1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 /// @{
161 /// Metadata attribute names
162 static const char *const LLVMLoopVectorizeFollowupAll =
163     "llvm.loop.vectorize.followup_all";
164 static const char *const LLVMLoopVectorizeFollowupVectorized =
165     "llvm.loop.vectorize.followup_vectorized";
166 static const char *const LLVMLoopVectorizeFollowupEpilogue =
167     "llvm.loop.vectorize.followup_epilogue";
168 /// @}
169 
170 STATISTIC(LoopsVectorized, "Number of loops vectorized");
171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
172 
173 /// Loops with a known constant trip count below this number are vectorized only
174 /// if no scalar iteration overheads are incurred.
175 static cl::opt<unsigned> TinyTripCountVectorThreshold(
176     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
177     cl::desc("Loops with a constant trip count that is smaller than this "
178              "value are vectorized only if no scalar iteration overheads "
179              "are incurred."));
180 
181 // Indicates that an epilogue is undesired, predication is preferred.
182 // This means that the vectorizer will try to fold the loop-tail (epilogue)
183 // into the loop and predicate the loop body accordingly.
184 static cl::opt<bool> PreferPredicateOverEpilog(
185     "prefer-predicate-over-epilog", cl::init(false), cl::Hidden,
186     cl::desc("Indicate that an epilogue is undesired, predication should be "
187              "used instead."));
188 
189 static cl::opt<bool> MaximizeBandwidth(
190     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
191     cl::desc("Maximize bandwidth when selecting vectorization factor which "
192              "will be determined by the smallest type in loop."));
193 
194 static cl::opt<bool> EnableInterleavedMemAccesses(
195     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
196     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
197 
198 /// An interleave-group may need masking if it resides in a block that needs
199 /// predication, or in order to mask away gaps.
200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
201     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
202     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
203 
204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
205     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
206     cl::desc("We don't interleave loops with a estimated constant trip count "
207              "below this number"));
208 
209 static cl::opt<unsigned> ForceTargetNumScalarRegs(
210     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
211     cl::desc("A flag that overrides the target's number of scalar registers."));
212 
213 static cl::opt<unsigned> ForceTargetNumVectorRegs(
214     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
215     cl::desc("A flag that overrides the target's number of vector registers."));
216 
217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
218     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
219     cl::desc("A flag that overrides the target's max interleave factor for "
220              "scalar loops."));
221 
222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
223     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
224     cl::desc("A flag that overrides the target's max interleave factor for "
225              "vectorized loops."));
226 
227 static cl::opt<unsigned> ForceTargetInstructionCost(
228     "force-target-instruction-cost", cl::init(0), cl::Hidden,
229     cl::desc("A flag that overrides the target's expected cost for "
230              "an instruction to a single constant value. Mostly "
231              "useful for getting consistent testing."));
232 
233 static cl::opt<unsigned> SmallLoopCost(
234     "small-loop-cost", cl::init(20), cl::Hidden,
235     cl::desc(
236         "The cost of a loop that is considered 'small' by the interleaver."));
237 
238 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
239     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
240     cl::desc("Enable the use of the block frequency analysis to access PGO "
241              "heuristics minimizing code growth in cold regions and being more "
242              "aggressive in hot regions."));
243 
244 // Runtime interleave loops for load/store throughput.
245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
246     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
247     cl::desc(
248         "Enable runtime interleaving until load/store ports are saturated"));
249 
250 /// The number of stores in a loop that are allowed to need predication.
251 static cl::opt<unsigned> NumberOfStoresToPredicate(
252     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
253     cl::desc("Max number of stores to be predicated behind an if."));
254 
255 static cl::opt<bool> EnableIndVarRegisterHeur(
256     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
257     cl::desc("Count the induction variable only once when interleaving"));
258 
259 static cl::opt<bool> EnableCondStoresVectorization(
260     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
261     cl::desc("Enable if predication of stores during vectorization."));
262 
263 static cl::opt<unsigned> MaxNestedScalarReductionIC(
264     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
265     cl::desc("The maximum interleave count to use when interleaving a scalar "
266              "reduction in a nested loop."));
267 
268 cl::opt<bool> EnableVPlanNativePath(
269     "enable-vplan-native-path", cl::init(false), cl::Hidden,
270     cl::desc("Enable VPlan-native vectorization path with "
271              "support for outer loop vectorization."));
272 
273 // FIXME: Remove this switch once we have divergence analysis. Currently we
274 // assume divergent non-backedge branches when this switch is true.
275 cl::opt<bool> EnableVPlanPredication(
276     "enable-vplan-predication", cl::init(false), cl::Hidden,
277     cl::desc("Enable VPlan-native vectorization path predicator with "
278              "support for outer loop vectorization."));
279 
280 // This flag enables the stress testing of the VPlan H-CFG construction in the
281 // VPlan-native vectorization path. It must be used in conjuction with
282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
283 // verification of the H-CFGs built.
284 static cl::opt<bool> VPlanBuildStressTest(
285     "vplan-build-stress-test", cl::init(false), cl::Hidden,
286     cl::desc(
287         "Build VPlan for every supported loop nest in the function and bail "
288         "out right after the build (stress test the VPlan H-CFG construction "
289         "in the VPlan-native vectorization path)."));
290 
291 cl::opt<bool> llvm::EnableLoopInterleaving(
292     "interleave-loops", cl::init(true), cl::Hidden,
293     cl::desc("Enable loop interleaving in Loop vectorization passes"));
294 cl::opt<bool> llvm::EnableLoopVectorization(
295     "vectorize-loops", cl::init(true), cl::Hidden,
296     cl::desc("Run the Loop vectorization passes"));
297 
298 /// A helper function that returns the type of loaded or stored value.
299 static Type *getMemInstValueType(Value *I) {
300   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
301          "Expected Load or Store instruction");
302   if (auto *LI = dyn_cast<LoadInst>(I))
303     return LI->getType();
304   return cast<StoreInst>(I)->getValueOperand()->getType();
305 }
306 
307 /// A helper function that returns true if the given type is irregular. The
308 /// type is irregular if its allocated size doesn't equal the store size of an
309 /// element of the corresponding vector type at the given vectorization factor.
310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
311   // Determine if an array of VF elements of type Ty is "bitcast compatible"
312   // with a <VF x Ty> vector.
313   if (VF > 1) {
314     auto *VectorTy = VectorType::get(Ty, VF);
315     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
316   }
317 
318   // If the vectorization factor is one, we just check if an array of type Ty
319   // requires padding between elements.
320   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
321 }
322 
323 /// A helper function that returns the reciprocal of the block probability of
324 /// predicated blocks. If we return X, we are assuming the predicated block
325 /// will execute once for every X iterations of the loop header.
326 ///
327 /// TODO: We should use actual block probability here, if available. Currently,
328 ///       we always assume predicated blocks have a 50% chance of executing.
329 static unsigned getReciprocalPredBlockProb() { return 2; }
330 
331 /// A helper function that adds a 'fast' flag to floating-point operations.
332 static Value *addFastMathFlag(Value *V) {
333   if (isa<FPMathOperator>(V))
334     cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
335   return V;
336 }
337 
338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
339   if (isa<FPMathOperator>(V))
340     cast<Instruction>(V)->setFastMathFlags(FMF);
341   return V;
342 }
343 
344 /// A helper function that returns an integer or floating-point constant with
345 /// value C.
346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
347   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
348                            : ConstantFP::get(Ty, C);
349 }
350 
351 /// Returns "best known" trip count for the specified loop \p L as defined by
352 /// the following procedure:
353 ///   1) Returns exact trip count if it is known.
354 ///   2) Returns expected trip count according to profile data if any.
355 ///   3) Returns upper bound estimate if it is known.
356 ///   4) Returns None if all of the above failed.
357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
358   // Check if exact trip count is known.
359   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
360     return ExpectedTC;
361 
362   // Check if there is an expected trip count available from profile data.
363   if (LoopVectorizeWithBlockFrequency)
364     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
365       return EstimatedTC;
366 
367   // Check if upper bound estimate is known.
368   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
369     return ExpectedTC;
370 
371   return None;
372 }
373 
374 namespace llvm {
375 
376 /// InnerLoopVectorizer vectorizes loops which contain only one basic
377 /// block to a specified vectorization factor (VF).
378 /// This class performs the widening of scalars into vectors, or multiple
379 /// scalars. This class also implements the following features:
380 /// * It inserts an epilogue loop for handling loops that don't have iteration
381 ///   counts that are known to be a multiple of the vectorization factor.
382 /// * It handles the code generation for reduction variables.
383 /// * Scalarization (implementation using scalars) of un-vectorizable
384 ///   instructions.
385 /// InnerLoopVectorizer does not perform any vectorization-legality
386 /// checks, and relies on the caller to check for the different legality
387 /// aspects. The InnerLoopVectorizer relies on the
388 /// LoopVectorizationLegality class to provide information about the induction
389 /// and reduction variables that were found to a given vectorization factor.
390 class InnerLoopVectorizer {
391 public:
392   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
393                       LoopInfo *LI, DominatorTree *DT,
394                       const TargetLibraryInfo *TLI,
395                       const TargetTransformInfo *TTI, AssumptionCache *AC,
396                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
397                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
398                       LoopVectorizationCostModel *CM)
399       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
400         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
401         Builder(PSE.getSE()->getContext()),
402         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
403   virtual ~InnerLoopVectorizer() = default;
404 
405   /// Create a new empty loop. Unlink the old loop and connect the new one.
406   /// Return the pre-header block of the new loop.
407   BasicBlock *createVectorizedLoopSkeleton();
408 
409   /// Widen a single instruction within the innermost loop.
410   void widenInstruction(Instruction &I, VPUser &Operands,
411                         VPTransformState &State);
412 
413   /// Widen a single call instruction within the innermost loop.
414   void widenCallInstruction(CallInst &I, VPUser &ArgOperands,
415                             VPTransformState &State);
416 
417   /// Widen a single select instruction within the innermost loop.
418   void widenSelectInstruction(SelectInst &I, bool InvariantCond);
419 
420   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
421   void fixVectorizedLoop();
422 
423   // Return true if any runtime check is added.
424   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
425 
426   /// A type for vectorized values in the new loop. Each value from the
427   /// original loop, when vectorized, is represented by UF vector values in the
428   /// new unrolled loop, where UF is the unroll factor.
429   using VectorParts = SmallVector<Value *, 2>;
430 
431   /// Vectorize a single GetElementPtrInst based on information gathered and
432   /// decisions taken during planning.
433   void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF,
434                 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant);
435 
436   /// Vectorize a single PHINode in a block. This method handles the induction
437   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
438   /// arbitrary length vectors.
439   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
440 
441   /// A helper function to scalarize a single Instruction in the innermost loop.
442   /// Generates a sequence of scalar instances for each lane between \p MinLane
443   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
444   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
445   /// Instr's operands.
446   void scalarizeInstruction(Instruction *Instr, VPUser &Operands,
447                             const VPIteration &Instance, bool IfPredicateInstr,
448                             VPTransformState &State);
449 
450   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
451   /// is provided, the integer induction variable will first be truncated to
452   /// the corresponding type.
453   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
454 
455   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
456   /// vector or scalar value on-demand if one is not yet available. When
457   /// vectorizing a loop, we visit the definition of an instruction before its
458   /// uses. When visiting the definition, we either vectorize or scalarize the
459   /// instruction, creating an entry for it in the corresponding map. (In some
460   /// cases, such as induction variables, we will create both vector and scalar
461   /// entries.) Then, as we encounter uses of the definition, we derive values
462   /// for each scalar or vector use unless such a value is already available.
463   /// For example, if we scalarize a definition and one of its uses is vector,
464   /// we build the required vector on-demand with an insertelement sequence
465   /// when visiting the use. Otherwise, if the use is scalar, we can use the
466   /// existing scalar definition.
467   ///
468   /// Return a value in the new loop corresponding to \p V from the original
469   /// loop at unroll index \p Part. If the value has already been vectorized,
470   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
471   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
472   /// a new vector value on-demand by inserting the scalar values into a vector
473   /// with an insertelement sequence. If the value has been neither vectorized
474   /// nor scalarized, it must be loop invariant, so we simply broadcast the
475   /// value into a vector.
476   Value *getOrCreateVectorValue(Value *V, unsigned Part);
477 
478   /// Return a value in the new loop corresponding to \p V from the original
479   /// loop at unroll and vector indices \p Instance. If the value has been
480   /// vectorized but not scalarized, the necessary extractelement instruction
481   /// will be generated.
482   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
483 
484   /// Construct the vector value of a scalarized value \p V one lane at a time.
485   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
486 
487   /// Try to vectorize interleaved access group \p Group with the base address
488   /// given in \p Addr, optionally masking the vector operations if \p
489   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
490   /// values in the vectorized loop.
491   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
492                                 VPTransformState &State, VPValue *Addr,
493                                 VPValue *BlockInMask = nullptr);
494 
495   /// Vectorize Load and Store instructions with the base address given in \p
496   /// Addr, optionally masking the vector operations if \p BlockInMask is
497   /// non-null. Use \p State to translate given VPValues to IR values in the
498   /// vectorized loop.
499   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
500                                   VPValue *Addr, VPValue *StoredValue,
501                                   VPValue *BlockInMask);
502 
503   /// Set the debug location in the builder using the debug location in
504   /// the instruction.
505   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
506 
507   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
508   void fixNonInductionPHIs(void);
509 
510 protected:
511   friend class LoopVectorizationPlanner;
512 
513   /// A small list of PHINodes.
514   using PhiVector = SmallVector<PHINode *, 4>;
515 
516   /// A type for scalarized values in the new loop. Each value from the
517   /// original loop, when scalarized, is represented by UF x VF scalar values
518   /// in the new unrolled loop, where UF is the unroll factor and VF is the
519   /// vectorization factor.
520   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
521 
522   /// Set up the values of the IVs correctly when exiting the vector loop.
523   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
524                     Value *CountRoundDown, Value *EndValue,
525                     BasicBlock *MiddleBlock);
526 
527   /// Create a new induction variable inside L.
528   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
529                                    Value *Step, Instruction *DL);
530 
531   /// Handle all cross-iteration phis in the header.
532   void fixCrossIterationPHIs();
533 
534   /// Fix a first-order recurrence. This is the second phase of vectorizing
535   /// this phi node.
536   void fixFirstOrderRecurrence(PHINode *Phi);
537 
538   /// Fix a reduction cross-iteration phi. This is the second phase of
539   /// vectorizing this phi node.
540   void fixReduction(PHINode *Phi);
541 
542   /// Clear NSW/NUW flags from reduction instructions if necessary.
543   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
544 
545   /// The Loop exit block may have single value PHI nodes with some
546   /// incoming value. While vectorizing we only handled real values
547   /// that were defined inside the loop and we should have one value for
548   /// each predecessor of its parent basic block. See PR14725.
549   void fixLCSSAPHIs();
550 
551   /// Iteratively sink the scalarized operands of a predicated instruction into
552   /// the block that was created for it.
553   void sinkScalarOperands(Instruction *PredInst);
554 
555   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
556   /// represented as.
557   void truncateToMinimalBitwidths();
558 
559   /// Create a broadcast instruction. This method generates a broadcast
560   /// instruction (shuffle) for loop invariant values and for the induction
561   /// value. If this is the induction variable then we extend it to N, N+1, ...
562   /// this is needed because each iteration in the loop corresponds to a SIMD
563   /// element.
564   virtual Value *getBroadcastInstrs(Value *V);
565 
566   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
567   /// to each vector element of Val. The sequence starts at StartIndex.
568   /// \p Opcode is relevant for FP induction variable.
569   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
570                                Instruction::BinaryOps Opcode =
571                                Instruction::BinaryOpsEnd);
572 
573   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
574   /// variable on which to base the steps, \p Step is the size of the step, and
575   /// \p EntryVal is the value from the original loop that maps to the steps.
576   /// Note that \p EntryVal doesn't have to be an induction variable - it
577   /// can also be a truncate instruction.
578   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
579                         const InductionDescriptor &ID);
580 
581   /// Create a vector induction phi node based on an existing scalar one. \p
582   /// EntryVal is the value from the original loop that maps to the vector phi
583   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
584   /// truncate instruction, instead of widening the original IV, we widen a
585   /// version of the IV truncated to \p EntryVal's type.
586   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
587                                        Value *Step, Instruction *EntryVal);
588 
589   /// Returns true if an instruction \p I should be scalarized instead of
590   /// vectorized for the chosen vectorization factor.
591   bool shouldScalarizeInstruction(Instruction *I) const;
592 
593   /// Returns true if we should generate a scalar version of \p IV.
594   bool needsScalarInduction(Instruction *IV) const;
595 
596   /// If there is a cast involved in the induction variable \p ID, which should
597   /// be ignored in the vectorized loop body, this function records the
598   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
599   /// cast. We had already proved that the casted Phi is equal to the uncasted
600   /// Phi in the vectorized loop (under a runtime guard), and therefore
601   /// there is no need to vectorize the cast - the same value can be used in the
602   /// vector loop for both the Phi and the cast.
603   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
604   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
605   ///
606   /// \p EntryVal is the value from the original loop that maps to the vector
607   /// phi node and is used to distinguish what is the IV currently being
608   /// processed - original one (if \p EntryVal is a phi corresponding to the
609   /// original IV) or the "newly-created" one based on the proof mentioned above
610   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
611   /// latter case \p EntryVal is a TruncInst and we must not record anything for
612   /// that IV, but it's error-prone to expect callers of this routine to care
613   /// about that, hence this explicit parameter.
614   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
615                                              const Instruction *EntryVal,
616                                              Value *VectorLoopValue,
617                                              unsigned Part,
618                                              unsigned Lane = UINT_MAX);
619 
620   /// Generate a shuffle sequence that will reverse the vector Vec.
621   virtual Value *reverseVector(Value *Vec);
622 
623   /// Returns (and creates if needed) the original loop trip count.
624   Value *getOrCreateTripCount(Loop *NewLoop);
625 
626   /// Returns (and creates if needed) the trip count of the widened loop.
627   Value *getOrCreateVectorTripCount(Loop *NewLoop);
628 
629   /// Returns a bitcasted value to the requested vector type.
630   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
631   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
632                                 const DataLayout &DL);
633 
634   /// Emit a bypass check to see if the vector trip count is zero, including if
635   /// it overflows.
636   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
637 
638   /// Emit a bypass check to see if all of the SCEV assumptions we've
639   /// had to make are correct.
640   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
641 
642   /// Emit bypass checks to check any memory assumptions we may have made.
643   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
644 
645   /// Compute the transformed value of Index at offset StartValue using step
646   /// StepValue.
647   /// For integer induction, returns StartValue + Index * StepValue.
648   /// For pointer induction, returns StartValue[Index * StepValue].
649   /// FIXME: The newly created binary instructions should contain nsw/nuw
650   /// flags, which can be found from the original scalar operations.
651   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
652                               const DataLayout &DL,
653                               const InductionDescriptor &ID) const;
654 
655   /// Add additional metadata to \p To that was not present on \p Orig.
656   ///
657   /// Currently this is used to add the noalias annotations based on the
658   /// inserted memchecks.  Use this for instructions that are *cloned* into the
659   /// vector loop.
660   void addNewMetadata(Instruction *To, const Instruction *Orig);
661 
662   /// Add metadata from one instruction to another.
663   ///
664   /// This includes both the original MDs from \p From and additional ones (\see
665   /// addNewMetadata).  Use this for *newly created* instructions in the vector
666   /// loop.
667   void addMetadata(Instruction *To, Instruction *From);
668 
669   /// Similar to the previous function but it adds the metadata to a
670   /// vector of instructions.
671   void addMetadata(ArrayRef<Value *> To, Instruction *From);
672 
673   /// The original loop.
674   Loop *OrigLoop;
675 
676   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
677   /// dynamic knowledge to simplify SCEV expressions and converts them to a
678   /// more usable form.
679   PredicatedScalarEvolution &PSE;
680 
681   /// Loop Info.
682   LoopInfo *LI;
683 
684   /// Dominator Tree.
685   DominatorTree *DT;
686 
687   /// Alias Analysis.
688   AliasAnalysis *AA;
689 
690   /// Target Library Info.
691   const TargetLibraryInfo *TLI;
692 
693   /// Target Transform Info.
694   const TargetTransformInfo *TTI;
695 
696   /// Assumption Cache.
697   AssumptionCache *AC;
698 
699   /// Interface to emit optimization remarks.
700   OptimizationRemarkEmitter *ORE;
701 
702   /// LoopVersioning.  It's only set up (non-null) if memchecks were
703   /// used.
704   ///
705   /// This is currently only used to add no-alias metadata based on the
706   /// memchecks.  The actually versioning is performed manually.
707   std::unique_ptr<LoopVersioning> LVer;
708 
709   /// The vectorization SIMD factor to use. Each vector will have this many
710   /// vector elements.
711   unsigned VF;
712 
713   /// The vectorization unroll factor to use. Each scalar is vectorized to this
714   /// many different vector instructions.
715   unsigned UF;
716 
717   /// The builder that we use
718   IRBuilder<> Builder;
719 
720   // --- Vectorization state ---
721 
722   /// The vector-loop preheader.
723   BasicBlock *LoopVectorPreHeader;
724 
725   /// The scalar-loop preheader.
726   BasicBlock *LoopScalarPreHeader;
727 
728   /// Middle Block between the vector and the scalar.
729   BasicBlock *LoopMiddleBlock;
730 
731   /// The ExitBlock of the scalar loop.
732   BasicBlock *LoopExitBlock;
733 
734   /// The vector loop body.
735   BasicBlock *LoopVectorBody;
736 
737   /// The scalar loop body.
738   BasicBlock *LoopScalarBody;
739 
740   /// A list of all bypass blocks. The first block is the entry of the loop.
741   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
742 
743   /// The new Induction variable which was added to the new block.
744   PHINode *Induction = nullptr;
745 
746   /// The induction variable of the old basic block.
747   PHINode *OldInduction = nullptr;
748 
749   /// Maps values from the original loop to their corresponding values in the
750   /// vectorized loop. A key value can map to either vector values, scalar
751   /// values or both kinds of values, depending on whether the key was
752   /// vectorized and scalarized.
753   VectorizerValueMap VectorLoopValueMap;
754 
755   /// Store instructions that were predicated.
756   SmallVector<Instruction *, 4> PredicatedInstructions;
757 
758   /// Trip count of the original loop.
759   Value *TripCount = nullptr;
760 
761   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
762   Value *VectorTripCount = nullptr;
763 
764   /// The legality analysis.
765   LoopVectorizationLegality *Legal;
766 
767   /// The profitablity analysis.
768   LoopVectorizationCostModel *Cost;
769 
770   // Record whether runtime checks are added.
771   bool AddedSafetyChecks = false;
772 
773   // Holds the end values for each induction variable. We save the end values
774   // so we can later fix-up the external users of the induction variables.
775   DenseMap<PHINode *, Value *> IVEndValues;
776 
777   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
778   // fixed up at the end of vector code generation.
779   SmallVector<PHINode *, 8> OrigPHIsToFix;
780 };
781 
782 class InnerLoopUnroller : public InnerLoopVectorizer {
783 public:
784   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
785                     LoopInfo *LI, DominatorTree *DT,
786                     const TargetLibraryInfo *TLI,
787                     const TargetTransformInfo *TTI, AssumptionCache *AC,
788                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
789                     LoopVectorizationLegality *LVL,
790                     LoopVectorizationCostModel *CM)
791       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
792                             UnrollFactor, LVL, CM) {}
793 
794 private:
795   Value *getBroadcastInstrs(Value *V) override;
796   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
797                        Instruction::BinaryOps Opcode =
798                        Instruction::BinaryOpsEnd) override;
799   Value *reverseVector(Value *Vec) override;
800 };
801 
802 } // end namespace llvm
803 
804 /// Look for a meaningful debug location on the instruction or it's
805 /// operands.
806 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
807   if (!I)
808     return I;
809 
810   DebugLoc Empty;
811   if (I->getDebugLoc() != Empty)
812     return I;
813 
814   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
815     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
816       if (OpInst->getDebugLoc() != Empty)
817         return OpInst;
818   }
819 
820   return I;
821 }
822 
823 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
824   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
825     const DILocation *DIL = Inst->getDebugLoc();
826     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
827         !isa<DbgInfoIntrinsic>(Inst)) {
828       auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF);
829       if (NewDIL)
830         B.SetCurrentDebugLocation(NewDIL.getValue());
831       else
832         LLVM_DEBUG(dbgs()
833                    << "Failed to create new discriminator: "
834                    << DIL->getFilename() << " Line: " << DIL->getLine());
835     }
836     else
837       B.SetCurrentDebugLocation(DIL);
838   } else
839     B.SetCurrentDebugLocation(DebugLoc());
840 }
841 
842 /// Write a record \p DebugMsg about vectorization failure to the debug
843 /// output stream. If \p I is passed, it is an instruction that prevents
844 /// vectorization.
845 #ifndef NDEBUG
846 static void debugVectorizationFailure(const StringRef DebugMsg,
847     Instruction *I) {
848   dbgs() << "LV: Not vectorizing: " << DebugMsg;
849   if (I != nullptr)
850     dbgs() << " " << *I;
851   else
852     dbgs() << '.';
853   dbgs() << '\n';
854 }
855 #endif
856 
857 /// Create an analysis remark that explains why vectorization failed
858 ///
859 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
860 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
861 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
862 /// the location of the remark.  \return the remark object that can be
863 /// streamed to.
864 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
865     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
866   Value *CodeRegion = TheLoop->getHeader();
867   DebugLoc DL = TheLoop->getStartLoc();
868 
869   if (I) {
870     CodeRegion = I->getParent();
871     // If there is no debug location attached to the instruction, revert back to
872     // using the loop's.
873     if (I->getDebugLoc())
874       DL = I->getDebugLoc();
875   }
876 
877   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
878   R << "loop not vectorized: ";
879   return R;
880 }
881 
882 namespace llvm {
883 
884 void reportVectorizationFailure(const StringRef DebugMsg,
885     const StringRef OREMsg, const StringRef ORETag,
886     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
887   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
888   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
889   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
890                 ORETag, TheLoop, I) << OREMsg);
891 }
892 
893 } // end namespace llvm
894 
895 #ifndef NDEBUG
896 /// \return string containing a file name and a line # for the given loop.
897 static std::string getDebugLocString(const Loop *L) {
898   std::string Result;
899   if (L) {
900     raw_string_ostream OS(Result);
901     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
902       LoopDbgLoc.print(OS);
903     else
904       // Just print the module name.
905       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
906     OS.flush();
907   }
908   return Result;
909 }
910 #endif
911 
912 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
913                                          const Instruction *Orig) {
914   // If the loop was versioned with memchecks, add the corresponding no-alias
915   // metadata.
916   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
917     LVer->annotateInstWithNoAlias(To, Orig);
918 }
919 
920 void InnerLoopVectorizer::addMetadata(Instruction *To,
921                                       Instruction *From) {
922   propagateMetadata(To, From);
923   addNewMetadata(To, From);
924 }
925 
926 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
927                                       Instruction *From) {
928   for (Value *V : To) {
929     if (Instruction *I = dyn_cast<Instruction>(V))
930       addMetadata(I, From);
931   }
932 }
933 
934 namespace llvm {
935 
936 // Loop vectorization cost-model hints how the scalar epilogue loop should be
937 // lowered.
938 enum ScalarEpilogueLowering {
939 
940   // The default: allowing scalar epilogues.
941   CM_ScalarEpilogueAllowed,
942 
943   // Vectorization with OptForSize: don't allow epilogues.
944   CM_ScalarEpilogueNotAllowedOptSize,
945 
946   // A special case of vectorisation with OptForSize: loops with a very small
947   // trip count are considered for vectorization under OptForSize, thereby
948   // making sure the cost of their loop body is dominant, free of runtime
949   // guards and scalar iteration overheads.
950   CM_ScalarEpilogueNotAllowedLowTripLoop,
951 
952   // Loop hint predicate indicating an epilogue is undesired.
953   CM_ScalarEpilogueNotNeededUsePredicate
954 };
955 
956 /// LoopVectorizationCostModel - estimates the expected speedups due to
957 /// vectorization.
958 /// In many cases vectorization is not profitable. This can happen because of
959 /// a number of reasons. In this class we mainly attempt to predict the
960 /// expected speedup/slowdowns due to the supported instruction set. We use the
961 /// TargetTransformInfo to query the different backends for the cost of
962 /// different operations.
963 class LoopVectorizationCostModel {
964 public:
965   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
966                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
967                              LoopVectorizationLegality *Legal,
968                              const TargetTransformInfo &TTI,
969                              const TargetLibraryInfo *TLI, DemandedBits *DB,
970                              AssumptionCache *AC,
971                              OptimizationRemarkEmitter *ORE, const Function *F,
972                              const LoopVectorizeHints *Hints,
973                              InterleavedAccessInfo &IAI)
974       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
975         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
976         Hints(Hints), InterleaveInfo(IAI) {}
977 
978   /// \return An upper bound for the vectorization factor, or None if
979   /// vectorization and interleaving should be avoided up front.
980   Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC);
981 
982   /// \return True if runtime checks are required for vectorization, and false
983   /// otherwise.
984   bool runtimeChecksRequired();
985 
986   /// \return The most profitable vectorization factor and the cost of that VF.
987   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
988   /// then this vectorization factor will be selected if vectorization is
989   /// possible.
990   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
991 
992   /// Setup cost-based decisions for user vectorization factor.
993   void selectUserVectorizationFactor(unsigned UserVF) {
994     collectUniformsAndScalars(UserVF);
995     collectInstsToScalarize(UserVF);
996   }
997 
998   /// \return The size (in bits) of the smallest and widest types in the code
999   /// that needs to be vectorized. We ignore values that remain scalar such as
1000   /// 64 bit loop indices.
1001   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1002 
1003   /// \return The desired interleave count.
1004   /// If interleave count has been specified by metadata it will be returned.
1005   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1006   /// are the selected vectorization factor and the cost of the selected VF.
1007   unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost);
1008 
1009   /// Memory access instruction may be vectorized in more than one way.
1010   /// Form of instruction after vectorization depends on cost.
1011   /// This function takes cost-based decisions for Load/Store instructions
1012   /// and collects them in a map. This decisions map is used for building
1013   /// the lists of loop-uniform and loop-scalar instructions.
1014   /// The calculated cost is saved with widening decision in order to
1015   /// avoid redundant calculations.
1016   void setCostBasedWideningDecision(unsigned VF);
1017 
1018   /// A struct that represents some properties of the register usage
1019   /// of a loop.
1020   struct RegisterUsage {
1021     /// Holds the number of loop invariant values that are used in the loop.
1022     /// The key is ClassID of target-provided register class.
1023     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1024     /// Holds the maximum number of concurrent live intervals in the loop.
1025     /// The key is ClassID of target-provided register class.
1026     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1027   };
1028 
1029   /// \return Returns information about the register usages of the loop for the
1030   /// given vectorization factors.
1031   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1032 
1033   /// Collect values we want to ignore in the cost model.
1034   void collectValuesToIgnore();
1035 
1036   /// \returns The smallest bitwidth each instruction can be represented with.
1037   /// The vector equivalents of these instructions should be truncated to this
1038   /// type.
1039   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1040     return MinBWs;
1041   }
1042 
1043   /// \returns True if it is more profitable to scalarize instruction \p I for
1044   /// vectorization factor \p VF.
1045   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1046     assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
1047 
1048     // Cost model is not run in the VPlan-native path - return conservative
1049     // result until this changes.
1050     if (EnableVPlanNativePath)
1051       return false;
1052 
1053     auto Scalars = InstsToScalarize.find(VF);
1054     assert(Scalars != InstsToScalarize.end() &&
1055            "VF not yet analyzed for scalarization profitability");
1056     return Scalars->second.find(I) != Scalars->second.end();
1057   }
1058 
1059   /// Returns true if \p I is known to be uniform after vectorization.
1060   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1061     if (VF == 1)
1062       return true;
1063 
1064     // Cost model is not run in the VPlan-native path - return conservative
1065     // result until this changes.
1066     if (EnableVPlanNativePath)
1067       return false;
1068 
1069     auto UniformsPerVF = Uniforms.find(VF);
1070     assert(UniformsPerVF != Uniforms.end() &&
1071            "VF not yet analyzed for uniformity");
1072     return UniformsPerVF->second.find(I) != UniformsPerVF->second.end();
1073   }
1074 
1075   /// Returns true if \p I is known to be scalar after vectorization.
1076   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1077     if (VF == 1)
1078       return true;
1079 
1080     // Cost model is not run in the VPlan-native path - return conservative
1081     // result until this changes.
1082     if (EnableVPlanNativePath)
1083       return false;
1084 
1085     auto ScalarsPerVF = Scalars.find(VF);
1086     assert(ScalarsPerVF != Scalars.end() &&
1087            "Scalar values are not calculated for VF");
1088     return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end();
1089   }
1090 
1091   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1092   /// for vectorization factor \p VF.
1093   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1094     return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
1095            !isProfitableToScalarize(I, VF) &&
1096            !isScalarAfterVectorization(I, VF);
1097   }
1098 
1099   /// Decision that was taken during cost calculation for memory instruction.
1100   enum InstWidening {
1101     CM_Unknown,
1102     CM_Widen,         // For consecutive accesses with stride +1.
1103     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1104     CM_Interleave,
1105     CM_GatherScatter,
1106     CM_Scalarize
1107   };
1108 
1109   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1110   /// instruction \p I and vector width \p VF.
1111   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1112                            unsigned Cost) {
1113     assert(VF >= 2 && "Expected VF >=2");
1114     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1115   }
1116 
1117   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1118   /// interleaving group \p Grp and vector width \p VF.
1119   void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF,
1120                            InstWidening W, unsigned Cost) {
1121     assert(VF >= 2 && "Expected VF >=2");
1122     /// Broadcast this decicion to all instructions inside the group.
1123     /// But the cost will be assigned to one instruction only.
1124     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1125       if (auto *I = Grp->getMember(i)) {
1126         if (Grp->getInsertPos() == I)
1127           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1128         else
1129           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1130       }
1131     }
1132   }
1133 
1134   /// Return the cost model decision for the given instruction \p I and vector
1135   /// width \p VF. Return CM_Unknown if this instruction did not pass
1136   /// through the cost modeling.
1137   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1138     assert(VF >= 2 && "Expected VF >=2");
1139 
1140     // Cost model is not run in the VPlan-native path - return conservative
1141     // result until this changes.
