1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/Analysis/AliasAnalysis.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/DemandedBits.h" 66 #include "llvm/Analysis/GlobalsModRef.h" 67 #include "llvm/Analysis/LoopAccessAnalysis.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/LoopIterator.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/TargetTransformInfo.h" 75 #include "llvm/Analysis/ValueTracking.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfo.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/DiagnosticInfo.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Module.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/IR/Verifier.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/Scalar.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include "llvm/Transforms/Utils/LoopVersioning.h" 102 #include "llvm/Analysis/VectorUtils.h" 103 #include "llvm/Transforms/Utils/LoopUtils.h" 104 #include <algorithm> 105 #include <functional> 106 #include <map> 107 #include <tuple> 108 109 using namespace llvm; 110 using namespace llvm::PatternMatch; 111 112 #define LV_NAME "loop-vectorize" 113 #define DEBUG_TYPE LV_NAME 114 115 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 116 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 117 118 static cl::opt<bool> 119 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 120 cl::desc("Enable if-conversion during vectorization.")); 121 122 /// We don't vectorize loops with a known constant trip count below this number. 123 static cl::opt<unsigned> 124 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 125 cl::Hidden, 126 cl::desc("Don't vectorize loops with a constant " 127 "trip count that is smaller than this " 128 "value.")); 129 130 static cl::opt<bool> MaximizeBandwidth( 131 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 132 cl::desc("Maximize bandwidth when selecting vectorization factor which " 133 "will be determined by the smallest type in loop.")); 134 135 /// This enables versioning on the strides of symbolically striding memory 136 /// accesses in code like the following. 137 /// for (i = 0; i < N; ++i) 138 /// A[i * Stride1] += B[i * Stride2] ... 139 /// 140 /// Will be roughly translated to 141 /// if (Stride1 == 1 && Stride2 == 1) { 142 /// for (i = 0; i < N; i+=4) 143 /// A[i:i+3] += ... 144 /// } else 145 /// ... 146 static cl::opt<bool> EnableMemAccessVersioning( 147 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 148 cl::desc("Enable symbolic stride memory access versioning")); 149 150 static cl::opt<bool> EnableInterleavedMemAccesses( 151 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 152 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 153 154 /// Maximum factor for an interleaved memory access. 155 static cl::opt<unsigned> MaxInterleaveGroupFactor( 156 "max-interleave-group-factor", cl::Hidden, 157 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 158 cl::init(8)); 159 160 /// We don't interleave loops with a known constant trip count below this 161 /// number. 162 static const unsigned TinyTripCountInterleaveThreshold = 128; 163 164 static cl::opt<unsigned> ForceTargetNumScalarRegs( 165 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's number of scalar registers.")); 167 168 static cl::opt<unsigned> ForceTargetNumVectorRegs( 169 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 170 cl::desc("A flag that overrides the target's number of vector registers.")); 171 172 /// Maximum vectorization interleave count. 173 static const unsigned MaxInterleaveFactor = 16; 174 175 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 176 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's max interleave factor for " 178 "scalar loops.")); 179 180 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 181 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 182 cl::desc("A flag that overrides the target's max interleave factor for " 183 "vectorized loops.")); 184 185 static cl::opt<unsigned> ForceTargetInstructionCost( 186 "force-target-instruction-cost", cl::init(0), cl::Hidden, 187 cl::desc("A flag that overrides the target's expected cost for " 188 "an instruction to a single constant value. Mostly " 189 "useful for getting consistent testing.")); 190 191 static cl::opt<unsigned> SmallLoopCost( 192 "small-loop-cost", cl::init(20), cl::Hidden, 193 cl::desc( 194 "The cost of a loop that is considered 'small' by the interleaver.")); 195 196 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 197 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 198 cl::desc("Enable the use of the block frequency analysis to access PGO " 199 "heuristics minimizing code growth in cold regions and being more " 200 "aggressive in hot regions.")); 201 202 // Runtime interleave loops for load/store throughput. 203 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 204 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 205 cl::desc( 206 "Enable runtime interleaving until load/store ports are saturated")); 207 208 /// The number of stores in a loop that are allowed to need predication. 209 static cl::opt<unsigned> NumberOfStoresToPredicate( 210 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 211 cl::desc("Max number of stores to be predicated behind an if.")); 212 213 static cl::opt<bool> EnableIndVarRegisterHeur( 214 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 215 cl::desc("Count the induction variable only once when interleaving")); 216 217 static cl::opt<bool> EnableCondStoresVectorization( 218 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 219 cl::desc("Enable if predication of stores during vectorization.")); 220 221 static cl::opt<unsigned> MaxNestedScalarReductionIC( 222 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 223 cl::desc("The maximum interleave count to use when interleaving a scalar " 224 "reduction in a nested loop.")); 225 226 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 227 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 228 cl::desc("The maximum allowed number of runtime memory checks with a " 229 "vectorize(enable) pragma.")); 230 231 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 232 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 233 cl::desc("The maximum number of SCEV checks allowed.")); 234 235 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 236 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 237 cl::desc("The maximum number of SCEV checks allowed with a " 238 "vectorize(enable) pragma")); 239 240 namespace { 241 242 // Forward declarations. 243 class LoopVectorizeHints; 244 class LoopVectorizationLegality; 245 class LoopVectorizationCostModel; 246 class LoopVectorizationRequirements; 247 248 /// \brief This modifies LoopAccessReport to initialize message with 249 /// loop-vectorizer-specific part. 250 class VectorizationReport : public LoopAccessReport { 251 public: 252 VectorizationReport(Instruction *I = nullptr) 253 : LoopAccessReport("loop not vectorized: ", I) {} 254 255 /// \brief This allows promotion of the loop-access analysis report into the 256 /// loop-vectorizer report. It modifies the message to add the 257 /// loop-vectorizer-specific part of the message. 258 explicit VectorizationReport(const LoopAccessReport &R) 259 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 260 R.getInstr()) {} 261 }; 262 263 /// A helper function for converting Scalar types to vector types. 264 /// If the incoming type is void, we return void. If the VF is 1, we return 265 /// the scalar type. 266 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 267 if (Scalar->isVoidTy() || VF == 1) 268 return Scalar; 269 return VectorType::get(Scalar, VF); 270 } 271 272 /// A helper function that returns GEP instruction and knows to skip a 273 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 274 /// pointee types of the 'bitcast' have the same size. 275 /// For example: 276 /// bitcast double** %var to i64* - can be skipped 277 /// bitcast double** %var to i8* - can not 278 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 279 280 if (isa<GetElementPtrInst>(Ptr)) 281 return cast<GetElementPtrInst>(Ptr); 282 283 if (isa<BitCastInst>(Ptr) && 284 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 285 Type *BitcastTy = Ptr->getType(); 286 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 287 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 288 return nullptr; 289 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 290 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 291 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 292 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 293 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 294 } 295 return nullptr; 296 } 297 298 /// InnerLoopVectorizer vectorizes loops which contain only one basic 299 /// block to a specified vectorization factor (VF). 300 /// This class performs the widening of scalars into vectors, or multiple 301 /// scalars. This class also implements the following features: 302 /// * It inserts an epilogue loop for handling loops that don't have iteration 303 /// counts that are known to be a multiple of the vectorization factor. 304 /// * It handles the code generation for reduction variables. 305 /// * Scalarization (implementation using scalars) of un-vectorizable 306 /// instructions. 307 /// InnerLoopVectorizer does not perform any vectorization-legality 308 /// checks, and relies on the caller to check for the different legality 309 /// aspects. The InnerLoopVectorizer relies on the 310 /// LoopVectorizationLegality class to provide information about the induction 311 /// and reduction variables that were found to a given vectorization factor. 312 class InnerLoopVectorizer { 313 public: 314 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 315 LoopInfo *LI, DominatorTree *DT, 316 const TargetLibraryInfo *TLI, 317 const TargetTransformInfo *TTI, AssumptionCache *AC, 318 unsigned VecWidth, unsigned UnrollFactor) 319 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 320 AC(AC), VF(VecWidth), UF(UnrollFactor), 321 Builder(PSE.getSE()->getContext()), Induction(nullptr), 322 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 323 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 324 325 // Perform the actual loop widening (vectorization). 326 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 327 // can be validly truncated to. The cost model has assumed this truncation 328 // will happen when vectorizing. 329 void vectorize(LoopVectorizationLegality *L, 330 MapVector<Instruction*,uint64_t> MinimumBitWidths) { 331 MinBWs = MinimumBitWidths; 332 Legal = L; 333 // Create a new empty loop. Unlink the old loop and connect the new one. 334 createEmptyLoop(); 335 // Widen each instruction in the old loop to a new one in the new loop. 336 // Use the Legality module to find the induction and reduction variables. 337 vectorizeLoop(); 338 } 339 340 // Return true if any runtime check is added. 341 bool IsSafetyChecksAdded() { 342 return AddedSafetyChecks; 343 } 344 345 virtual ~InnerLoopVectorizer() {} 346 347 protected: 348 /// A small list of PHINodes. 349 typedef SmallVector<PHINode*, 4> PhiVector; 350 /// When we unroll loops we have multiple vector values for each scalar. 351 /// This data structure holds the unrolled and vectorized values that 352 /// originated from one scalar instruction. 353 typedef SmallVector<Value*, 2> VectorParts; 354 355 // When we if-convert we need to create edge masks. We have to cache values 356 // so that we don't end up with exponential recursion/IR. 357 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 358 VectorParts> EdgeMaskCache; 359 360 /// Create an empty loop, based on the loop ranges of the old loop. 361 void createEmptyLoop(); 362 /// Create a new induction variable inside L. 363 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 364 Value *Step, Instruction *DL); 365 /// Copy and widen the instructions from the old loop. 366 virtual void vectorizeLoop(); 367 368 /// Fix a first-order recurrence. This is the second phase of vectorizing 369 /// this phi node. 370 void fixFirstOrderRecurrence(PHINode *Phi); 371 372 /// \brief The Loop exit block may have single value PHI nodes where the 373 /// incoming value is 'Undef'. While vectorizing we only handled real values 374 /// that were defined inside the loop. Here we fix the 'undef case'. 375 /// See PR14725. 376 void fixLCSSAPHIs(); 377 378 /// Shrinks vector element sizes based on information in "MinBWs". 379 void truncateToMinimalBitwidths(); 380 381 /// A helper function that computes the predicate of the block BB, assuming 382 /// that the header block of the loop is set to True. It returns the *entry* 383 /// mask for the block BB. 384 VectorParts createBlockInMask(BasicBlock *BB); 385 /// A helper function that computes the predicate of the edge between SRC 386 /// and DST. 387 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 388 389 /// A helper function to vectorize a single BB within the innermost loop. 390 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 391 392 /// Vectorize a single PHINode in a block. This method handles the induction 393 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 394 /// arbitrary length vectors. 395 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 396 unsigned UF, unsigned VF, PhiVector *PV); 397 398 /// Insert the new loop to the loop hierarchy and pass manager 399 /// and update the analysis passes. 400 void updateAnalysis(); 401 402 /// This instruction is un-vectorizable. Implement it as a sequence 403 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 404 /// scalarized instruction behind an if block predicated on the control 405 /// dependence of the instruction. 406 virtual void scalarizeInstruction(Instruction *Instr, 407 bool IfPredicateStore=false); 408 409 /// Vectorize Load and Store instructions, 410 virtual void vectorizeMemoryInstruction(Instruction *Instr); 411 412 /// Create a broadcast instruction. This method generates a broadcast 413 /// instruction (shuffle) for loop invariant values and for the induction 414 /// value. If this is the induction variable then we extend it to N, N+1, ... 415 /// this is needed because each iteration in the loop corresponds to a SIMD 416 /// element. 417 virtual Value *getBroadcastInstrs(Value *V); 418 419 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 420 /// to each vector element of Val. The sequence starts at StartIndex. 421 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 422 423 /// When we go over instructions in the basic block we rely on previous 424 /// values within the current basic block or on loop invariant values. 425 /// When we widen (vectorize) values we place them in the map. If the values 426 /// are not within the map, they have to be loop invariant, so we simply 427 /// broadcast them into a vector. 428 VectorParts &getVectorValue(Value *V); 429 430 /// Try to vectorize the interleaved access group that \p Instr belongs to. 431 void vectorizeInterleaveGroup(Instruction *Instr); 432 433 /// Generate a shuffle sequence that will reverse the vector Vec. 434 virtual Value *reverseVector(Value *Vec); 435 436 /// Returns (and creates if needed) the original loop trip count. 437 Value *getOrCreateTripCount(Loop *NewLoop); 438 439 /// Returns (and creates if needed) the trip count of the widened loop. 440 Value *getOrCreateVectorTripCount(Loop *NewLoop); 441 442 /// Emit a bypass check to see if the trip count would overflow, or we 443 /// wouldn't have enough iterations to execute one vector loop. 444 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 445 /// Emit a bypass check to see if the vector trip count is nonzero. 446 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 447 /// Emit a bypass check to see if all of the SCEV assumptions we've 448 /// had to make are correct. 449 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 450 /// Emit bypass checks to check any memory assumptions we may have made. 451 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 452 453 /// Add additional metadata to \p To that was not present on \p Orig. 454 /// 455 /// Currently this is used to add the noalias annotations based on the 456 /// inserted memchecks. Use this for instructions that are *cloned* into the 457 /// vector loop. 458 void addNewMetadata(Instruction *To, const Instruction *Orig); 459 460 /// Add metadata from one instruction to another. 461 /// 462 /// This includes both the original MDs from \p From and additional ones (\see 463 /// addNewMetadata). Use this for *newly created* instructions in the vector 464 /// loop. 465 void addMetadata(Instruction *To, const Instruction *From); 466 467 /// \brief Similar to the previous function but it adds the metadata to a 468 /// vector of instructions. 469 void addMetadata(SmallVectorImpl<Value *> &To, const Instruction *From); 470 471 /// This is a helper class that holds the vectorizer state. It maps scalar 472 /// instructions to vector instructions. When the code is 'unrolled' then 473 /// then a single scalar value is mapped to multiple vector parts. The parts 474 /// are stored in the VectorPart type. 475 struct ValueMap { 476 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 477 /// are mapped. 478 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 479 480 /// \return True if 'Key' is saved in the Value Map. 481 bool has(Value *Key) const { return MapStorage.count(Key); } 482 483 /// Initializes a new entry in the map. Sets all of the vector parts to the 484 /// save value in 'Val'. 485 /// \return A reference to a vector with splat values. 486 VectorParts &splat(Value *Key, Value *Val) { 487 VectorParts &Entry = MapStorage[Key]; 488 Entry.assign(UF, Val); 489 return Entry; 490 } 491 492 ///\return A reference to the value that is stored at 'Key'. 493 VectorParts &get(Value *Key) { 494 VectorParts &Entry = MapStorage[Key]; 495 if (Entry.empty()) 496 Entry.resize(UF); 497 assert(Entry.size() == UF); 498 return Entry; 499 } 500 501 private: 502 /// The unroll factor. Each entry in the map stores this number of vector 503 /// elements. 504 unsigned UF; 505 506 /// Map storage. We use std::map and not DenseMap because insertions to a 507 /// dense map invalidates its iterators. 508 std::map<Value *, VectorParts> MapStorage; 509 }; 510 511 /// The original loop. 512 Loop *OrigLoop; 513 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 514 /// dynamic knowledge to simplify SCEV expressions and converts them to a 515 /// more usable form. 516 PredicatedScalarEvolution &PSE; 517 /// Loop Info. 518 LoopInfo *LI; 519 /// Dominator Tree. 520 DominatorTree *DT; 521 /// Alias Analysis. 522 AliasAnalysis *AA; 523 /// Target Library Info. 524 const TargetLibraryInfo *TLI; 525 /// Target Transform Info. 526 const TargetTransformInfo *TTI; 527 /// Assumption Cache. 528 AssumptionCache *AC; 529 530 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 531 /// used. 532 /// 533 /// This is currently only used to add no-alias metadata based on the 534 /// memchecks. The actually versioning is performed manually. 535 std::unique_ptr<LoopVersioning> LVer; 536 537 /// The vectorization SIMD factor to use. Each vector will have this many 538 /// vector elements. 539 unsigned VF; 540 541 protected: 542 /// The vectorization unroll factor to use. Each scalar is vectorized to this 543 /// many different vector instructions. 544 unsigned UF; 545 546 /// The builder that we use 547 IRBuilder<> Builder; 548 549 // --- Vectorization state --- 550 551 /// The vector-loop preheader. 552 BasicBlock *LoopVectorPreHeader; 553 /// The scalar-loop preheader. 554 BasicBlock *LoopScalarPreHeader; 555 /// Middle Block between the vector and the scalar. 556 BasicBlock *LoopMiddleBlock; 557 ///The ExitBlock of the scalar loop. 558 BasicBlock *LoopExitBlock; 559 ///The vector loop body. 560 SmallVector<BasicBlock *, 4> LoopVectorBody; 561 ///The scalar loop body. 562 BasicBlock *LoopScalarBody; 563 /// A list of all bypass blocks. The first block is the entry of the loop. 564 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 565 566 /// The new Induction variable which was added to the new block. 567 PHINode *Induction; 568 /// The induction variable of the old basic block. 569 PHINode *OldInduction; 570 /// Maps scalars to widened vectors. 571 ValueMap WidenMap; 572 /// Store instructions that should be predicated, as a pair 573 /// <StoreInst, Predicate> 574 SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores; 575 EdgeMaskCache MaskCache; 576 /// Trip count of the original loop. 577 Value *TripCount; 578 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 579 Value *VectorTripCount; 580 581 /// Map of scalar integer values to the smallest bitwidth they can be legally 582 /// represented as. The vector equivalents of these values should be truncated 583 /// to this type. 584 MapVector<Instruction*,uint64_t> MinBWs; 585 LoopVectorizationLegality *Legal; 586 587 // Record whether runtime check is added. 588 bool AddedSafetyChecks; 589 }; 590 591 class InnerLoopUnroller : public InnerLoopVectorizer { 592 public: 593 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 594 LoopInfo *LI, DominatorTree *DT, 595 const TargetLibraryInfo *TLI, 596 const TargetTransformInfo *TTI, AssumptionCache *AC, 597 unsigned UnrollFactor) 598 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 599 UnrollFactor) {} 600 601 private: 602 void scalarizeInstruction(Instruction *Instr, 603 bool IfPredicateStore = false) override; 604 void vectorizeMemoryInstruction(Instruction *Instr) override; 605 Value *getBroadcastInstrs(Value *V) override; 606 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 607 Value *reverseVector(Value *Vec) override; 608 }; 609 610 /// \brief Look for a meaningful debug location on the instruction or it's 611 /// operands. 