register class.
1114     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1115   };
1116 
1117   /// \return Returns information about the register usages of the loop for the
1118   /// given vectorization factors.
1119   SmallVector<RegisterUsage, 8>
1120   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1121 
1122   /// Collect values we want to ignore in the cost model.
1123   void collectValuesToIgnore();
1124 
1125   /// Split reductions into those that happen in the loop, and those that happen
1126   /// outside. In loop reductions are collected into InLoopReductionChains.
1127   void collectInLoopReductions();
1128 
1129   /// \returns The smallest bitwidth each instruction can be represented with.
1130   /// The vector equivalents of these instructions should be truncated to this
1131   /// type.
1132   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1133     return MinBWs;
1134   }
1135 
1136   /// \returns True if it is more profitable to scalarize instruction \p I for
1137   /// vectorization factor \p VF.
1138   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1139     assert(VF.isVector() &&
1140            "Profitable to scalarize relevant only for VF > 1.");
1141 
1142     // Cost model is not run in the VPlan-native path - return conservative
1143     // result until this changes.
1144     if (EnableVPlanNativePath)
1145       return false;
1146 
1147     auto Scalars = InstsToScalarize.find(VF);
1148     assert(Scalars != InstsToScalarize.end() &&
1149            "VF not yet analyzed for scalarization profitability");
1150     return Scalars->second.find(I) != Scalars->second.end();
1151   }
1152 
1153   /// Returns true if \p I is known to be uniform after vectorization.
1154   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1155     if (VF.isScalar())
1156       return true;
1157 
1158     // Cost model is not run in the VPlan-native path - return conservative
1159     // result until this changes.
1160     if (EnableVPlanNativePath)
1161       return false;
1162 
1163     auto UniformsPerVF = Uniforms.find(VF);
1164     assert(UniformsPerVF != Uniforms.end() &&
1165            "VF not yet analyzed for uniformity");
1166     return UniformsPerVF->second.count(I);
1167   }
1168 
1169   /// Returns true if \p I is known to be scalar after vectorization.
1170   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1171     if (VF.isScalar())
1172       return true;
1173 
1174     // Cost model is not run in the VPlan-native path - return conservative
1175     // result until this changes.
1176     if (EnableVPlanNativePath)
1177       return false;
1178 
1179     auto ScalarsPerVF = Scalars.find(VF);
1180     assert(ScalarsPerVF != Scalars.end() &&
1181            "Scalar values are not calculated for VF");
1182     return ScalarsPerVF->second.count(I);
1183   }
1184 
1185   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1186   /// for vectorization factor \p VF.
1187   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1188     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1189            !isProfitableToScalarize(I, VF) &&
1190            !isScalarAfterVectorization(I, VF);
1191   }
1192 
1193   /// Decision that was taken during cost calculation for memory instruction.
1194   enum InstWidening {
1195     CM_Unknown,
1196     CM_Widen,         // For consecutive accesses with stride +1.
1197     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1198     CM_Interleave,
1199     CM_GatherScatter,
1200     CM_Scalarize
1201   };
1202 
1203   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1204   /// instruction \p I and vector width \p VF.
1205   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1206                            unsigned Cost) {
1207     assert(VF.isVector() && "Expected VF >=2");
1208     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1209   }
1210 
1211   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1212   /// interleaving group \p Grp and vector width \p VF.
1213   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1214                            ElementCount VF, InstWidening W, unsigned Cost) {
1215     assert(VF.isVector() && "Expected VF >=2");
1216     /// Broadcast this decicion to all instructions inside the group.
1217     /// But the cost will be assigned to one instruction only.
1218     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1219       if (auto *I = Grp->getMember(i)) {
1220         if (Grp->getInsertPos() == I)
1221           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1222         else
1223           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1224       }
1225     }
1226   }
1227 
1228   /// Return the cost model decision for the given instruction \p I and vector
1229   /// width \p VF. Return CM_Unknown if this instruction did not pass
1230   /// through the cost modeling.
1231   InstWidening getWideningDecision(Instruction *I, ElementCount VF) {
1232     assert(!VF.isScalable() && "scalable vectors not yet supported.");
1233     assert(VF.isVector() && "Expected VF >=2");
1234 
1235     // Cost model is not run in the VPlan-native path - return conservative
1236     // result until this changes.
1237     if (EnableVPlanNativePath)
1238       return CM_GatherScatter;
1239 
1240     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1241     auto Itr = WideningDecisions.find(InstOnVF);
1242     if (Itr == WideningDecisions.end())
1243       return CM_Unknown;
1244     return Itr->second.first;
1245   }
1246 
1247   /// Return the vectorization cost for the given instruction \p I and vector
1248   /// width \p VF.
1249   unsigned getWideningCost(Instruction *I, ElementCount VF) {
1250     assert(VF.isVector() && "Expected VF >=2");
1251     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1252     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1253            "The cost is not calculated");
1254     return WideningDecisions[InstOnVF].second;
1255   }
1256 
1257   /// Return True if instruction \p I is an optimizable truncate whose operand
1258   /// is an induction variable. Such a truncate will be removed by adding a new
1259   /// induction variable with the destination type.
1260   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1261     // If the instruction is not a truncate, return false.
1262     auto *Trunc = dyn_cast<TruncInst>(I);
1263     if (!Trunc)
1264       return false;
1265 
1266     // Get the source and destination types of the truncate.
1267     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1268     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1269 
1270     // If the truncate is free for the given types, return false. Replacing a
1271     // free truncate with an induction variable would add an induction variable
1272     // update instruction to each iteration of the loop. We exclude from this
1273     // check the primary induction variable since it will need an update
1274     // instruction regardless.
1275     Value *Op = Trunc->getOperand(0);
1276     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1277       return false;
1278 
1279     // If the truncated value is not an induction variable, return false.
1280     return Legal->isInductionPhi(Op);
1281   }
1282 
1283   /// Collects the instructions to scalarize for each predicated instruction in
1284   /// the loop.
1285   void collectInstsToScalarize(ElementCount VF);
1286 
1287   /// Collect Uniform and Scalar values for the given \p VF.
1288   /// The sets depend on CM decision for Load/Store instructions
1289   /// that may be vectorized as interleave, gather-scatter or scalarized.
1290   void collectUniformsAndScalars(ElementCount VF) {
1291     // Do the analysis once.
1292     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1293       return;
1294     setCostBasedWideningDecision(VF);
1295     collectLoopUniforms(VF);
1296     collectLoopScalars(VF);
1297   }
1298 
1299   /// Returns true if the target machine supports masked store operation
1300   /// for the given \p DataType and kind of access to \p Ptr.
1301   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) {
1302     return Legal->isConsecutivePtr(Ptr) &&
1303            TTI.isLegalMaskedStore(DataType, Alignment);
1304   }
1305 
1306   /// Returns true if the target machine supports masked load operation
1307   /// for the given \p DataType and kind of access to \p Ptr.
1308   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) {
1309     return Legal->isConsecutivePtr(Ptr) &&
1310            TTI.isLegalMaskedLoad(DataType, Alignment);
1311   }
1312 
1313   /// Returns true if the target machine supports masked scatter operation
1314   /// for the given \p DataType.
1315   bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
1316     return TTI.isLegalMaskedScatter(DataType, Alignment);
1317   }
1318 
1319   /// Returns true if the target machine supports masked gather operation
1320   /// for the given \p DataType.
1321   bool isLegalMaskedGather(Type *DataType, Align Alignment) {
1322     return TTI.isLegalMaskedGather(DataType, Alignment);
1323   }
1324 
1325   /// Returns true if the target machine can represent \p V as a masked gather
1326   /// or scatter operation.
1327   bool isLegalGatherOrScatter(Value *V) {
1328     bool LI = isa<LoadInst>(V);
1329     bool SI = isa<StoreInst>(V);
1330     if (!LI && !SI)
1331       return false;
1332     auto *Ty = getMemInstValueType(V);
1333     Align Align = getLoadStoreAlignment(V);
1334     return (LI && isLegalMaskedGather(Ty, Align)) ||
1335            (SI && isLegalMaskedScatter(Ty, Align));
1336   }
1337 
1338   /// Returns true if \p I is an instruction that will be scalarized with
1339   /// predication. Such instructions include conditional stores and
1340   /// instructions that may divide by zero.
1341   /// If a non-zero VF has been calculated, we check if I will be scalarized
1342   /// predication for that VF.
1343   bool isScalarWithPredication(Instruction *I,
1344                                ElementCount VF = ElementCount::getFixed(1));
1345 
1346   // Returns true if \p I is an instruction that will be predicated either
1347   // through scalar predication or masked load/store or masked gather/scatter.
1348   // Superset of instructions that return true for isScalarWithPredication.
1349   bool isPredicatedInst(Instruction *I) {
1350     if (!blockNeedsPredication(I->getParent()))
1351       return false;
1352     // Loads and stores that need some form of masked operation are predicated
1353     // instructions.
1354     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1355       return Legal->isMaskRequired(I);
1356     return isScalarWithPredication(I);
1357   }
1358 
1359   /// Returns true if \p I is a memory instruction with consecutive memory
1360   /// access that can be widened.
1361   bool
1362   memoryInstructionCanBeWidened(Instruction *I,
1363                                 ElementCount VF = ElementCount::getFixed(1));
1364 
1365   /// Returns true if \p I is a memory instruction in an interleaved-group
1366   /// of memory accesses that can be vectorized with wide vector loads/stores
1367   /// and shuffles.
1368   bool
1369   interleavedAccessCanBeWidened(Instruction *I,
1370                                 ElementCount VF = ElementCount::getFixed(1));
1371 
1372   /// Check if \p Instr belongs to any interleaved access group.
1373   bool isAccessInterleaved(Instruction *Instr) {
1374     return InterleaveInfo.isInterleaved(Instr);
1375   }
1376 
1377   /// Get the interleaved access group that \p Instr belongs to.
1378   const InterleaveGroup<Instruction> *
1379   getInterleavedAccessGroup(Instruction *Instr) {
1380     return InterleaveInfo.getInterleaveGroup(Instr);
1381   }
1382 
1383   /// Returns true if an interleaved group requires a scalar iteration
1384   /// to handle accesses with gaps, and there is nothing preventing us from
1385   /// creating a scalar epilogue.
1386   bool requiresScalarEpilogue() const {
1387     return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1388   }
1389 
1390   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1391   /// loop hint annotation.
1392   bool isScalarEpilogueAllowed() const {
1393     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1394   }
1395 
1396   /// Returns true if all loop blocks should be masked to fold tail loop.
1397   bool foldTailByMasking() const { return FoldTailByMasking; }
1398 
1399   bool blockNeedsPredication(BasicBlock *BB) {
1400     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1401   }
1402 
1403   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1404   /// nodes to the chain of instructions representing the reductions. Uses a
1405   /// MapVector to ensure deterministic iteration order.
1406   using ReductionChainMap =
1407       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1408 
1409   /// Return the chain of instructions representing an inloop reduction.
1410   const ReductionChainMap &getInLoopReductionChains() const {
1411     return InLoopReductionChains;
1412   }
1413 
1414   /// Returns true if the Phi is part of an inloop reduction.
1415   bool isInLoopReduction(PHINode *Phi) const {
1416     return InLoopReductionChains.count(Phi);
1417   }
1418 
1419   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1420   /// with factor VF.  Return the cost of the instruction, including
1421   /// scalarization overhead if it's needed.
1422   unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF);
1423 
1424   /// Estimate cost of a call instruction CI if it were vectorized with factor
1425   /// VF. Return the cost of the instruction, including scalarization overhead
1426   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1427   /// scalarized -
1428   /// i.e. either vector version isn't available, or is too expensive.
1429   unsigned getVectorCallCost(CallInst *CI, ElementCount VF,
1430                              bool &NeedToScalarize);
1431 
1432   /// Invalidates decisions already taken by the cost model.
1433   void invalidateCostModelingDecisions() {
1434     WideningDecisions.clear();
1435     Uniforms.clear();
1436     Scalars.clear();
1437   }
1438 
1439 private:
1440   unsigned NumPredStores = 0;
1441 
1442   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1443   /// than zero. One is returned if vectorization should best be avoided due
1444   /// to cost.
1445   ElementCount computeFeasibleMaxVF(unsigned ConstTripCount);
1446 
1447   /// The vectorization cost is a combination of the cost itself and a boolean
1448   /// indicating whether any of the contributing operations will actually
1449   /// operate on
1450   /// vector values after type legalization in the backend. If this latter value
1451   /// is
1452   /// false, then all operations will be scalarized (i.e. no vectorization has
1453   /// actually taken place).
1454   using VectorizationCostTy = std::pair<unsigned, bool>;
1455 
1456   /// Returns the expected execution cost. The unit of the cost does
1457   /// not matter because we use the 'cost' units to compare different
1458   /// vector widths. The cost that is returned is *not* normalized by
1459   /// the factor width.
1460   VectorizationCostTy expectedCost(ElementCount VF);
1461 
1462   /// Returns the execution time cost of an instruction for a given vector
1463   /// width. Vector width of one means scalar.
1464   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1465 
1466   /// The cost-computation logic from getInstructionCost which provides
1467   /// the vector type as an output parameter.
1468   unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy);
1469 
1470   /// Calculate vectorization cost of memory instruction \p I.
1471   unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF);
1472 
1473   /// The cost computation for scalarized memory instruction.
1474   unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1475 
1476   /// The cost computation for interleaving group of memory instructions.
1477   unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF);
1478 
1479   /// The cost computation for Gather/Scatter instruction.
1480   unsigned getGatherScatterCost(Instruction *I, ElementCount VF);
1481 
1482   /// The cost computation for widening instruction \p I with consecutive
1483   /// memory access.
1484   unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1485 
1486   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1487   /// Load: scalar load + broadcast.
1488   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1489   /// element)
1490   unsigned getUniformMemOpCost(Instruction *I, ElementCount VF);
1491 
1492   /// Estimate the overhead of scalarizing an instruction. This is a
1493   /// convenience wrapper for the type-based getScalarizationOverhead API.
1494   unsigned getScalarizationOverhead(Instruction *I, ElementCount VF);
1495 
1496   /// Returns whether the instruction is a load or store and will be a emitted
1497   /// as a vector operation.
1498   bool isConsecutiveLoadOrStore(Instruction *I);
1499 
1500   /// Returns true if an artificially high cost for emulated masked memrefs
1501   /// should be used.
1502   bool useEmulatedMaskMemRefHack(Instruction *I);
1503 
1504   /// Map of scalar integer values to the smallest bitwidth they can be legally
1505   /// represented as. The vector equivalents of these values should be truncated
1506   /// to this type.
1507   MapVector<Instruction *, uint64_t> MinBWs;
1508 
1509   /// A type representing the costs for instructions if they were to be
1510   /// scalarized rather than vectorized. The entries are Instruction-Cost
1511   /// pairs.
1512   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1513 
1514   /// A set containing all BasicBlocks that are known to present after
1515   /// vectorization as a predicated block.
1516   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1517 
1518   /// Records whether it is allowed to have the original scalar loop execute at
1519   /// least once. This may be needed as a fallback loop in case runtime
1520   /// aliasing/dependence checks fail, or to handle the tail/remainder
1521   /// iterations when the trip count is unknown or doesn't divide by the VF,
1522   /// or as a peel-loop to handle gaps in interleave-groups.
1523   /// Under optsize and when the trip count is very small we don't allow any
1524   /// iterations to execute in the scalar loop.
1525   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1526 
1527   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1528   bool FoldTailByMasking = false;
1529 
1530   /// A map holding scalar costs for different vectorization factors. The
1531   /// presence of a cost for an instruction in the mapping indicates that the
1532   /// instruction will be scalarized when vectorizing with the associated
1533   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1534   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1535 
1536   /// Holds the instructions known to be uniform after vectorization.
1537   /// The data is collected per VF.
1538   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1539 
1540   /// Holds the instructions known to be scalar after vectorization.
1541   /// The data is collected per VF.
1542   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1543 
1544   /// Holds the instructions (address computations) that are forced to be
1545   /// scalarized.
1546   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1547 
1548   /// PHINodes of the reductions that should be expanded in-loop along with
1549   /// their associated chains of reduction operations, in program order from top
1550   /// (PHI) to bottom
1551   ReductionChainMap InLoopReductionChains;
1552 
1553   /// Returns the expected difference in cost from scalarizing the expression
1554   /// feeding a predicated instruction \p PredInst. The instructions to
1555   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1556   /// non-negative return value implies the expression will be scalarized.
1557   /// Currently, only single-use chains are considered for scalarization.
1558   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1559                               ElementCount VF);
1560 
1561   /// Collect the instructions that are uniform after vectorization. An
1562   /// instruction is uniform if we represent it with a single scalar value in
1563   /// the vectorized loop corresponding to each vector iteration. Examples of
1564   /// uniform instructions include pointer operands of consecutive or
1565   /// interleaved memory accesses. Note that although uniformity implies an
1566   /// instruction will be scalar, the reverse is not true. In general, a
1567   /// scalarized instruction will be represented by VF scalar values in the
1568   /// vectorized loop, each corresponding to an iteration of the original
1569   /// scalar loop.
1570   void collectLoopUniforms(ElementCount VF);
1571 
1572   /// Collect the instructions that are scalar after vectorization. An
1573   /// instruction is scalar if it is known to be uniform or will be scalarized
1574   /// during vectorization. Non-uniform scalarized instructions will be
1575   /// represented by VF values in the vectorized loop, each corresponding to an
1576   /// iteration of the original scalar loop.
1577   void collectLoopScalars(ElementCount VF);
1578 
1579   /// Keeps cost model vectorization decision and cost for instructions.
1580   /// Right now it is used for memory instructions only.
1581   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1582                                 std::pair<InstWidening, unsigned>>;
1583 
1584   DecisionList WideningDecisions;
1585 
1586   /// Returns true if \p V is expected to be vectorized and it needs to be
1587   /// extracted.
1588   bool needsExtract(Value *V, ElementCount VF) const {
1589     Instruction *I = dyn_cast<Instruction>(V);
1590     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1591         TheLoop->isLoopInvariant(I))
1592       return false;
1593 
1594     // Assume we can vectorize V (and hence we need extraction) if the
1595     // scalars are not computed yet. This can happen, because it is called
1596     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1597     // the scalars are collected. That should be a safe assumption in most
1598     // cases, because we check if the operands have vectorizable types
1599     // beforehand in LoopVectorizationLegality.
1600     return Scalars.find(VF) == Scalars.end() ||
1601            !isScalarAfterVectorization(I, VF);
1602   };
1603 
1604   /// Returns a range containing only operands needing to be extracted.
1605   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1606                                                    ElementCount VF) {
1607     return SmallVector<Value *, 4>(make_filter_range(
1608         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1609   }
1610 
1611 public:
1612   /// The loop that we evaluate.
1613   Loop *TheLoop;
1614 
1615   /// Predicated scalar evolution analysis.
1616   PredicatedScalarEvolution &PSE;
1617 
1618   /// Loop Info analysis.
1619   LoopInfo *LI;
1620 
1621   /// Vectorization legality.
1622   LoopVectorizationLegality *Legal;
1623 
1624   /// Vector target information.
1625   const TargetTransformInfo &TTI;
1626 
1627   /// Target Library Info.
1628   const TargetLibraryInfo *TLI;
1629 
1630   /// Demanded bits analysis.
1631   DemandedBits *DB;
1632 
1633   /// Assumption cache.
1634   AssumptionCache *AC;
1635 
1636   /// Interface to emit optimization remarks.
1637   OptimizationRemarkEmitter *ORE;
1638 
1639   const Function *TheFunction;
1640 
1641   /// Loop Vectorize Hint.
1642   const LoopVectorizeHints *Hints;
1643 
1644   /// The interleave access information contains groups of interleaved accesses
1645   /// with the same stride and close to each other.
1646   InterleavedAccessInfo &InterleaveInfo;
1647 
1648   /// Values to ignore in the cost model.
1649   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1650 
1651   /// Values to ignore in the cost model when VF > 1.
1652   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1653 };
1654 
1655 } // end namespace llvm
1656 
1657 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1658 // vectorization. The loop needs to be annotated with #pragma omp simd
1659 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1660 // vector length information is not provided, vectorization is not considered
1661 // explicit. Interleave hints are not allowed either. These limitations will be
1662 // relaxed in the future.
1663 // Please, note that we are currently forced to abuse the pragma 'clang
1664 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1665 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1666 // provides *explicit vectorization hints* (LV can bypass legal checks and
1667 // assume that vectorization is legal). However, both hints are implemented
1668 // using the same metadata (llvm.loop.vectorize, processed by
1669 // LoopVectorizeHints). This will be fixed in the future when the native IR
1670 // representation for pragma 'omp simd' is introduced.
1671 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1672                                    OptimizationRemarkEmitter *ORE) {
1673   assert(!OuterLp->isInnermost() && "This is not an outer loop");
1674   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1675 
1676   // Only outer loops with an explicit vectorization hint are supported.
1677   // Unannotated outer loops are ignored.
1678   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1679     return false;
1680 
1681   Function *Fn = OuterLp->getHeader()->getParent();
1682   if (!Hints.allowVectorization(Fn, OuterLp,
1683                                 true /*VectorizeOnlyWhenForced*/)) {
1684     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1685     return false;
1686   }
1687 
1688   if (Hints.getInterleave() > 1) {
1689     // TODO: Interleave support is future work.
1690     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1691                          "outer loops.\n");
1692     Hints.emitRemarkWithHints();
1693     return false;
1694   }
1695 
1696   return true;
1697 }
1698 
1699 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1700                                   OptimizationRemarkEmitter *ORE,
1701                                   SmallVectorImpl<Loop *> &V) {
1702   // Collect inner loops and outer loops without irreducible control flow. For
1703   // now, only collect outer loops that have explicit vectorization hints. If we
1704   // are stress testing the VPlan H-CFG construction, we collect the outermost
1705   // loop of every loop nest.
1706   if (L.isInnermost() || VPlanBuildStressTest ||
1707       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1708     LoopBlocksRPO RPOT(&L);
1709     RPOT.perform(LI);
1710     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1711       V.push_back(&L);
1712       // TODO: Collect inner loops inside marked outer loops in case
1713       // vectorization fails for the outer loop. Do not invoke
1714       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1715       // already known to be reducible. We can use an inherited attribute for
1716       // that.
1717       return;
1718     }
1719   }
1720   for (Loop *InnerL : L)
1721     collectSupportedLoops(*InnerL, LI, ORE, V);
1722 }
1723 
1724 namespace {
1725 
1726 /// The LoopVectorize Pass.
1727 struct LoopVectorize : public FunctionPass {
1728   /// Pass identification, replacement for typeid
1729   static char ID;
1730 
1731   LoopVectorizePass Impl;
1732 
1733   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1734                          bool VectorizeOnlyWhenForced = false)
1735       : FunctionPass(ID),
1736         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
1737     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1738   }
1739 
1740   bool runOnFunction(Function &F) override {
1741     if (skipFunction(F))
1742       return false;
1743 
1744     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1745     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1746     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1747     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1748     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1749     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1750     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1751     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1752     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1753     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1754     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1755     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1756     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1757 
1758     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1759         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1760 
1761     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1762                         GetLAA, *ORE, PSI).MadeAnyChange;
1763   }
1764 
1765   void getAnalysisUsage(AnalysisUsage &AU) const override {
1766     AU.addRequired<AssumptionCacheTracker>();
1767     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1768     AU.addRequired<DominatorTreeWrapperPass>();
1769     AU.addRequired<LoopInfoWrapperPass>();
1770     AU.addRequired<ScalarEvolutionWrapperPass>();
1771     AU.addRequired<TargetTransformInfoWrapperPass>();
1772     AU.addRequired<AAResultsWrapperPass>();
1773     AU.addRequired<LoopAccessLegacyAnalysis>();
1774     AU.addRequired<DemandedBitsWrapperPass>();
1775     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1776     AU.addRequired<InjectTLIMappingsLegacy>();
1777 
1778     // We currently do not preserve loopinfo/dominator analyses with outer loop
1779     // vectorization. Until this is addressed, mark these analyses as preserved
1780     // only for non-VPlan-native path.
1781     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1782     if (!EnableVPlanNativePath) {
1783       AU.addPreserved<LoopInfoWrapperPass>();
1784       AU.addPreserved<DominatorTreeWrapperPass>();
1785     }
1786 
1787     AU.addPreserved<BasicAAWrapperPass>();
1788     AU.addPreserved<GlobalsAAWrapperPass>();
1789     AU.addRequired<ProfileSummaryInfoWrapperPass>();
1790   }
1791 };
1792 
1793 } // end anonymous namespace
1794 
1795 //===----------------------------------------------------------------------===//
1796 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1797 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1798 //===----------------------------------------------------------------------===//
1799 
1800 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1801   // We need to place the broadcast of invariant variables outside the loop,
1802   // but only if it's proven safe to do so. Else, broadcast will be inside
1803   // vector loop body.
1804   Instruction *Instr = dyn_cast<Instruction>(V);
1805   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1806                      (!Instr ||
1807                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1808   // Place the code for broadcasting invariant variables in the new preheader.
1809   IRBuilder<>::InsertPointGuard Guard(Builder);
1810   if (SafeToHoist)
1811     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1812 
1813   // Broadcast the scalar into all locations in the vector.
1814   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1815 
1816   return Shuf;
1817 }
1818 
1819 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1820     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1821   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1822          "Expected either an induction phi-node or a truncate of it!");
1823   Value *Start = II.getStartValue();
1824 
1825   // Construct the initial value of the vector IV in the vector loop preheader
1826   auto CurrIP = Builder.saveIP();
1827   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1828   if (isa<TruncInst>(EntryVal)) {
1829     assert(Start->getType()->isIntegerTy() &&
1830            "Truncation requires an integer type");
1831     auto *TruncType = cast<IntegerType>(EntryVal->getType());
1832     Step = Builder.CreateTrunc(Step, TruncType);
1833     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1834   }
1835   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1836   Value *SteppedStart =
1837       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1838 
1839   // We create vector phi nodes for both integer and floating-point induction
1840   // variables. Here, we determine the kind of arithmetic we will perform.
1841   Instruction::BinaryOps AddOp;
1842   Instruction::BinaryOps MulOp;
1843   if (Step->getType()->isIntegerTy()) {
1844     AddOp = Instruction::Add;
1845     MulOp = Instruction::Mul;
1846   } else {
1847     AddOp = II.getInductionOpcode();
1848     MulOp = Instruction::FMul;
1849   }
1850 
1851   // Multiply the vectorization factor by the step using integer or
1852   // floating-point arithmetic as appropriate.
1853   Value *ConstVF =
1854       getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue());
1855   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1856 
1857   // Create a vector splat to use in the induction update.
1858   //
1859   // FIXME: If the step is non-constant, we create the vector splat with
1860   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1861   //        handle a constant vector splat.
1862   assert(!VF.isScalable() && "scalable vectors not yet supported.");
1863   Value *SplatVF = isa<Constant>(Mul)
1864                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
1865                        : Builder.CreateVectorSplat(VF, Mul);
1866   Builder.restoreIP(CurrIP);
1867 
1868   // We may need to add the step a number of times, depending on the unroll
1869   // factor. The last of those goes into the PHI.
1870   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1871                                     &*LoopVectorBody->getFirstInsertionPt());
1872   VecInd->setDebugLoc(EntryVal->getDebugLoc());
1873   Instruction *LastInduction = VecInd;
1874   for (unsigned Part = 0; Part < UF; ++Part) {
1875     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1876 
1877     if (isa<TruncInst>(EntryVal))
1878       addMetadata(LastInduction, EntryVal);
1879     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1880 
1881     LastInduction = cast<Instruction>(addFastMathFlag(
1882         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1883     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1884   }
1885 
1886   // Move the last step to the end of the latch block. This ensures consistent
1887   // placement of all induction updates.
1888   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1889   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1890   auto *ICmp = cast<Instruction>(Br->getCondition());
1891   LastInduction->moveBefore(ICmp);
1892   LastInduction->setName("vec.ind.next");
1893 
1894   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1895   VecInd->addIncoming(LastInduction, LoopVectorLatch);
1896 }
1897 
1898 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1899   return Cost->isScalarAfterVectorization(I, VF) ||
1900          Cost->isProfitableToScalarize(I, VF);
1901 }
1902 
1903 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1904   if (shouldScalarizeInstruction(IV))
1905     return true;
1906   auto isScalarInst = [&](User *U) -> bool {
1907     auto *I = cast<Instruction>(U);
1908     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1909   };
1910   return llvm::any_of(IV->users(), isScalarInst);
1911 }
1912 
1913 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1914     const InductionDescriptor &ID, const Instruction *EntryVal,
1915     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1916   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1917          "Expected either an induction phi-node or a truncate of it!");
1918 
1919   // This induction variable is not the phi from the original loop but the
1920   // newly-created IV based on the proof that casted Phi is equal to the
1921   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1922   // re-uses the same InductionDescriptor that original IV uses but we don't
1923   // have to do any recording in this case - that is done when original IV is
1924   // processed.
1925   if (isa<TruncInst>(EntryVal))
1926     return;
1927 
1928   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1929   if (Casts.empty())
1930     return;
1931   // Only the first Cast instruction in the Casts vector is of interest.
1932   // The rest of the Casts (if exist) have no uses outside the
1933   // induction update chain itself.
1934   Instruction *CastInst = *Casts.begin();
1935   if (Lane < UINT_MAX)
1936     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1937   else
1938     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1939 }
1940 
1941 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1942   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1943          "Primary induction variable must have an integer type");
1944 
1945   auto II = Legal->getInductionVars().find(IV);
1946   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
1947 
1948   auto ID = II->second;
1949   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1950 
1951   // The value from the original loop to which we are mapping the new induction
1952   // variable.
1953   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1954 
1955   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1956 
1957   // Generate code for the induction step. Note that induction steps are
1958   // required to be loop-invariant
1959   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
1960     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
1961            "Induction step should be loop invariant");
1962     if (PSE.getSE()->isSCEVable(IV->getType())) {
1963       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1964       return Exp.expandCodeFor(Step, Step->getType(),
1965                                LoopVectorPreHeader->getTerminator());
1966     }
1967     return cast<SCEVUnknown>(Step)->getValue();
1968   };
1969 
1970   // The scalar value to broadcast. This is derived from the canonical
1971   // induction variable. If a truncation type is given, truncate the canonical
1972   // induction variable and step. Otherwise, derive these values from the
1973   // induction descriptor.
1974   auto CreateScalarIV = [&](Value *&Step) -> Value * {
1975     Value *ScalarIV = Induction;
1976     if (IV != OldInduction) {
1977       ScalarIV = IV->getType()->isIntegerTy()
1978                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1979                      : Builder.CreateCast(Instruction::SIToFP, Induction,
1980                                           IV->getType());
1981       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1982       ScalarIV->setName("offset.idx");
1983     }
1984     if (Trunc) {
1985       auto *TruncType = cast<IntegerType>(Trunc->getType());
1986       assert(Step->getType()->isIntegerTy() &&
1987              "Truncation requires an integer step");
1988       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1989       Step = Builder.CreateTrunc(Step, TruncType);
1990     }
1991     return ScalarIV;
1992   };
1993 
1994   // Create the vector values from the scalar IV, in the absence of creating a
1995   // vector IV.
1996   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
1997     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1998     for (unsigned Part = 0; Part < UF; ++Part) {
1999       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2000       Value *EntryPart =
2001           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2002                         ID.getInductionOpcode());
2003       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
2004       if (Trunc)
2005         addMetadata(EntryPart, Trunc);
2006       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
2007     }
2008   };
2009 
2010   // Now do the actual transformations, and start with creating the step value.
2011   Value *Step = CreateStepValue(ID.getStep());
2012   if (VF.isZero() || VF.isScalar()) {
2013     Value *ScalarIV = CreateScalarIV(Step);
2014     CreateSplatIV(ScalarIV, Step);
2015     return;
2016   }
2017 
2018   // Determine if we want a scalar version of the induction variable. This is
2019   // true if the induction variable itself is not widened, or if it has at
2020   // least one user in the loop that is not widened.
2021   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2022   if (!NeedsScalarIV) {
2023     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2024     return;
2025   }
2026 
2027   // Try to create a new independent vector induction variable. If we can't
2028   // create the phi node, we will splat the scalar induction variable in each
2029   // loop iteration.
2030   if (!shouldScalarizeInstruction(EntryVal)) {
2031     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2032     Value *ScalarIV = CreateScalarIV(Step);
2033     // Create scalar steps that can be used by instructions we will later
2034     // scalarize. Note that the addition of the scalar steps will not increase
2035     // the number of instructions in the loop in the common case prior to
2036     // InstCombine. We will be trading one vector extract for each scalar step.
2037     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2038     return;
2039   }
2040 
2041   // All IV users are scalar instructions, so only emit a scalar IV, not a
2042   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2043   // predicate used by the masked loads/stores.