1142     if (EnableVPlanNativePath)
1143       return CM_GatherScatter;
1144 
1145     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1146     auto Itr = WideningDecisions.find(InstOnVF);
1147     if (Itr == WideningDecisions.end())
1148       return CM_Unknown;
1149     return Itr->second.first;
1150   }
1151 
1152   /// Return the vectorization cost for the given instruction \p I and vector
1153   /// width \p VF.
1154   unsigned getWideningCost(Instruction *I, unsigned VF) {
1155     assert(VF >= 2 && "Expected VF >=2");
1156     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1157     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1158            "The cost is not calculated");
1159     return WideningDecisions[InstOnVF].second;
1160   }
1161 
1162   /// Return True if instruction \p I is an optimizable truncate whose operand
1163   /// is an induction variable. Such a truncate will be removed by adding a new
1164   /// induction variable with the destination type.
1165   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1166     // If the instruction is not a truncate, return false.
1167     auto *Trunc = dyn_cast<TruncInst>(I);
1168     if (!Trunc)
1169       return false;
1170 
1171     // Get the source and destination types of the truncate.
1172     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1173     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1174 
1175     // If the truncate is free for the given types, return false. Replacing a
1176     // free truncate with an induction variable would add an induction variable
1177     // update instruction to each iteration of the loop. We exclude from this
1178     // check the primary induction variable since it will need an update
1179     // instruction regardless.
1180     Value *Op = Trunc->getOperand(0);
1181     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1182       return false;
1183 
1184     // If the truncated value is not an induction variable, return false.
1185     return Legal->isInductionPhi(Op);
1186   }
1187 
1188   /// Collects the instructions to scalarize for each predicated instruction in
1189   /// the loop.
1190   void collectInstsToScalarize(unsigned VF);
1191 
1192   /// Collect Uniform and Scalar values for the given \p VF.
1193   /// The sets depend on CM decision for Load/Store instructions
1194   /// that may be vectorized as interleave, gather-scatter or scalarized.
1195   void collectUniformsAndScalars(unsigned VF) {
1196     // Do the analysis once.
1197     if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
1198       return;
1199     setCostBasedWideningDecision(VF);
1200     collectLoopUniforms(VF);
1201     collectLoopScalars(VF);
1202   }
1203 
1204   /// Returns true if the target machine supports masked store operation
1205   /// for the given \p DataType and kind of access to \p Ptr.
1206   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) {
1207     return Legal->isConsecutivePtr(Ptr) &&
1208            TTI.isLegalMaskedStore(DataType, Alignment);
1209   }
1210 
1211   /// Returns true if the target machine supports masked load operation
1212   /// for the given \p DataType and kind of access to \p Ptr.
1213   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) {
1214     return Legal->isConsecutivePtr(Ptr) &&
1215            TTI.isLegalMaskedLoad(DataType, Alignment);
1216   }
1217 
1218   /// Returns true if the target machine supports masked scatter operation
1219   /// for the given \p DataType.
1220   bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
1221     return TTI.isLegalMaskedScatter(DataType, Alignment);
1222   }
1223 
1224   /// Returns true if the target machine supports masked gather operation
1225   /// for the given \p DataType.
1226   bool isLegalMaskedGather(Type *DataType, Align Alignment) {
1227     return TTI.isLegalMaskedGather(DataType, Alignment);
1228   }
1229 
1230   /// Returns true if the target machine can represent \p V as a masked gather
1231   /// or scatter operation.
1232   bool isLegalGatherOrScatter(Value *V) {
1233     bool LI = isa<LoadInst>(V);
1234     bool SI = isa<StoreInst>(V);
1235     if (!LI && !SI)
1236       return false;
1237     auto *Ty = getMemInstValueType(V);
1238     Align Align = getLoadStoreAlignment(V);
1239     return (LI && isLegalMaskedGather(Ty, Align)) ||
1240            (SI && isLegalMaskedScatter(Ty, Align));
1241   }
1242 
1243   /// Returns true if \p I is an instruction that will be scalarized with
1244   /// predication. Such instructions include conditional stores and
1245   /// instructions that may divide by zero.
1246   /// If a non-zero VF has been calculated, we check if I will be scalarized
1247   /// predication for that VF.
1248   bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
1249 
1250   // Returns true if \p I is an instruction that will be predicated either
1251   // through scalar predication or masked load/store or masked gather/scatter.
1252   // Superset of instructions that return true for isScalarWithPredication.
1253   bool isPredicatedInst(Instruction *I) {
1254     if (!blockNeedsPredication(I->getParent()))
1255       return false;
1256     // Loads and stores that need some form of masked operation are predicated
1257     // instructions.
1258     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1259       return Legal->isMaskRequired(I);
1260     return isScalarWithPredication(I);
1261   }
1262 
1263   /// Returns true if \p I is a memory instruction with consecutive memory
1264   /// access that can be widened.
1265   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1266 
1267   /// Returns true if \p I is a memory instruction in an interleaved-group
1268   /// of memory accesses that can be vectorized with wide vector loads/stores
1269   /// and shuffles.
1270   bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1);
1271 
1272   /// Check if \p Instr belongs to any interleaved access group.
1273   bool isAccessInterleaved(Instruction *Instr) {
1274     return InterleaveInfo.isInterleaved(Instr);
1275   }
1276 
1277   /// Get the interleaved access group that \p Instr belongs to.
1278   const InterleaveGroup<Instruction> *
1279   getInterleavedAccessGroup(Instruction *Instr) {
1280     return InterleaveInfo.getInterleaveGroup(Instr);
1281   }
1282 
1283   /// Returns true if an interleaved group requires a scalar iteration
1284   /// to handle accesses with gaps, and there is nothing preventing us from
1285   /// creating a scalar epilogue.
1286   bool requiresScalarEpilogue() const {
1287     return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1288   }
1289 
1290   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1291   /// loop hint annotation.
1292   bool isScalarEpilogueAllowed() const {
1293     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1294   }
1295 
1296   /// Returns true if all loop blocks should be masked to fold tail loop.
1297   bool foldTailByMasking() const { return FoldTailByMasking; }
1298 
1299   bool blockNeedsPredication(BasicBlock *BB) {
1300     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1301   }
1302 
1303   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1304   /// with factor VF.  Return the cost of the instruction, including
1305   /// scalarization overhead if it's needed.
1306   unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF);
1307 
1308   /// Estimate cost of a call instruction CI if it were vectorized with factor
1309   /// VF. Return the cost of the instruction, including scalarization overhead
1310   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1311   /// scalarized -
1312   /// i.e. either vector version isn't available, or is too expensive.
1313   unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize);
1314 
1315   /// Invalidates decisions already taken by the cost model.
1316   void invalidateCostModelingDecisions() {
1317     WideningDecisions.clear();
1318     Uniforms.clear();
1319     Scalars.clear();
1320   }
1321 
1322 private:
1323   unsigned NumPredStores = 0;
1324 
1325   /// \return An upper bound for the vectorization factor, larger than zero.
1326   /// One is returned if vectorization should best be avoided due to cost.
1327   unsigned computeFeasibleMaxVF(unsigned ConstTripCount);
1328 
1329   /// The vectorization cost is a combination of the cost itself and a boolean
1330   /// indicating whether any of the contributing operations will actually
1331   /// operate on
1332   /// vector values after type legalization in the backend. If this latter value
1333   /// is
1334   /// false, then all operations will be scalarized (i.e. no vectorization has
1335   /// actually taken place).
1336   using VectorizationCostTy = std::pair<unsigned, bool>;
1337 
1338   /// Returns the expected execution cost. The unit of the cost does
1339   /// not matter because we use the 'cost' units to compare different
1340   /// vector widths. The cost that is returned is *not* normalized by
1341   /// the factor width.
1342   VectorizationCostTy expectedCost(unsigned VF);
1343 
1344   /// Returns the execution time cost of an instruction for a given vector
1345   /// width. Vector width of one means scalar.
1346   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1347 
1348   /// The cost-computation logic from getInstructionCost which provides
1349   /// the vector type as an output parameter.
1350   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1351 
1352   /// Calculate vectorization cost of memory instruction \p I.
1353   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
1354 
1355   /// The cost computation for scalarized memory instruction.
1356   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
1357 
1358   /// The cost computation for interleaving group of memory instructions.
1359   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
1360 
1361   /// The cost computation for Gather/Scatter instruction.
1362   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
1363 
1364   /// The cost computation for widening instruction \p I with consecutive
1365   /// memory access.
1366   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
1367 
1368   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1369   /// Load: scalar load + broadcast.
1370   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1371   /// element)
1372   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
1373 
1374   /// Estimate the overhead of scalarizing an instruction. This is a
1375   /// convenience wrapper for the type-based getScalarizationOverhead API.
1376   unsigned getScalarizationOverhead(Instruction *I, unsigned VF);
1377 
1378   /// Returns whether the instruction is a load or store and will be a emitted
1379   /// as a vector operation.
1380   bool isConsecutiveLoadOrStore(Instruction *I);
1381 
1382   /// Returns true if an artificially high cost for emulated masked memrefs
1383   /// should be used.
1384   bool useEmulatedMaskMemRefHack(Instruction *I);
1385 
1386   /// Map of scalar integer values to the smallest bitwidth they can be legally
1387   /// represented as. The vector equivalents of these values should be truncated
1388   /// to this type.
1389   MapVector<Instruction *, uint64_t> MinBWs;
1390 
1391   /// A type representing the costs for instructions if they were to be
1392   /// scalarized rather than vectorized. The entries are Instruction-Cost
1393   /// pairs.
1394   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1395 
1396   /// A set containing all BasicBlocks that are known to present after
1397   /// vectorization as a predicated block.
1398   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1399 
1400   /// Records whether it is allowed to have the original scalar loop execute at
1401   /// least once. This may be needed as a fallback loop in case runtime
1402   /// aliasing/dependence checks fail, or to handle the tail/remainder
1403   /// iterations when the trip count is unknown or doesn't divide by the VF,
1404   /// or as a peel-loop to handle gaps in interleave-groups.
1405   /// Under optsize and when the trip count is very small we don't allow any
1406   /// iterations to execute in the scalar loop.
1407   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1408 
1409   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1410   bool FoldTailByMasking = false;
1411 
1412   /// A map holding scalar costs for different vectorization factors. The
1413   /// presence of a cost for an instruction in the mapping indicates that the
1414   /// instruction will be scalarized when vectorizing with the associated
1415   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1416   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
1417 
1418   /// Holds the instructions known to be uniform after vectorization.
1419   /// The data is collected per VF.
1420   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
1421 
1422   /// Holds the instructions known to be scalar after vectorization.
1423   /// The data is collected per VF.
1424   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
1425 
1426   /// Holds the instructions (address computations) that are forced to be
1427   /// scalarized.
1428   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1429 
1430   /// Returns the expected difference in cost from scalarizing the expression
1431   /// feeding a predicated instruction \p PredInst. The instructions to
1432   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1433   /// non-negative return value implies the expression will be scalarized.
1434   /// Currently, only single-use chains are considered for scalarization.
1435   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1436                               unsigned VF);
1437 
1438   /// Collect the instructions that are uniform after vectorization. An
1439   /// instruction is uniform if we represent it with a single scalar value in
1440   /// the vectorized loop corresponding to each vector iteration. Examples of
1441   /// uniform instructions include pointer operands of consecutive or
1442   /// interleaved memory accesses. Note that although uniformity implies an
1443   /// instruction will be scalar, the reverse is not true. In general, a
1444   /// scalarized instruction will be represented by VF scalar values in the
1445   /// vectorized loop, each corresponding to an iteration of the original
1446   /// scalar loop.
1447   void collectLoopUniforms(unsigned VF);
1448 
1449   /// Collect the instructions that are scalar after vectorization. An
1450   /// instruction is scalar if it is known to be uniform or will be scalarized
1451   /// during vectorization. Non-uniform scalarized instructions will be
1452   /// represented by VF values in the vectorized loop, each corresponding to an
1453   /// iteration of the original scalar loop.
1454   void collectLoopScalars(unsigned VF);
1455 
1456   /// Keeps cost model vectorization decision and cost for instructions.
1457   /// Right now it is used for memory instructions only.
1458   using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
1459                                 std::pair<InstWidening, unsigned>>;
1460 
1461   DecisionList WideningDecisions;
1462 
1463   /// Returns true if \p V is expected to be vectorized and it needs to be
1464   /// extracted.
1465   bool needsExtract(Value *V, unsigned VF) const {
1466     Instruction *I = dyn_cast<Instruction>(V);
1467     if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I))
1468       return false;
1469 
1470     // Assume we can vectorize V (and hence we need extraction) if the
1471     // scalars are not computed yet. This can happen, because it is called
1472     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1473     // the scalars are collected. That should be a safe assumption in most
1474     // cases, because we check if the operands have vectorizable types
1475     // beforehand in LoopVectorizationLegality.
1476     return Scalars.find(VF) == Scalars.end() ||
1477            !isScalarAfterVectorization(I, VF);
1478   };
1479 
1480   /// Returns a range containing only operands needing to be extracted.
1481   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1482                                                    unsigned VF) {
1483     return SmallVector<Value *, 4>(make_filter_range(
1484         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1485   }
1486 
1487 public:
1488   /// The loop that we evaluate.
1489   Loop *TheLoop;
1490 
1491   /// Predicated scalar evolution analysis.
1492   PredicatedScalarEvolution &PSE;
1493 
1494   /// Loop Info analysis.
1495   LoopInfo *LI;
1496 
1497   /// Vectorization legality.
1498   LoopVectorizationLegality *Legal;
1499 
1500   /// Vector target information.
1501   const TargetTransformInfo &TTI;
1502 
1503   /// Target Library Info.
1504   const TargetLibraryInfo *TLI;
1505 
1506   /// Demanded bits analysis.
1507   DemandedBits *DB;
1508 
1509   /// Assumption cache.
1510   AssumptionCache *AC;
1511 
1512   /// Interface to emit optimization remarks.
1513   OptimizationRemarkEmitter *ORE;
1514 
1515   const Function *TheFunction;
1516 
1517   /// Loop Vectorize Hint.
1518   const LoopVectorizeHints *Hints;
1519 
1520   /// The interleave access information contains groups of interleaved accesses
1521   /// with the same stride and close to each other.
1522   InterleavedAccessInfo &InterleaveInfo;
1523 
1524   /// Values to ignore in the cost model.
1525   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1526 
1527   /// Values to ignore in the cost model when VF > 1.
1528   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1529 };
1530 
1531 } // end namespace llvm
1532 
1533 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1534 // vectorization. The loop needs to be annotated with #pragma omp simd
1535 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1536 // vector length information is not provided, vectorization is not considered
1537 // explicit. Interleave hints are not allowed either. These limitations will be
1538 // relaxed in the future.
1539 // Please, note that we are currently forced to abuse the pragma 'clang
1540 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1541 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1542 // provides *explicit vectorization hints* (LV can bypass legal checks and
1543 // assume that vectorization is legal). However, both hints are implemented
1544 // using the same metadata (llvm.loop.vectorize, processed by
1545 // LoopVectorizeHints). This will be fixed in the future when the native IR
1546 // representation for pragma 'omp simd' is introduced.
1547 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1548                                    OptimizationRemarkEmitter *ORE) {
1549   assert(!OuterLp->empty() && "This is not an outer loop");
1550   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1551 
1552   // Only outer loops with an explicit vectorization hint are supported.
1553   // Unannotated outer loops are ignored.
1554   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1555     return false;
1556 
1557   Function *Fn = OuterLp->getHeader()->getParent();
1558   if (!Hints.allowVectorization(Fn, OuterLp,
1559                                 true /*VectorizeOnlyWhenForced*/)) {
1560     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1561     return false;
1562   }
1563 
1564   if (Hints.getInterleave() > 1) {
1565     // TODO: Interleave support is future work.
1566     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1567                          "outer loops.\n");
1568     Hints.emitRemarkWithHints();
1569     return false;
1570   }
1571 
1572   return true;
1573 }
1574 
1575 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1576                                   OptimizationRemarkEmitter *ORE,
1577                                   SmallVectorImpl<Loop *> &V) {
1578   // Collect inner loops and outer loops without irreducible control flow. For
1579   // now, only collect outer loops that have explicit vectorization hints. If we
1580   // are stress testing the VPlan H-CFG construction, we collect the outermost
1581   // loop of every loop nest.
1582   if (L.empty() || VPlanBuildStressTest ||
1583       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1584     LoopBlocksRPO RPOT(&L);
1585     RPOT.perform(LI);
1586     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1587       V.push_back(&L);
1588       // TODO: Collect inner loops inside marked outer loops in case
1589       // vectorization fails for the outer loop. Do not invoke
1590       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1591       // already known to be reducible. We can use an inherited attribute for
1592       // that.
1593       return;
1594     }
1595   }
1596   for (Loop *InnerL : L)
1597     collectSupportedLoops(*InnerL, LI, ORE, V);
1598 }
1599 
1600 namespace {
1601 
1602 /// The LoopVectorize Pass.
1603 struct LoopVectorize : public FunctionPass {
1604   /// Pass identification, replacement for typeid
1605   static char ID;
1606 
1607   LoopVectorizePass Impl;
1608 
1609   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1610                          bool VectorizeOnlyWhenForced = false)
1611       : FunctionPass(ID),
1612         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
1613     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1614   }
1615 
1616   bool runOnFunction(Function &F) override {
1617     if (skipFunction(F))
1618       return false;
1619 
1620     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1621     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1622     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1623     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1624     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1625     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1626     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1627     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1628     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1629     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1630     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1631     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1632     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1633 
1634     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1635         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1636 
1637     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1638                         GetLAA, *ORE, PSI).MadeAnyChange;
1639   }
1640 
1641   void getAnalysisUsage(AnalysisUsage &AU) const override {
1642     AU.addRequired<AssumptionCacheTracker>();
1643     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1644     AU.addRequired<DominatorTreeWrapperPass>();
1645     AU.addRequired<LoopInfoWrapperPass>();
1646     AU.addRequired<ScalarEvolutionWrapperPass>();
1647     AU.addRequired<TargetTransformInfoWrapperPass>();
1648     AU.addRequired<AAResultsWrapperPass>();
1649     AU.addRequired<LoopAccessLegacyAnalysis>();
1650     AU.addRequired<DemandedBitsWrapperPass>();
1651     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1652     AU.addRequired<InjectTLIMappingsLegacy>();
1653 
1654     // We currently do not preserve loopinfo/dominator analyses with outer loop
1655     // vectorization. Until this is addressed, mark these analyses as preserved
1656     // only for non-VPlan-native path.
1657     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1658     if (!EnableVPlanNativePath) {
1659       AU.addPreserved<LoopInfoWrapperPass>();
1660       AU.addPreserved<DominatorTreeWrapperPass>();
1661     }
1662 
1663     AU.addPreserved<BasicAAWrapperPass>();
1664     AU.addPreserved<GlobalsAAWrapperPass>();
1665     AU.addRequired<ProfileSummaryInfoWrapperPass>();
1666   }
1667 };
1668 
1669 } // end anonymous namespace
1670 
1671 //===----------------------------------------------------------------------===//
1672 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1673 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1674 //===----------------------------------------------------------------------===//
1675 
1676 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1677   // We need to place the broadcast of invariant variables outside the loop,
1678   // but only if it's proven safe to do so. Else, broadcast will be inside
1679   // vector loop body.
1680   Instruction *Instr = dyn_cast<Instruction>(V);
1681   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1682                      (!Instr ||
1683                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1684   // Place the code for broadcasting invariant variables in the new preheader.
1685   IRBuilder<>::InsertPointGuard Guard(Builder);
1686   if (SafeToHoist)
1687     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1688 
1689   // Broadcast the scalar into all locations in the vector.
1690   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1691 
1692   return Shuf;
1693 }
1694 
1695 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1696     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1697   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1698          "Expected either an induction phi-node or a truncate of it!");
1699   Value *Start = II.getStartValue();
1700 
1701   // Construct the initial value of the vector IV in the vector loop preheader
1702   auto CurrIP = Builder.saveIP();
1703   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1704   if (isa<TruncInst>(EntryVal)) {
1705     assert(Start->getType()->isIntegerTy() &&
1706            "Truncation requires an integer type");
1707     auto *TruncType = cast<IntegerType>(EntryVal->getType());
1708     Step = Builder.CreateTrunc(Step, TruncType);
1709     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1710   }
1711   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1712   Value *SteppedStart =
1713       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1714 
1715   // We create vector phi nodes for both integer and floating-point induction
1716   // variables. Here, we determine the kind of arithmetic we will perform.
1717   Instruction::BinaryOps AddOp;
1718   Instruction::BinaryOps MulOp;
1719   if (Step->getType()->isIntegerTy()) {
1720     AddOp = Instruction::Add;
1721     MulOp = Instruction::Mul;
1722   } else {
1723     AddOp = II.getInductionOpcode();
1724     MulOp = Instruction::FMul;
1725   }
1726 
1727   // Multiply the vectorization factor by the step using integer or
1728   // floating-point arithmetic as appropriate.
1729   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
1730   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1731 
1732   // Create a vector splat to use in the induction update.
1733   //
1734   // FIXME: If the step is non-constant, we create the vector splat with
1735   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1736   //        handle a constant vector splat.
1737   Value *SplatVF =
1738       isa<Constant>(Mul)
1739           ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul))
1740           : Builder.CreateVectorSplat(VF, Mul);
1741   Builder.restoreIP(CurrIP);
1742 
1743   // We may need to add the step a number of times, depending on the unroll
1744   // factor. The last of those goes into the PHI.
1745   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1746                                     &*LoopVectorBody->getFirstInsertionPt());
1747   VecInd->setDebugLoc(EntryVal->getDebugLoc());
1748   Instruction *LastInduction = VecInd;
1749   for (unsigned Part = 0; Part < UF; ++Part) {
1750     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1751 
1752     if (isa<TruncInst>(EntryVal))
1753       addMetadata(LastInduction, EntryVal);
1754     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1755 
1756     LastInduction = cast<Instruction>(addFastMathFlag(
1757         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1758     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1759   }
1760 
1761   // Move the last step to the end of the latch block. This ensures consistent
1762   // placement of all induction updates.
1763   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1764   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1765   auto *ICmp = cast<Instruction>(Br->getCondition());
1766   LastInduction->moveBefore(ICmp);
1767   LastInduction->setName("vec.ind.next");
1768 
1769   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1770   VecInd->addIncoming(LastInduction, LoopVectorLatch);
1771 }
1772 
1773 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1774   return Cost->isScalarAfterVectorization(I, VF) ||
1775          Cost->isProfitableToScalarize(I, VF);
1776 }
1777 
1778 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1779   if (shouldScalarizeInstruction(IV))
1780     return true;
1781   auto isScalarInst = [&](User *U) -> bool {
1782     auto *I = cast<Instruction>(U);
1783     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1784   };
1785   return llvm::any_of(IV->users(), isScalarInst);
1786 }
1787 
1788 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1789     const InductionDescriptor &ID, const Instruction *EntryVal,
1790     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1791   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1792          "Expected either an induction phi-node or a truncate of it!");
1793 
1794   // This induction variable is not the phi from the original loop but the
1795   // newly-created IV based on the proof that casted Phi is equal to the
1796   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1797   // re-uses the same InductionDescriptor that original IV uses but we don't
1798   // have to do any recording in this case - that is done when original IV is
1799   // processed.
1800   if (isa<TruncInst>(EntryVal))
1801     return;
1802 
1803   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1804   if (Casts.empty())
1805     return;
1806   // Only the first Cast instruction in the Casts vector is of interest.
1807   // The rest of the Casts (if exist) have no uses outside the
1808   // induction update chain itself.
1809   Instruction *CastInst = *Casts.begin();
1810   if (Lane < UINT_MAX)
1811     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1812   else
1813     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1814 }
1815 
1816 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1817   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1818          "Primary induction variable must have an integer type");
1819 
1820   auto II = Legal->getInductionVars().find(IV);
1821   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
1822 
1823   auto ID = II->second;
1824   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1825 
1826   // The value from the original loop to which we are mapping the new induction
1827   // variable.
1828   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1829 
1830   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1831 
1832   // Generate code for the induction step. Note that induction steps are
1833   // required to be loop-invariant
1834   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
1835     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
1836            "Induction step should be loop invariant");
1837     if (PSE.getSE()->isSCEVable(IV->getType())) {
1838       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1839       return Exp.expandCodeFor(Step, Step->getType(),
1840                                LoopVectorPreHeader->getTerminator());
1841     }
1842     return cast<SCEVUnknown>(Step)->getValue();
1843   };
1844 
1845   // The scalar value to broadcast. This is derived from the canonical
1846   // induction variable. If a truncation type is given, truncate the canonical
1847   // induction variable and step. Otherwise, derive these values from the
1848   // induction descriptor.
1849   auto CreateScalarIV = [&](Value *&Step) -> Value * {
1850     Value *ScalarIV = Induction;
1851     if (IV != OldInduction) {
1852       ScalarIV = IV->getType()->isIntegerTy()
1853                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1854                      : Builder.CreateCast(Instruction::SIToFP, Induction,
1855                                           IV->getType());
1856       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1857       ScalarIV->setName("offset.idx");
1858     }
1859     if (Trunc) {
1860       auto *TruncType = cast<IntegerType>(Trunc->getType());
1861       assert(Step->getType()->isIntegerTy() &&
1862              "Truncation requires an integer step");
1863       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1864       Step = Builder.CreateTrunc(Step, TruncType);
1865     }
1866     return ScalarIV;
1867   };
1868 
1869   // Create the vector values from the scalar IV, in the absence of creating a
1870   // vector IV.
1871   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
1872     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1873     for (unsigned Part = 0; Part < UF; ++Part) {
1874       Value *EntryPart =
1875           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
1876       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
1877       if (Trunc)
1878         addMetadata(EntryPart, Trunc);
1879       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
1880     }
1881   };
1882 
1883   // Now do the actual transformations, and start with creating the step value.
1884   Value *Step = CreateStepValue(ID.getStep());
1885   if (VF <= 1) {
1886     Value *ScalarIV = CreateScalarIV(Step);
1887     CreateSplatIV(ScalarIV, Step);
1888     return;
1889   }
1890 
1891   // Determine if we want a scalar version of the induction variable. This is
1892   // true if the induction variable itself is not widened, or if it has at
1893   // least one user in the loop that is not widened.
1894   auto NeedsScalarIV = needsScalarInduction(EntryVal);
1895   if (!NeedsScalarIV) {
1896     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1897     return;
1898   }
1899 
1900   // Try to create a new independent vector induction variable. If we can't
1901   // create the phi node, we will splat the scalar induction variable in each
1902   // loop iteration.
1903   if (!shouldScalarizeInstruction(EntryVal)) {
1904     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1905     Value *ScalarIV = CreateScalarIV(Step);
1906     // Create scalar steps that can be used by instructions we will later
1907     // scalarize. Note that the addition of the scalar steps will not increase
1908     // the number of instructions in the loop in the common case prior to
1909     // InstCombine. We will be trading one vector extract for each scalar step.
1910     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1911     return;
1912   }
1913 
1914   // All IV users are scalar instructions, so only emit a scalar IV, not a
1915   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
1916   // predicate used by the masked loads/stores.
1917   Value *ScalarIV = CreateScalarIV(Step);
1918   if (!Cost->isScalarEpilogueAllowed())
1919     CreateSplatIV(ScalarIV, Step);
1920   buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1921 }
1922 
1923 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
1924                                           Instruction::BinaryOps BinOp) {
1925   // Create and check the types.
1926   auto *ValVTy = cast<VectorType>(Val->getType());
1927   int VLen = ValVTy->getNumElements();
1928 
1929   Type *STy = Val->getType()->getScalarType();
1930   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
1931          "Induction Step must be an integer or FP");
1932   assert(Step->getType() == STy && "Step has wrong type");
1933 
1934   SmallVector<Constant *, 8> Indices;
1935 
1936   if (STy->isIntegerTy()) {
1937     // Create a vector of consecutive numbers from zero to VF.
1938     for (int i = 0; i < VLen; ++i)
1939       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
1940 
1941     // Add the consecutive indices to the vector value.
1942     Constant *Cv = ConstantVector::get(Indices);
1943     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1944     Step = Builder.CreateVectorSplat(VLen, Step);
1945     assert(Step->getType() == Val->getType() && "Invalid step vec");
1946     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1947     // which can be found from the original scalar operations.
1948     Step = Builder.CreateMul(Cv, Step);
1949     return Builder.CreateAdd(Val, Step, "induction");
1950   }
1951 
1952   // Floating point induction.
1953   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
1954          "Binary Opcode should be specified for FP induction");
1955   // Create a vector of consecutive numbers from zero to VF.
1956   for (int i = 0; i < VLen; ++i)
1957     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
1958 
1959   // Add the consecutive indices to the vector value.
1960   Constant *Cv = ConstantVector::get(Indices);
1961 
1962   Step = Builder.CreateVectorSplat(VLen, Step);
1963 
1964   // Floating point operations had to be 'fast' to enable the induction.
1965   FastMathFlags Flags;
1966   Flags.setFast();
1967 
1968   Value *MulOp = Builder.CreateFMul(Cv, Step);
1969   if (isa<Instruction>(MulOp))
1970     // Have to check, MulOp may be a constant
1971     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
1972 
1973   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
1974   if (isa<Instruction>(BOp))
1975     cast<Instruction>(BOp)->setFastMathFlags(Flags);
1976   return BOp;
1977 }
1978 
1979 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
1980                                            Instruction *EntryVal,
1981                                            const InductionDescriptor &ID) {
1982   // We shouldn't have to build scalar steps if we aren't vectorizing.
1983   assert(VF > 1 && "VF should be greater than one");
1984 
1985   // Get the value type and ensure it and the step have the same integer type.
1986   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
1987   assert(ScalarIVTy == Step->getType() &&
1988          "Val and Step should have the same type");
1989 
1990   // We build scalar steps for both integer and floating-point induction
1991   // variables. Here, we determine the kind of arithmetic we will perform.
1992   Instruction::BinaryOps AddOp;
1993   Instruction::BinaryOps MulOp;
1994   if (ScalarIVTy->isIntegerTy()) {
1995     AddOp = Instruction::Add;
1996     MulOp = Instruction::Mul;
1997   } else {
1998     AddOp = ID.getInductionOpcode();
1999     MulOp = Instruction::FMul;
2000   }
2001 
2002   // Determine the number of scalars we need to generate for each unroll
2003   // iteration. If EntryVal is uniform, we only need to generate the first
2004   // lane. Otherwise, we generate all VF values.
2005   unsigned Lanes =
2006       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2007                                                                          : VF;
2008   // Compute the scalar steps and save the results in VectorLoopValueMap.
2009   for (unsigned Part = 0; Part < UF; ++Part) {
2010     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2011       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2012       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2013       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2014       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2015       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2016     }
2017   }
2018 }
2019 
2020 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2021   assert(V != Induction && "The new induction variable should not be used.");
2022   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2023   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2024 
2025   // If we have a stride that is replaced by one, do it here. Defer this for
2026   // the VPlan-native path until we start running Legal checks in that path.
2027   if (!EnableVPlanNativePath && Legal->hasStride(V))
2028     V = ConstantInt::get(V->getType(), 1);
2029 
2030   // If we have a vector mapped to this value, return it.
2031   if (VectorLoopValueMap.hasVectorValue(V, Part))
2032     return VectorLoopValueMap.getVectorValue(V, Part);
2033 
2034   // If the value has not been vectorized, check if it has been scalarized
2035   // instead. If it has been scalarized, and we actually need the value in
2036   // vector form, we will construct the vector values on demand.
2037   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2038     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2039 
2040     // If we've scalarized a value, that value should be an instruction.
2041     auto *I = cast<Instruction>(V);
2042 
2043     // If we aren't vectorizing, we can just copy the scalar map values over to
2044     // the vector map.
2045     if (VF == 1) {
2046       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2047       return ScalarValue;
2048     }
2049 
2050     // Get the last scalar instruction we generated for V and Part. If the value
2051     // is known to be uniform after vectorization, this corresponds to lane zero
2052     // of the Part unroll iteration. Otherwise, the last instruction is the one
2053     // we created for the last vector lane of the Part unroll iteration.
2054     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2055     auto *LastInst = cast<Instruction>(
2056         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2057 
2058     // Set the insert point after the last scalarized instruction. This ensures
2059     // the insertelement sequence will directly follow the scalar definitions.
2060     auto OldIP = Builder.saveIP();
2061     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2062     Builder.SetInsertPoint(&*NewIP);
2063 
2064     // However, if we are vectorizing, we need to construct the vector values.
2065     // If the value is known to be uniform after vectorization, we can just
2066     // broadcast the scalar value corresponding to lane zero for each unroll
2067     // iteration. Otherwise, we construct the vector values using insertelement
2068     // instructions. Since the resulting vectors are stored in
2069     // VectorLoopValueMap, we will only generate the insertelements once.
2070     Value *VectorValue = nullptr;
2071     if (Cost->isUniformAfterVectorization(I, VF)) {
2072       VectorValue = getBroadcastInstrs(ScalarValue);
2073       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2074     } else {
2075       // Initialize packing with insertelements to start from undef.
2076       Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2077       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2078       for (unsigned Lane = 0; Lane < VF; ++Lane)
2079         packScalarIntoVectorValue(V, {Part, Lane});
2080       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2081     }
2082     Builder.restoreIP(OldIP);
2083     return VectorValue;
2084   }
2085 
2086   // If this scalar is unknown, assume that it is a constant or that it is
2087   // loop invariant. Broadcast V and save the value for future uses.
2088   Value *B = getBroadcastInstrs(V);
2089   VectorLoopValueMap.setVectorValue(V, Part, B);
2090   return B;
2091 }
2092 
2093 Value *
2094 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2095                                             const VPIteration &Instance) {
2096   // If the value is not an instruction contained in the loop, it should
2097   // already be scalar.
2098   if (OrigLoop->isLoopInvariant(V))
2099     return V;
2100 
2101   assert(Instance.Lane > 0
2102              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2103              : true && "Uniform values only have lane zero");
2104 
2105   // If the value from the original loop has not been vectorized, it is
2106   // represented by UF x VF scalar values in the new loop. Return the requested
2107   // scalar value.
2108   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2109     return VectorLoopValueMap.getScalarValue(V, Instance);
2110 
2111   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2112   // for the given unroll part. If this entry is not a vector type (i.e., the
2113   // vectorization factor is one), there is no need to generate an
2114   // extractelement instruction.