612 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 613 if (!I) 614 return I; 615 616 DebugLoc Empty; 617 if (I->getDebugLoc() != Empty) 618 return I; 619 620 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 621 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 622 if (OpInst->getDebugLoc() != Empty) 623 return OpInst; 624 } 625 626 return I; 627 } 628 629 /// \brief Set the debug location in the builder using the debug location in the 630 /// instruction. 631 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 632 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 633 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 634 else 635 B.SetCurrentDebugLocation(DebugLoc()); 636 } 637 638 #ifndef NDEBUG 639 /// \return string containing a file name and a line # for the given loop. 640 static std::string getDebugLocString(const Loop *L) { 641 std::string Result; 642 if (L) { 643 raw_string_ostream OS(Result); 644 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 645 LoopDbgLoc.print(OS); 646 else 647 // Just print the module name. 648 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 649 OS.flush(); 650 } 651 return Result; 652 } 653 #endif 654 655 /// \brief Propagate known metadata from one instruction to another. 656 static void propagateMetadata(Instruction *To, const Instruction *From) { 657 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 658 From->getAllMetadataOtherThanDebugLoc(Metadata); 659 660 for (auto M : Metadata) { 661 unsigned Kind = M.first; 662 663 // These are safe to transfer (this is safe for TBAA, even when we 664 // if-convert, because should that metadata have had a control dependency 665 // on the condition, and thus actually aliased with some other 666 // non-speculated memory access when the condition was false, this would be 667 // caught by the runtime overlap checks). 668 if (Kind != LLVMContext::MD_tbaa && 669 Kind != LLVMContext::MD_alias_scope && 670 Kind != LLVMContext::MD_noalias && 671 Kind != LLVMContext::MD_fpmath && 672 Kind != LLVMContext::MD_nontemporal) 673 continue; 674 675 To->setMetadata(Kind, M.second); 676 } 677 } 678 679 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 680 const Instruction *Orig) { 681 // If the loop was versioned with memchecks, add the corresponding no-alias 682 // metadata. 683 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 684 LVer->annotateInstWithNoAlias(To, Orig); 685 } 686 687 void InnerLoopVectorizer::addMetadata(Instruction *To, 688 const Instruction *From) { 689 propagateMetadata(To, From); 690 addNewMetadata(To, From); 691 } 692 693 void InnerLoopVectorizer::addMetadata(SmallVectorImpl<Value *> &To, 694 const Instruction *From) { 695 for (Value *V : To) 696 if (Instruction *I = dyn_cast<Instruction>(V)) 697 addMetadata(I, From); 698 } 699 700 /// \brief The group of interleaved loads/stores sharing the same stride and 701 /// close to each other. 702 /// 703 /// Each member in this group has an index starting from 0, and the largest 704 /// index should be less than interleaved factor, which is equal to the absolute 705 /// value of the access's stride. 706 /// 707 /// E.g. An interleaved load group of factor 4: 708 /// for (unsigned i = 0; i < 1024; i+=4) { 709 /// a = A[i]; // Member of index 0 710 /// b = A[i+1]; // Member of index 1 711 /// d = A[i+3]; // Member of index 3 712 /// ... 713 /// } 714 /// 715 /// An interleaved store group of factor 4: 716 /// for (unsigned i = 0; i < 1024; i+=4) { 717 /// ... 718 /// A[i] = a; // Member of index 0 719 /// A[i+1] = b; // Member of index 1 720 /// A[i+2] = c; // Member of index 2 721 /// A[i+3] = d; // Member of index 3 722 /// } 723 /// 724 /// Note: the interleaved load group could have gaps (missing members), but 725 /// the interleaved store group doesn't allow gaps. 726 class InterleaveGroup { 727 public: 728 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 729 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 730 assert(Align && "The alignment should be non-zero"); 731 732 Factor = std::abs(Stride); 733 assert(Factor > 1 && "Invalid interleave factor"); 734 735 Reverse = Stride < 0; 736 Members[0] = Instr; 737 } 738 739 bool isReverse() const { return Reverse; } 740 unsigned getFactor() const { return Factor; } 741 unsigned getAlignment() const { return Align; } 742 unsigned getNumMembers() const { return Members.size(); } 743 744 /// \brief Try to insert a new member \p Instr with index \p Index and 745 /// alignment \p NewAlign. The index is related to the leader and it could be 746 /// negative if it is the new leader. 747 /// 748 /// \returns false if the instruction doesn't belong to the group. 749 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 750 assert(NewAlign && "The new member's alignment should be non-zero"); 751 752 int Key = Index + SmallestKey; 753 754 // Skip if there is already a member with the same index. 755 if (Members.count(Key)) 756 return false; 757 758 if (Key > LargestKey) { 759 // The largest index is always less than the interleave factor. 760 if (Index >= static_cast<int>(Factor)) 761 return false; 762 763 LargestKey = Key; 764 } else if (Key < SmallestKey) { 765 // The largest index is always less than the interleave factor. 766 if (LargestKey - Key >= static_cast<int>(Factor)) 767 return false; 768 769 SmallestKey = Key; 770 } 771 772 // It's always safe to select the minimum alignment. 773 Align = std::min(Align, NewAlign); 774 Members[Key] = Instr; 775 return true; 776 } 777 778 /// \brief Get the member with the given index \p Index 779 /// 780 /// \returns nullptr if contains no such member. 781 Instruction *getMember(unsigned Index) const { 782 int Key = SmallestKey + Index; 783 if (!Members.count(Key)) 784 return nullptr; 785 786 return Members.find(Key)->second; 787 } 788 789 /// \brief Get the index for the given member. Unlike the key in the member 790 /// map, the index starts from 0. 791 unsigned getIndex(Instruction *Instr) const { 792 for (auto I : Members) 793 if (I.second == Instr) 794 return I.first - SmallestKey; 795 796 llvm_unreachable("InterleaveGroup contains no such member"); 797 } 798 799 Instruction *getInsertPos() const { return InsertPos; } 800 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 801 802 private: 803 unsigned Factor; // Interleave Factor. 804 bool Reverse; 805 unsigned Align; 806 DenseMap<int, Instruction *> Members; 807 int SmallestKey; 808 int LargestKey; 809 810 // To avoid breaking dependences, vectorized instructions of an interleave 811 // group should be inserted at either the first load or the last store in 812 // program order. 813 // 814 // E.g. %even = load i32 // Insert Position 815 // %add = add i32 %even // Use of %even 816 // %odd = load i32 817 // 818 // store i32 %even 819 // %odd = add i32 // Def of %odd 820 // store i32 %odd // Insert Position 821 Instruction *InsertPos; 822 }; 823 824 /// \brief Drive the analysis of interleaved memory accesses in the loop. 825 /// 826 /// Use this class to analyze interleaved accesses only when we can vectorize 827 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 828 /// on interleaved accesses is unsafe. 829 /// 830 /// The analysis collects interleave groups and records the relationships 831 /// between the member and the group in a map. 832 class InterleavedAccessInfo { 833 public: 834 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 835 DominatorTree *DT) 836 : PSE(PSE), TheLoop(L), DT(DT) {} 837 838 ~InterleavedAccessInfo() { 839 SmallSet<InterleaveGroup *, 4> DelSet; 840 // Avoid releasing a pointer twice. 841 for (auto &I : InterleaveGroupMap) 842 DelSet.insert(I.second); 843 for (auto *Ptr : DelSet) 844 delete Ptr; 845 } 846 847 /// \brief Analyze the interleaved accesses and collect them in interleave 848 /// groups. Substitute symbolic strides using \p Strides. 849 void analyzeInterleaving(const ValueToValueMap &Strides); 850 851 /// \brief Check if \p Instr belongs to any interleave group. 852 bool isInterleaved(Instruction *Instr) const { 853 return InterleaveGroupMap.count(Instr); 854 } 855 856 /// \brief Get the interleave group that \p Instr belongs to. 857 /// 858 /// \returns nullptr if doesn't have such group. 859 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 860 if (InterleaveGroupMap.count(Instr)) 861 return InterleaveGroupMap.find(Instr)->second; 862 return nullptr; 863 } 864 865 private: 866 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 867 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 868 /// The interleaved access analysis can also add new predicates (for example 869 /// by versioning strides of pointers). 870 PredicatedScalarEvolution &PSE; 871 Loop *TheLoop; 872 DominatorTree *DT; 873 874 /// Holds the relationships between the members and the interleave group. 875 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 876 877 /// \brief The descriptor for a strided memory access. 878 struct StrideDescriptor { 879 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 880 unsigned Align) 881 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 882 883 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 884 885 int Stride; // The access's stride. It is negative for a reverse access. 886 const SCEV *Scev; // The scalar expression of this access 887 unsigned Size; // The size of the memory object. 888 unsigned Align; // The alignment of this access. 889 }; 890 891 /// \brief Create a new interleave group with the given instruction \p Instr, 892 /// stride \p Stride and alignment \p Align. 893 /// 894 /// \returns the newly created interleave group. 895 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 896 unsigned Align) { 897 assert(!InterleaveGroupMap.count(Instr) && 898 "Already in an interleaved access group"); 899 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 900 return InterleaveGroupMap[Instr]; 901 } 902 903 /// \brief Release the group and remove all the relationships. 904 void releaseGroup(InterleaveGroup *Group) { 905 for (unsigned i = 0; i < Group->getFactor(); i++) 906 if (Instruction *Member = Group->getMember(i)) 907 InterleaveGroupMap.erase(Member); 908 909 delete Group; 910 } 911 912 /// \brief Collect all the accesses with a constant stride in program order. 913 void collectConstStridedAccesses( 914 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 915 const ValueToValueMap &Strides); 916 }; 917 918 /// Utility class for getting and setting loop vectorizer hints in the form 919 /// of loop metadata. 920 /// This class keeps a number of loop annotations locally (as member variables) 921 /// and can, upon request, write them back as metadata on the loop. It will 922 /// initially scan the loop for existing metadata, and will update the local 923 /// values based on information in the loop. 924 /// We cannot write all values to metadata, as the mere presence of some info, 925 /// for example 'force', means a decision has been made. So, we need to be 926 /// careful NOT to add them if the user hasn't specifically asked so. 927 class LoopVectorizeHints { 928 enum HintKind { 929 HK_WIDTH, 930 HK_UNROLL, 931 HK_FORCE 932 }; 933 934 /// Hint - associates name and validation with the hint value. 935 struct Hint { 936 const char * Name; 937 unsigned Value; // This may have to change for non-numeric values. 938 HintKind Kind; 939 940 Hint(const char * Name, unsigned Value, HintKind Kind) 941 : Name(Name), Value(Value), Kind(Kind) { } 942 943 bool validate(unsigned Val) { 944 switch (Kind) { 945 case HK_WIDTH: 946 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 947 case HK_UNROLL: 948 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 949 case HK_FORCE: 950 return (Val <= 1); 951 } 952 return false; 953 } 954 }; 955 956 /// Vectorization width. 957 Hint Width; 958 /// Vectorization interleave factor. 959 Hint Interleave; 960 /// Vectorization forced 961 Hint Force; 962 963 /// Return the loop metadata prefix. 964 static StringRef Prefix() { return "llvm.loop."; } 965 966 /// True if there is any unsafe math in the loop. 967 bool PotentiallyUnsafe; 968 969 public: 970 enum ForceKind { 971 FK_Undefined = -1, ///< Not selected. 972 FK_Disabled = 0, ///< Forcing disabled. 973 FK_Enabled = 1, ///< Forcing enabled. 974 }; 975 976 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 977 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 978 HK_WIDTH), 979 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 980 Force("vectorize.enable", FK_Undefined, HK_FORCE), 981 PotentiallyUnsafe(false), TheLoop(L) { 982 // Populate values with existing loop metadata. 983 getHintsFromMetadata(); 984 985 // force-vector-interleave overrides DisableInterleaving. 986 if (VectorizerParams::isInterleaveForced()) 987 Interleave.Value = VectorizerParams::VectorizationInterleave; 988 989 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 990 << "LV: Interleaving disabled by the pass manager\n"); 991 } 992 993 /// Mark the loop L as already vectorized by setting the width to 1. 994 void setAlreadyVectorized() { 995 Width.Value = Interleave.Value = 1; 996 Hint Hints[] = {Width, Interleave}; 997 writeHintsToMetadata(Hints); 998 } 999 1000 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1001 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1002 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1003 emitOptimizationRemarkAnalysis(F->getContext(), 1004 vectorizeAnalysisPassName(), *F, 1005 L->getStartLoc(), emitRemark()); 1006 return false; 1007 } 1008 1009 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1010 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1011 emitOptimizationRemarkAnalysis(F->getContext(), 1012 vectorizeAnalysisPassName(), *F, 1013 L->getStartLoc(), emitRemark()); 1014 return false; 1015 } 1016 1017 if (getWidth() == 1 && getInterleave() == 1) { 1018 // FIXME: Add a separate metadata to indicate when the loop has already 1019 // been vectorized instead of setting width and count to 1. 1020 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1021 // FIXME: Add interleave.disable metadata. This will allow 1022 // vectorize.disable to be used without disabling the pass and errors 1023 // to differentiate between disabled vectorization and a width of 1. 1024 emitOptimizationRemarkAnalysis( 1025 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1026 "loop not vectorized: vectorization and interleaving are explicitly " 1027 "disabled, or vectorize width and interleave count are both set to " 1028 "1"); 1029 return false; 1030 } 1031 1032 return true; 1033 } 1034 1035 /// Dumps all the hint information. 1036 std::string emitRemark() const { 1037 VectorizationReport R; 1038 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1039 R << "vectorization is explicitly disabled"; 1040 else { 1041 R << "use -Rpass-analysis=loop-vectorize for more info"; 1042 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1043 R << " (Force=true"; 1044 if (Width.Value != 0) 1045 R << ", Vector Width=" << Width.Value; 1046 if (Interleave.Value != 0) 1047 R << ", Interleave Count=" << Interleave.Value; 1048 R << ")"; 1049 } 1050 } 1051 1052 return R.str(); 1053 } 1054 1055 unsigned getWidth() const { return Width.Value; } 1056 unsigned getInterleave() const { return Interleave.Value; } 1057 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1058 const char *vectorizeAnalysisPassName() const { 1059 // If hints are provided that don't disable vectorization use the 1060 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1061 if (getWidth() == 1) 1062 return LV_NAME; 1063 if (getForce() == LoopVectorizeHints::FK_Disabled) 1064 return LV_NAME; 1065 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1066 return LV_NAME; 1067 return DiagnosticInfo::AlwaysPrint; 1068 } 1069 1070 bool allowReordering() const { 1071 // When enabling loop hints are provided we allow the vectorizer to change 1072 // the order of operations that is given by the scalar loop. This is not 1073 // enabled by default because can be unsafe or inefficient. For example, 1074 // reordering floating-point operations will change the way round-off 1075 // error accumulates in the loop. 1076 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1077 } 1078 1079 bool isPotentiallyUnsafe() const { 1080 // Avoid FP vectorization if the target is unsure about proper support. 1081 // This may be related to the SIMD unit in the target not handling 1082 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1083 // Otherwise, a sequence of vectorized loops, even without reduction, 1084 // could lead to different end results on the destination vectors. 1085 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1086 } 1087 1088 void setPotentiallyUnsafe() { 1089 PotentiallyUnsafe = true; 1090 } 1091 1092 private: 1093 /// Find hints specified in the loop metadata and update local values. 1094 void getHintsFromMetadata() { 1095 MDNode *LoopID = TheLoop->getLoopID(); 1096 if (!LoopID) 1097 return; 1098 1099 // First operand should refer to the loop id itself. 1100 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1101 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1102 1103 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1104 const MDString *S = nullptr; 1105 SmallVector<Metadata *, 4> Args; 1106 1107 // The expected hint is either a MDString or a MDNode with the first 1108 // operand a MDString. 1109 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1110 if (!MD || MD->getNumOperands() == 0) 1111 continue; 1112 S = dyn_cast<MDString>(MD->getOperand(0)); 1113 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1114 Args.push_back(MD->getOperand(i)); 1115 } else { 1116 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1117 assert(Args.size() == 0 && "too many arguments for MDString"); 1118 } 1119 1120 if (!S) 1121 continue; 1122 1123 // Check if the hint starts with the loop metadata prefix. 1124 StringRef Name = S->getString(); 1125 if (Args.size() == 1) 1126 setHint(Name, Args[0]); 1127 } 1128 } 1129 1130 /// Checks string hint with one operand and set value if valid. 1131 void setHint(StringRef Name, Metadata *Arg) { 1132 if (!Name.startswith(Prefix())) 1133 return; 1134 Name = Name.substr(Prefix().size(), StringRef::npos); 1135 1136 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1137 if (!C) return; 1138 unsigned Val = C->getZExtValue(); 1139 1140 Hint *Hints[] = {&Width, &Interleave, &Force}; 1141 for (auto H : Hints) { 1142 if (Name == H->Name) { 1143 if (H->validate(Val)) 1144 H->Value = Val; 1145 else 1146 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1147 break; 1148 } 1149 } 1150 } 1151 1152 /// Create a new hint from name / value pair. 1153 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1154 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1155 Metadata *MDs[] = {MDString::get(Context, Name), 1156 ConstantAsMetadata::get( 1157 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1158 return MDNode::get(Context, MDs); 1159 } 1160 1161 /// Matches metadata with hint name. 1162 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1163 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1164 if (!Name) 1165 return false; 1166 1167 for (auto H : HintTypes) 1168 if (Name->getString().endswith(H.Name)) 1169 return true; 1170 return false; 1171 } 1172 1173 /// Sets current hints into loop metadata, keeping other values intact. 1174 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1175 if (HintTypes.size() == 0) 1176 return; 1177 1178 // Reserve the first element to LoopID (see below). 1179 SmallVector<Metadata *, 4> MDs(1); 1180 // If the loop already has metadata, then ignore the existing operands. 1181 MDNode *LoopID = TheLoop->getLoopID(); 1182 if (LoopID) { 1183 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1184 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1185 // If node in update list, ignore old value. 1186 if (!matchesHintMetadataName(Node, HintTypes)) 1187 MDs.push_back(Node); 1188 } 1189 } 1190 1191 // Now, add the missing hints. 1192 for (auto H : HintTypes) 1193 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1194 1195 // Replace current metadata node with new one. 1196 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1197 MDNode *NewLoopID = MDNode::get(Context, MDs); 1198 // Set operand 0 to refer to the loop id itself. 1199 NewLoopID->replaceOperandWith(0, NewLoopID); 1200 1201 TheLoop->setLoopID(NewLoopID); 1202 } 1203 1204 /// The loop these hints belong to. 1205 const Loop *TheLoop; 1206 }; 1207 1208 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1209 const LoopVectorizeHints &Hints, 1210 const LoopAccessReport &Message) { 1211 const char *Name = Hints.vectorizeAnalysisPassName(); 1212 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1213 } 1214 1215 static void emitMissedWarning(Function *F, Loop *L, 1216 const LoopVectorizeHints &LH) { 1217 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1218 LH.emitRemark()); 1219 1220 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1221 if (LH.getWidth() != 1) 1222 emitLoopVectorizeWarning( 1223 F->getContext(), *F, L->getStartLoc(), 1224 "failed explicitly specified loop vectorization"); 1225 else if (LH.getInterleave() != 1) 1226 emitLoopInterleaveWarning( 1227 F->getContext(), *F, L->getStartLoc(), 1228 "failed explicitly specified loop interleaving"); 1229 } 1230 } 1231 1232 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1233 /// to what vectorization factor. 1234 /// This class does not look at the profitability of vectorization, only the 1235 /// legality. This class has two main kinds of checks: 1236 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1237 /// will change the order of memory accesses in a way that will change the 1238 /// correctness of the program. 1239 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1240 /// checks for a number of different conditions, such as the availability of a 1241 /// single induction variable, that all types are supported and vectorize-able, 1242 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1243 /// This class is also used by InnerLoopVectorizer for identifying 1244 /// induction variable and the different reduction variables. 