2044   Value *ScalarIV = CreateScalarIV(Step);
2045   if (!Cost->isScalarEpilogueAllowed())
2046     CreateSplatIV(ScalarIV, Step);
2047   buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2048 }
2049 
2050 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2051                                           Instruction::BinaryOps BinOp) {
2052   // Create and check the types.
2053   auto *ValVTy = cast<FixedVectorType>(Val->getType());
2054   int VLen = ValVTy->getNumElements();
2055 
2056   Type *STy = Val->getType()->getScalarType();
2057   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2058          "Induction Step must be an integer or FP");
2059   assert(Step->getType() == STy && "Step has wrong type");
2060 
2061   SmallVector<Constant *, 8> Indices;
2062 
2063   if (STy->isIntegerTy()) {
2064     // Create a vector of consecutive numbers from zero to VF.
2065     for (int i = 0; i < VLen; ++i)
2066       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
2067 
2068     // Add the consecutive indices to the vector value.
2069     Constant *Cv = ConstantVector::get(Indices);
2070     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
2071     Step = Builder.CreateVectorSplat(VLen, Step);
2072     assert(Step->getType() == Val->getType() && "Invalid step vec");
2073     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2074     // which can be found from the original scalar operations.
2075     Step = Builder.CreateMul(Cv, Step);
2076     return Builder.CreateAdd(Val, Step, "induction");
2077   }
2078 
2079   // Floating point induction.
2080   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2081          "Binary Opcode should be specified for FP induction");
2082   // Create a vector of consecutive numbers from zero to VF.
2083   for (int i = 0; i < VLen; ++i)
2084     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
2085 
2086   // Add the consecutive indices to the vector value.
2087   Constant *Cv = ConstantVector::get(Indices);
2088 
2089   Step = Builder.CreateVectorSplat(VLen, Step);
2090 
2091   // Floating point operations had to be 'fast' to enable the induction.
2092   FastMathFlags Flags;
2093   Flags.setFast();
2094 
2095   Value *MulOp = Builder.CreateFMul(Cv, Step);
2096   if (isa<Instruction>(MulOp))
2097     // Have to check, MulOp may be a constant
2098     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
2099 
2100   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2101   if (isa<Instruction>(BOp))
2102     cast<Instruction>(BOp)->setFastMathFlags(Flags);
2103   return BOp;
2104 }
2105 
2106 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2107                                            Instruction *EntryVal,
2108                                            const InductionDescriptor &ID) {
2109   // We shouldn't have to build scalar steps if we aren't vectorizing.
2110   assert(VF.isVector() && "VF should be greater than one");
2111   assert(!VF.isScalable() &&
2112          "the code below assumes a fixed number of elements at compile time");
2113   // Get the value type and ensure it and the step have the same integer type.
2114   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2115   assert(ScalarIVTy == Step->getType() &&
2116          "Val and Step should have the same type");
2117 
2118   // We build scalar steps for both integer and floating-point induction
2119   // variables. Here, we determine the kind of arithmetic we will perform.
2120   Instruction::BinaryOps AddOp;
2121   Instruction::BinaryOps MulOp;
2122   if (ScalarIVTy->isIntegerTy()) {
2123     AddOp = Instruction::Add;
2124     MulOp = Instruction::Mul;
2125   } else {
2126     AddOp = ID.getInductionOpcode();
2127     MulOp = Instruction::FMul;
2128   }
2129 
2130   // Determine the number of scalars we need to generate for each unroll
2131   // iteration. If EntryVal is uniform, we only need to generate the first
2132   // lane. Otherwise, we generate all VF values.
2133   unsigned Lanes =
2134       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF)
2135           ? 1
2136           : VF.getKnownMinValue();
2137   // Compute the scalar steps and save the results in VectorLoopValueMap.
2138   for (unsigned Part = 0; Part < UF; ++Part) {
2139     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2140       auto *StartIdx = getSignedIntOrFpConstant(
2141           ScalarIVTy, VF.getKnownMinValue() * Part + Lane);
2142       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2143       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2144       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2145       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2146     }
2147   }
2148 }
2149 
2150 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2151   assert(V != Induction && "The new induction variable should not be used.");
2152   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2153   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2154 
2155   // If we have a stride that is replaced by one, do it here. Defer this for
2156   // the VPlan-native path until we start running Legal checks in that path.
2157   if (!EnableVPlanNativePath && Legal->hasStride(V))
2158     V = ConstantInt::get(V->getType(), 1);
2159 
2160   // If we have a vector mapped to this value, return it.
2161   if (VectorLoopValueMap.hasVectorValue(V, Part))
2162     return VectorLoopValueMap.getVectorValue(V, Part);
2163 
2164   // If the value has not been vectorized, check if it has been scalarized
2165   // instead. If it has been scalarized, and we actually need the value in
2166   // vector form, we will construct the vector values on demand.
2167   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2168     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2169 
2170     // If we've scalarized a value, that value should be an instruction.
2171     auto *I = cast<Instruction>(V);
2172 
2173     // If we aren't vectorizing, we can just copy the scalar map values over to
2174     // the vector map.
2175     if (VF.isScalar()) {
2176       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2177       return ScalarValue;
2178     }
2179 
2180     // Get the last scalar instruction we generated for V and Part. If the value
2181     // is known to be uniform after vectorization, this corresponds to lane zero
2182     // of the Part unroll iteration. Otherwise, the last instruction is the one
2183     // we created for the last vector lane of the Part unroll iteration.
2184     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2185     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF)
2186                             ? 0
2187                             : VF.getKnownMinValue() - 1;
2188     auto *LastInst = cast<Instruction>(
2189         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2190 
2191     // Set the insert point after the last scalarized instruction. This ensures
2192     // the insertelement sequence will directly follow the scalar definitions.
2193     auto OldIP = Builder.saveIP();
2194     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2195     Builder.SetInsertPoint(&*NewIP);
2196 
2197     // However, if we are vectorizing, we need to construct the vector values.
2198     // If the value is known to be uniform after vectorization, we can just
2199     // broadcast the scalar value corresponding to lane zero for each unroll
2200     // iteration. Otherwise, we construct the vector values using insertelement
2201     // instructions. Since the resulting vectors are stored in
2202     // VectorLoopValueMap, we will only generate the insertelements once.
2203     Value *VectorValue = nullptr;
2204     if (Cost->isUniformAfterVectorization(I, VF)) {
2205       VectorValue = getBroadcastInstrs(ScalarValue);
2206       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2207     } else {
2208       // Initialize packing with insertelements to start from undef.
2209       assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2210       Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2211       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2212       for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
2213         packScalarIntoVectorValue(V, {Part, Lane});
2214       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2215     }
2216     Builder.restoreIP(OldIP);
2217     return VectorValue;
2218   }
2219 
2220   // If this scalar is unknown, assume that it is a constant or that it is
2221   // loop invariant. Broadcast V and save the value for future uses.
2222   Value *B = getBroadcastInstrs(V);
2223   VectorLoopValueMap.setVectorValue(V, Part, B);
2224   return B;
2225 }
2226 
2227 Value *
2228 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2229                                             const VPIteration &Instance) {
2230   // If the value is not an instruction contained in the loop, it should
2231   // already be scalar.
2232   if (OrigLoop->isLoopInvariant(V))
2233     return V;
2234 
2235   assert(Instance.Lane > 0
2236              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2237              : true && "Uniform values only have lane zero");
2238 
2239   // If the value from the original loop has not been vectorized, it is
2240   // represented by UF x VF scalar values in the new loop. Return the requested
2241   // scalar value.
2242   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2243     return VectorLoopValueMap.getScalarValue(V, Instance);
2244 
2245   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2246   // for the given unroll part. If this entry is not a vector type (i.e., the
2247   // vectorization factor is one), there is no need to generate an
2248   // extractelement instruction.
2249   auto *U = getOrCreateVectorValue(V, Instance.Part);
2250   if (!U->getType()->isVectorTy()) {
2251     assert(VF.isScalar() && "Value not scalarized has non-vector type");
2252     return U;
2253   }
2254 
2255   // Otherwise, the value from the original loop has been vectorized and is
2256   // represented by UF vector values. Extract and return the requested scalar
2257   // value from the appropriate vector lane.
2258   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2259 }
2260 
2261 void InnerLoopVectorizer::packScalarIntoVectorValue(
2262     Value *V, const VPIteration &Instance) {
2263   assert(V != Induction && "The new induction variable should not be used.");
2264   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2265   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2266 
2267   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2268   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2269   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2270                                             Builder.getInt32(Instance.Lane));
2271   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2272 }
2273 
2274 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2275   assert(Vec->getType()->isVectorTy() && "Invalid type");
2276   assert(!VF.isScalable() && "Cannot reverse scalable vectors");
2277   SmallVector<int, 8> ShuffleMask;
2278   for (unsigned i = 0; i < VF.getKnownMinValue(); ++i)
2279     ShuffleMask.push_back(VF.getKnownMinValue() - i - 1);
2280 
2281   return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse");
2282 }
2283 
2284 // Return whether we allow using masked interleave-groups (for dealing with
2285 // strided loads/stores that reside in predicated blocks, or for dealing
2286 // with gaps).
2287 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2288   // If an override option has been passed in for interleaved accesses, use it.
2289   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2290     return EnableMaskedInterleavedMemAccesses;
2291 
2292   return TTI.enableMaskedInterleavedAccessVectorization();
2293 }
2294 
2295 // Try to vectorize the interleave group that \p Instr belongs to.
2296 //
2297 // E.g. Translate following interleaved load group (factor = 3):
2298 //   for (i = 0; i < N; i+=3) {
2299 //     R = Pic[i];             // Member of index 0
2300 //     G = Pic[i+1];           // Member of index 1
2301 //     B = Pic[i+2];           // Member of index 2
2302 //     ... // do something to R, G, B
2303 //   }
2304 // To:
2305 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2306 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2307 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2308 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2309 //
2310 // Or translate following interleaved store group (factor = 3):
2311 //   for (i = 0; i < N; i+=3) {
2312 //     ... do something to R, G, B
2313 //     Pic[i]   = R;           // Member of index 0
2314 //     Pic[i+1] = G;           // Member of index 1
2315 //     Pic[i+2] = B;           // Member of index 2
2316 //   }
2317 // To:
2318 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2319 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2320 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2321 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2322 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2323 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2324     const InterleaveGroup<Instruction> *Group, VPTransformState &State,
2325     VPValue *Addr, VPValue *BlockInMask) {
2326   Instruction *Instr = Group->getInsertPos();
2327   const DataLayout &DL = Instr->getModule()->getDataLayout();
2328 
2329   // Prepare for the vector type of the interleaved load/store.
2330   Type *ScalarTy = getMemInstValueType(Instr);
2331   unsigned InterleaveFactor = Group->getFactor();
2332   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2333   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2334 
2335   // Prepare for the new pointers.
2336   SmallVector<Value *, 2> AddrParts;
2337   unsigned Index = Group->getIndex(Instr);
2338 
2339   // TODO: extend the masked interleaved-group support to reversed access.
2340   assert((!BlockInMask || !Group->isReverse()) &&
2341          "Reversed masked interleave-group not supported.");
2342 
2343   // If the group is reverse, adjust the index to refer to the last vector lane
2344   // instead of the first. We adjust the index from the first vector lane,
2345   // rather than directly getting the pointer for lane VF - 1, because the
2346   // pointer operand of the interleaved access is supposed to be uniform. For
2347   // uniform instructions, we're only required to generate a value for the
2348   // first vector lane in each unroll iteration.
2349   assert(!VF.isScalable() &&
2350          "scalable vector reverse operation is not implemented");
2351   if (Group->isReverse())
2352     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2353 
2354   for (unsigned Part = 0; Part < UF; Part++) {
2355     Value *AddrPart = State.get(Addr, {Part, 0});
2356     setDebugLocFromInst(Builder, AddrPart);
2357 
2358     // Notice current instruction could be any index. Need to adjust the address
2359     // to the member of index 0.
2360     //
2361     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2362     //       b = A[i];       // Member of index 0
2363     // Current pointer is pointed to A[i+1], adjust it to A[i].
2364     //
2365     // E.g.  A[i+1] = a;     // Member of index 1
2366     //       A[i]   = b;     // Member of index 0
2367     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2368     // Current pointer is pointed to A[i+2], adjust it to A[i].
2369 
2370     bool InBounds = false;
2371     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2372       InBounds = gep->isInBounds();
2373     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2374     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2375 
2376     // Cast to the vector pointer type.
2377     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2378     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2379     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2380   }
2381 
2382   setDebugLocFromInst(Builder, Instr);
2383   Value *UndefVec = UndefValue::get(VecTy);
2384 
2385   Value *MaskForGaps = nullptr;
2386   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2387     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2388     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2389     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2390   }
2391 
2392   // Vectorize the interleaved load group.
2393   if (isa<LoadInst>(Instr)) {
2394     // For each unroll part, create a wide load for the group.
2395     SmallVector<Value *, 2> NewLoads;
2396     for (unsigned Part = 0; Part < UF; Part++) {
2397       Instruction *NewLoad;
2398       if (BlockInMask || MaskForGaps) {
2399         assert(useMaskedInterleavedAccesses(*TTI) &&
2400                "masked interleaved groups are not allowed.");
2401         Value *GroupMask = MaskForGaps;
2402         if (BlockInMask) {
2403           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2404           assert(!VF.isScalable() && "scalable vectors not yet supported.");
2405           Value *ShuffledMask = Builder.CreateShuffleVector(
2406               BlockInMaskPart,
2407               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2408               "interleaved.mask");
2409           GroupMask = MaskForGaps
2410                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2411                                                 MaskForGaps)
2412                           : ShuffledMask;
2413         }
2414         NewLoad =
2415             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2416                                      GroupMask, UndefVec, "wide.masked.vec");
2417       }
2418       else
2419         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2420                                             Group->getAlign(), "wide.vec");
2421       Group->addMetadata(NewLoad);
2422       NewLoads.push_back(NewLoad);
2423     }
2424 
2425     // For each member in the group, shuffle out the appropriate data from the
2426     // wide loads.
2427     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2428       Instruction *Member = Group->getMember(I);
2429 
2430       // Skip the gaps in the group.
2431       if (!Member)
2432         continue;
2433 
2434       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2435       auto StrideMask =
2436           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2437       for (unsigned Part = 0; Part < UF; Part++) {
2438         Value *StridedVec = Builder.CreateShuffleVector(
2439             NewLoads[Part], StrideMask, "strided.vec");
2440 
2441         // If this member has different type, cast the result type.
2442         if (Member->getType() != ScalarTy) {
2443           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2444           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2445           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2446         }
2447 
2448         if (Group->isReverse())
2449           StridedVec = reverseVector(StridedVec);
2450 
2451         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2452       }
2453     }
2454     return;
2455   }
2456 
2457   // The sub vector type for current instruction.
2458   assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2459   auto *SubVT = VectorType::get(ScalarTy, VF);
2460 
2461   // Vectorize the interleaved store group.
2462   for (unsigned Part = 0; Part < UF; Part++) {
2463     // Collect the stored vector from each member.
2464     SmallVector<Value *, 4> StoredVecs;
2465     for (unsigned i = 0; i < InterleaveFactor; i++) {
2466       // Interleaved store group doesn't allow a gap, so each index has a member
2467       Instruction *Member = Group->getMember(i);
2468       assert(Member && "Fail to get a member from an interleaved store group");
2469 
2470       Value *StoredVec = getOrCreateVectorValue(
2471           cast<StoreInst>(Member)->getValueOperand(), Part);
2472       if (Group->isReverse())
2473         StoredVec = reverseVector(StoredVec);
2474 
2475       // If this member has different type, cast it to a unified type.
2476 
2477       if (StoredVec->getType() != SubVT)
2478         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2479 
2480       StoredVecs.push_back(StoredVec);
2481     }
2482 
2483     // Concatenate all vectors into a wide vector.
2484     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2485 
2486     // Interleave the elements in the wide vector.
2487     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2488     Value *IVec = Builder.CreateShuffleVector(
2489         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2490         "interleaved.vec");
2491 
2492     Instruction *NewStoreInstr;
2493     if (BlockInMask) {
2494       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2495       Value *ShuffledMask = Builder.CreateShuffleVector(
2496           BlockInMaskPart,
2497           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2498           "interleaved.mask");
2499       NewStoreInstr = Builder.CreateMaskedStore(
2500           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2501     }
2502     else
2503       NewStoreInstr =
2504           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2505 
2506     Group->addMetadata(NewStoreInstr);
2507   }
2508 }
2509 
2510 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2511     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2512     VPValue *StoredValue, VPValue *BlockInMask) {
2513   // Attempt to issue a wide load.
2514   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2515   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2516 
2517   assert((LI || SI) && "Invalid Load/Store instruction");
2518   assert((!SI || StoredValue) && "No stored value provided for widened store");
2519   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2520 
2521   LoopVectorizationCostModel::InstWidening Decision =
2522       Cost->getWideningDecision(Instr, VF);
2523   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2524           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2525           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2526          "CM decision is not to widen the memory instruction");
2527 
2528   Type *ScalarDataTy = getMemInstValueType(Instr);
2529 
2530   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2531   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2532   const Align Alignment = getLoadStoreAlignment(Instr);
2533 
2534   // Determine if the pointer operand of the access is either consecutive or
2535   // reverse consecutive.
2536   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2537   bool ConsecutiveStride =
2538       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2539   bool CreateGatherScatter =
2540       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2541 
2542   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2543   // gather/scatter. Otherwise Decision should have been to Scalarize.
2544   assert((ConsecutiveStride || CreateGatherScatter) &&
2545          "The instruction should be scalarized");
2546   (void)ConsecutiveStride;
2547 
2548   VectorParts BlockInMaskParts(UF);
2549   bool isMaskRequired = BlockInMask;
2550   if (isMaskRequired)
2551     for (unsigned Part = 0; Part < UF; ++Part)
2552       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2553 
2554   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2555     // Calculate the pointer for the specific unroll-part.
2556     GetElementPtrInst *PartPtr = nullptr;
2557 
2558     bool InBounds = false;
2559     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2560       InBounds = gep->isInBounds();
2561 
2562     if (Reverse) {
2563       // If the address is consecutive but reversed, then the
2564       // wide store needs to start at the last vector element.
2565       PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP(
2566           ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue())));
2567       PartPtr->setIsInBounds(InBounds);
2568       PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP(
2569           ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue())));
2570       PartPtr->setIsInBounds(InBounds);
2571       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2572         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2573     } else {
2574       PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP(
2575           ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue())));
2576       PartPtr->setIsInBounds(InBounds);
2577     }
2578 
2579     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2580     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2581   };
2582 
2583   // Handle Stores:
2584   if (SI) {
2585     setDebugLocFromInst(Builder, SI);
2586 
2587     for (unsigned Part = 0; Part < UF; ++Part) {
2588       Instruction *NewSI = nullptr;
2589       Value *StoredVal = State.get(StoredValue, Part);
2590       if (CreateGatherScatter) {
2591         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2592         Value *VectorGep = State.get(Addr, Part);
2593         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2594                                             MaskPart);
2595       } else {
2596         if (Reverse) {
2597           // If we store to reverse consecutive memory locations, then we need
2598           // to reverse the order of elements in the stored value.
2599           StoredVal = reverseVector(StoredVal);
2600           // We don't want to update the value in the map as it might be used in
2601           // another expression. So don't call resetVectorValue(StoredVal).
2602         }
2603         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2604         if (isMaskRequired)
2605           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2606                                             BlockInMaskParts[Part]);
2607         else
2608           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2609       }
2610       addMetadata(NewSI, SI);
2611     }
2612     return;
2613   }
2614 
2615   // Handle loads.
2616   assert(LI && "Must have a load instruction");
2617   setDebugLocFromInst(Builder, LI);
2618   for (unsigned Part = 0; Part < UF; ++Part) {
2619     Value *NewLI;
2620     if (CreateGatherScatter) {
2621       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2622       Value *VectorGep = State.get(Addr, Part);
2623       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2624                                          nullptr, "wide.masked.gather");
2625       addMetadata(NewLI, LI);
2626     } else {
2627       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2628       if (isMaskRequired)
2629         NewLI = Builder.CreateMaskedLoad(
2630             VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy),
2631             "wide.masked.load");
2632       else
2633         NewLI =
2634             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2635 
2636       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2637       addMetadata(NewLI, LI);
2638       if (Reverse)
2639         NewLI = reverseVector(NewLI);
2640     }
2641 
2642     State.set(Def, Instr, NewLI, Part);
2643   }
2644 }
2645 
2646 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User,
2647                                                const VPIteration &Instance,
2648                                                bool IfPredicateInstr,
2649                                                VPTransformState &State) {
2650   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2651 
2652   setDebugLocFromInst(Builder, Instr);
2653 
2654   // Does this instruction return a value ?
2655   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2656 
2657   Instruction *Cloned = Instr->clone();
2658   if (!IsVoidRetTy)
2659     Cloned->setName(Instr->getName() + ".cloned");
2660 
2661   // Replace the operands of the cloned instructions with their scalar
2662   // equivalents in the new loop.
2663   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
2664     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
2665     auto InputInstance = Instance;
2666     if (!Operand || !OrigLoop->contains(Operand) ||
2667         (Cost->isUniformAfterVectorization(Operand, State.VF)))
2668       InputInstance.Lane = 0;
2669     auto *NewOp = State.get(User.getOperand(op), InputInstance);
2670     Cloned->setOperand(op, NewOp);
2671   }
2672   addNewMetadata(Cloned, Instr);
2673 
2674   // Place the cloned scalar in the new loop.
2675   Builder.Insert(Cloned);
2676 
2677   // Add the cloned scalar to the scalar map entry.
2678   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2679 
2680   // If we just cloned a new assumption, add it the assumption cache.
2681   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2682     if (II->getIntrinsicID() == Intrinsic::assume)
2683       AC->registerAssumption(II);
2684 
2685   // End if-block.
2686   if (IfPredicateInstr)
2687     PredicatedInstructions.push_back(Cloned);
2688 }
2689 
2690 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2691                                                       Value *End, Value *Step,
2692                                                       Instruction *DL) {
2693   BasicBlock *Header = L->getHeader();
2694   BasicBlock *Latch = L->getLoopLatch();
2695   // As we're just creating this loop, it's possible no latch exists
2696   // yet. If so, use the header as this will be a single block loop.
2697   if (!Latch)
2698     Latch = Header;
2699 
2700   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2701   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2702   setDebugLocFromInst(Builder, OldInst);
2703   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2704 
2705   Builder.SetInsertPoint(Latch->getTerminator());
2706   setDebugLocFromInst(Builder, OldInst);
2707 
2708   // Create i+1 and fill the PHINode.
2709   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2710   Induction->addIncoming(Start, L->getLoopPreheader());
2711   Induction->addIncoming(Next, Latch);
2712   // Create the compare.
2713   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2714   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2715 
2716   // Now we have two terminators. Remove the old one from the block.
2717   Latch->getTerminator()->eraseFromParent();
2718 
2719   return Induction;
2720 }
2721 
2722 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2723   if (TripCount)
2724     return TripCount;
2725 
2726   assert(L && "Create Trip Count for null loop.");
2727   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2728   // Find the loop boundaries.
2729   ScalarEvolution *SE = PSE.getSE();
2730   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2731   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2732          "Invalid loop count");
2733 
2734   Type *IdxTy = Legal->getWidestInductionType();
2735   assert(IdxTy && "No type for induction");
2736 
2737   // The exit count might have the type of i64 while the phi is i32. This can
2738   // happen if we have an induction variable that is sign extended before the
2739   // compare. The only way that we get a backedge taken count is that the
2740   // induction variable was signed and as such will not overflow. In such a case
2741   // truncation is legal.
2742   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2743       IdxTy->getPrimitiveSizeInBits())
2744     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2745   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2746 
2747   // Get the total trip count from the count by adding 1.
2748   const SCEV *ExitCount = SE->getAddExpr(
2749       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2750 
2751   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2752 
2753   // Expand the trip count and place the new instructions in the preheader.
2754   // Notice that the pre-header does not change, only the loop body.
2755   SCEVExpander Exp(*SE, DL, "induction");
2756 
2757   // Count holds the overall loop count (N).
2758   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2759                                 L->getLoopPreheader()->getTerminator());
2760 
2761   if (TripCount->getType()->isPointerTy())
2762     TripCount =
2763         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2764                                     L->getLoopPreheader()->getTerminator());
2765 
2766   return TripCount;
2767 }
2768 
2769 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2770   if (VectorTripCount)
2771     return VectorTripCount;
2772 
2773   Value *TC = getOrCreateTripCount(L);
2774   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2775 
2776   Type *Ty = TC->getType();
2777   // This is where we can make the step a runtime constant.
2778   assert(!VF.isScalable() && "scalable vectorization is not supported yet");
2779   Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF);
2780 
2781   // If the tail is to be folded by masking, round the number of iterations N
2782   // up to a multiple of Step instead of rounding down. This is done by first
2783   // adding Step-1 and then rounding down. Note that it's ok if this addition
2784   // overflows: the vector induction variable will eventually wrap to zero given
2785   // that it starts at zero and its Step is a power of two; the loop will then
2786   // exit, with the last early-exit vector comparison also producing all-true.
2787   if (Cost->foldTailByMasking()) {
2788     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2789            "VF*UF must be a power of 2 when folding tail by masking");
2790     TC = Builder.CreateAdd(
2791         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
2792   }
2793 
2794   // Now we need to generate the expression for the part of the loop that the
2795   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2796   // iterations are not required for correctness, or N - Step, otherwise. Step
2797   // is equal to the vectorization factor (number of SIMD elements) times the
2798   // unroll factor (number of SIMD instructions).
2799   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2800 
2801   // If there is a non-reversed interleaved group that may speculatively access
2802   // memory out-of-bounds, we need to ensure that there will be at least one
2803   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2804   // the trip count, we set the remainder to be equal to the step. If the step
2805   // does not evenly divide the trip count, no adjustment is necessary since
2806   // there will already be scalar iterations. Note that the minimum iterations
2807   // check ensures that N >= Step.
2808   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
2809     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2810     R = Builder.CreateSelect(IsZero, Step, R);
2811   }
2812 
2813   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2814 
2815   return VectorTripCount;
2816 }
2817 
2818 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2819                                                    const DataLayout &DL) {
2820   // Verify that V is a vector type with same number of elements as DstVTy.
2821   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2822   unsigned VF = DstFVTy->getNumElements();
2823   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2824   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2825   Type *SrcElemTy = SrcVecTy->getElementType();
2826   Type *DstElemTy = DstFVTy->getElementType();
2827   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2828          "Vector elements must have same size");
2829 
2830   // Do a direct cast if element types are castable.
2831   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2832     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2833   }
2834   // V cannot be directly casted to desired vector type.
2835   // May happen when V is a floating point vector but DstVTy is a vector of
2836   // pointers or vice-versa. Handle this using a two-step bitcast using an
2837   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2838   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2839          "Only one type should be a pointer type");
2840   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2841          "Only one type should be a floating point type");
2842   Type *IntTy =
2843       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2844   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2845   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2846   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2847 }
2848 
2849 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2850                                                          BasicBlock *Bypass) {
2851   Value *Count = getOrCreateTripCount(L);
2852   // Reuse existing vector loop preheader for TC checks.
2853   // Note that new preheader block is generated for vector loop.
2854   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2855   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2856 
2857   // Generate code to check if the loop's trip count is less than VF * UF, or
2858   // equal to it in case a scalar epilogue is required; this implies that the
2859   // vector trip count is zero. This check also covers the case where adding one
2860   // to the backedge-taken count overflowed leading to an incorrect trip count
2861   // of zero. In this case we will also jump to the scalar loop.
2862   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2863                                           : ICmpInst::ICMP_ULT;
2864 
2865   // If tail is to be folded, vector loop takes care of all iterations.
2866   Value *CheckMinIters = Builder.getFalse();
2867   if (!Cost->foldTailByMasking()) {
2868     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2869     CheckMinIters = Builder.CreateICmp(
2870         P, Count,
2871         ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF),
2872         "min.iters.check");
2873   }
2874   // Create new preheader for vector loop.
2875   LoopVectorPreHeader =
2876       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2877                  "vector.ph");
2878 
2879   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2880                                DT->getNode(Bypass)->getIDom()) &&
2881          "TC check is expected to dominate Bypass");
2882 
2883   // Update dominator for Bypass & LoopExit.
2884   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2885   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2886 
2887   ReplaceInstWithInst(
2888       TCCheckBlock->getTerminator(),
2889       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2890   LoopBypassBlocks.push_back(TCCheckBlock);
2891 }
2892 
2893 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2894   // Reuse existing vector loop preheader for SCEV checks.
2895   // Note that new preheader block is generated for vector loop.
2896   BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2897 
2898   // Generate the code to check that the SCEV assumptions that we made.
2899   // We want the new basic block to start at the first instruction in a
2900   // sequence of instructions that form a check.
2901   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2902                    "scev.check");
2903   Value *SCEVCheck = Exp.expandCodeForPredicate(
2904       &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2905 
2906   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2907     if (C->isZero())
2908       return;
2909 
2910   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
2911            (OptForSizeBasedOnProfile &&
2912             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
2913          "Cannot SCEV check stride or overflow when optimizing for size");
2914 
2915   SCEVCheckBlock->setName("vector.scevcheck");
2916   // Create new preheader for vector loop.
2917   LoopVectorPreHeader =
2918       SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2919                  nullptr, "vector.ph");
2920 
2921   // Update dominator only if this is first RT check.
2922   if (LoopBypassBlocks.empty()) {
2923     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2924     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2925   }
2926 
2927   ReplaceInstWithInst(
2928       SCEVCheckBlock->getTerminator(),
2929       BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2930   LoopBypassBlocks.push_back(SCEVCheckBlock);
2931   AddedSafetyChecks = true;
2932 }
2933 
2934 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2935   // VPlan-native path does not do any analysis for runtime checks currently.
2936   if (EnableVPlanNativePath)
2937     return;
2938 
2939   // Reuse existing vector loop preheader for runtime memory checks.
2940   // Note that new preheader block is generated for vector loop.
2941   BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2942 
2943   // Generate the code that checks in runtime if arrays overlap. We put the
2944   // checks into a separate block to make the more common case of few elements
2945   // faster.
2946   auto *LAI = Legal->getLAI();
2947   const auto &RtPtrChecking = *LAI->getRuntimePointerChecking();
2948   if (!RtPtrChecking.Need)
2949     return;
2950 
2951   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
2952     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2953            "Cannot emit memory checks when optimizing for size, unless forced "
2954            "to vectorize.");
2955     ORE->emit([&]() {
2956       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2957                                         L->getStartLoc(), L->getHeader())
2958              << "Code-size may be reduced by not forcing "
2959                 "vectorization, or by source-code modifications "
2960                 "eliminating the need for runtime checks "
2961                 "(e.g., adding 'restrict').";
2962     });
2963   }
2964 
2965   MemCheckBlock->setName("vector.memcheck");
2966   // Create new preheader for vector loop.
2967   LoopVectorPreHeader =
2968       SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2969                  "vector.ph");
2970 
2971   auto *CondBranch = cast<BranchInst>(
2972       Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader));
2973   ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch);
2974   LoopBypassBlocks.push_back(MemCheckBlock);
2975   AddedSafetyChecks = true;
2976 
2977   // Update dominator only if this is first RT check.
2978   if (LoopBypassBlocks.empty()) {
2979     DT->changeImmediateDominator(Bypass, MemCheckBlock);
2980     DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2981   }
2982 
2983   Instruction *FirstCheckInst;
2984   Instruction *MemRuntimeCheck;
2985   std::tie(FirstCheckInst, MemRuntimeCheck) =
2986       addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop,
2987                        RtPtrChecking.getChecks(), RtPtrChecking.getSE());
2988   assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking "
2989                             "claimed checks are required");
2990   CondBranch->setCondition(MemRuntimeCheck);
2991 
2992   // We currently don't use LoopVersioning for the actual loop cloning but we
2993   // still use it to add the noalias metadata.
2994   LVer = std::make_unique<LoopVersioning>(
2995       *Legal->getLAI(),
2996       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
2997       DT, PSE.getSE());
2998   LVer->prepareNoAliasMetadata();
2999 }
3000 
3001 Value *InnerLoopVectorizer::emitTransformedIndex(
3002     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3003     const InductionDescriptor &ID) const {
3004 
3005   SCEVExpander Exp(*SE, DL, "induction");
3006   auto Step = ID.getStep();
3007   auto StartValue = ID.getStartValue();
3008   assert(Index->getType() == Step->getType() &&
3009          "Index type does not match StepValue type");
3010 
3011   // Note: the IR at this point is broken. We cannot use SE to create any new
3012   // SCEV and then expand it, hoping that SCEV's simplification will give us
3013   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3014   // lead to various SCEV crashes. So all we can do is to use builder and rely
3015   // on InstCombine for future simplifications. Here we handle some trivial
3016   // cases only.