2115   auto *U = getOrCreateVectorValue(V, Instance.Part);
2116   if (!U->getType()->isVectorTy()) {
2117     assert(VF == 1 && "Value not scalarized has non-vector type");
2118     return U;
2119   }
2120 
2121   // Otherwise, the value from the original loop has been vectorized and is
2122   // represented by UF vector values. Extract and return the requested scalar
2123   // value from the appropriate vector lane.
2124   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2125 }
2126 
2127 void InnerLoopVectorizer::packScalarIntoVectorValue(
2128     Value *V, const VPIteration &Instance) {
2129   assert(V != Induction && "The new induction variable should not be used.");
2130   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2131   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2132 
2133   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2134   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2135   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2136                                             Builder.getInt32(Instance.Lane));
2137   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2138 }
2139 
2140 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2141   assert(Vec->getType()->isVectorTy() && "Invalid type");
2142   SmallVector<int, 8> ShuffleMask;
2143   for (unsigned i = 0; i < VF; ++i)
2144     ShuffleMask.push_back(VF - i - 1);
2145 
2146   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2147                                      ShuffleMask, "reverse");
2148 }
2149 
2150 // Return whether we allow using masked interleave-groups (for dealing with
2151 // strided loads/stores that reside in predicated blocks, or for dealing
2152 // with gaps).
2153 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2154   // If an override option has been passed in for interleaved accesses, use it.
2155   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2156     return EnableMaskedInterleavedMemAccesses;
2157 
2158   return TTI.enableMaskedInterleavedAccessVectorization();
2159 }
2160 
2161 // Try to vectorize the interleave group that \p Instr belongs to.
2162 //
2163 // E.g. Translate following interleaved load group (factor = 3):
2164 //   for (i = 0; i < N; i+=3) {
2165 //     R = Pic[i];             // Member of index 0
2166 //     G = Pic[i+1];           // Member of index 1
2167 //     B = Pic[i+2];           // Member of index 2
2168 //     ... // do something to R, G, B
2169 //   }
2170 // To:
2171 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2172 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2173 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2174 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2175 //
2176 // Or translate following interleaved store group (factor = 3):
2177 //   for (i = 0; i < N; i+=3) {
2178 //     ... do something to R, G, B
2179 //     Pic[i]   = R;           // Member of index 0
2180 //     Pic[i+1] = G;           // Member of index 1
2181 //     Pic[i+2] = B;           // Member of index 2
2182 //   }
2183 // To:
2184 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2185 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2186 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2187 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2188 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2189 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2190     const InterleaveGroup<Instruction> *Group, VPTransformState &State,
2191     VPValue *Addr, VPValue *BlockInMask) {
2192   Instruction *Instr = Group->getInsertPos();
2193   const DataLayout &DL = Instr->getModule()->getDataLayout();
2194 
2195   // Prepare for the vector type of the interleaved load/store.
2196   Type *ScalarTy = getMemInstValueType(Instr);
2197   unsigned InterleaveFactor = Group->getFactor();
2198   Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2199 
2200   // Prepare for the new pointers.
2201   SmallVector<Value *, 2> AddrParts;
2202   unsigned Index = Group->getIndex(Instr);
2203 
2204   // TODO: extend the masked interleaved-group support to reversed access.
2205   assert((!BlockInMask || !Group->isReverse()) &&
2206          "Reversed masked interleave-group not supported.");
2207 
2208   // If the group is reverse, adjust the index to refer to the last vector lane
2209   // instead of the first. We adjust the index from the first vector lane,
2210   // rather than directly getting the pointer for lane VF - 1, because the
2211   // pointer operand of the interleaved access is supposed to be uniform. For
2212   // uniform instructions, we're only required to generate a value for the
2213   // first vector lane in each unroll iteration.
2214   if (Group->isReverse())
2215     Index += (VF - 1) * Group->getFactor();
2216 
2217   for (unsigned Part = 0; Part < UF; Part++) {
2218     Value *AddrPart = State.get(Addr, {Part, 0});
2219     setDebugLocFromInst(Builder, AddrPart);
2220 
2221     // Notice current instruction could be any index. Need to adjust the address
2222     // to the member of index 0.
2223     //
2224     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2225     //       b = A[i];       // Member of index 0
2226     // Current pointer is pointed to A[i+1], adjust it to A[i].
2227     //
2228     // E.g.  A[i+1] = a;     // Member of index 1
2229     //       A[i]   = b;     // Member of index 0
2230     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2231     // Current pointer is pointed to A[i+2], adjust it to A[i].
2232 
2233     bool InBounds = false;
2234     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2235       InBounds = gep->isInBounds();
2236     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2237     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2238 
2239     // Cast to the vector pointer type.
2240     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2241     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2242     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2243   }
2244 
2245   setDebugLocFromInst(Builder, Instr);
2246   Value *UndefVec = UndefValue::get(VecTy);
2247 
2248   Value *MaskForGaps = nullptr;
2249   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2250     MaskForGaps = createBitMaskForGaps(Builder, VF, *Group);
2251     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2252   }
2253 
2254   // Vectorize the interleaved load group.
2255   if (isa<LoadInst>(Instr)) {
2256     // For each unroll part, create a wide load for the group.
2257     SmallVector<Value *, 2> NewLoads;
2258     for (unsigned Part = 0; Part < UF; Part++) {
2259       Instruction *NewLoad;
2260       if (BlockInMask || MaskForGaps) {
2261         assert(useMaskedInterleavedAccesses(*TTI) &&
2262                "masked interleaved groups are not allowed.");
2263         Value *GroupMask = MaskForGaps;
2264         if (BlockInMask) {
2265           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2266           auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2267           Value *ShuffledMask = Builder.CreateShuffleVector(
2268               BlockInMaskPart, Undefs,
2269               createReplicatedMask(InterleaveFactor, VF), "interleaved.mask");
2270           GroupMask = MaskForGaps
2271                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2272                                                 MaskForGaps)
2273                           : ShuffledMask;
2274         }
2275         NewLoad =
2276             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2277                                      GroupMask, UndefVec, "wide.masked.vec");
2278       }
2279       else
2280         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2281                                             Group->getAlign(), "wide.vec");
2282       Group->addMetadata(NewLoad);
2283       NewLoads.push_back(NewLoad);
2284     }
2285 
2286     // For each member in the group, shuffle out the appropriate data from the
2287     // wide loads.
2288     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2289       Instruction *Member = Group->getMember(I);
2290 
2291       // Skip the gaps in the group.
2292       if (!Member)
2293         continue;
2294 
2295       auto StrideMask = createStrideMask(I, InterleaveFactor, VF);
2296       for (unsigned Part = 0; Part < UF; Part++) {
2297         Value *StridedVec = Builder.CreateShuffleVector(
2298             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2299 
2300         // If this member has different type, cast the result type.
2301         if (Member->getType() != ScalarTy) {
2302           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2303           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2304         }
2305 
2306         if (Group->isReverse())
2307           StridedVec = reverseVector(StridedVec);
2308 
2309         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2310       }
2311     }
2312     return;
2313   }
2314 
2315   // The sub vector type for current instruction.
2316   VectorType *SubVT = VectorType::get(ScalarTy, VF);
2317 
2318   // Vectorize the interleaved store group.
2319   for (unsigned Part = 0; Part < UF; Part++) {
2320     // Collect the stored vector from each member.
2321     SmallVector<Value *, 4> StoredVecs;
2322     for (unsigned i = 0; i < InterleaveFactor; i++) {
2323       // Interleaved store group doesn't allow a gap, so each index has a member
2324       Instruction *Member = Group->getMember(i);
2325       assert(Member && "Fail to get a member from an interleaved store group");
2326 
2327       Value *StoredVec = getOrCreateVectorValue(
2328           cast<StoreInst>(Member)->getValueOperand(), Part);
2329       if (Group->isReverse())
2330         StoredVec = reverseVector(StoredVec);
2331 
2332       // If this member has different type, cast it to a unified type.
2333 
2334       if (StoredVec->getType() != SubVT)
2335         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2336 
2337       StoredVecs.push_back(StoredVec);
2338     }
2339 
2340     // Concatenate all vectors into a wide vector.
2341     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2342 
2343     // Interleave the elements in the wide vector.
2344     Value *IVec = Builder.CreateShuffleVector(
2345         WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor),
2346         "interleaved.vec");
2347 
2348     Instruction *NewStoreInstr;
2349     if (BlockInMask) {
2350       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2351       auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2352       Value *ShuffledMask = Builder.CreateShuffleVector(
2353           BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF),
2354           "interleaved.mask");
2355       NewStoreInstr = Builder.CreateMaskedStore(
2356           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2357     }
2358     else
2359       NewStoreInstr =
2360           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2361 
2362     Group->addMetadata(NewStoreInstr);
2363   }
2364 }
2365 
2366 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2367                                                      VPTransformState &State,
2368                                                      VPValue *Addr,
2369                                                      VPValue *StoredValue,
2370                                                      VPValue *BlockInMask) {
2371   // Attempt to issue a wide load.
2372   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2373   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2374 
2375   assert((LI || SI) && "Invalid Load/Store instruction");
2376   assert((!SI || StoredValue) && "No stored value provided for widened store");
2377   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2378 
2379   LoopVectorizationCostModel::InstWidening Decision =
2380       Cost->getWideningDecision(Instr, VF);
2381   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2382           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2383           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2384          "CM decision is not to widen the memory instruction");
2385 
2386   Type *ScalarDataTy = getMemInstValueType(Instr);
2387   Type *DataTy = VectorType::get(ScalarDataTy, VF);
2388   const Align Alignment = getLoadStoreAlignment(Instr);
2389 
2390   // Determine if the pointer operand of the access is either consecutive or
2391   // reverse consecutive.
2392   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2393   bool ConsecutiveStride =
2394       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2395   bool CreateGatherScatter =
2396       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2397 
2398   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2399   // gather/scatter. Otherwise Decision should have been to Scalarize.
2400   assert((ConsecutiveStride || CreateGatherScatter) &&
2401          "The instruction should be scalarized");
2402   (void)ConsecutiveStride;
2403 
2404   VectorParts BlockInMaskParts(UF);
2405   bool isMaskRequired = BlockInMask;
2406   if (isMaskRequired)
2407     for (unsigned Part = 0; Part < UF; ++Part)
2408       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2409 
2410   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2411     // Calculate the pointer for the specific unroll-part.
2412     GetElementPtrInst *PartPtr = nullptr;
2413 
2414     bool InBounds = false;
2415     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2416       InBounds = gep->isInBounds();
2417 
2418     if (Reverse) {
2419       // If the address is consecutive but reversed, then the
2420       // wide store needs to start at the last vector element.
2421       PartPtr = cast<GetElementPtrInst>(
2422           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF)));
2423       PartPtr->setIsInBounds(InBounds);
2424       PartPtr = cast<GetElementPtrInst>(
2425           Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF)));
2426       PartPtr->setIsInBounds(InBounds);
2427       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2428         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2429     } else {
2430       PartPtr = cast<GetElementPtrInst>(
2431           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF)));
2432       PartPtr->setIsInBounds(InBounds);
2433     }
2434 
2435     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2436     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2437   };
2438 
2439   // Handle Stores:
2440   if (SI) {
2441     setDebugLocFromInst(Builder, SI);
2442 
2443     for (unsigned Part = 0; Part < UF; ++Part) {
2444       Instruction *NewSI = nullptr;
2445       Value *StoredVal = State.get(StoredValue, Part);
2446       if (CreateGatherScatter) {
2447         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2448         Value *VectorGep = State.get(Addr, Part);
2449         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2450                                             MaskPart);
2451       } else {
2452         if (Reverse) {
2453           // If we store to reverse consecutive memory locations, then we need
2454           // to reverse the order of elements in the stored value.
2455           StoredVal = reverseVector(StoredVal);
2456           // We don't want to update the value in the map as it might be used in
2457           // another expression. So don't call resetVectorValue(StoredVal).
2458         }
2459         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2460         if (isMaskRequired)
2461           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2462                                             BlockInMaskParts[Part]);
2463         else
2464           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2465       }
2466       addMetadata(NewSI, SI);
2467     }
2468     return;
2469   }
2470 
2471   // Handle loads.
2472   assert(LI && "Must have a load instruction");
2473   setDebugLocFromInst(Builder, LI);
2474   for (unsigned Part = 0; Part < UF; ++Part) {
2475     Value *NewLI;
2476     if (CreateGatherScatter) {
2477       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2478       Value *VectorGep = State.get(Addr, Part);
2479       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2480                                          nullptr, "wide.masked.gather");
2481       addMetadata(NewLI, LI);
2482     } else {
2483       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2484       if (isMaskRequired)
2485         NewLI = Builder.CreateMaskedLoad(
2486             VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy),
2487             "wide.masked.load");
2488       else
2489         NewLI =
2490             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2491 
2492       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2493       addMetadata(NewLI, LI);
2494       if (Reverse)
2495         NewLI = reverseVector(NewLI);
2496     }
2497     VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
2498   }
2499 }
2500 
2501 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User,
2502                                                const VPIteration &Instance,
2503                                                bool IfPredicateInstr,
2504                                                VPTransformState &State) {
2505   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2506 
2507   setDebugLocFromInst(Builder, Instr);
2508 
2509   // Does this instruction return a value ?
2510   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2511 
2512   Instruction *Cloned = Instr->clone();
2513   if (!IsVoidRetTy)
2514     Cloned->setName(Instr->getName() + ".cloned");
2515 
2516   // Replace the operands of the cloned instructions with their scalar
2517   // equivalents in the new loop.
2518   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
2519     auto *NewOp = State.get(User.getOperand(op), Instance);
2520     Cloned->setOperand(op, NewOp);
2521   }
2522   addNewMetadata(Cloned, Instr);
2523 
2524   // Place the cloned scalar in the new loop.
2525   Builder.Insert(Cloned);
2526 
2527   // Add the cloned scalar to the scalar map entry.
2528   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2529 
2530   // If we just cloned a new assumption, add it the assumption cache.
2531   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2532     if (II->getIntrinsicID() == Intrinsic::assume)
2533       AC->registerAssumption(II);
2534 
2535   // End if-block.
2536   if (IfPredicateInstr)
2537     PredicatedInstructions.push_back(Cloned);
2538 }
2539 
2540 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2541                                                       Value *End, Value *Step,
2542                                                       Instruction *DL) {
2543   BasicBlock *Header = L->getHeader();
2544   BasicBlock *Latch = L->getLoopLatch();
2545   // As we're just creating this loop, it's possible no latch exists
2546   // yet. If so, use the header as this will be a single block loop.
2547   if (!Latch)
2548     Latch = Header;
2549 
2550   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2551   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2552   setDebugLocFromInst(Builder, OldInst);
2553   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2554 
2555   Builder.SetInsertPoint(Latch->getTerminator());
2556   setDebugLocFromInst(Builder, OldInst);
2557 
2558   // Create i+1 and fill the PHINode.
2559   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2560   Induction->addIncoming(Start, L->getLoopPreheader());
2561   Induction->addIncoming(Next, Latch);
2562   // Create the compare.
2563   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2564   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2565 
2566   // Now we have two terminators. Remove the old one from the block.
2567   Latch->getTerminator()->eraseFromParent();
2568 
2569   return Induction;
2570 }
2571 
2572 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2573   if (TripCount)
2574     return TripCount;
2575 
2576   assert(L && "Create Trip Count for null loop.");
2577   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2578   // Find the loop boundaries.
2579   ScalarEvolution *SE = PSE.getSE();
2580   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2581   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2582          "Invalid loop count");
2583 
2584   Type *IdxTy = Legal->getWidestInductionType();
2585   assert(IdxTy && "No type for induction");
2586 
2587   // The exit count might have the type of i64 while the phi is i32. This can
2588   // happen if we have an induction variable that is sign extended before the
2589   // compare. The only way that we get a backedge taken count is that the
2590   // induction variable was signed and as such will not overflow. In such a case
2591   // truncation is legal.
2592   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2593       IdxTy->getPrimitiveSizeInBits())
2594     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2595   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2596 
2597   // Get the total trip count from the count by adding 1.
2598   const SCEV *ExitCount = SE->getAddExpr(
2599       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2600 
2601   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2602 
2603   // Expand the trip count and place the new instructions in the preheader.
2604   // Notice that the pre-header does not change, only the loop body.
2605   SCEVExpander Exp(*SE, DL, "induction");
2606 
2607   // Count holds the overall loop count (N).
2608   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2609                                 L->getLoopPreheader()->getTerminator());
2610 
2611   if (TripCount->getType()->isPointerTy())
2612     TripCount =
2613         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2614                                     L->getLoopPreheader()->getTerminator());
2615 
2616   return TripCount;
2617 }
2618 
2619 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2620   if (VectorTripCount)
2621     return VectorTripCount;
2622 
2623   Value *TC = getOrCreateTripCount(L);
2624   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2625 
2626   Type *Ty = TC->getType();
2627   Constant *Step = ConstantInt::get(Ty, VF * UF);
2628 
2629   // If the tail is to be folded by masking, round the number of iterations N
2630   // up to a multiple of Step instead of rounding down. This is done by first
2631   // adding Step-1 and then rounding down. Note that it's ok if this addition
2632   // overflows: the vector induction variable will eventually wrap to zero given
2633   // that it starts at zero and its Step is a power of two; the loop will then
2634   // exit, with the last early-exit vector comparison also producing all-true.
2635   if (Cost->foldTailByMasking()) {
2636     assert(isPowerOf2_32(VF * UF) &&
2637            "VF*UF must be a power of 2 when folding tail by masking");
2638     TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up");
2639   }
2640 
2641   // Now we need to generate the expression for the part of the loop that the
2642   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2643   // iterations are not required for correctness, or N - Step, otherwise. Step
2644   // is equal to the vectorization factor (number of SIMD elements) times the
2645   // unroll factor (number of SIMD instructions).
2646   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2647 
2648   // If there is a non-reversed interleaved group that may speculatively access
2649   // memory out-of-bounds, we need to ensure that there will be at least one
2650   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2651   // the trip count, we set the remainder to be equal to the step. If the step
2652   // does not evenly divide the trip count, no adjustment is necessary since
2653   // there will already be scalar iterations. Note that the minimum iterations
2654   // check ensures that N >= Step.
2655   if (VF > 1 && Cost->requiresScalarEpilogue()) {
2656     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2657     R = Builder.CreateSelect(IsZero, Step, R);
2658   }
2659 
2660   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2661 
2662   return VectorTripCount;
2663 }
2664 
2665 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2666                                                    const DataLayout &DL) {
2667   // Verify that V is a vector type with same number of elements as DstVTy.
2668   unsigned VF = DstVTy->getNumElements();
2669   VectorType *SrcVecTy = cast<VectorType>(V->getType());
2670   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2671   Type *SrcElemTy = SrcVecTy->getElementType();
2672   Type *DstElemTy = DstVTy->getElementType();
2673   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2674          "Vector elements must have same size");
2675 
2676   // Do a direct cast if element types are castable.
2677   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2678     return Builder.CreateBitOrPointerCast(V, DstVTy);
2679   }
2680   // V cannot be directly casted to desired vector type.
2681   // May happen when V is a floating point vector but DstVTy is a vector of
2682   // pointers or vice-versa. Handle this using a two-step bitcast using an
2683   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2684   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2685          "Only one type should be a pointer type");
2686   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2687          "Only one type should be a floating point type");
2688   Type *IntTy =
2689       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2690   VectorType *VecIntTy = VectorType::get(IntTy, VF);
2691   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2692   return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
2693 }
2694 
2695 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2696                                                          BasicBlock *Bypass) {
2697   Value *Count = getOrCreateTripCount(L);
2698   // Reuse existing vector loop preheader for TC checks.
2699   // Note that new preheader block is generated for vector loop.
2700   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2701   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2702 
2703   // Generate code to check if the loop's trip count is less than VF * UF, or
2704   // equal to it in case a scalar epilogue is required; this implies that the
2705   // vector trip count is zero. This check also covers the case where adding one
2706   // to the backedge-taken count overflowed leading to an incorrect trip count
2707   // of zero. In this case we will also jump to the scalar loop.
2708   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2709                                           : ICmpInst::ICMP_ULT;
2710 
2711   // If tail is to be folded, vector loop takes care of all iterations.
2712   Value *CheckMinIters = Builder.getFalse();
2713   if (!Cost->foldTailByMasking())
2714     CheckMinIters = Builder.CreateICmp(
2715         P, Count, ConstantInt::get(Count->getType(), VF * UF),
2716         "min.iters.check");
2717 
2718   // Create new preheader for vector loop.
2719   LoopVectorPreHeader =
2720       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2721                  "vector.ph");
2722 
2723   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2724                                DT->getNode(Bypass)->getIDom()) &&
2725          "TC check is expected to dominate Bypass");
2726 
2727   // Update dominator for Bypass & LoopExit.
2728   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2729   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2730 
2731   ReplaceInstWithInst(
2732       TCCheckBlock->getTerminator(),
2733       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2734   LoopBypassBlocks.push_back(TCCheckBlock);
2735 }
2736 
2737 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2738   // Reuse existing vector loop preheader for SCEV checks.
2739   // Note that new preheader block is generated for vector loop.
2740   BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2741 
2742   // Generate the code to check that the SCEV assumptions that we made.
2743   // We want the new basic block to start at the first instruction in a
2744   // sequence of instructions that form a check.
2745   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2746                    "scev.check");
2747   Value *SCEVCheck = Exp.expandCodeForPredicate(
2748       &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2749 
2750   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2751     if (C->isZero())
2752       return;
2753 
2754   assert(!SCEVCheckBlock->getParent()->hasOptSize() &&
2755          "Cannot SCEV check stride or overflow when optimizing for size");
2756 
2757   SCEVCheckBlock->setName("vector.scevcheck");
2758   // Create new preheader for vector loop.
2759   LoopVectorPreHeader =
2760       SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2761                  nullptr, "vector.ph");
2762 
2763   // Update dominator only if this is first RT check.
2764   if (LoopBypassBlocks.empty()) {
2765     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2766     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2767   }
2768 
2769   ReplaceInstWithInst(
2770       SCEVCheckBlock->getTerminator(),
2771       BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2772   LoopBypassBlocks.push_back(SCEVCheckBlock);
2773   AddedSafetyChecks = true;
2774 }
2775 
2776 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2777   // VPlan-native path does not do any analysis for runtime checks currently.
2778   if (EnableVPlanNativePath)
2779     return;
2780 
2781   // Reuse existing vector loop preheader for runtime memory checks.
2782   // Note that new preheader block is generated for vector loop.
2783   BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2784 
2785   // Generate the code that checks in runtime if arrays overlap. We put the
2786   // checks into a separate block to make the more common case of few elements
2787   // faster.
2788   auto *LAI = Legal->getLAI();
2789   const auto &RtPtrChecking = *LAI->getRuntimePointerChecking();
2790   if (!RtPtrChecking.Need)
2791     return;
2792   Instruction *FirstCheckInst;
2793   Instruction *MemRuntimeCheck;
2794   std::tie(FirstCheckInst, MemRuntimeCheck) =
2795       addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop,
2796                        RtPtrChecking.getChecks(), RtPtrChecking.getSE());
2797   if (!MemRuntimeCheck)
2798     return;
2799 
2800   if (MemCheckBlock->getParent()->hasOptSize()) {
2801     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2802            "Cannot emit memory checks when optimizing for size, unless forced "
2803            "to vectorize.");
2804     ORE->emit([&]() {
2805       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2806                                         L->getStartLoc(), L->getHeader())
2807              << "Code-size may be reduced by not forcing "
2808                 "vectorization, or by source-code modifications "
2809                 "eliminating the need for runtime checks "
2810                 "(e.g., adding 'restrict').";
2811     });
2812   }
2813 
2814   MemCheckBlock->setName("vector.memcheck");
2815   // Create new preheader for vector loop.
2816   LoopVectorPreHeader =
2817       SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2818                  "vector.ph");
2819 
2820   // Update dominator only if this is first RT check.
2821   if (LoopBypassBlocks.empty()) {
2822     DT->changeImmediateDominator(Bypass, MemCheckBlock);
2823     DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2824   }
2825 
2826   ReplaceInstWithInst(
2827       MemCheckBlock->getTerminator(),
2828       BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck));
2829   LoopBypassBlocks.push_back(MemCheckBlock);
2830   AddedSafetyChecks = true;
2831 
2832   // We currently don't use LoopVersioning for the actual loop cloning but we
2833   // still use it to add the noalias metadata.
2834   LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2835                                           PSE.getSE());
2836   LVer->prepareNoAliasMetadata();
2837 }
2838 
2839 Value *InnerLoopVectorizer::emitTransformedIndex(
2840     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
2841     const InductionDescriptor &ID) const {
2842 
2843   SCEVExpander Exp(*SE, DL, "induction");
2844   auto Step = ID.getStep();
2845   auto StartValue = ID.getStartValue();
2846   assert(Index->getType() == Step->getType() &&
2847          "Index type does not match StepValue type");
2848 
2849   // Note: the IR at this point is broken. We cannot use SE to create any new
2850   // SCEV and then expand it, hoping that SCEV's simplification will give us
2851   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2852   // lead to various SCEV crashes. So all we can do is to use builder and rely
2853   // on InstCombine for future simplifications. Here we handle some trivial
2854   // cases only.
2855   auto CreateAdd = [&B](Value *X, Value *Y) {
2856     assert(X->getType() == Y->getType() && "Types don't match!");
2857     if (auto *CX = dyn_cast<ConstantInt>(X))
2858       if (CX->isZero())
2859         return Y;
2860     if (auto *CY = dyn_cast<ConstantInt>(Y))
2861       if (CY->isZero())
2862         return X;
2863     return B.CreateAdd(X, Y);
2864   };
2865 
2866   auto CreateMul = [&B](Value *X, Value *Y) {
2867     assert(X->getType() == Y->getType() && "Types don't match!");
2868     if (auto *CX = dyn_cast<ConstantInt>(X))
2869       if (CX->isOne())
2870         return Y;
2871     if (auto *CY = dyn_cast<ConstantInt>(Y))
2872       if (CY->isOne())
2873         return X;
2874     return B.CreateMul(X, Y);
2875   };
2876 
2877   switch (ID.getKind()) {
2878   case InductionDescriptor::IK_IntInduction: {
2879     assert(Index->getType() == StartValue->getType() &&
2880            "Index type does not match StartValue type");
2881     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
2882       return B.CreateSub(StartValue, Index);
2883     auto *Offset = CreateMul(
2884         Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
2885     return CreateAdd(StartValue, Offset);
2886   }
2887   case InductionDescriptor::IK_PtrInduction: {
2888     assert(isa<SCEVConstant>(Step) &&
2889            "Expected constant step for pointer induction");
2890     return B.CreateGEP(
2891         StartValue->getType()->getPointerElementType(), StartValue,
2892         CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
2893                                            &*B.GetInsertPoint())));
2894   }
2895   case InductionDescriptor::IK_FpInduction: {
2896     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2897     auto InductionBinOp = ID.getInductionBinOp();
2898     assert(InductionBinOp &&
2899            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2900             InductionBinOp->getOpcode() == Instruction::FSub) &&
2901            "Original bin op should be defined for FP induction");
2902 
2903     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
2904 
2905     // Floating point operations had to be 'fast' to enable the induction.
2906     FastMathFlags Flags;
2907     Flags.setFast();
2908 
2909     Value *MulExp = B.CreateFMul(StepValue, Index);
2910     if (isa<Instruction>(MulExp))
2911       // We have to check, the MulExp may be a constant.
2912       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
2913 
2914     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2915                                "induction");
2916     if (isa<Instruction>(BOp))
2917       cast<Instruction>(BOp)->setFastMathFlags(Flags);
2918 
2919     return BOp;
2920   }
2921   case InductionDescriptor::IK_NoInduction:
2922     return nullptr;
2923   }
2924   llvm_unreachable("invalid enum");
2925 }
2926 
2927 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
2928   /*
2929    In this function we generate a new loop. The new loop will contain
2930    the vectorized instructions while the old loop will continue to run the
2931    scalar remainder.
2932 
2933        [ ] <-- loop iteration number check.
2934     /   |
2935    /    v
2936   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2937   |  /  |
2938   | /   v
2939   ||   [ ]     <-- vector pre header.
2940   |/    |
2941   |     v
2942   |    [  ] \
2943   |    [  ]_|   <-- vector loop.
2944   |     |
2945   |     v
2946   |   -[ ]   <--- middle-block.
2947   |  /  |
2948   | /   v
2949   -|- >[ ]     <--- new preheader.
2950    |    |
2951    |    v
2952    |   [ ] \
2953    |   [ ]_|   <-- old scalar loop to handle remainder.
2954     \   |
2955      \  v
2956       >[ ]     <-- exit block.
2957    ...
2958    */
2959 
2960   MDNode *OrigLoopID = OrigLoop->getLoopID();
2961 
2962   // Some loops have a single integer induction variable, while other loops
2963   // don't. One example is c++ iterators that often have multiple pointer
2964   // induction variables. In the code below we also support a case where we
2965   // don't have a single induction variable.
2966   //
2967   // We try to obtain an induction variable from the original loop as hard
2968   // as possible. However if we don't find one that:
2969   //   - is an integer
2970   //   - counts from zero, stepping by one
2971   //   - is the size of the widest induction variable type
2972   // then we create a new one.
2973   OldInduction = Legal->getPrimaryInduction();
2974   Type *IdxTy = Legal->getWidestInductionType();
2975 
2976   // Split the single block loop into the two loop structure described above.
2977   LoopScalarBody = OrigLoop->getHeader();
2978   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
2979   LoopExitBlock = OrigLoop->getExitBlock();
2980   assert(LoopExitBlock && "Must have an exit block");
2981   assert(LoopVectorPreHeader && "Invalid loop structure");
2982 
2983   LoopMiddleBlock =
2984       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2985                  LI, nullptr, "middle.block");
2986   LoopScalarPreHeader =
2987       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
2988                  nullptr, "scalar.ph");
2989   // We intentionally don't let SplitBlock to update LoopInfo since
2990   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
2991   // LoopVectorBody is explicitly added to the correct place few lines later.
2992   LoopVectorBody =
2993       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2994                  nullptr, nullptr, "vector.body");
2995 
2996   // Update dominator for loop exit.
2997   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2998 
2999   // Create and register the new vector loop.
3000   Loop *Lp = LI->AllocateLoop();
3001   Loop *ParentLoop = OrigLoop->getParentLoop();
3002 
3003   // Insert the new loop into the loop nest and register the new basic blocks
3004   // before calling any utilities such as SCEV that require valid LoopInfo.
3005   if (ParentLoop) {
3006     ParentLoop->addChildLoop(Lp);
3007   } else {
3008     LI->addTopLevelLoop(Lp);
3009   }
3010   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3011 
3012   // Find the loop boundaries.
3013   Value *Count = getOrCreateTripCount(Lp);
3014 
3015   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3016 
3017   // Now, compare the new count to zero. If it is zero skip the vector loop and
3018   // jump to the scalar loop. This check also covers the case where the
3019   // backedge-taken count is uint##_max: adding one to it will overflow leading
3020   // to an incorrect trip count of zero. In this (rare) case we will also jump
3021   // to the scalar loop.
3022   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3023 
3024   // Generate the code to check any assumptions that we've made for SCEV
3025   // expressions.
3026   emitSCEVChecks(Lp, LoopScalarPreHeader);
3027 
3028   // Generate the code that checks in runtime if arrays overlap. We put the
3029   // checks into a separate block to make the more common case of few elements
3030   // faster.
3031   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3032 
3033   // Generate the induction variable.
3034   // The loop step is equal to the vectorization factor (num of SIMD elements)
3035   // times the unroll factor (num of SIMD instructions).
3036   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3037   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3038   Induction =
3039       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3040                               getDebugLocFromInstOrOperands(OldInduction));
3041 
3042   // We are going to resume the execution of the scalar loop.
3043   // Go over all of the induction variables that we found and fix the
3044   // PHIs that are left in the scalar version of the loop.
3045   // The starting values of PHI nodes depend on the counter of the last
3046   // iteration in the vectorized loop.
3047   // If we come from a bypass edge then we need to start from the original
3048   // start value.
3049 
3050   // This variable saves the new starting index for the scalar loop. It is used
3051   // to test if there are any tail iterations left once the vector loop has
3052   // completed.
3053   for (auto &InductionEntry : Legal->getInductionVars()) {
3054     PHINode *OrigPhi = InductionEntry.first;
3055     InductionDescriptor II = InductionEntry.second;
3056 
3057     // Create phi nodes to merge from the  backedge-taken check block.
3058     PHINode *BCResumeVal =
3059         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3060                         LoopScalarPreHeader->getTerminator());
3061     // Copy original phi DL over to the new one.
3062     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3063     Value *&EndValue = IVEndValues[OrigPhi];
3064     if (OrigPhi == OldInduction) {
3065       // We know what the end value is.
3066       EndValue = CountRoundDown;
3067     } else {
3068       IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3069       Type *StepType = II.getStep()->getType();
3070       Instruction::CastOps CastOp =
3071           CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3072       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3073       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3074       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3075       EndValue->setName("ind.end");
3076     }
3077 
3078     // The new PHI merges the original incoming value, in case of a bypass,
3079     // or the value at the end of the vectorized loop.
3080     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3081 
3082     // Fix the scalar body counter (PHI node).
3083     // The old induction's phi node in the scalar body needs the truncated
3084     // value.
3085     for (BasicBlock *BB : LoopBypassBlocks)
3086       BCResumeVal->addIncoming(II.getStartValue(), BB);
3087     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3088   }
3089 
3090   // We need the OrigLoop (scalar loop part) latch terminator to help
3091   // produce correct debug info for the middle block BB instructions.
3092   // The legality check stage guarantees that the loop will have a single
3093   // latch.
3094   assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3095          "Scalar loop latch terminator isn't a branch");
3096   BranchInst *ScalarLatchBr =
3097       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3098 
3099   // Add a check in the middle block to see if we have completed
3100   // all of the iterations in the first vector loop.
3101   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3102   // If tail is to be folded, we know we don't need to run the remainder.