1245 class LoopVectorizationLegality { 1246 public: 1247 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1248 DominatorTree *DT, TargetLibraryInfo *TLI, 1249 AliasAnalysis *AA, Function *F, 1250 const TargetTransformInfo *TTI, 1251 LoopAccessAnalysis *LAA, 1252 LoopVectorizationRequirements *R, 1253 LoopVectorizeHints *H) 1254 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1255 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), 1256 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1257 Requirements(R), Hints(H) {} 1258 1259 /// ReductionList contains the reduction descriptors for all 1260 /// of the reductions that were found in the loop. 1261 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1262 1263 /// InductionList saves induction variables and maps them to the 1264 /// induction descriptor. 1265 typedef MapVector<PHINode*, InductionDescriptor> InductionList; 1266 1267 /// RecurrenceSet contains the phi nodes that are recurrences other than 1268 /// inductions and reductions. 1269 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1270 1271 /// Returns true if it is legal to vectorize this loop. 1272 /// This does not mean that it is profitable to vectorize this 1273 /// loop, only that it is legal to do so. 1274 bool canVectorize(); 1275 1276 /// Returns the Induction variable. 1277 PHINode *getInduction() { return Induction; } 1278 1279 /// Returns the reduction variables found in the loop. 1280 ReductionList *getReductionVars() { return &Reductions; } 1281 1282 /// Returns the induction variables found in the loop. 1283 InductionList *getInductionVars() { return &Inductions; } 1284 1285 /// Return the first-order recurrences found in the loop. 1286 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1287 1288 /// Returns the widest induction type. 1289 Type *getWidestInductionType() { return WidestIndTy; } 1290 1291 /// Returns True if V is an induction variable in this loop. 1292 bool isInductionVariable(const Value *V); 1293 1294 /// Returns True if PN is a reduction variable in this loop. 1295 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1296 1297 /// Returns True if Phi is a first-order recurrence in this loop. 1298 bool isFirstOrderRecurrence(const PHINode *Phi); 1299 1300 /// Return true if the block BB needs to be predicated in order for the loop 1301 /// to be vectorized. 1302 bool blockNeedsPredication(BasicBlock *BB); 1303 1304 /// Check if this pointer is consecutive when vectorizing. This happens 1305 /// when the last index of the GEP is the induction variable, or that the 1306 /// pointer itself is an induction variable. 1307 /// This check allows us to vectorize A[idx] into a wide load/store. 1308 /// Returns: 1309 /// 0 - Stride is unknown or non-consecutive. 1310 /// 1 - Address is consecutive. 1311 /// -1 - Address is consecutive, and decreasing. 1312 int isConsecutivePtr(Value *Ptr); 1313 1314 /// Returns true if the value V is uniform within the loop. 1315 bool isUniform(Value *V); 1316 1317 /// Returns true if this instruction will remain scalar after vectorization. 1318 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 1319 1320 /// Returns the information that we collected about runtime memory check. 1321 const RuntimePointerChecking *getRuntimePointerChecking() const { 1322 return LAI->getRuntimePointerChecking(); 1323 } 1324 1325 const LoopAccessInfo *getLAI() const { 1326 return LAI; 1327 } 1328 1329 /// \brief Check if \p Instr belongs to any interleaved access group. 1330 bool isAccessInterleaved(Instruction *Instr) { 1331 return InterleaveInfo.isInterleaved(Instr); 1332 } 1333 1334 /// \brief Get the interleaved access group that \p Instr belongs to. 1335 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1336 return InterleaveInfo.getInterleaveGroup(Instr); 1337 } 1338 1339 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1340 1341 bool hasStride(Value *V) { return StrideSet.count(V); } 1342 bool mustCheckStrides() { return !StrideSet.empty(); } 1343 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1344 return StrideSet.begin(); 1345 } 1346 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1347 1348 /// Returns true if the target machine supports masked store operation 1349 /// for the given \p DataType and kind of access to \p Ptr. 1350 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1351 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1352 } 1353 /// Returns true if the target machine supports masked load operation 1354 /// for the given \p DataType and kind of access to \p Ptr. 1355 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1356 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1357 } 1358 /// Returns true if the target machine supports masked scatter operation 1359 /// for the given \p DataType. 1360 bool isLegalMaskedScatter(Type *DataType) { 1361 return TTI->isLegalMaskedScatter(DataType); 1362 } 1363 /// Returns true if the target machine supports masked gather operation 1364 /// for the given \p DataType. 1365 bool isLegalMaskedGather(Type *DataType) { 1366 return TTI->isLegalMaskedGather(DataType); 1367 } 1368 1369 /// Returns true if vector representation of the instruction \p I 1370 /// requires mask. 1371 bool isMaskRequired(const Instruction* I) { 1372 return (MaskedOp.count(I) != 0); 1373 } 1374 unsigned getNumStores() const { 1375 return LAI->getNumStores(); 1376 } 1377 unsigned getNumLoads() const { 1378 return LAI->getNumLoads(); 1379 } 1380 unsigned getNumPredStores() const { 1381 return NumPredStores; 1382 } 1383 private: 1384 /// Check if a single basic block loop is vectorizable. 1385 /// At this point we know that this is a loop with a constant trip count 1386 /// and we only need to check individual instructions. 1387 bool canVectorizeInstrs(); 1388 1389 /// When we vectorize loops we may change the order in which 1390 /// we read and write from memory. This method checks if it is 1391 /// legal to vectorize the code, considering only memory constrains. 1392 /// Returns true if the loop is vectorizable 1393 bool canVectorizeMemory(); 1394 1395 /// Return true if we can vectorize this loop using the IF-conversion 1396 /// transformation. 1397 bool canVectorizeWithIfConvert(); 1398 1399 /// Collect the variables that need to stay uniform after vectorization. 1400 void collectLoopUniforms(); 1401 1402 /// Return true if all of the instructions in the block can be speculatively 1403 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1404 /// and we know that we can read from them without segfault. 1405 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1406 1407 /// \brief Collect memory access with loop invariant strides. 1408 /// 1409 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1410 /// invariant. 1411 void collectStridedAccess(Value *LoadOrStoreInst); 1412 1413 /// Report an analysis message to assist the user in diagnosing loops that are 1414 /// not vectorized. These are handled as LoopAccessReport rather than 1415 /// VectorizationReport because the << operator of VectorizationReport returns 1416 /// LoopAccessReport. 1417 void emitAnalysis(const LoopAccessReport &Message) const { 1418 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1419 } 1420 1421 unsigned NumPredStores; 1422 1423 /// The loop that we evaluate. 1424 Loop *TheLoop; 1425 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1426 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1427 /// of existing SCEV assumptions. The analysis will also add a minimal set 1428 /// of new predicates if this is required to enable vectorization and 1429 /// unrolling. 1430 PredicatedScalarEvolution &PSE; 1431 /// Target Library Info. 1432 TargetLibraryInfo *TLI; 1433 /// Parent function 1434 Function *TheFunction; 1435 /// Target Transform Info 1436 const TargetTransformInfo *TTI; 1437 /// Dominator Tree. 1438 DominatorTree *DT; 1439 // LoopAccess analysis. 1440 LoopAccessAnalysis *LAA; 1441 // And the loop-accesses info corresponding to this loop. This pointer is 1442 // null until canVectorizeMemory sets it up. 1443 const LoopAccessInfo *LAI; 1444 1445 /// The interleave access information contains groups of interleaved accesses 1446 /// with the same stride and close to each other. 1447 InterleavedAccessInfo InterleaveInfo; 1448 1449 // --- vectorization state --- // 1450 1451 /// Holds the integer induction variable. This is the counter of the 1452 /// loop. 1453 PHINode *Induction; 1454 /// Holds the reduction variables. 1455 ReductionList Reductions; 1456 /// Holds all of the induction variables that we found in the loop. 1457 /// Notice that inductions don't need to start at zero and that induction 1458 /// variables can be pointers. 1459 InductionList Inductions; 1460 /// Holds the phi nodes that are first-order recurrences. 1461 RecurrenceSet FirstOrderRecurrences; 1462 /// Holds the widest induction type encountered. 1463 Type *WidestIndTy; 1464 1465 /// Allowed outside users. This holds the reduction 1466 /// vars which can be accessed from outside the loop. 1467 SmallPtrSet<Value*, 4> AllowedExit; 1468 /// This set holds the variables which are known to be uniform after 1469 /// vectorization. 1470 SmallPtrSet<Instruction*, 4> Uniforms; 1471 1472 /// Can we assume the absence of NaNs. 1473 bool HasFunNoNaNAttr; 1474 1475 /// Vectorization requirements that will go through late-evaluation. 1476 LoopVectorizationRequirements *Requirements; 1477 1478 /// Used to emit an analysis of any legality issues. 1479 LoopVectorizeHints *Hints; 1480 1481 ValueToValueMap Strides; 1482 SmallPtrSet<Value *, 8> StrideSet; 1483 1484 /// While vectorizing these instructions we have to generate a 1485 /// call to the appropriate masked intrinsic 1486 SmallPtrSet<const Instruction *, 8> MaskedOp; 1487 }; 1488 1489 /// LoopVectorizationCostModel - estimates the expected speedups due to 1490 /// vectorization. 1491 /// In many cases vectorization is not profitable. This can happen because of 1492 /// a number of reasons. In this class we mainly attempt to predict the 1493 /// expected speedup/slowdowns due to the supported instruction set. We use the 1494 /// TargetTransformInfo to query the different backends for the cost of 1495 /// different operations. 1496 class LoopVectorizationCostModel { 1497 public: 1498 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1499 LoopVectorizationLegality *Legal, 1500 const TargetTransformInfo &TTI, 1501 const TargetLibraryInfo *TLI, DemandedBits *DB, 1502 AssumptionCache *AC, const Function *F, 1503 const LoopVectorizeHints *Hints, 1504 SmallPtrSetImpl<const Value *> &ValuesToIgnore) 1505 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1506 TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {} 1507 1508 /// Information about vectorization costs 1509 struct VectorizationFactor { 1510 unsigned Width; // Vector width with best cost 1511 unsigned Cost; // Cost of the loop with that width 1512 }; 1513 /// \return The most profitable vectorization factor and the cost of that VF. 1514 /// This method checks every power of two up to VF. If UserVF is not ZERO 1515 /// then this vectorization factor will be selected if vectorization is 1516 /// possible. 1517 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1518 1519 /// \return The size (in bits) of the smallest and widest types in the code 1520 /// that needs to be vectorized. We ignore values that remain scalar such as 1521 /// 64 bit loop indices. 1522 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1523 1524 /// \return The desired interleave count. 1525 /// If interleave count has been specified by metadata it will be returned. 1526 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1527 /// are the selected vectorization factor and the cost of the selected VF. 1528 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1529 unsigned LoopCost); 1530 1531 /// \return The most profitable unroll factor. 1532 /// This method finds the best unroll-factor based on register pressure and 1533 /// other parameters. VF and LoopCost are the selected vectorization factor 1534 /// and the cost of the selected VF. 1535 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1536 unsigned LoopCost); 1537 1538 /// \brief A struct that represents some properties of the register usage 1539 /// of a loop. 1540 struct RegisterUsage { 1541 /// Holds the number of loop invariant values that are used in the loop. 1542 unsigned LoopInvariantRegs; 1543 /// Holds the maximum number of concurrent live intervals in the loop. 1544 unsigned MaxLocalUsers; 1545 /// Holds the number of instructions in the loop. 1546 unsigned NumInstructions; 1547 }; 1548 1549 /// \return Returns information about the register usages of the loop for the 1550 /// given vectorization factors. 1551 SmallVector<RegisterUsage, 8> 1552 calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs); 1553 1554 private: 1555 /// The vectorization cost is a combination of the cost itself and a boolean 1556 /// indicating whether any of the contributing operations will actually operate on 1557 /// vector values after type legalization in the backend. If this latter value is 1558 /// false, then all operations will be scalarized (i.e. no vectorization has 1559 /// actually taken place). 1560 typedef std::pair<unsigned, bool> VectorizationCostTy; 1561 1562 /// Returns the expected execution cost. The unit of the cost does 1563 /// not matter because we use the 'cost' units to compare different 1564 /// vector widths. The cost that is returned is *not* normalized by 1565 /// the factor width. 1566 VectorizationCostTy expectedCost(unsigned VF); 1567 1568 /// Returns the execution time cost of an instruction for a given vector 1569 /// width. Vector width of one means scalar. 1570 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1571 1572 /// The cost-computation logic from getInstructionCost which provides 1573 /// the vector type as an output parameter. 1574 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1575 1576 /// Returns whether the instruction is a load or store and will be a emitted 1577 /// as a vector operation. 1578 bool isConsecutiveLoadOrStore(Instruction *I); 1579 1580 /// Report an analysis message to assist the user in diagnosing loops that are 1581 /// not vectorized. These are handled as LoopAccessReport rather than 1582 /// VectorizationReport because the << operator of VectorizationReport returns 1583 /// LoopAccessReport. 1584 void emitAnalysis(const LoopAccessReport &Message) const { 1585 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1586 } 1587 1588 public: 1589 /// Map of scalar integer values to the smallest bitwidth they can be legally 1590 /// represented as. The vector equivalents of these values should be truncated 1591 /// to this type. 1592 MapVector<Instruction*,uint64_t> MinBWs; 1593 1594 /// The loop that we evaluate. 1595 Loop *TheLoop; 1596 /// Scev analysis. 1597 ScalarEvolution *SE; 1598 /// Loop Info analysis. 1599 LoopInfo *LI; 1600 /// Vectorization legality. 1601 LoopVectorizationLegality *Legal; 1602 /// Vector target information. 1603 const TargetTransformInfo &TTI; 1604 /// Target Library Info. 1605 const TargetLibraryInfo *TLI; 1606 /// Demanded bits analysis 1607 DemandedBits *DB; 1608 const Function *TheFunction; 1609 // Loop Vectorize Hint. 1610 const LoopVectorizeHints *Hints; 1611 // Values to ignore in the cost model. 1612 const SmallPtrSetImpl<const Value *> &ValuesToIgnore; 1613 }; 1614 1615 /// \brief This holds vectorization requirements that must be verified late in 1616 /// the process. The requirements are set by legalize and costmodel. Once 1617 /// vectorization has been determined to be possible and profitable the 1618 /// requirements can be verified by looking for metadata or compiler options. 1619 /// For example, some loops require FP commutativity which is only allowed if 1620 /// vectorization is explicitly specified or if the fast-math compiler option 1621 /// has been provided. 1622 /// Late evaluation of these requirements allows helpful diagnostics to be 1623 /// composed that tells the user what need to be done to vectorize the loop. For 1624 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1625 /// evaluation should be used only when diagnostics can generated that can be 1626 /// followed by a non-expert user. 1627 class LoopVectorizationRequirements { 1628 public: 1629 LoopVectorizationRequirements() 1630 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1631 1632 void addUnsafeAlgebraInst(Instruction *I) { 1633 // First unsafe algebra instruction. 1634 if (!UnsafeAlgebraInst) 1635 UnsafeAlgebraInst = I; 1636 } 1637 1638 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1639 1640 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1641 const char *Name = Hints.vectorizeAnalysisPassName(); 1642 bool Failed = false; 1643 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1644 emitOptimizationRemarkAnalysisFPCommute( 1645 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1646 VectorizationReport() << "cannot prove it is safe to reorder " 1647 "floating-point operations"); 1648 Failed = true; 1649 } 1650 1651 // Test if runtime memcheck thresholds are exceeded. 1652 bool PragmaThresholdReached = 1653 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1654 bool ThresholdReached = 1655 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1656 if ((ThresholdReached && !Hints.allowReordering()) || 1657 PragmaThresholdReached) { 1658 emitOptimizationRemarkAnalysisAliasing( 1659 F->getContext(), Name, *F, L->getStartLoc(), 1660 VectorizationReport() 1661 << "cannot prove it is safe to reorder memory operations"); 1662 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1663 Failed = true; 1664 } 1665 1666 return Failed; 1667 } 1668 1669 private: 1670 unsigned NumRuntimePointerChecks; 1671 Instruction *UnsafeAlgebraInst; 1672 }; 1673 1674 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1675 if (L.empty()) 1676 return V.push_back(&L); 1677 1678 for (Loop *InnerL : L) 1679 addInnerLoop(*InnerL, V); 1680 } 1681 1682 /// The LoopVectorize Pass. 1683 struct LoopVectorize : public FunctionPass { 1684 /// Pass identification, replacement for typeid 1685 static char ID; 1686 1687 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1688 : FunctionPass(ID), 1689 DisableUnrolling(NoUnrolling), 1690 AlwaysVectorize(AlwaysVectorize) { 1691 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1692 } 1693 1694 ScalarEvolution *SE; 1695 LoopInfo *LI; 1696 TargetTransformInfo *TTI; 1697 DominatorTree *DT; 1698 BlockFrequencyInfo *BFI; 1699 TargetLibraryInfo *TLI; 1700 DemandedBits *DB; 1701 AliasAnalysis *AA; 1702 AssumptionCache *AC; 1703 LoopAccessAnalysis *LAA; 1704 bool DisableUnrolling; 1705 bool AlwaysVectorize; 1706 1707 BlockFrequency ColdEntryFreq; 1708 1709 bool runOnFunction(Function &F) override { 1710 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1711 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1712 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1713 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1714 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1715 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1716 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1717 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1718 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1719 LAA = &getAnalysis<LoopAccessAnalysis>(); 1720 DB = &getAnalysis<DemandedBits>(); 1721 1722 // Compute some weights outside of the loop over the loops. Compute this 1723 // using a BranchProbability to re-use its scaling math. 1724 const BranchProbability ColdProb(1, 5); // 20% 1725 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1726 1727 // Don't attempt if 1728 // 1. the target claims to have no vector registers, and 1729 // 2. interleaving won't help ILP. 1730 // 1731 // The second condition is necessary because, even if the target has no 1732 // vector registers, loop vectorization may still enable scalar 1733 // interleaving. 1734 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1735 return false; 1736 1737 // Build up a worklist of inner-loops to vectorize. This is necessary as 1738 // the act of vectorizing or partially unrolling a loop creates new loops 1739 // and can invalidate iterators across the loops. 1740 SmallVector<Loop *, 8> Worklist; 1741 1742 for (Loop *L : *LI) 1743 addInnerLoop(*L, Worklist); 1744 1745 LoopsAnalyzed += Worklist.size(); 1746 1747 // Now walk the identified inner loops. 1748 bool Changed = false; 1749 while (!Worklist.empty()) 1750 Changed |= processLoop(Worklist.pop_back_val()); 1751 1752 // Process each loop nest in the function. 1753 return Changed; 1754 } 1755 1756 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1757 SmallVector<Metadata *, 4> MDs; 1758 // Reserve first location for self reference to the LoopID metadata node. 1759 MDs.push_back(nullptr); 1760 bool IsUnrollMetadata = false; 1761 MDNode *LoopID = L->getLoopID(); 1762 if (LoopID) { 1763 // First find existing loop unrolling disable metadata. 1764 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1765 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1766 if (MD) { 1767 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1768 IsUnrollMetadata = 1769 S && S->getString().startswith("llvm.loop.unroll.disable"); 1770 } 1771 MDs.push_back(LoopID->getOperand(i)); 1772 } 1773 } 1774 1775 if (!IsUnrollMetadata) { 1776 // Add runtime unroll disable metadata. 1777 LLVMContext &Context = L->getHeader()->getContext(); 1778 SmallVector<Metadata *, 1> DisableOperands; 1779 DisableOperands.push_back( 1780 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1781 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1782 MDs.push_back(DisableNode); 1783 MDNode *NewLoopID = MDNode::get(Context, MDs); 1784 // Set operand 0 to refer to the loop id itself. 