3017   auto CreateAdd = [&B](Value *X, Value *Y) {
3018     assert(X->getType() == Y->getType() && "Types don't match!");
3019     if (auto *CX = dyn_cast<ConstantInt>(X))
3020       if (CX->isZero())
3021         return Y;
3022     if (auto *CY = dyn_cast<ConstantInt>(Y))
3023       if (CY->isZero())
3024         return X;
3025     return B.CreateAdd(X, Y);
3026   };
3027 
3028   auto CreateMul = [&B](Value *X, Value *Y) {
3029     assert(X->getType() == Y->getType() && "Types don't match!");
3030     if (auto *CX = dyn_cast<ConstantInt>(X))
3031       if (CX->isOne())
3032         return Y;
3033     if (auto *CY = dyn_cast<ConstantInt>(Y))
3034       if (CY->isOne())
3035         return X;
3036     return B.CreateMul(X, Y);
3037   };
3038 
3039   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3040   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3041   // the DomTree is not kept up-to-date for additional blocks generated in the
3042   // vector loop. By using the header as insertion point, we guarantee that the
3043   // expanded instructions dominate all their uses.
3044   auto GetInsertPoint = [this, &B]() {
3045     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3046     if (InsertBB != LoopVectorBody &&
3047         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3048       return LoopVectorBody->getTerminator();
3049     return &*B.GetInsertPoint();
3050   };
3051   switch (ID.getKind()) {
3052   case InductionDescriptor::IK_IntInduction: {
3053     assert(Index->getType() == StartValue->getType() &&
3054            "Index type does not match StartValue type");
3055     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3056       return B.CreateSub(StartValue, Index);
3057     auto *Offset = CreateMul(
3058         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3059     return CreateAdd(StartValue, Offset);
3060   }
3061   case InductionDescriptor::IK_PtrInduction: {
3062     assert(isa<SCEVConstant>(Step) &&
3063            "Expected constant step for pointer induction");
3064     return B.CreateGEP(
3065         StartValue->getType()->getPointerElementType(), StartValue,
3066         CreateMul(Index,
3067                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
3068   }
3069   case InductionDescriptor::IK_FpInduction: {
3070     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3071     auto InductionBinOp = ID.getInductionBinOp();
3072     assert(InductionBinOp &&
3073            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3074             InductionBinOp->getOpcode() == Instruction::FSub) &&
3075            "Original bin op should be defined for FP induction");
3076 
3077     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3078 
3079     // Floating point operations had to be 'fast' to enable the induction.
3080     FastMathFlags Flags;
3081     Flags.setFast();
3082 
3083     Value *MulExp = B.CreateFMul(StepValue, Index);
3084     if (isa<Instruction>(MulExp))
3085       // We have to check, the MulExp may be a constant.
3086       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
3087 
3088     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3089                                "induction");
3090     if (isa<Instruction>(BOp))
3091       cast<Instruction>(BOp)->setFastMathFlags(Flags);
3092 
3093     return BOp;
3094   }
3095   case InductionDescriptor::IK_NoInduction:
3096     return nullptr;
3097   }
3098   llvm_unreachable("invalid enum");
3099 }
3100 
3101 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3102   LoopScalarBody = OrigLoop->getHeader();
3103   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3104   LoopExitBlock = OrigLoop->getExitBlock();
3105   assert(LoopExitBlock && "Must have an exit block");
3106   assert(LoopVectorPreHeader && "Invalid loop structure");
3107 
3108   LoopMiddleBlock =
3109       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3110                  LI, nullptr, Twine(Prefix) + "middle.block");
3111   LoopScalarPreHeader =
3112       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3113                  nullptr, Twine(Prefix) + "scalar.ph");
3114   // We intentionally don't let SplitBlock to update LoopInfo since
3115   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3116   // LoopVectorBody is explicitly added to the correct place few lines later.
3117   LoopVectorBody =
3118       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3119                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3120 
3121   // Update dominator for loop exit.
3122   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3123 
3124   // Create and register the new vector loop.
3125   Loop *Lp = LI->AllocateLoop();
3126   Loop *ParentLoop = OrigLoop->getParentLoop();
3127 
3128   // Insert the new loop into the loop nest and register the new basic blocks
3129   // before calling any utilities such as SCEV that require valid LoopInfo.
3130   if (ParentLoop) {
3131     ParentLoop->addChildLoop(Lp);
3132   } else {
3133     LI->addTopLevelLoop(Lp);
3134   }
3135   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3136   return Lp;
3137 }
3138 
3139 void InnerLoopVectorizer::createInductionResumeValues(Loop *L,
3140                                                       Value *VectorTripCount) {
3141   assert(VectorTripCount && L && "Expected valid arguments");
3142   // We are going to resume the execution of the scalar loop.
3143   // Go over all of the induction variables that we found and fix the
3144   // PHIs that are left in the scalar version of the loop.
3145   // The starting values of PHI nodes depend on the counter of the last
3146   // iteration in the vectorized loop.
3147   // If we come from a bypass edge then we need to start from the original
3148   // start value.
3149   for (auto &InductionEntry : Legal->getInductionVars()) {
3150     PHINode *OrigPhi = InductionEntry.first;
3151     InductionDescriptor II = InductionEntry.second;
3152 
3153     // Create phi nodes to merge from the  backedge-taken check block.
3154     PHINode *BCResumeVal =
3155         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3156                         LoopScalarPreHeader->getTerminator());
3157     // Copy original phi DL over to the new one.
3158     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3159     Value *&EndValue = IVEndValues[OrigPhi];
3160     if (OrigPhi == OldInduction) {
3161       // We know what the end value is.
3162       EndValue = VectorTripCount;
3163     } else {
3164       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3165       Type *StepType = II.getStep()->getType();
3166       Instruction::CastOps CastOp =
3167           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3168       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3169       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3170       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3171       EndValue->setName("ind.end");
3172     }
3173 
3174     // The new PHI merges the original incoming value, in case of a bypass,
3175     // or the value at the end of the vectorized loop.
3176     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3177 
3178     // Fix the scalar body counter (PHI node).
3179     // The old induction's phi node in the scalar body needs the truncated
3180     // value.
3181     for (BasicBlock *BB : LoopBypassBlocks)
3182       BCResumeVal->addIncoming(II.getStartValue(), BB);
3183     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3184   }
3185 }
3186 
3187 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3188                                                       MDNode *OrigLoopID) {
3189   assert(L && "Expected valid loop.");
3190 
3191   // The trip counts should be cached by now.
3192   Value *Count = getOrCreateTripCount(L);
3193   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3194 
3195   // We need the OrigLoop (scalar loop part) latch terminator to help
3196   // produce correct debug info for the middle block BB instructions.
3197   // The legality check stage guarantees that the loop will have a single
3198   // latch.
3199   assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3200          "Scalar loop latch terminator isn't a branch");
3201   BranchInst *ScalarLatchBr =
3202       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3203 
3204   // Add a check in the middle block to see if we have completed
3205   // all of the iterations in the first vector loop.
3206   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3207   // If tail is to be folded, we know we don't need to run the remainder.
3208   Value *CmpN = Builder.getTrue();
3209   if (!Cost->foldTailByMasking()) {
3210     CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3211                            VectorTripCount, "cmp.n",
3212                            LoopMiddleBlock->getTerminator());
3213 
3214     // Here we use the same DebugLoc as the scalar loop latch branch instead
3215     // of the corresponding compare because they may have ended up with
3216     // different line numbers and we want to avoid awkward line stepping while
3217     // debugging. Eg. if the compare has got a line number inside the loop.
3218     cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3219   }
3220 
3221   BranchInst *BrInst =
3222       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3223   BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3224   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3225 
3226   // Get ready to start creating new instructions into the vectorized body.
3227   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3228          "Inconsistent vector loop preheader");
3229   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3230 
3231   Optional<MDNode *> VectorizedLoopID =
3232       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3233                                       LLVMLoopVectorizeFollowupVectorized});
3234   if (VectorizedLoopID.hasValue()) {
3235     L->setLoopID(VectorizedLoopID.getValue());
3236 
3237     // Do not setAlreadyVectorized if loop attributes have been defined
3238     // explicitly.
3239     return LoopVectorPreHeader;
3240   }
3241 
3242   // Keep all loop hints from the original loop on the vector loop (we'll
3243   // replace the vectorizer-specific hints below).
3244   if (MDNode *LID = OrigLoop->getLoopID())
3245     L->setLoopID(LID);
3246 
3247   LoopVectorizeHints Hints(L, true, *ORE);
3248   Hints.setAlreadyVectorized();
3249 
3250 #ifdef EXPENSIVE_CHECKS
3251   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3252   LI->verify(*DT);
3253 #endif
3254 
3255   return LoopVectorPreHeader;
3256 }
3257 
3258 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3259   /*
3260    In this function we generate a new loop. The new loop will contain
3261    the vectorized instructions while the old loop will continue to run the
3262    scalar remainder.
3263 
3264        [ ] <-- loop iteration number check.
3265     /   |
3266    /    v
3267   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3268   |  /  |
3269   | /   v
3270   ||   [ ]     <-- vector pre header.
3271   |/    |
3272   |     v
3273   |    [  ] \
3274   |    [  ]_|   <-- vector loop.
3275   |     |
3276   |     v
3277   |   -[ ]   <--- middle-block.
3278   |  /  |
3279   | /   v
3280   -|- >[ ]     <--- new preheader.
3281    |    |
3282    |    v
3283    |   [ ] \
3284    |   [ ]_|   <-- old scalar loop to handle remainder.
3285     \   |
3286      \  v
3287       >[ ]     <-- exit block.
3288    ...
3289    */
3290 
3291   // Get the metadata of the original loop before it gets modified.
3292   MDNode *OrigLoopID = OrigLoop->getLoopID();
3293 
3294   // Create an empty vector loop, and prepare basic blocks for the runtime
3295   // checks.
3296   Loop *Lp = createVectorLoopSkeleton("");
3297 
3298   // Now, compare the new count to zero. If it is zero skip the vector loop and
3299   // jump to the scalar loop. This check also covers the case where the
3300   // backedge-taken count is uint##_max: adding one to it will overflow leading
3301   // to an incorrect trip count of zero. In this (rare) case we will also jump
3302   // to the scalar loop.
3303   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3304 
3305   // Generate the code to check any assumptions that we've made for SCEV
3306   // expressions.
3307   emitSCEVChecks(Lp, LoopScalarPreHeader);
3308 
3309   // Generate the code that checks in runtime if arrays overlap. We put the
3310   // checks into a separate block to make the more common case of few elements
3311   // faster.
3312   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3313 
3314   // Some loops have a single integer induction variable, while other loops
3315   // don't. One example is c++ iterators that often have multiple pointer
3316   // induction variables. In the code below we also support a case where we
3317   // don't have a single induction variable.
3318   //
3319   // We try to obtain an induction variable from the original loop as hard
3320   // as possible. However if we don't find one that:
3321   //   - is an integer
3322   //   - counts from zero, stepping by one
3323   //   - is the size of the widest induction variable type
3324   // then we create a new one.
3325   OldInduction = Legal->getPrimaryInduction();
3326   Type *IdxTy = Legal->getWidestInductionType();
3327   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3328   // The loop step is equal to the vectorization factor (num of SIMD elements)
3329   // times the unroll factor (num of SIMD instructions).
3330   assert(!VF.isScalable() && "scalable vectors not yet supported.");
3331   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
3332   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3333   Induction =
3334       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3335                               getDebugLocFromInstOrOperands(OldInduction));
3336 
3337   // Emit phis for the new starting index of the scalar loop.
3338   createInductionResumeValues(Lp, CountRoundDown);
3339 
3340   return completeLoopSkeleton(Lp, OrigLoopID);
3341 }
3342 
3343 // Fix up external users of the induction variable. At this point, we are
3344 // in LCSSA form, with all external PHIs that use the IV having one input value,
3345 // coming from the remainder loop. We need those PHIs to also have a correct
3346 // value for the IV when arriving directly from the middle block.
3347 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3348                                        const InductionDescriptor &II,
3349                                        Value *CountRoundDown, Value *EndValue,
3350                                        BasicBlock *MiddleBlock) {
3351   // There are two kinds of external IV usages - those that use the value
3352   // computed in the last iteration (the PHI) and those that use the penultimate
3353   // value (the value that feeds into the phi from the loop latch).
3354   // We allow both, but they, obviously, have different values.
3355 
3356   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3357 
3358   DenseMap<Value *, Value *> MissingVals;
3359 
3360   // An external user of the last iteration's value should see the value that
3361   // the remainder loop uses to initialize its own IV.
3362   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3363   for (User *U : PostInc->users()) {
3364     Instruction *UI = cast<Instruction>(U);
3365     if (!OrigLoop->contains(UI)) {
3366       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3367       MissingVals[UI] = EndValue;
3368     }
3369   }
3370 
3371   // An external user of the penultimate value need to see EndValue - Step.
3372   // The simplest way to get this is to recompute it from the constituent SCEVs,
3373   // that is Start + (Step * (CRD - 1)).
3374   for (User *U : OrigPhi->users()) {
3375     auto *UI = cast<Instruction>(U);
3376     if (!OrigLoop->contains(UI)) {
3377       const DataLayout &DL =
3378           OrigLoop->getHeader()->getModule()->getDataLayout();
3379       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3380 
3381       IRBuilder<> B(MiddleBlock->getTerminator());
3382       Value *CountMinusOne = B.CreateSub(
3383           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3384       Value *CMO =
3385           !II.getStep()->getType()->isIntegerTy()
3386               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3387                              II.getStep()->getType())
3388               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3389       CMO->setName("cast.cmo");
3390       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3391       Escape->setName("ind.escape");
3392       MissingVals[UI] = Escape;
3393     }
3394   }
3395 
3396   for (auto &I : MissingVals) {
3397     PHINode *PHI = cast<PHINode>(I.first);
3398     // One corner case we have to handle is two IVs "chasing" each-other,
3399     // that is %IV2 = phi [...], [ %IV1, %latch ]
3400     // In this case, if IV1 has an external use, we need to avoid adding both
3401     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3402     // don't already have an incoming value for the middle block.
3403     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3404       PHI->addIncoming(I.second, MiddleBlock);
3405   }
3406 }
3407 
3408 namespace {
3409 
3410 struct CSEDenseMapInfo {
3411   static bool canHandle(const Instruction *I) {
3412     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3413            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3414   }
3415 
3416   static inline Instruction *getEmptyKey() {
3417     return DenseMapInfo<Instruction *>::getEmptyKey();
3418   }
3419 
3420   static inline Instruction *getTombstoneKey() {
3421     return DenseMapInfo<Instruction *>::getTombstoneKey();
3422   }
3423 
3424   static unsigned getHashValue(const Instruction *I) {
3425     assert(canHandle(I) && "Unknown instruction!");
3426     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3427                                                            I->value_op_end()));
3428   }
3429 
3430   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3431     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3432         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3433       return LHS == RHS;
3434     return LHS->isIdenticalTo(RHS);
3435   }
3436 };
3437 
3438 } // end anonymous namespace
3439 
3440 ///Perform cse of induction variable instructions.
3441 static void cse(BasicBlock *BB) {
3442   // Perform simple cse.
3443   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3444   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3445     Instruction *In = &*I++;
3446 
3447     if (!CSEDenseMapInfo::canHandle(In))
3448       continue;
3449 
3450     // Check if we can replace this instruction with any of the
3451     // visited instructions.
3452     if (Instruction *V = CSEMap.lookup(In)) {
3453       In->replaceAllUsesWith(V);
3454       In->eraseFromParent();
3455       continue;
3456     }
3457 
3458     CSEMap[In] = In;
3459   }
3460 }
3461 
3462 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3463                                                        ElementCount VF,
3464                                                        bool &NeedToScalarize) {
3465   assert(!VF.isScalable() && "scalable vectors not yet supported.");
3466   Function *F = CI->getCalledFunction();
3467   Type *ScalarRetTy = CI->getType();
3468   SmallVector<Type *, 4> Tys, ScalarTys;
3469   for (auto &ArgOp : CI->arg_operands())
3470     ScalarTys.push_back(ArgOp->getType());
3471 
3472   // Estimate cost of scalarized vector call. The source operands are assumed
3473   // to be vectors, so we need to extract individual elements from there,
3474   // execute VF scalar calls, and then gather the result into the vector return
3475   // value.
3476   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys,
3477                                                  TTI::TCK_RecipThroughput);
3478   if (VF.isScalar())
3479     return ScalarCallCost;
3480 
3481   // Compute corresponding vector type for return value and arguments.
3482   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3483   for (Type *ScalarTy : ScalarTys)
3484     Tys.push_back(ToVectorTy(ScalarTy, VF));
3485 
3486   // Compute costs of unpacking argument values for the scalar calls and
3487   // packing the return values to a vector.
3488   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3489 
3490   unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3491 
3492   // If we can't emit a vector call for this function, then the currently found
3493   // cost is the cost we need to return.
3494   NeedToScalarize = true;
3495   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3496   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3497 
3498   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3499     return Cost;
3500 
3501   // If the corresponding vector cost is cheaper, return its cost.
3502   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys,
3503                                                  TTI::TCK_RecipThroughput);
3504   if (VectorCallCost < Cost) {
3505     NeedToScalarize = false;
3506     return VectorCallCost;
3507   }
3508   return Cost;
3509 }
3510 
3511 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3512                                                             ElementCount VF) {
3513   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3514   assert(ID && "Expected intrinsic call!");
3515 
3516   IntrinsicCostAttributes CostAttrs(ID, *CI, VF);
3517   return TTI.getIntrinsicInstrCost(CostAttrs,
3518                                    TargetTransformInfo::TCK_RecipThroughput);
3519 }
3520 
3521 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3522   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3523   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3524   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3525 }
3526 
3527 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3528   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3529   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3530   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3531 }
3532 
3533 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3534   // For every instruction `I` in MinBWs, truncate the operands, create a
3535   // truncated version of `I` and reextend its result. InstCombine runs
3536   // later and will remove any ext/trunc pairs.
3537   SmallPtrSet<Value *, 4> Erased;
3538   for (const auto &KV : Cost->getMinimalBitwidths()) {
3539     // If the value wasn't vectorized, we must maintain the original scalar
3540     // type. The absence of the value from VectorLoopValueMap indicates that it
3541     // wasn't vectorized.
3542     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3543       continue;
3544     for (unsigned Part = 0; Part < UF; ++Part) {
3545       Value *I = getOrCreateVectorValue(KV.first, Part);
3546       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3547         continue;
3548       Type *OriginalTy = I->getType();
3549       Type *ScalarTruncatedTy =
3550           IntegerType::get(OriginalTy->getContext(), KV.second);
3551       auto *TruncatedTy = FixedVectorType::get(
3552           ScalarTruncatedTy,
3553           cast<FixedVectorType>(OriginalTy)->getNumElements());
3554       if (TruncatedTy == OriginalTy)
3555         continue;
3556 
3557       IRBuilder<> B(cast<Instruction>(I));
3558       auto ShrinkOperand = [&](Value *V) -> Value * {
3559         if (auto *ZI = dyn_cast<ZExtInst>(V))
3560           if (ZI->getSrcTy() == TruncatedTy)
3561             return ZI->getOperand(0);
3562         return B.CreateZExtOrTrunc(V, TruncatedTy);
3563       };
3564 
3565       // The actual instruction modification depends on the instruction type,
3566       // unfortunately.
3567       Value *NewI = nullptr;
3568       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3569         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3570                              ShrinkOperand(BO->getOperand(1)));
3571 
3572         // Any wrapping introduced by shrinking this operation shouldn't be
3573         // considered undefined behavior. So, we can't unconditionally copy
3574         // arithmetic wrapping flags to NewI.
3575         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3576       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3577         NewI =
3578             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3579                          ShrinkOperand(CI->getOperand(1)));
3580       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3581         NewI = B.CreateSelect(SI->getCondition(),
3582                               ShrinkOperand(SI->getTrueValue()),
3583                               ShrinkOperand(SI->getFalseValue()));
3584       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3585         switch (CI->getOpcode()) {
3586         default:
3587           llvm_unreachable("Unhandled cast!");
3588         case Instruction::Trunc:
3589           NewI = ShrinkOperand(CI->getOperand(0));
3590           break;
3591         case Instruction::SExt:
3592           NewI = B.CreateSExtOrTrunc(
3593               CI->getOperand(0),
3594               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3595           break;
3596         case Instruction::ZExt:
3597           NewI = B.CreateZExtOrTrunc(
3598               CI->getOperand(0),
3599               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3600           break;
3601         }
3602       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3603         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3604                              ->getNumElements();
3605         auto *O0 = B.CreateZExtOrTrunc(
3606             SI->getOperand(0),
3607             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3608         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3609                              ->getNumElements();
3610         auto *O1 = B.CreateZExtOrTrunc(
3611             SI->getOperand(1),
3612             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3613 
3614         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3615       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3616         // Don't do anything with the operands, just extend the result.
3617         continue;
3618       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3619         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
3620                             ->getNumElements();
3621         auto *O0 = B.CreateZExtOrTrunc(
3622             IE->getOperand(0),
3623             FixedVectorType::get(ScalarTruncatedTy, Elements));
3624         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3625         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3626       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3627         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
3628                             ->getNumElements();
3629         auto *O0 = B.CreateZExtOrTrunc(
3630             EE->getOperand(0),
3631             FixedVectorType::get(ScalarTruncatedTy, Elements));
3632         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3633       } else {
3634         // If we don't know what to do, be conservative and don't do anything.
3635         continue;
3636       }
3637 
3638       // Lastly, extend the result.
3639       NewI->takeName(cast<Instruction>(I));
3640       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3641       I->replaceAllUsesWith(Res);
3642       cast<Instruction>(I)->eraseFromParent();
3643       Erased.insert(I);
3644       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3645     }
3646   }
3647 
3648   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3649   for (const auto &KV : Cost->getMinimalBitwidths()) {
3650     // If the value wasn't vectorized, we must maintain the original scalar
3651     // type. The absence of the value from VectorLoopValueMap indicates that it
3652     // wasn't vectorized.
3653     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3654       continue;
3655     for (unsigned Part = 0; Part < UF; ++Part) {
3656       Value *I = getOrCreateVectorValue(KV.first, Part);
3657       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3658       if (Inst && Inst->use_empty()) {
3659         Value *NewI = Inst->getOperand(0);
3660         Inst->eraseFromParent();
3661         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3662       }
3663     }
3664   }
3665 }
3666 
3667 void InnerLoopVectorizer::fixVectorizedLoop() {
3668   // Insert truncates and extends for any truncated instructions as hints to
3669   // InstCombine.
3670   if (VF.isVector())
3671     truncateToMinimalBitwidths();
3672 
3673   // Fix widened non-induction PHIs by setting up the PHI operands.
3674   if (OrigPHIsToFix.size()) {
3675     assert(EnableVPlanNativePath &&
3676            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3677     fixNonInductionPHIs();
3678   }
3679 
3680   // At this point every instruction in the original loop is widened to a
3681   // vector form. Now we need to fix the recurrences in the loop. These PHI
3682   // nodes are currently empty because we did not want to introduce cycles.
3683   // This is the second stage of vectorizing recurrences.
3684   fixCrossIterationPHIs();
3685 
3686   // Forget the original basic block.
3687   PSE.getSE()->forgetLoop(OrigLoop);
3688 
3689   // Fix-up external users of the induction variables.
3690   for (auto &Entry : Legal->getInductionVars())
3691     fixupIVUsers(Entry.first, Entry.second,
3692                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3693                  IVEndValues[Entry.first], LoopMiddleBlock);
3694 
3695   fixLCSSAPHIs();
3696   for (Instruction *PI : PredicatedInstructions)
3697     sinkScalarOperands(&*PI);
3698 
3699   // Remove redundant induction instructions.
3700   cse(LoopVectorBody);
3701 
3702   // Set/update profile weights for the vector and remainder loops as original
3703   // loop iterations are now distributed among them. Note that original loop
3704   // represented by LoopScalarBody becomes remainder loop after vectorization.
3705   //
3706   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3707   // end up getting slightly roughened result but that should be OK since
3708   // profile is not inherently precise anyway. Note also possible bypass of
3709   // vector code caused by legality checks is ignored, assigning all the weight
3710   // to the vector loop, optimistically.
3711   assert(!VF.isScalable() &&
3712          "cannot use scalable ElementCount to determine unroll factor");
3713   setProfileInfoAfterUnrolling(
3714       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
3715       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
3716 }
3717 
3718 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3719   // In order to support recurrences we need to be able to vectorize Phi nodes.
3720   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3721   // stage #2: We now need to fix the recurrences by adding incoming edges to
3722   // the currently empty PHI nodes. At this point every instruction in the
3723   // original loop is widened to a vector form so we can use them to construct
3724   // the incoming edges.
3725   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3726     // Handle first-order recurrences and reductions that need to be fixed.
3727     if (Legal->isFirstOrderRecurrence(&Phi))
3728       fixFirstOrderRecurrence(&Phi);
3729     else if (Legal->isReductionVariable(&Phi))
3730       fixReduction(&Phi);
3731   }
3732 }
3733 
3734 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3735   // This is the second phase of vectorizing first-order recurrences. An
3736   // overview of the transformation is described below. Suppose we have the
3737   // following loop.
3738   //
3739   //   for (int i = 0; i < n; ++i)
3740   //     b[i] = a[i] - a[i - 1];
3741   //
3742   // There is a first-order recurrence on "a". For this loop, the shorthand
3743   // scalar IR looks like:
3744   //
3745   //   scalar.ph:
3746   //     s_init = a[-1]
3747   //     br scalar.body
3748   //
3749   //   scalar.body:
3750   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3751   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3752   //     s2 = a[i]
3753   //     b[i] = s2 - s1
3754   //     br cond, scalar.body, ...
3755   //
3756   // In this example, s1 is a recurrence because it's value depends on the
3757   // previous iteration. In the first phase of vectorization, we created a
3758   // temporary value for s1. We now complete the vectorization and produce the
3759   // shorthand vector IR shown below (for VF = 4, UF = 1).
3760   //
3761   //   vector.ph:
3762   //     v_init = vector(..., ..., ..., a[-1])
3763   //     br vector.body
3764   //
3765   //   vector.body
3766   //     i = phi [0, vector.ph], [i+4, vector.body]
3767   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3768   //     v2 = a[i, i+1, i+2, i+3];
3769   //     v3 = vector(v1(3), v2(0, 1, 2))
3770   //     b[i, i+1, i+2, i+3] = v2 - v3
3771   //     br cond, vector.body, middle.block
3772   //
3773   //   middle.block:
3774   //     x = v2(3)
3775   //     br scalar.ph
3776   //
3777   //   scalar.ph:
3778   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3779   //     br scalar.body
3780   //
3781   // After execution completes the vector loop, we extract the next value of
3782   // the recurrence (x) to use as the initial value in the scalar loop.
3783 
3784   // Get the original loop preheader and single loop latch.
3785   auto *Preheader = OrigLoop->getLoopPreheader();
3786   auto *Latch = OrigLoop->getLoopLatch();
3787 
3788   // Get the initial and previous values of the scalar recurrence.
3789   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3790   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3791 
3792   // Create a vector from the initial value.
3793   auto *VectorInit = ScalarInit;
3794   if (VF.isVector()) {
3795     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3796     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
3797     VectorInit = Builder.CreateInsertElement(
3798         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3799         Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init");
3800   }
3801 
3802   // We constructed a temporary phi node in the first phase of vectorization.
3803   // This phi node will eventually be deleted.
3804   Builder.SetInsertPoint(
3805       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3806 
3807   // Create a phi node for the new recurrence. The current value will either be
3808   // the initial value inserted into a vector or loop-varying vector value.
3809   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3810   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3811 
3812   // Get the vectorized previous value of the last part UF - 1. It appears last
3813   // among all unrolled iterations, due to the order of their construction.
3814   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3815 
3816   // Find and set the insertion point after the previous value if it is an
3817   // instruction.
3818   BasicBlock::iterator InsertPt;
3819   // Note that the previous value may have been constant-folded so it is not
3820   // guaranteed to be an instruction in the vector loop.
3821   // FIXME: Loop invariant values do not form recurrences. We should deal with
3822   //        them earlier.
3823   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3824     InsertPt = LoopVectorBody->getFirstInsertionPt();
3825   else {
3826     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3827     if (isa<PHINode>(PreviousLastPart))
3828       // If the previous value is a phi node, we should insert after all the phi
3829       // nodes in the block containing the PHI to avoid breaking basic block
3830       // verification. Note that the basic block may be different to
3831       // LoopVectorBody, in case we predicate the loop.
3832       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3833     else
3834       InsertPt = ++PreviousInst->getIterator();
3835   }
3836   Builder.SetInsertPoint(&*InsertPt);
3837 
3838   // We will construct a vector for the recurrence by combining the values for
3839   // the current and previous iterations. This is the required shuffle mask.
3840   assert(!VF.isScalable());
3841   SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue());
3842   ShuffleMask[0] = VF.getKnownMinValue() - 1;
3843   for (unsigned I = 1; I < VF.getKnownMinValue(); ++I)
3844     ShuffleMask[I] = I + VF.getKnownMinValue() - 1;
3845 
3846   // The vector from which to take the initial value for the current iteration
3847   // (actual or unrolled). Initially, this is the vector phi node.
3848   Value *Incoming = VecPhi;
3849 
3850   // Shuffle the current and previous vector and update the vector parts.
3851   for (unsigned Part = 0; Part < UF; ++Part) {
3852     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3853     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3854     auto *Shuffle =
3855         VF.isVector()
3856             ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask)
3857             : Incoming;
3858     PhiPart->replaceAllUsesWith(Shuffle);
3859     cast<Instruction>(PhiPart)->eraseFromParent();
3860     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3861     Incoming = PreviousPart;
3862   }
3863 
3864   // Fix the latch value of the new recurrence in the vector loop.
3865   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3866 
3867   // Extract the last vector element in the middle block. This will be the
3868   // initial value for the recurrence when jumping to the scalar loop.
3869   auto *ExtractForScalar = Incoming;
3870   if (VF.isVector()) {
3871     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3872     ExtractForScalar = Builder.CreateExtractElement(
3873         ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1),
3874         "vector.recur.extract");
3875   }
3876   // Extract the second last element in the middle block if the
3877   // Phi is used outside the loop. We need to extract the phi itself
3878   // and not the last element (the phi update in the current iteration). This
3879   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3880   // when the scalar loop is not run at all.
3881   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3882   if (VF.isVector())
3883     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3884         Incoming, Builder.getInt32(VF.getKnownMinValue() - 2),
3885         "vector.recur.extract.for.phi");
3886   // When loop is unrolled without vectorizing, initialize
3887   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3888   // `Incoming`. This is analogous to the vectorized case above: extracting the
3889   // second last element when VF > 1.
3890   else if (UF > 1)
3891     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3892 
3893   // Fix the initial value of the original recurrence in the scalar loop.
3894   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3895   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3896   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3897     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3898     Start->addIncoming(Incoming, BB);
3899   }
3900 
3901   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3902   Phi->setName("scalar.recur");
3903 
3904   // Finally, fix users of the recurrence outside the loop. The users will need
3905   // either the last value of the scalar recurrence or the last value of the
3906   // vector recurrence we extracted in the middle block. Since the loop is in
3907   // LCSSA form, we just need to find all the phi nodes for the original scalar
3908   // recurrence in the exit block, and then add an edge for the middle block.
3909   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3910     if (LCSSAPhi.getIncomingValue(0) == Phi) {
3911       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3912     }
3913   }
3914 }
3915 
3916 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3917   Constant *Zero = Builder.getInt32(0);
3918 
3919   // Get it's reduction variable descriptor.
3920   assert(Legal->isReductionVariable(Phi) &&
3921          "Unable to find the reduction variable");
3922   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
3923 
3924   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3925   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3926   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3927   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3928     RdxDesc.getMinMaxRecurrenceKind();
3929   setDebugLocFromInst(Builder, ReductionStartValue);
3930   bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi);
3931 
3932   // We need to generate a reduction vector from the incoming scalar.
3933   // To do so, we need to generate the 'identity' vector and override
3934   // one of the elements with the incoming scalar reduction. We need
3935   // to do it in the vector-loop preheader.
3936   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3937 
3938   // This is the vector-clone of the value that leaves the loop.
3939   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3940 
3941   // Find the reduction identity variable. Zero for addition, or, xor,
3942   // one for multiplication, -1 for And.
3943   Value *Identity;
3944   Value *VectorStart;
3945   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3946       RK == RecurrenceDescriptor::RK_FloatMinMax) {
3947     // MinMax reduction have the start value as their identify.
3948     if (VF.isScalar() || IsInLoopReductionPhi) {
3949       VectorStart = Identity = ReductionStartValue;
3950     } else {
3951       VectorStart = Identity =
3952         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3953     }
3954   } else {
3955     // Handle other reduction kinds:
3956     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3957         RK, MinMaxKind, VecTy->getScalarType());
3958     if (VF.isScalar() || IsInLoopReductionPhi) {
3959       Identity = Iden;
3960       // This vector is the Identity vector where the first element is the
3961       // incoming scalar reduction.