3103   Value *CmpN = Builder.getTrue();
3104   if (!Cost->foldTailByMasking()) {
3105     CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3106                            CountRoundDown, "cmp.n",
3107                            LoopMiddleBlock->getTerminator());
3108 
3109     // Here we use the same DebugLoc as the scalar loop latch branch instead
3110     // of the corresponding compare because they may have ended up with
3111     // different line numbers and we want to avoid awkward line stepping while
3112     // debugging. Eg. if the compare has got a line number inside the loop.
3113     cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3114   }
3115 
3116   BranchInst *BrInst =
3117       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3118   BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3119   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3120 
3121   // Get ready to start creating new instructions into the vectorized body.
3122   assert(LoopVectorPreHeader == Lp->getLoopPreheader() &&
3123          "Inconsistent vector loop preheader");
3124   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3125 
3126   Optional<MDNode *> VectorizedLoopID =
3127       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3128                                       LLVMLoopVectorizeFollowupVectorized});
3129   if (VectorizedLoopID.hasValue()) {
3130     Lp->setLoopID(VectorizedLoopID.getValue());
3131 
3132     // Do not setAlreadyVectorized if loop attributes have been defined
3133     // explicitly.
3134     return LoopVectorPreHeader;
3135   }
3136 
3137   // Keep all loop hints from the original loop on the vector loop (we'll
3138   // replace the vectorizer-specific hints below).
3139   if (MDNode *LID = OrigLoop->getLoopID())
3140     Lp->setLoopID(LID);
3141 
3142   LoopVectorizeHints Hints(Lp, true, *ORE);
3143   Hints.setAlreadyVectorized();
3144 
3145 #ifdef EXPENSIVE_CHECKS
3146   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3147   LI->verify(*DT);
3148 #endif
3149 
3150   return LoopVectorPreHeader;
3151 }
3152 
3153 // Fix up external users of the induction variable. At this point, we are
3154 // in LCSSA form, with all external PHIs that use the IV having one input value,
3155 // coming from the remainder loop. We need those PHIs to also have a correct
3156 // value for the IV when arriving directly from the middle block.
3157 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3158                                        const InductionDescriptor &II,
3159                                        Value *CountRoundDown, Value *EndValue,
3160                                        BasicBlock *MiddleBlock) {
3161   // There are two kinds of external IV usages - those that use the value
3162   // computed in the last iteration (the PHI) and those that use the penultimate
3163   // value (the value that feeds into the phi from the loop latch).
3164   // We allow both, but they, obviously, have different values.
3165 
3166   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3167 
3168   DenseMap<Value *, Value *> MissingVals;
3169 
3170   // An external user of the last iteration's value should see the value that
3171   // the remainder loop uses to initialize its own IV.
3172   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3173   for (User *U : PostInc->users()) {
3174     Instruction *UI = cast<Instruction>(U);
3175     if (!OrigLoop->contains(UI)) {
3176       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3177       MissingVals[UI] = EndValue;
3178     }
3179   }
3180 
3181   // An external user of the penultimate value need to see EndValue - Step.
3182   // The simplest way to get this is to recompute it from the constituent SCEVs,
3183   // that is Start + (Step * (CRD - 1)).
3184   for (User *U : OrigPhi->users()) {
3185     auto *UI = cast<Instruction>(U);
3186     if (!OrigLoop->contains(UI)) {
3187       const DataLayout &DL =
3188           OrigLoop->getHeader()->getModule()->getDataLayout();
3189       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3190 
3191       IRBuilder<> B(MiddleBlock->getTerminator());
3192       Value *CountMinusOne = B.CreateSub(
3193           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3194       Value *CMO =
3195           !II.getStep()->getType()->isIntegerTy()
3196               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3197                              II.getStep()->getType())
3198               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3199       CMO->setName("cast.cmo");
3200       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3201       Escape->setName("ind.escape");
3202       MissingVals[UI] = Escape;
3203     }
3204   }
3205 
3206   for (auto &I : MissingVals) {
3207     PHINode *PHI = cast<PHINode>(I.first);
3208     // One corner case we have to handle is two IVs "chasing" each-other,
3209     // that is %IV2 = phi [...], [ %IV1, %latch ]
3210     // In this case, if IV1 has an external use, we need to avoid adding both
3211     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3212     // don't already have an incoming value for the middle block.
3213     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3214       PHI->addIncoming(I.second, MiddleBlock);
3215   }
3216 }
3217 
3218 namespace {
3219 
3220 struct CSEDenseMapInfo {
3221   static bool canHandle(const Instruction *I) {
3222     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3223            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3224   }
3225 
3226   static inline Instruction *getEmptyKey() {
3227     return DenseMapInfo<Instruction *>::getEmptyKey();
3228   }
3229 
3230   static inline Instruction *getTombstoneKey() {
3231     return DenseMapInfo<Instruction *>::getTombstoneKey();
3232   }
3233 
3234   static unsigned getHashValue(const Instruction *I) {
3235     assert(canHandle(I) && "Unknown instruction!");
3236     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3237                                                            I->value_op_end()));
3238   }
3239 
3240   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3241     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3242         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3243       return LHS == RHS;
3244     return LHS->isIdenticalTo(RHS);
3245   }
3246 };
3247 
3248 } // end anonymous namespace
3249 
3250 ///Perform cse of induction variable instructions.
3251 static void cse(BasicBlock *BB) {
3252   // Perform simple cse.
3253   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3254   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3255     Instruction *In = &*I++;
3256 
3257     if (!CSEDenseMapInfo::canHandle(In))
3258       continue;
3259 
3260     // Check if we can replace this instruction with any of the
3261     // visited instructions.
3262     if (Instruction *V = CSEMap.lookup(In)) {
3263       In->replaceAllUsesWith(V);
3264       In->eraseFromParent();
3265       continue;
3266     }
3267 
3268     CSEMap[In] = In;
3269   }
3270 }
3271 
3272 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3273                                                        unsigned VF,
3274                                                        bool &NeedToScalarize) {
3275   Function *F = CI->getCalledFunction();
3276   Type *ScalarRetTy = CI->getType();
3277   SmallVector<Type *, 4> Tys, ScalarTys;
3278   for (auto &ArgOp : CI->arg_operands())
3279     ScalarTys.push_back(ArgOp->getType());
3280 
3281   // Estimate cost of scalarized vector call. The source operands are assumed
3282   // to be vectors, so we need to extract individual elements from there,
3283   // execute VF scalar calls, and then gather the result into the vector return
3284   // value.
3285   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys,
3286                                                  TTI::TCK_RecipThroughput);
3287   if (VF == 1)
3288     return ScalarCallCost;
3289 
3290   // Compute corresponding vector type for return value and arguments.
3291   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3292   for (Type *ScalarTy : ScalarTys)
3293     Tys.push_back(ToVectorTy(ScalarTy, VF));
3294 
3295   // Compute costs of unpacking argument values for the scalar calls and
3296   // packing the return values to a vector.
3297   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3298 
3299   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3300 
3301   // If we can't emit a vector call for this function, then the currently found
3302   // cost is the cost we need to return.
3303   NeedToScalarize = true;
3304   VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/);
3305   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3306 
3307   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3308     return Cost;
3309 
3310   // If the corresponding vector cost is cheaper, return its cost.
3311   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys,
3312                                                  TTI::TCK_RecipThroughput);
3313   if (VectorCallCost < Cost) {
3314     NeedToScalarize = false;
3315     return VectorCallCost;
3316   }
3317   return Cost;
3318 }
3319 
3320 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3321                                                             unsigned VF) {
3322   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3323   assert(ID && "Expected intrinsic call!");
3324 
3325   IntrinsicCostAttributes CostAttrs(ID, *CI, VF);
3326   return TTI.getIntrinsicInstrCost(CostAttrs,
3327                                    TargetTransformInfo::TCK_RecipThroughput);
3328 }
3329 
3330 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3331   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3332   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3333   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3334 }
3335 
3336 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3337   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3338   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3339   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3340 }
3341 
3342 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3343   // For every instruction `I` in MinBWs, truncate the operands, create a
3344   // truncated version of `I` and reextend its result. InstCombine runs
3345   // later and will remove any ext/trunc pairs.
3346   SmallPtrSet<Value *, 4> Erased;
3347   for (const auto &KV : Cost->getMinimalBitwidths()) {
3348     // If the value wasn't vectorized, we must maintain the original scalar
3349     // type. The absence of the value from VectorLoopValueMap indicates that it
3350     // wasn't vectorized.
3351     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3352       continue;
3353     for (unsigned Part = 0; Part < UF; ++Part) {
3354       Value *I = getOrCreateVectorValue(KV.first, Part);
3355       if (Erased.find(I) != Erased.end() || I->use_empty() ||
3356           !isa<Instruction>(I))
3357         continue;
3358       Type *OriginalTy = I->getType();
3359       Type *ScalarTruncatedTy =
3360           IntegerType::get(OriginalTy->getContext(), KV.second);
3361       Type *TruncatedTy = VectorType::get(
3362           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements());
3363       if (TruncatedTy == OriginalTy)
3364         continue;
3365 
3366       IRBuilder<> B(cast<Instruction>(I));
3367       auto ShrinkOperand = [&](Value *V) -> Value * {
3368         if (auto *ZI = dyn_cast<ZExtInst>(V))
3369           if (ZI->getSrcTy() == TruncatedTy)
3370             return ZI->getOperand(0);
3371         return B.CreateZExtOrTrunc(V, TruncatedTy);
3372       };
3373 
3374       // The actual instruction modification depends on the instruction type,
3375       // unfortunately.
3376       Value *NewI = nullptr;
3377       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3378         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3379                              ShrinkOperand(BO->getOperand(1)));
3380 
3381         // Any wrapping introduced by shrinking this operation shouldn't be
3382         // considered undefined behavior. So, we can't unconditionally copy
3383         // arithmetic wrapping flags to NewI.
3384         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3385       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3386         NewI =
3387             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3388                          ShrinkOperand(CI->getOperand(1)));
3389       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3390         NewI = B.CreateSelect(SI->getCondition(),
3391                               ShrinkOperand(SI->getTrueValue()),
3392                               ShrinkOperand(SI->getFalseValue()));
3393       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3394         switch (CI->getOpcode()) {
3395         default:
3396           llvm_unreachable("Unhandled cast!");
3397         case Instruction::Trunc:
3398           NewI = ShrinkOperand(CI->getOperand(0));
3399           break;
3400         case Instruction::SExt:
3401           NewI = B.CreateSExtOrTrunc(
3402               CI->getOperand(0),
3403               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3404           break;
3405         case Instruction::ZExt:
3406           NewI = B.CreateZExtOrTrunc(
3407               CI->getOperand(0),
3408               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3409           break;
3410         }
3411       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3412         auto Elements0 =
3413             cast<VectorType>(SI->getOperand(0)->getType())->getNumElements();
3414         auto *O0 = B.CreateZExtOrTrunc(
3415             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3416         auto Elements1 =
3417             cast<VectorType>(SI->getOperand(1)->getType())->getNumElements();
3418         auto *O1 = B.CreateZExtOrTrunc(
3419             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3420 
3421         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3422       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3423         // Don't do anything with the operands, just extend the result.
3424         continue;
3425       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3426         auto Elements =
3427             cast<VectorType>(IE->getOperand(0)->getType())->getNumElements();
3428         auto *O0 = B.CreateZExtOrTrunc(
3429             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3430         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3431         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3432       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3433         auto Elements =
3434             cast<VectorType>(EE->getOperand(0)->getType())->getNumElements();
3435         auto *O0 = B.CreateZExtOrTrunc(
3436             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3437         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3438       } else {
3439         // If we don't know what to do, be conservative and don't do anything.
3440         continue;
3441       }
3442 
3443       // Lastly, extend the result.
3444       NewI->takeName(cast<Instruction>(I));
3445       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3446       I->replaceAllUsesWith(Res);
3447       cast<Instruction>(I)->eraseFromParent();
3448       Erased.insert(I);
3449       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3450     }
3451   }
3452 
3453   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3454   for (const auto &KV : Cost->getMinimalBitwidths()) {
3455     // If the value wasn't vectorized, we must maintain the original scalar
3456     // type. The absence of the value from VectorLoopValueMap indicates that it
3457     // wasn't vectorized.
3458     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3459       continue;
3460     for (unsigned Part = 0; Part < UF; ++Part) {
3461       Value *I = getOrCreateVectorValue(KV.first, Part);
3462       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3463       if (Inst && Inst->use_empty()) {
3464         Value *NewI = Inst->getOperand(0);
3465         Inst->eraseFromParent();
3466         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3467       }
3468     }
3469   }
3470 }
3471 
3472 void InnerLoopVectorizer::fixVectorizedLoop() {
3473   // Insert truncates and extends for any truncated instructions as hints to
3474   // InstCombine.
3475   if (VF > 1)
3476     truncateToMinimalBitwidths();
3477 
3478   // Fix widened non-induction PHIs by setting up the PHI operands.
3479   if (OrigPHIsToFix.size()) {
3480     assert(EnableVPlanNativePath &&
3481            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3482     fixNonInductionPHIs();
3483   }
3484 
3485   // At this point every instruction in the original loop is widened to a
3486   // vector form. Now we need to fix the recurrences in the loop. These PHI
3487   // nodes are currently empty because we did not want to introduce cycles.
3488   // This is the second stage of vectorizing recurrences.
3489   fixCrossIterationPHIs();
3490 
3491   // Forget the original basic block.
3492   PSE.getSE()->forgetLoop(OrigLoop);
3493 
3494   // Fix-up external users of the induction variables.
3495   for (auto &Entry : Legal->getInductionVars())
3496     fixupIVUsers(Entry.first, Entry.second,
3497                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3498                  IVEndValues[Entry.first], LoopMiddleBlock);
3499 
3500   fixLCSSAPHIs();
3501   for (Instruction *PI : PredicatedInstructions)
3502     sinkScalarOperands(&*PI);
3503 
3504   // Remove redundant induction instructions.
3505   cse(LoopVectorBody);
3506 
3507   // Set/update profile weights for the vector and remainder loops as original
3508   // loop iterations are now distributed among them. Note that original loop
3509   // represented by LoopScalarBody becomes remainder loop after vectorization.
3510   //
3511   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3512   // end up getting slightly roughened result but that should be OK since
3513   // profile is not inherently precise anyway. Note also possible bypass of
3514   // vector code caused by legality checks is ignored, assigning all the weight
3515   // to the vector loop, optimistically.
3516   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody),
3517                                LI->getLoopFor(LoopVectorBody),
3518                                LI->getLoopFor(LoopScalarBody), VF * UF);
3519 }
3520 
3521 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3522   // In order to support recurrences we need to be able to vectorize Phi nodes.
3523   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3524   // stage #2: We now need to fix the recurrences by adding incoming edges to
3525   // the currently empty PHI nodes. At this point every instruction in the
3526   // original loop is widened to a vector form so we can use them to construct
3527   // the incoming edges.
3528   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3529     // Handle first-order recurrences and reductions that need to be fixed.
3530     if (Legal->isFirstOrderRecurrence(&Phi))
3531       fixFirstOrderRecurrence(&Phi);
3532     else if (Legal->isReductionVariable(&Phi))
3533       fixReduction(&Phi);
3534   }
3535 }
3536 
3537 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3538   // This is the second phase of vectorizing first-order recurrences. An
3539   // overview of the transformation is described below. Suppose we have the
3540   // following loop.
3541   //
3542   //   for (int i = 0; i < n; ++i)
3543   //     b[i] = a[i] - a[i - 1];
3544   //
3545   // There is a first-order recurrence on "a". For this loop, the shorthand
3546   // scalar IR looks like:
3547   //
3548   //   scalar.ph:
3549   //     s_init = a[-1]
3550   //     br scalar.body
3551   //
3552   //   scalar.body:
3553   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3554   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3555   //     s2 = a[i]
3556   //     b[i] = s2 - s1
3557   //     br cond, scalar.body, ...
3558   //
3559   // In this example, s1 is a recurrence because it's value depends on the
3560   // previous iteration. In the first phase of vectorization, we created a
3561   // temporary value for s1. We now complete the vectorization and produce the
3562   // shorthand vector IR shown below (for VF = 4, UF = 1).
3563   //
3564   //   vector.ph:
3565   //     v_init = vector(..., ..., ..., a[-1])
3566   //     br vector.body
3567   //
3568   //   vector.body
3569   //     i = phi [0, vector.ph], [i+4, vector.body]
3570   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3571   //     v2 = a[i, i+1, i+2, i+3];
3572   //     v3 = vector(v1(3), v2(0, 1, 2))
3573   //     b[i, i+1, i+2, i+3] = v2 - v3
3574   //     br cond, vector.body, middle.block
3575   //
3576   //   middle.block:
3577   //     x = v2(3)
3578   //     br scalar.ph
3579   //
3580   //   scalar.ph:
3581   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3582   //     br scalar.body
3583   //
3584   // After execution completes the vector loop, we extract the next value of
3585   // the recurrence (x) to use as the initial value in the scalar loop.
3586 
3587   // Get the original loop preheader and single loop latch.
3588   auto *Preheader = OrigLoop->getLoopPreheader();
3589   auto *Latch = OrigLoop->getLoopLatch();
3590 
3591   // Get the initial and previous values of the scalar recurrence.
3592   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3593   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3594 
3595   // Create a vector from the initial value.
3596   auto *VectorInit = ScalarInit;
3597   if (VF > 1) {
3598     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3599     VectorInit = Builder.CreateInsertElement(
3600         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3601         Builder.getInt32(VF - 1), "vector.recur.init");
3602   }
3603 
3604   // We constructed a temporary phi node in the first phase of vectorization.
3605   // This phi node will eventually be deleted.
3606   Builder.SetInsertPoint(
3607       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3608 
3609   // Create a phi node for the new recurrence. The current value will either be
3610   // the initial value inserted into a vector or loop-varying vector value.
3611   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3612   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3613 
3614   // Get the vectorized previous value of the last part UF - 1. It appears last
3615   // among all unrolled iterations, due to the order of their construction.
3616   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3617 
3618   // Find and set the insertion point after the previous value if it is an
3619   // instruction.
3620   BasicBlock::iterator InsertPt;
3621   // Note that the previous value may have been constant-folded so it is not
3622   // guaranteed to be an instruction in the vector loop.
3623   // FIXME: Loop invariant values do not form recurrences. We should deal with
3624   //        them earlier.
3625   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3626     InsertPt = LoopVectorBody->getFirstInsertionPt();
3627   else {
3628     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3629     if (isa<PHINode>(PreviousLastPart))
3630       // If the previous value is a phi node, we should insert after all the phi
3631       // nodes in the block containing the PHI to avoid breaking basic block
3632       // verification. Note that the basic block may be different to
3633       // LoopVectorBody, in case we predicate the loop.
3634       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3635     else
3636       InsertPt = ++PreviousInst->getIterator();
3637   }
3638   Builder.SetInsertPoint(&*InsertPt);
3639 
3640   // We will construct a vector for the recurrence by combining the values for
3641   // the current and previous iterations. This is the required shuffle mask.
3642   SmallVector<int, 8> ShuffleMask(VF);
3643   ShuffleMask[0] = VF - 1;
3644   for (unsigned I = 1; I < VF; ++I)
3645     ShuffleMask[I] = I + VF - 1;
3646 
3647   // The vector from which to take the initial value for the current iteration
3648   // (actual or unrolled). Initially, this is the vector phi node.
3649   Value *Incoming = VecPhi;
3650 
3651   // Shuffle the current and previous vector and update the vector parts.
3652   for (unsigned Part = 0; Part < UF; ++Part) {
3653     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3654     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3655     auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
3656                                                          ShuffleMask)
3657                            : Incoming;
3658     PhiPart->replaceAllUsesWith(Shuffle);
3659     cast<Instruction>(PhiPart)->eraseFromParent();
3660     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3661     Incoming = PreviousPart;
3662   }
3663 
3664   // Fix the latch value of the new recurrence in the vector loop.
3665   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3666 
3667   // Extract the last vector element in the middle block. This will be the
3668   // initial value for the recurrence when jumping to the scalar loop.
3669   auto *ExtractForScalar = Incoming;
3670   if (VF > 1) {
3671     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3672     ExtractForScalar = Builder.CreateExtractElement(
3673         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
3674   }
3675   // Extract the second last element in the middle block if the
3676   // Phi is used outside the loop. We need to extract the phi itself
3677   // and not the last element (the phi update in the current iteration). This
3678   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3679   // when the scalar loop is not run at all.
3680   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3681   if (VF > 1)
3682     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3683         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
3684   // When loop is unrolled without vectorizing, initialize
3685   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3686   // `Incoming`. This is analogous to the vectorized case above: extracting the
3687   // second last element when VF > 1.
3688   else if (UF > 1)
3689     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3690 
3691   // Fix the initial value of the original recurrence in the scalar loop.
3692   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3693   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3694   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3695     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3696     Start->addIncoming(Incoming, BB);
3697   }
3698 
3699   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3700   Phi->setName("scalar.recur");
3701 
3702   // Finally, fix users of the recurrence outside the loop. The users will need
3703   // either the last value of the scalar recurrence or the last value of the
3704   // vector recurrence we extracted in the middle block. Since the loop is in
3705   // LCSSA form, we just need to find all the phi nodes for the original scalar
3706   // recurrence in the exit block, and then add an edge for the middle block.
3707   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3708     if (LCSSAPhi.getIncomingValue(0) == Phi) {
3709       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3710     }
3711   }
3712 }
3713 
3714 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3715   Constant *Zero = Builder.getInt32(0);
3716 
3717   // Get it's reduction variable descriptor.
3718   assert(Legal->isReductionVariable(Phi) &&
3719          "Unable to find the reduction variable");
3720   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
3721 
3722   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3723   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3724   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3725   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3726     RdxDesc.getMinMaxRecurrenceKind();
3727   setDebugLocFromInst(Builder, ReductionStartValue);
3728 
3729   // We need to generate a reduction vector from the incoming scalar.
3730   // To do so, we need to generate the 'identity' vector and override
3731   // one of the elements with the incoming scalar reduction. We need
3732   // to do it in the vector-loop preheader.
3733   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3734 
3735   // This is the vector-clone of the value that leaves the loop.
3736   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3737 
3738   // Find the reduction identity variable. Zero for addition, or, xor,
3739   // one for multiplication, -1 for And.
3740   Value *Identity;
3741   Value *VectorStart;
3742   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3743       RK == RecurrenceDescriptor::RK_FloatMinMax) {
3744     // MinMax reduction have the start value as their identify.
3745     if (VF == 1) {
3746       VectorStart = Identity = ReductionStartValue;
3747     } else {
3748       VectorStart = Identity =
3749         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3750     }
3751   } else {
3752     // Handle other reduction kinds:
3753     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3754         RK, VecTy->getScalarType());
3755     if (VF == 1) {
3756       Identity = Iden;
3757       // This vector is the Identity vector where the first element is the
3758       // incoming scalar reduction.
3759       VectorStart = ReductionStartValue;
3760     } else {
3761       Identity = ConstantVector::getSplat({VF, false}, Iden);
3762 
3763       // This vector is the Identity vector where the first element is the
3764       // incoming scalar reduction.
3765       VectorStart =
3766         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3767     }
3768   }
3769 
3770   // Wrap flags are in general invalid after vectorization, clear them.
3771   clearReductionWrapFlags(RdxDesc);
3772 
3773   // Fix the vector-loop phi.
3774 
3775   // Reductions do not have to start at zero. They can start with
3776   // any loop invariant values.
3777   BasicBlock *Latch = OrigLoop->getLoopLatch();
3778   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3779 
3780   for (unsigned Part = 0; Part < UF; ++Part) {
3781     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3782     Value *Val = getOrCreateVectorValue(LoopVal, Part);
3783     // Make sure to add the reduction start value only to the
3784     // first unroll part.
3785     Value *StartVal = (Part == 0) ? VectorStart : Identity;
3786     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3787     cast<PHINode>(VecRdxPhi)
3788       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3789   }
3790 
3791   // Before each round, move the insertion point right between
3792   // the PHIs and the values we are going to write.
3793   // This allows us to write both PHINodes and the extractelement
3794   // instructions.
3795   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3796 
3797   setDebugLocFromInst(Builder, LoopExitInst);
3798 
3799   // If tail is folded by masking, the vector value to leave the loop should be
3800   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3801   // instead of the former.
3802   if (Cost->foldTailByMasking()) {
3803     for (unsigned Part = 0; Part < UF; ++Part) {
3804       Value *VecLoopExitInst =
3805           VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3806       Value *Sel = nullptr;
3807       for (User *U : VecLoopExitInst->users()) {
3808         if (isa<SelectInst>(U)) {
3809           assert(!Sel && "Reduction exit feeding two selects");
3810           Sel = U;
3811         } else
3812           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3813       }
3814       assert(Sel && "Reduction exit feeds no select");
3815       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
3816     }
3817   }
3818 
3819   // If the vector reduction can be performed in a smaller type, we truncate
3820   // then extend the loop exit value to enable InstCombine to evaluate the
3821   // entire expression in the smaller type.
3822   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3823     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3824     Builder.SetInsertPoint(
3825         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
3826     VectorParts RdxParts(UF);
3827     for (unsigned Part = 0; Part < UF; ++Part) {
3828       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3829       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3830       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3831                                         : Builder.CreateZExt(Trunc, VecTy);
3832       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
3833            UI != RdxParts[Part]->user_end();)
3834         if (*UI != Trunc) {
3835           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
3836           RdxParts[Part] = Extnd;
3837         } else {
3838           ++UI;
3839         }
3840     }
3841     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3842     for (unsigned Part = 0; Part < UF; ++Part) {
3843       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3844       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
3845     }
3846   }
3847 
3848   // Reduce all of the unrolled parts into a single vector.
3849   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
3850   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3851 
3852   // The middle block terminator has already been assigned a DebugLoc here (the
3853   // OrigLoop's single latch terminator). We want the whole middle block to
3854   // appear to execute on this line because: (a) it is all compiler generated,
3855   // (b) these instructions are always executed after evaluating the latch
3856   // conditional branch, and (c) other passes may add new predecessors which
3857   // terminate on this line. This is the easiest way to ensure we don't
3858   // accidentally cause an extra step back into the loop while debugging.
3859   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
3860   for (unsigned Part = 1; Part < UF; ++Part) {
3861     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3862     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3863       // Floating point operations had to be 'fast' to enable the reduction.
3864       ReducedPartRdx = addFastMathFlag(
3865           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
3866                               ReducedPartRdx, "bin.rdx"),
3867           RdxDesc.getFastMathFlags());
3868     else
3869       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
3870                                       RdxPart);
3871   }
3872 
3873   if (VF > 1) {
3874     bool NoNaN = Legal->hasFunNoNaNAttr();
3875     ReducedPartRdx =
3876         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
3877     // If the reduction can be performed in a smaller type, we need to extend
3878     // the reduction to the wider type before we branch to the original loop.
3879     if (Phi->getType() != RdxDesc.getRecurrenceType())
3880       ReducedPartRdx =
3881         RdxDesc.isSigned()
3882         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3883         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3884   }
3885 
3886   // Create a phi node that merges control-flow from the backedge-taken check
3887   // block and the middle block.
3888   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3889                                         LoopScalarPreHeader->getTerminator());
3890   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3891     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3892   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3893 
3894   // Now, we need to fix the users of the reduction variable
3895   // inside and outside of the scalar remainder loop.
3896   // We know that the loop is in LCSSA form. We need to update the
3897   // PHI nodes in the exit blocks.
3898   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3899     // All PHINodes need to have a single entry edge, or two if
3900     // we already fixed them.
3901     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3902 
3903     // We found a reduction value exit-PHI. Update it with the
3904     // incoming bypass edge.
3905     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
3906       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
3907   } // end of the LCSSA phi scan.
3908 
3909     // Fix the scalar loop reduction variable with the incoming reduction sum
3910     // from the vector body and from the backedge value.
3911   int IncomingEdgeBlockIdx =
3912     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3913   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3914   // Pick the other block.
3915   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3916   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3917   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3918 }
3919 
3920 void InnerLoopVectorizer::clearReductionWrapFlags(
3921     RecurrenceDescriptor &RdxDesc) {
3922   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3923   if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
3924       RK != RecurrenceDescriptor::RK_IntegerMult)
3925     return;
3926 
3927   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
3928   assert(LoopExitInstr && "null loop exit instruction");
3929   SmallVector<Instruction *, 8> Worklist;
3930   SmallPtrSet<Instruction *, 8> Visited;
3931   Worklist.push_back(LoopExitInstr);
3932   Visited.insert(LoopExitInstr);
3933 
3934   while (!Worklist.empty()) {
3935     Instruction *Cur = Worklist.pop_back_val();
3936     if (isa<OverflowingBinaryOperator>(Cur))
3937       for (unsigned Part = 0; Part < UF; ++Part) {
3938         Value *V = getOrCreateVectorValue(Cur, Part);
3939         cast<Instruction>(V)->dropPoisonGeneratingFlags();
3940       }
3941 
3942     for (User *U : Cur->users()) {
3943       Instruction *UI = cast<Instruction>(U);
3944       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
3945           Visited.insert(UI).second)
3946         Worklist.push_back(UI);
3947     }
3948   }
3949 }
3950 
3951 void InnerLoopVectorizer::fixLCSSAPHIs() {
3952   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3953     if (LCSSAPhi.getNumIncomingValues() == 1) {
3954       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
3955       // Non-instruction incoming values will have only one value.
3956       unsigned LastLane = 0;
3957       if (isa<Instruction>(IncomingValue))
3958           LastLane = Cost->isUniformAfterVectorization(
3959                          cast<Instruction>(IncomingValue), VF)
3960                          ? 0
3961                          : VF - 1;
3962       // Can be a loop invariant incoming value or the last scalar value to be
3963       // extracted from the vectorized loop.
3964       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3965       Value *lastIncomingValue =
3966           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
3967       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
3968     }
3969   }
3970 }
3971 
3972 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
3973   // The basic block and loop containing the predicated instruction.
3974   auto *PredBB = PredInst->getParent();
3975   auto *VectorLoop = LI->getLoopFor(PredBB);
3976 
3977   // Initialize a worklist with the operands of the predicated instruction.
3978   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
3979 
3980   // Holds instructions that we need to analyze again. An instruction may be
3981   // reanalyzed if we don't yet know if we can sink it or not.
3982   SmallVector<Instruction *, 8> InstsToReanalyze;
3983 
3984   // Returns true if a given use occurs in the predicated block. Phi nodes use
3985   // their operands in their corresponding predecessor blocks.
3986   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
3987     auto *I = cast<Instruction>(U.getUser());
3988     BasicBlock *BB = I->getParent();
3989     if (auto *Phi = dyn_cast<PHINode>(I))
3990       BB = Phi->getIncomingBlock(
3991           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3992     return BB == PredBB;
3993   };
3994 
3995   // Iteratively sink the scalarized operands of the predicated instruction
3996   // into the block we created for it. When an instruction is sunk, it's
3997   // operands are then added to the worklist. The algorithm ends after one pass
3998   // through the worklist doesn't sink a single instruction.
3999   bool Changed;
4000   do {
4001     // Add the instructions that need to be reanalyzed to the worklist, and
4002     // reset the changed indicator.
4003     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4004     InstsToReanalyze.clear();
4005     Changed = false;
4006 
4007     while (!Worklist.empty()) {
4008       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4009 
4010       // We can't sink an instruction if it is a phi node, is already in the
4011       // predicated block, is not in the loop, or may have side effects.
4012       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4013           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4014         continue;
4015 
4016       // It's legal to sink the instruction if all its uses occur in the
4017       // predicated block. Otherwise, there's nothing to do yet, and we may
4018       // need to reanalyze the instruction.
4019       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4020         InstsToReanalyze.push_back(I);
4021         continue;
4022       }
4023 
4024       // Move the instruction to the beginning of the predicated block, and add
4025       // it's operands to the worklist.
4026       I->moveBefore(&*PredBB->getFirstInsertionPt());
4027       Worklist.insert(I->op_begin(), I->op_end());
4028 
4029       // The sinking may have enabled other instructions to be sunk, so we will
4030       // need to iterate.
4031       Changed = true;
4032     }
4033   } while (Changed);
4034 }
4035 
4036 void InnerLoopVectorizer::fixNonInductionPHIs() {
4037   for (PHINode *OrigPhi : OrigPHIsToFix) {
4038     PHINode *NewPhi =
4039         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4040     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4041 
4042     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4043         predecessors(OrigPhi->getParent()));
4044     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4045         predecessors(NewPhi->getParent()));
4046     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4047            "Scalar and Vector BB should have the same number of predecessors");
4048 
4049     // The insertion point in Builder may be invalidated by the time we get
4050     // here. Force the Builder insertion point to something valid so that we do
4051     // not run into issues during insertion point restore in
4052     // getOrCreateVectorValue calls below.
4053     Builder.SetInsertPoint(NewPhi);
4054 
4055     // The predecessor order is preserved and we can rely on mapping between
4056     // scalar and vector block predecessors.
4057     for (unsigned i = 0; i < NumIncomingValues; ++i) {
4058       BasicBlock *NewPredBB = VectorBBPredecessors[i];
4059 
4060       // When looking up the new scalar/vector values to fix up, use incoming
4061       // values from original phi.
4062       Value *ScIncV =
4063           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4064 
4065       // Scalar incoming value may need a broadcast
4066       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4067       NewPhi->addIncoming(NewIncV, NewPredBB);
4068     }
4069   }
4070 }
4071 
4072 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF,
4073                                    unsigned VF, bool IsPtrLoopInvariant,
4074                                    SmallBitVector &IsIndexLoopInvariant) {
4075   // Construct a vector GEP by widening the operands of the scalar GEP as
4076   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4077   // results in a vector of pointers when at least one operand of the GEP
4078   // is vector-typed. Thus, to keep the representation compact, we only use
4079   // vector-typed operands for loop-varying values.
4080 
4081   if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4082     // If we are vectorizing, but the GEP has only loop-invariant operands,
4083     // the GEP we build (by only using vector-typed operands for
4084     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4085     // produce a vector of pointers, we need to either arbitrarily pick an
4086     // operand to broadcast, or broadcast a clone of the original GEP.
4087     // Here, we broadcast a clone of the original.
4088     //
4089     // TODO: If at some point we decide to scalarize instructions having
4090     //       loop-invariant operands, this special case will no longer be
4091     //       required. We would add the scalarization decision to
4092     //       collectLoopScalars() and teach getVectorValue() to broadcast
4093     //       the lane-zero scalar value.