1785 NewLoopID->replaceOperandWith(0, NewLoopID); 1786 L->setLoopID(NewLoopID); 1787 } 1788 } 1789 1790 bool processLoop(Loop *L) { 1791 assert(L->empty() && "Only process inner loops."); 1792 1793 #ifndef NDEBUG 1794 const std::string DebugLocStr = getDebugLocString(L); 1795 #endif /* NDEBUG */ 1796 1797 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1798 << L->getHeader()->getParent()->getName() << "\" from " 1799 << DebugLocStr << "\n"); 1800 1801 LoopVectorizeHints Hints(L, DisableUnrolling); 1802 1803 DEBUG(dbgs() << "LV: Loop hints:" 1804 << " force=" 1805 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1806 ? "disabled" 1807 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1808 ? "enabled" 1809 : "?")) << " width=" << Hints.getWidth() 1810 << " unroll=" << Hints.getInterleave() << "\n"); 1811 1812 // Function containing loop 1813 Function *F = L->getHeader()->getParent(); 1814 1815 // Looking at the diagnostic output is the only way to determine if a loop 1816 // was vectorized (other than looking at the IR or machine code), so it 1817 // is important to generate an optimization remark for each loop. Most of 1818 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1819 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1820 // less verbose reporting vectorized loops and unvectorized loops that may 1821 // benefit from vectorization, respectively. 1822 1823 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1824 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1825 return false; 1826 } 1827 1828 // Check the loop for a trip count threshold: 1829 // do not vectorize loops with a tiny trip count. 1830 const unsigned TC = SE->getSmallConstantTripCount(L); 1831 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1832 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1833 << "This loop is not worth vectorizing."); 1834 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1835 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1836 else { 1837 DEBUG(dbgs() << "\n"); 1838 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1839 << "vectorization is not beneficial " 1840 "and is not explicitly forced"); 1841 return false; 1842 } 1843 } 1844 1845 PredicatedScalarEvolution PSE(*SE, *L); 1846 1847 // Check if it is legal to vectorize the loop. 1848 LoopVectorizationRequirements Requirements; 1849 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, 1850 &Requirements, &Hints); 1851 if (!LVL.canVectorize()) { 1852 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1853 emitMissedWarning(F, L, Hints); 1854 return false; 1855 } 1856 1857 // Collect values we want to ignore in the cost model. This includes 1858 // type-promoting instructions we identified during reduction detection. 1859 SmallPtrSet<const Value *, 32> ValuesToIgnore; 1860 CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore); 1861 for (auto &Reduction : *LVL.getReductionVars()) { 1862 RecurrenceDescriptor &RedDes = Reduction.second; 1863 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 1864 ValuesToIgnore.insert(Casts.begin(), Casts.end()); 1865 } 1866 1867 // Use the cost model. 1868 LoopVectorizationCostModel CM(L, PSE.getSE(), LI, &LVL, *TTI, TLI, DB, AC, 1869 F, &Hints, ValuesToIgnore); 1870 1871 // Check the function attributes to find out if this function should be 1872 // optimized for size. 1873 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1874 F->optForSize(); 1875 1876 // Compute the weighted frequency of this loop being executed and see if it 1877 // is less than 20% of the function entry baseline frequency. Note that we 1878 // always have a canonical loop here because we think we *can* vectorize. 1879 // FIXME: This is hidden behind a flag due to pervasive problems with 1880 // exactly what block frequency models. 1881 if (LoopVectorizeWithBlockFrequency) { 1882 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1883 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1884 LoopEntryFreq < ColdEntryFreq) 1885 OptForSize = true; 1886 } 1887 1888 // Check the function attributes to see if implicit floats are allowed. 1889 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1890 // an integer loop and the vector instructions selected are purely integer 1891 // vector instructions? 1892 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1893 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1894 "attribute is used.\n"); 1895 emitAnalysisDiag( 1896 F, L, Hints, 1897 VectorizationReport() 1898 << "loop not vectorized due to NoImplicitFloat attribute"); 1899 emitMissedWarning(F, L, Hints); 1900 return false; 1901 } 1902 1903 // Check if the target supports potentially unsafe FP vectorization. 1904 // FIXME: Add a check for the type of safety issue (denormal, signaling) 1905 // for the target we're vectorizing for, to make sure none of the 1906 // additional fp-math flags can help. 1907 if (Hints.isPotentiallyUnsafe() && 1908 TTI->isFPVectorizationPotentiallyUnsafe()) { 1909 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 1910 emitAnalysisDiag( 1911 F, L, Hints, 1912 VectorizationReport() 1913 << "loop not vectorized due to unsafe FP support."); 1914 emitMissedWarning(F, L, Hints); 1915 return false; 1916 } 1917 1918 // Select the optimal vectorization factor. 1919 const LoopVectorizationCostModel::VectorizationFactor VF = 1920 CM.selectVectorizationFactor(OptForSize); 1921 1922 // Select the interleave count. 1923 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1924 1925 // Get user interleave count. 1926 unsigned UserIC = Hints.getInterleave(); 1927 1928 // Identify the diagnostic messages that should be produced. 1929 std::string VecDiagMsg, IntDiagMsg; 1930 bool VectorizeLoop = true, InterleaveLoop = true; 1931 1932 if (Requirements.doesNotMeet(F, L, Hints)) { 1933 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1934 "requirements.\n"); 1935 emitMissedWarning(F, L, Hints); 1936 return false; 1937 } 1938 1939 if (VF.Width == 1) { 1940 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1941 VecDiagMsg = 1942 "the cost-model indicates that vectorization is not beneficial"; 1943 VectorizeLoop = false; 1944 } 1945 1946 if (IC == 1 && UserIC <= 1) { 1947 // Tell the user interleaving is not beneficial. 1948 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1949 IntDiagMsg = 1950 "the cost-model indicates that interleaving is not beneficial"; 1951 InterleaveLoop = false; 1952 if (UserIC == 1) 1953 IntDiagMsg += 1954 " and is explicitly disabled or interleave count is set to 1"; 1955 } else if (IC > 1 && UserIC == 1) { 1956 // Tell the user interleaving is beneficial, but it explicitly disabled. 1957 DEBUG(dbgs() 1958 << "LV: Interleaving is beneficial but is explicitly disabled."); 1959 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1960 "but is explicitly disabled or interleave count is set to 1"; 1961 InterleaveLoop = false; 1962 } 1963 1964 // Override IC if user provided an interleave count. 1965 IC = UserIC > 0 ? UserIC : IC; 1966 1967 // Emit diagnostic messages, if any. 1968 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 1969 if (!VectorizeLoop && !InterleaveLoop) { 1970 // Do not vectorize or interleaving the loop. 1971 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1972 L->getStartLoc(), VecDiagMsg); 1973 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1974 L->getStartLoc(), IntDiagMsg); 1975 return false; 1976 } else if (!VectorizeLoop && InterleaveLoop) { 1977 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1978 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1979 L->getStartLoc(), VecDiagMsg); 1980 } else if (VectorizeLoop && !InterleaveLoop) { 1981 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1982 << DebugLocStr << '\n'); 1983 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1984 L->getStartLoc(), IntDiagMsg); 1985 } else if (VectorizeLoop && InterleaveLoop) { 1986 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1987 << DebugLocStr << '\n'); 1988 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1989 } 1990 1991 if (!VectorizeLoop) { 1992 assert(IC > 1 && "interleave count should not be 1 or 0"); 1993 // If we decided that it is not legal to vectorize the loop then 1994 // interleave it. 1995 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 1996 Unroller.vectorize(&LVL, CM.MinBWs); 1997 1998 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1999 Twine("interleaved loop (interleaved count: ") + 2000 Twine(IC) + ")"); 2001 } else { 2002 // If we decided that it is *legal* to vectorize the loop then do it. 2003 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 2004 LB.vectorize(&LVL, CM.MinBWs); 2005 ++LoopsVectorized; 2006 2007 // Add metadata to disable runtime unrolling scalar loop when there's no 2008 // runtime check about strides and memory. Because at this situation, 2009 // scalar loop is rarely used not worthy to be unrolled. 2010 if (!LB.IsSafetyChecksAdded()) 2011 AddRuntimeUnrollDisableMetaData(L); 2012 2013 // Report the vectorization decision. 2014 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2015 Twine("vectorized loop (vectorization width: ") + 2016 Twine(VF.Width) + ", interleaved count: " + 2017 Twine(IC) + ")"); 2018 } 2019 2020 // Mark the loop as already vectorized to avoid vectorizing again. 2021 Hints.setAlreadyVectorized(); 2022 2023 DEBUG(verifyFunction(*L->getHeader()->getParent())); 2024 return true; 2025 } 2026 2027 void getAnalysisUsage(AnalysisUsage &AU) const override { 2028 AU.addRequired<AssumptionCacheTracker>(); 2029 AU.addRequiredID(LoopSimplifyID); 2030 AU.addRequiredID(LCSSAID); 2031 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2032 AU.addRequired<DominatorTreeWrapperPass>(); 2033 AU.addRequired<LoopInfoWrapperPass>(); 2034 AU.addRequired<ScalarEvolutionWrapperPass>(); 2035 AU.addRequired<TargetTransformInfoWrapperPass>(); 2036 AU.addRequired<AAResultsWrapperPass>(); 2037 AU.addRequired<LoopAccessAnalysis>(); 2038 AU.addRequired<DemandedBits>(); 2039 AU.addPreserved<LoopInfoWrapperPass>(); 2040 AU.addPreserved<DominatorTreeWrapperPass>(); 2041 AU.addPreserved<BasicAAWrapperPass>(); 2042 AU.addPreserved<AAResultsWrapperPass>(); 2043 AU.addPreserved<GlobalsAAWrapperPass>(); 2044 } 2045 2046 }; 2047 2048 } // end anonymous namespace 2049 2050 //===----------------------------------------------------------------------===// 2051 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2052 // LoopVectorizationCostModel. 2053 //===----------------------------------------------------------------------===// 2054 2055 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2056 // We need to place the broadcast of invariant variables outside the loop. 2057 Instruction *Instr = dyn_cast<Instruction>(V); 2058 bool NewInstr = 2059 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 2060 Instr->getParent()) != LoopVectorBody.end()); 2061 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2062 2063 // Place the code for broadcasting invariant variables in the new preheader. 2064 IRBuilder<>::InsertPointGuard Guard(Builder); 2065 if (Invariant) 2066 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2067 2068 // Broadcast the scalar into all locations in the vector. 2069 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2070 2071 return Shuf; 2072 } 2073 2074 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2075 Value *Step) { 2076 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2077 assert(Val->getType()->getScalarType()->isIntegerTy() && 2078 "Elem must be an integer"); 2079 assert(Step->getType() == Val->getType()->getScalarType() && 2080 "Step has wrong type"); 2081 // Create the types. 2082 Type *ITy = Val->getType()->getScalarType(); 2083 VectorType *Ty = cast<VectorType>(Val->getType()); 2084 int VLen = Ty->getNumElements(); 2085 SmallVector<Constant*, 8> Indices; 2086 2087 // Create a vector of consecutive numbers from zero to VF. 2088 for (int i = 0; i < VLen; ++i) 2089 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2090 2091 // Add the consecutive indices to the vector value. 2092 Constant *Cv = ConstantVector::get(Indices); 2093 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2094 Step = Builder.CreateVectorSplat(VLen, Step); 2095 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2096 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2097 // which can be found from the original scalar operations. 2098 Step = Builder.CreateMul(Cv, Step); 2099 return Builder.CreateAdd(Val, Step, "induction"); 2100 } 2101 2102 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2103 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2104 auto *SE = PSE.getSE(); 2105 // Make sure that the pointer does not point to structs. 2106 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2107 return 0; 2108 2109 // If this value is a pointer induction variable we know it is consecutive. 2110 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2111 if (Phi && Inductions.count(Phi)) { 2112 InductionDescriptor II = Inductions[Phi]; 2113 return II.getConsecutiveDirection(); 2114 } 2115 2116 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2117 if (!Gep) 2118 return 0; 2119 2120 unsigned NumOperands = Gep->getNumOperands(); 2121 Value *GpPtr = Gep->getPointerOperand(); 2122 // If this GEP value is a consecutive pointer induction variable and all of 2123 // the indices are constant then we know it is consecutive. We can 2124 Phi = dyn_cast<PHINode>(GpPtr); 2125 if (Phi && Inductions.count(Phi)) { 2126 2127 // Make sure that the pointer does not point to structs. 2128 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2129 if (GepPtrType->getElementType()->isAggregateType()) 2130 return 0; 2131 2132 // Make sure that all of the index operands are loop invariant. 2133 for (unsigned i = 1; i < NumOperands; ++i) 2134 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2135 return 0; 2136 2137 InductionDescriptor II = Inductions[Phi]; 2138 return II.getConsecutiveDirection(); 2139 } 2140 2141 unsigned InductionOperand = getGEPInductionOperand(Gep); 2142 2143 // Check that all of the gep indices are uniform except for our induction 2144 // operand. 2145 for (unsigned i = 0; i != NumOperands; ++i) 2146 if (i != InductionOperand && 2147 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2148 return 0; 2149 2150 // We can emit wide load/stores only if the last non-zero index is the 2151 // induction variable. 2152 const SCEV *Last = nullptr; 2153 if (!Strides.count(Gep)) 2154 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2155 else { 2156 // Because of the multiplication by a stride we can have a s/zext cast. 2157 // We are going to replace this stride by 1 so the cast is safe to ignore. 2158 // 2159 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2160 // %0 = trunc i64 %indvars.iv to i32 2161 // %mul = mul i32 %0, %Stride1 2162 // %idxprom = zext i32 %mul to i64 << Safe cast. 2163 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2164 // 2165 Last = replaceSymbolicStrideSCEV(PSE, Strides, 2166 Gep->getOperand(InductionOperand), Gep); 2167 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2168 Last = 2169 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2170 ? C->getOperand() 2171 : Last; 2172 } 2173 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2174 const SCEV *Step = AR->getStepRecurrence(*SE); 2175 2176 // The memory is consecutive because the last index is consecutive 2177 // and all other indices are loop invariant. 2178 if (Step->isOne()) 2179 return 1; 2180 if (Step->isAllOnesValue()) 2181 return -1; 2182 } 2183 2184 return 0; 2185 } 2186 2187 bool LoopVectorizationLegality::isUniform(Value *V) { 2188 return LAI->isUniform(V); 2189 } 2190 2191 InnerLoopVectorizer::VectorParts& 2192 InnerLoopVectorizer::getVectorValue(Value *V) { 2193 assert(V != Induction && "The new induction variable should not be used."); 2194 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2195 2196 // If we have a stride that is replaced by one, do it here. 2197 if (Legal->hasStride(V)) 2198 V = ConstantInt::get(V->getType(), 1); 2199 2200 // If we have this scalar in the map, return it. 2201 if (WidenMap.has(V)) 2202 return WidenMap.get(V); 2203 2204 // If this scalar is unknown, assume that it is a constant or that it is 2205 // loop invariant. Broadcast V and save the value for future uses. 2206 Value *B = getBroadcastInstrs(V); 2207 return WidenMap.splat(V, B); 2208 } 2209 2210 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2211 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2212 SmallVector<Constant*, 8> ShuffleMask; 2213 for (unsigned i = 0; i < VF; ++i) 2214 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2215 2216 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2217 ConstantVector::get(ShuffleMask), 2218 "reverse"); 2219 } 2220 2221 // Get a mask to interleave \p NumVec vectors into a wide vector. 2222 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2223 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2224 // <0, 4, 1, 5, 2, 6, 3, 7> 2225 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2226 unsigned NumVec) { 2227 SmallVector<Constant *, 16> Mask; 2228 for (unsigned i = 0; i < VF; i++) 2229 for (unsigned j = 0; j < NumVec; j++) 2230 Mask.push_back(Builder.getInt32(j * VF + i)); 2231 2232 return ConstantVector::get(Mask); 2233 } 2234 2235 // Get the strided mask starting from index \p Start. 2236 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2237 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2238 unsigned Stride, unsigned VF) { 2239 SmallVector<Constant *, 16> Mask; 2240 for (unsigned i = 0; i < VF; i++) 2241 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2242 2243 return ConstantVector::get(Mask); 2244 } 2245 2246 // Get a mask of two parts: The first part consists of sequential integers 2247 // starting from 0, The second part consists of UNDEFs. 2248 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2249 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2250 unsigned NumUndef) { 2251 SmallVector<Constant *, 16> Mask; 2252 for (unsigned i = 0; i < NumInt; i++) 2253 Mask.push_back(Builder.getInt32(i)); 2254 2255 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2256 for (unsigned i = 0; i < NumUndef; i++) 2257 Mask.push_back(Undef); 2258 2259 return ConstantVector::get(Mask); 2260 } 2261 2262 // Concatenate two vectors with the same element type. The 2nd vector should 2263 // not have more elements than the 1st vector. If the 2nd vector has less 2264 // elements, extend it with UNDEFs. 2265 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2266 Value *V2) { 2267 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2268 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2269 assert(VecTy1 && VecTy2 && 2270 VecTy1->getScalarType() == VecTy2->getScalarType() && 2271 "Expect two vectors with the same element type"); 2272 2273 unsigned NumElts1 = VecTy1->getNumElements(); 2274 unsigned NumElts2 = VecTy2->getNumElements(); 2275 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2276 2277 if (NumElts1 > NumElts2) { 2278 // Extend with UNDEFs. 2279 Constant *ExtMask = 2280 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2281 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2282 } 2283 2284 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2285 return Builder.CreateShuffleVector(V1, V2, Mask); 2286 } 2287 2288 // Concatenate vectors in the given list. All vectors have the same type. 2289 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2290 ArrayRef<Value *> InputList) { 2291 unsigned NumVec = InputList.size(); 2292 assert(NumVec > 1 && "Should be at least two vectors"); 2293 2294 SmallVector<Value *, 8> ResList; 2295 ResList.append(InputList.begin(), InputList.end()); 2296 do { 2297 SmallVector<Value *, 8> TmpList; 2298 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2299 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2300 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2301 "Only the last vector may have a different type"); 2302 2303 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2304 } 2305 2306 // Push the last vector if the total number of vectors is odd. 2307 if (NumVec % 2 != 0) 2308 TmpList.push_back(ResList[NumVec - 1]); 2309 2310 ResList = TmpList; 2311 NumVec = ResList.size(); 2312 } while (NumVec > 1); 2313 2314 return ResList[0]; 2315 } 2316 2317 // Try to vectorize the interleave group that \p Instr belongs to. 2318 // 2319 // E.g. Translate following interleaved load group (factor = 3): 2320 // for (i = 0; i < N; i+=3) { 2321 // R = Pic[i]; // Member of index 0 2322 // G = Pic[i+1]; // Member of index 1 2323 // B = Pic[i+2]; // Member of index 2 2324 // ... // do something to R, G, B 2325 // } 2326 // To: 2327 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2328 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2329 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2330 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2331 // 2332 // Or translate following interleaved store group (factor = 3): 2333 // for (i = 0; i < N; i+=3) { 2334 // ... do something to R, G, B 2335 // Pic[i] = R; // Member of index 0 2336 // Pic[i+1] = G; // Member of index 1 2337 // Pic[i+2] = B; // Member of index 2 2338 // } 2339 // To: 2340 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2341 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2342 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2343 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2344 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2345 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2346 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2347 assert(Group && "Fail to get an interleaved access group."); 2348 2349 // Skip if current instruction is not the insert position. 