3962       VectorStart = ReductionStartValue;
3963     } else {
3964       Identity = ConstantVector::getSplat(VF, Iden);
3965 
3966       // This vector is the Identity vector where the first element is the
3967       // incoming scalar reduction.
3968       VectorStart =
3969         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3970     }
3971   }
3972 
3973   // Wrap flags are in general invalid after vectorization, clear them.
3974   clearReductionWrapFlags(RdxDesc);
3975 
3976   // Fix the vector-loop phi.
3977 
3978   // Reductions do not have to start at zero. They can start with
3979   // any loop invariant values.
3980   BasicBlock *Latch = OrigLoop->getLoopLatch();
3981   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3982 
3983   for (unsigned Part = 0; Part < UF; ++Part) {
3984     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3985     Value *Val = getOrCreateVectorValue(LoopVal, Part);
3986     // Make sure to add the reduction start value only to the
3987     // first unroll part.
3988     Value *StartVal = (Part == 0) ? VectorStart : Identity;
3989     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3990     cast<PHINode>(VecRdxPhi)
3991       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3992   }
3993 
3994   // Before each round, move the insertion point right between
3995   // the PHIs and the values we are going to write.
3996   // This allows us to write both PHINodes and the extractelement
3997   // instructions.
3998   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3999 
4000   setDebugLocFromInst(Builder, LoopExitInst);
4001 
4002   // If tail is folded by masking, the vector value to leave the loop should be
4003   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4004   // instead of the former. For an inloop reduction the reduction will already
4005   // be predicated, and does not need to be handled here.
4006   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4007     for (unsigned Part = 0; Part < UF; ++Part) {
4008       Value *VecLoopExitInst =
4009           VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4010       Value *Sel = nullptr;
4011       for (User *U : VecLoopExitInst->users()) {
4012         if (isa<SelectInst>(U)) {
4013           assert(!Sel && "Reduction exit feeding two selects");
4014           Sel = U;
4015         } else
4016           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4017       }
4018       assert(Sel && "Reduction exit feeds no select");
4019       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
4020 
4021       // If the target can create a predicated operator for the reduction at no
4022       // extra cost in the loop (for example a predicated vadd), it can be
4023       // cheaper for the select to remain in the loop than be sunk out of it,
4024       // and so use the select value for the phi instead of the old
4025       // LoopExitValue.
4026       RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
4027       if (PreferPredicatedReductionSelect ||
4028           TTI->preferPredicatedReductionSelect(
4029               RdxDesc.getRecurrenceBinOp(), Phi->getType(),
4030               TargetTransformInfo::ReductionFlags())) {
4031         auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part));
4032         VecRdxPhi->setIncomingValueForBlock(
4033             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4034       }
4035     }
4036   }
4037 
4038   // If the vector reduction can be performed in a smaller type, we truncate
4039   // then extend the loop exit value to enable InstCombine to evaluate the
4040   // entire expression in the smaller type.
4041   if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) {
4042     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4043     assert(!VF.isScalable() && "scalable vectors not yet supported.");
4044     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4045     Builder.SetInsertPoint(
4046         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4047     VectorParts RdxParts(UF);
4048     for (unsigned Part = 0; Part < UF; ++Part) {
4049       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4050       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4051       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4052                                         : Builder.CreateZExt(Trunc, VecTy);
4053       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4054            UI != RdxParts[Part]->user_end();)
4055         if (*UI != Trunc) {
4056           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4057           RdxParts[Part] = Extnd;
4058         } else {
4059           ++UI;
4060         }
4061     }
4062     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4063     for (unsigned Part = 0; Part < UF; ++Part) {
4064       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4065       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
4066     }
4067   }
4068 
4069   // Reduce all of the unrolled parts into a single vector.
4070   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
4071   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
4072 
4073   // The middle block terminator has already been assigned a DebugLoc here (the
4074   // OrigLoop's single latch terminator). We want the whole middle block to
4075   // appear to execute on this line because: (a) it is all compiler generated,
4076   // (b) these instructions are always executed after evaluating the latch
4077   // conditional branch, and (c) other passes may add new predecessors which
4078   // terminate on this line. This is the easiest way to ensure we don't
4079   // accidentally cause an extra step back into the loop while debugging.
4080   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4081   for (unsigned Part = 1; Part < UF; ++Part) {
4082     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4083     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
4084       // Floating point operations had to be 'fast' to enable the reduction.
4085       ReducedPartRdx = addFastMathFlag(
4086           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
4087                               ReducedPartRdx, "bin.rdx"),
4088           RdxDesc.getFastMathFlags());
4089     else
4090       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
4091                                       RdxPart);
4092   }
4093 
4094   // Create the reduction after the loop. Note that inloop reductions create the
4095   // target reduction in the loop using a Reduction recipe.
4096   if (VF.isVector() && !IsInLoopReductionPhi) {
4097     bool NoNaN = Legal->hasFunNoNaNAttr();
4098     ReducedPartRdx =
4099         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
4100     // If the reduction can be performed in a smaller type, we need to extend
4101     // the reduction to the wider type before we branch to the original loop.
4102     if (Phi->getType() != RdxDesc.getRecurrenceType())
4103       ReducedPartRdx =
4104         RdxDesc.isSigned()
4105         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
4106         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
4107   }
4108 
4109   // Create a phi node that merges control-flow from the backedge-taken check
4110   // block and the middle block.
4111   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
4112                                         LoopScalarPreHeader->getTerminator());
4113   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4114     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4115   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4116 
4117   // Now, we need to fix the users of the reduction variable
4118   // inside and outside of the scalar remainder loop.
4119   // We know that the loop is in LCSSA form. We need to update the
4120   // PHI nodes in the exit blocks.
4121   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4122     // All PHINodes need to have a single entry edge, or two if
4123     // we already fixed them.
4124     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
4125 
4126     // We found a reduction value exit-PHI. Update it with the
4127     // incoming bypass edge.
4128     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
4129       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4130   } // end of the LCSSA phi scan.
4131 
4132     // Fix the scalar loop reduction variable with the incoming reduction sum
4133     // from the vector body and from the backedge value.
4134   int IncomingEdgeBlockIdx =
4135     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4136   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4137   // Pick the other block.
4138   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4139   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4140   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4141 }
4142 
4143 void InnerLoopVectorizer::clearReductionWrapFlags(
4144     RecurrenceDescriptor &RdxDesc) {
4145   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
4146   if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
4147       RK != RecurrenceDescriptor::RK_IntegerMult)
4148     return;
4149 
4150   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4151   assert(LoopExitInstr && "null loop exit instruction");
4152   SmallVector<Instruction *, 8> Worklist;
4153   SmallPtrSet<Instruction *, 8> Visited;
4154   Worklist.push_back(LoopExitInstr);
4155   Visited.insert(LoopExitInstr);
4156 
4157   while (!Worklist.empty()) {
4158     Instruction *Cur = Worklist.pop_back_val();
4159     if (isa<OverflowingBinaryOperator>(Cur))
4160       for (unsigned Part = 0; Part < UF; ++Part) {
4161         Value *V = getOrCreateVectorValue(Cur, Part);
4162         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4163       }
4164 
4165     for (User *U : Cur->users()) {
4166       Instruction *UI = cast<Instruction>(U);
4167       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4168           Visited.insert(UI).second)
4169         Worklist.push_back(UI);
4170     }
4171   }
4172 }
4173 
4174 void InnerLoopVectorizer::fixLCSSAPHIs() {
4175   assert(!VF.isScalable() && "the code below assumes fixed width vectors");
4176   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4177     if (LCSSAPhi.getNumIncomingValues() == 1) {
4178       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4179       // Non-instruction incoming values will have only one value.
4180       unsigned LastLane = 0;
4181       if (isa<Instruction>(IncomingValue))
4182         LastLane = Cost->isUniformAfterVectorization(
4183                        cast<Instruction>(IncomingValue), VF)
4184                        ? 0
4185                        : VF.getKnownMinValue() - 1;
4186       // Can be a loop invariant incoming value or the last scalar value to be
4187       // extracted from the vectorized loop.
4188       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4189       Value *lastIncomingValue =
4190           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
4191       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4192     }
4193   }
4194 }
4195 
4196 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4197   // The basic block and loop containing the predicated instruction.
4198   auto *PredBB = PredInst->getParent();
4199   auto *VectorLoop = LI->getLoopFor(PredBB);
4200 
4201   // Initialize a worklist with the operands of the predicated instruction.
4202   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4203 
4204   // Holds instructions that we need to analyze again. An instruction may be
4205   // reanalyzed if we don't yet know if we can sink it or not.
4206   SmallVector<Instruction *, 8> InstsToReanalyze;
4207 
4208   // Returns true if a given use occurs in the predicated block. Phi nodes use
4209   // their operands in their corresponding predecessor blocks.
4210   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4211     auto *I = cast<Instruction>(U.getUser());
4212     BasicBlock *BB = I->getParent();
4213     if (auto *Phi = dyn_cast<PHINode>(I))
4214       BB = Phi->getIncomingBlock(
4215           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4216     return BB == PredBB;
4217   };
4218 
4219   // Iteratively sink the scalarized operands of the predicated instruction
4220   // into the block we created for it. When an instruction is sunk, it's
4221   // operands are then added to the worklist. The algorithm ends after one pass
4222   // through the worklist doesn't sink a single instruction.
4223   bool Changed;
4224   do {
4225     // Add the instructions that need to be reanalyzed to the worklist, and
4226     // reset the changed indicator.
4227     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4228     InstsToReanalyze.clear();
4229     Changed = false;
4230 
4231     while (!Worklist.empty()) {
4232       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4233 
4234       // We can't sink an instruction if it is a phi node, is already in the
4235       // predicated block, is not in the loop, or may have side effects.
4236       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4237           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4238         continue;
4239 
4240       // It's legal to sink the instruction if all its uses occur in the
4241       // predicated block. Otherwise, there's nothing to do yet, and we may
4242       // need to reanalyze the instruction.
4243       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4244         InstsToReanalyze.push_back(I);
4245         continue;
4246       }
4247 
4248       // Move the instruction to the beginning of the predicated block, and add
4249       // it's operands to the worklist.
4250       I->moveBefore(&*PredBB->getFirstInsertionPt());
4251       Worklist.insert(I->op_begin(), I->op_end());
4252 
4253       // The sinking may have enabled other instructions to be sunk, so we will
4254       // need to iterate.
4255       Changed = true;
4256     }
4257   } while (Changed);
4258 }
4259 
4260 void InnerLoopVectorizer::fixNonInductionPHIs() {
4261   for (PHINode *OrigPhi : OrigPHIsToFix) {
4262     PHINode *NewPhi =
4263         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4264     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4265 
4266     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4267         predecessors(OrigPhi->getParent()));
4268     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4269         predecessors(NewPhi->getParent()));
4270     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4271            "Scalar and Vector BB should have the same number of predecessors");
4272 
4273     // The insertion point in Builder may be invalidated by the time we get
4274     // here. Force the Builder insertion point to something valid so that we do
4275     // not run into issues during insertion point restore in
4276     // getOrCreateVectorValue calls below.
4277     Builder.SetInsertPoint(NewPhi);
4278 
4279     // The predecessor order is preserved and we can rely on mapping between
4280     // scalar and vector block predecessors.
4281     for (unsigned i = 0; i < NumIncomingValues; ++i) {
4282       BasicBlock *NewPredBB = VectorBBPredecessors[i];
4283 
4284       // When looking up the new scalar/vector values to fix up, use incoming
4285       // values from original phi.
4286       Value *ScIncV =
4287           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4288 
4289       // Scalar incoming value may need a broadcast
4290       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4291       NewPhi->addIncoming(NewIncV, NewPredBB);
4292     }
4293   }
4294 }
4295 
4296 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4297                                    VPUser &Operands, unsigned UF,
4298                                    ElementCount VF, bool IsPtrLoopInvariant,
4299                                    SmallBitVector &IsIndexLoopInvariant,
4300                                    VPTransformState &State) {
4301   // Construct a vector GEP by widening the operands of the scalar GEP as
4302   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4303   // results in a vector of pointers when at least one operand of the GEP
4304   // is vector-typed. Thus, to keep the representation compact, we only use
4305   // vector-typed operands for loop-varying values.
4306 
4307   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4308     // If we are vectorizing, but the GEP has only loop-invariant operands,
4309     // the GEP we build (by only using vector-typed operands for
4310     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4311     // produce a vector of pointers, we need to either arbitrarily pick an
4312     // operand to broadcast, or broadcast a clone of the original GEP.
4313     // Here, we broadcast a clone of the original.
4314     //
4315     // TODO: If at some point we decide to scalarize instructions having
4316     //       loop-invariant operands, this special case will no longer be
4317     //       required. We would add the scalarization decision to
4318     //       collectLoopScalars() and teach getVectorValue() to broadcast
4319     //       the lane-zero scalar value.
4320     auto *Clone = Builder.Insert(GEP->clone());
4321     for (unsigned Part = 0; Part < UF; ++Part) {
4322       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4323       VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4324       addMetadata(EntryPart, GEP);
4325     }
4326   } else {
4327     // If the GEP has at least one loop-varying operand, we are sure to
4328     // produce a vector of pointers. But if we are only unrolling, we want
4329     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4330     // produce with the code below will be scalar (if VF == 1) or vector
4331     // (otherwise). Note that for the unroll-only case, we still maintain
4332     // values in the vector mapping with initVector, as we do for other
4333     // instructions.
4334     for (unsigned Part = 0; Part < UF; ++Part) {
4335       // The pointer operand of the new GEP. If it's loop-invariant, we
4336       // won't broadcast it.
4337       auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0})
4338                                      : State.get(Operands.getOperand(0), Part);
4339 
4340       // Collect all the indices for the new GEP. If any index is
4341       // loop-invariant, we won't broadcast it.
4342       SmallVector<Value *, 4> Indices;
4343       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4344         VPValue *Operand = Operands.getOperand(I);
4345         if (IsIndexLoopInvariant[I - 1])
4346           Indices.push_back(State.get(Operand, {0, 0}));
4347         else
4348           Indices.push_back(State.get(Operand, Part));
4349       }
4350 
4351       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4352       // but it should be a vector, otherwise.
4353       auto *NewGEP =
4354           GEP->isInBounds()
4355               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4356                                           Indices)
4357               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4358       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4359              "NewGEP is not a pointer vector");
4360       VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4361       addMetadata(NewGEP, GEP);
4362     }
4363   }
4364 }
4365 
4366 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4367                                               ElementCount VF) {
4368   assert(!VF.isScalable() && "scalable vectors not yet supported.");
4369   PHINode *P = cast<PHINode>(PN);
4370   if (EnableVPlanNativePath) {
4371     // Currently we enter here in the VPlan-native path for non-induction
4372     // PHIs where all control flow is uniform. We simply widen these PHIs.
4373     // Create a vector phi with no operands - the vector phi operands will be
4374     // set at the end of vector code generation.
4375     Type *VecTy =
4376         (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF);
4377     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4378     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4379     OrigPHIsToFix.push_back(P);
4380 
4381     return;
4382   }
4383 
4384   assert(PN->getParent() == OrigLoop->getHeader() &&
4385          "Non-header phis should have been handled elsewhere");
4386 
4387   // In order to support recurrences we need to be able to vectorize Phi nodes.
4388   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4389   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4390   // this value when we vectorize all of the instructions that use the PHI.
4391   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4392     for (unsigned Part = 0; Part < UF; ++Part) {
4393       // This is phase one of vectorizing PHIs.
4394       bool ScalarPHI =
4395           (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4396       Type *VecTy =
4397           ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF);
4398       Value *EntryPart = PHINode::Create(
4399           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4400       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4401     }
4402     return;
4403   }
4404 
4405   setDebugLocFromInst(Builder, P);
4406 
4407   // This PHINode must be an induction variable.
4408   // Make sure that we know about it.
4409   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4410 
4411   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4412   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4413 
4414   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4415   // which can be found from the original scalar operations.
4416   switch (II.getKind()) {
4417   case InductionDescriptor::IK_NoInduction:
4418     llvm_unreachable("Unknown induction");
4419   case InductionDescriptor::IK_IntInduction:
4420   case InductionDescriptor::IK_FpInduction:
4421     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4422   case InductionDescriptor::IK_PtrInduction: {
4423     // Handle the pointer induction variable case.
4424     assert(P->getType()->isPointerTy() && "Unexpected type.");
4425 
4426     if (Cost->isScalarAfterVectorization(P, VF)) {
4427       // This is the normalized GEP that starts counting at zero.
4428       Value *PtrInd =
4429           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4430       // Determine the number of scalars we need to generate for each unroll
4431       // iteration. If the instruction is uniform, we only need to generate the
4432       // first lane. Otherwise, we generate all VF values.
4433       unsigned Lanes =
4434           Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue();
4435       for (unsigned Part = 0; Part < UF; ++Part) {
4436         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4437           Constant *Idx = ConstantInt::get(PtrInd->getType(),
4438                                            Lane + Part * VF.getKnownMinValue());
4439           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4440           Value *SclrGep =
4441               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4442           SclrGep->setName("next.gep");
4443           VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4444         }
4445       }
4446       return;
4447     }
4448     assert(isa<SCEVConstant>(II.getStep()) &&
4449            "Induction step not a SCEV constant!");
4450     Type *PhiType = II.getStep()->getType();
4451 
4452     // Build a pointer phi
4453     Value *ScalarStartValue = II.getStartValue();
4454     Type *ScStValueType = ScalarStartValue->getType();
4455     PHINode *NewPointerPhi =
4456         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4457     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4458 
4459     // A pointer induction, performed by using a gep
4460     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4461     Instruction *InductionLoc = LoopLatch->getTerminator();
4462     const SCEV *ScalarStep = II.getStep();
4463     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4464     Value *ScalarStepValue =
4465         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4466     Value *InductionGEP = GetElementPtrInst::Create(
4467         ScStValueType->getPointerElementType(), NewPointerPhi,
4468         Builder.CreateMul(
4469             ScalarStepValue,
4470             ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)),
4471         "ptr.ind", InductionLoc);
4472     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4473 
4474     // Create UF many actual address geps that use the pointer
4475     // phi as base and a vectorized version of the step value
4476     // (<step*0, ..., step*N>) as offset.
4477     for (unsigned Part = 0; Part < UF; ++Part) {
4478       SmallVector<Constant *, 8> Indices;
4479       // Create a vector of consecutive numbers from zero to VF.
4480       for (unsigned i = 0; i < VF.getKnownMinValue(); ++i)
4481         Indices.push_back(
4482             ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue()));
4483       Constant *StartOffset = ConstantVector::get(Indices);
4484 
4485       Value *GEP = Builder.CreateGEP(
4486           ScStValueType->getPointerElementType(), NewPointerPhi,
4487           Builder.CreateMul(
4488               StartOffset,
4489               Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue),
4490               "vector.gep"));
4491       VectorLoopValueMap.setVectorValue(P, Part, GEP);
4492     }
4493   }
4494   }
4495 }
4496 
4497 /// A helper function for checking whether an integer division-related
4498 /// instruction may divide by zero (in which case it must be predicated if
4499 /// executed conditionally in the scalar code).
4500 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4501 /// Non-zero divisors that are non compile-time constants will not be
4502 /// converted into multiplication, so we will still end up scalarizing
4503 /// the division, but can do so w/o predication.
4504 static bool mayDivideByZero(Instruction &I) {
4505   assert((I.getOpcode() == Instruction::UDiv ||
4506           I.getOpcode() == Instruction::SDiv ||
4507           I.getOpcode() == Instruction::URem ||
4508           I.getOpcode() == Instruction::SRem) &&
4509          "Unexpected instruction");
4510   Value *Divisor = I.getOperand(1);
4511   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4512   return !CInt || CInt->isZero();
4513 }
4514 
4515 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4516                                            VPUser &User,
4517                                            VPTransformState &State) {
4518   assert(!VF.isScalable() && "scalable vectors not yet supported.");
4519   switch (I.getOpcode()) {
4520   case Instruction::Call:
4521   case Instruction::Br:
4522   case Instruction::PHI:
4523   case Instruction::GetElementPtr:
4524   case Instruction::Select:
4525     llvm_unreachable("This instruction is handled by a different recipe.");
4526   case Instruction::UDiv:
4527   case Instruction::SDiv:
4528   case Instruction::SRem:
4529   case Instruction::URem:
4530   case Instruction::Add:
4531   case Instruction::FAdd:
4532   case Instruction::Sub:
4533   case Instruction::FSub:
4534   case Instruction::FNeg:
4535   case Instruction::Mul:
4536   case Instruction::FMul:
4537   case Instruction::FDiv:
4538   case Instruction::FRem:
4539   case Instruction::Shl:
4540   case Instruction::LShr:
4541   case Instruction::AShr:
4542   case Instruction::And:
4543   case Instruction::Or:
4544   case Instruction::Xor: {
4545     // Just widen unops and binops.
4546     setDebugLocFromInst(Builder, &I);
4547 
4548     for (unsigned Part = 0; Part < UF; ++Part) {
4549       SmallVector<Value *, 2> Ops;
4550       for (VPValue *VPOp : User.operands())
4551         Ops.push_back(State.get(VPOp, Part));
4552 
4553       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4554 
4555       if (auto *VecOp = dyn_cast<Instruction>(V))
4556         VecOp->copyIRFlags(&I);
4557 
4558       // Use this vector value for all users of the original instruction.
4559       State.set(Def, &I, V, Part);
4560       addMetadata(V, &I);
4561     }
4562 
4563     break;
4564   }
4565   case Instruction::ICmp:
4566   case Instruction::FCmp: {
4567     // Widen compares. Generate vector compares.
4568     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4569     auto *Cmp = cast<CmpInst>(&I);
4570     setDebugLocFromInst(Builder, Cmp);
4571     for (unsigned Part = 0; Part < UF; ++Part) {
4572       Value *A = State.get(User.getOperand(0), Part);
4573       Value *B = State.get(User.getOperand(1), Part);
4574       Value *C = nullptr;
4575       if (FCmp) {
4576         // Propagate fast math flags.
4577         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4578         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4579         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4580       } else {
4581         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4582       }
4583       State.set(Def, &I, C, Part);
4584       addMetadata(C, &I);
4585     }
4586 
4587     break;
4588   }
4589 
4590   case Instruction::ZExt:
4591   case Instruction::SExt:
4592   case Instruction::FPToUI:
4593   case Instruction::FPToSI:
4594   case Instruction::FPExt:
4595   case Instruction::PtrToInt:
4596   case Instruction::IntToPtr:
4597   case Instruction::SIToFP:
4598   case Instruction::UIToFP:
4599   case Instruction::Trunc:
4600   case Instruction::FPTrunc:
4601   case Instruction::BitCast: {
4602     auto *CI = cast<CastInst>(&I);
4603     setDebugLocFromInst(Builder, CI);
4604 
4605     /// Vectorize casts.
4606     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4607     Type *DestTy =
4608         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4609 
4610     for (unsigned Part = 0; Part < UF; ++Part) {
4611       Value *A = State.get(User.getOperand(0), Part);
4612       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4613       State.set(Def, &I, Cast, Part);
4614       addMetadata(Cast, &I);
4615     }
4616     break;
4617   }
4618   default:
4619     // This instruction is not vectorized by simple widening.
4620     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4621     llvm_unreachable("Unhandled instruction!");
4622   } // end of switch.
4623 }
4624 
4625 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4626                                                VPUser &ArgOperands,
4627                                                VPTransformState &State) {
4628   assert(!isa<DbgInfoIntrinsic>(I) &&
4629          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4630   setDebugLocFromInst(Builder, &I);
4631 
4632   Module *M = I.getParent()->getParent()->getParent();
4633   auto *CI = cast<CallInst>(&I);
4634 
4635   SmallVector<Type *, 4> Tys;
4636   for (Value *ArgOperand : CI->arg_operands())
4637     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4638 
4639   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4640 
4641   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4642   // version of the instruction.
4643   // Is it beneficial to perform intrinsic call compared to lib call?
4644   bool NeedToScalarize = false;
4645   unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4646   bool UseVectorIntrinsic =
4647       ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4648   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4649          "Instruction should be scalarized elsewhere.");
4650 
4651   for (unsigned Part = 0; Part < UF; ++Part) {
4652     SmallVector<Value *, 4> Args;
4653     for (auto &I : enumerate(ArgOperands.operands())) {
4654       // Some intrinsics have a scalar argument - don't replace it with a
4655       // vector.
4656       Value *Arg;
4657       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4658         Arg = State.get(I.value(), Part);
4659       else
4660         Arg = State.get(I.value(), {0, 0});
4661       Args.push_back(Arg);
4662     }
4663 
4664     Function *VectorF;
4665     if (UseVectorIntrinsic) {
4666       // Use vector version of the intrinsic.
4667       Type *TysForDecl[] = {CI->getType()};
4668       if (VF.isVector()) {
4669         assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4670         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4671       }
4672       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4673       assert(VectorF && "Can't retrieve vector intrinsic.");
4674     } else {
4675       // Use vector version of the function call.
4676       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4677 #ifndef NDEBUG
4678       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4679              "Can't create vector function.");
4680 #endif
4681         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4682     }
4683       SmallVector<OperandBundleDef, 1> OpBundles;
4684       CI->getOperandBundlesAsDefs(OpBundles);
4685       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4686 
4687       if (isa<FPMathOperator>(V))
4688         V->copyFastMathFlags(CI);
4689 
4690       State.set(Def, &I, V, Part);
4691       addMetadata(V, &I);
4692   }
4693 }
4694 
4695 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
4696                                                  VPUser &Operands,
4697                                                  bool InvariantCond,
4698                                                  VPTransformState &State) {
4699   setDebugLocFromInst(Builder, &I);
4700 
4701   // The condition can be loop invariant  but still defined inside the
4702   // loop. This means that we can't just use the original 'cond' value.
4703   // We have to take the 'vectorized' value and pick the first lane.
4704   // Instcombine will make this a no-op.
4705   auto *InvarCond =
4706       InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr;
4707 
4708   for (unsigned Part = 0; Part < UF; ++Part) {
4709     Value *Cond =
4710         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
4711     Value *Op0 = State.get(Operands.getOperand(1), Part);
4712     Value *Op1 = State.get(Operands.getOperand(2), Part);
4713     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
4714     State.set(VPDef, &I, Sel, Part);
4715     addMetadata(Sel, &I);
4716   }
4717 }
4718 
4719 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4720   // We should not collect Scalars more than once per VF. Right now, this
4721   // function is called from collectUniformsAndScalars(), which already does
4722   // this check. Collecting Scalars for VF=1 does not make any sense.
4723   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4724          "This function should not be visited twice for the same VF");
4725 
4726   SmallSetVector<Instruction *, 8> Worklist;
4727 
4728   // These sets are used to seed the analysis with pointers used by memory
4729   // accesses that will remain scalar.
4730   SmallSetVector<Instruction *, 8> ScalarPtrs;
4731   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4732   auto *Latch = TheLoop->getLoopLatch();
4733 
4734   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4735   // The pointer operands of loads and stores will be scalar as long as the
4736   // memory access is not a gather or scatter operation. The value operand of a
4737   // store will remain scalar if the store is scalarized.
4738   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4739     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4740     assert(WideningDecision != CM_Unknown &&
4741            "Widening decision should be ready at this moment");
4742     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4743       if (Ptr == Store->getValueOperand())
4744         return WideningDecision == CM_Scalarize;
4745     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4746            "Ptr is neither a value or pointer operand");
4747     return WideningDecision != CM_GatherScatter;
4748   };
4749 
4750   // A helper that returns true if the given value is a bitcast or
4751   // getelementptr instruction contained in the loop.
4752   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4753     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4754             isa<GetElementPtrInst>(V)) &&
4755            !TheLoop->isLoopInvariant(V);
4756   };
4757 
4758   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
4759     if (!isa<PHINode>(Ptr) ||
4760         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
4761       return false;
4762     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
4763     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
4764       return false;
4765     return isScalarUse(MemAccess, Ptr);
4766   };
4767 
4768   // A helper that evaluates a memory access's use of a pointer. If the
4769   // pointer is actually the pointer induction of a loop, it is being
4770   // inserted into Worklist. If the use will be a scalar use, and the
4771   // pointer is only used by memory accesses, we place the pointer in
4772   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
4773   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4774     if (isScalarPtrInduction(MemAccess, Ptr)) {
4775       Worklist.insert(cast<Instruction>(Ptr));
4776       Instruction *Update = cast<Instruction>(
4777           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
4778       Worklist.insert(Update);
4779       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
4780                         << "\n");
4781       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
4782                         << "\n");
4783       return;
4784     }
4785     // We only care about bitcast and getelementptr instructions contained in
4786     // the loop.
4787     if (!isLoopVaryingBitCastOrGEP(Ptr))
4788       return;
4789 
4790     // If the pointer has already been identified as scalar (e.g., if it was
4791     // also identified as uniform), there's nothing to do.
4792     auto *I = cast<Instruction>(Ptr);
4793     if (Worklist.count(I))
4794       return;
4795 
4796     // If the use of the pointer will be a scalar use, and all users of the
4797     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4798     // place the pointer in PossibleNonScalarPtrs.
4799     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4800           return isa<LoadInst>(U) || isa<StoreInst>(U);
4801         }))
4802       ScalarPtrs.insert(I);
4803     else
4804       PossibleNonScalarPtrs.insert(I);
4805   };
4806 
4807   // We seed the scalars analysis with three classes of instructions: (1)
4808   // instructions marked uniform-after-vectorization and (2) bitcast,
4809   // getelementptr and (pointer) phi instructions used by memory accesses
4810   // requiring a scalar use.
4811   //
4812   // (1) Add to the worklist all instructions that have been identified as
4813   // uniform-after-vectorization.
4814   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4815 
4816   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4817   // memory accesses requiring a scalar use. The pointer operands of loads and
4818   // stores will be scalar as long as the memory accesses is not a gather or
4819   // scatter operation. The value operand of a store will remain scalar if the
4820   // store is scalarized.
4821   for (auto *BB : TheLoop->blocks())
4822     for (auto &I : *BB) {
4823       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4824         evaluatePtrUse(Load, Load->getPointerOperand());
4825       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4826         evaluatePtrUse(Store, Store->getPointerOperand());
4827         evaluatePtrUse(Store, Store->getValueOperand());
4828       }
4829     }
4830   for (auto *I : ScalarPtrs)
4831     if (!PossibleNonScalarPtrs.count(I)) {
4832       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4833       Worklist.insert(I);
4834     }
4835 
4836   // Insert the forced scalars.
4837   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4838   // induction variable when the PHI user is scalarized.
4839   auto ForcedScalar = ForcedScalars.find(VF);
4840   if (ForcedScalar != ForcedScalars.end())
4841     for (auto *I : ForcedScalar->second)
4842       Worklist.insert(I);
4843 
4844   // Expand the worklist by looking through any bitcasts and getelementptr
4845   // instructions we've already identified as scalar. This is similar to the
4846   // expansion step in collectLoopUniforms(); however, here we're only
4847   // expanding to include additional bitcasts and getelementptr instructions.
4848   unsigned Idx = 0;
4849   while (Idx != Worklist.size()) {
4850     Instruction *Dst = Worklist[Idx++];
4851     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4852       continue;
4853     auto *Src = cast<Instruction>(Dst->getOperand(0));
4854     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4855           auto *J = cast<Instruction>(U);
4856           return !TheLoop->contains(J) || Worklist.count(J) ||
4857                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4858                   isScalarUse(J, Src));
4859         })) {
4860       Worklist.insert(Src);
4861       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4862     }
4863   }
4864 
4865   // An induction variable will remain scalar if all users of the induction
4866   // variable and induction variable update remain scalar.
4867   for (auto &Induction : Legal->getInductionVars()) {
4868     auto *Ind = Induction.first;
4869     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4870 
4871     // If tail-folding is applied, the primary induction variable will be used
4872     // to feed a vector compare.
4873     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4874       continue;
4875 
4876     // Determine if all users of the induction variable are scalar after
4877     // vectorization.
4878     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4879       auto *I = cast<Instruction>(U);
4880       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4881     });
4882     if (!ScalarInd)
4883       continue;
4884 
4885     // Determine if all users of the induction variable update instruction are
4886     // scalar after vectorization.
4887     auto ScalarIndUpdate =
4888         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4889           auto *I = cast<Instruction>(U);
4890           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4891         });
4892     if (!ScalarIndUpdate)
4893       continue;
4894 
4895     // The induction variable and its update instruction will remain scalar.