4094     auto *Clone = Builder.Insert(GEP->clone());
4095     for (unsigned Part = 0; Part < UF; ++Part) {
4096       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4097       VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4098       addMetadata(EntryPart, GEP);
4099     }
4100   } else {
4101     // If the GEP has at least one loop-varying operand, we are sure to
4102     // produce a vector of pointers. But if we are only unrolling, we want
4103     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4104     // produce with the code below will be scalar (if VF == 1) or vector
4105     // (otherwise). Note that for the unroll-only case, we still maintain
4106     // values in the vector mapping with initVector, as we do for other
4107     // instructions.
4108     for (unsigned Part = 0; Part < UF; ++Part) {
4109       // The pointer operand of the new GEP. If it's loop-invariant, we
4110       // won't broadcast it.
4111       auto *Ptr = IsPtrLoopInvariant
4112                       ? GEP->getPointerOperand()
4113                       : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
4114 
4115       // Collect all the indices for the new GEP. If any index is
4116       // loop-invariant, we won't broadcast it.
4117       SmallVector<Value *, 4> Indices;
4118       for (auto Index : enumerate(GEP->indices())) {
4119         Value *User = Index.value().get();
4120         if (IsIndexLoopInvariant[Index.index()])
4121           Indices.push_back(User);
4122         else
4123           Indices.push_back(getOrCreateVectorValue(User, Part));
4124       }
4125 
4126       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4127       // but it should be a vector, otherwise.
4128       auto *NewGEP =
4129           GEP->isInBounds()
4130               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4131                                           Indices)
4132               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4133       assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4134              "NewGEP is not a pointer vector");
4135       VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4136       addMetadata(NewGEP, GEP);
4137     }
4138   }
4139 }
4140 
4141 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4142                                               unsigned VF) {
4143   PHINode *P = cast<PHINode>(PN);
4144   if (EnableVPlanNativePath) {
4145     // Currently we enter here in the VPlan-native path for non-induction
4146     // PHIs where all control flow is uniform. We simply widen these PHIs.
4147     // Create a vector phi with no operands - the vector phi operands will be
4148     // set at the end of vector code generation.
4149     Type *VecTy =
4150         (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4151     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4152     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4153     OrigPHIsToFix.push_back(P);
4154 
4155     return;
4156   }
4157 
4158   assert(PN->getParent() == OrigLoop->getHeader() &&
4159          "Non-header phis should have been handled elsewhere");
4160 
4161   // In order to support recurrences we need to be able to vectorize Phi nodes.
4162   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4163   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4164   // this value when we vectorize all of the instructions that use the PHI.
4165   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4166     for (unsigned Part = 0; Part < UF; ++Part) {
4167       // This is phase one of vectorizing PHIs.
4168       Type *VecTy =
4169           (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4170       Value *EntryPart = PHINode::Create(
4171           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4172       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4173     }
4174     return;
4175   }
4176 
4177   setDebugLocFromInst(Builder, P);
4178 
4179   // This PHINode must be an induction variable.
4180   // Make sure that we know about it.
4181   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4182 
4183   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4184   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4185 
4186   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4187   // which can be found from the original scalar operations.
4188   switch (II.getKind()) {
4189   case InductionDescriptor::IK_NoInduction:
4190     llvm_unreachable("Unknown induction");
4191   case InductionDescriptor::IK_IntInduction:
4192   case InductionDescriptor::IK_FpInduction:
4193     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4194   case InductionDescriptor::IK_PtrInduction: {
4195     // Handle the pointer induction variable case.
4196     assert(P->getType()->isPointerTy() && "Unexpected type.");
4197     // This is the normalized GEP that starts counting at zero.
4198     Value *PtrInd = Induction;
4199     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4200     // Determine the number of scalars we need to generate for each unroll
4201     // iteration. If the instruction is uniform, we only need to generate the
4202     // first lane. Otherwise, we generate all VF values.
4203     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4204     // These are the scalar results. Notice that we don't generate vector GEPs
4205     // because scalar GEPs result in better code.
4206     for (unsigned Part = 0; Part < UF; ++Part) {
4207       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4208         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4209         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4210         Value *SclrGep =
4211             emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4212         SclrGep->setName("next.gep");
4213         VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4214       }
4215     }
4216     return;
4217   }
4218   }
4219 }
4220 
4221 /// A helper function for checking whether an integer division-related
4222 /// instruction may divide by zero (in which case it must be predicated if
4223 /// executed conditionally in the scalar code).
4224 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4225 /// Non-zero divisors that are non compile-time constants will not be
4226 /// converted into multiplication, so we will still end up scalarizing
4227 /// the division, but can do so w/o predication.
4228 static bool mayDivideByZero(Instruction &I) {
4229   assert((I.getOpcode() == Instruction::UDiv ||
4230           I.getOpcode() == Instruction::SDiv ||
4231           I.getOpcode() == Instruction::URem ||
4232           I.getOpcode() == Instruction::SRem) &&
4233          "Unexpected instruction");
4234   Value *Divisor = I.getOperand(1);
4235   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4236   return !CInt || CInt->isZero();
4237 }
4238 
4239 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User,
4240                                            VPTransformState &State) {
4241   switch (I.getOpcode()) {
4242   case Instruction::Call:
4243   case Instruction::Br:
4244   case Instruction::PHI:
4245   case Instruction::GetElementPtr:
4246   case Instruction::Select:
4247     llvm_unreachable("This instruction is handled by a different recipe.");
4248   case Instruction::UDiv:
4249   case Instruction::SDiv:
4250   case Instruction::SRem:
4251   case Instruction::URem:
4252   case Instruction::Add:
4253   case Instruction::FAdd:
4254   case Instruction::Sub:
4255   case Instruction::FSub:
4256   case Instruction::FNeg:
4257   case Instruction::Mul:
4258   case Instruction::FMul:
4259   case Instruction::FDiv:
4260   case Instruction::FRem:
4261   case Instruction::Shl:
4262   case Instruction::LShr:
4263   case Instruction::AShr:
4264   case Instruction::And:
4265   case Instruction::Or:
4266   case Instruction::Xor: {
4267     // Just widen unops and binops.
4268     setDebugLocFromInst(Builder, &I);
4269 
4270     for (unsigned Part = 0; Part < UF; ++Part) {
4271       SmallVector<Value *, 2> Ops;
4272       for (VPValue *VPOp : User.operands())
4273         Ops.push_back(State.get(VPOp, Part));
4274 
4275       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4276 
4277       if (auto *VecOp = dyn_cast<Instruction>(V))
4278         VecOp->copyIRFlags(&I);
4279 
4280       // Use this vector value for all users of the original instruction.
4281       VectorLoopValueMap.setVectorValue(&I, Part, V);
4282       addMetadata(V, &I);
4283     }
4284 
4285     break;
4286   }
4287   case Instruction::ICmp:
4288   case Instruction::FCmp: {
4289     // Widen compares. Generate vector compares.
4290     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4291     auto *Cmp = cast<CmpInst>(&I);
4292     setDebugLocFromInst(Builder, Cmp);
4293     for (unsigned Part = 0; Part < UF; ++Part) {
4294       Value *A = State.get(User.getOperand(0), Part);
4295       Value *B = State.get(User.getOperand(1), Part);
4296       Value *C = nullptr;
4297       if (FCmp) {
4298         // Propagate fast math flags.
4299         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4300         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4301         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4302       } else {
4303         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4304       }
4305       VectorLoopValueMap.setVectorValue(&I, Part, C);
4306       addMetadata(C, &I);
4307     }
4308 
4309     break;
4310   }
4311 
4312   case Instruction::ZExt:
4313   case Instruction::SExt:
4314   case Instruction::FPToUI:
4315   case Instruction::FPToSI:
4316   case Instruction::FPExt:
4317   case Instruction::PtrToInt:
4318   case Instruction::IntToPtr:
4319   case Instruction::SIToFP:
4320   case Instruction::UIToFP:
4321   case Instruction::Trunc:
4322   case Instruction::FPTrunc:
4323   case Instruction::BitCast: {
4324     auto *CI = cast<CastInst>(&I);
4325     setDebugLocFromInst(Builder, CI);
4326 
4327     /// Vectorize casts.
4328     Type *DestTy =
4329         (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4330 
4331     for (unsigned Part = 0; Part < UF; ++Part) {
4332       Value *A = State.get(User.getOperand(0), Part);
4333       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4334       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4335       addMetadata(Cast, &I);
4336     }
4337     break;
4338   }
4339   default:
4340     // This instruction is not vectorized by simple widening.
4341     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4342     llvm_unreachable("Unhandled instruction!");
4343   } // end of switch.
4344 }
4345 
4346 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands,
4347                                                VPTransformState &State) {
4348   assert(!isa<DbgInfoIntrinsic>(I) &&
4349          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4350   setDebugLocFromInst(Builder, &I);
4351 
4352   Module *M = I.getParent()->getParent()->getParent();
4353   auto *CI = cast<CallInst>(&I);
4354 
4355   SmallVector<Type *, 4> Tys;
4356   for (Value *ArgOperand : CI->arg_operands())
4357     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4358 
4359   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4360 
4361   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4362   // version of the instruction.
4363   // Is it beneficial to perform intrinsic call compared to lib call?
4364   bool NeedToScalarize = false;
4365   unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4366   bool UseVectorIntrinsic =
4367       ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4368   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4369          "Instruction should be scalarized elsewhere.");
4370 
4371   for (unsigned Part = 0; Part < UF; ++Part) {
4372     SmallVector<Value *, 4> Args;
4373     for (auto &I : enumerate(ArgOperands.operands())) {
4374       // Some intrinsics have a scalar argument - don't replace it with a
4375       // vector.
4376       Value *Arg;
4377       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4378         Arg = State.get(I.value(), Part);
4379       else
4380         Arg = State.get(I.value(), {0, 0});
4381       Args.push_back(Arg);
4382     }
4383 
4384     Function *VectorF;
4385     if (UseVectorIntrinsic) {
4386       // Use vector version of the intrinsic.
4387       Type *TysForDecl[] = {CI->getType()};
4388       if (VF > 1)
4389         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4390       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4391       assert(VectorF && "Can't retrieve vector intrinsic.");
4392     } else {
4393       // Use vector version of the function call.
4394       const VFShape Shape =
4395           VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/);
4396 #ifndef NDEBUG
4397       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4398              "Can't create vector function.");
4399 #endif
4400         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4401     }
4402       SmallVector<OperandBundleDef, 1> OpBundles;
4403       CI->getOperandBundlesAsDefs(OpBundles);
4404       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4405 
4406       if (isa<FPMathOperator>(V))
4407         V->copyFastMathFlags(CI);
4408 
4409       VectorLoopValueMap.setVectorValue(&I, Part, V);
4410       addMetadata(V, &I);
4411   }
4412 }
4413 
4414 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I,
4415                                                  bool InvariantCond) {
4416   setDebugLocFromInst(Builder, &I);
4417 
4418   // The condition can be loop invariant  but still defined inside the
4419   // loop. This means that we can't just use the original 'cond' value.
4420   // We have to take the 'vectorized' value and pick the first lane.
4421   // Instcombine will make this a no-op.
4422 
4423   auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
4424 
4425   for (unsigned Part = 0; Part < UF; ++Part) {
4426     Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
4427     Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
4428     Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
4429     Value *Sel =
4430         Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
4431     VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4432     addMetadata(Sel, &I);
4433   }
4434 }
4435 
4436 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
4437   // We should not collect Scalars more than once per VF. Right now, this
4438   // function is called from collectUniformsAndScalars(), which already does
4439   // this check. Collecting Scalars for VF=1 does not make any sense.
4440   assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
4441          "This function should not be visited twice for the same VF");
4442 
4443   SmallSetVector<Instruction *, 8> Worklist;
4444 
4445   // These sets are used to seed the analysis with pointers used by memory
4446   // accesses that will remain scalar.
4447   SmallSetVector<Instruction *, 8> ScalarPtrs;
4448   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4449 
4450   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4451   // The pointer operands of loads and stores will be scalar as long as the
4452   // memory access is not a gather or scatter operation. The value operand of a
4453   // store will remain scalar if the store is scalarized.
4454   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4455     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4456     assert(WideningDecision != CM_Unknown &&
4457            "Widening decision should be ready at this moment");
4458     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4459       if (Ptr == Store->getValueOperand())
4460         return WideningDecision == CM_Scalarize;
4461     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4462            "Ptr is neither a value or pointer operand");
4463     return WideningDecision != CM_GatherScatter;
4464   };
4465 
4466   // A helper that returns true if the given value is a bitcast or
4467   // getelementptr instruction contained in the loop.
4468   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4469     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4470             isa<GetElementPtrInst>(V)) &&
4471            !TheLoop->isLoopInvariant(V);
4472   };
4473 
4474   // A helper that evaluates a memory access's use of a pointer. If the use
4475   // will be a scalar use, and the pointer is only used by memory accesses, we
4476   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4477   // PossibleNonScalarPtrs.
4478   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4479     // We only care about bitcast and getelementptr instructions contained in
4480     // the loop.
4481     if (!isLoopVaryingBitCastOrGEP(Ptr))
4482       return;
4483 
4484     // If the pointer has already been identified as scalar (e.g., if it was
4485     // also identified as uniform), there's nothing to do.
4486     auto *I = cast<Instruction>(Ptr);
4487     if (Worklist.count(I))
4488       return;
4489 
4490     // If the use of the pointer will be a scalar use, and all users of the
4491     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4492     // place the pointer in PossibleNonScalarPtrs.
4493     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4494           return isa<LoadInst>(U) || isa<StoreInst>(U);
4495         }))
4496       ScalarPtrs.insert(I);
4497     else
4498       PossibleNonScalarPtrs.insert(I);
4499   };
4500 
4501   // We seed the scalars analysis with three classes of instructions: (1)
4502   // instructions marked uniform-after-vectorization, (2) bitcast and
4503   // getelementptr instructions used by memory accesses requiring a scalar use,
4504   // and (3) pointer induction variables and their update instructions (we
4505   // currently only scalarize these).
4506   //
4507   // (1) Add to the worklist all instructions that have been identified as
4508   // uniform-after-vectorization.
4509   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4510 
4511   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4512   // memory accesses requiring a scalar use. The pointer operands of loads and
4513   // stores will be scalar as long as the memory accesses is not a gather or
4514   // scatter operation. The value operand of a store will remain scalar if the
4515   // store is scalarized.
4516   for (auto *BB : TheLoop->blocks())
4517     for (auto &I : *BB) {
4518       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4519         evaluatePtrUse(Load, Load->getPointerOperand());
4520       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4521         evaluatePtrUse(Store, Store->getPointerOperand());
4522         evaluatePtrUse(Store, Store->getValueOperand());
4523       }
4524     }
4525   for (auto *I : ScalarPtrs)
4526     if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) {
4527       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4528       Worklist.insert(I);
4529     }
4530 
4531   // (3) Add to the worklist all pointer induction variables and their update
4532   // instructions.
4533   //
4534   // TODO: Once we are able to vectorize pointer induction variables we should
4535   //       no longer insert them into the worklist here.
4536   auto *Latch = TheLoop->getLoopLatch();
4537   for (auto &Induction : Legal->getInductionVars()) {
4538     auto *Ind = Induction.first;
4539     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4540     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
4541       continue;
4542     Worklist.insert(Ind);
4543     Worklist.insert(IndUpdate);
4544     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4545     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4546                       << "\n");
4547   }
4548 
4549   // Insert the forced scalars.
4550   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4551   // induction variable when the PHI user is scalarized.
4552   auto ForcedScalar = ForcedScalars.find(VF);
4553   if (ForcedScalar != ForcedScalars.end())
4554     for (auto *I : ForcedScalar->second)
4555       Worklist.insert(I);
4556 
4557   // Expand the worklist by looking through any bitcasts and getelementptr
4558   // instructions we've already identified as scalar. This is similar to the
4559   // expansion step in collectLoopUniforms(); however, here we're only
4560   // expanding to include additional bitcasts and getelementptr instructions.
4561   unsigned Idx = 0;
4562   while (Idx != Worklist.size()) {
4563     Instruction *Dst = Worklist[Idx++];
4564     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4565       continue;
4566     auto *Src = cast<Instruction>(Dst->getOperand(0));
4567     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4568           auto *J = cast<Instruction>(U);
4569           return !TheLoop->contains(J) || Worklist.count(J) ||
4570                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4571                   isScalarUse(J, Src));
4572         })) {
4573       Worklist.insert(Src);
4574       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4575     }
4576   }
4577 
4578   // An induction variable will remain scalar if all users of the induction
4579   // variable and induction variable update remain scalar.
4580   for (auto &Induction : Legal->getInductionVars()) {
4581     auto *Ind = Induction.first;
4582     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4583 
4584     // We already considered pointer induction variables, so there's no reason
4585     // to look at their users again.
4586     //
4587     // TODO: Once we are able to vectorize pointer induction variables we
4588     //       should no longer skip over them here.
4589     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
4590       continue;
4591 
4592     // If tail-folding is applied, the primary induction variable will be used
4593     // to feed a vector compare.
4594     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4595       continue;
4596 
4597     // Determine if all users of the induction variable are scalar after
4598     // vectorization.
4599     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4600       auto *I = cast<Instruction>(U);
4601       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4602     });
4603     if (!ScalarInd)
4604       continue;
4605 
4606     // Determine if all users of the induction variable update instruction are
4607     // scalar after vectorization.
4608     auto ScalarIndUpdate =
4609         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4610           auto *I = cast<Instruction>(U);
4611           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4612         });
4613     if (!ScalarIndUpdate)
4614       continue;
4615 
4616     // The induction variable and its update instruction will remain scalar.
4617     Worklist.insert(Ind);
4618     Worklist.insert(IndUpdate);
4619     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4620     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4621                       << "\n");
4622   }
4623 
4624   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4625 }
4626 
4627 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
4628   if (!blockNeedsPredication(I->getParent()))
4629     return false;
4630   switch(I->getOpcode()) {
4631   default:
4632     break;
4633   case Instruction::Load:
4634   case Instruction::Store: {
4635     if (!Legal->isMaskRequired(I))
4636       return false;
4637     auto *Ptr = getLoadStorePointerOperand(I);
4638     auto *Ty = getMemInstValueType(I);
4639     // We have already decided how to vectorize this instruction, get that
4640     // result.
4641     if (VF > 1) {
4642       InstWidening WideningDecision = getWideningDecision(I, VF);
4643       assert(WideningDecision != CM_Unknown &&
4644              "Widening decision should be ready at this moment");
4645       return WideningDecision == CM_Scalarize;
4646     }
4647     const Align Alignment = getLoadStoreAlignment(I);
4648     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4649                                 isLegalMaskedGather(Ty, Alignment))
4650                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4651                                 isLegalMaskedScatter(Ty, Alignment));
4652   }
4653   case Instruction::UDiv:
4654   case Instruction::SDiv:
4655   case Instruction::SRem:
4656   case Instruction::URem:
4657     return mayDivideByZero(*I);
4658   }
4659   return false;
4660 }
4661 
4662 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
4663                                                                unsigned VF) {
4664   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4665   assert(getWideningDecision(I, VF) == CM_Unknown &&
4666          "Decision should not be set yet.");
4667   auto *Group = getInterleavedAccessGroup(I);
4668   assert(Group && "Must have a group.");
4669 
4670   // If the instruction's allocated size doesn't equal it's type size, it
4671   // requires padding and will be scalarized.
4672   auto &DL = I->getModule()->getDataLayout();
4673   auto *ScalarTy = getMemInstValueType(I);
4674   if (hasIrregularType(ScalarTy, DL, VF))
4675     return false;
4676 
4677   // Check if masking is required.
4678   // A Group may need masking for one of two reasons: it resides in a block that
4679   // needs predication, or it was decided to use masking to deal with gaps.
4680   bool PredicatedAccessRequiresMasking =
4681       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4682   bool AccessWithGapsRequiresMasking =
4683       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4684   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4685     return true;
4686 
4687   // If masked interleaving is required, we expect that the user/target had
4688   // enabled it, because otherwise it either wouldn't have been created or
4689   // it should have been invalidated by the CostModel.
4690   assert(useMaskedInterleavedAccesses(TTI) &&
4691          "Masked interleave-groups for predicated accesses are not enabled.");
4692 
4693   auto *Ty = getMemInstValueType(I);
4694   const Align Alignment = getLoadStoreAlignment(I);
4695   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4696                           : TTI.isLegalMaskedStore(Ty, Alignment);
4697 }
4698 
4699 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
4700                                                                unsigned VF) {
4701   // Get and ensure we have a valid memory instruction.
4702   LoadInst *LI = dyn_cast<LoadInst>(I);
4703   StoreInst *SI = dyn_cast<StoreInst>(I);
4704   assert((LI || SI) && "Invalid memory instruction");
4705 
4706   auto *Ptr = getLoadStorePointerOperand(I);
4707 
4708   // In order to be widened, the pointer should be consecutive, first of all.
4709   if (!Legal->isConsecutivePtr(Ptr))
4710     return false;
4711 
4712   // If the instruction is a store located in a predicated block, it will be
4713   // scalarized.
4714   if (isScalarWithPredication(I))
4715     return false;
4716 
4717   // If the instruction's allocated size doesn't equal it's type size, it
4718   // requires padding and will be scalarized.
4719   auto &DL = I->getModule()->getDataLayout();
4720   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
4721   if (hasIrregularType(ScalarTy, DL, VF))
4722     return false;
4723 
4724   return true;
4725 }
4726 
4727 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
4728   // We should not collect Uniforms more than once per VF. Right now,
4729   // this function is called from collectUniformsAndScalars(), which
4730   // already does this check. Collecting Uniforms for VF=1 does not make any
4731   // sense.
4732 
4733   assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
4734          "This function should not be visited twice for the same VF");
4735 
4736   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4737   // not analyze again.  Uniforms.count(VF) will return 1.
4738   Uniforms[VF].clear();
4739 
4740   // We now know that the loop is vectorizable!
4741   // Collect instructions inside the loop that will remain uniform after
4742   // vectorization.
4743 
4744   // Global values, params and instructions outside of current loop are out of
4745   // scope.
4746   auto isOutOfScope = [&](Value *V) -> bool {
4747     Instruction *I = dyn_cast<Instruction>(V);
4748     return (!I || !TheLoop->contains(I));
4749   };
4750 
4751   SetVector<Instruction *> Worklist;
4752   BasicBlock *Latch = TheLoop->getLoopLatch();
4753 
4754   // Instructions that are scalar with predication must not be considered
4755   // uniform after vectorization, because that would create an erroneous
4756   // replicating region where only a single instance out of VF should be formed.
4757   // TODO: optimize such seldom cases if found important, see PR40816.
4758   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4759     if (isScalarWithPredication(I, VF)) {
4760       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4761                         << *I << "\n");
4762       return;
4763     }
4764     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4765     Worklist.insert(I);
4766   };
4767 
4768   // Start with the conditional branch. If the branch condition is an
4769   // instruction contained in the loop that is only used by the branch, it is
4770   // uniform.
4771   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4772   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4773     addToWorklistIfAllowed(Cmp);
4774 
4775   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
4776   // are pointers that are treated like consecutive pointers during
4777   // vectorization. The pointer operands of interleaved accesses are an
4778   // example.
4779   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
4780 
4781   // Holds pointer operands of instructions that are possibly non-uniform.
4782   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
4783 
4784   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
4785     InstWidening WideningDecision = getWideningDecision(I, VF);
4786     assert(WideningDecision != CM_Unknown &&
4787            "Widening decision should be ready at this moment");
4788 
4789     return (WideningDecision == CM_Widen ||
4790             WideningDecision == CM_Widen_Reverse ||
4791             WideningDecision == CM_Interleave);
4792   };
4793   // Iterate over the instructions in the loop, and collect all
4794   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
4795   // that a consecutive-like pointer operand will be scalarized, we collect it
4796   // in PossibleNonUniformPtrs instead. We use two sets here because a single
4797   // getelementptr instruction can be used by both vectorized and scalarized
4798   // memory instructions. For example, if a loop loads and stores from the same
4799   // location, but the store is conditional, the store will be scalarized, and
4800   // the getelementptr won't remain uniform.
4801   for (auto *BB : TheLoop->blocks())
4802     for (auto &I : *BB) {
4803       // If there's no pointer operand, there's nothing to do.
4804       auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
4805       if (!Ptr)
4806         continue;
4807 
4808       // True if all users of Ptr are memory accesses that have Ptr as their
4809       // pointer operand.
4810       auto UsersAreMemAccesses =
4811           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
4812             return getLoadStorePointerOperand(U) == Ptr;
4813           });
4814 
4815       // Ensure the memory instruction will not be scalarized or used by
4816       // gather/scatter, making its pointer operand non-uniform. If the pointer
4817       // operand is used by any instruction other than a memory access, we
4818       // conservatively assume the pointer operand may be non-uniform.
4819       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
4820         PossibleNonUniformPtrs.insert(Ptr);
4821 
4822       // If the memory instruction will be vectorized and its pointer operand
4823       // is consecutive-like, or interleaving - the pointer operand should
4824       // remain uniform.
4825       else
4826         ConsecutiveLikePtrs.insert(Ptr);
4827     }
4828 
4829   // Add to the Worklist all consecutive and consecutive-like pointers that
4830   // aren't also identified as possibly non-uniform.
4831   for (auto *V : ConsecutiveLikePtrs)
4832     if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end())
4833       addToWorklistIfAllowed(V);
4834 
4835   // Expand Worklist in topological order: whenever a new instruction
4836   // is added , its users should be already inside Worklist.  It ensures
4837   // a uniform instruction will only be used by uniform instructions.
4838   unsigned idx = 0;
4839   while (idx != Worklist.size()) {
4840     Instruction *I = Worklist[idx++];
4841 
4842     for (auto OV : I->operand_values()) {
4843       // isOutOfScope operands cannot be uniform instructions.
4844       if (isOutOfScope(OV))
4845         continue;
4846       // First order recurrence Phi's should typically be considered
4847       // non-uniform.
4848       auto *OP = dyn_cast<PHINode>(OV);
4849       if (OP && Legal->isFirstOrderRecurrence(OP))
4850         continue;
4851       // If all the users of the operand are uniform, then add the
4852       // operand into the uniform worklist.
4853       auto *OI = cast<Instruction>(OV);
4854       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4855             auto *J = cast<Instruction>(U);
4856             return Worklist.count(J) ||
4857                    (OI == getLoadStorePointerOperand(J) &&
4858                     isUniformDecision(J, VF));
4859           }))
4860         addToWorklistIfAllowed(OI);
4861     }
4862   }
4863 
4864   // Returns true if Ptr is the pointer operand of a memory access instruction
4865   // I, and I is known to not require scalarization.
4866   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4867     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4868   };
4869 
4870   // For an instruction to be added into Worklist above, all its users inside
4871   // the loop should also be in Worklist. However, this condition cannot be
4872   // true for phi nodes that form a cyclic dependence. We must process phi
4873   // nodes separately. An induction variable will remain uniform if all users
4874   // of the induction variable and induction variable update remain uniform.
4875   // The code below handles both pointer and non-pointer induction variables.
4876   for (auto &Induction : Legal->getInductionVars()) {
4877     auto *Ind = Induction.first;
4878     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4879 
4880     // Determine if all users of the induction variable are uniform after
4881     // vectorization.
4882     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4883       auto *I = cast<Instruction>(U);
4884       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4885              isVectorizedMemAccessUse(I, Ind);
4886     });
4887     if (!UniformInd)
4888       continue;
4889 
4890     // Determine if all users of the induction variable update instruction are
4891     // uniform after vectorization.
4892     auto UniformIndUpdate =
4893         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4894           auto *I = cast<Instruction>(U);
4895           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4896                  isVectorizedMemAccessUse(I, IndUpdate);
4897         });
4898     if (!UniformIndUpdate)
4899       continue;
4900 
4901     // The induction variable and its update instruction will remain uniform.
4902     addToWorklistIfAllowed(Ind);
4903     addToWorklistIfAllowed(IndUpdate);
4904   }
4905 
4906   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4907 }
4908 
4909 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4910   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4911 
4912   if (Legal->getRuntimePointerChecking()->Need) {
4913     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4914         "runtime pointer checks needed. Enable vectorization of this "
4915         "loop with '#pragma clang loop vectorize(enable)' when "
4916         "compiling with -Os/-Oz",
4917         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4918     return true;
4919   }
4920 
4921   if (!PSE.getUnionPredicate().getPredicates().empty()) {
4922     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4923         "runtime SCEV checks needed. Enable vectorization of this "
4924         "loop with '#pragma clang loop vectorize(enable)' when "
4925         "compiling with -Os/-Oz",
4926         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4927     return true;
4928   }
4929 
4930   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4931   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4932     reportVectorizationFailure("Runtime stride check is required with -Os/-Oz",
4933         "runtime stride == 1 checks needed. Enable vectorization of "
4934         "this loop with '#pragma clang loop vectorize(enable)' when "
4935         "compiling with -Os/-Oz",
4936         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4937     return true;
4938   }
4939 
4940   return false;
4941 }
4942 
4943 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF,
4944                                                             unsigned UserIC) {
4945   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4946     // TODO: It may by useful to do since it's still likely to be dynamically
4947     // uniform if the target can skip.
4948     reportVectorizationFailure(
4949         "Not inserting runtime ptr check for divergent target",
4950         "runtime pointer checks needed. Not enabled for divergent target",
4951         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
4952     return None;
4953   }
4954 
4955   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4956   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4957   if (TC == 1) {
4958     reportVectorizationFailure("Single iteration (non) loop",
4959         "loop trip count is one, irrelevant for vectorization",
4960         "SingleIterationLoop", ORE, TheLoop);
4961     return None;
4962   }
4963 
4964   switch (ScalarEpilogueStatus) {
4965   case CM_ScalarEpilogueAllowed:
4966     return UserVF ? UserVF : computeFeasibleMaxVF(TC);
4967   case CM_ScalarEpilogueNotNeededUsePredicate:
4968     LLVM_DEBUG(
4969         dbgs() << "LV: vector predicate hint/switch found.\n"
4970                << "LV: Not allowing scalar epilogue, creating predicated "
4971                << "vector loop.\n");
4972     break;
4973   case CM_ScalarEpilogueNotAllowedLowTripLoop:
4974     // fallthrough as a special case of OptForSize
4975   case CM_ScalarEpilogueNotAllowedOptSize:
4976     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
4977       LLVM_DEBUG(
4978           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4979     else
4980       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
4981                         << "count.\n");
4982 
4983     // Bail if runtime checks are required, which are not good when optimising
4984     // for size.
4985     if (runtimeChecksRequired())
4986       return None;
4987     break;
4988   }
4989 
4990   // Now try the tail folding
4991 
4992   // Invalidate interleave groups that require an epilogue if we can't mask
4993   // the interleave-group.
4994   if (!useMaskedInterleavedAccesses(TTI)) {
4995     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
4996            "No decisions should have been taken at this point");
4997     // Note: There is no need to invalidate any cost modeling decisions here, as
4998     // non where taken so far.
4999     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5000   }
5001 
5002   unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC);
5003   unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
5004   if (TC > 0 && TC % MaxVFtimesIC == 0) {
5005     // Accept MaxVF if we do not have a tail.
5006     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5007     return MaxVF;
5008   }
5009 
5010   // If we don't know the precise trip count, or if the trip count that we
5011   // found modulo the vectorization factor is not zero, try to fold the tail
5012   // by masking.
5013   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5014   if (Legal->prepareToFoldTailByMasking()) {
5015     FoldTailByMasking = true;
5016     return MaxVF;
5017   }
5018 
5019   if (TC == 0) {
5020     reportVectorizationFailure(
5021         "Unable to calculate the loop count due to complex control flow",
5022         "unable to calculate the loop count due to complex control flow",
5023         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5024     return None;
5025   }
5026 
5027   reportVectorizationFailure(
5028       "Cannot optimize for size and vectorize at the same time.",
5029       "cannot optimize for size and vectorize at the same time. "
5030       "Enable vectorization of this loop with '#pragma clang loop "
5031       "vectorize(enable)' when compiling with -Os/-Oz",
5032       "NoTailLoopWithOptForSize", ORE, TheLoop);
5033   return None;
5034 }
5035 
5036 unsigned
5037 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5038   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5039   unsigned SmallestType, WidestType;
5040   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5041   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5042 
5043   // Get the maximum safe dependence distance in bits computed by LAA.
5044   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5045   // the memory accesses that is most restrictive (involved in the smallest
5046   // dependence distance).
5047   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
5048 
5049   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
5050 
5051   unsigned MaxVectorSize = WidestRegister / WidestType;
5052 
5053   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5054                     << " / " << WidestType << " bits.\n");
5055   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5056                     << WidestRegister << " bits.\n");
5057 
5058   assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
5059                                  " into one vector!");
5060   if (MaxVectorSize == 0) {
5061     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5062     MaxVectorSize = 1;
5063     return MaxVectorSize;
5064   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5065              isPowerOf2_32(ConstTripCount)) {
5066     // We need to clamp the VF to be the ConstTripCount. There is no point in
5067     // choosing a higher viable VF as done in the loop below.
5068     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5069                       << ConstTripCount << "\n");
5070     MaxVectorSize = ConstTripCount;
5071     return MaxVectorSize;
5072   }
5073 
5074   unsigned MaxVF = MaxVectorSize;
5075   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5076       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5077     // Collect all viable vectorization factors larger than the default MaxVF
5078     // (i.e. MaxVectorSize).
5079     SmallVector<unsigned, 8> VFs;
5080     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5081     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5082       VFs.push_back(VS);
5083 
5084     // For each VF calculate its register usage.
5085     auto RUs = calculateRegisterUsage(VFs);
5086 
5087     // Select the largest VF which doesn't require more registers than existing
5088     // ones.
5089     for (int i = RUs.size() - 1; i >= 0; --i) {
5090       bool Selected = true;
5091       for (auto& pair : RUs[i].MaxLocalUsers) {
5092         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5093         if (pair.second > TargetNumRegisters)
5094           Selected = false;
5095       }
5096       if (Selected) {
5097         MaxVF = VFs[i];
5098         break;
5099       }
5100     }
5101     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5102       if (MaxVF < MinVF) {
5103         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5104                           << ") with target's minimum: " << MinVF << '\n');
5105         MaxVF = MinVF;
5106       }
5107     }
5108   }
5109   return MaxVF;
5110 }
5111 
5112 VectorizationFactor
5113 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
5114   float Cost = expectedCost(1).first;
5115   const float ScalarCost = Cost;
5116   unsigned Width = 1;
5117   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5118 
5119   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5120   if (ForceVectorization && MaxVF > 1) {
5121     // Ignore scalar width, because the user explicitly wants vectorization.