2350 if (Instr != Group->getInsertPos()) 2351 return; 2352 2353 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2354 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2355 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2356 2357 // Prepare for the vector type of the interleaved load/store. 2358 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2359 unsigned InterleaveFactor = Group->getFactor(); 2360 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2361 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2362 2363 // Prepare for the new pointers. 2364 setDebugLocFromInst(Builder, Ptr); 2365 VectorParts &PtrParts = getVectorValue(Ptr); 2366 SmallVector<Value *, 2> NewPtrs; 2367 unsigned Index = Group->getIndex(Instr); 2368 for (unsigned Part = 0; Part < UF; Part++) { 2369 // Extract the pointer for current instruction from the pointer vector. A 2370 // reverse access uses the pointer in the last lane. 2371 Value *NewPtr = Builder.CreateExtractElement( 2372 PtrParts[Part], 2373 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2374 2375 // Notice current instruction could be any index. Need to adjust the address 2376 // to the member of index 0. 2377 // 2378 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2379 // b = A[i]; // Member of index 0 2380 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2381 // 2382 // E.g. A[i+1] = a; // Member of index 1 2383 // A[i] = b; // Member of index 0 2384 // A[i+2] = c; // Member of index 2 (Current instruction) 2385 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2386 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2387 2388 // Cast to the vector pointer type. 2389 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2390 } 2391 2392 setDebugLocFromInst(Builder, Instr); 2393 Value *UndefVec = UndefValue::get(VecTy); 2394 2395 // Vectorize the interleaved load group. 2396 if (LI) { 2397 for (unsigned Part = 0; Part < UF; Part++) { 2398 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2399 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2400 2401 for (unsigned i = 0; i < InterleaveFactor; i++) { 2402 Instruction *Member = Group->getMember(i); 2403 2404 // Skip the gaps in the group. 2405 if (!Member) 2406 continue; 2407 2408 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2409 Value *StridedVec = Builder.CreateShuffleVector( 2410 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2411 2412 // If this member has different type, cast the result type. 2413 if (Member->getType() != ScalarTy) { 2414 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2415 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2416 } 2417 2418 VectorParts &Entry = WidenMap.get(Member); 2419 Entry[Part] = 2420 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2421 } 2422 2423 addMetadata(NewLoadInstr, Instr); 2424 } 2425 return; 2426 } 2427 2428 // The sub vector type for current instruction. 2429 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2430 2431 // Vectorize the interleaved store group. 2432 for (unsigned Part = 0; Part < UF; Part++) { 2433 // Collect the stored vector from each member. 2434 SmallVector<Value *, 4> StoredVecs; 2435 for (unsigned i = 0; i < InterleaveFactor; i++) { 2436 // Interleaved store group doesn't allow a gap, so each index has a member 2437 Instruction *Member = Group->getMember(i); 2438 assert(Member && "Fail to get a member from an interleaved store group"); 2439 2440 Value *StoredVec = 2441 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2442 if (Group->isReverse()) 2443 StoredVec = reverseVector(StoredVec); 2444 2445 // If this member has different type, cast it to an unified type. 2446 if (StoredVec->getType() != SubVT) 2447 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2448 2449 StoredVecs.push_back(StoredVec); 2450 } 2451 2452 // Concatenate all vectors into a wide vector. 2453 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2454 2455 // Interleave the elements in the wide vector. 2456 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2457 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2458 "interleaved.vec"); 2459 2460 Instruction *NewStoreInstr = 2461 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2462 addMetadata(NewStoreInstr, Instr); 2463 } 2464 } 2465 2466 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2467 // Attempt to issue a wide load. 2468 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2469 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2470 2471 assert((LI || SI) && "Invalid Load/Store instruction"); 2472 2473 // Try to vectorize the interleave group if this access is interleaved. 2474 if (Legal->isAccessInterleaved(Instr)) 2475 return vectorizeInterleaveGroup(Instr); 2476 2477 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2478 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2479 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2480 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2481 // An alignment of 0 means target abi alignment. We need to use the scalar's 2482 // target abi alignment in such a case. 2483 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2484 if (!Alignment) 2485 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2486 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2487 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2488 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2489 2490 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2491 !Legal->isMaskRequired(SI)) 2492 return scalarizeInstruction(Instr, true); 2493 2494 if (ScalarAllocatedSize != VectorElementSize) 2495 return scalarizeInstruction(Instr); 2496 2497 // If the pointer is loop invariant scalarize the load. 2498 if (LI && Legal->isUniform(Ptr)) 2499 return scalarizeInstruction(Instr); 2500 2501 // If the pointer is non-consecutive and gather/scatter is not supported 2502 // scalarize the instruction. 2503 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2504 bool Reverse = ConsecutiveStride < 0; 2505 bool CreateGatherScatter = !ConsecutiveStride && 2506 ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2507 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2508 2509 if (!ConsecutiveStride && !CreateGatherScatter) 2510 return scalarizeInstruction(Instr); 2511 2512 Constant *Zero = Builder.getInt32(0); 2513 VectorParts &Entry = WidenMap.get(Instr); 2514 VectorParts VectorGep; 2515 2516 // Handle consecutive loads/stores. 2517 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2518 if (ConsecutiveStride) { 2519 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2520 setDebugLocFromInst(Builder, Gep); 2521 Value *PtrOperand = Gep->getPointerOperand(); 2522 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2523 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2524 2525 // Create the new GEP with the new induction variable. 2526 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2527 Gep2->setOperand(0, FirstBasePtr); 2528 Gep2->setName("gep.indvar.base"); 2529 Ptr = Builder.Insert(Gep2); 2530 } else if (Gep) { 2531 setDebugLocFromInst(Builder, Gep); 2532 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2533 OrigLoop) && 2534 "Base ptr must be invariant"); 2535 // The last index does not have to be the induction. It can be 2536 // consecutive and be a function of the index. For example A[I+1]; 2537 unsigned NumOperands = Gep->getNumOperands(); 2538 unsigned InductionOperand = getGEPInductionOperand(Gep); 2539 // Create the new GEP with the new induction variable. 2540 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2541 2542 for (unsigned i = 0; i < NumOperands; ++i) { 2543 Value *GepOperand = Gep->getOperand(i); 2544 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2545 2546 // Update last index or loop invariant instruction anchored in loop. 2547 if (i == InductionOperand || 2548 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2549 assert((i == InductionOperand || 2550 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2551 OrigLoop)) && 2552 "Must be last index or loop invariant"); 2553 2554 VectorParts &GEPParts = getVectorValue(GepOperand); 2555 Value *Index = GEPParts[0]; 2556 Index = Builder.CreateExtractElement(Index, Zero); 2557 Gep2->setOperand(i, Index); 2558 Gep2->setName("gep.indvar.idx"); 2559 } 2560 } 2561 Ptr = Builder.Insert(Gep2); 2562 } else { // No GEP 2563 // Use the induction element ptr. 2564 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2565 setDebugLocFromInst(Builder, Ptr); 2566 VectorParts &PtrVal = getVectorValue(Ptr); 2567 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2568 } 2569 } else { 2570 // At this point we should vector version of GEP for Gather or Scatter 2571 assert(CreateGatherScatter && "The instruction should be scalarized"); 2572 if (Gep) { 2573 SmallVector<VectorParts, 4> OpsV; 2574 // Vectorizing GEP, across UF parts, we want to keep each loop-invariant 2575 // base or index of GEP scalar 2576 for (Value *Op : Gep->operands()) { 2577 if (PSE.getSE()->isLoopInvariant(PSE.getSCEV(Op), OrigLoop)) 2578 OpsV.push_back(VectorParts(UF, Op)); 2579 else 2580 OpsV.push_back(getVectorValue(Op)); 2581 } 2582 2583 for (unsigned Part = 0; Part < UF; ++Part) { 2584 SmallVector<Value*, 4> Ops; 2585 Value *GEPBasePtr = OpsV[0][Part]; 2586 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2587 Ops.push_back(OpsV[i][Part]); 2588 Value *NewGep = Builder.CreateGEP(nullptr, GEPBasePtr, Ops, 2589 "VectorGep"); 2590 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2591 NewGep = Builder.CreateBitCast(NewGep, 2592 VectorType::get(Ptr->getType(), VF)); 2593 VectorGep.push_back(NewGep); 2594 } 2595 } else 2596 VectorGep = getVectorValue(Ptr); 2597 } 2598 2599 VectorParts Mask = createBlockInMask(Instr->getParent()); 2600 // Handle Stores: 2601 if (SI) { 2602 assert(!Legal->isUniform(SI->getPointerOperand()) && 2603 "We do not allow storing to uniform addresses"); 2604 setDebugLocFromInst(Builder, SI); 2605 // We don't want to update the value in the map as it might be used in 2606 // another expression. So don't use a reference type for "StoredVal". 2607 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2608 2609 for (unsigned Part = 0; Part < UF; ++Part) { 2610 Instruction *NewSI = nullptr; 2611 if (CreateGatherScatter) { 2612 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2613 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2614 Alignment, MaskPart); 2615 } else { 2616 // Calculate the pointer for the specific unroll-part. 2617 Value *PartPtr = 2618 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2619 2620 if (Reverse) { 2621 // If we store to reverse consecutive memory locations, then we need 2622 // to reverse the order of elements in the stored value. 2623 StoredVal[Part] = reverseVector(StoredVal[Part]); 2624 // If the address is consecutive but reversed, then the 2625 // wide store needs to start at the last vector element. 2626 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2627 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2628 Mask[Part] = reverseVector(Mask[Part]); 2629 } 2630 2631 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2632 DataTy->getPointerTo(AddressSpace)); 2633 2634 if (Legal->isMaskRequired(SI)) 2635 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2636 Mask[Part]); 2637 else 2638 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, 2639 Alignment); 2640 } 2641 addMetadata(NewSI, SI); 2642 } 2643 return; 2644 } 2645 2646 // Handle loads. 2647 assert(LI && "Must have a load instruction"); 2648 setDebugLocFromInst(Builder, LI); 2649 for (unsigned Part = 0; Part < UF; ++Part) { 2650 Instruction* NewLI; 2651 if (CreateGatherScatter) { 2652 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2653 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, 2654 MaskPart, 0, "wide.masked.gather"); 2655 Entry[Part] = NewLI; 2656 } else { 2657 // Calculate the pointer for the specific unroll-part. 2658 Value *PartPtr = 2659 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2660 2661 if (Reverse) { 2662 // If the address is consecutive but reversed, then the 2663 // wide load needs to start at the last vector element. 2664 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2665 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2666 Mask[Part] = reverseVector(Mask[Part]); 2667 } 2668 2669 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2670 DataTy->getPointerTo(AddressSpace)); 2671 if (Legal->isMaskRequired(LI)) 2672 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2673 UndefValue::get(DataTy), 2674 "wide.masked.load"); 2675 else 2676 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2677 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2678 } 2679 addMetadata(NewLI, LI); 2680 } 2681 } 2682 2683 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2684 bool IfPredicateStore) { 2685 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2686 // Holds vector parameters or scalars, in case of uniform vals. 2687 SmallVector<VectorParts, 4> Params; 2688 2689 setDebugLocFromInst(Builder, Instr); 2690 2691 // Find all of the vectorized parameters. 2692 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2693 Value *SrcOp = Instr->getOperand(op); 2694 2695 // If we are accessing the old induction variable, use the new one. 2696 if (SrcOp == OldInduction) { 2697 Params.push_back(getVectorValue(SrcOp)); 2698 continue; 2699 } 2700 2701 // Try using previously calculated values. 2702 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2703 2704 // If the src is an instruction that appeared earlier in the basic block, 2705 // then it should already be vectorized. 2706 if (SrcInst && OrigLoop->contains(SrcInst)) { 2707 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2708 // The parameter is a vector value from earlier. 2709 Params.push_back(WidenMap.get(SrcInst)); 2710 } else { 2711 // The parameter is a scalar from outside the loop. Maybe even a constant. 2712 VectorParts Scalars; 2713 Scalars.append(UF, SrcOp); 2714 Params.push_back(Scalars); 2715 } 2716 } 2717 2718 assert(Params.size() == Instr->getNumOperands() && 2719 "Invalid number of operands"); 2720 2721 // Does this instruction return a value ? 2722 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2723 2724 Value *UndefVec = IsVoidRetTy ? nullptr : 2725 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2726 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2727 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2728 2729 VectorParts Cond; 2730 if (IfPredicateStore) { 2731 assert(Instr->getParent()->getSinglePredecessor() && 2732 "Only support single predecessor blocks"); 2733 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2734 Instr->getParent()); 2735 } 2736 2737 // For each vector unroll 'part': 2738 for (unsigned Part = 0; Part < UF; ++Part) { 2739 // For each scalar that we create: 2740 for (unsigned Width = 0; Width < VF; ++Width) { 2741 2742 // Start if-block. 2743 Value *Cmp = nullptr; 2744 if (IfPredicateStore) { 2745 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2746 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2747 ConstantInt::get(Cmp->getType(), 1)); 2748 } 2749 2750 Instruction *Cloned = Instr->clone(); 2751 if (!IsVoidRetTy) 2752 Cloned->setName(Instr->getName() + ".cloned"); 2753 // Replace the operands of the cloned instructions with extracted scalars. 2754 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2755 Value *Op = Params[op][Part]; 2756 // Param is a vector. Need to extract the right lane. 2757 if (Op->getType()->isVectorTy()) 2758 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2759 Cloned->setOperand(op, Op); 2760 } 2761 addNewMetadata(Cloned, Instr); 2762 2763 // Place the cloned scalar in the new loop. 2764 Builder.Insert(Cloned); 2765 2766 // If we just cloned a new assumption, add it the assumption cache. 2767 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2768 if (II->getIntrinsicID() == Intrinsic::assume) 2769 AC->registerAssumption(II); 2770 2771 // If the original scalar returns a value we need to place it in a vector 2772 // so that future users will be able to use it. 2773 if (!IsVoidRetTy) 2774 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2775 Builder.getInt32(Width)); 2776 // End if-block. 2777 if (IfPredicateStore) 2778 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 2779 Cmp)); 2780 } 2781 } 2782 } 2783 2784 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2785 Value *End, Value *Step, 2786 Instruction *DL) { 2787 BasicBlock *Header = L->getHeader(); 2788 BasicBlock *Latch = L->getLoopLatch(); 2789 // As we're just creating this loop, it's possible no latch exists 2790 // yet. If so, use the header as this will be a single block loop. 2791 if (!Latch) 2792 Latch = Header; 2793 2794 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2795 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2796 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2797 2798 Builder.SetInsertPoint(Latch->getTerminator()); 2799 2800 // Create i+1 and fill the PHINode. 2801 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2802 Induction->addIncoming(Start, L->getLoopPreheader()); 2803 Induction->addIncoming(Next, Latch); 2804 // Create the compare. 2805 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2806 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2807 2808 // Now we have two terminators. Remove the old one from the block. 2809 Latch->getTerminator()->eraseFromParent(); 2810 2811 return Induction; 2812 } 2813 2814 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2815 if (TripCount) 2816 return TripCount; 2817 2818 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2819 // Find the loop boundaries. 2820 ScalarEvolution *SE = PSE.getSE(); 2821 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2822 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2823 "Invalid loop count"); 2824 2825 Type *IdxTy = Legal->getWidestInductionType(); 2826 2827 // The exit count might have the type of i64 while the phi is i32. This can 2828 // happen if we have an induction variable that is sign extended before the 2829 // compare. The only way that we get a backedge taken count is that the 2830 // induction variable was signed and as such will not overflow. In such a case 2831 // truncation is legal. 2832 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2833 IdxTy->getPrimitiveSizeInBits()) 2834 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2835 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2836 2837 // Get the total trip count from the count by adding 1. 2838 const SCEV *ExitCount = SE->getAddExpr( 2839 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2840 2841 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2842 2843 // Expand the trip count and place the new instructions in the preheader. 2844 // Notice that the pre-header does not change, only the loop body. 2845 SCEVExpander Exp(*SE, DL, "induction"); 2846 2847 // Count holds the overall loop count (N). 2848 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2849 L->getLoopPreheader()->getTerminator()); 2850 2851 if (TripCount->getType()->isPointerTy()) 2852 TripCount = 2853 CastInst::CreatePointerCast(TripCount, IdxTy, 2854 "exitcount.ptrcnt.to.int", 2855 L->getLoopPreheader()->getTerminator()); 2856 2857 return TripCount; 2858 } 2859 2860 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2861 if (VectorTripCount) 2862 return VectorTripCount; 2863 2864 Value *TC = getOrCreateTripCount(L); 2865 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2866 2867 // Now we need to generate the expression for N - (N % VF), which is 2868 // the part that the vectorized body will execute. 2869 // The loop step is equal to the vectorization factor (num of SIMD elements) 2870 // times the unroll factor (num of SIMD instructions). 2871 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2872 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2873 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2874 2875 return VectorTripCount; 2876 } 2877 2878 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2879 BasicBlock *Bypass) { 2880 Value *Count = getOrCreateTripCount(L); 2881 BasicBlock *BB = L->getLoopPreheader(); 2882 IRBuilder<> Builder(BB->getTerminator()); 2883 2884 // Generate code to check that the loop's trip count that we computed by 2885 // adding one to the backedge-taken count will not overflow. 2886 Value *CheckMinIters = 2887 Builder.CreateICmpULT(Count, 2888 ConstantInt::get(Count->getType(), VF * UF), 2889 "min.iters.check"); 2890 2891 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2892 "min.iters.checked"); 2893 // Update dominator tree immediately if the generated block is a 2894 // LoopBypassBlock because SCEV expansions to generate loop bypass 2895 // checks may query it before the current function is finished. 2896 DT->addNewBlock(NewBB, BB); 2897 if (L->getParentLoop()) 2898 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2899 ReplaceInstWithInst(BB->getTerminator(), 2900 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2901 LoopBypassBlocks.push_back(BB); 2902 } 2903 2904 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2905 BasicBlock *Bypass) { 2906 Value *TC = getOrCreateVectorTripCount(L); 2907 BasicBlock *BB = L->getLoopPreheader(); 2908 IRBuilder<> Builder(BB->getTerminator()); 2909 2910 // Now, compare the new count to zero. If it is zero skip the vector loop and 2911 // jump to the scalar loop. 2912 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2913 "cmp.zero"); 2914 2915 // Generate code to check that the loop's trip count that we computed by 2916 // adding one to the backedge-taken count will not overflow. 2917 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2918 "vector.ph"); 2919 // Update dominator tree immediately if the generated block is a 2920 // LoopBypassBlock because SCEV expansions to generate loop bypass 2921 // checks may query it before the current function is finished. 