4896     Worklist.insert(Ind);
4897     Worklist.insert(IndUpdate);
4898     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4899     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4900                       << "\n");
4901   }
4902 
4903   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4904 }
4905 
4906 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I,
4907                                                          ElementCount VF) {
4908   assert(!VF.isScalable() && "scalable vectors not yet supported.");
4909   if (!blockNeedsPredication(I->getParent()))
4910     return false;
4911   switch(I->getOpcode()) {
4912   default:
4913     break;
4914   case Instruction::Load:
4915   case Instruction::Store: {
4916     if (!Legal->isMaskRequired(I))
4917       return false;
4918     auto *Ptr = getLoadStorePointerOperand(I);
4919     auto *Ty = getMemInstValueType(I);
4920     // We have already decided how to vectorize this instruction, get that
4921     // result.
4922     if (VF.isVector()) {
4923       InstWidening WideningDecision = getWideningDecision(I, VF);
4924       assert(WideningDecision != CM_Unknown &&
4925              "Widening decision should be ready at this moment");
4926       return WideningDecision == CM_Scalarize;
4927     }
4928     const Align Alignment = getLoadStoreAlignment(I);
4929     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4930                                 isLegalMaskedGather(Ty, Alignment))
4931                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4932                                 isLegalMaskedScatter(Ty, Alignment));
4933   }
4934   case Instruction::UDiv:
4935   case Instruction::SDiv:
4936   case Instruction::SRem:
4937   case Instruction::URem:
4938     return mayDivideByZero(*I);
4939   }
4940   return false;
4941 }
4942 
4943 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4944     Instruction *I, ElementCount VF) {
4945   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4946   assert(getWideningDecision(I, VF) == CM_Unknown &&
4947          "Decision should not be set yet.");
4948   auto *Group = getInterleavedAccessGroup(I);
4949   assert(Group && "Must have a group.");
4950 
4951   // If the instruction's allocated size doesn't equal it's type size, it
4952   // requires padding and will be scalarized.
4953   auto &DL = I->getModule()->getDataLayout();
4954   auto *ScalarTy = getMemInstValueType(I);
4955   if (hasIrregularType(ScalarTy, DL, VF))
4956     return false;
4957 
4958   // Check if masking is required.
4959   // A Group may need masking for one of two reasons: it resides in a block that
4960   // needs predication, or it was decided to use masking to deal with gaps.
4961   bool PredicatedAccessRequiresMasking =
4962       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4963   bool AccessWithGapsRequiresMasking =
4964       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4965   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4966     return true;
4967 
4968   // If masked interleaving is required, we expect that the user/target had
4969   // enabled it, because otherwise it either wouldn't have been created or
4970   // it should have been invalidated by the CostModel.
4971   assert(useMaskedInterleavedAccesses(TTI) &&
4972          "Masked interleave-groups for predicated accesses are not enabled.");
4973 
4974   auto *Ty = getMemInstValueType(I);
4975   const Align Alignment = getLoadStoreAlignment(I);
4976   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4977                           : TTI.isLegalMaskedStore(Ty, Alignment);
4978 }
4979 
4980 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4981     Instruction *I, ElementCount VF) {
4982   // Get and ensure we have a valid memory instruction.
4983   LoadInst *LI = dyn_cast<LoadInst>(I);
4984   StoreInst *SI = dyn_cast<StoreInst>(I);
4985   assert((LI || SI) && "Invalid memory instruction");
4986 
4987   auto *Ptr = getLoadStorePointerOperand(I);
4988 
4989   // In order to be widened, the pointer should be consecutive, first of all.
4990   if (!Legal->isConsecutivePtr(Ptr))
4991     return false;
4992 
4993   // If the instruction is a store located in a predicated block, it will be
4994   // scalarized.
4995   if (isScalarWithPredication(I))
4996     return false;
4997 
4998   // If the instruction's allocated size doesn't equal it's type size, it
4999   // requires padding and will be scalarized.
5000   auto &DL = I->getModule()->getDataLayout();
5001   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5002   if (hasIrregularType(ScalarTy, DL, VF))
5003     return false;
5004 
5005   return true;
5006 }
5007 
5008 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5009   // We should not collect Uniforms more than once per VF. Right now,
5010   // this function is called from collectUniformsAndScalars(), which
5011   // already does this check. Collecting Uniforms for VF=1 does not make any
5012   // sense.
5013 
5014   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5015          "This function should not be visited twice for the same VF");
5016 
5017   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5018   // not analyze again.  Uniforms.count(VF) will return 1.
5019   Uniforms[VF].clear();
5020 
5021   // We now know that the loop is vectorizable!
5022   // Collect instructions inside the loop that will remain uniform after
5023   // vectorization.
5024 
5025   // Global values, params and instructions outside of current loop are out of
5026   // scope.
5027   auto isOutOfScope = [&](Value *V) -> bool {
5028     Instruction *I = dyn_cast<Instruction>(V);
5029     return (!I || !TheLoop->contains(I));
5030   };
5031 
5032   SetVector<Instruction *> Worklist;
5033   BasicBlock *Latch = TheLoop->getLoopLatch();
5034 
5035   // Instructions that are scalar with predication must not be considered
5036   // uniform after vectorization, because that would create an erroneous
5037   // replicating region where only a single instance out of VF should be formed.
5038   // TODO: optimize such seldom cases if found important, see PR40816.
5039   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5040     if (isOutOfScope(I)) {
5041       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5042                         << *I << "\n");
5043       return;
5044     }
5045     if (isScalarWithPredication(I, VF)) {
5046       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5047                         << *I << "\n");
5048       return;
5049     }
5050     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5051     Worklist.insert(I);
5052   };
5053 
5054   // Start with the conditional branch. If the branch condition is an
5055   // instruction contained in the loop that is only used by the branch, it is
5056   // uniform.
5057   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5058   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5059     addToWorklistIfAllowed(Cmp);
5060 
5061   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
5062   // are pointers that are treated like consecutive pointers during
5063   // vectorization. The pointer operands of interleaved accesses are an
5064   // example.
5065   SmallSetVector<Value *, 8> ConsecutiveLikePtrs;
5066 
5067   // Holds pointer operands of instructions that are possibly non-uniform.
5068   SmallPtrSet<Value *, 8> PossibleNonUniformPtrs;
5069 
5070   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5071     InstWidening WideningDecision = getWideningDecision(I, VF);
5072     assert(WideningDecision != CM_Unknown &&
5073            "Widening decision should be ready at this moment");
5074 
5075     // The address of a uniform mem op is itself uniform.  We exclude stores
5076     // here as there's an assumption in the current code that all uses of
5077     // uniform instructions are uniform and, as noted below, uniform stores are
5078     // still handled via replication (i.e. aren't uniform after vectorization).
5079     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5080       assert(WideningDecision == CM_Scalarize);
5081       return true;
5082     }
5083 
5084     return (WideningDecision == CM_Widen ||
5085             WideningDecision == CM_Widen_Reverse ||
5086             WideningDecision == CM_Interleave);
5087   };
5088 
5089 
5090   // Returns true if Ptr is the pointer operand of a memory access instruction
5091   // I, and I is known to not require scalarization.
5092   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5093     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5094   };
5095 
5096   // Iterate over the instructions in the loop, and collect all
5097   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
5098   // that a consecutive-like pointer operand will be scalarized, we collect it
5099   // in PossibleNonUniformPtrs instead. We use two sets here because a single
5100   // getelementptr instruction can be used by both vectorized and scalarized
5101   // memory instructions. For example, if a loop loads and stores from the same
5102   // location, but the store is conditional, the store will be scalarized, and
5103   // the getelementptr won't remain uniform.
5104   for (auto *BB : TheLoop->blocks())
5105     for (auto &I : *BB) {
5106       // If there's no pointer operand, there's nothing to do.
5107       auto *Ptr = getLoadStorePointerOperand(&I);
5108       if (!Ptr)
5109         continue;
5110 
5111       // For now, avoid walking use lists in other functions.
5112       // TODO: Rewrite this algorithm from uses up.
5113       if (!isa<Instruction>(Ptr) && !isa<Argument>(Ptr))
5114         continue;
5115 
5116       // A uniform memory op is itself uniform.  We exclude stores here as we
5117       // haven't yet added dedicated logic in the CLONE path and rely on
5118       // REPLICATE + DSE for correctness.
5119       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5120         addToWorklistIfAllowed(&I);
5121 
5122       // True if all users of Ptr are memory accesses that have Ptr as their
5123       // pointer operand.  Since loops are assumed to be in LCSSA form, this
5124       // disallows uses outside the loop as well.
5125       auto UsersAreMemAccesses =
5126           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
5127             return getLoadStorePointerOperand(U) == Ptr;
5128           });
5129 
5130       // Ensure the memory instruction will not be scalarized or used by
5131       // gather/scatter, making its pointer operand non-uniform. If the pointer
5132       // operand is used by any instruction other than a memory access, we
5133       // conservatively assume the pointer operand may be non-uniform.
5134       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
5135         PossibleNonUniformPtrs.insert(Ptr);
5136 
5137       // If the memory instruction will be vectorized and its pointer operand
5138       // is consecutive-like, or interleaving - the pointer operand should
5139       // remain uniform.
5140       else
5141         ConsecutiveLikePtrs.insert(Ptr);
5142     }
5143 
5144   // Add to the Worklist all consecutive and consecutive-like pointers that
5145   // aren't also identified as possibly non-uniform.
5146   for (auto *V : ConsecutiveLikePtrs)
5147     if (!PossibleNonUniformPtrs.count(V))
5148       if (auto *I = dyn_cast<Instruction>(V))
5149         addToWorklistIfAllowed(I);
5150 
5151   // Expand Worklist in topological order: whenever a new instruction
5152   // is added , its users should be already inside Worklist.  It ensures
5153   // a uniform instruction will only be used by uniform instructions.
5154   unsigned idx = 0;
5155   while (idx != Worklist.size()) {
5156     Instruction *I = Worklist[idx++];
5157 
5158     for (auto OV : I->operand_values()) {
5159       // isOutOfScope operands cannot be uniform instructions.
5160       if (isOutOfScope(OV))
5161         continue;
5162       // First order recurrence Phi's should typically be considered
5163       // non-uniform.
5164       auto *OP = dyn_cast<PHINode>(OV);
5165       if (OP && Legal->isFirstOrderRecurrence(OP))
5166         continue;
5167       // If all the users of the operand are uniform, then add the
5168       // operand into the uniform worklist.
5169       auto *OI = cast<Instruction>(OV);
5170       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5171             auto *J = cast<Instruction>(U);
5172             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5173           }))
5174         addToWorklistIfAllowed(OI);
5175     }
5176   }
5177 
5178   // For an instruction to be added into Worklist above, all its users inside
5179   // the loop should also be in Worklist. However, this condition cannot be
5180   // true for phi nodes that form a cyclic dependence. We must process phi
5181   // nodes separately. An induction variable will remain uniform if all users
5182   // of the induction variable and induction variable update remain uniform.
5183   // The code below handles both pointer and non-pointer induction variables.
5184   for (auto &Induction : Legal->getInductionVars()) {
5185     auto *Ind = Induction.first;
5186     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5187 
5188     // Determine if all users of the induction variable are uniform after
5189     // vectorization.
5190     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5191       auto *I = cast<Instruction>(U);
5192       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5193              isVectorizedMemAccessUse(I, Ind);
5194     });
5195     if (!UniformInd)
5196       continue;
5197 
5198     // Determine if all users of the induction variable update instruction are
5199     // uniform after vectorization.
5200     auto UniformIndUpdate =
5201         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5202           auto *I = cast<Instruction>(U);
5203           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5204                  isVectorizedMemAccessUse(I, IndUpdate);
5205         });
5206     if (!UniformIndUpdate)
5207       continue;
5208 
5209     // The induction variable and its update instruction will remain uniform.
5210     addToWorklistIfAllowed(Ind);
5211     addToWorklistIfAllowed(IndUpdate);
5212   }
5213 
5214   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5215 }
5216 
5217 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5218   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5219 
5220   if (Legal->getRuntimePointerChecking()->Need) {
5221     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5222         "runtime pointer checks needed. Enable vectorization of this "
5223         "loop with '#pragma clang loop vectorize(enable)' when "
5224         "compiling with -Os/-Oz",
5225         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5226     return true;
5227   }
5228 
5229   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5230     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5231         "runtime SCEV checks needed. Enable vectorization of this "
5232         "loop with '#pragma clang loop vectorize(enable)' when "
5233         "compiling with -Os/-Oz",
5234         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5235     return true;
5236   }
5237 
5238   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5239   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5240     reportVectorizationFailure("Runtime stride check for small trip count",
5241         "runtime stride == 1 checks needed. Enable vectorization of "
5242         "this loop without such check by compiling with -Os/-Oz",
5243         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5244     return true;
5245   }
5246 
5247   return false;
5248 }
5249 
5250 Optional<ElementCount>
5251 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5252   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5253     // TODO: It may by useful to do since it's still likely to be dynamically
5254     // uniform if the target can skip.
5255     reportVectorizationFailure(
5256         "Not inserting runtime ptr check for divergent target",
5257         "runtime pointer checks needed. Not enabled for divergent target",
5258         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5259     return None;
5260   }
5261 
5262   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5263   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5264   if (TC == 1) {
5265     reportVectorizationFailure("Single iteration (non) loop",
5266         "loop trip count is one, irrelevant for vectorization",
5267         "SingleIterationLoop", ORE, TheLoop);
5268     return None;
5269   }
5270 
5271   switch (ScalarEpilogueStatus) {
5272   case CM_ScalarEpilogueAllowed:
5273     return UserVF ? UserVF : computeFeasibleMaxVF(TC);
5274   case CM_ScalarEpilogueNotNeededUsePredicate:
5275     LLVM_DEBUG(
5276         dbgs() << "LV: vector predicate hint/switch found.\n"
5277                << "LV: Not allowing scalar epilogue, creating predicated "
5278                << "vector loop.\n");
5279     break;
5280   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5281     // fallthrough as a special case of OptForSize
5282   case CM_ScalarEpilogueNotAllowedOptSize:
5283     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5284       LLVM_DEBUG(
5285           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5286     else
5287       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5288                         << "count.\n");
5289 
5290     // Bail if runtime checks are required, which are not good when optimising
5291     // for size.
5292     if (runtimeChecksRequired())
5293       return None;
5294     break;
5295   }
5296 
5297   // Now try the tail folding
5298 
5299   // Invalidate interleave groups that require an epilogue if we can't mask
5300   // the interleave-group.
5301   if (!useMaskedInterleavedAccesses(TTI)) {
5302     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5303            "No decisions should have been taken at this point");
5304     // Note: There is no need to invalidate any cost modeling decisions here, as
5305     // non where taken so far.
5306     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5307   }
5308 
5309   ElementCount MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC);
5310   assert(!MaxVF.isScalable() &&
5311          "Scalable vectors do not yet support tail folding");
5312   assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) &&
5313          "MaxVF must be a power of 2");
5314   unsigned MaxVFtimesIC =
5315       UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue();
5316   if (TC > 0 && TC % MaxVFtimesIC == 0) {
5317     // Accept MaxVF if we do not have a tail.
5318     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5319     return MaxVF;
5320   }
5321 
5322   // If we don't know the precise trip count, or if the trip count that we
5323   // found modulo the vectorization factor is not zero, try to fold the tail
5324   // by masking.
5325   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5326   if (Legal->prepareToFoldTailByMasking()) {
5327     FoldTailByMasking = true;
5328     return MaxVF;
5329   }
5330 
5331   // If there was a tail-folding hint/switch, but we can't fold the tail by
5332   // masking, fallback to a vectorization with a scalar epilogue.
5333   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5334     if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) {
5335       LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5336       return None;
5337     }
5338     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5339                          "scalar epilogue instead.\n");
5340     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5341     return MaxVF;
5342   }
5343 
5344   if (TC == 0) {
5345     reportVectorizationFailure(
5346         "Unable to calculate the loop count due to complex control flow",
5347         "unable to calculate the loop count due to complex control flow",
5348         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5349     return None;
5350   }
5351 
5352   reportVectorizationFailure(
5353       "Cannot optimize for size and vectorize at the same time.",
5354       "cannot optimize for size and vectorize at the same time. "
5355       "Enable vectorization of this loop with '#pragma clang loop "
5356       "vectorize(enable)' when compiling with -Os/-Oz",
5357       "NoTailLoopWithOptForSize", ORE, TheLoop);
5358   return None;
5359 }
5360 
5361 ElementCount
5362 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5363   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5364   unsigned SmallestType, WidestType;
5365   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5366   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5367 
5368   // Get the maximum safe dependence distance in bits computed by LAA.
5369   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5370   // the memory accesses that is most restrictive (involved in the smallest
5371   // dependence distance).
5372   unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits();
5373 
5374   WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits);
5375 
5376   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5377   // Note that both WidestRegister and WidestType may not be a powers of 2.
5378   unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType);
5379 
5380   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5381                     << " / " << WidestType << " bits.\n");
5382   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5383                     << WidestRegister << " bits.\n");
5384 
5385   assert(MaxVectorSize <= WidestRegister &&
5386          "Did not expect to pack so many elements"
5387          " into one vector!");
5388   if (MaxVectorSize == 0) {
5389     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5390     MaxVectorSize = 1;
5391     return ElementCount::getFixed(MaxVectorSize);
5392   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5393              isPowerOf2_32(ConstTripCount)) {
5394     // We need to clamp the VF to be the ConstTripCount. There is no point in
5395     // choosing a higher viable VF as done in the loop below.
5396     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5397                       << ConstTripCount << "\n");
5398     MaxVectorSize = ConstTripCount;
5399     return ElementCount::getFixed(MaxVectorSize);
5400   }
5401 
5402   unsigned MaxVF = MaxVectorSize;
5403   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5404       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5405     // Collect all viable vectorization factors larger than the default MaxVF
5406     // (i.e. MaxVectorSize).
5407     SmallVector<ElementCount, 8> VFs;
5408     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5409     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5410       VFs.push_back(ElementCount::getFixed(VS));
5411 
5412     // For each VF calculate its register usage.
5413     auto RUs = calculateRegisterUsage(VFs);
5414 
5415     // Select the largest VF which doesn't require more registers than existing
5416     // ones.
5417     for (int i = RUs.size() - 1; i >= 0; --i) {
5418       bool Selected = true;
5419       for (auto& pair : RUs[i].MaxLocalUsers) {
5420         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5421         if (pair.second > TargetNumRegisters)
5422           Selected = false;
5423       }
5424       if (Selected) {
5425         MaxVF = VFs[i].getKnownMinValue();
5426         break;
5427       }
5428     }
5429     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5430       if (MaxVF < MinVF) {
5431         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5432                           << ") with target's minimum: " << MinVF << '\n');
5433         MaxVF = MinVF;
5434       }
5435     }
5436   }
5437   return ElementCount::getFixed(MaxVF);
5438 }
5439 
5440 VectorizationFactor
5441 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
5442   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
5443 
5444   float Cost = expectedCost(ElementCount::getFixed(1)).first;
5445   const float ScalarCost = Cost;
5446   unsigned Width = 1;
5447   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5448 
5449   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5450   if (ForceVectorization && MaxVF.isVector()) {
5451     // Ignore scalar width, because the user explicitly wants vectorization.
5452     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5453     // evaluation.
5454     Cost = std::numeric_limits<float>::max();
5455   }
5456 
5457   for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) {
5458     // Notice that the vector loop needs to be executed less times, so
5459     // we need to divide the cost of the vector loops by the width of
5460     // the vector elements.
5461     VectorizationCostTy C = expectedCost(ElementCount::getFixed(i));
5462     float VectorCost = C.first / (float)i;
5463     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5464                       << " costs: " << (int)VectorCost << ".\n");
5465     if (!C.second && !ForceVectorization) {
5466       LLVM_DEBUG(
5467           dbgs() << "LV: Not considering vector loop of width " << i
5468                  << " because it will not generate any vector instructions.\n");
5469       continue;
5470     }
5471     if (VectorCost < Cost) {
5472       Cost = VectorCost;
5473       Width = i;
5474     }
5475   }
5476 
5477   if (!EnableCondStoresVectorization && NumPredStores) {
5478     reportVectorizationFailure("There are conditional stores.",
5479         "store that is conditionally executed prevents vectorization",
5480         "ConditionalStore", ORE, TheLoop);
5481     Width = 1;
5482     Cost = ScalarCost;
5483   }
5484 
5485   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5486              << "LV: Vectorization seems to be not beneficial, "
5487              << "but was forced by a user.\n");
5488   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5489   VectorizationFactor Factor = {ElementCount::getFixed(Width),
5490                                 (unsigned)(Width * Cost)};
5491   return Factor;
5492 }
5493 
5494 std::pair<unsigned, unsigned>
5495 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5496   unsigned MinWidth = -1U;
5497   unsigned MaxWidth = 8;
5498   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5499 
5500   // For each block.
5501   for (BasicBlock *BB : TheLoop->blocks()) {
5502     // For each instruction in the loop.
5503     for (Instruction &I : BB->instructionsWithoutDebug()) {
5504       Type *T = I.getType();
5505 
5506       // Skip ignored values.
5507       if (ValuesToIgnore.count(&I))
5508         continue;
5509 
5510       // Only examine Loads, Stores and PHINodes.
5511       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5512         continue;
5513 
5514       // Examine PHI nodes that are reduction variables. Update the type to
5515       // account for the recurrence type.
5516       if (auto *PN = dyn_cast<PHINode>(&I)) {
5517         if (!Legal->isReductionVariable(PN))
5518           continue;
5519         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
5520         T = RdxDesc.getRecurrenceType();
5521       }
5522 
5523       // Examine the stored values.
5524       if (auto *ST = dyn_cast<StoreInst>(&I))
5525         T = ST->getValueOperand()->getType();
5526 
5527       // Ignore loaded pointer types and stored pointer types that are not
5528       // vectorizable.
5529       //
5530       // FIXME: The check here attempts to predict whether a load or store will
5531       //        be vectorized. We only know this for certain after a VF has
5532       //        been selected. Here, we assume that if an access can be
5533       //        vectorized, it will be. We should also look at extending this
5534       //        optimization to non-pointer types.
5535       //
5536       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5537           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5538         continue;
5539 
5540       MinWidth = std::min(MinWidth,
5541                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5542       MaxWidth = std::max(MaxWidth,
5543                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5544     }
5545   }
5546 
5547   return {MinWidth, MaxWidth};
5548 }
5549 
5550 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5551                                                            unsigned LoopCost) {
5552   // -- The interleave heuristics --
5553   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5554   // There are many micro-architectural considerations that we can't predict
5555   // at this level. For example, frontend pressure (on decode or fetch) due to
5556   // code size, or the number and capabilities of the execution ports.
5557   //
5558   // We use the following heuristics to select the interleave count:
5559   // 1. If the code has reductions, then we interleave to break the cross
5560   // iteration dependency.
5561   // 2. If the loop is really small, then we interleave to reduce the loop
5562   // overhead.
5563   // 3. We don't interleave if we think that we will spill registers to memory
5564   // due to the increased register pressure.
5565 
5566   if (!isScalarEpilogueAllowed())
5567     return 1;
5568 
5569   // We used the distance for the interleave count.
5570   if (Legal->getMaxSafeDepDistBytes() != -1U)
5571     return 1;
5572 
5573   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5574   const bool HasReductions = !Legal->getReductionVars().empty();
5575   // Do not interleave loops with a relatively small known or estimated trip
5576   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5577   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5578   // because with the above conditions interleaving can expose ILP and break
5579   // cross iteration dependences for reductions.
5580   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5581       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5582     return 1;
5583 
5584   RegisterUsage R = calculateRegisterUsage({VF})[0];
5585   // We divide by these constants so assume that we have at least one
5586   // instruction that uses at least one register.
5587   for (auto& pair : R.MaxLocalUsers) {
5588     pair.second = std::max(pair.second, 1U);
5589   }
5590 
5591   // We calculate the interleave count using the following formula.
5592   // Subtract the number of loop invariants from the number of available
5593   // registers. These registers are used by all of the interleaved instances.
5594   // Next, divide the remaining registers by the number of registers that is
5595   // required by the loop, in order to estimate how many parallel instances
5596   // fit without causing spills. All of this is rounded down if necessary to be
5597   // a power of two. We want power of two interleave count to simplify any
5598   // addressing operations or alignment considerations.
5599   // We also want power of two interleave counts to ensure that the induction
5600   // variable of the vector loop wraps to zero, when tail is folded by masking;
5601   // this currently happens when OptForSize, in which case IC is set to 1 above.
5602   unsigned IC = UINT_MAX;
5603 
5604   for (auto& pair : R.MaxLocalUsers) {
5605     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5606     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5607                       << " registers of "
5608                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5609     if (VF.isScalar()) {
5610       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5611         TargetNumRegisters = ForceTargetNumScalarRegs;
5612     } else {
5613       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5614         TargetNumRegisters = ForceTargetNumVectorRegs;
5615     }
5616     unsigned MaxLocalUsers = pair.second;
5617     unsigned LoopInvariantRegs = 0;
5618     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5619       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5620 
5621     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5622     // Don't count the induction variable as interleaved.
5623     if (EnableIndVarRegisterHeur) {
5624       TmpIC =
5625           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5626                         std::max(1U, (MaxLocalUsers - 1)));
5627     }
5628 
5629     IC = std::min(IC, TmpIC);
5630   }
5631 
5632   // Clamp the interleave ranges to reasonable counts.
5633   assert(!VF.isScalable() && "scalable vectors not yet supported.");
5634   unsigned MaxInterleaveCount =
5635       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5636 
5637   // Check if the user has overridden the max.
5638   if (VF.isScalar()) {
5639     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5640       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5641   } else {
5642     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5643       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5644   }
5645 
5646   // If trip count is known or estimated compile time constant, limit the
5647   // interleave count to be less than the trip count divided by VF, provided it
5648   // is at least 1.
5649   if (BestKnownTC) {
5650     MaxInterleaveCount =
5651         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5652     // Make sure MaxInterleaveCount is greater than 0.
5653     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5654   }
5655 
5656   assert(MaxInterleaveCount > 0 &&
5657          "Maximum interleave count must be greater than 0");
5658 
5659   // Clamp the calculated IC to be between the 1 and the max interleave count
5660   // that the target and trip count allows.
5661   if (IC > MaxInterleaveCount)
5662     IC = MaxInterleaveCount;
5663   else
5664     // Make sure IC is greater than 0.
5665     IC = std::max(1u, IC);
5666 
5667   assert(IC > 0 && "Interleave count must be greater than 0.");
5668 
5669   // If we did not calculate the cost for VF (because the user selected the VF)
5670   // then we calculate the cost of VF here.
5671   if (LoopCost == 0)
5672     LoopCost = expectedCost(VF).first;
5673 
5674   assert(LoopCost && "Non-zero loop cost expected");
5675 
5676   // Interleave if we vectorized this loop and there is a reduction that could
5677   // benefit from interleaving.
5678   if (VF.isVector() && HasReductions) {
5679     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5680     return IC;
5681   }
5682 
5683   // Note that if we've already vectorized the loop we will have done the
5684   // runtime check and so interleaving won't require further checks.
5685   bool InterleavingRequiresRuntimePointerCheck =
5686       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5687 
5688   // We want to interleave small loops in order to reduce the loop overhead and
5689   // potentially expose ILP opportunities.
5690   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5691                     << "LV: IC is " << IC << '\n'
5692                     << "LV: VF is " << VF.getKnownMinValue() << '\n');
5693   const bool AggressivelyInterleaveReductions =
5694       TTI.enableAggressiveInterleaving(HasReductions);
5695   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5696     // We assume that the cost overhead is 1 and we use the cost model
5697     // to estimate the cost of the loop and interleave until the cost of the
5698     // loop overhead is about 5% of the cost of the loop.
5699     unsigned SmallIC =
5700         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5701 
5702     // Interleave until store/load ports (estimated by max interleave count) are
5703     // saturated.
5704     unsigned NumStores = Legal->getNumStores();
5705     unsigned NumLoads = Legal->getNumLoads();
5706     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5707     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5708 
5709     // If we have a scalar reduction (vector reductions are already dealt with
5710     // by this point), we can increase the critical path length if the loop
5711     // we're interleaving is inside another loop. Limit, by default to 2, so the
5712     // critical path only gets increased by one reduction operation.
5713     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5714       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5715       SmallIC = std::min(SmallIC, F);
5716       StoresIC = std::min(StoresIC, F);
5717       LoadsIC = std::min(LoadsIC, F);
5718     }
5719 
5720     if (EnableLoadStoreRuntimeInterleave &&
5721         std::max(StoresIC, LoadsIC) > SmallIC) {
5722       LLVM_DEBUG(
5723           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5724       return std::max(StoresIC, LoadsIC);
5725     }
5726 
5727     // If there are scalar reductions and TTI has enabled aggressive
5728     // interleaving for reductions, we will interleave to expose ILP.
5729     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5730         AggressivelyInterleaveReductions) {
5731       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5732       // Interleave no less than SmallIC but not as aggressive as the normal IC
5733       // to satisfy the rare situation when resources are too limited.
5734       return std::max(IC / 2, SmallIC);
5735     } else {
5736       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5737       return SmallIC;
5738     }
5739   }
5740 
5741   // Interleave if this is a large loop (small loops are already dealt with by
5742   // this point) that could benefit from interleaving.
5743   if (AggressivelyInterleaveReductions) {
5744     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5745     return IC;
5746   }
5747 
5748   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5749   return 1;
5750 }
5751 
5752 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5753 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5754   // This function calculates the register usage by measuring the highest number
5755   // of values that are alive at a single location. Obviously, this is a very
5756   // rough estimation. We scan the loop in a topological order in order and
5757   // assign a number to each instruction. We use RPO to ensure that defs are
5758   // met before their users. We assume that each instruction that has in-loop
5759   // users starts an interval. We record every time that an in-loop value is
5760   // used, so we have a list of the first and last occurrences of each
5761   // instruction. Next, we transpose this data structure into a multi map that
5762   // holds the list of intervals that *end* at a specific location. This multi
5763   // map allows us to perform a linear search. We scan the instructions linearly
5764   // and record each time that a new interval starts, by placing it in a set.
5765   // If we find this value in the multi-map then we remove it from the set.
5766   // The max register usage is the maximum size of the set.
5767   // We also search for instructions that are defined outside the loop, but are
5768   // used inside the loop. We need this number separately from the max-interval
5769   // usage number because when we unroll, loop-invariant values do not take
5770   // more register.
5771   LoopBlocksDFS DFS(TheLoop);
5772   DFS.perform(LI);
5773 
5774   RegisterUsage RU;
5775 
5776   // Each 'key' in the map opens a new interval. The values
5777   // of the map are the index of the 'last seen' usage of the
5778   // instruction that is the key.
5779   using IntervalMap = DenseMap<Instruction *, unsigned>;
5780 
5781   // Maps instruction to its index.
5782   SmallVector<Instruction *, 64> IdxToInstr;
5783   // Marks the end of each interval.
5784   IntervalMap EndPoint;
5785   // Saves the list of instruction indices that are used in the loop.
5786   SmallPtrSet<Instruction *, 8> Ends;
5787   // Saves the list of values that are used in the loop but are
5788   // defined outside the loop, such as arguments and constants.
5789   SmallPtrSet<Value *, 8> LoopInvariants;
5790 
5791   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5792     for (Instruction &I : BB->instructionsWithoutDebug()) {
5793       IdxToInstr.push_back(&I);
5794 
5795       // Save the end location of each USE.
5796       for (Value *U : I.operands()) {
5797         auto *Instr = dyn_cast<Instruction>(U);
5798 
5799         // Ignore non-instruction values such as arguments, constants, etc.
5800         if (!Instr)
5801           continue;
5802 
5803         // If this instruction is outside the loop then record it and continue.
5804         if (!TheLoop->contains(Instr)) {
5805           LoopInvariants.insert(Instr);
5806           continue;
5807         }
5808 
5809         // Overwrite previous end points.
5810         EndPoint[Instr] = IdxToInstr.size();
5811         Ends.insert(Instr);
5812       }
5813     }
5814   }
5815 
5816   // Saves the list of intervals that end with the index in 'key'.
5817   using InstrList = SmallVector<Instruction *, 2>;
5818   DenseMap<unsigned, InstrList> TransposeEnds;
5819 
5820   // Transpose the EndPoints to a list of values that end at each index.
5821   for (auto &Interval : EndPoint)
5822     TransposeEnds[Interval.second].push_back(Interval.first);
5823 
5824   SmallPtrSet<Instruction *, 8> OpenIntervals;
5825   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5826   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5827 
5828   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5829 
5830   // A lambda that gets the register usage for the given type and VF.
5831   const auto &TTICapture = TTI;
5832   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
5833     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5834       return 0U;
5835     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
5836   };
5837 
5838   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5839     Instruction *I = IdxToInstr[i];
5840 
5841     // Remove all of the instructions that end at this location.
5842     InstrList &List = TransposeEnds[i];
5843     for (Instruction *ToRemove : List)
5844       OpenIntervals.erase(ToRemove);
5845 
5846     // Ignore instructions that are never used within the loop.