5122     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5123     // evaluation.
5124     Cost = std::numeric_limits<float>::max();
5125   }
5126 
5127   for (unsigned i = 2; i <= MaxVF; i *= 2) {
5128     // Notice that the vector loop needs to be executed less times, so
5129     // we need to divide the cost of the vector loops by the width of
5130     // the vector elements.
5131     VectorizationCostTy C = expectedCost(i);
5132     float VectorCost = C.first / (float)i;
5133     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5134                       << " costs: " << (int)VectorCost << ".\n");
5135     if (!C.second && !ForceVectorization) {
5136       LLVM_DEBUG(
5137           dbgs() << "LV: Not considering vector loop of width " << i
5138                  << " because it will not generate any vector instructions.\n");
5139       continue;
5140     }
5141     if (VectorCost < Cost) {
5142       Cost = VectorCost;
5143       Width = i;
5144     }
5145   }
5146 
5147   if (!EnableCondStoresVectorization && NumPredStores) {
5148     reportVectorizationFailure("There are conditional stores.",
5149         "store that is conditionally executed prevents vectorization",
5150         "ConditionalStore", ORE, TheLoop);
5151     Width = 1;
5152     Cost = ScalarCost;
5153   }
5154 
5155   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5156              << "LV: Vectorization seems to be not beneficial, "
5157              << "but was forced by a user.\n");
5158   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5159   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
5160   return Factor;
5161 }
5162 
5163 std::pair<unsigned, unsigned>
5164 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5165   unsigned MinWidth = -1U;
5166   unsigned MaxWidth = 8;
5167   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5168 
5169   // For each block.
5170   for (BasicBlock *BB : TheLoop->blocks()) {
5171     // For each instruction in the loop.
5172     for (Instruction &I : BB->instructionsWithoutDebug()) {
5173       Type *T = I.getType();
5174 
5175       // Skip ignored values.
5176       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end())
5177         continue;
5178 
5179       // Only examine Loads, Stores and PHINodes.
5180       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5181         continue;
5182 
5183       // Examine PHI nodes that are reduction variables. Update the type to
5184       // account for the recurrence type.
5185       if (auto *PN = dyn_cast<PHINode>(&I)) {
5186         if (!Legal->isReductionVariable(PN))
5187           continue;
5188         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
5189         T = RdxDesc.getRecurrenceType();
5190       }
5191 
5192       // Examine the stored values.
5193       if (auto *ST = dyn_cast<StoreInst>(&I))
5194         T = ST->getValueOperand()->getType();
5195 
5196       // Ignore loaded pointer types and stored pointer types that are not
5197       // vectorizable.
5198       //
5199       // FIXME: The check here attempts to predict whether a load or store will
5200       //        be vectorized. We only know this for certain after a VF has
5201       //        been selected. Here, we assume that if an access can be
5202       //        vectorized, it will be. We should also look at extending this
5203       //        optimization to non-pointer types.
5204       //
5205       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5206           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5207         continue;
5208 
5209       MinWidth = std::min(MinWidth,
5210                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5211       MaxWidth = std::max(MaxWidth,
5212                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5213     }
5214   }
5215 
5216   return {MinWidth, MaxWidth};
5217 }
5218 
5219 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF,
5220                                                            unsigned LoopCost) {
5221   // -- The interleave heuristics --
5222   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5223   // There are many micro-architectural considerations that we can't predict
5224   // at this level. For example, frontend pressure (on decode or fetch) due to
5225   // code size, or the number and capabilities of the execution ports.
5226   //
5227   // We use the following heuristics to select the interleave count:
5228   // 1. If the code has reductions, then we interleave to break the cross
5229   // iteration dependency.
5230   // 2. If the loop is really small, then we interleave to reduce the loop
5231   // overhead.
5232   // 3. We don't interleave if we think that we will spill registers to memory
5233   // due to the increased register pressure.
5234 
5235   if (!isScalarEpilogueAllowed())
5236     return 1;
5237 
5238   // We used the distance for the interleave count.
5239   if (Legal->getMaxSafeDepDistBytes() != -1U)
5240     return 1;
5241 
5242   // Do not interleave loops with a relatively small known or estimated trip
5243   // count.
5244   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5245   if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold)
5246     return 1;
5247 
5248   RegisterUsage R = calculateRegisterUsage({VF})[0];
5249   // We divide by these constants so assume that we have at least one
5250   // instruction that uses at least one register.
5251   for (auto& pair : R.MaxLocalUsers) {
5252     pair.second = std::max(pair.second, 1U);
5253   }
5254 
5255   // We calculate the interleave count using the following formula.
5256   // Subtract the number of loop invariants from the number of available
5257   // registers. These registers are used by all of the interleaved instances.
5258   // Next, divide the remaining registers by the number of registers that is
5259   // required by the loop, in order to estimate how many parallel instances
5260   // fit without causing spills. All of this is rounded down if necessary to be
5261   // a power of two. We want power of two interleave count to simplify any
5262   // addressing operations or alignment considerations.
5263   // We also want power of two interleave counts to ensure that the induction
5264   // variable of the vector loop wraps to zero, when tail is folded by masking;
5265   // this currently happens when OptForSize, in which case IC is set to 1 above.
5266   unsigned IC = UINT_MAX;
5267 
5268   for (auto& pair : R.MaxLocalUsers) {
5269     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5270     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5271                       << " registers of "
5272                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5273     if (VF == 1) {
5274       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5275         TargetNumRegisters = ForceTargetNumScalarRegs;
5276     } else {
5277       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5278         TargetNumRegisters = ForceTargetNumVectorRegs;
5279     }
5280     unsigned MaxLocalUsers = pair.second;
5281     unsigned LoopInvariantRegs = 0;
5282     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5283       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5284 
5285     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5286     // Don't count the induction variable as interleaved.
5287     if (EnableIndVarRegisterHeur) {
5288       TmpIC =
5289           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5290                         std::max(1U, (MaxLocalUsers - 1)));
5291     }
5292 
5293     IC = std::min(IC, TmpIC);
5294   }
5295 
5296   // Clamp the interleave ranges to reasonable counts.
5297   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5298 
5299   // Check if the user has overridden the max.
5300   if (VF == 1) {
5301     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5302       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5303   } else {
5304     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5305       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5306   }
5307 
5308   // If trip count is known or estimated compile time constant, limit the
5309   // interleave count to be less than the trip count divided by VF.
5310   if (BestKnownTC) {
5311     MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount);
5312   }
5313 
5314   // If we did not calculate the cost for VF (because the user selected the VF)
5315   // then we calculate the cost of VF here.
5316   if (LoopCost == 0)
5317     LoopCost = expectedCost(VF).first;
5318 
5319   assert(LoopCost && "Non-zero loop cost expected");
5320 
5321   // Clamp the calculated IC to be between the 1 and the max interleave count
5322   // that the target and trip count allows.
5323   if (IC > MaxInterleaveCount)
5324     IC = MaxInterleaveCount;
5325   else if (IC < 1)
5326     IC = 1;
5327 
5328   // Interleave if we vectorized this loop and there is a reduction that could
5329   // benefit from interleaving.
5330   if (VF > 1 && !Legal->getReductionVars().empty()) {
5331     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5332     return IC;
5333   }
5334 
5335   // Note that if we've already vectorized the loop we will have done the
5336   // runtime check and so interleaving won't require further checks.
5337   bool InterleavingRequiresRuntimePointerCheck =
5338       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5339 
5340   // We want to interleave small loops in order to reduce the loop overhead and
5341   // potentially expose ILP opportunities.
5342   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5343   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5344     // We assume that the cost overhead is 1 and we use the cost model
5345     // to estimate the cost of the loop and interleave until the cost of the
5346     // loop overhead is about 5% of the cost of the loop.
5347     unsigned SmallIC =
5348         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5349 
5350     // Interleave until store/load ports (estimated by max interleave count) are
5351     // saturated.
5352     unsigned NumStores = Legal->getNumStores();
5353     unsigned NumLoads = Legal->getNumLoads();
5354     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5355     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5356 
5357     // If we have a scalar reduction (vector reductions are already dealt with
5358     // by this point), we can increase the critical path length if the loop
5359     // we're interleaving is inside another loop. Limit, by default to 2, so the
5360     // critical path only gets increased by one reduction operation.
5361     if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) {
5362       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5363       SmallIC = std::min(SmallIC, F);
5364       StoresIC = std::min(StoresIC, F);
5365       LoadsIC = std::min(LoadsIC, F);
5366     }
5367 
5368     if (EnableLoadStoreRuntimeInterleave &&
5369         std::max(StoresIC, LoadsIC) > SmallIC) {
5370       LLVM_DEBUG(
5371           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5372       return std::max(StoresIC, LoadsIC);
5373     }
5374 
5375     LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5376     return SmallIC;
5377   }
5378 
5379   // Interleave if this is a large loop (small loops are already dealt with by
5380   // this point) that could benefit from interleaving.
5381   bool HasReductions = !Legal->getReductionVars().empty();
5382   if (TTI.enableAggressiveInterleaving(HasReductions)) {
5383     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5384     return IC;
5385   }
5386 
5387   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5388   return 1;
5389 }
5390 
5391 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5392 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5393   // This function calculates the register usage by measuring the highest number
5394   // of values that are alive at a single location. Obviously, this is a very
5395   // rough estimation. We scan the loop in a topological order in order and
5396   // assign a number to each instruction. We use RPO to ensure that defs are
5397   // met before their users. We assume that each instruction that has in-loop
5398   // users starts an interval. We record every time that an in-loop value is
5399   // used, so we have a list of the first and last occurrences of each
5400   // instruction. Next, we transpose this data structure into a multi map that
5401   // holds the list of intervals that *end* at a specific location. This multi
5402   // map allows us to perform a linear search. We scan the instructions linearly
5403   // and record each time that a new interval starts, by placing it in a set.
5404   // If we find this value in the multi-map then we remove it from the set.
5405   // The max register usage is the maximum size of the set.
5406   // We also search for instructions that are defined outside the loop, but are
5407   // used inside the loop. We need this number separately from the max-interval
5408   // usage number because when we unroll, loop-invariant values do not take
5409   // more register.
5410   LoopBlocksDFS DFS(TheLoop);
5411   DFS.perform(LI);
5412 
5413   RegisterUsage RU;
5414 
5415   // Each 'key' in the map opens a new interval. The values
5416   // of the map are the index of the 'last seen' usage of the
5417   // instruction that is the key.
5418   using IntervalMap = DenseMap<Instruction *, unsigned>;
5419 
5420   // Maps instruction to its index.
5421   SmallVector<Instruction *, 64> IdxToInstr;
5422   // Marks the end of each interval.
5423   IntervalMap EndPoint;
5424   // Saves the list of instruction indices that are used in the loop.
5425   SmallPtrSet<Instruction *, 8> Ends;
5426   // Saves the list of values that are used in the loop but are
5427   // defined outside the loop, such as arguments and constants.
5428   SmallPtrSet<Value *, 8> LoopInvariants;
5429 
5430   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5431     for (Instruction &I : BB->instructionsWithoutDebug()) {
5432       IdxToInstr.push_back(&I);
5433 
5434       // Save the end location of each USE.
5435       for (Value *U : I.operands()) {
5436         auto *Instr = dyn_cast<Instruction>(U);
5437 
5438         // Ignore non-instruction values such as arguments, constants, etc.
5439         if (!Instr)
5440           continue;
5441 
5442         // If this instruction is outside the loop then record it and continue.
5443         if (!TheLoop->contains(Instr)) {
5444           LoopInvariants.insert(Instr);
5445           continue;
5446         }
5447 
5448         // Overwrite previous end points.
5449         EndPoint[Instr] = IdxToInstr.size();
5450         Ends.insert(Instr);
5451       }
5452     }
5453   }
5454 
5455   // Saves the list of intervals that end with the index in 'key'.
5456   using InstrList = SmallVector<Instruction *, 2>;
5457   DenseMap<unsigned, InstrList> TransposeEnds;
5458 
5459   // Transpose the EndPoints to a list of values that end at each index.
5460   for (auto &Interval : EndPoint)
5461     TransposeEnds[Interval.second].push_back(Interval.first);
5462 
5463   SmallPtrSet<Instruction *, 8> OpenIntervals;
5464 
5465   // Get the size of the widest register.
5466   unsigned MaxSafeDepDist = -1U;
5467   if (Legal->getMaxSafeDepDistBytes() != -1U)
5468     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5469   unsigned WidestRegister =
5470       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5471   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5472 
5473   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5474   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5475 
5476   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5477 
5478   // A lambda that gets the register usage for the given type and VF.
5479   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5480     if (Ty->isTokenTy())
5481       return 0U;
5482     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5483     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5484   };
5485 
5486   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5487     Instruction *I = IdxToInstr[i];
5488 
5489     // Remove all of the instructions that end at this location.
5490     InstrList &List = TransposeEnds[i];
5491     for (Instruction *ToRemove : List)
5492       OpenIntervals.erase(ToRemove);
5493 
5494     // Ignore instructions that are never used within the loop.
5495     if (Ends.find(I) == Ends.end())
5496       continue;
5497 
5498     // Skip ignored values.
5499     if (ValuesToIgnore.find(I) != ValuesToIgnore.end())
5500       continue;
5501 
5502     // For each VF find the maximum usage of registers.
5503     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5504       // Count the number of live intervals.
5505       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5506 
5507       if (VFs[j] == 1) {
5508         for (auto Inst : OpenIntervals) {
5509           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5510           if (RegUsage.find(ClassID) == RegUsage.end())
5511             RegUsage[ClassID] = 1;
5512           else
5513             RegUsage[ClassID] += 1;
5514         }
5515       } else {
5516         collectUniformsAndScalars(VFs[j]);
5517         for (auto Inst : OpenIntervals) {
5518           // Skip ignored values for VF > 1.
5519           if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end())
5520             continue;
5521           if (isScalarAfterVectorization(Inst, VFs[j])) {
5522             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5523             if (RegUsage.find(ClassID) == RegUsage.end())
5524               RegUsage[ClassID] = 1;
5525             else
5526               RegUsage[ClassID] += 1;
5527           } else {
5528             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5529             if (RegUsage.find(ClassID) == RegUsage.end())
5530               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5531             else
5532               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5533           }
5534         }
5535       }
5536 
5537       for (auto& pair : RegUsage) {
5538         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5539           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5540         else
5541           MaxUsages[j][pair.first] = pair.second;
5542       }
5543     }
5544 
5545     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5546                       << OpenIntervals.size() << '\n');
5547 
5548     // Add the current instruction to the list of open intervals.
5549     OpenIntervals.insert(I);
5550   }
5551 
5552   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5553     SmallMapVector<unsigned, unsigned, 4> Invariant;
5554 
5555     for (auto Inst : LoopInvariants) {
5556       unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5557       unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType());
5558       if (Invariant.find(ClassID) == Invariant.end())
5559         Invariant[ClassID] = Usage;
5560       else
5561         Invariant[ClassID] += Usage;
5562     }
5563 
5564     LLVM_DEBUG({
5565       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5566       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5567              << " item\n";
5568       for (const auto &pair : MaxUsages[i]) {
5569         dbgs() << "LV(REG): RegisterClass: "
5570                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5571                << " registers\n";
5572       }
5573       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5574              << " item\n";
5575       for (const auto &pair : Invariant) {
5576         dbgs() << "LV(REG): RegisterClass: "
5577                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5578                << " registers\n";
5579       }
5580     });
5581 
5582     RU.LoopInvariantRegs = Invariant;
5583     RU.MaxLocalUsers = MaxUsages[i];
5584     RUs[i] = RU;
5585   }
5586 
5587   return RUs;
5588 }
5589 
5590 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5591   // TODO: Cost model for emulated masked load/store is completely
5592   // broken. This hack guides the cost model to use an artificially
5593   // high enough value to practically disable vectorization with such
5594   // operations, except where previously deployed legality hack allowed
5595   // using very low cost values. This is to avoid regressions coming simply
5596   // from moving "masked load/store" check from legality to cost model.
5597   // Masked Load/Gather emulation was previously never allowed.
5598   // Limited number of Masked Store/Scatter emulation was allowed.
5599   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5600   return isa<LoadInst>(I) ||
5601          (isa<StoreInst>(I) &&
5602           NumPredStores > NumberOfStoresToPredicate);
5603 }
5604 
5605 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
5606   // If we aren't vectorizing the loop, or if we've already collected the
5607   // instructions to scalarize, there's nothing to do. Collection may already
5608   // have occurred if we have a user-selected VF and are now computing the
5609   // expected cost for interleaving.
5610   if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
5611     return;
5612 
5613   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5614   // not profitable to scalarize any instructions, the presence of VF in the
5615   // map will indicate that we've analyzed it already.
5616   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5617 
5618   // Find all the instructions that are scalar with predication in the loop and
5619   // determine if it would be better to not if-convert the blocks they are in.
5620   // If so, we also record the instructions to scalarize.
5621   for (BasicBlock *BB : TheLoop->blocks()) {
5622     if (!blockNeedsPredication(BB))
5623       continue;
5624     for (Instruction &I : *BB)
5625       if (isScalarWithPredication(&I)) {
5626         ScalarCostsTy ScalarCosts;
5627         // Do not apply discount logic if hacked cost is needed
5628         // for emulated masked memrefs.
5629         if (!useEmulatedMaskMemRefHack(&I) &&
5630             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5631           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5632         // Remember that BB will remain after vectorization.
5633         PredicatedBBsAfterVectorization.insert(BB);
5634       }
5635   }
5636 }
5637 
5638 int LoopVectorizationCostModel::computePredInstDiscount(
5639     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5640     unsigned VF) {
5641   assert(!isUniformAfterVectorization(PredInst, VF) &&
5642          "Instruction marked uniform-after-vectorization will be predicated");
5643 
5644   // Initialize the discount to zero, meaning that the scalar version and the
5645   // vector version cost the same.
5646   int Discount = 0;
5647 
5648   // Holds instructions to analyze. The instructions we visit are mapped in
5649   // ScalarCosts. Those instructions are the ones that would be scalarized if
5650   // we find that the scalar version costs less.
5651   SmallVector<Instruction *, 8> Worklist;
5652 
5653   // Returns true if the given instruction can be scalarized.
5654   auto canBeScalarized = [&](Instruction *I) -> bool {
5655     // We only attempt to scalarize instructions forming a single-use chain
5656     // from the original predicated block that would otherwise be vectorized.
5657     // Although not strictly necessary, we give up on instructions we know will
5658     // already be scalar to avoid traversing chains that are unlikely to be
5659     // beneficial.
5660     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5661         isScalarAfterVectorization(I, VF))
5662       return false;
5663 
5664     // If the instruction is scalar with predication, it will be analyzed
5665     // separately. We ignore it within the context of PredInst.
5666     if (isScalarWithPredication(I))
5667       return false;
5668 
5669     // If any of the instruction's operands are uniform after vectorization,
5670     // the instruction cannot be scalarized. This prevents, for example, a
5671     // masked load from being scalarized.
5672     //
5673     // We assume we will only emit a value for lane zero of an instruction
5674     // marked uniform after vectorization, rather than VF identical values.
5675     // Thus, if we scalarize an instruction that uses a uniform, we would
5676     // create uses of values corresponding to the lanes we aren't emitting code
5677     // for. This behavior can be changed by allowing getScalarValue to clone
5678     // the lane zero values for uniforms rather than asserting.
5679     for (Use &U : I->operands())
5680       if (auto *J = dyn_cast<Instruction>(U.get()))
5681         if (isUniformAfterVectorization(J, VF))
5682           return false;
5683 
5684     // Otherwise, we can scalarize the instruction.
5685     return true;
5686   };
5687 
5688   // Compute the expected cost discount from scalarizing the entire expression
5689   // feeding the predicated instruction. We currently only consider expressions
5690   // that are single-use instruction chains.
5691   Worklist.push_back(PredInst);
5692   while (!Worklist.empty()) {
5693     Instruction *I = Worklist.pop_back_val();
5694 
5695     // If we've already analyzed the instruction, there's nothing to do.
5696     if (ScalarCosts.find(I) != ScalarCosts.end())
5697       continue;
5698 
5699     // Compute the cost of the vector instruction. Note that this cost already
5700     // includes the scalarization overhead of the predicated instruction.
5701     unsigned VectorCost = getInstructionCost(I, VF).first;
5702 
5703     // Compute the cost of the scalarized instruction. This cost is the cost of
5704     // the instruction as if it wasn't if-converted and instead remained in the
5705     // predicated block. We will scale this cost by block probability after
5706     // computing the scalarization overhead.
5707     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
5708 
5709     // Compute the scalarization overhead of needed insertelement instructions
5710     // and phi nodes.
5711     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
5712       ScalarCost += TTI.getScalarizationOverhead(
5713           cast<VectorType>(ToVectorTy(I->getType(), VF)),
5714           APInt::getAllOnesValue(VF), true, false);
5715       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
5716     }
5717 
5718     // Compute the scalarization overhead of needed extractelement
5719     // instructions. For each of the instruction's operands, if the operand can
5720     // be scalarized, add it to the worklist; otherwise, account for the
5721     // overhead.
5722     for (Use &U : I->operands())
5723       if (auto *J = dyn_cast<Instruction>(U.get())) {
5724         assert(VectorType::isValidElementType(J->getType()) &&
5725                "Instruction has non-scalar type");
5726         if (canBeScalarized(J))
5727           Worklist.push_back(J);
5728         else if (needsExtract(J, VF))
5729           ScalarCost += TTI.getScalarizationOverhead(
5730               cast<VectorType>(ToVectorTy(J->getType(), VF)),
5731               APInt::getAllOnesValue(VF), false, true);
5732       }
5733 
5734     // Scale the total scalar cost by block probability.
5735     ScalarCost /= getReciprocalPredBlockProb();
5736 
5737     // Compute the discount. A non-negative discount means the vector version
5738     // of the instruction costs more, and scalarizing would be beneficial.
5739     Discount += VectorCost - ScalarCost;
5740     ScalarCosts[I] = ScalarCost;
5741   }
5742 
5743   return Discount;
5744 }
5745 
5746 LoopVectorizationCostModel::VectorizationCostTy
5747 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5748   VectorizationCostTy Cost;
5749 
5750   // For each block.
5751   for (BasicBlock *BB : TheLoop->blocks()) {
5752     VectorizationCostTy BlockCost;
5753 
5754     // For each instruction in the old loop.
5755     for (Instruction &I : BB->instructionsWithoutDebug()) {
5756       // Skip ignored values.
5757       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() ||
5758           (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end()))
5759         continue;
5760 
5761       VectorizationCostTy C = getInstructionCost(&I, VF);
5762 
5763       // Check if we should override the cost.
5764       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5765         C.first = ForceTargetInstructionCost;
5766 
5767       BlockCost.first += C.first;
5768       BlockCost.second |= C.second;
5769       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
5770                         << " for VF " << VF << " For instruction: " << I
5771                         << '\n');
5772     }
5773 
5774     // If we are vectorizing a predicated block, it will have been
5775     // if-converted. This means that the block's instructions (aside from
5776     // stores and instructions that may divide by zero) will now be
5777     // unconditionally executed. For the scalar case, we may not always execute
5778     // the predicated block. Thus, scale the block's cost by the probability of
5779     // executing it.
5780     if (VF == 1 && blockNeedsPredication(BB))
5781       BlockCost.first /= getReciprocalPredBlockProb();
5782 
5783     Cost.first += BlockCost.first;
5784     Cost.second |= BlockCost.second;
5785   }
5786 
5787   return Cost;
5788 }
5789 
5790 /// Gets Address Access SCEV after verifying that the access pattern
5791 /// is loop invariant except the induction variable dependence.
5792 ///
5793 /// This SCEV can be sent to the Target in order to estimate the address
5794 /// calculation cost.
5795 static const SCEV *getAddressAccessSCEV(
5796               Value *Ptr,
5797               LoopVectorizationLegality *Legal,
5798               PredicatedScalarEvolution &PSE,
5799               const Loop *TheLoop) {
5800 
5801   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5802   if (!Gep)
5803     return nullptr;
5804 
5805   // We are looking for a gep with all loop invariant indices except for one
5806   // which should be an induction variable.
5807   auto SE = PSE.getSE();
5808   unsigned NumOperands = Gep->getNumOperands();
5809   for (unsigned i = 1; i < NumOperands; ++i) {
5810     Value *Opd = Gep->getOperand(i);
5811     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5812         !Legal->isInductionVariable(Opd))
5813       return nullptr;
5814   }
5815 
5816   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5817   return PSE.getSCEV(Ptr);
5818 }
5819 
5820 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5821   return Legal->hasStride(I->getOperand(0)) ||
5822          Legal->hasStride(I->getOperand(1));
5823 }
5824 
5825 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5826                                                                  unsigned VF) {
5827   assert(VF > 1 && "Scalarization cost of instruction implies vectorization.");
5828   Type *ValTy = getMemInstValueType(I);
5829   auto SE = PSE.getSE();
5830 
5831   unsigned AS = getLoadStoreAddressSpace(I);
5832   Value *Ptr = getLoadStorePointerOperand(I);
5833   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5834 
5835   // Figure out whether the access is strided and get the stride value
5836   // if it's known in compile time
5837   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5838 
5839   // Get the cost of the scalar memory instruction and address computation.
5840   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
5841 
5842   // Don't pass *I here, since it is scalar but will actually be part of a
5843   // vectorized loop where the user of it is a vectorized instruction.
5844   const Align Alignment = getLoadStoreAlignment(I);
5845   Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5846                                    Alignment, AS,
5847                                    TTI::TCK_RecipThroughput);
5848 
5849   // Get the overhead of the extractelement and insertelement instructions
5850   // we might create due to scalarization.
5851   Cost += getScalarizationOverhead(I, VF);
5852 
5853   // If we have a predicated store, it may not be executed for each vector
5854   // lane. Scale the cost by the probability of executing the predicated
5855   // block.
5856   if (isPredicatedInst(I)) {
5857     Cost /= getReciprocalPredBlockProb();
5858 
5859     if (useEmulatedMaskMemRefHack(I))
5860       // Artificially setting to a high enough value to practically disable
5861       // vectorization with such operations.
5862       Cost = 3000000;
5863   }
5864 
5865   return Cost;
5866 }
5867 
5868 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5869                                                              unsigned VF) {
5870   Type *ValTy = getMemInstValueType(I);
5871   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5872   Value *Ptr = getLoadStorePointerOperand(I);
5873   unsigned AS = getLoadStoreAddressSpace(I);
5874   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5875   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5876 
5877   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5878          "Stride should be 1 or -1 for consecutive memory access");
5879   const Align Alignment = getLoadStoreAlignment(I);
5880   unsigned Cost = 0;
5881   if (Legal->isMaskRequired(I))
5882     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy,
5883                                       Alignment.value(), AS, CostKind);
5884   else
5885     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5886                                 CostKind, I);
5887 
5888   bool Reverse = ConsecutiveStride < 0;
5889   if (Reverse)
5890     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5891   return Cost;
5892 }
5893 
5894 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5895                                                          unsigned VF) {
5896   Type *ValTy = getMemInstValueType(I);
5897   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5898   const Align Alignment = getLoadStoreAlignment(I);
5899   unsigned AS = getLoadStoreAddressSpace(I);
5900   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5901   if (isa<LoadInst>(I)) {
5902     return TTI.getAddressComputationCost(ValTy) +
5903            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5904                                CostKind) +
5905            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
5906   }
5907   StoreInst *SI = cast<StoreInst>(I);
5908 
5909   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
5910   return TTI.getAddressComputationCost(ValTy) +
5911          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
5912                              CostKind) +
5913          (isLoopInvariantStoreValue
5914               ? 0
5915               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
5916                                        VF - 1));
5917 }
5918 
5919 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5920                                                           unsigned VF) {
5921   Type *ValTy = getMemInstValueType(I);
5922   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5923   const Align Alignment = getLoadStoreAlignment(I);
5924   Value *Ptr = getLoadStorePointerOperand(I);
5925 
5926   return TTI.getAddressComputationCost(VectorTy) +
5927          TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5928                                     Legal->isMaskRequired(I), Alignment.value(),
5929                                     TargetTransformInfo::TCK_RecipThroughput,
5930                                     I);
5931 }
5932 
5933 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5934                                                             unsigned VF) {
5935   Type *ValTy = getMemInstValueType(I);
5936   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5937   unsigned AS = getLoadStoreAddressSpace(I);
5938 
5939   auto Group = getInterleavedAccessGroup(I);
5940   assert(Group && "Fail to get an interleaved access group.");
5941 
5942   unsigned InterleaveFactor = Group->getFactor();
5943   VectorType *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5944 
5945   // Holds the indices of existing members in an interleaved load group.
5946   // An interleaved store group doesn't need this as it doesn't allow gaps.
5947   SmallVector<unsigned, 4> Indices;
5948   if (isa<LoadInst>(I)) {
5949     for (unsigned i = 0; i < InterleaveFactor; i++)
5950       if (Group->getMember(i))
5951         Indices.push_back(i);
5952   }
5953 
5954   // Calculate the cost of the whole interleaved group.
5955   bool UseMaskForGaps =
5956       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5957   unsigned Cost = TTI.getInterleavedMemoryOpCost(
5958       I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5959       Group->getAlign().value(), AS, TTI::TCK_RecipThroughput,
5960       Legal->isMaskRequired(I), UseMaskForGaps);
5961 
5962   if (Group->isReverse()) {
5963     // TODO: Add support for reversed masked interleaved access.
5964     assert(!Legal->isMaskRequired(I) &&
5965            "Reverse masked interleaved access not supported.");
5966     Cost += Group->getNumMembers() *
5967             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5968   }
5969   return Cost;
5970 }
5971 
5972 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5973                                                               unsigned VF) {
5974   // Calculate scalar cost only. Vectorization cost should be ready at this
5975   // moment.
5976   if (VF == 1) {
5977     Type *ValTy = getMemInstValueType(I);
5978     const Align Alignment = getLoadStoreAlignment(I);
5979     unsigned AS = getLoadStoreAddressSpace(I);
5980 
5981     return TTI.getAddressComputationCost(ValTy) +
5982            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
5983                                TTI::TCK_RecipThroughput, I);
5984   }
5985   return getWideningCost(I, VF);
5986 }
5987 
5988 LoopVectorizationCostModel::VectorizationCostTy
5989 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5990   // If we know that this instruction will remain uniform, check the cost of
5991   // the scalar version.
5992   if (isUniformAfterVectorization(I, VF))
5993     VF = 1;
5994 
5995   if (VF > 1 && isProfitableToScalarize(I, VF))
5996     return VectorizationCostTy(InstsToScalarize[VF][I], false);
5997 
5998   // Forced scalars do not have any scalarization overhead.
5999   auto ForcedScalar = ForcedScalars.find(VF);
6000   if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
6001     auto InstSet = ForcedScalar->second;
6002     if (InstSet.find(I) != InstSet.end())
6003       return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
6004   }
6005 
6006   Type *VectorTy;
6007   unsigned C = getInstructionCost(I, VF, VectorTy);
6008 
6009   bool TypeNotScalarized =
6010       VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
6011   return VectorizationCostTy(C, TypeNotScalarized);
6012 }
6013 
6014 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6015                                                               unsigned VF) {
6016 
6017   if (VF == 1)
6018     return 0;
6019 
6020   unsigned Cost = 0;
6021   Type *RetTy = ToVectorTy(I->getType(), VF);
6022   if (!RetTy->isVoidTy() &&
6023       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6024     Cost += TTI.getScalarizationOverhead(
6025         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false);
6026 
6027   // Some targets keep addresses scalar.
6028   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6029     return Cost;
6030 
6031   // Some targets support efficient element stores.
6032   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6033     return Cost;
6034 
6035   // Collect operands to consider.
6036   CallInst *CI = dyn_cast<CallInst>(I);
6037   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
6038 
6039   // Skip operands that do not require extraction/scalarization and do not incur
6040   // any overhead.
6041   return Cost + TTI.getOperandsScalarizationOverhead(
6042                     filterExtractingOperands(Ops, VF), VF);
6043 }
6044 
6045 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6046   if (VF == 1)
6047     return;
6048   NumPredStores = 0;
6049   for (BasicBlock *BB : TheLoop->blocks()) {
6050     // For each instruction in the old loop.
6051     for (Instruction &I : *BB) {
6052       Value *Ptr =  getLoadStorePointerOperand(&I);
6053       if (!Ptr)
6054         continue;
6055 
6056       // TODO: We should generate better code and update the cost model for
6057       // predicated uniform stores. Today they are treated as any other
6058       // predicated store (see added test cases in
6059       // invariant-store-vectorization.ll).
6060       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6061         NumPredStores++;
6062 
6063       if (Legal->isUniform(Ptr) &&
6064           // Conditional loads and stores should be scalarized and predicated.
6065           // isScalarWithPredication cannot be used here since masked
6066           // gather/scatters are not considered scalar with predication.
6067           !Legal->blockNeedsPredication(I.getParent())) {
6068         // TODO: Avoid replicating loads and stores instead of
6069         // relying on instcombine to remove them.
6070         // Load: Scalar load + broadcast
6071         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6072         unsigned Cost = getUniformMemOpCost(&I, VF);
6073         setWideningDecision(&I, VF, CM_Scalarize, Cost);
6074         continue;
6075       }
6076 
6077       // We assume that widening is the best solution when possible.
6078       if (memoryInstructionCanBeWidened(&I, VF)) {
6079         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6080         int ConsecutiveStride =
6081                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6082         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6083                "Expected consecutive stride.");
6084         InstWidening Decision =
6085             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6086         setWideningDecision(&I, VF, Decision, Cost);
6087         continue;
6088       }
6089 
6090       // Choose between Interleaving, Gather/Scatter or Scalarization.
6091       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6092       unsigned NumAccesses = 1;
6093       if (isAccessInterleaved(&I)) {
6094         auto Group = getInterleavedAccessGroup(&I);
6095         assert(Group && "Fail to get an interleaved access group.");
6096 
6097         // Make one decision for the whole group.