2922 DT->addNewBlock(NewBB, BB); 2923 if (L->getParentLoop()) 2924 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2925 ReplaceInstWithInst(BB->getTerminator(), 2926 BranchInst::Create(Bypass, NewBB, Cmp)); 2927 LoopBypassBlocks.push_back(BB); 2928 } 2929 2930 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2931 BasicBlock *BB = L->getLoopPreheader(); 2932 2933 // Generate the code to check that the SCEV assumptions that we made. 2934 // We want the new basic block to start at the first instruction in a 2935 // sequence of instructions that form a check. 2936 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2937 "scev.check"); 2938 Value *SCEVCheck = 2939 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2940 2941 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2942 if (C->isZero()) 2943 return; 2944 2945 // Create a new block containing the stride check. 2946 BB->setName("vector.scevcheck"); 2947 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2948 // Update dominator tree immediately if the generated block is a 2949 // LoopBypassBlock because SCEV expansions to generate loop bypass 2950 // checks may query it before the current function is finished. 2951 DT->addNewBlock(NewBB, BB); 2952 if (L->getParentLoop()) 2953 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2954 ReplaceInstWithInst(BB->getTerminator(), 2955 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2956 LoopBypassBlocks.push_back(BB); 2957 AddedSafetyChecks = true; 2958 } 2959 2960 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 2961 BasicBlock *Bypass) { 2962 BasicBlock *BB = L->getLoopPreheader(); 2963 2964 // Generate the code that checks in runtime if arrays overlap. We put the 2965 // checks into a separate block to make the more common case of few elements 2966 // faster. 2967 Instruction *FirstCheckInst; 2968 Instruction *MemRuntimeCheck; 2969 std::tie(FirstCheckInst, MemRuntimeCheck) = 2970 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2971 if (!MemRuntimeCheck) 2972 return; 2973 2974 // Create a new block containing the memory check. 2975 BB->setName("vector.memcheck"); 2976 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2977 // Update dominator tree immediately if the generated block is a 2978 // LoopBypassBlock because SCEV expansions to generate loop bypass 2979 // checks may query it before the current function is finished. 2980 DT->addNewBlock(NewBB, BB); 2981 if (L->getParentLoop()) 2982 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2983 ReplaceInstWithInst(BB->getTerminator(), 2984 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2985 LoopBypassBlocks.push_back(BB); 2986 AddedSafetyChecks = true; 2987 2988 // We currently don't use LoopVersioning for the actual loop cloning but we 2989 // still use it to add the noalias metadata. 2990 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2991 PSE.getSE()); 2992 LVer->prepareNoAliasMetadata(); 2993 } 2994 2995 2996 void InnerLoopVectorizer::createEmptyLoop() { 2997 /* 2998 In this function we generate a new loop. The new loop will contain 2999 the vectorized instructions while the old loop will continue to run the 3000 scalar remainder. 3001 3002 [ ] <-- loop iteration number check. 3003 / | 3004 / v 3005 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3006 | / | 3007 | / v 3008 || [ ] <-- vector pre header. 3009 |/ | 3010 | v 3011 | [ ] \ 3012 | [ ]_| <-- vector loop. 3013 | | 3014 | v 3015 | -[ ] <--- middle-block. 3016 | / | 3017 | / v 3018 -|- >[ ] <--- new preheader. 3019 | | 3020 | v 3021 | [ ] \ 3022 | [ ]_| <-- old scalar loop to handle remainder. 3023 \ | 3024 \ v 3025 >[ ] <-- exit block. 3026 ... 3027 */ 3028 3029 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3030 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3031 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3032 assert(VectorPH && "Invalid loop structure"); 3033 assert(ExitBlock && "Must have an exit block"); 3034 3035 // Some loops have a single integer induction variable, while other loops 3036 // don't. One example is c++ iterators that often have multiple pointer 3037 // induction variables. In the code below we also support a case where we 3038 // don't have a single induction variable. 3039 // 3040 // We try to obtain an induction variable from the original loop as hard 3041 // as possible. However if we don't find one that: 3042 // - is an integer 3043 // - counts from zero, stepping by one 3044 // - is the size of the widest induction variable type 3045 // then we create a new one. 3046 OldInduction = Legal->getInduction(); 3047 Type *IdxTy = Legal->getWidestInductionType(); 3048 3049 // Split the single block loop into the two loop structure described above. 3050 BasicBlock *VecBody = 3051 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3052 BasicBlock *MiddleBlock = 3053 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3054 BasicBlock *ScalarPH = 3055 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3056 3057 // Create and register the new vector loop. 3058 Loop* Lp = new Loop(); 3059 Loop *ParentLoop = OrigLoop->getParentLoop(); 3060 3061 // Insert the new loop into the loop nest and register the new basic blocks 3062 // before calling any utilities such as SCEV that require valid LoopInfo. 3063 if (ParentLoop) { 3064 ParentLoop->addChildLoop(Lp); 3065 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3066 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3067 } else { 3068 LI->addTopLevelLoop(Lp); 3069 } 3070 Lp->addBasicBlockToLoop(VecBody, *LI); 3071 3072 // Find the loop boundaries. 3073 Value *Count = getOrCreateTripCount(Lp); 3074 3075 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3076 3077 // We need to test whether the backedge-taken count is uint##_max. Adding one 3078 // to it will cause overflow and an incorrect loop trip count in the vector 3079 // body. In case of overflow we want to directly jump to the scalar remainder 3080 // loop. 3081 emitMinimumIterationCountCheck(Lp, ScalarPH); 3082 // Now, compare the new count to zero. If it is zero skip the vector loop and 3083 // jump to the scalar loop. 3084 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3085 // Generate the code to check any assumptions that we've made for SCEV 3086 // expressions. 3087 emitSCEVChecks(Lp, ScalarPH); 3088 3089 // Generate the code that checks in runtime if arrays overlap. We put the 3090 // checks into a separate block to make the more common case of few elements 3091 // faster. 3092 emitMemRuntimeChecks(Lp, ScalarPH); 3093 3094 // Generate the induction variable. 3095 // The loop step is equal to the vectorization factor (num of SIMD elements) 3096 // times the unroll factor (num of SIMD instructions). 3097 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3098 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3099 Induction = 3100 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3101 getDebugLocFromInstOrOperands(OldInduction)); 3102 3103 // We are going to resume the execution of the scalar loop. 3104 // Go over all of the induction variables that we found and fix the 3105 // PHIs that are left in the scalar version of the loop. 3106 // The starting values of PHI nodes depend on the counter of the last 3107 // iteration in the vectorized loop. 3108 // If we come from a bypass edge then we need to start from the original 3109 // start value. 3110 3111 // This variable saves the new starting index for the scalar loop. It is used 3112 // to test if there are any tail iterations left once the vector loop has 3113 // completed. 3114 LoopVectorizationLegality::InductionList::iterator I, E; 3115 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3116 for (I = List->begin(), E = List->end(); I != E; ++I) { 3117 PHINode *OrigPhi = I->first; 3118 InductionDescriptor II = I->second; 3119 3120 // Create phi nodes to merge from the backedge-taken check block. 3121 PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, 3122 "bc.resume.val", 3123 ScalarPH->getTerminator()); 3124 Value *EndValue; 3125 if (OrigPhi == OldInduction) { 3126 // We know what the end value is. 3127 EndValue = CountRoundDown; 3128 } else { 3129 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3130 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3131 II.getStepValue()->getType(), 3132 "cast.crd"); 3133 EndValue = II.transform(B, CRD); 3134 EndValue->setName("ind.end"); 3135 } 3136 3137 // The new PHI merges the original incoming value, in case of a bypass, 3138 // or the value at the end of the vectorized loop. 3139 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3140 3141 // Fix the scalar body counter (PHI node). 3142 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3143 3144 // The old induction's phi node in the scalar body needs the truncated 3145 // value. 3146 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3147 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 3148 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3149 } 3150 3151 // Add a check in the middle block to see if we have completed 3152 // all of the iterations in the first vector loop. 3153 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3154 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3155 CountRoundDown, "cmp.n", 3156 MiddleBlock->getTerminator()); 3157 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3158 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3159 3160 // Get ready to start creating new instructions into the vectorized body. 3161 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3162 3163 // Save the state. 3164 LoopVectorPreHeader = Lp->getLoopPreheader(); 3165 LoopScalarPreHeader = ScalarPH; 3166 LoopMiddleBlock = MiddleBlock; 3167 LoopExitBlock = ExitBlock; 3168 LoopVectorBody.push_back(VecBody); 3169 LoopScalarBody = OldBasicBlock; 3170 3171 LoopVectorizeHints Hints(Lp, true); 3172 Hints.setAlreadyVectorized(); 3173 } 3174 3175 namespace { 3176 struct CSEDenseMapInfo { 3177 static bool canHandle(Instruction *I) { 3178 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3179 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3180 } 3181 static inline Instruction *getEmptyKey() { 3182 return DenseMapInfo<Instruction *>::getEmptyKey(); 3183 } 3184 static inline Instruction *getTombstoneKey() { 3185 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3186 } 3187 static unsigned getHashValue(Instruction *I) { 3188 assert(canHandle(I) && "Unknown instruction!"); 3189 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3190 I->value_op_end())); 3191 } 3192 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3193 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3194 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3195 return LHS == RHS; 3196 return LHS->isIdenticalTo(RHS); 3197 } 3198 }; 3199 } 3200 3201 /// \brief Check whether this block is a predicated block. 3202 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 3203 /// = ...; " blocks. We start with one vectorized basic block. For every 3204 /// conditional block we split this vectorized block. Therefore, every second 3205 /// block will be a predicated one. 3206 static bool isPredicatedBlock(unsigned BlockNum) { 3207 return BlockNum % 2; 3208 } 3209 3210 ///\brief Perform cse of induction variable instructions. 3211 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 3212 // Perform simple cse. 3213 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3214 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 3215 BasicBlock *BB = BBs[i]; 3216 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3217 Instruction *In = &*I++; 3218 3219 if (!CSEDenseMapInfo::canHandle(In)) 3220 continue; 3221 3222 // Check if we can replace this instruction with any of the 3223 // visited instructions. 3224 if (Instruction *V = CSEMap.lookup(In)) { 3225 In->replaceAllUsesWith(V); 3226 In->eraseFromParent(); 3227 continue; 3228 } 3229 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 3230 // ...;" blocks for predicated stores. Every second block is a predicated 3231 // block. 3232 if (isPredicatedBlock(i)) 3233 continue; 3234 3235 CSEMap[In] = In; 3236 } 3237 } 3238 } 3239 3240 /// \brief Adds a 'fast' flag to floating point operations. 3241 static Value *addFastMathFlag(Value *V) { 3242 if (isa<FPMathOperator>(V)){ 3243 FastMathFlags Flags; 3244 Flags.setUnsafeAlgebra(); 3245 cast<Instruction>(V)->setFastMathFlags(Flags); 3246 } 3247 return V; 3248 } 3249 3250 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3251 /// the result needs to be inserted and/or extracted from vectors. 3252 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3253 const TargetTransformInfo &TTI) { 3254 if (Ty->isVoidTy()) 3255 return 0; 3256 3257 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3258 unsigned Cost = 0; 3259 3260 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3261 if (Insert) 3262 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3263 if (Extract) 3264 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3265 } 3266 3267 return Cost; 3268 } 3269 3270 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3271 // Return the cost of the instruction, including scalarization overhead if it's 3272 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3273 // i.e. either vector version isn't available, or is too expensive. 3274 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3275 const TargetTransformInfo &TTI, 3276 const TargetLibraryInfo *TLI, 3277 bool &NeedToScalarize) { 3278 Function *F = CI->getCalledFunction(); 3279 StringRef FnName = CI->getCalledFunction()->getName(); 3280 Type *ScalarRetTy = CI->getType(); 3281 SmallVector<Type *, 4> Tys, ScalarTys; 3282 for (auto &ArgOp : CI->arg_operands()) 3283 ScalarTys.push_back(ArgOp->getType()); 3284 3285 // Estimate cost of scalarized vector call. The source operands are assumed 3286 // to be vectors, so we need to extract individual elements from there, 3287 // execute VF scalar calls, and then gather the result into the vector return 3288 // value. 3289 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3290 if (VF == 1) 3291 return ScalarCallCost; 3292 3293 // Compute corresponding vector type for return value and arguments. 3294 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3295 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3296 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3297 3298 // Compute costs of unpacking argument values for the scalar calls and 3299 // packing the return values to a vector. 3300 unsigned ScalarizationCost = 3301 getScalarizationOverhead(RetTy, true, false, TTI); 3302 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3303 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3304 3305 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3306 3307 // If we can't emit a vector call for this function, then the currently found 3308 // cost is the cost we need to return. 3309 NeedToScalarize = true; 3310 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3311 return Cost; 3312 3313 // If the corresponding vector cost is cheaper, return its cost. 3314 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3315 if (VectorCallCost < Cost) { 3316 NeedToScalarize = false; 3317 return VectorCallCost; 3318 } 3319 return Cost; 3320 } 3321 3322 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3323 // factor VF. Return the cost of the instruction, including scalarization 3324 // overhead if it's needed. 3325 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3326 const TargetTransformInfo &TTI, 3327 const TargetLibraryInfo *TLI) { 3328 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3329 assert(ID && "Expected intrinsic call!"); 3330 3331 Type *RetTy = ToVectorTy(CI->getType(), VF); 3332 SmallVector<Type *, 4> Tys; 3333 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3334 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3335 3336 FastMathFlags FMF; 3337 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3338 FMF = FPMO->getFastMathFlags(); 3339 3340 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3341 } 3342 3343 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3344 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3345 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3346 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3347 } 3348 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3349 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3350 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3351 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3352 } 3353 3354 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3355 // For every instruction `I` in MinBWs, truncate the operands, create a 3356 // truncated version of `I` and reextend its result. InstCombine runs 3357 // later and will remove any ext/trunc pairs. 3358 // 3359 for (auto &KV : MinBWs) { 3360 VectorParts &Parts = WidenMap.get(KV.first); 3361 for (Value *&I : Parts) { 3362 if (I->use_empty()) 3363 continue; 3364 Type *OriginalTy = I->getType(); 3365 Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(), 3366 KV.second); 3367 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3368 OriginalTy->getVectorNumElements()); 3369 if (TruncatedTy == OriginalTy) 3370 continue; 3371 3372 if (!isa<Instruction>(I)) 3373 continue; 3374 3375 IRBuilder<> B(cast<Instruction>(I)); 3376 auto ShrinkOperand = [&](Value *V) -> Value* { 3377 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3378 if (ZI->getSrcTy() == TruncatedTy) 3379 return ZI->getOperand(0); 3380 return B.CreateZExtOrTrunc(V, TruncatedTy); 3381 }; 3382 3383 // The actual instruction modification depends on the instruction type, 3384 // unfortunately. 3385 Value *NewI = nullptr; 3386 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3387 NewI = B.CreateBinOp(BO->getOpcode(), 3388 ShrinkOperand(BO->getOperand(0)), 3389 ShrinkOperand(BO->getOperand(1))); 3390 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3391 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3392 NewI = B.CreateICmp(CI->getPredicate(), 3393 ShrinkOperand(CI->getOperand(0)), 3394 ShrinkOperand(CI->getOperand(1))); 3395 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3396 NewI = B.CreateSelect(SI->getCondition(), 3397 ShrinkOperand(SI->getTrueValue()), 3398 ShrinkOperand(SI->getFalseValue())); 3399 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3400 switch (CI->getOpcode()) { 3401 default: llvm_unreachable("Unhandled cast!"); 3402 case Instruction::Trunc: 3403 NewI = ShrinkOperand(CI->getOperand(0)); 3404 break; 3405 case Instruction::SExt: 3406 NewI = B.CreateSExtOrTrunc(CI->getOperand(0), 3407 smallestIntegerVectorType(OriginalTy, 3408 TruncatedTy)); 3409 break; 3410 case Instruction::ZExt: 3411 NewI = B.CreateZExtOrTrunc(CI->getOperand(0), 3412 smallestIntegerVectorType(OriginalTy, 3413 TruncatedTy)); 3414 break; 3415 } 3416 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3417 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3418 auto *O0 = 3419 B.CreateZExtOrTrunc(SI->getOperand(0), 3420 VectorType::get(ScalarTruncatedTy, Elements0)); 3421 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3422 auto *O1 = 3423 B.CreateZExtOrTrunc(SI->getOperand(1), 3424 VectorType::get(ScalarTruncatedTy, Elements1)); 3425 3426 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3427 } else if (isa<LoadInst>(I)) { 3428 // Don't do anything with the operands, just extend the result. 3429 continue; 3430 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3431 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3432 auto *O0 = B.CreateZExtOrTrunc( 3433 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3434 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3435 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3436 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3437 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3438 auto *O0 = B.CreateZExtOrTrunc( 3439 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3440 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3441 } else { 3442 llvm_unreachable("Unhandled instruction type!"); 3443 } 3444 3445 // Lastly, extend the result. 3446 NewI->takeName(cast<Instruction>(I)); 3447 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3448 I->replaceAllUsesWith(Res); 3449 cast<Instruction>(I)->eraseFromParent(); 3450 I = Res; 3451 } 3452 } 3453 3454 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3455 for (auto &KV : MinBWs) { 3456 VectorParts &Parts = WidenMap.get(KV.first); 3457 for (Value *&I : Parts) { 3458 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3459 if (Inst && Inst->use_empty()) { 3460 Value *NewI = Inst->getOperand(0); 3461 Inst->eraseFromParent(); 3462 I = NewI; 3463 } 3464 } 3465 } 3466 } 3467 3468 void InnerLoopVectorizer::vectorizeLoop() { 3469 //===------------------------------------------------===// 3470 // 3471 // Notice: any optimization or new instruction that go 3472 // into the code below should be also be implemented in 3473 // the cost-model. 3474 // 3475 //===------------------------------------------------===// 3476 Constant *Zero = Builder.getInt32(0); 3477 3478 // In order to support recurrences we need to be able to vectorize Phi nodes. 3479 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3480 // we create a new vector PHI node with no incoming edges. We use this value 3481 // when we vectorize all of the instructions that use the PHI. Next, after 3482 // all of the instructions in the block are complete we add the new incoming 3483 // edges to the PHI. At this point all of the instructions in the basic block 3484 // are vectorized, so we can use them to construct the PHI. 3485 PhiVector PHIsToFix; 3486 3487 // Scan the loop in a topological order to ensure that defs are vectorized 3488 // before users. 