5847     if (!Ends.count(I))
5848       continue;
5849 
5850     // Skip ignored values.
5851     if (ValuesToIgnore.count(I))
5852       continue;
5853 
5854     // For each VF find the maximum usage of registers.
5855     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5856       // Count the number of live intervals.
5857       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5858 
5859       if (VFs[j].isScalar()) {
5860         for (auto Inst : OpenIntervals) {
5861           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5862           if (RegUsage.find(ClassID) == RegUsage.end())
5863             RegUsage[ClassID] = 1;
5864           else
5865             RegUsage[ClassID] += 1;
5866         }
5867       } else {
5868         collectUniformsAndScalars(VFs[j]);
5869         for (auto Inst : OpenIntervals) {
5870           // Skip ignored values for VF > 1.
5871           if (VecValuesToIgnore.count(Inst))
5872             continue;
5873           if (isScalarAfterVectorization(Inst, VFs[j])) {
5874             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5875             if (RegUsage.find(ClassID) == RegUsage.end())
5876               RegUsage[ClassID] = 1;
5877             else
5878               RegUsage[ClassID] += 1;
5879           } else {
5880             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5881             if (RegUsage.find(ClassID) == RegUsage.end())
5882               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5883             else
5884               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5885           }
5886         }
5887       }
5888 
5889       for (auto& pair : RegUsage) {
5890         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5891           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5892         else
5893           MaxUsages[j][pair.first] = pair.second;
5894       }
5895     }
5896 
5897     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5898                       << OpenIntervals.size() << '\n');
5899 
5900     // Add the current instruction to the list of open intervals.
5901     OpenIntervals.insert(I);
5902   }
5903 
5904   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5905     SmallMapVector<unsigned, unsigned, 4> Invariant;
5906 
5907     for (auto Inst : LoopInvariants) {
5908       unsigned Usage =
5909           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5910       unsigned ClassID =
5911           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
5912       if (Invariant.find(ClassID) == Invariant.end())
5913         Invariant[ClassID] = Usage;
5914       else
5915         Invariant[ClassID] += Usage;
5916     }
5917 
5918     LLVM_DEBUG({
5919       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5920       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5921              << " item\n";
5922       for (const auto &pair : MaxUsages[i]) {
5923         dbgs() << "LV(REG): RegisterClass: "
5924                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5925                << " registers\n";
5926       }
5927       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5928              << " item\n";
5929       for (const auto &pair : Invariant) {
5930         dbgs() << "LV(REG): RegisterClass: "
5931                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5932                << " registers\n";
5933       }
5934     });
5935 
5936     RU.LoopInvariantRegs = Invariant;
5937     RU.MaxLocalUsers = MaxUsages[i];
5938     RUs[i] = RU;
5939   }
5940 
5941   return RUs;
5942 }
5943 
5944 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5945   // TODO: Cost model for emulated masked load/store is completely
5946   // broken. This hack guides the cost model to use an artificially
5947   // high enough value to practically disable vectorization with such
5948   // operations, except where previously deployed legality hack allowed
5949   // using very low cost values. This is to avoid regressions coming simply
5950   // from moving "masked load/store" check from legality to cost model.
5951   // Masked Load/Gather emulation was previously never allowed.
5952   // Limited number of Masked Store/Scatter emulation was allowed.
5953   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5954   return isa<LoadInst>(I) ||
5955          (isa<StoreInst>(I) &&
5956           NumPredStores > NumberOfStoresToPredicate);
5957 }
5958 
5959 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
5960   // If we aren't vectorizing the loop, or if we've already collected the
5961   // instructions to scalarize, there's nothing to do. Collection may already
5962   // have occurred if we have a user-selected VF and are now computing the
5963   // expected cost for interleaving.
5964   if (VF.isScalar() || VF.isZero() ||
5965       InstsToScalarize.find(VF) != InstsToScalarize.end())
5966     return;
5967 
5968   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5969   // not profitable to scalarize any instructions, the presence of VF in the
5970   // map will indicate that we've analyzed it already.
5971   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5972 
5973   // Find all the instructions that are scalar with predication in the loop and
5974   // determine if it would be better to not if-convert the blocks they are in.
5975   // If so, we also record the instructions to scalarize.
5976   for (BasicBlock *BB : TheLoop->blocks()) {
5977     if (!blockNeedsPredication(BB))
5978       continue;
5979     for (Instruction &I : *BB)
5980       if (isScalarWithPredication(&I)) {
5981         ScalarCostsTy ScalarCosts;
5982         // Do not apply discount logic if hacked cost is needed
5983         // for emulated masked memrefs.
5984         if (!useEmulatedMaskMemRefHack(&I) &&
5985             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5986           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5987         // Remember that BB will remain after vectorization.
5988         PredicatedBBsAfterVectorization.insert(BB);
5989       }
5990   }
5991 }
5992 
5993 int LoopVectorizationCostModel::computePredInstDiscount(
5994     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5995     ElementCount VF) {
5996   assert(!isUniformAfterVectorization(PredInst, VF) &&
5997          "Instruction marked uniform-after-vectorization will be predicated");
5998 
5999   // Initialize the discount to zero, meaning that the scalar version and the
6000   // vector version cost the same.
6001   int Discount = 0;
6002 
6003   // Holds instructions to analyze. The instructions we visit are mapped in
6004   // ScalarCosts. Those instructions are the ones that would be scalarized if
6005   // we find that the scalar version costs less.
6006   SmallVector<Instruction *, 8> Worklist;
6007 
6008   // Returns true if the given instruction can be scalarized.
6009   auto canBeScalarized = [&](Instruction *I) -> bool {
6010     // We only attempt to scalarize instructions forming a single-use chain
6011     // from the original predicated block that would otherwise be vectorized.
6012     // Although not strictly necessary, we give up on instructions we know will
6013     // already be scalar to avoid traversing chains that are unlikely to be
6014     // beneficial.
6015     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6016         isScalarAfterVectorization(I, VF))
6017       return false;
6018 
6019     // If the instruction is scalar with predication, it will be analyzed
6020     // separately. We ignore it within the context of PredInst.
6021     if (isScalarWithPredication(I))
6022       return false;
6023 
6024     // If any of the instruction's operands are uniform after vectorization,
6025     // the instruction cannot be scalarized. This prevents, for example, a
6026     // masked load from being scalarized.
6027     //
6028     // We assume we will only emit a value for lane zero of an instruction
6029     // marked uniform after vectorization, rather than VF identical values.
6030     // Thus, if we scalarize an instruction that uses a uniform, we would
6031     // create uses of values corresponding to the lanes we aren't emitting code
6032     // for. This behavior can be changed by allowing getScalarValue to clone
6033     // the lane zero values for uniforms rather than asserting.
6034     for (Use &U : I->operands())
6035       if (auto *J = dyn_cast<Instruction>(U.get()))
6036         if (isUniformAfterVectorization(J, VF))
6037           return false;
6038 
6039     // Otherwise, we can scalarize the instruction.
6040     return true;
6041   };
6042 
6043   // Compute the expected cost discount from scalarizing the entire expression
6044   // feeding the predicated instruction. We currently only consider expressions
6045   // that are single-use instruction chains.
6046   Worklist.push_back(PredInst);
6047   while (!Worklist.empty()) {
6048     Instruction *I = Worklist.pop_back_val();
6049 
6050     // If we've already analyzed the instruction, there's nothing to do.
6051     if (ScalarCosts.find(I) != ScalarCosts.end())
6052       continue;
6053 
6054     // Compute the cost of the vector instruction. Note that this cost already
6055     // includes the scalarization overhead of the predicated instruction.
6056     unsigned VectorCost = getInstructionCost(I, VF).first;
6057 
6058     // Compute the cost of the scalarized instruction. This cost is the cost of
6059     // the instruction as if it wasn't if-converted and instead remained in the
6060     // predicated block. We will scale this cost by block probability after
6061     // computing the scalarization overhead.
6062     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6063     unsigned ScalarCost =
6064         VF.getKnownMinValue() *
6065         getInstructionCost(I, ElementCount::getFixed(1)).first;
6066 
6067     // Compute the scalarization overhead of needed insertelement instructions
6068     // and phi nodes.
6069     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6070       ScalarCost += TTI.getScalarizationOverhead(
6071           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6072           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6073       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6074       ScalarCost +=
6075           VF.getKnownMinValue() *
6076           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6077     }
6078 
6079     // Compute the scalarization overhead of needed extractelement
6080     // instructions. For each of the instruction's operands, if the operand can
6081     // be scalarized, add it to the worklist; otherwise, account for the
6082     // overhead.
6083     for (Use &U : I->operands())
6084       if (auto *J = dyn_cast<Instruction>(U.get())) {
6085         assert(VectorType::isValidElementType(J->getType()) &&
6086                "Instruction has non-scalar type");
6087         if (canBeScalarized(J))
6088           Worklist.push_back(J);
6089         else if (needsExtract(J, VF)) {
6090           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6091           ScalarCost += TTI.getScalarizationOverhead(
6092               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6093               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6094         }
6095       }
6096 
6097     // Scale the total scalar cost by block probability.
6098     ScalarCost /= getReciprocalPredBlockProb();
6099 
6100     // Compute the discount. A non-negative discount means the vector version
6101     // of the instruction costs more, and scalarizing would be beneficial.
6102     Discount += VectorCost - ScalarCost;
6103     ScalarCosts[I] = ScalarCost;
6104   }
6105 
6106   return Discount;
6107 }
6108 
6109 LoopVectorizationCostModel::VectorizationCostTy
6110 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6111   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6112   VectorizationCostTy Cost;
6113 
6114   // For each block.
6115   for (BasicBlock *BB : TheLoop->blocks()) {
6116     VectorizationCostTy BlockCost;
6117 
6118     // For each instruction in the old loop.
6119     for (Instruction &I : BB->instructionsWithoutDebug()) {
6120       // Skip ignored values.
6121       if (ValuesToIgnore.count(&I) ||
6122           (VF.isVector() && VecValuesToIgnore.count(&I)))
6123         continue;
6124 
6125       VectorizationCostTy C = getInstructionCost(&I, VF);
6126 
6127       // Check if we should override the cost.
6128       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6129         C.first = ForceTargetInstructionCost;
6130 
6131       BlockCost.first += C.first;
6132       BlockCost.second |= C.second;
6133       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6134                         << " for VF " << VF << " For instruction: " << I
6135                         << '\n');
6136     }
6137 
6138     // If we are vectorizing a predicated block, it will have been
6139     // if-converted. This means that the block's instructions (aside from
6140     // stores and instructions that may divide by zero) will now be
6141     // unconditionally executed. For the scalar case, we may not always execute
6142     // the predicated block. Thus, scale the block's cost by the probability of
6143     // executing it.
6144     if (VF.isScalar() && blockNeedsPredication(BB))
6145       BlockCost.first /= getReciprocalPredBlockProb();
6146 
6147     Cost.first += BlockCost.first;
6148     Cost.second |= BlockCost.second;
6149   }
6150 
6151   return Cost;
6152 }
6153 
6154 /// Gets Address Access SCEV after verifying that the access pattern
6155 /// is loop invariant except the induction variable dependence.
6156 ///
6157 /// This SCEV can be sent to the Target in order to estimate the address
6158 /// calculation cost.
6159 static const SCEV *getAddressAccessSCEV(
6160               Value *Ptr,
6161               LoopVectorizationLegality *Legal,
6162               PredicatedScalarEvolution &PSE,
6163               const Loop *TheLoop) {
6164 
6165   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6166   if (!Gep)
6167     return nullptr;
6168 
6169   // We are looking for a gep with all loop invariant indices except for one
6170   // which should be an induction variable.
6171   auto SE = PSE.getSE();
6172   unsigned NumOperands = Gep->getNumOperands();
6173   for (unsigned i = 1; i < NumOperands; ++i) {
6174     Value *Opd = Gep->getOperand(i);
6175     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6176         !Legal->isInductionVariable(Opd))
6177       return nullptr;
6178   }
6179 
6180   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6181   return PSE.getSCEV(Ptr);
6182 }
6183 
6184 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6185   return Legal->hasStride(I->getOperand(0)) ||
6186          Legal->hasStride(I->getOperand(1));
6187 }
6188 
6189 unsigned
6190 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6191                                                         ElementCount VF) {
6192   assert(VF.isVector() &&
6193          "Scalarization cost of instruction implies vectorization.");
6194   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6195   Type *ValTy = getMemInstValueType(I);
6196   auto SE = PSE.getSE();
6197 
6198   unsigned AS = getLoadStoreAddressSpace(I);
6199   Value *Ptr = getLoadStorePointerOperand(I);
6200   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6201 
6202   // Figure out whether the access is strided and get the stride value
6203   // if it's known in compile time
6204   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6205 
6206   // Get the cost of the scalar memory instruction and address computation.
6207   unsigned Cost =
6208       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6209 
6210   // Don't pass *I here, since it is scalar but will actually be part of a
6211   // vectorized loop where the user of it is a vectorized instruction.
6212   const Align Alignment = getLoadStoreAlignment(I);
6213   Cost += VF.getKnownMinValue() *
6214           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6215                               AS, TTI::TCK_RecipThroughput);
6216 
6217   // Get the overhead of the extractelement and insertelement instructions
6218   // we might create due to scalarization.
6219   Cost += getScalarizationOverhead(I, VF);
6220 
6221   // If we have a predicated store, it may not be executed for each vector
6222   // lane. Scale the cost by the probability of executing the predicated
6223   // block.
6224   if (isPredicatedInst(I)) {
6225     Cost /= getReciprocalPredBlockProb();
6226 
6227     if (useEmulatedMaskMemRefHack(I))
6228       // Artificially setting to a high enough value to practically disable
6229       // vectorization with such operations.
6230       Cost = 3000000;
6231   }
6232 
6233   return Cost;
6234 }
6235 
6236 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6237                                                              ElementCount VF) {
6238   Type *ValTy = getMemInstValueType(I);
6239   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6240   Value *Ptr = getLoadStorePointerOperand(I);
6241   unsigned AS = getLoadStoreAddressSpace(I);
6242   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6243   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6244 
6245   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6246          "Stride should be 1 or -1 for consecutive memory access");
6247   const Align Alignment = getLoadStoreAlignment(I);
6248   unsigned Cost = 0;
6249   if (Legal->isMaskRequired(I))
6250     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6251                                       CostKind);
6252   else
6253     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6254                                 CostKind, I);
6255 
6256   bool Reverse = ConsecutiveStride < 0;
6257   if (Reverse)
6258     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6259   return Cost;
6260 }
6261 
6262 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6263                                                          ElementCount VF) {
6264   assert(Legal->isUniformMemOp(*I));
6265 
6266   Type *ValTy = getMemInstValueType(I);
6267   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6268   const Align Alignment = getLoadStoreAlignment(I);
6269   unsigned AS = getLoadStoreAddressSpace(I);
6270   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6271   if (isa<LoadInst>(I)) {
6272     return TTI.getAddressComputationCost(ValTy) +
6273            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6274                                CostKind) +
6275            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6276   }
6277   StoreInst *SI = cast<StoreInst>(I);
6278 
6279   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6280   return TTI.getAddressComputationCost(ValTy) +
6281          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6282                              CostKind) +
6283          (isLoopInvariantStoreValue
6284               ? 0
6285               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6286                                        VF.getKnownMinValue() - 1));
6287 }
6288 
6289 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6290                                                           ElementCount VF) {
6291   Type *ValTy = getMemInstValueType(I);
6292   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6293   const Align Alignment = getLoadStoreAlignment(I);
6294   const Value *Ptr = getLoadStorePointerOperand(I);
6295 
6296   return TTI.getAddressComputationCost(VectorTy) +
6297          TTI.getGatherScatterOpCost(
6298              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6299              TargetTransformInfo::TCK_RecipThroughput, I);
6300 }
6301 
6302 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6303                                                             ElementCount VF) {
6304   Type *ValTy = getMemInstValueType(I);
6305   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6306   unsigned AS = getLoadStoreAddressSpace(I);
6307 
6308   auto Group = getInterleavedAccessGroup(I);
6309   assert(Group && "Fail to get an interleaved access group.");
6310 
6311   unsigned InterleaveFactor = Group->getFactor();
6312   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6313   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6314 
6315   // Holds the indices of existing members in an interleaved load group.
6316   // An interleaved store group doesn't need this as it doesn't allow gaps.
6317   SmallVector<unsigned, 4> Indices;
6318   if (isa<LoadInst>(I)) {
6319     for (unsigned i = 0; i < InterleaveFactor; i++)
6320       if (Group->getMember(i))
6321         Indices.push_back(i);
6322   }
6323 
6324   // Calculate the cost of the whole interleaved group.
6325   bool UseMaskForGaps =
6326       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
6327   unsigned Cost = TTI.getInterleavedMemoryOpCost(
6328       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6329       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6330 
6331   if (Group->isReverse()) {
6332     // TODO: Add support for reversed masked interleaved access.
6333     assert(!Legal->isMaskRequired(I) &&
6334            "Reverse masked interleaved access not supported.");
6335     Cost += Group->getNumMembers() *
6336             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6337   }
6338   return Cost;
6339 }
6340 
6341 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6342                                                               ElementCount VF) {
6343   // Calculate scalar cost only. Vectorization cost should be ready at this
6344   // moment.
6345   if (VF.isScalar()) {
6346     Type *ValTy = getMemInstValueType(I);
6347     const Align Alignment = getLoadStoreAlignment(I);
6348     unsigned AS = getLoadStoreAddressSpace(I);
6349 
6350     return TTI.getAddressComputationCost(ValTy) +
6351            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6352                                TTI::TCK_RecipThroughput, I);
6353   }
6354   return getWideningCost(I, VF);
6355 }
6356 
6357 LoopVectorizationCostModel::VectorizationCostTy
6358 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6359                                                ElementCount VF) {
6360   assert(!VF.isScalable() &&
6361          "the cost model is not yet implemented for scalable vectorization");
6362   // If we know that this instruction will remain uniform, check the cost of
6363   // the scalar version.
6364   if (isUniformAfterVectorization(I, VF))
6365     VF = ElementCount::getFixed(1);
6366 
6367   if (VF.isVector() && isProfitableToScalarize(I, VF))
6368     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6369 
6370   // Forced scalars do not have any scalarization overhead.
6371   auto ForcedScalar = ForcedScalars.find(VF);
6372   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6373     auto InstSet = ForcedScalar->second;
6374     if (InstSet.count(I))
6375       return VectorizationCostTy(
6376           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6377            VF.getKnownMinValue()),
6378           false);
6379   }
6380 
6381   Type *VectorTy;
6382   unsigned C = getInstructionCost(I, VF, VectorTy);
6383 
6384   bool TypeNotScalarized =
6385       VF.isVector() && VectorTy->isVectorTy() &&
6386       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
6387   return VectorizationCostTy(C, TypeNotScalarized);
6388 }
6389 
6390 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6391                                                               ElementCount VF) {
6392 
6393   assert(!VF.isScalable() &&
6394          "cannot compute scalarization overhead for scalable vectorization");
6395   if (VF.isScalar())
6396     return 0;
6397 
6398   unsigned Cost = 0;
6399   Type *RetTy = ToVectorTy(I->getType(), VF);
6400   if (!RetTy->isVoidTy() &&
6401       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6402     Cost += TTI.getScalarizationOverhead(
6403         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
6404         true, false);
6405 
6406   // Some targets keep addresses scalar.
6407   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6408     return Cost;
6409 
6410   // Some targets support efficient element stores.
6411   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6412     return Cost;
6413 
6414   // Collect operands to consider.
6415   CallInst *CI = dyn_cast<CallInst>(I);
6416   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
6417 
6418   // Skip operands that do not require extraction/scalarization and do not incur
6419   // any overhead.
6420   return Cost + TTI.getOperandsScalarizationOverhead(
6421                     filterExtractingOperands(Ops, VF), VF.getKnownMinValue());
6422 }
6423 
6424 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6425   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6426   if (VF.isScalar())
6427     return;
6428   NumPredStores = 0;
6429   for (BasicBlock *BB : TheLoop->blocks()) {
6430     // For each instruction in the old loop.
6431     for (Instruction &I : *BB) {
6432       Value *Ptr =  getLoadStorePointerOperand(&I);
6433       if (!Ptr)
6434         continue;
6435 
6436       // TODO: We should generate better code and update the cost model for
6437       // predicated uniform stores. Today they are treated as any other
6438       // predicated store (see added test cases in
6439       // invariant-store-vectorization.ll).
6440       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6441         NumPredStores++;
6442 
6443       if (Legal->isUniformMemOp(I)) {
6444         // TODO: Avoid replicating loads and stores instead of
6445         // relying on instcombine to remove them.
6446         // Load: Scalar load + broadcast
6447         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6448         unsigned Cost = getUniformMemOpCost(&I, VF);
6449         setWideningDecision(&I, VF, CM_Scalarize, Cost);
6450         continue;
6451       }
6452 
6453       // We assume that widening is the best solution when possible.
6454       if (memoryInstructionCanBeWidened(&I, VF)) {
6455         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6456         int ConsecutiveStride =
6457                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6458         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6459                "Expected consecutive stride.");
6460         InstWidening Decision =
6461             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6462         setWideningDecision(&I, VF, Decision, Cost);
6463         continue;
6464       }
6465 
6466       // Choose between Interleaving, Gather/Scatter or Scalarization.
6467       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6468       unsigned NumAccesses = 1;
6469       if (isAccessInterleaved(&I)) {
6470         auto Group = getInterleavedAccessGroup(&I);
6471         assert(Group && "Fail to get an interleaved access group.");
6472 
6473         // Make one decision for the whole group.
6474         if (getWideningDecision(&I, VF) != CM_Unknown)
6475           continue;
6476 
6477         NumAccesses = Group->getNumMembers();
6478         if (interleavedAccessCanBeWidened(&I, VF))
6479           InterleaveCost = getInterleaveGroupCost(&I, VF);
6480       }
6481 
6482       unsigned GatherScatterCost =
6483           isLegalGatherOrScatter(&I)
6484               ? getGatherScatterCost(&I, VF) * NumAccesses
6485               : std::numeric_limits<unsigned>::max();
6486 
6487       unsigned ScalarizationCost =
6488           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6489 
6490       // Choose better solution for the current VF,
6491       // write down this decision and use it during vectorization.
6492       unsigned Cost;
6493       InstWidening Decision;
6494       if (InterleaveCost <= GatherScatterCost &&
6495           InterleaveCost < ScalarizationCost) {
6496         Decision = CM_Interleave;
6497         Cost = InterleaveCost;
6498       } else if (GatherScatterCost < ScalarizationCost) {
6499         Decision = CM_GatherScatter;
6500         Cost = GatherScatterCost;
6501       } else {
6502         Decision = CM_Scalarize;
6503         Cost = ScalarizationCost;
6504       }
6505       // If the instructions belongs to an interleave group, the whole group
6506       // receives the same decision. The whole group receives the cost, but
6507       // the cost will actually be assigned to one instruction.
6508       if (auto Group = getInterleavedAccessGroup(&I))
6509         setWideningDecision(Group, VF, Decision, Cost);
6510       else
6511         setWideningDecision(&I, VF, Decision, Cost);
6512     }
6513   }
6514 
6515   // Make sure that any load of address and any other address computation
6516   // remains scalar unless there is gather/scatter support. This avoids
6517   // inevitable extracts into address registers, and also has the benefit of
6518   // activating LSR more, since that pass can't optimize vectorized
6519   // addresses.
6520   if (TTI.prefersVectorizedAddressing())
6521     return;
6522 
6523   // Start with all scalar pointer uses.
6524   SmallPtrSet<Instruction *, 8> AddrDefs;
6525   for (BasicBlock *BB : TheLoop->blocks())
6526     for (Instruction &I : *BB) {
6527       Instruction *PtrDef =
6528         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6529       if (PtrDef && TheLoop->contains(PtrDef) &&
6530           getWideningDecision(&I, VF) != CM_GatherScatter)
6531         AddrDefs.insert(PtrDef);
6532     }
6533 
6534   // Add all instructions used to generate the addresses.
6535   SmallVector<Instruction *, 4> Worklist;
6536   for (auto *I : AddrDefs)
6537     Worklist.push_back(I);
6538   while (!Worklist.empty()) {
6539     Instruction *I = Worklist.pop_back_val();
6540     for (auto &Op : I->operands())
6541       if (auto *InstOp = dyn_cast<Instruction>(Op))
6542         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6543             AddrDefs.insert(InstOp).second)
6544           Worklist.push_back(InstOp);
6545   }
6546 
6547   for (auto *I : AddrDefs) {
6548     if (isa<LoadInst>(I)) {
6549       // Setting the desired widening decision should ideally be handled in
6550       // by cost functions, but since this involves the task of finding out
6551       // if the loaded register is involved in an address computation, it is
6552       // instead changed here when we know this is the case.
6553       InstWidening Decision = getWideningDecision(I, VF);
6554       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6555         // Scalarize a widened load of address.
6556         setWideningDecision(
6557             I, VF, CM_Scalarize,
6558             (VF.getKnownMinValue() *
6559              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6560       else if (auto Group = getInterleavedAccessGroup(I)) {
6561         // Scalarize an interleave group of address loads.
6562         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6563           if (Instruction *Member = Group->getMember(I))
6564             setWideningDecision(
6565                 Member, VF, CM_Scalarize,
6566                 (VF.getKnownMinValue() *
6567                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6568         }
6569       }
6570     } else
6571       // Make sure I gets scalarized and a cost estimate without
6572       // scalarization overhead.
6573       ForcedScalars[VF].insert(I);
6574   }
6575 }
6576 
6577 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6578                                                         ElementCount VF,
6579                                                         Type *&VectorTy) {
6580   Type *RetTy = I->getType();
6581   if (canTruncateToMinimalBitwidth(I, VF))
6582     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6583   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6584   auto SE = PSE.getSE();
6585   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6586 
6587   // TODO: We need to estimate the cost of intrinsic calls.
6588   switch (I->getOpcode()) {
6589   case Instruction::GetElementPtr:
6590     // We mark this instruction as zero-cost because the cost of GEPs in
6591     // vectorized code depends on whether the corresponding memory instruction
6592     // is scalarized or not. Therefore, we handle GEPs with the memory
6593     // instruction cost.
6594     return 0;
6595   case Instruction::Br: {
6596     // In cases of scalarized and predicated instructions, there will be VF
6597     // predicated blocks in the vectorized loop. Each branch around these
6598     // blocks requires also an extract of its vector compare i1 element.
6599     bool ScalarPredicatedBB = false;
6600     BranchInst *BI = cast<BranchInst>(I);
6601     if (VF.isVector() && BI->isConditional() &&
6602         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6603          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6604       ScalarPredicatedBB = true;
6605 
6606     if (ScalarPredicatedBB) {
6607       // Return cost for branches around scalarized and predicated blocks.
6608       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6609       auto *Vec_i1Ty =
6610           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6611       return (TTI.getScalarizationOverhead(
6612                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6613                   false, true) +
6614               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
6615                VF.getKnownMinValue()));
6616     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6617       // The back-edge branch will remain, as will all scalar branches.
6618       return TTI.getCFInstrCost(Instruction::Br, CostKind);
6619     else
6620       // This branch will be eliminated by if-conversion.
6621       return 0;
6622     // Note: We currently assume zero cost for an unconditional branch inside
6623     // a predicated block since it will become a fall-through, although we
6624     // may decide in the future to call TTI for all branches.
6625   }
6626   case Instruction::PHI: {
6627     auto *Phi = cast<PHINode>(I);
6628 
6629     // First-order recurrences are replaced by vector shuffles inside the loop.
6630     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6631     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
6632       return TTI.getShuffleCost(
6633           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
6634           VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
6635 
6636     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6637     // converted into select instructions. We require N - 1 selects per phi
6638     // node, where N is the number of incoming values.
6639     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
6640       return (Phi->getNumIncomingValues() - 1) *
6641              TTI.getCmpSelInstrCost(
6642                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
6643                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6644                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
6645 
6646     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6647   }
6648   case Instruction::UDiv:
6649   case Instruction::SDiv:
6650   case Instruction::URem:
6651   case Instruction::SRem:
6652     // If we have a predicated instruction, it may not be executed for each
6653     // vector lane. Get the scalarization cost and scale this amount by the
6654     // probability of executing the predicated block. If the instruction is not
6655     // predicated, we fall through to the next case.
6656     if (VF.isVector() && isScalarWithPredication(I)) {
6657       unsigned Cost = 0;
6658 
6659       // These instructions have a non-void type, so account for the phi nodes
6660       // that we will create. This cost is likely to be zero. The phi node
6661       // cost, if any, should be scaled by the block probability because it
6662       // models a copy at the end of each predicated block.
6663       Cost += VF.getKnownMinValue() *
6664               TTI.getCFInstrCost(Instruction::PHI, CostKind);
6665 
6666       // The cost of the non-predicated instruction.
6667       Cost += VF.getKnownMinValue() *
6668               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
6669 
6670       // The cost of insertelement and extractelement instructions needed for
6671       // scalarization.
6672       Cost += getScalarizationOverhead(I, VF);
6673 
6674       // Scale the cost by the probability of executing the predicated blocks.
6675       // This assumes the predicated block for each vector lane is equally
6676       // likely.
6677       return Cost / getReciprocalPredBlockProb();
6678     }
6679     LLVM_FALLTHROUGH;
6680   case Instruction::Add:
6681   case Instruction::FAdd:
6682   case Instruction::Sub:
6683   case Instruction::FSub:
6684   case Instruction::Mul:
6685   case Instruction::FMul:
6686   case Instruction::FDiv:
6687   case Instruction::FRem:
6688   case Instruction::Shl:
6689   case Instruction::LShr:
6690   case Instruction::AShr:
6691   case Instruction::And:
6692   case Instruction::Or:
6693   case Instruction::Xor: {
6694     // Since we will replace the stride by 1 the multiplication should go away.
6695     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6696       return 0;
6697     // Certain instructions can be cheaper to vectorize if they have a constant
6698     // second vector operand. One example of this are shifts on x86.
6699     Value *Op2 = I->getOperand(1);
6700     TargetTransformInfo::OperandValueProperties Op2VP;
6701     TargetTransformInfo::OperandValueKind Op2VK =
6702         TTI.getOperandInfo(Op2, Op2VP);
6703     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6704       Op2VK = TargetTransformInfo::OK_UniformValue;
6705 
6706     SmallVector<const Value *, 4> Operands(I->operand_values());
6707     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
6708     return N * TTI.getArithmeticInstrCost(
6709                    I->getOpcode(), VectorTy, CostKind,
6710                    TargetTransformInfo::OK_AnyValue,
6711                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6712   }
6713   case Instruction::FNeg: {
6714     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
6715     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
6716     return N * TTI.getArithmeticInstrCost(
6717                    I->getOpcode(), VectorTy, CostKind,
6718                    TargetTransformInfo::OK_AnyValue,
6719                    TargetTransformInfo::OK_AnyValue,
6720                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6721                    I->getOperand(0), I);
6722   }
6723   case Instruction::Select: {
6724     SelectInst *SI = cast<SelectInst>(I);
6725     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6726     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6727     Type *CondTy = SI->getCondition()->getType();
6728     if (!ScalarCond) {
6729       assert(!VF.isScalable() && "VF is assumed to be non scalable.");
6730       CondTy = VectorType::get(CondTy, VF);
6731     }
6732     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
6733                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
6734   }
6735   case Instruction::ICmp:
6736   case Instruction::FCmp: {
6737     Type *ValTy = I->getOperand(0)->getType();
6738     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6739     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6740       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6741     VectorTy = ToVectorTy(ValTy, VF);
6742     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
6743                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
6744   }
6745   case Instruction::Store:
6746   case Instruction::Load: {
6747     ElementCount Width = VF;
6748     if (Width.isVector()) {
6749       InstWidening Decision = getWideningDecision(I, Width);
6750       assert(Decision != CM_Unknown &&
6751              "CM decision should be taken at this point");
6752       if (Decision == CM_Scalarize)
6753         Width = ElementCount::getFixed(1);
6754     }
6755     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6756     return getMemoryInstructionCost(I, VF);
6757   }
6758   case Instruction::ZExt:
6759   case Instruction::SExt:
6760   case Instruction::FPToUI:
6761   case Instruction::FPToSI:
6762   case Instruction::FPExt:
6763   case Instruction::PtrToInt:
6764   case Instruction::IntToPtr:
6765   case Instruction::SIToFP:
6766   case Instruction::UIToFP:
6767   case Instruction::Trunc:
6768   case Instruction::FPTrunc:
6769   case Instruction::BitCast: {
6770     // Computes the CastContextHint from a Load/Store instruction.