6098         if (getWideningDecision(&I, VF) != CM_Unknown)
6099           continue;
6100 
6101         NumAccesses = Group->getNumMembers();
6102         if (interleavedAccessCanBeWidened(&I, VF))
6103           InterleaveCost = getInterleaveGroupCost(&I, VF);
6104       }
6105 
6106       unsigned GatherScatterCost =
6107           isLegalGatherOrScatter(&I)
6108               ? getGatherScatterCost(&I, VF) * NumAccesses
6109               : std::numeric_limits<unsigned>::max();
6110 
6111       unsigned ScalarizationCost =
6112           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6113 
6114       // Choose better solution for the current VF,
6115       // write down this decision and use it during vectorization.
6116       unsigned Cost;
6117       InstWidening Decision;
6118       if (InterleaveCost <= GatherScatterCost &&
6119           InterleaveCost < ScalarizationCost) {
6120         Decision = CM_Interleave;
6121         Cost = InterleaveCost;
6122       } else if (GatherScatterCost < ScalarizationCost) {
6123         Decision = CM_GatherScatter;
6124         Cost = GatherScatterCost;
6125       } else {
6126         Decision = CM_Scalarize;
6127         Cost = ScalarizationCost;
6128       }
6129       // If the instructions belongs to an interleave group, the whole group
6130       // receives the same decision. The whole group receives the cost, but
6131       // the cost will actually be assigned to one instruction.
6132       if (auto Group = getInterleavedAccessGroup(&I))
6133         setWideningDecision(Group, VF, Decision, Cost);
6134       else
6135         setWideningDecision(&I, VF, Decision, Cost);
6136     }
6137   }
6138 
6139   // Make sure that any load of address and any other address computation
6140   // remains scalar unless there is gather/scatter support. This avoids
6141   // inevitable extracts into address registers, and also has the benefit of
6142   // activating LSR more, since that pass can't optimize vectorized
6143   // addresses.
6144   if (TTI.prefersVectorizedAddressing())
6145     return;
6146 
6147   // Start with all scalar pointer uses.
6148   SmallPtrSet<Instruction *, 8> AddrDefs;
6149   for (BasicBlock *BB : TheLoop->blocks())
6150     for (Instruction &I : *BB) {
6151       Instruction *PtrDef =
6152         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6153       if (PtrDef && TheLoop->contains(PtrDef) &&
6154           getWideningDecision(&I, VF) != CM_GatherScatter)
6155         AddrDefs.insert(PtrDef);
6156     }
6157 
6158   // Add all instructions used to generate the addresses.
6159   SmallVector<Instruction *, 4> Worklist;
6160   for (auto *I : AddrDefs)
6161     Worklist.push_back(I);
6162   while (!Worklist.empty()) {
6163     Instruction *I = Worklist.pop_back_val();
6164     for (auto &Op : I->operands())
6165       if (auto *InstOp = dyn_cast<Instruction>(Op))
6166         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6167             AddrDefs.insert(InstOp).second)
6168           Worklist.push_back(InstOp);
6169   }
6170 
6171   for (auto *I : AddrDefs) {
6172     if (isa<LoadInst>(I)) {
6173       // Setting the desired widening decision should ideally be handled in
6174       // by cost functions, but since this involves the task of finding out
6175       // if the loaded register is involved in an address computation, it is
6176       // instead changed here when we know this is the case.
6177       InstWidening Decision = getWideningDecision(I, VF);
6178       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6179         // Scalarize a widened load of address.
6180         setWideningDecision(I, VF, CM_Scalarize,
6181                             (VF * getMemoryInstructionCost(I, 1)));
6182       else if (auto Group = getInterleavedAccessGroup(I)) {
6183         // Scalarize an interleave group of address loads.
6184         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6185           if (Instruction *Member = Group->getMember(I))
6186             setWideningDecision(Member, VF, CM_Scalarize,
6187                                 (VF * getMemoryInstructionCost(Member, 1)));
6188         }
6189       }
6190     } else
6191       // Make sure I gets scalarized and a cost estimate without
6192       // scalarization overhead.
6193       ForcedScalars[VF].insert(I);
6194   }
6195 }
6196 
6197 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6198                                                         unsigned VF,
6199                                                         Type *&VectorTy) {
6200   Type *RetTy = I->getType();
6201   if (canTruncateToMinimalBitwidth(I, VF))
6202     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6203   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6204   auto SE = PSE.getSE();
6205   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6206 
6207   // TODO: We need to estimate the cost of intrinsic calls.
6208   switch (I->getOpcode()) {
6209   case Instruction::GetElementPtr:
6210     // We mark this instruction as zero-cost because the cost of GEPs in
6211     // vectorized code depends on whether the corresponding memory instruction
6212     // is scalarized or not. Therefore, we handle GEPs with the memory
6213     // instruction cost.
6214     return 0;
6215   case Instruction::Br: {
6216     // In cases of scalarized and predicated instructions, there will be VF
6217     // predicated blocks in the vectorized loop. Each branch around these
6218     // blocks requires also an extract of its vector compare i1 element.
6219     bool ScalarPredicatedBB = false;
6220     BranchInst *BI = cast<BranchInst>(I);
6221     if (VF > 1 && BI->isConditional() &&
6222         (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) !=
6223              PredicatedBBsAfterVectorization.end() ||
6224          PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) !=
6225              PredicatedBBsAfterVectorization.end()))
6226       ScalarPredicatedBB = true;
6227 
6228     if (ScalarPredicatedBB) {
6229       // Return cost for branches around scalarized and predicated blocks.
6230       VectorType *Vec_i1Ty =
6231           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6232       return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF),
6233                                            false, true) +
6234               (TTI.getCFInstrCost(Instruction::Br) * VF));
6235     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
6236       // The back-edge branch will remain, as will all scalar branches.
6237       return TTI.getCFInstrCost(Instruction::Br);
6238     else
6239       // This branch will be eliminated by if-conversion.
6240       return 0;
6241     // Note: We currently assume zero cost for an unconditional branch inside
6242     // a predicated block since it will become a fall-through, although we
6243     // may decide in the future to call TTI for all branches.
6244   }
6245   case Instruction::PHI: {
6246     auto *Phi = cast<PHINode>(I);
6247 
6248     // First-order recurrences are replaced by vector shuffles inside the loop.
6249     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6250     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
6251       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6252                                 cast<VectorType>(VectorTy), VF - 1,
6253                                 VectorType::get(RetTy, 1));
6254 
6255     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6256     // converted into select instructions. We require N - 1 selects per phi
6257     // node, where N is the number of incoming values.
6258     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
6259       return (Phi->getNumIncomingValues() - 1) *
6260              TTI.getCmpSelInstrCost(
6261                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
6262                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6263                  CostKind);
6264 
6265     return TTI.getCFInstrCost(Instruction::PHI);
6266   }
6267   case Instruction::UDiv:
6268   case Instruction::SDiv:
6269   case Instruction::URem:
6270   case Instruction::SRem:
6271     // If we have a predicated instruction, it may not be executed for each
6272     // vector lane. Get the scalarization cost and scale this amount by the
6273     // probability of executing the predicated block. If the instruction is not
6274     // predicated, we fall through to the next case.
6275     if (VF > 1 && isScalarWithPredication(I)) {
6276       unsigned Cost = 0;
6277 
6278       // These instructions have a non-void type, so account for the phi nodes
6279       // that we will create. This cost is likely to be zero. The phi node
6280       // cost, if any, should be scaled by the block probability because it
6281       // models a copy at the end of each predicated block.
6282       Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
6283 
6284       // The cost of the non-predicated instruction.
6285       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
6286 
6287       // The cost of insertelement and extractelement instructions needed for
6288       // scalarization.
6289       Cost += getScalarizationOverhead(I, VF);
6290 
6291       // Scale the cost by the probability of executing the predicated blocks.
6292       // This assumes the predicated block for each vector lane is equally
6293       // likely.
6294       return Cost / getReciprocalPredBlockProb();
6295     }
6296     LLVM_FALLTHROUGH;
6297   case Instruction::Add:
6298   case Instruction::FAdd:
6299   case Instruction::Sub:
6300   case Instruction::FSub:
6301   case Instruction::Mul:
6302   case Instruction::FMul:
6303   case Instruction::FDiv:
6304   case Instruction::FRem:
6305   case Instruction::Shl:
6306   case Instruction::LShr:
6307   case Instruction::AShr:
6308   case Instruction::And:
6309   case Instruction::Or:
6310   case Instruction::Xor: {
6311     // Since we will replace the stride by 1 the multiplication should go away.
6312     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6313       return 0;
6314     // Certain instructions can be cheaper to vectorize if they have a constant
6315     // second vector operand. One example of this are shifts on x86.
6316     Value *Op2 = I->getOperand(1);
6317     TargetTransformInfo::OperandValueProperties Op2VP;
6318     TargetTransformInfo::OperandValueKind Op2VK =
6319         TTI.getOperandInfo(Op2, Op2VP);
6320     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6321       Op2VK = TargetTransformInfo::OK_UniformValue;
6322 
6323     SmallVector<const Value *, 4> Operands(I->operand_values());
6324     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6325     return N * TTI.getArithmeticInstrCost(
6326                    I->getOpcode(), VectorTy, CostKind,
6327                    TargetTransformInfo::OK_AnyValue,
6328                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6329   }
6330   case Instruction::FNeg: {
6331     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6332     return N * TTI.getArithmeticInstrCost(
6333                    I->getOpcode(), VectorTy, CostKind,
6334                    TargetTransformInfo::OK_AnyValue,
6335                    TargetTransformInfo::OK_AnyValue,
6336                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6337                    I->getOperand(0), I);
6338   }
6339   case Instruction::Select: {
6340     SelectInst *SI = cast<SelectInst>(I);
6341     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6342     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6343     Type *CondTy = SI->getCondition()->getType();
6344     if (!ScalarCond)
6345       CondTy = VectorType::get(CondTy, VF);
6346 
6347     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
6348                                   CostKind, I);
6349   }
6350   case Instruction::ICmp:
6351   case Instruction::FCmp: {
6352     Type *ValTy = I->getOperand(0)->getType();
6353     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6354     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6355       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6356     VectorTy = ToVectorTy(ValTy, VF);
6357     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind,
6358                                   I);
6359   }
6360   case Instruction::Store:
6361   case Instruction::Load: {
6362     unsigned Width = VF;
6363     if (Width > 1) {
6364       InstWidening Decision = getWideningDecision(I, Width);
6365       assert(Decision != CM_Unknown &&
6366              "CM decision should be taken at this point");
6367       if (Decision == CM_Scalarize)
6368         Width = 1;
6369     }
6370     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6371     return getMemoryInstructionCost(I, VF);
6372   }
6373   case Instruction::ZExt:
6374   case Instruction::SExt:
6375   case Instruction::FPToUI:
6376   case Instruction::FPToSI:
6377   case Instruction::FPExt:
6378   case Instruction::PtrToInt:
6379   case Instruction::IntToPtr:
6380   case Instruction::SIToFP:
6381   case Instruction::UIToFP:
6382   case Instruction::Trunc:
6383   case Instruction::FPTrunc:
6384   case Instruction::BitCast: {
6385     // We optimize the truncation of induction variables having constant
6386     // integer steps. The cost of these truncations is the same as the scalar
6387     // operation.
6388     if (isOptimizableIVTruncate(I, VF)) {
6389       auto *Trunc = cast<TruncInst>(I);
6390       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6391                                   Trunc->getSrcTy(), CostKind, Trunc);
6392     }
6393 
6394     Type *SrcScalarTy = I->getOperand(0)->getType();
6395     Type *SrcVecTy =
6396         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6397     if (canTruncateToMinimalBitwidth(I, VF)) {
6398       // This cast is going to be shrunk. This may remove the cast or it might
6399       // turn it into slightly different cast. For example, if MinBW == 16,
6400       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6401       //
6402       // Calculate the modified src and dest types.
6403       Type *MinVecTy = VectorTy;
6404       if (I->getOpcode() == Instruction::Trunc) {
6405         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6406         VectorTy =
6407             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6408       } else if (I->getOpcode() == Instruction::ZExt ||
6409                  I->getOpcode() == Instruction::SExt) {
6410         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6411         VectorTy =
6412             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6413       }
6414     }
6415 
6416     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6417     return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy,
6418                                     CostKind, I);
6419   }
6420   case Instruction::Call: {
6421     bool NeedToScalarize;
6422     CallInst *CI = cast<CallInst>(I);
6423     unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6424     if (getVectorIntrinsicIDForCall(CI, TLI))
6425       return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6426     return CallCost;
6427   }
6428   default:
6429     // The cost of executing VF copies of the scalar instruction. This opcode
6430     // is unknown. Assume that it is the same as 'mul'.
6431     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
6432                                            CostKind) +
6433            getScalarizationOverhead(I, VF);
6434   } // end of switch.
6435 }
6436 
6437 char LoopVectorize::ID = 0;
6438 
6439 static const char lv_name[] = "Loop Vectorization";
6440 
6441 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6442 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6443 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6444 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6445 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6446 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6447 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6448 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6449 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6450 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6451 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6452 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6453 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6454 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6455 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
6456 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6457 
6458 namespace llvm {
6459 
6460 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6461 
6462 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6463                               bool VectorizeOnlyWhenForced) {
6464   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6465 }
6466 
6467 } // end namespace llvm
6468 
6469 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6470   // Check if the pointer operand of a load or store instruction is
6471   // consecutive.
6472   if (auto *Ptr = getLoadStorePointerOperand(Inst))
6473     return Legal->isConsecutivePtr(Ptr);
6474   return false;
6475 }
6476 
6477 void LoopVectorizationCostModel::collectValuesToIgnore() {
6478   // Ignore ephemeral values.
6479   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6480 
6481   // Ignore type-promoting instructions we identified during reduction
6482   // detection.
6483   for (auto &Reduction : Legal->getReductionVars()) {
6484     RecurrenceDescriptor &RedDes = Reduction.second;
6485     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6486     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6487   }
6488   // Ignore type-casting instructions we identified during induction
6489   // detection.
6490   for (auto &Induction : Legal->getInductionVars()) {
6491     InductionDescriptor &IndDes = Induction.second;
6492     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6493     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6494   }
6495 }
6496 
6497 // TODO: we could return a pair of values that specify the max VF and
6498 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6499 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6500 // doesn't have a cost model that can choose which plan to execute if
6501 // more than one is generated.
6502 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6503                                  LoopVectorizationCostModel &CM) {
6504   unsigned WidestType;
6505   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6506   return WidestVectorRegBits / WidestType;
6507 }
6508 
6509 VectorizationFactor
6510 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) {
6511   unsigned VF = UserVF;
6512   // Outer loop handling: They may require CFG and instruction level
6513   // transformations before even evaluating whether vectorization is profitable.
6514   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6515   // the vectorization pipeline.
6516   if (!OrigLoop->empty()) {
6517     // If the user doesn't provide a vectorization factor, determine a
6518     // reasonable one.
6519     if (!UserVF) {
6520       VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM);
6521       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6522 
6523       // Make sure we have a VF > 1 for stress testing.
6524       if (VPlanBuildStressTest && VF < 2) {
6525         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6526                           << "overriding computed VF.\n");
6527         VF = 4;
6528       }
6529     }
6530     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6531     assert(isPowerOf2_32(VF) && "VF needs to be a power of two");
6532     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF
6533                       << " to build VPlans.\n");
6534     buildVPlans(VF, VF);
6535 
6536     // For VPlan build stress testing, we bail out after VPlan construction.
6537     if (VPlanBuildStressTest)
6538       return VectorizationFactor::Disabled();
6539 
6540     return {VF, 0};
6541   }
6542 
6543   LLVM_DEBUG(
6544       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6545                 "VPlan-native path.\n");
6546   return VectorizationFactor::Disabled();
6547 }
6548 
6549 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF,
6550                                                              unsigned UserIC) {
6551   assert(OrigLoop->empty() && "Inner loop expected.");
6552   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
6553   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
6554     return None;
6555 
6556   // Invalidate interleave groups if all blocks of loop will be predicated.
6557   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
6558       !useMaskedInterleavedAccesses(*TTI)) {
6559     LLVM_DEBUG(
6560         dbgs()
6561         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6562            "which requires masked-interleaved support.\n");
6563     if (CM.InterleaveInfo.invalidateGroups())
6564       // Invalidating interleave groups also requires invalidating all decisions
6565       // based on them, which includes widening decisions and uniform and scalar
6566       // values.
6567       CM.invalidateCostModelingDecisions();
6568   }
6569 
6570   if (UserVF) {
6571     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6572     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
6573     // Collect the instructions (and their associated costs) that will be more
6574     // profitable to scalarize.
6575     CM.selectUserVectorizationFactor(UserVF);
6576     buildVPlansWithVPRecipes(UserVF, UserVF);
6577     LLVM_DEBUG(printPlans(dbgs()));
6578     return {{UserVF, 0}};
6579   }
6580 
6581   unsigned MaxVF = MaybeMaxVF.getValue();
6582   assert(MaxVF != 0 && "MaxVF is zero.");
6583 
6584   for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
6585     // Collect Uniform and Scalar instructions after vectorization with VF.
6586     CM.collectUniformsAndScalars(VF);
6587 
6588     // Collect the instructions (and their associated costs) that will be more
6589     // profitable to scalarize.
6590     if (VF > 1)
6591       CM.collectInstsToScalarize(VF);
6592   }
6593 
6594   buildVPlansWithVPRecipes(1, MaxVF);
6595   LLVM_DEBUG(printPlans(dbgs()));
6596   if (MaxVF == 1)
6597     return VectorizationFactor::Disabled();
6598 
6599   // Select the optimal vectorization factor.
6600   return CM.selectVectorizationFactor(MaxVF);
6601 }
6602 
6603 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
6604   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
6605                     << '\n');
6606   BestVF = VF;
6607   BestUF = UF;
6608 
6609   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
6610     return !Plan->hasVF(VF);
6611   });
6612   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
6613 }
6614 
6615 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
6616                                            DominatorTree *DT) {
6617   // Perform the actual loop transformation.
6618 
6619   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
6620   VPCallbackILV CallbackILV(ILV);
6621 
6622   VPTransformState State{BestVF, BestUF,      LI,
6623                          DT,     ILV.Builder, ILV.VectorLoopValueMap,
6624                          &ILV,   CallbackILV};
6625   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
6626   State.TripCount = ILV.getOrCreateTripCount(nullptr);
6627   State.CanonicalIV = ILV.Induction;
6628 
6629   //===------------------------------------------------===//
6630   //
6631   // Notice: any optimization or new instruction that go
6632   // into the code below should also be implemented in
6633   // the cost-model.
6634   //
6635   //===------------------------------------------------===//
6636 
6637   // 2. Copy and widen instructions from the old loop into the new loop.
6638   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
6639   VPlans.front()->execute(&State);
6640 
6641   // 3. Fix the vectorized code: take care of header phi's, live-outs,
6642   //    predication, updating analyses.
6643   ILV.fixVectorizedLoop();
6644 }
6645 
6646 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
6647     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
6648   BasicBlock *Latch = OrigLoop->getLoopLatch();
6649 
6650   // We create new control-flow for the vectorized loop, so the original
6651   // condition will be dead after vectorization if it's only used by the
6652   // branch.
6653   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
6654   if (Cmp && Cmp->hasOneUse())
6655     DeadInstructions.insert(Cmp);
6656 
6657   // We create new "steps" for induction variable updates to which the original
6658   // induction variables map. An original update instruction will be dead if
6659   // all its users except the induction variable are dead.
6660   for (auto &Induction : Legal->getInductionVars()) {
6661     PHINode *Ind = Induction.first;
6662     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
6663     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
6664           return U == Ind || DeadInstructions.find(cast<Instruction>(U)) !=
6665                                  DeadInstructions.end();
6666         }))
6667       DeadInstructions.insert(IndUpdate);
6668 
6669     // We record as "Dead" also the type-casting instructions we had identified
6670     // during induction analysis. We don't need any handling for them in the
6671     // vectorized loop because we have proven that, under a proper runtime
6672     // test guarding the vectorized loop, the value of the phi, and the casted
6673     // value of the phi, are the same. The last instruction in this casting chain
6674     // will get its scalar/vector/widened def from the scalar/vector/widened def
6675     // of the respective phi node. Any other casts in the induction def-use chain
6676     // have no other uses outside the phi update chain, and will be ignored.
6677     InductionDescriptor &IndDes = Induction.second;
6678     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6679     DeadInstructions.insert(Casts.begin(), Casts.end());
6680   }
6681 }
6682 
6683 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6684 
6685 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6686 
6687 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
6688                                         Instruction::BinaryOps BinOp) {
6689   // When unrolling and the VF is 1, we only need to add a simple scalar.
6690   Type *Ty = Val->getType();
6691   assert(!Ty->isVectorTy() && "Val must be a scalar");
6692 
6693   if (Ty->isFloatingPointTy()) {
6694     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
6695 
6696     // Floating point operations had to be 'fast' to enable the unrolling.
6697     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
6698     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
6699   }
6700   Constant *C = ConstantInt::get(Ty, StartIdx);
6701   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6702 }
6703 
6704 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6705   SmallVector<Metadata *, 4> MDs;
6706   // Reserve first location for self reference to the LoopID metadata node.
6707   MDs.push_back(nullptr);
6708   bool IsUnrollMetadata = false;
6709   MDNode *LoopID = L->getLoopID();
6710   if (LoopID) {
6711     // First find existing loop unrolling disable metadata.
6712     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6713       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6714       if (MD) {
6715         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6716         IsUnrollMetadata =
6717             S && S->getString().startswith("llvm.loop.unroll.disable");
6718       }
6719       MDs.push_back(LoopID->getOperand(i));
6720     }
6721   }
6722 
6723   if (!IsUnrollMetadata) {
6724     // Add runtime unroll disable metadata.
6725     LLVMContext &Context = L->getHeader()->getContext();
6726     SmallVector<Metadata *, 1> DisableOperands;
6727     DisableOperands.push_back(
6728         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6729     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6730     MDs.push_back(DisableNode);
6731     MDNode *NewLoopID = MDNode::get(Context, MDs);
6732     // Set operand 0 to refer to the loop id itself.
6733     NewLoopID->replaceOperandWith(0, NewLoopID);
6734     L->setLoopID(NewLoopID);
6735   }
6736 }
6737 
6738 bool LoopVectorizationPlanner::getDecisionAndClampRange(
6739     const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
6740   assert(Range.End > Range.Start && "Trying to test an empty VF range.");
6741   bool PredicateAtRangeStart = Predicate(Range.Start);
6742 
6743   for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
6744     if (Predicate(TmpVF) != PredicateAtRangeStart) {
6745       Range.End = TmpVF;
6746       break;
6747     }
6748 
6749   return PredicateAtRangeStart;
6750 }
6751 
6752 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
6753 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
6754 /// of VF's starting at a given VF and extending it as much as possible. Each
6755 /// vectorization decision can potentially shorten this sub-range during
6756 /// buildVPlan().
6757 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
6758   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
6759     VFRange SubRange = {VF, MaxVF + 1};
6760     VPlans.push_back(buildVPlan(SubRange));
6761     VF = SubRange.End;
6762   }
6763 }
6764 
6765 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
6766                                          VPlanPtr &Plan) {
6767   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
6768 
6769   // Look for cached value.
6770   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
6771   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
6772   if (ECEntryIt != EdgeMaskCache.end())
6773     return ECEntryIt->second;
6774 
6775   VPValue *SrcMask = createBlockInMask(Src, Plan);
6776 
6777   // The terminator has to be a branch inst!
6778   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
6779   assert(BI && "Unexpected terminator found");
6780 
6781   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
6782     return EdgeMaskCache[Edge] = SrcMask;
6783 
6784   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
6785   assert(EdgeMask && "No Edge Mask found for condition");
6786 
6787   if (BI->getSuccessor(0) != Dst)
6788     EdgeMask = Builder.createNot(EdgeMask);
6789 
6790   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
6791     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
6792 
6793   return EdgeMaskCache[Edge] = EdgeMask;
6794 }
6795 
6796 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
6797   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
6798 
6799   // Look for cached value.
6800   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
6801   if (BCEntryIt != BlockMaskCache.end())
6802     return BCEntryIt->second;
6803 
6804   // All-one mask is modelled as no-mask following the convention for masked
6805   // load/store/gather/scatter. Initialize BlockMask to no-mask.
6806   VPValue *BlockMask = nullptr;
6807 
6808   if (OrigLoop->getHeader() == BB) {
6809     if (!CM.blockNeedsPredication(BB))
6810       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
6811 
6812     // Introduce the early-exit compare IV <= BTC to form header block mask.
6813     // This is used instead of IV < TC because TC may wrap, unlike BTC.
6814     // Start by constructing the desired canonical IV.
6815     VPValue *IV = nullptr;
6816     if (Legal->getPrimaryInduction())
6817       IV = Plan->getVPValue(Legal->getPrimaryInduction());
6818     else {
6819       auto IVRecipe = new VPWidenCanonicalIVRecipe();
6820       Builder.getInsertBlock()->appendRecipe(IVRecipe);
6821       IV = IVRecipe->getVPValue();
6822     }
6823     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
6824     BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
6825     return BlockMaskCache[BB] = BlockMask;
6826   }
6827 
6828   // This is the block mask. We OR all incoming edges.
6829   for (auto *Predecessor : predecessors(BB)) {
6830     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
6831     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
6832       return BlockMaskCache[BB] = EdgeMask;
6833 
6834     if (!BlockMask) { // BlockMask has its initialized nullptr value.
6835       BlockMask = EdgeMask;
6836       continue;
6837     }
6838 
6839     BlockMask = Builder.createOr(BlockMask, EdgeMask);
6840   }
6841 
6842   return BlockMaskCache[BB] = BlockMask;
6843 }
6844 
6845 VPWidenMemoryInstructionRecipe *
6846 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
6847                                   VPlanPtr &Plan) {
6848   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6849          "Must be called with either a load or store");
6850 
6851   auto willWiden = [&](unsigned VF) -> bool {
6852     if (VF == 1)
6853       return false;
6854     LoopVectorizationCostModel::InstWidening Decision =
6855         CM.getWideningDecision(I, VF);
6856     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
6857            "CM decision should be taken at this point.");
6858     if (Decision == LoopVectorizationCostModel::CM_Interleave)
6859       return true;
6860     if (CM.isScalarAfterVectorization(I, VF) ||
6861         CM.isProfitableToScalarize(I, VF))
6862       return false;
6863     return Decision != LoopVectorizationCostModel::CM_Scalarize;
6864   };
6865 
6866   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6867     return nullptr;
6868 
6869   VPValue *Mask = nullptr;
6870   if (Legal->isMaskRequired(I))
6871     Mask = createBlockInMask(I->getParent(), Plan);
6872 
6873   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
6874   if (LoadInst *Load = dyn_cast<LoadInst>(I))
6875     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
6876 
6877   StoreInst *Store = cast<StoreInst>(I);
6878   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
6879   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
6880 }
6881 
6882 VPWidenIntOrFpInductionRecipe *
6883 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const {
6884   // Check if this is an integer or fp induction. If so, build the recipe that
6885   // produces its scalar and vector values.
6886   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
6887   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
6888       II.getKind() == InductionDescriptor::IK_FpInduction)
6889     return new VPWidenIntOrFpInductionRecipe(Phi);
6890 
6891   return nullptr;
6892 }
6893 
6894 VPWidenIntOrFpInductionRecipe *
6895 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I,
6896                                                 VFRange &Range) const {
6897   // Optimize the special case where the source is a constant integer
6898   // induction variable. Notice that we can only optimize the 'trunc' case
6899   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
6900   // (c) other casts depend on pointer size.
6901 
6902   // Determine whether \p K is a truncation based on an induction variable that
6903   // can be optimized.
6904   auto isOptimizableIVTruncate =
6905       [&](Instruction *K) -> std::function<bool(unsigned)> {
6906     return
6907         [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
6908   };
6909 
6910   if (LoopVectorizationPlanner::getDecisionAndClampRange(
6911           isOptimizableIVTruncate(I), Range))
6912     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
6913                                              I);
6914   return nullptr;
6915 }
6916 
6917 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
6918   // We know that all PHIs in non-header blocks are converted into selects, so
6919   // we don't have to worry about the insertion order and we can just use the
6920   // builder. At this point we generate the predication tree. There may be
6921   // duplications since this is a simple recursive scan, but future
6922   // optimizations will clean it up.
6923 
6924   SmallVector<VPValue *, 2> Operands;
6925   unsigned NumIncoming = Phi->getNumIncomingValues();
6926   for (unsigned In = 0; In < NumIncoming; In++) {
6927     VPValue *EdgeMask =
6928       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
6929     assert((EdgeMask || NumIncoming == 1) &&
6930            "Multiple predecessors with one having a full mask");
6931     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
6932     if (EdgeMask)
6933       Operands.push_back(EdgeMask);
6934   }
6935   return new VPBlendRecipe(Phi, Operands);
6936 }
6937 
6938 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
6939                                                    VPlan &Plan) const {
6940 
6941   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
6942       [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); },
6943       Range);
6944 
6945   if (IsPredicated)
6946     return nullptr;
6947 
6948   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6949   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
6950              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
6951     return nullptr;
6952 
6953   auto willWiden = [&](unsigned VF) -> bool {
6954     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6955     // The following case may be scalarized depending on the VF.
6956     // The flag shows whether we use Intrinsic or a usual Call for vectorized
6957     // version of the instruction.
6958     // Is it beneficial to perform intrinsic call compared to lib call?
6959     bool NeedToScalarize = false;
6960     unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
6961     bool UseVectorIntrinsic =
6962         ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
6963     return UseVectorIntrinsic || !NeedToScalarize;
6964   };
6965 
6966   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6967     return nullptr;
6968 
6969   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
6970 }
6971 
6972 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
6973   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
6974          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
6975   // Instruction should be widened, unless it is scalar after vectorization,
6976   // scalarization is profitable or it is predicated.
6977   auto WillScalarize = [this, I](unsigned VF) -> bool {
6978     return CM.isScalarAfterVectorization(I, VF) ||
6979            CM.isProfitableToScalarize(I, VF) ||
6980            CM.isScalarWithPredication(I, VF);
6981   };
6982   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
6983                                                              Range);
6984 }
6985 
6986 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
6987   auto IsVectorizableOpcode = [](unsigned Opcode) {
6988     switch (Opcode) {
6989     case Instruction::Add:
6990     case Instruction::And:
6991     case Instruction::AShr:
6992     case Instruction::BitCast:
6993     case Instruction::FAdd:
6994     case Instruction::FCmp:
6995     case Instruction::FDiv:
6996     case Instruction::FMul:
6997     case Instruction::FNeg:
6998     case Instruction::FPExt:
6999     case Instruction::FPToSI:
7000     case Instruction::FPToUI:
7001     case Instruction::FPTrunc:
7002     case Instruction::FRem:
7003     case Instruction::FSub:
7004     case Instruction::ICmp:
7005     case Instruction::IntToPtr:
7006     case Instruction::LShr:
7007     case Instruction::Mul:
7008     case Instruction::Or:
7009     case Instruction::PtrToInt:
7010     case Instruction::SDiv:
7011     case Instruction::Select:
7012     case Instruction::SExt:
7013     case Instruction::Shl:
7014     case Instruction::SIToFP:
7015     case Instruction::SRem:
7016     case Instruction::Sub:
7017     case Instruction::Trunc:
7018     case Instruction::UDiv:
7019     case Instruction::UIToFP:
7020     case Instruction::URem:
7021     case Instruction::Xor:
7022     case Instruction::ZExt:
7023       return true;
7024     }
7025     return false;
7026   };
7027 
7028   if (!IsVectorizableOpcode(I->getOpcode()))
7029     return nullptr;
7030 
7031   // Success: widen this instruction.
7032   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
7033 }
7034 
7035 VPBasicBlock *VPRecipeBuilder::handleReplication(
7036     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7037     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7038     VPlanPtr &Plan) {
7039   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
7040       [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
7041       Range);
7042 
7043   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7044       [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
7045 
7046   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
7047                                        IsUniform, IsPredicated);
7048   setRecipe(I, Recipe);
7049 
7050   // Find if I uses a predicated instruction. If so, it will use its scalar
7051   // value. Avoid hoisting the insert-element which packs the scalar value into
7052   // a vector value, as that happens iff all users use the vector value.
7053   for (auto &Op : I->operands())
7054     if (auto *PredInst = dyn_cast<Instruction>(Op))
7055       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7056         PredInst2Recipe[PredInst]->setAlsoPack(false);
7057 
7058   // Finalize the recipe for Instr, first if it is not predicated.
7059   if (!IsPredicated) {
7060     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7061     VPBB->appendRecipe(Recipe);
7062     return VPBB;
7063   }
7064   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7065   assert(VPBB->getSuccessors().empty() &&
7066          "VPBB has successors when handling predicated replication.");
7067   // Record predicated instructions for above packing optimizations.
7068   PredInst2Recipe[I] = Recipe;
7069   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7070   VPBlockUtils::insertBlockAfter(Region, VPBB);
7071   auto *RegSucc = new VPBasicBlock();
7072   VPBlockUtils::insertBlockAfter(RegSucc, Region);
7073   return RegSucc;
7074 }
7075 
7076 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7077                                                       VPRecipeBase *PredRecipe,
7078                                                       VPlanPtr &Plan) {
7079   // Instructions marked for predication are replicated and placed under an
7080   // if-then construct to prevent side-effects.
7081 
7082   // Generate recipes to compute the block mask for this region.
7083   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7084 
7085   // Build the triangular if-then region.
7086   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7087   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7088   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7089   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7090   auto *PHIRecipe =
7091       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7092   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7093   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7094   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7095 
7096   // Note: first set Entry as region entry and then connect successors starting
7097   // from it in order, to propagate the "parent" of each VPBasicBlock.
7098   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7099   VPBlockUtils::connectBlocks(Pred, Exit);
7100 
7101   return Region;
7102 }
7103 
7104 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
7105                                                       VFRange &Range,
7106                                                       VPlanPtr &Plan) {
7107   // First, check for specific widening recipes that deal with calls, memory
7108   // operations, inductions and Phi nodes.