3489 LoopBlocksDFS DFS(OrigLoop); 3490 DFS.perform(LI); 3491 3492 // Vectorize all of the blocks in the original loop. 3493 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3494 be = DFS.endRPO(); bb != be; ++bb) 3495 vectorizeBlockInLoop(*bb, &PHIsToFix); 3496 3497 // Insert truncates and extends for any truncated instructions as hints to 3498 // InstCombine. 3499 if (VF > 1) 3500 truncateToMinimalBitwidths(); 3501 3502 // At this point every instruction in the original loop is widened to a 3503 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3504 // nodes are currently empty because we did not want to introduce cycles. 3505 // This is the second stage of vectorizing recurrences. 3506 for (PHINode *Phi : PHIsToFix) { 3507 assert(Phi && "Unable to recover vectorized PHI"); 3508 3509 // Handle first-order recurrences that need to be fixed. 3510 if (Legal->isFirstOrderRecurrence(Phi)) { 3511 fixFirstOrderRecurrence(Phi); 3512 continue; 3513 } 3514 3515 // If the phi node is not a first-order recurrence, it must be a reduction. 3516 // Get it's reduction variable descriptor. 3517 assert(Legal->isReductionVariable(Phi) && 3518 "Unable to find the reduction variable"); 3519 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3520 3521 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3522 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3523 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3524 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3525 RdxDesc.getMinMaxRecurrenceKind(); 3526 setDebugLocFromInst(Builder, ReductionStartValue); 3527 3528 // We need to generate a reduction vector from the incoming scalar. 3529 // To do so, we need to generate the 'identity' vector and override 3530 // one of the elements with the incoming scalar reduction. We need 3531 // to do it in the vector-loop preheader. 3532 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3533 3534 // This is the vector-clone of the value that leaves the loop. 3535 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3536 Type *VecTy = VectorExit[0]->getType(); 3537 3538 // Find the reduction identity variable. Zero for addition, or, xor, 3539 // one for multiplication, -1 for And. 3540 Value *Identity; 3541 Value *VectorStart; 3542 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3543 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3544 // MinMax reduction have the start value as their identify. 3545 if (VF == 1) { 3546 VectorStart = Identity = ReductionStartValue; 3547 } else { 3548 VectorStart = Identity = 3549 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3550 } 3551 } else { 3552 // Handle other reduction kinds: 3553 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3554 RK, VecTy->getScalarType()); 3555 if (VF == 1) { 3556 Identity = Iden; 3557 // This vector is the Identity vector where the first element is the 3558 // incoming scalar reduction. 3559 VectorStart = ReductionStartValue; 3560 } else { 3561 Identity = ConstantVector::getSplat(VF, Iden); 3562 3563 // This vector is the Identity vector where the first element is the 3564 // incoming scalar reduction. 3565 VectorStart = 3566 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3567 } 3568 } 3569 3570 // Fix the vector-loop phi. 3571 3572 // Reductions do not have to start at zero. They can start with 3573 // any loop invariant values. 3574 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3575 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3576 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3577 VectorParts &Val = getVectorValue(LoopVal); 3578 for (unsigned part = 0; part < UF; ++part) { 3579 // Make sure to add the reduction stat value only to the 3580 // first unroll part. 3581 Value *StartVal = (part == 0) ? VectorStart : Identity; 3582 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3583 LoopVectorPreHeader); 3584 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3585 LoopVectorBody.back()); 3586 } 3587 3588 // Before each round, move the insertion point right between 3589 // the PHIs and the values we are going to write. 3590 // This allows us to write both PHINodes and the extractelement 3591 // instructions. 3592 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3593 3594 VectorParts RdxParts = getVectorValue(LoopExitInst); 3595 setDebugLocFromInst(Builder, LoopExitInst); 3596 3597 // If the vector reduction can be performed in a smaller type, we truncate 3598 // then extend the loop exit value to enable InstCombine to evaluate the 3599 // entire expression in the smaller type. 3600 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3601 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3602 Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator()); 3603 for (unsigned part = 0; part < UF; ++part) { 3604 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3605 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3606 : Builder.CreateZExt(Trunc, VecTy); 3607 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3608 UI != RdxParts[part]->user_end();) 3609 if (*UI != Trunc) { 3610 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3611 RdxParts[part] = Extnd; 3612 } else { 3613 ++UI; 3614 } 3615 } 3616 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3617 for (unsigned part = 0; part < UF; ++part) 3618 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3619 } 3620 3621 // Reduce all of the unrolled parts into a single vector. 3622 Value *ReducedPartRdx = RdxParts[0]; 3623 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3624 setDebugLocFromInst(Builder, ReducedPartRdx); 3625 for (unsigned part = 1; part < UF; ++part) { 3626 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3627 // Floating point operations had to be 'fast' to enable the reduction. 3628 ReducedPartRdx = addFastMathFlag( 3629 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3630 ReducedPartRdx, "bin.rdx")); 3631 else 3632 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3633 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3634 } 3635 3636 if (VF > 1) { 3637 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3638 // and vector ops, reducing the set of values being computed by half each 3639 // round. 3640 assert(isPowerOf2_32(VF) && 3641 "Reduction emission only supported for pow2 vectors!"); 3642 Value *TmpVec = ReducedPartRdx; 3643 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3644 for (unsigned i = VF; i != 1; i >>= 1) { 3645 // Move the upper half of the vector to the lower half. 3646 for (unsigned j = 0; j != i/2; ++j) 3647 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3648 3649 // Fill the rest of the mask with undef. 3650 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3651 UndefValue::get(Builder.getInt32Ty())); 3652 3653 Value *Shuf = 3654 Builder.CreateShuffleVector(TmpVec, 3655 UndefValue::get(TmpVec->getType()), 3656 ConstantVector::get(ShuffleMask), 3657 "rdx.shuf"); 3658 3659 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3660 // Floating point operations had to be 'fast' to enable the reduction. 3661 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3662 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3663 else 3664 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3665 TmpVec, Shuf); 3666 } 3667 3668 // The result is in the first element of the vector. 3669 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3670 Builder.getInt32(0)); 3671 3672 // If the reduction can be performed in a smaller type, we need to extend 3673 // the reduction to the wider type before we branch to the original loop. 3674 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3675 ReducedPartRdx = 3676 RdxDesc.isSigned() 3677 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3678 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3679 } 3680 3681 // Create a phi node that merges control-flow from the backedge-taken check 3682 // block and the middle block. 3683 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3684 LoopScalarPreHeader->getTerminator()); 3685 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3686 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3687 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3688 3689 // Now, we need to fix the users of the reduction variable 3690 // inside and outside of the scalar remainder loop. 3691 // We know that the loop is in LCSSA form. We need to update the 3692 // PHI nodes in the exit blocks. 3693 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3694 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3695 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3696 if (!LCSSAPhi) break; 3697 3698 // All PHINodes need to have a single entry edge, or two if 3699 // we already fixed them. 3700 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3701 3702 // We found our reduction value exit-PHI. Update it with the 3703 // incoming bypass edge. 3704 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3705 // Add an edge coming from the bypass. 3706 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3707 break; 3708 } 3709 }// end of the LCSSA phi scan. 3710 3711 // Fix the scalar loop reduction variable with the incoming reduction sum 3712 // from the vector body and from the backedge value. 3713 int IncomingEdgeBlockIdx = 3714 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3715 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3716 // Pick the other block. 3717 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3718 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3719 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3720 } // end of for each Phi in PHIsToFix. 3721 3722 fixLCSSAPHIs(); 3723 3724 // Make sure DomTree is updated. 3725 updateAnalysis(); 3726 3727 // Predicate any stores. 3728 for (auto KV : PredicatedStores) { 3729 BasicBlock::iterator I(KV.first); 3730 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3731 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3732 /*BranchWeights=*/nullptr, DT, LI); 3733 I->moveBefore(T); 3734 I->getParent()->setName("pred.store.if"); 3735 BB->setName("pred.store.continue"); 3736 } 3737 DEBUG(DT->verifyDomTree()); 3738 // Remove redundant induction instructions. 3739 cse(LoopVectorBody); 3740 } 3741 3742 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3743 3744 // This is the second phase of vectorizing first-order rececurrences. An 3745 // overview of the transformation is described below. Suppose we have the 3746 // following loop. 3747 // 3748 // for (int i = 0; i < n; ++i) 3749 // b[i] = a[i] - a[i - 1]; 3750 // 3751 // There is a first-order recurrence on "a". For this loop, the shorthand 3752 // scalar IR looks like: 3753 // 3754 // scalar.ph: 3755 // s_init = a[-1] 3756 // br scalar.body 3757 // 3758 // scalar.body: 3759 // i = phi [0, scalar.ph], [i+1, scalar.body] 3760 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3761 // s2 = a[i] 3762 // b[i] = s2 - s1 3763 // br cond, scalar.body, ... 3764 // 3765 // In this example, s1 is a recurrence because it's value depends on the 3766 // previous iteration. In the first phase of vectorization, we created a 3767 // temporary value for s1. We now complete the vectorization and produce the 3768 // shorthand vector IR shown below (for VF = 4, UF = 1). 3769 // 3770 // vector.ph: 3771 // v_init = vector(..., ..., ..., a[-1]) 3772 // br vector.body 3773 // 3774 // vector.body 3775 // i = phi [0, vector.ph], [i+4, vector.body] 3776 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3777 // v2 = a[i, i+1, i+2, i+3]; 3778 // v3 = vector(v1(3), v2(0, 1, 2)) 3779 // b[i, i+1, i+2, i+3] = v2 - v3 3780 // br cond, vector.body, middle.block 3781 // 3782 // middle.block: 3783 // x = v2(3) 3784 // br scalar.ph 3785 // 3786 // scalar.ph: 3787 // s_init = phi [x, middle.block], [a[-1], otherwise] 3788 // br scalar.body 3789 // 3790 // After execution completes the vector loop, we extract the next value of 3791 // the recurrence (x) to use as the initial value in the scalar loop. 3792 3793 // Get the original loop preheader and single loop latch. 3794 auto *Preheader = OrigLoop->getLoopPreheader(); 3795 auto *Latch = OrigLoop->getLoopLatch(); 3796 3797 // Get the initial and previous values of the scalar recurrence. 3798 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3799 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3800 3801 // Create a vector from the initial value. 3802 auto *VectorInit = ScalarInit; 3803 if (VF > 1) { 3804 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3805 VectorInit = Builder.CreateInsertElement( 3806 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3807 Builder.getInt32(VF - 1), "vector.recur.init"); 3808 } 3809 3810 // We constructed a temporary phi node in the first phase of vectorization. 3811 // This phi node will eventually be deleted. 3812 auto &PhiParts = getVectorValue(Phi); 3813 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3814 3815 // Create a phi node for the new recurrence. The current value will either be 3816 // the initial value inserted into a vector or loop-varying vector value. 3817 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3818 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3819 3820 // Get the vectorized previous value. We ensured the previous values was an 3821 // instruction when detecting the recurrence. 3822 auto &PreviousParts = getVectorValue(Previous); 3823 3824 // Set the insertion point to be after this instruction. We ensured the 3825 // previous value dominated all uses of the phi when detecting the 3826 // recurrence. 3827 Builder.SetInsertPoint( 3828 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3829 3830 // We will construct a vector for the recurrence by combining the values for 3831 // the current and previous iterations. This is the required shuffle mask. 3832 SmallVector<Constant *, 8> ShuffleMask(VF); 3833 ShuffleMask[0] = Builder.getInt32(VF - 1); 3834 for (unsigned I = 1; I < VF; ++I) 3835 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3836 3837 // The vector from which to take the initial value for the current iteration 3838 // (actual or unrolled). Initially, this is the vector phi node. 3839 Value *Incoming = VecPhi; 3840 3841 // Shuffle the current and previous vector and update the vector parts. 3842 for (unsigned Part = 0; Part < UF; ++Part) { 3843 auto *Shuffle = 3844 VF > 1 3845 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3846 ConstantVector::get(ShuffleMask)) 3847 : Incoming; 3848 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3849 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3850 PhiParts[Part] = Shuffle; 3851 Incoming = PreviousParts[Part]; 3852 } 3853 3854 // Fix the latch value of the new recurrence in the vector loop. 3855 VecPhi->addIncoming(Incoming, 3856 LI->getLoopFor(LoopVectorBody[0])->getLoopLatch()); 3857 3858 // Extract the last vector element in the middle block. This will be the 3859 // initial value for the recurrence when jumping to the scalar loop. 3860 auto *Extract = Incoming; 3861 if (VF > 1) { 3862 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3863 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 3864 "vector.recur.extract"); 3865 } 3866 3867 // Fix the initial value of the original recurrence in the scalar loop. 3868 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3869 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3870 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3871 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 3872 Start->addIncoming(Incoming, BB); 3873 } 3874 3875 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3876 Phi->setName("scalar.recur"); 3877 3878 // Finally, fix users of the recurrence outside the loop. The users will need 3879 // either the last value of the scalar recurrence or the last value of the 3880 // vector recurrence we extracted in the middle block. Since the loop is in 3881 // LCSSA form, we just need to find the phi node for the original scalar 3882 // recurrence in the exit block, and then add an edge for the middle block. 3883 for (auto &I : *LoopExitBlock) { 3884 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 3885 if (!LCSSAPhi) 3886 break; 3887 if (LCSSAPhi->getIncomingValue(0) == Phi) { 3888 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 3889 break; 3890 } 3891 } 3892 } 3893 3894 void InnerLoopVectorizer::fixLCSSAPHIs() { 3895 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3896 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3897 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3898 if (!LCSSAPhi) break; 3899 if (LCSSAPhi->getNumIncomingValues() == 1) 3900 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3901 LoopMiddleBlock); 3902 } 3903 } 3904 3905 InnerLoopVectorizer::VectorParts 3906 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3907 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3908 "Invalid edge"); 3909 3910 // Look for cached value. 3911 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3912 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3913 if (ECEntryIt != MaskCache.end()) 3914 return ECEntryIt->second; 3915 3916 VectorParts SrcMask = createBlockInMask(Src); 3917 3918 // The terminator has to be a branch inst! 3919 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3920 assert(BI && "Unexpected terminator found"); 3921 3922 if (BI->isConditional()) { 3923 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3924 3925 if (BI->getSuccessor(0) != Dst) 3926 for (unsigned part = 0; part < UF; ++part) 3927 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3928 3929 for (unsigned part = 0; part < UF; ++part) 3930 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3931 3932 MaskCache[Edge] = EdgeMask; 3933 return EdgeMask; 3934 } 3935 3936 MaskCache[Edge] = SrcMask; 3937 return SrcMask; 3938 } 3939 3940 InnerLoopVectorizer::VectorParts 3941 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3942 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3943 3944 // Loop incoming mask is all-one. 3945 if (OrigLoop->getHeader() == BB) { 3946 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3947 return getVectorValue(C); 3948 } 3949 3950 // This is the block mask. We OR all incoming edges, and with zero. 3951 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3952 VectorParts BlockMask = getVectorValue(Zero); 3953 3954 // For each pred: 3955 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3956 VectorParts EM = createEdgeMask(*it, BB); 3957 for (unsigned part = 0; part < UF; ++part) 3958 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3959 } 3960 3961 return BlockMask; 3962 } 3963 3964 void InnerLoopVectorizer::widenPHIInstruction( 3965 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 3966 unsigned VF, PhiVector *PV) { 3967 PHINode* P = cast<PHINode>(PN); 3968 // Handle recurrences. 3969 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3970 for (unsigned part = 0; part < UF; ++part) { 3971 // This is phase one of vectorizing PHIs. 3972 Type *VecTy = (VF == 1) ? PN->getType() : 3973 VectorType::get(PN->getType(), VF); 3974 Entry[part] = PHINode::Create( 3975 VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt()); 3976 } 3977 PV->push_back(P); 3978 return; 3979 } 3980 3981 setDebugLocFromInst(Builder, P); 3982 // Check for PHI nodes that are lowered to vector selects. 3983 if (P->getParent() != OrigLoop->getHeader()) { 3984 // We know that all PHIs in non-header blocks are converted into 3985 // selects, so we don't have to worry about the insertion order and we 3986 // can just use the builder. 3987 // At this point we generate the predication tree. There may be 3988 // duplications since this is a simple recursive scan, but future 3989 // optimizations will clean it up. 3990 3991 unsigned NumIncoming = P->getNumIncomingValues(); 3992 3993 // Generate a sequence of selects of the form: 3994 // SELECT(Mask3, In3, 3995 // SELECT(Mask2, In2, 3996 // ( ...))) 3997 for (unsigned In = 0; In < NumIncoming; In++) { 3998 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3999 P->getParent()); 4000 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4001 4002 for (unsigned part = 0; part < UF; ++part) { 4003 // We might have single edge PHIs (blocks) - use an identity 4004 // 'select' for the first PHI operand. 4005 if (In == 0) 4006 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 4007 In0[part]); 4008 else 4009 // Select between the current value and the previous incoming edge 4010 // based on the incoming mask. 4011 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 4012 Entry[part], "predphi"); 4013 } 4014 } 4015 return; 4016 } 4017 4018 // This PHINode must be an induction variable. 4019 // Make sure that we know about it. 4020 assert(Legal->getInductionVars()->count(P) && 4021 "Not an induction variable"); 4022 4023 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4024 4025 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4026 // which can be found from the original scalar operations. 