6771     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6772       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6773              "Expected a load or a store!");
6774 
6775       if (VF.isScalar() || !TheLoop->contains(I))
6776         return TTI::CastContextHint::Normal;
6777 
6778       switch (getWideningDecision(I, VF)) {
6779       case LoopVectorizationCostModel::CM_GatherScatter:
6780         return TTI::CastContextHint::GatherScatter;
6781       case LoopVectorizationCostModel::CM_Interleave:
6782         return TTI::CastContextHint::Interleave;
6783       case LoopVectorizationCostModel::CM_Scalarize:
6784       case LoopVectorizationCostModel::CM_Widen:
6785         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
6786                                         : TTI::CastContextHint::Normal;
6787       case LoopVectorizationCostModel::CM_Widen_Reverse:
6788         return TTI::CastContextHint::Reversed;
6789       case LoopVectorizationCostModel::CM_Unknown:
6790         llvm_unreachable("Instr did not go through cost modelling?");
6791       }
6792 
6793       llvm_unreachable("Unhandled case!");
6794     };
6795 
6796     unsigned Opcode = I->getOpcode();
6797     TTI::CastContextHint CCH = TTI::CastContextHint::None;
6798     // For Trunc, the context is the only user, which must be a StoreInst.
6799     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6800       if (I->hasOneUse())
6801         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6802           CCH = ComputeCCH(Store);
6803     }
6804     // For Z/Sext, the context is the operand, which must be a LoadInst.
6805     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6806              Opcode == Instruction::FPExt) {
6807       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6808         CCH = ComputeCCH(Load);
6809     }
6810 
6811     // We optimize the truncation of induction variables having constant
6812     // integer steps. The cost of these truncations is the same as the scalar
6813     // operation.
6814     if (isOptimizableIVTruncate(I, VF)) {
6815       auto *Trunc = cast<TruncInst>(I);
6816       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6817                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
6818     }
6819 
6820     Type *SrcScalarTy = I->getOperand(0)->getType();
6821     Type *SrcVecTy =
6822         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6823     if (canTruncateToMinimalBitwidth(I, VF)) {
6824       // This cast is going to be shrunk. This may remove the cast or it might
6825       // turn it into slightly different cast. For example, if MinBW == 16,
6826       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6827       //
6828       // Calculate the modified src and dest types.
6829       Type *MinVecTy = VectorTy;
6830       if (Opcode == Instruction::Trunc) {
6831         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6832         VectorTy =
6833             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6834       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
6835         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6836         VectorTy =
6837             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6838       }
6839     }
6840 
6841     assert(!VF.isScalable() && "VF is assumed to be non scalable");
6842     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
6843     return N *
6844            TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6845   }
6846   case Instruction::Call: {
6847     bool NeedToScalarize;
6848     CallInst *CI = cast<CallInst>(I);
6849     unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6850     if (getVectorIntrinsicIDForCall(CI, TLI))
6851       return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6852     return CallCost;
6853   }
6854   default:
6855     // The cost of executing VF copies of the scalar instruction. This opcode
6856     // is unknown. Assume that it is the same as 'mul'.
6857     return VF.getKnownMinValue() * TTI.getArithmeticInstrCost(
6858                                        Instruction::Mul, VectorTy, CostKind) +
6859            getScalarizationOverhead(I, VF);
6860   } // end of switch.
6861 }
6862 
6863 char LoopVectorize::ID = 0;
6864 
6865 static const char lv_name[] = "Loop Vectorization";
6866 
6867 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6868 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6869 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6870 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6871 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6872 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6873 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6874 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6875 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6876 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6877 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6878 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6879 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6880 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6881 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
6882 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6883 
6884 namespace llvm {
6885 
6886 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6887 
6888 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6889                               bool VectorizeOnlyWhenForced) {
6890   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6891 }
6892 
6893 } // end namespace llvm
6894 
6895 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6896   // Check if the pointer operand of a load or store instruction is
6897   // consecutive.
6898   if (auto *Ptr = getLoadStorePointerOperand(Inst))
6899     return Legal->isConsecutivePtr(Ptr);
6900   return false;
6901 }
6902 
6903 void LoopVectorizationCostModel::collectValuesToIgnore() {
6904   // Ignore ephemeral values.
6905   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6906 
6907   // Ignore type-promoting instructions we identified during reduction
6908   // detection.
6909   for (auto &Reduction : Legal->getReductionVars()) {
6910     RecurrenceDescriptor &RedDes = Reduction.second;
6911     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6912     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6913   }
6914   // Ignore type-casting instructions we identified during induction
6915   // detection.
6916   for (auto &Induction : Legal->getInductionVars()) {
6917     InductionDescriptor &IndDes = Induction.second;
6918     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6919     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6920   }
6921 }
6922 
6923 void LoopVectorizationCostModel::collectInLoopReductions() {
6924   for (auto &Reduction : Legal->getReductionVars()) {
6925     PHINode *Phi = Reduction.first;
6926     RecurrenceDescriptor &RdxDesc = Reduction.second;
6927 
6928     // We don't collect reductions that are type promoted (yet).
6929     if (RdxDesc.getRecurrenceType() != Phi->getType())
6930       continue;
6931 
6932     // If the target would prefer this reduction to happen "in-loop", then we
6933     // want to record it as such.
6934     unsigned Opcode = RdxDesc.getRecurrenceBinOp();
6935     if (!PreferInLoopReductions &&
6936         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
6937                                    TargetTransformInfo::ReductionFlags()))
6938       continue;
6939 
6940     // Check that we can correctly put the reductions into the loop, by
6941     // finding the chain of operations that leads from the phi to the loop
6942     // exit value.
6943     SmallVector<Instruction *, 4> ReductionOperations =
6944         RdxDesc.getReductionOpChain(Phi, TheLoop);
6945     bool InLoop = !ReductionOperations.empty();
6946     if (InLoop)
6947       InLoopReductionChains[Phi] = ReductionOperations;
6948     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6949                       << " reduction for phi: " << *Phi << "\n");
6950   }
6951 }
6952 
6953 // TODO: we could return a pair of values that specify the max VF and
6954 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6955 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6956 // doesn't have a cost model that can choose which plan to execute if
6957 // more than one is generated.
6958 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6959                                  LoopVectorizationCostModel &CM) {
6960   unsigned WidestType;
6961   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6962   return WidestVectorRegBits / WidestType;
6963 }
6964 
6965 VectorizationFactor
6966 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
6967   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
6968   ElementCount VF = UserVF;
6969   // Outer loop handling: They may require CFG and instruction level
6970   // transformations before even evaluating whether vectorization is profitable.
6971   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6972   // the vectorization pipeline.
6973   if (!OrigLoop->isInnermost()) {
6974     // If the user doesn't provide a vectorization factor, determine a
6975     // reasonable one.
6976     if (UserVF.isZero()) {
6977       VF = ElementCount::getFixed(
6978           determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM));
6979       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6980 
6981       // Make sure we have a VF > 1 for stress testing.
6982       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6983         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6984                           << "overriding computed VF.\n");
6985         VF = ElementCount::getFixed(4);
6986       }
6987     }
6988     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6989     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
6990            "VF needs to be a power of two");
6991     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6992                       << "VF " << VF << " to build VPlans.\n");
6993     buildVPlans(VF, VF);
6994 
6995     // For VPlan build stress testing, we bail out after VPlan construction.
6996     if (VPlanBuildStressTest)
6997       return VectorizationFactor::Disabled();
6998 
6999     return {VF, 0 /*Cost*/};
7000   }
7001 
7002   LLVM_DEBUG(
7003       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7004                 "VPlan-native path.\n");
7005   return VectorizationFactor::Disabled();
7006 }
7007 
7008 Optional<VectorizationFactor>
7009 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7010   assert(!UserVF.isScalable() && "scalable vectorization not yet handled");
7011   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7012   Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
7013   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
7014     return None;
7015 
7016   // Invalidate interleave groups if all blocks of loop will be predicated.
7017   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7018       !useMaskedInterleavedAccesses(*TTI)) {
7019     LLVM_DEBUG(
7020         dbgs()
7021         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7022            "which requires masked-interleaved support.\n");
7023     if (CM.InterleaveInfo.invalidateGroups())
7024       // Invalidating interleave groups also requires invalidating all decisions
7025       // based on them, which includes widening decisions and uniform and scalar
7026       // values.
7027       CM.invalidateCostModelingDecisions();
7028   }
7029 
7030   if (!UserVF.isZero()) {
7031     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7032     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7033            "VF needs to be a power of two");
7034     // Collect the instructions (and their associated costs) that will be more
7035     // profitable to scalarize.
7036     CM.selectUserVectorizationFactor(UserVF);
7037     CM.collectInLoopReductions();
7038     buildVPlansWithVPRecipes(UserVF, UserVF);
7039     LLVM_DEBUG(printPlans(dbgs()));
7040     return {{UserVF, 0}};
7041   }
7042 
7043   ElementCount MaxVF = MaybeMaxVF.getValue();
7044   assert(MaxVF.isNonZero() && "MaxVF is zero.");
7045 
7046   for (ElementCount VF = ElementCount::getFixed(1);
7047        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7048     // Collect Uniform and Scalar instructions after vectorization with VF.
7049     CM.collectUniformsAndScalars(VF);
7050 
7051     // Collect the instructions (and their associated costs) that will be more
7052     // profitable to scalarize.
7053     if (VF.isVector())
7054       CM.collectInstsToScalarize(VF);
7055   }
7056 
7057   CM.collectInLoopReductions();
7058 
7059   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
7060   LLVM_DEBUG(printPlans(dbgs()));
7061   if (MaxVF.isScalar())
7062     return VectorizationFactor::Disabled();
7063 
7064   // Select the optimal vectorization factor.
7065   return CM.selectVectorizationFactor(MaxVF);
7066 }
7067 
7068 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
7069   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
7070                     << '\n');
7071   BestVF = VF;
7072   BestUF = UF;
7073 
7074   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7075     return !Plan->hasVF(VF);
7076   });
7077   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7078 }
7079 
7080 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7081                                            DominatorTree *DT) {
7082   // Perform the actual loop transformation.
7083 
7084   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7085   VPCallbackILV CallbackILV(ILV);
7086 
7087   assert(BestVF.hasValue() && "Vectorization Factor is missing");
7088 
7089   VPTransformState State{*BestVF, BestUF,      LI,
7090                          DT,      ILV.Builder, ILV.VectorLoopValueMap,
7091                          &ILV,    CallbackILV};
7092   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7093   State.TripCount = ILV.getOrCreateTripCount(nullptr);
7094   State.CanonicalIV = ILV.Induction;
7095 
7096   //===------------------------------------------------===//
7097   //
7098   // Notice: any optimization or new instruction that go
7099   // into the code below should also be implemented in
7100   // the cost-model.
7101   //
7102   //===------------------------------------------------===//
7103 
7104   // 2. Copy and widen instructions from the old loop into the new loop.
7105   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7106   VPlans.front()->execute(&State);
7107 
7108   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7109   //    predication, updating analyses.
7110   ILV.fixVectorizedLoop();
7111 }
7112 
7113 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7114     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7115   BasicBlock *Latch = OrigLoop->getLoopLatch();
7116 
7117   // We create new control-flow for the vectorized loop, so the original
7118   // condition will be dead after vectorization if it's only used by the
7119   // branch.
7120   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
7121   if (Cmp && Cmp->hasOneUse()) {
7122     DeadInstructions.insert(Cmp);
7123 
7124     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7125     for (Value *Op : Cmp->operands()) {
7126       if (isa<TruncInst>(Op) && Op->hasOneUse())
7127           DeadInstructions.insert(cast<Instruction>(Op));
7128     }
7129   }
7130 
7131   // We create new "steps" for induction variable updates to which the original
7132   // induction variables map. An original update instruction will be dead if
7133   // all its users except the induction variable are dead.
7134   for (auto &Induction : Legal->getInductionVars()) {
7135     PHINode *Ind = Induction.first;
7136     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7137 
7138     // If the tail is to be folded by masking, the primary induction variable,
7139     // if exists, isn't dead: it will be used for masking. Don't kill it.
7140     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7141       continue;
7142 
7143     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7144           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7145         }))
7146       DeadInstructions.insert(IndUpdate);
7147 
7148     // We record as "Dead" also the type-casting instructions we had identified
7149     // during induction analysis. We don't need any handling for them in the
7150     // vectorized loop because we have proven that, under a proper runtime
7151     // test guarding the vectorized loop, the value of the phi, and the casted
7152     // value of the phi, are the same. The last instruction in this casting chain
7153     // will get its scalar/vector/widened def from the scalar/vector/widened def
7154     // of the respective phi node. Any other casts in the induction def-use chain
7155     // have no other uses outside the phi update chain, and will be ignored.
7156     InductionDescriptor &IndDes = Induction.second;
7157     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7158     DeadInstructions.insert(Casts.begin(), Casts.end());
7159   }
7160 }
7161 
7162 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7163 
7164 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7165 
7166 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7167                                         Instruction::BinaryOps BinOp) {
7168   // When unrolling and the VF is 1, we only need to add a simple scalar.
7169   Type *Ty = Val->getType();
7170   assert(!Ty->isVectorTy() && "Val must be a scalar");
7171 
7172   if (Ty->isFloatingPointTy()) {
7173     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7174 
7175     // Floating point operations had to be 'fast' to enable the unrolling.
7176     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
7177     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
7178   }
7179   Constant *C = ConstantInt::get(Ty, StartIdx);
7180   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7181 }
7182 
7183 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7184   SmallVector<Metadata *, 4> MDs;
7185   // Reserve first location for self reference to the LoopID metadata node.
7186   MDs.push_back(nullptr);
7187   bool IsUnrollMetadata = false;
7188   MDNode *LoopID = L->getLoopID();
7189   if (LoopID) {
7190     // First find existing loop unrolling disable metadata.
7191     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7192       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7193       if (MD) {
7194         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7195         IsUnrollMetadata =
7196             S && S->getString().startswith("llvm.loop.unroll.disable");
7197       }
7198       MDs.push_back(LoopID->getOperand(i));
7199     }
7200   }
7201 
7202   if (!IsUnrollMetadata) {
7203     // Add runtime unroll disable metadata.
7204     LLVMContext &Context = L->getHeader()->getContext();
7205     SmallVector<Metadata *, 1> DisableOperands;
7206     DisableOperands.push_back(
7207         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7208     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7209     MDs.push_back(DisableNode);
7210     MDNode *NewLoopID = MDNode::get(Context, MDs);
7211     // Set operand 0 to refer to the loop id itself.
7212     NewLoopID->replaceOperandWith(0, NewLoopID);
7213     L->setLoopID(NewLoopID);
7214   }
7215 }
7216 
7217 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7218     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7219   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7220   bool PredicateAtRangeStart = Predicate(Range.Start);
7221 
7222   for (ElementCount TmpVF = Range.Start * 2;
7223        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7224     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7225       Range.End = TmpVF;
7226       break;
7227     }
7228 
7229   return PredicateAtRangeStart;
7230 }
7231 
7232 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7233 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7234 /// of VF's starting at a given VF and extending it as much as possible. Each
7235 /// vectorization decision can potentially shorten this sub-range during
7236 /// buildVPlan().
7237 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
7238                                            ElementCount MaxVF) {
7239   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7240   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7241     VFRange SubRange = {VF, MaxVFPlusOne};
7242     VPlans.push_back(buildVPlan(SubRange));
7243     VF = SubRange.End;
7244   }
7245 }
7246 
7247 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
7248                                          VPlanPtr &Plan) {
7249   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
7250 
7251   // Look for cached value.
7252   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
7253   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
7254   if (ECEntryIt != EdgeMaskCache.end())
7255     return ECEntryIt->second;
7256 
7257   VPValue *SrcMask = createBlockInMask(Src, Plan);
7258 
7259   // The terminator has to be a branch inst!
7260   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
7261   assert(BI && "Unexpected terminator found");
7262 
7263   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
7264     return EdgeMaskCache[Edge] = SrcMask;
7265 
7266   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
7267   assert(EdgeMask && "No Edge Mask found for condition");
7268 
7269   if (BI->getSuccessor(0) != Dst)
7270     EdgeMask = Builder.createNot(EdgeMask);
7271 
7272   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
7273     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
7274 
7275   return EdgeMaskCache[Edge] = EdgeMask;
7276 }
7277 
7278 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
7279   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
7280 
7281   // Look for cached value.
7282   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
7283   if (BCEntryIt != BlockMaskCache.end())
7284     return BCEntryIt->second;
7285 
7286   // All-one mask is modelled as no-mask following the convention for masked
7287   // load/store/gather/scatter. Initialize BlockMask to no-mask.
7288   VPValue *BlockMask = nullptr;
7289 
7290   if (OrigLoop->getHeader() == BB) {
7291     if (!CM.blockNeedsPredication(BB))
7292       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
7293 
7294     // Create the block in mask as the first non-phi instruction in the block.
7295     VPBuilder::InsertPointGuard Guard(Builder);
7296     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
7297     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
7298 
7299     // Introduce the early-exit compare IV <= BTC to form header block mask.
7300     // This is used instead of IV < TC because TC may wrap, unlike BTC.
7301     // Start by constructing the desired canonical IV.
7302     VPValue *IV = nullptr;
7303     if (Legal->getPrimaryInduction())
7304       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
7305     else {
7306       auto IVRecipe = new VPWidenCanonicalIVRecipe();
7307       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
7308       IV = IVRecipe->getVPValue();
7309     }
7310     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
7311     bool TailFolded = !CM.isScalarEpilogueAllowed();
7312 
7313     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
7314       // While ActiveLaneMask is a binary op that consumes the loop tripcount
7315       // as a second argument, we only pass the IV here and extract the
7316       // tripcount from the transform state where codegen of the VP instructions
7317       // happen.
7318       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
7319     } else {
7320       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
7321     }
7322     return BlockMaskCache[BB] = BlockMask;
7323   }
7324 
7325   // This is the block mask. We OR all incoming edges.
7326   for (auto *Predecessor : predecessors(BB)) {
7327     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
7328     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
7329       return BlockMaskCache[BB] = EdgeMask;
7330 
7331     if (!BlockMask) { // BlockMask has its initialized nullptr value.
7332       BlockMask = EdgeMask;
7333       continue;
7334     }
7335 
7336     BlockMask = Builder.createOr(BlockMask, EdgeMask);
7337   }
7338 
7339   return BlockMaskCache[BB] = BlockMask;
7340 }
7341 
7342 VPWidenMemoryInstructionRecipe *
7343 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
7344                                   VPlanPtr &Plan) {
7345   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7346          "Must be called with either a load or store");
7347 
7348   auto willWiden = [&](ElementCount VF) -> bool {
7349     assert(!VF.isScalable() && "unexpected scalable ElementCount");
7350     if (VF.isScalar())
7351       return false;
7352     LoopVectorizationCostModel::InstWidening Decision =
7353         CM.getWideningDecision(I, VF);
7354     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
7355            "CM decision should be taken at this point.");
7356     if (Decision == LoopVectorizationCostModel::CM_Interleave)
7357       return true;
7358     if (CM.isScalarAfterVectorization(I, VF) ||
7359         CM.isProfitableToScalarize(I, VF))
7360       return false;
7361     return Decision != LoopVectorizationCostModel::CM_Scalarize;
7362   };
7363 
7364   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
7365     return nullptr;
7366 
7367   VPValue *Mask = nullptr;
7368   if (Legal->isMaskRequired(I))
7369     Mask = createBlockInMask(I->getParent(), Plan);
7370 
7371   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
7372   if (LoadInst *Load = dyn_cast<LoadInst>(I))
7373     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
7374 
7375   StoreInst *Store = cast<StoreInst>(I);
7376   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
7377   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
7378 }
7379 
7380 VPWidenIntOrFpInductionRecipe *
7381 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const {
7382   // Check if this is an integer or fp induction. If so, build the recipe that
7383   // produces its scalar and vector values.
7384   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
7385   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
7386       II.getKind() == InductionDescriptor::IK_FpInduction)
7387     return new VPWidenIntOrFpInductionRecipe(Phi);
7388 
7389   return nullptr;
7390 }
7391 
7392 VPWidenIntOrFpInductionRecipe *
7393 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I,
7394                                                 VFRange &Range) const {
7395   // Optimize the special case where the source is a constant integer
7396   // induction variable. Notice that we can only optimize the 'trunc' case
7397   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7398   // (c) other casts depend on pointer size.
7399 
7400   // Determine whether \p K is a truncation based on an induction variable that
7401   // can be optimized.
7402   auto isOptimizableIVTruncate =
7403       [&](Instruction *K) -> std::function<bool(ElementCount)> {
7404     return [=](ElementCount VF) -> bool {
7405       return CM.isOptimizableIVTruncate(K, VF);
7406     };
7407   };
7408 
7409   if (LoopVectorizationPlanner::getDecisionAndClampRange(
7410           isOptimizableIVTruncate(I), Range))
7411     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
7412                                              I);
7413   return nullptr;
7414 }
7415 
7416 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
7417   // We know that all PHIs in non-header blocks are converted into selects, so
7418   // we don't have to worry about the insertion order and we can just use the
7419   // builder. At this point we generate the predication tree. There may be
7420   // duplications since this is a simple recursive scan, but future
7421   // optimizations will clean it up.
7422 
7423   SmallVector<VPValue *, 2> Operands;
7424   unsigned NumIncoming = Phi->getNumIncomingValues();
7425   for (unsigned In = 0; In < NumIncoming; In++) {
7426     VPValue *EdgeMask =
7427       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
7428     assert((EdgeMask || NumIncoming == 1) &&
7429            "Multiple predecessors with one having a full mask");
7430     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
7431     if (EdgeMask)
7432       Operands.push_back(EdgeMask);
7433   }
7434   return new VPBlendRecipe(Phi, Operands);
7435 }
7436 
7437 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
7438                                                    VPlan &Plan) const {
7439 
7440   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7441       [this, CI](ElementCount VF) {
7442         return CM.isScalarWithPredication(CI, VF);
7443       },
7444       Range);
7445 
7446   if (IsPredicated)
7447     return nullptr;
7448 
7449   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7450   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7451              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7452              ID == Intrinsic::pseudoprobe))
7453     return nullptr;
7454 
7455   auto willWiden = [&](ElementCount VF) -> bool {
7456     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7457     // The following case may be scalarized depending on the VF.
7458     // The flag shows whether we use Intrinsic or a usual Call for vectorized
7459     // version of the instruction.
7460     // Is it beneficial to perform intrinsic call compared to lib call?
7461     bool NeedToScalarize = false;
7462     unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
7463     bool UseVectorIntrinsic =
7464         ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
7465     return UseVectorIntrinsic || !NeedToScalarize;
7466   };
7467 
7468   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
7469     return nullptr;
7470 
7471   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
7472 }
7473 
7474 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7475   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
7476          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7477   // Instruction should be widened, unless it is scalar after vectorization,
7478   // scalarization is profitable or it is predicated.
7479   auto WillScalarize = [this, I](ElementCount VF) -> bool {
7480     return CM.isScalarAfterVectorization(I, VF) ||
7481            CM.isProfitableToScalarize(I, VF) ||
7482            CM.isScalarWithPredication(I, VF);
7483   };
7484   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
7485                                                              Range);
7486 }
7487 
7488 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
7489   auto IsVectorizableOpcode = [](unsigned Opcode) {
7490     switch (Opcode) {
7491     case Instruction::Add:
7492     case Instruction::And:
7493     case Instruction::AShr:
7494     case Instruction::BitCast:
7495     case Instruction::FAdd:
7496     case Instruction::FCmp:
7497     case Instruction::FDiv:
7498     case Instruction::FMul:
7499     case Instruction::FNeg:
7500     case Instruction::FPExt:
7501     case Instruction::FPToSI:
7502     case Instruction::FPToUI:
7503     case Instruction::FPTrunc:
7504     case Instruction::FRem:
7505     case Instruction::FSub:
7506     case Instruction::ICmp:
7507     case Instruction::IntToPtr:
7508     case Instruction::LShr:
7509     case Instruction::Mul:
7510     case Instruction::Or:
7511     case Instruction::PtrToInt:
7512     case Instruction::SDiv:
7513     case Instruction::Select:
7514     case Instruction::SExt:
7515     case Instruction::Shl:
7516     case Instruction::SIToFP:
7517     case Instruction::SRem:
7518     case Instruction::Sub:
7519     case Instruction::Trunc:
7520     case Instruction::UDiv:
7521     case Instruction::UIToFP:
7522     case Instruction::URem:
7523     case Instruction::Xor:
7524     case Instruction::ZExt:
7525       return true;
7526     }
7527     return false;
7528   };
7529 
7530   if (!IsVectorizableOpcode(I->getOpcode()))
7531     return nullptr;
7532 
7533   // Success: widen this instruction.
7534   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
7535 }
7536 
7537 VPBasicBlock *VPRecipeBuilder::handleReplication(
7538     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7539     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7540     VPlanPtr &Plan) {
7541   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
7542       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7543       Range);
7544 
7545   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7546       [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); },
7547       Range);
7548 
7549   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
7550                                        IsUniform, IsPredicated);
7551   setRecipe(I, Recipe);
7552 
7553   // Find if I uses a predicated instruction. If so, it will use its scalar
7554   // value. Avoid hoisting the insert-element which packs the scalar value into
7555   // a vector value, as that happens iff all users use the vector value.
7556   for (auto &Op : I->operands())
7557     if (auto *PredInst = dyn_cast<Instruction>(Op))
7558       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7559         PredInst2Recipe[PredInst]->setAlsoPack(false);
7560 
7561   // Finalize the recipe for Instr, first if it is not predicated.
7562   if (!IsPredicated) {
7563     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7564     VPBB->appendRecipe(Recipe);
7565     return VPBB;
7566   }
7567   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7568   assert(VPBB->getSuccessors().empty() &&
7569          "VPBB has successors when handling predicated replication.");
7570   // Record predicated instructions for above packing optimizations.
7571   PredInst2Recipe[I] = Recipe;
7572   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7573   VPBlockUtils::insertBlockAfter(Region, VPBB);
7574   auto *RegSucc = new VPBasicBlock();
7575   VPBlockUtils::insertBlockAfter(RegSucc, Region);
7576   return RegSucc;
7577 }
7578 
7579 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7580                                                       VPRecipeBase *PredRecipe,
7581                                                       VPlanPtr &Plan) {
7582   // Instructions marked for predication are replicated and placed under an
7583   // if-then construct to prevent side-effects.
7584 
7585   // Generate recipes to compute the block mask for this region.
7586   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7587 
7588   // Build the triangular if-then region.
7589   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7590   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7591   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7592   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7593   auto *PHIRecipe =
7594       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7595   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7596   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7597   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7598 
7599   // Note: first set Entry as region entry and then connect successors starting
7600   // from it in order, to propagate the "parent" of each VPBasicBlock.
7601   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7602   VPBlockUtils::connectBlocks(Pred, Exit);
7603 
7604   return Region;
7605 }
7606 
7607 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
7608                                                       VFRange &Range,
7609                                                       VPlanPtr &Plan) {
7610   // First, check for specific widening recipes that deal with calls, memory
7611   // operations, inductions and Phi nodes.
7612   if (auto *CI = dyn_cast<CallInst>(Instr))
7613     return tryToWidenCall(CI, Range, *Plan);
7614 
7615   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
7616     return tryToWidenMemory(Instr, Range, Plan);
7617 
7618   VPRecipeBase *Recipe;
7619   if (auto Phi = dyn_cast<PHINode>(Instr)) {
7620     if (Phi->getParent() != OrigLoop->getHeader())
7621       return tryToBlend(Phi, Plan);
7622     if ((Recipe = tryToOptimizeInductionPHI(Phi)))
7623       return Recipe;
7624     return new VPWidenPHIRecipe(Phi);
7625   }
7626 
7627   if (isa<TruncInst>(Instr) &&
7628       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range)))
7629     return Recipe;
7630 
7631   if (!shouldWiden(Instr, Range))
7632     return nullptr;
7633 
7634   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
7635     return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()),
7636                                 OrigLoop);
7637 
7638   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
7639     bool InvariantCond =
7640         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
7641     return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()),
7642                                    InvariantCond);
7643   }
7644 
7645   return tryToWiden(Instr, *Plan);
7646 }
7647 
7648 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
7649                                                         ElementCount MaxVF) {
7650   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7651 
7652   // Collect instructions from the original loop that will become trivially dead
7653   // in the vectorized loop. We don't need to vectorize these instructions. For
7654   // example, original induction update instructions can become dead because we
7655   // separately emit induction "steps" when generating code for the new loop.
7656   // Similarly, we create a new latch condition when setting up the structure
7657   // of the new loop, so the old one can become dead.
7658   SmallPtrSet<Instruction *, 4> DeadInstructions;
7659   collectTriviallyDeadInstructions(DeadInstructions);
7660 
7661   // Add assume instructions we need to drop to DeadInstructions, to prevent
7662   // them from being added to the VPlan.
7663   // TODO: We only need to drop assumes in blocks that get flattend. If the
7664   // control flow is preserved, we should keep them.
7665   auto &ConditionalAssumes = Legal->getConditionalAssumes();
7666   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
7667 
7668   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7669   // Dead instructions do not need sinking. Remove them from SinkAfter.
7670   for (Instruction *I : DeadInstructions)
7671     SinkAfter.erase(I);
7672 
7673   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7674   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7675     VFRange SubRange = {VF, MaxVFPlusOne};
7676     VPlans.push_back(
7677         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
7678     VF = SubRange.End;
7679   }
7680 }
7681 
7682 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7683     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
7684     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7685 
7686   // Hold a mapping from predicated instructions to their recipes, in order to
7687   // fix their AlsoPack behavior if a user is determined to replicate and use a
7688   // scalar instead of vector value.
7689   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7690 
7691   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7692 
7693   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
7694 
7695   // ---------------------------------------------------------------------------
7696   // Pre-construction: record ingredients whose recipes we'll need to further
7697   // process after constructing the initial VPlan.
7698   // ---------------------------------------------------------------------------
7699 
7700   // Mark instructions we'll need to sink later and their targets as
7701   // ingredients whose recipe we'll need to record.
7702   for (auto &Entry : SinkAfter) {
7703     RecipeBuilder.recordRecipeOf(Entry.first);
7704     RecipeBuilder.recordRecipeOf(Entry.second);
7705   }
7706   for (auto &Reduction : CM.getInLoopReductionChains()) {
7707     PHINode *Phi = Reduction.first;
7708     RecurrenceDescriptor::RecurrenceKind Kind =
7709         Legal->getReductionVars()[Phi].getRecurrenceKind();
7710     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
7711 
7712     RecipeBuilder.recordRecipeOf(Phi);
7713     for (auto &R : ReductionOperations) {
7714       RecipeBuilder.recordRecipeOf(R);
7715       // For min/max reducitons, where we have a pair of icmp/select, we also
7716       // need to record the ICmp recipe, so it can be removed later.
7717       if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
7718           Kind == RecurrenceDescriptor::RK_FloatMinMax) {
7719         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
7720       }
7721     }
7722   }
7723 
7724   // For each interleave group which is relevant for this (possibly trimmed)
7725   // Range, add it to the set of groups to be later applied to the VPlan and add
7726   // placeholders for its members' Recipes which we'll be replacing with a
7727   // single VPInterleaveRecipe.
7728   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7729     auto applyIG = [IG, this](ElementCount VF) -> bool {
7730       return (VF.isVector() && // Query is illegal for VF == 1
7731               CM.getWideningDecision(IG->getInsertPos(), VF) ==
7732                   LoopVectorizationCostModel::CM_Interleave);
7733     };
7734     if (!getDecisionAndClampRange(applyIG, Range))
7735       continue;
7736     InterleaveGroups.insert(IG);
7737     for (unsigned i = 0; i < IG->getFactor(); i++)
7738       if (Instruction *Member = IG->getMember(i))
7739         RecipeBuilder.recordRecipeOf(Member);
7740   };
7741 
7742   // ---------------------------------------------------------------------------
7743   // Build initial VPlan: Scan the body of the loop in a topological order to
7744   // visit each basic block after having visited its predecessor basic blocks.
7745   // ---------------------------------------------------------------------------
7746 
7747   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7748   auto Plan = std::make_unique<VPlan>();
7749   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7750   Plan->setEntry(VPBB);
7751 
7752   // Scan the body of the loop in a topological order to visit each basic block
7753   // after having visited its predecessor basic blocks.
7754   LoopBlocksDFS DFS(OrigLoop);
7755   DFS.perform(LI);
7756 
7757   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7758     // Relevant instructions from basic block BB will be grouped into VPRecipe
7759     // ingredients and fill a new VPBasicBlock.
7760     unsigned VPBBsForBB = 0;
7761     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7762     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7763     VPBB = FirstVPBBForBB;
7764     Builder.setInsertPoint(VPBB);
7765 
7766     // Introduce each ingredient into VPlan.
7767     // TODO: Model and preserve debug instrinsics in VPlan.
7768     for (Instruction &I : BB->instructionsWithoutDebug()) {
7769       Instruction *Instr = &I;
7770 
7771       // First filter out irrelevant instructions, to ensure no recipes are
7772       // built for them.