7109   if (auto *CI = dyn_cast<CallInst>(Instr))
7110     return tryToWidenCall(CI, Range, *Plan);
7111 
7112   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
7113     return tryToWidenMemory(Instr, Range, Plan);
7114 
7115   VPRecipeBase *Recipe;
7116   if (auto Phi = dyn_cast<PHINode>(Instr)) {
7117     if (Phi->getParent() != OrigLoop->getHeader())
7118       return tryToBlend(Phi, Plan);
7119     if ((Recipe = tryToOptimizeInductionPHI(Phi)))
7120       return Recipe;
7121     return new VPWidenPHIRecipe(Phi);
7122   }
7123 
7124   if (isa<TruncInst>(Instr) &&
7125       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range)))
7126     return Recipe;
7127 
7128   if (!shouldWiden(Instr, Range))
7129     return nullptr;
7130 
7131   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
7132     return new VPWidenGEPRecipe(GEP, OrigLoop);
7133 
7134   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
7135     bool InvariantCond =
7136         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
7137     return new VPWidenSelectRecipe(*SI, InvariantCond);
7138   }
7139 
7140   return tryToWiden(Instr, *Plan);
7141 }
7142 
7143 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
7144                                                         unsigned MaxVF) {
7145   assert(OrigLoop->empty() && "Inner loop expected.");
7146 
7147   // Collect conditions feeding internal conditional branches; they need to be
7148   // represented in VPlan for it to model masking.
7149   SmallPtrSet<Value *, 1> NeedDef;
7150 
7151   auto *Latch = OrigLoop->getLoopLatch();
7152   for (BasicBlock *BB : OrigLoop->blocks()) {
7153     if (BB == Latch)
7154       continue;
7155     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7156     if (Branch && Branch->isConditional())
7157       NeedDef.insert(Branch->getCondition());
7158   }
7159 
7160   // If the tail is to be folded by masking, the primary induction variable, if
7161   // exists needs to be represented in VPlan for it to model early-exit masking.
7162   // Also, both the Phi and the live-out instruction of each reduction are
7163   // required in order to introduce a select between them in VPlan.
7164   if (CM.foldTailByMasking()) {
7165     if (Legal->getPrimaryInduction())
7166       NeedDef.insert(Legal->getPrimaryInduction());
7167     for (auto &Reduction : Legal->getReductionVars()) {
7168       NeedDef.insert(Reduction.first);
7169       NeedDef.insert(Reduction.second.getLoopExitInstr());
7170     }
7171   }
7172 
7173   // Collect instructions from the original loop that will become trivially dead
7174   // in the vectorized loop. We don't need to vectorize these instructions. For
7175   // example, original induction update instructions can become dead because we
7176   // separately emit induction "steps" when generating code for the new loop.
7177   // Similarly, we create a new latch condition when setting up the structure
7178   // of the new loop, so the old one can become dead.
7179   SmallPtrSet<Instruction *, 4> DeadInstructions;
7180   collectTriviallyDeadInstructions(DeadInstructions);
7181 
7182   // Add assume instructions we need to drop to DeadInstructions, to prevent
7183   // them from being added to the VPlan.
7184   // TODO: We only need to drop assumes in blocks that get flattend. If the
7185   // control flow is preserved, we should keep them.
7186   auto &ConditionalAssumes = Legal->getConditionalAssumes();
7187   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
7188 
7189   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7190   // Dead instructions do not need sinking. Remove them from SinkAfter.
7191   for (Instruction *I : DeadInstructions)
7192     SinkAfter.erase(I);
7193 
7194   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7195     VFRange SubRange = {VF, MaxVF + 1};
7196     VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef,
7197                                              DeadInstructions, SinkAfter));
7198     VF = SubRange.End;
7199   }
7200 }
7201 
7202 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7203     VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
7204     SmallPtrSetImpl<Instruction *> &DeadInstructions,
7205     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7206 
7207   // Hold a mapping from predicated instructions to their recipes, in order to
7208   // fix their AlsoPack behavior if a user is determined to replicate and use a
7209   // scalar instead of vector value.
7210   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7211 
7212   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7213 
7214   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
7215 
7216   // ---------------------------------------------------------------------------
7217   // Pre-construction: record ingredients whose recipes we'll need to further
7218   // process after constructing the initial VPlan.
7219   // ---------------------------------------------------------------------------
7220 
7221   // Mark instructions we'll need to sink later and their targets as
7222   // ingredients whose recipe we'll need to record.
7223   for (auto &Entry : SinkAfter) {
7224     RecipeBuilder.recordRecipeOf(Entry.first);
7225     RecipeBuilder.recordRecipeOf(Entry.second);
7226   }
7227 
7228   // For each interleave group which is relevant for this (possibly trimmed)
7229   // Range, add it to the set of groups to be later applied to the VPlan and add
7230   // placeholders for its members' Recipes which we'll be replacing with a
7231   // single VPInterleaveRecipe.
7232   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7233     auto applyIG = [IG, this](unsigned VF) -> bool {
7234       return (VF >= 2 && // Query is illegal for VF == 1
7235               CM.getWideningDecision(IG->getInsertPos(), VF) ==
7236                   LoopVectorizationCostModel::CM_Interleave);
7237     };
7238     if (!getDecisionAndClampRange(applyIG, Range))
7239       continue;
7240     InterleaveGroups.insert(IG);
7241     for (unsigned i = 0; i < IG->getFactor(); i++)
7242       if (Instruction *Member = IG->getMember(i))
7243         RecipeBuilder.recordRecipeOf(Member);
7244   };
7245 
7246   // ---------------------------------------------------------------------------
7247   // Build initial VPlan: Scan the body of the loop in a topological order to
7248   // visit each basic block after having visited its predecessor basic blocks.
7249   // ---------------------------------------------------------------------------
7250 
7251   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7252   auto Plan = std::make_unique<VPlan>();
7253   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7254   Plan->setEntry(VPBB);
7255 
7256   // Represent values that will have defs inside VPlan.
7257   for (Value *V : NeedDef)
7258     Plan->addVPValue(V);
7259 
7260   // Scan the body of the loop in a topological order to visit each basic block
7261   // after having visited its predecessor basic blocks.
7262   LoopBlocksDFS DFS(OrigLoop);
7263   DFS.perform(LI);
7264 
7265   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7266     // Relevant instructions from basic block BB will be grouped into VPRecipe
7267     // ingredients and fill a new VPBasicBlock.
7268     unsigned VPBBsForBB = 0;
7269     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7270     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7271     VPBB = FirstVPBBForBB;
7272     Builder.setInsertPoint(VPBB);
7273 
7274     // Introduce each ingredient into VPlan.
7275     // TODO: Model and preserve debug instrinsics in VPlan.
7276     for (Instruction &I : BB->instructionsWithoutDebug()) {
7277       Instruction *Instr = &I;
7278 
7279       // First filter out irrelevant instructions, to ensure no recipes are
7280       // built for them.
7281       if (isa<BranchInst>(Instr) ||
7282           DeadInstructions.find(Instr) != DeadInstructions.end())
7283         continue;
7284 
7285       if (auto Recipe =
7286               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
7287         RecipeBuilder.setRecipe(Instr, Recipe);
7288         VPBB->appendRecipe(Recipe);
7289         continue;
7290       }
7291 
7292       // Otherwise, if all widening options failed, Instruction is to be
7293       // replicated. This may create a successor for VPBB.
7294       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7295           Instr, Range, VPBB, PredInst2Recipe, Plan);
7296       if (NextVPBB != VPBB) {
7297         VPBB = NextVPBB;
7298         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7299                                     : "");
7300       }
7301     }
7302   }
7303 
7304   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7305   // may also be empty, such as the last one VPBB, reflecting original
7306   // basic-blocks with no recipes.
7307   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7308   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7309   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7310   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7311   delete PreEntry;
7312 
7313   // ---------------------------------------------------------------------------
7314   // Transform initial VPlan: Apply previously taken decisions, in order, to
7315   // bring the VPlan to its final state.
7316   // ---------------------------------------------------------------------------
7317 
7318   // Apply Sink-After legal constraints.
7319   for (auto &Entry : SinkAfter) {
7320     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7321     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7322     Sink->moveAfter(Target);
7323   }
7324 
7325   // Interleave memory: for each Interleave Group we marked earlier as relevant
7326   // for this VPlan, replace the Recipes widening its memory instructions with a
7327   // single VPInterleaveRecipe at its insertion point.
7328   for (auto IG : InterleaveGroups) {
7329     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7330         RecipeBuilder.getRecipe(IG->getInsertPos()));
7331     (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7332         ->insertBefore(Recipe);
7333 
7334     for (unsigned i = 0; i < IG->getFactor(); ++i)
7335       if (Instruction *Member = IG->getMember(i)) {
7336         RecipeBuilder.getRecipe(Member)->eraseFromParent();
7337       }
7338   }
7339 
7340   // Finally, if tail is folded by masking, introduce selects between the phi
7341   // and the live-out instruction of each reduction, at the end of the latch.
7342   if (CM.foldTailByMasking()) {
7343     Builder.setInsertPoint(VPBB);
7344     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7345     for (auto &Reduction : Legal->getReductionVars()) {
7346       VPValue *Phi = Plan->getVPValue(Reduction.first);
7347       VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr());
7348       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7349     }
7350   }
7351 
7352   std::string PlanName;
7353   raw_string_ostream RSO(PlanName);
7354   unsigned VF = Range.Start;
7355   Plan->addVF(VF);
7356   RSO << "Initial VPlan for VF={" << VF;
7357   for (VF *= 2; VF < Range.End; VF *= 2) {
7358     Plan->addVF(VF);
7359     RSO << "," << VF;
7360   }
7361   RSO << "},UF>=1";
7362   RSO.flush();
7363   Plan->setName(PlanName);
7364 
7365   return Plan;
7366 }
7367 
7368 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7369   // Outer loop handling: They may require CFG and instruction level
7370   // transformations before even evaluating whether vectorization is profitable.
7371   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7372   // the vectorization pipeline.
7373   assert(!OrigLoop->empty());
7374   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7375 
7376   // Create new empty VPlan
7377   auto Plan = std::make_unique<VPlan>();
7378 
7379   // Build hierarchical CFG
7380   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7381   HCFGBuilder.buildHierarchicalCFG();
7382 
7383   for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
7384     Plan->addVF(VF);
7385 
7386   if (EnableVPlanPredication) {
7387     VPlanPredicator VPP(*Plan);
7388     VPP.predicate();
7389 
7390     // Avoid running transformation to recipes until masked code generation in
7391     // VPlan-native path is in place.
7392     return Plan;
7393   }
7394 
7395   SmallPtrSet<Instruction *, 1> DeadInstructions;
7396   VPlanTransforms::VPInstructionsToVPRecipes(
7397       OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7398   return Plan;
7399 }
7400 
7401 Value* LoopVectorizationPlanner::VPCallbackILV::
7402 getOrCreateVectorValues(Value *V, unsigned Part) {
7403       return ILV.getOrCreateVectorValue(V, Part);
7404 }
7405 
7406 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7407     Value *V, const VPIteration &Instance) {
7408   return ILV.getOrCreateScalarValue(V, Instance);
7409 }
7410 
7411 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
7412                                VPSlotTracker &SlotTracker) const {
7413   O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7414   IG->getInsertPos()->printAsOperand(O, false);
7415   O << ", ";
7416   getAddr()->printAsOperand(O, SlotTracker);
7417   VPValue *Mask = getMask();
7418   if (Mask) {
7419     O << ", ";
7420     Mask->printAsOperand(O, SlotTracker);
7421   }
7422   for (unsigned i = 0; i < IG->getFactor(); ++i)
7423     if (Instruction *I = IG->getMember(i))
7424       O << "\\l\" +\n" << Indent << "\"  " << VPlanIngredient(I) << " " << i;
7425 }
7426 
7427 void VPWidenCallRecipe::execute(VPTransformState &State) {
7428   State.ILV->widenCallInstruction(Ingredient, User, State);
7429 }
7430 
7431 void VPWidenSelectRecipe::execute(VPTransformState &State) {
7432   State.ILV->widenSelectInstruction(Ingredient, InvariantCond);
7433 }
7434 
7435 void VPWidenRecipe::execute(VPTransformState &State) {
7436   State.ILV->widenInstruction(Ingredient, User, State);
7437 }
7438 
7439 void VPWidenGEPRecipe::execute(VPTransformState &State) {
7440   State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant,
7441                       IsIndexLoopInvariant);
7442 }
7443 
7444 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
7445   assert(!State.Instance && "Int or FP induction being replicated.");
7446   State.ILV->widenIntOrFpInduction(IV, Trunc);
7447 }
7448 
7449 void VPWidenPHIRecipe::execute(VPTransformState &State) {
7450   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
7451 }
7452 
7453 void VPBlendRecipe::execute(VPTransformState &State) {
7454   State.ILV->setDebugLocFromInst(State.Builder, Phi);
7455   // We know that all PHIs in non-header blocks are converted into
7456   // selects, so we don't have to worry about the insertion order and we
7457   // can just use the builder.
7458   // At this point we generate the predication tree. There may be
7459   // duplications since this is a simple recursive scan, but future
7460   // optimizations will clean it up.
7461 
7462   unsigned NumIncoming = getNumIncomingValues();
7463 
7464   // Generate a sequence of selects of the form:
7465   // SELECT(Mask3, In3,
7466   //        SELECT(Mask2, In2,
7467   //               SELECT(Mask1, In1,
7468   //                      In0)))
7469   // Note that Mask0 is never used: lanes for which no path reaches this phi and
7470   // are essentially undef are taken from In0.
7471   InnerLoopVectorizer::VectorParts Entry(State.UF);
7472   for (unsigned In = 0; In < NumIncoming; ++In) {
7473     for (unsigned Part = 0; Part < State.UF; ++Part) {
7474       // We might have single edge PHIs (blocks) - use an identity
7475       // 'select' for the first PHI operand.
7476       Value *In0 = State.get(getIncomingValue(In), Part);
7477       if (In == 0)
7478         Entry[Part] = In0; // Initialize with the first incoming value.
7479       else {
7480         // Select between the current value and the previous incoming edge
7481         // based on the incoming mask.
7482         Value *Cond = State.get(getMask(In), Part);
7483         Entry[Part] =
7484             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
7485       }
7486     }
7487   }
7488   for (unsigned Part = 0; Part < State.UF; ++Part)
7489     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
7490 }
7491 
7492 void VPInterleaveRecipe::execute(VPTransformState &State) {
7493   assert(!State.Instance && "Interleave group being replicated.");
7494   State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask());
7495 }
7496 
7497 void VPReplicateRecipe::execute(VPTransformState &State) {
7498   if (State.Instance) { // Generate a single instance.
7499     State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance,
7500                                     IsPredicated, State);
7501     // Insert scalar instance packing it into a vector.
7502     if (AlsoPack && State.VF > 1) {
7503       // If we're constructing lane 0, initialize to start from undef.
7504       if (State.Instance->Lane == 0) {
7505         Value *Undef =
7506             UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
7507         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
7508       }
7509       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
7510     }
7511     return;
7512   }
7513 
7514   // Generate scalar instances for all VF lanes of all UF parts, unless the
7515   // instruction is uniform inwhich case generate only the first lane for each
7516   // of the UF parts.
7517   unsigned EndLane = IsUniform ? 1 : State.VF;
7518   for (unsigned Part = 0; Part < State.UF; ++Part)
7519     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
7520       State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane},
7521                                       IsPredicated, State);
7522 }
7523 
7524 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
7525   assert(State.Instance && "Branch on Mask works only on single instance.");
7526 
7527   unsigned Part = State.Instance->Part;
7528   unsigned Lane = State.Instance->Lane;
7529 
7530   Value *ConditionBit = nullptr;
7531   VPValue *BlockInMask = getMask();
7532   if (BlockInMask) {
7533     ConditionBit = State.get(BlockInMask, Part);
7534     if (ConditionBit->getType()->isVectorTy())
7535       ConditionBit = State.Builder.CreateExtractElement(
7536           ConditionBit, State.Builder.getInt32(Lane));
7537   } else // Block in mask is all-one.
7538     ConditionBit = State.Builder.getTrue();
7539 
7540   // Replace the temporary unreachable terminator with a new conditional branch,
7541   // whose two destinations will be set later when they are created.
7542   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
7543   assert(isa<UnreachableInst>(CurrentTerminator) &&
7544          "Expected to replace unreachable terminator with conditional branch.");
7545   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
7546   CondBr->setSuccessor(0, nullptr);
7547   ReplaceInstWithInst(CurrentTerminator, CondBr);
7548 }
7549 
7550 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
7551   assert(State.Instance && "Predicated instruction PHI works per instance.");
7552   Instruction *ScalarPredInst = cast<Instruction>(
7553       State.ValueMap.getScalarValue(PredInst, *State.Instance));
7554   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
7555   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
7556   assert(PredicatingBB && "Predicated block has no single predecessor.");
7557 
7558   // By current pack/unpack logic we need to generate only a single phi node: if
7559   // a vector value for the predicated instruction exists at this point it means
7560   // the instruction has vector users only, and a phi for the vector value is
7561   // needed. In this case the recipe of the predicated instruction is marked to
7562   // also do that packing, thereby "hoisting" the insert-element sequence.
7563   // Otherwise, a phi node for the scalar value is needed.
7564   unsigned Part = State.Instance->Part;
7565   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
7566     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
7567     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
7568     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
7569     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
7570     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
7571     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
7572   } else {
7573     Type *PredInstType = PredInst->getType();
7574     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
7575     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
7576     Phi->addIncoming(ScalarPredInst, PredicatedBB);
7577     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
7578   }
7579 }
7580 
7581 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
7582   VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr;
7583   State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue,
7584                                         getMask());
7585 }
7586 
7587 // Determine how to lower the scalar epilogue, which depends on 1) optimising
7588 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
7589 // predication, and 4) a TTI hook that analyses whether the loop is suitable
7590 // for predication.
7591 static ScalarEpilogueLowering getScalarEpilogueLowering(
7592     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
7593     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
7594     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
7595     LoopVectorizationLegality &LVL) {
7596   bool OptSize =
7597       F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
7598                                                      PGSOQueryType::IRPass);
7599   // 1) OptSize takes precedence over all other options, i.e. if this is set,
7600   // don't look at hints or options, and don't request a scalar epilogue.
7601   if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled)
7602     return CM_ScalarEpilogueNotAllowedOptSize;
7603 
7604   bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() &&
7605                               !PreferPredicateOverEpilog;
7606 
7607   // 2) Next, if disabling predication is requested on the command line, honour
7608   // this and request a scalar epilogue.
7609   if (PredicateOptDisabled)
7610     return CM_ScalarEpilogueAllowed;
7611 
7612   // 3) and 4) look if enabling predication is requested on the command line,
7613   // with a loop hint, or if the TTI hook indicates this is profitable, request
7614   // predication .
7615   if (PreferPredicateOverEpilog ||
7616       Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
7617       (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
7618                                         LVL.getLAI()) &&
7619        Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
7620     return CM_ScalarEpilogueNotNeededUsePredicate;
7621 
7622   return CM_ScalarEpilogueAllowed;
7623 }
7624 
7625 // Process the loop in the VPlan-native vectorization path. This path builds
7626 // VPlan upfront in the vectorization pipeline, which allows to apply
7627 // VPlan-to-VPlan transformations from the very beginning without modifying the
7628 // input LLVM IR.
7629 static bool processLoopInVPlanNativePath(
7630     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
7631     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
7632     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
7633     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
7634     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
7635 
7636   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
7637   Function *F = L->getHeader()->getParent();
7638   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
7639 
7640   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7641       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
7642 
7643   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
7644                                 &Hints, IAI);
7645   // Use the planner for outer loop vectorization.
7646   // TODO: CM is not used at this point inside the planner. Turn CM into an
7647   // optional argument if we don't need it in the future.
7648   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
7649 
7650   // Get user vectorization factor.
7651   const unsigned UserVF = Hints.getWidth();
7652 
7653   // Plan how to best vectorize, return the best VF and its cost.
7654   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
7655 
7656   // If we are stress testing VPlan builds, do not attempt to generate vector
7657   // code. Masked vector code generation support will follow soon.
7658   // Also, do not attempt to vectorize if no vector code will be produced.
7659   if (VPlanBuildStressTest || EnableVPlanPredication ||
7660       VectorizationFactor::Disabled() == VF)
7661     return false;
7662 
7663   LVP.setBestPlan(VF.Width, 1);
7664 
7665   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
7666                          &CM);
7667   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
7668                     << L->getHeader()->getParent()->getName() << "\"\n");
7669   LVP.executePlan(LB, DT);
7670 
7671   // Mark the loop as already vectorized to avoid vectorizing again.
7672   Hints.setAlreadyVectorized();
7673 
7674   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
7675   return true;
7676 }
7677 
7678 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
7679     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
7680                                !EnableLoopInterleaving),
7681       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
7682                               !EnableLoopVectorization) {}
7683 
7684 bool LoopVectorizePass::processLoop(Loop *L) {
7685   assert((EnableVPlanNativePath || L->empty()) &&
7686          "VPlan-native path is not enabled. Only process inner loops.");
7687 
7688 #ifndef NDEBUG
7689   const std::string DebugLocStr = getDebugLocString(L);
7690 #endif /* NDEBUG */
7691 
7692   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
7693                     << L->getHeader()->getParent()->getName() << "\" from "
7694                     << DebugLocStr << "\n");
7695 
7696   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
7697 
7698   LLVM_DEBUG(
7699       dbgs() << "LV: Loop hints:"
7700              << " force="
7701              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7702                      ? "disabled"
7703                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7704                             ? "enabled"
7705                             : "?"))
7706              << " width=" << Hints.getWidth()
7707              << " unroll=" << Hints.getInterleave() << "\n");
7708 
7709   // Function containing loop
7710   Function *F = L->getHeader()->getParent();
7711 
7712   // Looking at the diagnostic output is the only way to determine if a loop
7713   // was vectorized (other than looking at the IR or machine code), so it
7714   // is important to generate an optimization remark for each loop. Most of
7715   // these messages are generated as OptimizationRemarkAnalysis. Remarks
7716   // generated as OptimizationRemark and OptimizationRemarkMissed are
7717   // less verbose reporting vectorized loops and unvectorized loops that may
7718   // benefit from vectorization, respectively.
7719 
7720   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
7721     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7722     return false;
7723   }
7724 
7725   PredicatedScalarEvolution PSE(*SE, *L);
7726 
7727   // Check if it is legal to vectorize the loop.
7728   LoopVectorizationRequirements Requirements(*ORE);
7729   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
7730                                 &Requirements, &Hints, DB, AC);
7731   if (!LVL.canVectorize(EnableVPlanNativePath)) {
7732     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7733     Hints.emitRemarkWithHints();
7734     return false;
7735   }
7736 
7737   // Check the function attributes and profiles to find out if this function
7738   // should be optimized for size.
7739   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7740       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
7741 
7742   // Entrance to the VPlan-native vectorization path. Outer loops are processed
7743   // here. They may require CFG and instruction level transformations before
7744   // even evaluating whether vectorization is profitable. Since we cannot modify
7745   // the incoming IR, we need to build VPlan upfront in the vectorization
7746   // pipeline.
7747   if (!L->empty())
7748     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
7749                                         ORE, BFI, PSI, Hints);
7750 
7751   assert(L->empty() && "Inner loop expected.");
7752 
7753   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
7754   // count by optimizing for size, to minimize overheads.
7755   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
7756   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
7757     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7758                       << "This loop is worth vectorizing only if no scalar "
7759                       << "iteration overheads are incurred.");
7760     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7761       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7762     else {
7763       LLVM_DEBUG(dbgs() << "\n");
7764       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
7765     }
7766   }
7767 
7768   // Check the function attributes to see if implicit floats are allowed.
7769   // FIXME: This check doesn't seem possibly correct -- what if the loop is
7770   // an integer loop and the vector instructions selected are purely integer
7771   // vector instructions?
7772   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7773     reportVectorizationFailure(
7774         "Can't vectorize when the NoImplicitFloat attribute is used",
7775         "loop not vectorized due to NoImplicitFloat attribute",
7776         "NoImplicitFloat", ORE, L);
7777     Hints.emitRemarkWithHints();
7778     return false;
7779   }
7780 
7781   // Check if the target supports potentially unsafe FP vectorization.
7782   // FIXME: Add a check for the type of safety issue (denormal, signaling)
7783   // for the target we're vectorizing for, to make sure none of the
7784   // additional fp-math flags can help.
7785   if (Hints.isPotentiallyUnsafe() &&
7786       TTI->isFPVectorizationPotentiallyUnsafe()) {
7787     reportVectorizationFailure(
7788         "Potentially unsafe FP op prevents vectorization",
7789         "loop not vectorized due to unsafe FP support.",
7790         "UnsafeFP", ORE, L);
7791     Hints.emitRemarkWithHints();
7792     return false;
7793   }
7794 
7795   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
7796   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
7797 
7798   // If an override option has been passed in for interleaved accesses, use it.
7799   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
7800     UseInterleaved = EnableInterleavedMemAccesses;
7801 
7802   // Analyze interleaved memory accesses.
7803   if (UseInterleaved) {
7804     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
7805   }
7806 
7807   // Use the cost model.
7808   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
7809                                 F, &Hints, IAI);
7810   CM.collectValuesToIgnore();
7811 
7812   // Use the planner for vectorization.
7813   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
7814 
7815   // Get user vectorization factor and interleave count.
7816   unsigned UserVF = Hints.getWidth();
7817   unsigned UserIC = Hints.getInterleave();
7818 
7819   // Plan how to best vectorize, return the best VF and its cost.
7820   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
7821 
7822   VectorizationFactor VF = VectorizationFactor::Disabled();
7823   unsigned IC = 1;
7824 
7825   if (MaybeVF) {
7826     VF = *MaybeVF;
7827     // Select the interleave count.
7828     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
7829   }
7830 
7831   // Identify the diagnostic messages that should be produced.
7832   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7833   bool VectorizeLoop = true, InterleaveLoop = true;
7834   if (Requirements.doesNotMeet(F, L, Hints)) {
7835     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7836                          "requirements.\n");
7837     Hints.emitRemarkWithHints();
7838     return false;
7839   }
7840 
7841   if (VF.Width == 1) {
7842     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7843     VecDiagMsg = std::make_pair(
7844         "VectorizationNotBeneficial",
7845         "the cost-model indicates that vectorization is not beneficial");
7846     VectorizeLoop = false;
7847   }
7848 
7849   if (!MaybeVF && UserIC > 1) {
7850     // Tell the user interleaving was avoided up-front, despite being explicitly
7851     // requested.
7852     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
7853                          "interleaving should be avoided up front\n");
7854     IntDiagMsg = std::make_pair(
7855         "InterleavingAvoided",
7856         "Ignoring UserIC, because interleaving was avoided up front");
7857     InterleaveLoop = false;
7858   } else if (IC == 1 && UserIC <= 1) {
7859     // Tell the user interleaving is not beneficial.
7860     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7861     IntDiagMsg = std::make_pair(
7862         "InterleavingNotBeneficial",
7863         "the cost-model indicates that interleaving is not beneficial");
7864     InterleaveLoop = false;
7865     if (UserIC == 1) {
7866       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7867       IntDiagMsg.second +=
7868           " and is explicitly disabled or interleave count is set to 1";
7869     }
7870   } else if (IC > 1 && UserIC == 1) {
7871     // Tell the user interleaving is beneficial, but it explicitly disabled.
7872     LLVM_DEBUG(
7873         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
7874     IntDiagMsg = std::make_pair(
7875         "InterleavingBeneficialButDisabled",
7876         "the cost-model indicates that interleaving is beneficial "
7877         "but is explicitly disabled or interleave count is set to 1");
7878     InterleaveLoop = false;
7879   }
7880 
7881   // Override IC if user provided an interleave count.
7882   IC = UserIC > 0 ? UserIC : IC;
7883 
7884   // Emit diagnostic messages, if any.
7885   const char *VAPassName = Hints.vectorizeAnalysisPassName();
7886   if (!VectorizeLoop && !InterleaveLoop) {
7887     // Do not vectorize or interleaving the loop.
7888     ORE->emit([&]() {
7889       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7890                                       L->getStartLoc(), L->getHeader())
7891              << VecDiagMsg.second;
7892     });
7893     ORE->emit([&]() {
7894       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7895                                       L->getStartLoc(), L->getHeader())
7896              << IntDiagMsg.second;
7897     });
7898     return false;
7899   } else if (!VectorizeLoop && InterleaveLoop) {
7900     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7901     ORE->emit([&]() {
7902       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7903                                         L->getStartLoc(), L->getHeader())
7904              << VecDiagMsg.second;
7905     });
7906   } else if (VectorizeLoop && !InterleaveLoop) {
7907     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7908                       << ") in " << DebugLocStr << '\n');
7909     ORE->emit([&]() {
7910       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7911                                         L->getStartLoc(), L->getHeader())
7912              << IntDiagMsg.second;
7913     });
7914   } else if (VectorizeLoop && InterleaveLoop) {
7915     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7916                       << ") in " << DebugLocStr << '\n');
7917     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7918   }
7919 
7920   LVP.setBestPlan(VF.Width, IC);
7921 
7922   using namespace ore;
7923   bool DisableRuntimeUnroll = false;
7924   MDNode *OrigLoopID = L->getLoopID();
7925 
7926   if (!VectorizeLoop) {
7927     assert(IC > 1 && "interleave count should not be 1 or 0");
7928     // If we decided that it is not legal to vectorize the loop, then
7929     // interleave it.
7930     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7931                                &CM);
7932     LVP.executePlan(Unroller, DT);
7933 
7934     ORE->emit([&]() {
7935       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7936                                 L->getHeader())
7937              << "interleaved loop (interleaved count: "
7938              << NV("InterleaveCount", IC) << ")";
7939     });
7940   } else {
7941     // If we decided that it is *legal* to vectorize the loop, then do it.
7942     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7943                            &LVL, &CM);
7944     LVP.executePlan(LB, DT);
7945     ++LoopsVectorized;
7946 
7947     // Add metadata to disable runtime unrolling a scalar loop when there are
7948     // no runtime checks about strides and memory. A scalar loop that is
7949     // rarely used is not worth unrolling.
7950     if (!LB.areSafetyChecksAdded())
7951       DisableRuntimeUnroll = true;
7952 
7953     // Report the vectorization decision.
7954     ORE->emit([&]() {
7955       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7956                                 L->getHeader())
7957              << "vectorized loop (vectorization width: "
7958              << NV("VectorizationFactor", VF.Width)
7959              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
7960     });
7961   }
7962 
7963   Optional<MDNode *> RemainderLoopID =
7964       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7965                                       LLVMLoopVectorizeFollowupEpilogue});
7966   if (RemainderLoopID.hasValue()) {
7967     L->setLoopID(RemainderLoopID.getValue());
7968   } else {
7969     if (DisableRuntimeUnroll)
7970       AddRuntimeUnrollDisableMetaData(L);
7971 
7972     // Mark the loop as already vectorized to avoid vectorizing again.
7973     Hints.setAlreadyVectorized();
7974   }
7975 
7976   assert(!verifyFunction(*L->getHeader()->getParent()));
7977   return true;
7978 }
7979 
7980 LoopVectorizeResult LoopVectorizePass::runImpl(
7981     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
7982     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
7983     DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
7984     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
7985     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
7986   SE = &SE_;
7987   LI = &LI_;
7988   TTI = &TTI_;
7989   DT = &DT_;
7990   BFI = &BFI_;
7991   TLI = TLI_;
7992   AA = &AA_;
7993   AC = &AC_;
7994   GetLAA = &GetLAA_;
7995   DB = &DB_;
7996   ORE = &ORE_;
7997   PSI = PSI_;
7998 
7999   // Don't attempt if
8000   // 1. the target claims to have no vector registers, and
8001   // 2. interleaving won't help ILP.
8002   //
8003   // The second condition is necessary because, even if the target has no
8004   // vector registers, loop vectorization may still enable scalar
8005   // interleaving.
8006   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
8007       TTI->getMaxInterleaveFactor(1) < 2)
8008     return LoopVectorizeResult(false, false);
8009 
8010   bool Changed = false, CFGChanged = false;
8011 
8012   // The vectorizer requires loops to be in simplified form.
8013   // Since simplification may add new inner loops, it has to run before the
8014   // legality and profitability checks. This means running the loop vectorizer
8015   // will simplify all loops, regardless of whether anything end up being
8016   // vectorized.
8017   for (auto &L : *LI)
8018     Changed |= CFGChanged |=
8019         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
8020 
8021   // Build up a worklist of inner-loops to vectorize. This is necessary as
8022   // the act of vectorizing or partially unrolling a loop creates new loops
8023   // and can invalidate iterators across the loops.
8024   SmallVector<Loop *, 8> Worklist;
8025 
8026   for (Loop *L : *LI)
8027     collectSupportedLoops(*L, LI, ORE, Worklist);
8028 
8029   LoopsAnalyzed += Worklist.size();
8030 
8031   // Now walk the identified inner loops.
8032   while (!Worklist.empty()) {
8033     Loop *L = Worklist.pop_back_val();
8034 
8035     // For the inner loops we actually process, form LCSSA to simplify the
8036     // transform.
8037     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8038 
8039     Changed |= CFGChanged |= processLoop(L);
8040   }
8041 
8042   // Process each loop nest in the function.
8043   return LoopVectorizeResult(Changed, CFGChanged);
8044 }
8045 
8046 PreservedAnalyses LoopVectorizePass::run(Function &F,
8047                                          FunctionAnalysisManager &AM) {
8048     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8049     auto &LI = AM.getResult<LoopAnalysis>(F);
8050     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8051     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8052     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8053     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8054     auto &AA = AM.getResult<AAManager>(F);
8055     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8056     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8057     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8058     MemorySSA *MSSA = EnableMSSALoopDependency
8059                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
8060                           : nullptr;
8061 
8062     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8063     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8064         [&](Loop &L) -> const LoopAccessInfo & {
8065       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
8066       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8067     };
8068     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
8069     ProfileSummaryInfo *PSI =
8070         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
8071     LoopVectorizeResult Result =
8072         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
8073     if (!Result.MadeAnyChange)
8074       return PreservedAnalyses::all();
8075     PreservedAnalyses PA;
8076 
8077     // We currently do not preserve loopinfo/dominator analyses with outer loop
8078     // vectorization. Until this is addressed, mark these analyses as preserved
8079     // only for non-VPlan-native path.
8080     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
8081     if (!EnableVPlanNativePath) {
8082       PA.preserve<LoopAnalysis>();
8083       PA.preserve<DominatorTreeAnalysis>();
8084     }
8085     PA.preserve<BasicAA>();
8086     PA.preserve<GlobalsAA>();
8087     if (!Result.MadeCFGChange)
8088       PA.preserveSet<CFGAnalyses>();
8089     return PA;
8090 }
8091