7773       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
7774         continue;
7775 
7776       if (auto Recipe =
7777               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
7778         // Check if the recipe can be converted to a VPValue. We need the extra
7779         // down-casting step until VPRecipeBase inherits from VPValue.
7780         VPValue *MaybeVPValue = Recipe->toVPValue();
7781         if (!Instr->getType()->isVoidTy() && MaybeVPValue)
7782           Plan->addVPValue(Instr, MaybeVPValue);
7783 
7784         RecipeBuilder.setRecipe(Instr, Recipe);
7785         VPBB->appendRecipe(Recipe);
7786         continue;
7787       }
7788 
7789       // Otherwise, if all widening options failed, Instruction is to be
7790       // replicated. This may create a successor for VPBB.
7791       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7792           Instr, Range, VPBB, PredInst2Recipe, Plan);
7793       if (NextVPBB != VPBB) {
7794         VPBB = NextVPBB;
7795         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7796                                     : "");
7797       }
7798     }
7799   }
7800 
7801   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7802   // may also be empty, such as the last one VPBB, reflecting original
7803   // basic-blocks with no recipes.
7804   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7805   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7806   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7807   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7808   delete PreEntry;
7809 
7810   // ---------------------------------------------------------------------------
7811   // Transform initial VPlan: Apply previously taken decisions, in order, to
7812   // bring the VPlan to its final state.
7813   // ---------------------------------------------------------------------------
7814 
7815   // Apply Sink-After legal constraints.
7816   for (auto &Entry : SinkAfter) {
7817     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7818     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7819     Sink->moveAfter(Target);
7820   }
7821 
7822   // Interleave memory: for each Interleave Group we marked earlier as relevant
7823   // for this VPlan, replace the Recipes widening its memory instructions with a
7824   // single VPInterleaveRecipe at its insertion point.
7825   for (auto IG : InterleaveGroups) {
7826     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7827         RecipeBuilder.getRecipe(IG->getInsertPos()));
7828     (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7829         ->insertBefore(Recipe);
7830 
7831     for (unsigned i = 0; i < IG->getFactor(); ++i)
7832       if (Instruction *Member = IG->getMember(i)) {
7833         if (!Member->getType()->isVoidTy()) {
7834           VPValue *OriginalV = Plan->getVPValue(Member);
7835           Plan->removeVPValueFor(Member);
7836           OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member));
7837         }
7838         RecipeBuilder.getRecipe(Member)->eraseFromParent();
7839       }
7840   }
7841 
7842   // Adjust the recipes for any inloop reductions.
7843   if (Range.Start.isVector())
7844     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
7845 
7846   // Finally, if tail is folded by masking, introduce selects between the phi
7847   // and the live-out instruction of each reduction, at the end of the latch.
7848   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
7849     Builder.setInsertPoint(VPBB);
7850     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7851     for (auto &Reduction : Legal->getReductionVars()) {
7852       if (CM.isInLoopReduction(Reduction.first))
7853         continue;
7854       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
7855       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
7856       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7857     }
7858   }
7859 
7860   std::string PlanName;
7861   raw_string_ostream RSO(PlanName);
7862   ElementCount VF = Range.Start;
7863   Plan->addVF(VF);
7864   RSO << "Initial VPlan for VF={" << VF;
7865   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
7866     Plan->addVF(VF);
7867     RSO << "," << VF;
7868   }
7869   RSO << "},UF>=1";
7870   RSO.flush();
7871   Plan->setName(PlanName);
7872 
7873   return Plan;
7874 }
7875 
7876 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7877   // Outer loop handling: They may require CFG and instruction level
7878   // transformations before even evaluating whether vectorization is profitable.
7879   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7880   // the vectorization pipeline.
7881   assert(!OrigLoop->isInnermost());
7882   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7883 
7884   // Create new empty VPlan
7885   auto Plan = std::make_unique<VPlan>();
7886 
7887   // Build hierarchical CFG
7888   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7889   HCFGBuilder.buildHierarchicalCFG();
7890 
7891   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
7892        VF *= 2)
7893     Plan->addVF(VF);
7894 
7895   if (EnableVPlanPredication) {
7896     VPlanPredicator VPP(*Plan);
7897     VPP.predicate();
7898 
7899     // Avoid running transformation to recipes until masked code generation in
7900     // VPlan-native path is in place.
7901     return Plan;
7902   }
7903 
7904   SmallPtrSet<Instruction *, 1> DeadInstructions;
7905   VPlanTransforms::VPInstructionsToVPRecipes(
7906       OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7907   return Plan;
7908 }
7909 
7910 // Adjust the recipes for any inloop reductions. The chain of instructions
7911 // leading from the loop exit instr to the phi need to be converted to
7912 // reductions, with one operand being vector and the other being the scalar
7913 // reduction chain.
7914 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
7915     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
7916   for (auto &Reduction : CM.getInLoopReductionChains()) {
7917     PHINode *Phi = Reduction.first;
7918     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
7919     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
7920 
7921     // ReductionOperations are orders top-down from the phi's use to the
7922     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
7923     // which of the two operands will remain scalar and which will be reduced.
7924     // For minmax the chain will be the select instructions.
7925     Instruction *Chain = Phi;
7926     for (Instruction *R : ReductionOperations) {
7927       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
7928       RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind();
7929 
7930       VPValue *ChainOp = Plan->getVPValue(Chain);
7931       unsigned FirstOpId;
7932       if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
7933           Kind == RecurrenceDescriptor::RK_FloatMinMax) {
7934         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
7935                "Expected to replace a VPWidenSelectSC");
7936         FirstOpId = 1;
7937       } else {
7938         assert(isa<VPWidenRecipe>(WidenRecipe) &&
7939                "Expected to replace a VPWidenSC");
7940         FirstOpId = 0;
7941       }
7942       unsigned VecOpId =
7943           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
7944       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
7945 
7946       auto *CondOp = CM.foldTailByMasking()
7947                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
7948                          : nullptr;
7949       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
7950           &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI);
7951       WidenRecipe->toVPValue()->replaceAllUsesWith(RedRecipe);
7952       Plan->removeVPValueFor(R);
7953       Plan->addVPValue(R, RedRecipe);
7954       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
7955       WidenRecipe->eraseFromParent();
7956 
7957       if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
7958           Kind == RecurrenceDescriptor::RK_FloatMinMax) {
7959         VPRecipeBase *CompareRecipe =
7960             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
7961         assert(isa<VPWidenRecipe>(CompareRecipe) &&
7962                "Expected to replace a VPWidenSC");
7963         assert(CompareRecipe->toVPValue()->getNumUsers() == 0 &&
7964                "Expected no remaining users");
7965         CompareRecipe->eraseFromParent();
7966       }
7967       Chain = R;
7968     }
7969   }
7970 }
7971 
7972 Value* LoopVectorizationPlanner::VPCallbackILV::
7973 getOrCreateVectorValues(Value *V, unsigned Part) {
7974       return ILV.getOrCreateVectorValue(V, Part);
7975 }
7976 
7977 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7978     Value *V, const VPIteration &Instance) {
7979   return ILV.getOrCreateScalarValue(V, Instance);
7980 }
7981 
7982 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
7983                                VPSlotTracker &SlotTracker) const {
7984   O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7985   IG->getInsertPos()->printAsOperand(O, false);
7986   O << ", ";
7987   getAddr()->printAsOperand(O, SlotTracker);
7988   VPValue *Mask = getMask();
7989   if (Mask) {
7990     O << ", ";
7991     Mask->printAsOperand(O, SlotTracker);
7992   }
7993   for (unsigned i = 0; i < IG->getFactor(); ++i)
7994     if (Instruction *I = IG->getMember(i))
7995       O << "\\l\" +\n" << Indent << "\"  " << VPlanIngredient(I) << " " << i;
7996 }
7997 
7998 void VPWidenCallRecipe::execute(VPTransformState &State) {
7999   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
8000                                   *this, State);
8001 }
8002 
8003 void VPWidenSelectRecipe::execute(VPTransformState &State) {
8004   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
8005                                     this, *this, InvariantCond, State);
8006 }
8007 
8008 void VPWidenRecipe::execute(VPTransformState &State) {
8009   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
8010 }
8011 
8012 void VPWidenGEPRecipe::execute(VPTransformState &State) {
8013   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
8014                       *this, State.UF, State.VF, IsPtrLoopInvariant,
8015                       IsIndexLoopInvariant, State);
8016 }
8017 
8018 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
8019   assert(!State.Instance && "Int or FP induction being replicated.");
8020   State.ILV->widenIntOrFpInduction(IV, Trunc);
8021 }
8022 
8023 void VPWidenPHIRecipe::execute(VPTransformState &State) {
8024   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
8025 }
8026 
8027 void VPBlendRecipe::execute(VPTransformState &State) {
8028   State.ILV->setDebugLocFromInst(State.Builder, Phi);
8029   // We know that all PHIs in non-header blocks are converted into
8030   // selects, so we don't have to worry about the insertion order and we
8031   // can just use the builder.
8032   // At this point we generate the predication tree. There may be
8033   // duplications since this is a simple recursive scan, but future
8034   // optimizations will clean it up.
8035 
8036   unsigned NumIncoming = getNumIncomingValues();
8037 
8038   // Generate a sequence of selects of the form:
8039   // SELECT(Mask3, In3,
8040   //        SELECT(Mask2, In2,
8041   //               SELECT(Mask1, In1,
8042   //                      In0)))
8043   // Note that Mask0 is never used: lanes for which no path reaches this phi and
8044   // are essentially undef are taken from In0.
8045   InnerLoopVectorizer::VectorParts Entry(State.UF);
8046   for (unsigned In = 0; In < NumIncoming; ++In) {
8047     for (unsigned Part = 0; Part < State.UF; ++Part) {
8048       // We might have single edge PHIs (blocks) - use an identity
8049       // 'select' for the first PHI operand.
8050       Value *In0 = State.get(getIncomingValue(In), Part);
8051       if (In == 0)
8052         Entry[Part] = In0; // Initialize with the first incoming value.
8053       else {
8054         // Select between the current value and the previous incoming edge
8055         // based on the incoming mask.
8056         Value *Cond = State.get(getMask(In), Part);
8057         Entry[Part] =
8058             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
8059       }
8060     }
8061   }
8062   for (unsigned Part = 0; Part < State.UF; ++Part)
8063     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
8064 }
8065 
8066 void VPInterleaveRecipe::execute(VPTransformState &State) {
8067   assert(!State.Instance && "Interleave group being replicated.");
8068   State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask());
8069 }
8070 
8071 void VPReductionRecipe::execute(VPTransformState &State) {
8072   assert(!State.Instance && "Reduction being replicated.");
8073   for (unsigned Part = 0; Part < State.UF; ++Part) {
8074     RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind();
8075     Value *NewVecOp = State.get(getVecOp(), Part);
8076     if (VPValue *Cond = getCondOp()) {
8077       Value *NewCond = State.get(Cond, Part);
8078       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
8079       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
8080           Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType());
8081       Constant *IdenVec =
8082           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
8083       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
8084       NewVecOp = Select;
8085     }
8086     Value *NewRed =
8087         createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN);
8088     Value *PrevInChain = State.get(getChainOp(), Part);
8089     Value *NextInChain;
8090     if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
8091         Kind == RecurrenceDescriptor::RK_FloatMinMax) {
8092       NextInChain =
8093           createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(),
8094                          NewRed, PrevInChain);
8095     } else {
8096       NextInChain = State.Builder.CreateBinOp(
8097           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
8098           PrevInChain);
8099     }
8100     State.set(this, getUnderlyingInstr(), NextInChain, Part);
8101   }
8102 }
8103 
8104 void VPReplicateRecipe::execute(VPTransformState &State) {
8105   if (State.Instance) { // Generate a single instance.
8106     State.ILV->scalarizeInstruction(Ingredient, *this, *State.Instance,
8107                                     IsPredicated, State);
8108     // Insert scalar instance packing it into a vector.
8109     if (AlsoPack && State.VF.isVector()) {
8110       // If we're constructing lane 0, initialize to start from undef.
8111       if (State.Instance->Lane == 0) {
8112         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
8113         Value *Undef =
8114             UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
8115         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
8116       }
8117       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
8118     }
8119     return;
8120   }
8121 
8122   // Generate scalar instances for all VF lanes of all UF parts, unless the
8123   // instruction is uniform inwhich case generate only the first lane for each
8124   // of the UF parts.
8125   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
8126   for (unsigned Part = 0; Part < State.UF; ++Part)
8127     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
8128       State.ILV->scalarizeInstruction(Ingredient, *this, {Part, Lane},
8129                                       IsPredicated, State);
8130 }
8131 
8132 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
8133   assert(State.Instance && "Branch on Mask works only on single instance.");
8134 
8135   unsigned Part = State.Instance->Part;
8136   unsigned Lane = State.Instance->Lane;
8137 
8138   Value *ConditionBit = nullptr;
8139   VPValue *BlockInMask = getMask();
8140   if (BlockInMask) {
8141     ConditionBit = State.get(BlockInMask, Part);
8142     if (ConditionBit->getType()->isVectorTy())
8143       ConditionBit = State.Builder.CreateExtractElement(
8144           ConditionBit, State.Builder.getInt32(Lane));
8145   } else // Block in mask is all-one.
8146     ConditionBit = State.Builder.getTrue();
8147 
8148   // Replace the temporary unreachable terminator with a new conditional branch,
8149   // whose two destinations will be set later when they are created.
8150   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
8151   assert(isa<UnreachableInst>(CurrentTerminator) &&
8152          "Expected to replace unreachable terminator with conditional branch.");
8153   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
8154   CondBr->setSuccessor(0, nullptr);
8155   ReplaceInstWithInst(CurrentTerminator, CondBr);
8156 }
8157 
8158 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
8159   assert(State.Instance && "Predicated instruction PHI works per instance.");
8160   Instruction *ScalarPredInst = cast<Instruction>(
8161       State.ValueMap.getScalarValue(PredInst, *State.Instance));
8162   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
8163   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
8164   assert(PredicatingBB && "Predicated block has no single predecessor.");
8165 
8166   // By current pack/unpack logic we need to generate only a single phi node: if
8167   // a vector value for the predicated instruction exists at this point it means
8168   // the instruction has vector users only, and a phi for the vector value is
8169   // needed. In this case the recipe of the predicated instruction is marked to
8170   // also do that packing, thereby "hoisting" the insert-element sequence.
8171   // Otherwise, a phi node for the scalar value is needed.
8172   unsigned Part = State.Instance->Part;
8173   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
8174     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
8175     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
8176     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
8177     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
8178     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
8179     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
8180   } else {
8181     Type *PredInstType = PredInst->getType();
8182     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
8183     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
8184     Phi->addIncoming(ScalarPredInst, PredicatedBB);
8185     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
8186   }
8187 }
8188 
8189 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
8190   Instruction *Instr = getUnderlyingInstr();
8191   VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr;
8192   State.ILV->vectorizeMemoryInstruction(Instr, State,
8193                                         StoredValue ? nullptr : this, getAddr(),
8194                                         StoredValue, getMask());
8195 }
8196 
8197 // Determine how to lower the scalar epilogue, which depends on 1) optimising
8198 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
8199 // predication, and 4) a TTI hook that analyses whether the loop is suitable
8200 // for predication.
8201 static ScalarEpilogueLowering getScalarEpilogueLowering(
8202     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
8203     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
8204     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
8205     LoopVectorizationLegality &LVL) {
8206   // 1) OptSize takes precedence over all other options, i.e. if this is set,
8207   // don't look at hints or options, and don't request a scalar epilogue.
8208   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
8209   // LoopAccessInfo (due to code dependency and not being able to reliably get
8210   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
8211   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
8212   // versioning when the vectorization is forced, unlike hasOptSize. So revert
8213   // back to the old way and vectorize with versioning when forced. See D81345.)
8214   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
8215                                                       PGSOQueryType::IRPass) &&
8216                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
8217     return CM_ScalarEpilogueNotAllowedOptSize;
8218 
8219   bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() &&
8220                               !PreferPredicateOverEpilogue;
8221 
8222   // 2) Next, if disabling predication is requested on the command line, honour
8223   // this and request a scalar epilogue.
8224   if (PredicateOptDisabled)
8225     return CM_ScalarEpilogueAllowed;
8226 
8227   // 3) and 4) look if enabling predication is requested on the command line,
8228   // with a loop hint, or if the TTI hook indicates this is profitable, request
8229   // predication.
8230   if (PreferPredicateOverEpilogue ||
8231       Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
8232       (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
8233                                         LVL.getLAI()) &&
8234        Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
8235     return CM_ScalarEpilogueNotNeededUsePredicate;
8236 
8237   return CM_ScalarEpilogueAllowed;
8238 }
8239 
8240 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V,
8241                            unsigned Part) {
8242   set(Def, V, Part);
8243   ILV->setVectorValue(IRDef, Part, V);
8244 }
8245 
8246 // Process the loop in the VPlan-native vectorization path. This path builds
8247 // VPlan upfront in the vectorization pipeline, which allows to apply
8248 // VPlan-to-VPlan transformations from the very beginning without modifying the
8249 // input LLVM IR.
8250 static bool processLoopInVPlanNativePath(
8251     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
8252     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
8253     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
8254     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
8255     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
8256 
8257   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
8258     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
8259     return false;
8260   }
8261   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
8262   Function *F = L->getHeader()->getParent();
8263   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
8264 
8265   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
8266       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
8267 
8268   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
8269                                 &Hints, IAI);
8270   // Use the planner for outer loop vectorization.
8271   // TODO: CM is not used at this point inside the planner. Turn CM into an
8272   // optional argument if we don't need it in the future.
8273   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
8274 
8275   // Get user vectorization factor.
8276   const unsigned UserVF = Hints.getWidth();
8277 
8278   // Plan how to best vectorize, return the best VF and its cost.
8279   const VectorizationFactor VF =
8280       LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF));
8281 
8282   // If we are stress testing VPlan builds, do not attempt to generate vector
8283   // code. Masked vector code generation support will follow soon.
8284   // Also, do not attempt to vectorize if no vector code will be produced.
8285   if (VPlanBuildStressTest || EnableVPlanPredication ||
8286       VectorizationFactor::Disabled() == VF)
8287     return false;
8288 
8289   LVP.setBestPlan(VF.Width, 1);
8290 
8291   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
8292                          &CM, BFI, PSI);
8293   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
8294                     << L->getHeader()->getParent()->getName() << "\"\n");
8295   LVP.executePlan(LB, DT);
8296 
8297   // Mark the loop as already vectorized to avoid vectorizing again.
8298   Hints.setAlreadyVectorized();
8299 
8300   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
8301   return true;
8302 }
8303 
8304 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
8305     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
8306                                !EnableLoopInterleaving),
8307       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
8308                               !EnableLoopVectorization) {}
8309 
8310 bool LoopVectorizePass::processLoop(Loop *L) {
8311   assert((EnableVPlanNativePath || L->isInnermost()) &&
8312          "VPlan-native path is not enabled. Only process inner loops.");
8313 
8314 #ifndef NDEBUG
8315   const std::string DebugLocStr = getDebugLocString(L);
8316 #endif /* NDEBUG */
8317 
8318   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
8319                     << L->getHeader()->getParent()->getName() << "\" from "
8320                     << DebugLocStr << "\n");
8321 
8322   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
8323 
8324   LLVM_DEBUG(
8325       dbgs() << "LV: Loop hints:"
8326              << " force="
8327              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
8328                      ? "disabled"
8329                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
8330                             ? "enabled"
8331                             : "?"))
8332              << " width=" << Hints.getWidth()
8333              << " unroll=" << Hints.getInterleave() << "\n");
8334 
8335   // Function containing loop
8336   Function *F = L->getHeader()->getParent();
8337 
8338   // Looking at the diagnostic output is the only way to determine if a loop
8339   // was vectorized (other than looking at the IR or machine code), so it
8340   // is important to generate an optimization remark for each loop. Most of
8341   // these messages are generated as OptimizationRemarkAnalysis. Remarks
8342   // generated as OptimizationRemark and OptimizationRemarkMissed are
8343   // less verbose reporting vectorized loops and unvectorized loops that may
8344   // benefit from vectorization, respectively.
8345 
8346   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
8347     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
8348     return false;
8349   }
8350 
8351   PredicatedScalarEvolution PSE(*SE, *L);
8352 
8353   // Check if it is legal to vectorize the loop.
8354   LoopVectorizationRequirements Requirements(*ORE);
8355   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
8356                                 &Requirements, &Hints, DB, AC, BFI, PSI);
8357   if (!LVL.canVectorize(EnableVPlanNativePath)) {
8358     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
8359     Hints.emitRemarkWithHints();
8360     return false;
8361   }
8362 
8363   // Check the function attributes and profiles to find out if this function
8364   // should be optimized for size.
8365   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
8366       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
8367 
8368   // Entrance to the VPlan-native vectorization path. Outer loops are processed
8369   // here. They may require CFG and instruction level transformations before
8370   // even evaluating whether vectorization is profitable. Since we cannot modify
8371   // the incoming IR, we need to build VPlan upfront in the vectorization
8372   // pipeline.
8373   if (!L->isInnermost())
8374     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
8375                                         ORE, BFI, PSI, Hints);
8376 
8377   assert(L->isInnermost() && "Inner loop expected.");
8378 
8379   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
8380   // count by optimizing for size, to minimize overheads.
8381   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
8382   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
8383     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
8384                       << "This loop is worth vectorizing only if no scalar "
8385                       << "iteration overheads are incurred.");
8386     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
8387       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
8388     else {
8389       LLVM_DEBUG(dbgs() << "\n");
8390       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
8391     }
8392   }
8393 
8394   // Check the function attributes to see if implicit floats are allowed.
8395   // FIXME: This check doesn't seem possibly correct -- what if the loop is
8396   // an integer loop and the vector instructions selected are purely integer
8397   // vector instructions?
8398   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
8399     reportVectorizationFailure(
8400         "Can't vectorize when the NoImplicitFloat attribute is used",
8401         "loop not vectorized due to NoImplicitFloat attribute",
8402         "NoImplicitFloat", ORE, L);
8403     Hints.emitRemarkWithHints();
8404     return false;
8405   }
8406 
8407   // Check if the target supports potentially unsafe FP vectorization.
8408   // FIXME: Add a check for the type of safety issue (denormal, signaling)
8409   // for the target we're vectorizing for, to make sure none of the
8410   // additional fp-math flags can help.
8411   if (Hints.isPotentiallyUnsafe() &&
8412       TTI->isFPVectorizationPotentiallyUnsafe()) {
8413     reportVectorizationFailure(
8414         "Potentially unsafe FP op prevents vectorization",
8415         "loop not vectorized due to unsafe FP support.",
8416         "UnsafeFP", ORE, L);
8417     Hints.emitRemarkWithHints();
8418     return false;
8419   }
8420 
8421   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
8422   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
8423 
8424   // If an override option has been passed in for interleaved accesses, use it.
8425   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
8426     UseInterleaved = EnableInterleavedMemAccesses;
8427 
8428   // Analyze interleaved memory accesses.
8429   if (UseInterleaved) {
8430     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
8431   }
8432 
8433   // Use the cost model.
8434   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
8435                                 F, &Hints, IAI);
8436   CM.collectValuesToIgnore();
8437 
8438   // Use the planner for vectorization.
8439   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
8440 
8441   // Get user vectorization factor and interleave count.
8442   unsigned UserVF = Hints.getWidth();
8443   unsigned UserIC = Hints.getInterleave();
8444 
8445   // Plan how to best vectorize, return the best VF and its cost.
8446   Optional<VectorizationFactor> MaybeVF =
8447       LVP.plan(ElementCount::getFixed(UserVF), UserIC);
8448 
8449   VectorizationFactor VF = VectorizationFactor::Disabled();
8450   unsigned IC = 1;
8451 
8452   if (MaybeVF) {
8453     VF = *MaybeVF;
8454     // Select the interleave count.
8455     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
8456   }
8457 
8458   // Identify the diagnostic messages that should be produced.
8459   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
8460   bool VectorizeLoop = true, InterleaveLoop = true;
8461   if (Requirements.doesNotMeet(F, L, Hints)) {
8462     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
8463                          "requirements.\n");
8464     Hints.emitRemarkWithHints();
8465     return false;
8466   }
8467 
8468   if (VF.Width.isScalar()) {
8469     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
8470     VecDiagMsg = std::make_pair(
8471         "VectorizationNotBeneficial",
8472         "the cost-model indicates that vectorization is not beneficial");
8473     VectorizeLoop = false;
8474   }
8475 
8476   if (!MaybeVF && UserIC > 1) {
8477     // Tell the user interleaving was avoided up-front, despite being explicitly
8478     // requested.
8479     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
8480                          "interleaving should be avoided up front\n");
8481     IntDiagMsg = std::make_pair(
8482         "InterleavingAvoided",
8483         "Ignoring UserIC, because interleaving was avoided up front");
8484     InterleaveLoop = false;
8485   } else if (IC == 1 && UserIC <= 1) {
8486     // Tell the user interleaving is not beneficial.
8487     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
8488     IntDiagMsg = std::make_pair(
8489         "InterleavingNotBeneficial",
8490         "the cost-model indicates that interleaving is not beneficial");
8491     InterleaveLoop = false;
8492     if (UserIC == 1) {
8493       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
8494       IntDiagMsg.second +=
8495           " and is explicitly disabled or interleave count is set to 1";
8496     }
8497   } else if (IC > 1 && UserIC == 1) {
8498     // Tell the user interleaving is beneficial, but it explicitly disabled.
8499     LLVM_DEBUG(
8500         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
8501     IntDiagMsg = std::make_pair(
8502         "InterleavingBeneficialButDisabled",
8503         "the cost-model indicates that interleaving is beneficial "
8504         "but is explicitly disabled or interleave count is set to 1");
8505     InterleaveLoop = false;
8506   }
8507 
8508   // Override IC if user provided an interleave count.
8509   IC = UserIC > 0 ? UserIC : IC;
8510 
8511   // Emit diagnostic messages, if any.
8512   const char *VAPassName = Hints.vectorizeAnalysisPassName();
8513   if (!VectorizeLoop && !InterleaveLoop) {
8514     // Do not vectorize or interleaving the loop.
8515     ORE->emit([&]() {
8516       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
8517                                       L->getStartLoc(), L->getHeader())
8518              << VecDiagMsg.second;
8519     });
8520     ORE->emit([&]() {
8521       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
8522                                       L->getStartLoc(), L->getHeader())
8523              << IntDiagMsg.second;
8524     });
8525     return false;
8526   } else if (!VectorizeLoop && InterleaveLoop) {
8527     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
8528     ORE->emit([&]() {
8529       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
8530                                         L->getStartLoc(), L->getHeader())
8531              << VecDiagMsg.second;
8532     });
8533   } else if (VectorizeLoop && !InterleaveLoop) {
8534     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
8535                       << ") in " << DebugLocStr << '\n');
8536     ORE->emit([&]() {
8537       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
8538                                         L->getStartLoc(), L->getHeader())
8539              << IntDiagMsg.second;
8540     });
8541   } else if (VectorizeLoop && InterleaveLoop) {
8542     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
8543                       << ") in " << DebugLocStr << '\n');
8544     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
8545   }
8546 
8547   LVP.setBestPlan(VF.Width, IC);
8548 
8549   using namespace ore;
8550   bool DisableRuntimeUnroll = false;
8551   MDNode *OrigLoopID = L->getLoopID();
8552 
8553   if (!VectorizeLoop) {
8554     assert(IC > 1 && "interleave count should not be 1 or 0");
8555     // If we decided that it is not legal to vectorize the loop, then
8556     // interleave it.
8557     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM,
8558                                BFI, PSI);
8559     LVP.executePlan(Unroller, DT);
8560 
8561     ORE->emit([&]() {
8562       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
8563                                 L->getHeader())
8564              << "interleaved loop (interleaved count: "
8565              << NV("InterleaveCount", IC) << ")";
8566     });
8567   } else {
8568     // If we decided that it is *legal* to vectorize the loop, then do it.
8569     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
8570                            &LVL, &CM, BFI, PSI);
8571     LVP.executePlan(LB, DT);
8572     ++LoopsVectorized;
8573 
8574     // Add metadata to disable runtime unrolling a scalar loop when there are
8575     // no runtime checks about strides and memory. A scalar loop that is
8576     // rarely used is not worth unrolling.
8577     if (!LB.areSafetyChecksAdded())
8578       DisableRuntimeUnroll = true;
8579 
8580     // Report the vectorization decision.
8581     ORE->emit([&]() {
8582       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
8583                                 L->getHeader())
8584              << "vectorized loop (vectorization width: "
8585              << NV("VectorizationFactor", VF.Width)
8586              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
8587     });
8588   }
8589 
8590   Optional<MDNode *> RemainderLoopID =
8591       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
8592                                       LLVMLoopVectorizeFollowupEpilogue});
8593   if (RemainderLoopID.hasValue()) {
8594     L->setLoopID(RemainderLoopID.getValue());
8595   } else {
8596     if (DisableRuntimeUnroll)
8597       AddRuntimeUnrollDisableMetaData(L);
8598 
8599     // Mark the loop as already vectorized to avoid vectorizing again.
8600     Hints.setAlreadyVectorized();
8601   }
8602 
8603   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
8604   return true;
8605 }
8606 
8607 LoopVectorizeResult LoopVectorizePass::runImpl(
8608     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
8609     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
8610     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
8611     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
8612     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
8613   SE = &SE_;
8614   LI = &LI_;
8615   TTI = &TTI_;
8616   DT = &DT_;
8617   BFI = &BFI_;
8618   TLI = TLI_;
8619   AA = &AA_;
8620   AC = &AC_;
8621   GetLAA = &GetLAA_;
8622   DB = &DB_;
8623   ORE = &ORE_;
8624   PSI = PSI_;
8625 
8626   // Don't attempt if
8627   // 1. the target claims to have no vector registers, and
8628   // 2. interleaving won't help ILP.
8629   //
8630   // The second condition is necessary because, even if the target has no
8631   // vector registers, loop vectorization may still enable scalar
8632   // interleaving.
8633   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
8634       TTI->getMaxInterleaveFactor(1) < 2)
8635     return LoopVectorizeResult(false, false);
8636 
8637   bool Changed = false, CFGChanged = false;
8638 
8639   // The vectorizer requires loops to be in simplified form.
8640   // Since simplification may add new inner loops, it has to run before the
8641   // legality and profitability checks. This means running the loop vectorizer
8642   // will simplify all loops, regardless of whether anything end up being
8643   // vectorized.
8644   for (auto &L : *LI)
8645     Changed |= CFGChanged |=
8646         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
8647 
8648   // Build up a worklist of inner-loops to vectorize. This is necessary as
8649   // the act of vectorizing or partially unrolling a loop creates new loops
8650   // and can invalidate iterators across the loops.
8651   SmallVector<Loop *, 8> Worklist;
8652 
8653   for (Loop *L : *LI)
8654     collectSupportedLoops(*L, LI, ORE, Worklist);
8655 
8656   LoopsAnalyzed += Worklist.size();
8657 
8658   // Now walk the identified inner loops.
8659   while (!Worklist.empty()) {
8660     Loop *L = Worklist.pop_back_val();
8661 
8662     // For the inner loops we actually process, form LCSSA to simplify the
8663     // transform.
8664     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8665 
8666     Changed |= CFGChanged |= processLoop(L);
8667   }
8668 
8669   // Process each loop nest in the function.
8670   return LoopVectorizeResult(Changed, CFGChanged);
8671 }
8672 
8673 PreservedAnalyses LoopVectorizePass::run(Function &F,
8674                                          FunctionAnalysisManager &AM) {
8675     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8676     auto &LI = AM.getResult<LoopAnalysis>(F);
8677     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8678     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8679     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8680     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8681     auto &AA = AM.getResult<AAManager>(F);
8682     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8683     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8684     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8685     MemorySSA *MSSA = EnableMSSALoopDependency
8686                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
8687                           : nullptr;
8688 
8689     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8690     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8691         [&](Loop &L) -> const LoopAccessInfo & {
8692       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
8693                                         TLI, TTI, nullptr, MSSA};
8694       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8695     };
8696     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
8697     ProfileSummaryInfo *PSI =
8698         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
8699     LoopVectorizeResult Result =
8700         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
8701     if (!Result.MadeAnyChange)
8702       return PreservedAnalyses::all();
8703     PreservedAnalyses PA;
8704 
8705     // We currently do not preserve loopinfo/dominator analyses with outer loop
8706     // vectorization. Until this is addressed, mark these analyses as preserved
8707     // only for non-VPlan-native path.
8708     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
8709     if (!EnableVPlanNativePath) {
8710       PA.preserve<LoopAnalysis>();
8711       PA.preserve<DominatorTreeAnalysis>();
8712     }
8713     PA.preserve<BasicAA>();
8714     PA.preserve<GlobalsAA>();
8715     if (!Result.MadeCFGChange)
8716       PA.preserveSet<CFGAnalyses>();
8717     return PA;
8718 }
8719