4027 switch (II.getKind()) { 4028 case InductionDescriptor::IK_NoInduction: 4029 llvm_unreachable("Unknown induction"); 4030 case InductionDescriptor::IK_IntInduction: { 4031 assert(P->getType() == II.getStartValue()->getType() && 4032 "Types must match"); 4033 // Handle other induction variables that are now based on the 4034 // canonical one. 4035 Value *V = Induction; 4036 if (P != OldInduction) { 4037 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 4038 V = II.transform(Builder, V); 4039 V->setName("offset.idx"); 4040 } 4041 Value *Broadcasted = getBroadcastInstrs(V); 4042 // After broadcasting the induction variable we need to make the vector 4043 // consecutive by adding 0, 1, 2, etc. 4044 for (unsigned part = 0; part < UF; ++part) 4045 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue()); 4046 return; 4047 } 4048 case InductionDescriptor::IK_PtrInduction: 4049 // Handle the pointer induction variable case. 4050 assert(P->getType()->isPointerTy() && "Unexpected type."); 4051 // This is the normalized GEP that starts counting at zero. 4052 Value *PtrInd = Induction; 4053 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType()); 4054 // This is the vector of results. Notice that we don't generate 4055 // vector geps because scalar geps result in better code. 4056 for (unsigned part = 0; part < UF; ++part) { 4057 if (VF == 1) { 4058 int EltIndex = part; 4059 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4060 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4061 Value *SclrGep = II.transform(Builder, GlobalIdx); 4062 SclrGep->setName("next.gep"); 4063 Entry[part] = SclrGep; 4064 continue; 4065 } 4066 4067 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4068 for (unsigned int i = 0; i < VF; ++i) { 4069 int EltIndex = i + part * VF; 4070 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4071 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4072 Value *SclrGep = II.transform(Builder, GlobalIdx); 4073 SclrGep->setName("next.gep"); 4074 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4075 Builder.getInt32(i), 4076 "insert.gep"); 4077 } 4078 Entry[part] = VecVal; 4079 } 4080 return; 4081 } 4082 } 4083 4084 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4085 // For each instruction in the old loop. 4086 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4087 VectorParts &Entry = WidenMap.get(&*it); 4088 4089 switch (it->getOpcode()) { 4090 case Instruction::Br: 4091 // Nothing to do for PHIs and BR, since we already took care of the 4092 // loop control flow instructions. 4093 continue; 4094 case Instruction::PHI: { 4095 // Vectorize PHINodes. 4096 widenPHIInstruction(&*it, Entry, UF, VF, PV); 4097 continue; 4098 }// End of PHI. 4099 4100 case Instruction::Add: 4101 case Instruction::FAdd: 4102 case Instruction::Sub: 4103 case Instruction::FSub: 4104 case Instruction::Mul: 4105 case Instruction::FMul: 4106 case Instruction::UDiv: 4107 case Instruction::SDiv: 4108 case Instruction::FDiv: 4109 case Instruction::URem: 4110 case Instruction::SRem: 4111 case Instruction::FRem: 4112 case Instruction::Shl: 4113 case Instruction::LShr: 4114 case Instruction::AShr: 4115 case Instruction::And: 4116 case Instruction::Or: 4117 case Instruction::Xor: { 4118 // Just widen binops. 4119 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 4120 setDebugLocFromInst(Builder, BinOp); 4121 VectorParts &A = getVectorValue(it->getOperand(0)); 4122 VectorParts &B = getVectorValue(it->getOperand(1)); 4123 4124 // Use this vector value for all users of the original instruction. 4125 for (unsigned Part = 0; Part < UF; ++Part) { 4126 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4127 4128 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4129 VecOp->copyIRFlags(BinOp); 4130 4131 Entry[Part] = V; 4132 } 4133 4134 addMetadata(Entry, &*it); 4135 break; 4136 } 4137 case Instruction::Select: { 4138 // Widen selects. 4139 // If the selector is loop invariant we can create a select 4140 // instruction with a scalar condition. Otherwise, use vector-select. 4141 auto *SE = PSE.getSE(); 4142 bool InvariantCond = 4143 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 4144 setDebugLocFromInst(Builder, &*it); 4145 4146 // The condition can be loop invariant but still defined inside the 4147 // loop. This means that we can't just use the original 'cond' value. 4148 // We have to take the 'vectorized' value and pick the first lane. 4149 // Instcombine will make this a no-op. 4150 VectorParts &Cond = getVectorValue(it->getOperand(0)); 4151 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 4152 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 4153 4154 Value *ScalarCond = (VF == 1) ? Cond[0] : 4155 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4156 4157 for (unsigned Part = 0; Part < UF; ++Part) { 4158 Entry[Part] = Builder.CreateSelect( 4159 InvariantCond ? ScalarCond : Cond[Part], 4160 Op0[Part], 4161 Op1[Part]); 4162 } 4163 4164 addMetadata(Entry, &*it); 4165 break; 4166 } 4167 4168 case Instruction::ICmp: 4169 case Instruction::FCmp: { 4170 // Widen compares. Generate vector compares. 4171 bool FCmp = (it->getOpcode() == Instruction::FCmp); 4172 CmpInst *Cmp = dyn_cast<CmpInst>(it); 4173 setDebugLocFromInst(Builder, &*it); 4174 VectorParts &A = getVectorValue(it->getOperand(0)); 4175 VectorParts &B = getVectorValue(it->getOperand(1)); 4176 for (unsigned Part = 0; Part < UF; ++Part) { 4177 Value *C = nullptr; 4178 if (FCmp) { 4179 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4180 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 4181 } else { 4182 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4183 } 4184 Entry[Part] = C; 4185 } 4186 4187 addMetadata(Entry, &*it); 4188 break; 4189 } 4190 4191 case Instruction::Store: 4192 case Instruction::Load: 4193 vectorizeMemoryInstruction(&*it); 4194 break; 4195 case Instruction::ZExt: 4196 case Instruction::SExt: 4197 case Instruction::FPToUI: 4198 case Instruction::FPToSI: 4199 case Instruction::FPExt: 4200 case Instruction::PtrToInt: 4201 case Instruction::IntToPtr: 4202 case Instruction::SIToFP: 4203 case Instruction::UIToFP: 4204 case Instruction::Trunc: 4205 case Instruction::FPTrunc: 4206 case Instruction::BitCast: { 4207 CastInst *CI = dyn_cast<CastInst>(it); 4208 setDebugLocFromInst(Builder, &*it); 4209 /// Optimize the special case where the source is the induction 4210 /// variable. Notice that we can only optimize the 'trunc' case 4211 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 4212 /// c. other casts depend on pointer size. 4213 if (CI->getOperand(0) == OldInduction && 4214 it->getOpcode() == Instruction::Trunc) { 4215 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 4216 CI->getType()); 4217 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 4218 InductionDescriptor II = 4219 Legal->getInductionVars()->lookup(OldInduction); 4220 Constant *Step = ConstantInt::getSigned( 4221 CI->getType(), II.getStepValue()->getSExtValue()); 4222 for (unsigned Part = 0; Part < UF; ++Part) 4223 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 4224 addMetadata(Entry, &*it); 4225 break; 4226 } 4227 /// Vectorize casts. 4228 Type *DestTy = (VF == 1) ? CI->getType() : 4229 VectorType::get(CI->getType(), VF); 4230 4231 VectorParts &A = getVectorValue(it->getOperand(0)); 4232 for (unsigned Part = 0; Part < UF; ++Part) 4233 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4234 addMetadata(Entry, &*it); 4235 break; 4236 } 4237 4238 case Instruction::Call: { 4239 // Ignore dbg intrinsics. 4240 if (isa<DbgInfoIntrinsic>(it)) 4241 break; 4242 setDebugLocFromInst(Builder, &*it); 4243 4244 Module *M = BB->getParent()->getParent(); 4245 CallInst *CI = cast<CallInst>(it); 4246 4247 StringRef FnName = CI->getCalledFunction()->getName(); 4248 Function *F = CI->getCalledFunction(); 4249 Type *RetTy = ToVectorTy(CI->getType(), VF); 4250 SmallVector<Type *, 4> Tys; 4251 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4252 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4253 4254 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 4255 if (ID && 4256 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4257 ID == Intrinsic::lifetime_start)) { 4258 scalarizeInstruction(&*it); 4259 break; 4260 } 4261 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4262 // version of the instruction. 4263 // Is it beneficial to perform intrinsic call compared to lib call? 4264 bool NeedToScalarize; 4265 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4266 bool UseVectorIntrinsic = 4267 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4268 if (!UseVectorIntrinsic && NeedToScalarize) { 4269 scalarizeInstruction(&*it); 4270 break; 4271 } 4272 4273 for (unsigned Part = 0; Part < UF; ++Part) { 4274 SmallVector<Value *, 4> Args; 4275 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4276 Value *Arg = CI->getArgOperand(i); 4277 // Some intrinsics have a scalar argument - don't replace it with a 4278 // vector. 4279 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4280 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4281 Arg = VectorArg[Part]; 4282 } 4283 Args.push_back(Arg); 4284 } 4285 4286 Function *VectorF; 4287 if (UseVectorIntrinsic) { 4288 // Use vector version of the intrinsic. 4289 Type *TysForDecl[] = {CI->getType()}; 4290 if (VF > 1) 4291 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4292 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4293 } else { 4294 // Use vector version of the library call. 4295 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4296 assert(!VFnName.empty() && "Vector function name is empty."); 4297 VectorF = M->getFunction(VFnName); 4298 if (!VectorF) { 4299 // Generate a declaration 4300 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4301 VectorF = 4302 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4303 VectorF->copyAttributesFrom(F); 4304 } 4305 } 4306 assert(VectorF && "Can't create vector function."); 4307 4308 CallInst *V = Builder.CreateCall(VectorF, Args); 4309 4310 if (isa<FPMathOperator>(V)) 4311 V->copyFastMathFlags(CI); 4312 4313 Entry[Part] = V; 4314 } 4315 4316 addMetadata(Entry, &*it); 4317 break; 4318 } 4319 4320 default: 4321 // All other instructions are unsupported. Scalarize them. 4322 scalarizeInstruction(&*it); 4323 break; 4324 }// end of switch. 4325 }// end of for_each instr. 4326 } 4327 4328 void InnerLoopVectorizer::updateAnalysis() { 4329 // Forget the original basic block. 4330 PSE.getSE()->forgetLoop(OrigLoop); 4331 4332 // Update the dominator tree information. 4333 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4334 "Entry does not dominate exit."); 4335 4336 // We don't predicate stores by this point, so the vector body should be a 4337 // single loop. 4338 assert(LoopVectorBody.size() == 1 && "Expected single block loop!"); 4339 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 4340 4341 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back()); 4342 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4343 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4344 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4345 4346 DEBUG(DT->verifyDomTree()); 4347 } 4348 4349 /// \brief Check whether it is safe to if-convert this phi node. 4350 /// 4351 /// Phi nodes with constant expressions that can trap are not safe to if 4352 /// convert. 4353 static bool canIfConvertPHINodes(BasicBlock *BB) { 4354 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4355 PHINode *Phi = dyn_cast<PHINode>(I); 4356 if (!Phi) 4357 return true; 4358 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 4359 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4360 if (C->canTrap()) 4361 return false; 4362 } 4363 return true; 4364 } 4365 4366 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4367 if (!EnableIfConversion) { 4368 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4369 return false; 4370 } 4371 4372 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4373 4374 // A list of pointers that we can safely read and write to. 4375 SmallPtrSet<Value *, 8> SafePointes; 4376 4377 // Collect safe addresses. 4378 for (Loop::block_iterator BI = TheLoop->block_begin(), 4379 BE = TheLoop->block_end(); BI != BE; ++BI) { 4380 BasicBlock *BB = *BI; 4381 4382 if (blockNeedsPredication(BB)) 4383 continue; 4384 4385 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4386 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4387 SafePointes.insert(LI->getPointerOperand()); 4388 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4389 SafePointes.insert(SI->getPointerOperand()); 4390 } 4391 } 4392 4393 // Collect the blocks that need predication. 4394 BasicBlock *Header = TheLoop->getHeader(); 4395 for (Loop::block_iterator BI = TheLoop->block_begin(), 4396 BE = TheLoop->block_end(); BI != BE; ++BI) { 4397 BasicBlock *BB = *BI; 4398 4399 // We don't support switch statements inside loops. 4400 if (!isa<BranchInst>(BB->getTerminator())) { 4401 emitAnalysis(VectorizationReport(BB->getTerminator()) 4402 << "loop contains a switch statement"); 4403 return false; 4404 } 4405 4406 // We must be able to predicate all blocks that need to be predicated. 4407 if (blockNeedsPredication(BB)) { 4408 if (!blockCanBePredicated(BB, SafePointes)) { 4409 emitAnalysis(VectorizationReport(BB->getTerminator()) 4410 << "control flow cannot be substituted for a select"); 4411 return false; 4412 } 4413 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4414 emitAnalysis(VectorizationReport(BB->getTerminator()) 4415 << "control flow cannot be substituted for a select"); 4416 return false; 4417 } 4418 } 4419 4420 // We can if-convert this loop. 4421 return true; 4422 } 4423 4424 bool LoopVectorizationLegality::canVectorize() { 4425 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4426 // be canonicalized. 4427 if (!TheLoop->getLoopPreheader()) { 4428 emitAnalysis( 4429 VectorizationReport() << 4430 "loop control flow is not understood by vectorizer"); 4431 return false; 4432 } 4433 4434 // We can only vectorize innermost loops. 4435 if (!TheLoop->empty()) { 4436 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4437 return false; 4438 } 4439 4440 // We must have a single backedge. 4441 if (TheLoop->getNumBackEdges() != 1) { 4442 emitAnalysis( 4443 VectorizationReport() << 4444 "loop control flow is not understood by vectorizer"); 4445 return false; 4446 } 4447 4448 // We must have a single exiting block. 4449 if (!TheLoop->getExitingBlock()) { 4450 emitAnalysis( 4451 VectorizationReport() << 4452 "loop control flow is not understood by vectorizer"); 4453 return false; 4454 } 4455 4456 // We only handle bottom-tested loops, i.e. loop in which the condition is 4457 // checked at the end of each iteration. With that we can assume that all 4458 // instructions in the loop are executed the same number of times. 4459 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4460 emitAnalysis( 4461 VectorizationReport() << 4462 "loop control flow is not understood by vectorizer"); 4463 return false; 4464 } 4465 4466 // We need to have a loop header. 4467 DEBUG(dbgs() << "LV: Found a loop: " << 4468 TheLoop->getHeader()->getName() << '\n'); 4469 4470 // Check if we can if-convert non-single-bb loops. 4471 unsigned NumBlocks = TheLoop->getNumBlocks(); 4472 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4473 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4474 return false; 4475 } 4476 4477 // ScalarEvolution needs to be able to find the exit count. 4478 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4479 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4480 emitAnalysis(VectorizationReport() 4481 << "could not determine number of loop iterations"); 4482 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4483 return false; 4484 } 4485 4486 // Check if we can vectorize the instructions and CFG in this loop. 4487 if (!canVectorizeInstrs()) { 4488 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4489 return false; 4490 } 4491 4492 // Go over each instruction and look at memory deps. 4493 if (!canVectorizeMemory()) { 4494 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4495 return false; 4496 } 4497 4498 // Collect all of the variables that remain uniform after vectorization. 4499 collectLoopUniforms(); 4500 4501 DEBUG(dbgs() << "LV: We can vectorize this loop" 4502 << (LAI->getRuntimePointerChecking()->Need 4503 ? " (with a runtime bound check)" 4504 : "") 4505 << "!\n"); 4506 4507 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4508 4509 // If an override option has been passed in for interleaved accesses, use it. 4510 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4511 UseInterleaved = EnableInterleavedMemAccesses; 4512 4513 // Analyze interleaved memory accesses. 4514 if (UseInterleaved) 4515 InterleaveInfo.analyzeInterleaving(Strides); 4516 4517 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4518 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4519 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4520 4521 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4522 emitAnalysis(VectorizationReport() 4523 << "Too many SCEV assumptions need to be made and checked " 4524 << "at runtime"); 4525 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4526 return false; 4527 } 4528 4529 // Okay! We can vectorize. At this point we don't have any other mem analysis 4530 // which may limit our maximum vectorization factor, so just return true with 4531 // no restrictions. 4532 return true; 4533 } 4534 4535 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4536 if (Ty->isPointerTy()) 4537 return DL.getIntPtrType(Ty); 4538 4539 // It is possible that char's or short's overflow when we ask for the loop's 4540 // trip count, work around this by changing the type size. 4541 if (Ty->getScalarSizeInBits() < 32) 4542 return Type::getInt32Ty(Ty->getContext()); 4543 4544 return Ty; 4545 } 4546 4547 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4548 Ty0 = convertPointerToIntegerType(DL, Ty0); 4549 Ty1 = convertPointerToIntegerType(DL, Ty1); 4550 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4551 return Ty0; 4552 return Ty1; 4553 } 4554 4555 /// \brief Check that the instruction has outside loop users and is not an 4556 /// identified reduction variable. 4557 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4558 SmallPtrSetImpl<Value *> &Reductions) { 4559 // Reduction instructions are allowed to have exit users. All other 4560 // instructions must not have external users. 4561 if (!Reductions.count(Inst)) 4562 //Check that all of the users of the loop are inside the BB. 4563 for (User *U : Inst->users()) { 4564 Instruction *UI = cast<Instruction>(U); 4565 // This user may be a reduction exit value. 4566 if (!TheLoop->contains(UI)) { 4567 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4568 return true; 4569 } 4570 } 4571 return false; 4572 } 4573 4574 bool LoopVectorizationLegality::canVectorizeInstrs() { 4575 BasicBlock *Header = TheLoop->getHeader(); 4576 4577 // Look for the attribute signaling the absence of NaNs. 4578 Function &F = *Header->getParent(); 4579 const DataLayout &DL = F.getParent()->getDataLayout(); 4580 HasFunNoNaNAttr = 4581 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4582 4583 // For each block in the loop. 4584 for (Loop::block_iterator bb = TheLoop->block_begin(), 4585 be = TheLoop->block_end(); bb != be; ++bb) { 4586 4587 // Scan the instructions in the block and look for hazards. 4588 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4589 ++it) { 4590 4591 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4592 Type *PhiTy = Phi->getType(); 4593 // Check that this PHI type is allowed. 4594 if (!PhiTy->isIntegerTy() && 4595 !PhiTy->isFloatingPointTy() && 4596 !PhiTy->isPointerTy()) { 4597 emitAnalysis(VectorizationReport(&*it) 4598 << "loop control flow is not understood by vectorizer"); 4599 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4600 return false; 4601 } 4602 4603 // If this PHINode is not in the header block, then we know that we 4604 // can convert it to select during if-conversion. No need to check if 4605 // the PHIs in this block are induction or reduction variables. 4606 if (*bb != Header) { 4607 // Check that this instruction has no outside users or is an 4608 // identified reduction value with an outside user. 4609 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4610 continue; 4611 emitAnalysis(VectorizationReport(&*it) << 4612 "value could not be identified as " 4613 "an induction or reduction variable"); 4614 return false; 4615 } 4616 4617 // We only allow if-converted PHIs with exactly two incoming values. 4618 if (Phi->getNumIncomingValues() != 2) { 4619 emitAnalysis(VectorizationReport(&*it) 4620 << "control flow not understood by vectorizer"); 4621 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4622 return false; 4623 } 4624 4625 InductionDescriptor ID; 4626 if (InductionDescriptor::isInductionPHI(Phi, PSE.getSE(), ID)) { 4627 Inductions[Phi] = ID; 4628 // Get the widest type. 4629 if (!WidestIndTy) 4630 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4631 else 4632 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4633 4634 // Int inductions are special because we only allow one IV. 4635 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4636 ID.getStepValue()->isOne() && 4637 isa<Constant>(ID.getStartValue()) && 4638 cast<Constant>(ID.getStartValue())->isNullValue()) { 4639 // Use the phi node with the widest type as induction. Use the last 4640 // one if there are multiple (no good reason for doing this other 4641 // than it is expedient). We've checked that it begins at zero and 4642 // steps by one, so this is a canonical induction variable. 4643 if (!Induction || PhiTy == WidestIndTy) 4644 Induction = Phi; 4645 } 4646 4647 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4648 4649 // Until we explicitly handle the case of an induction variable with 4650 // an outside loop user we have to give up vectorizing this loop. 4651 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4652 emitAnalysis(VectorizationReport(&*it) << 4653 "use of induction value outside of the " 4654 "loop is not handled by vectorizer"); 4655 return false; 4656 } 4657 4658 continue; 4659 } 4660 4661 RecurrenceDescriptor RedDes; 4662 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4663 if (RedDes.hasUnsafeAlgebra()) 4664 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4665 AllowedExit.insert(RedDes.getLoopExitInstr()); 4666 Reductions[Phi] = RedDes; 4667 continue; 4668 } 4669 4670 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4671 FirstOrderRecurrences.insert(Phi); 4672 continue; 4673 } 4674 4675 emitAnalysis(VectorizationReport(&*it) << 4676 "value that could not be identified as " 4677 "reduction is used outside the loop"); 4678 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4679 return false; 4680 }// end of PHI handling 4681 4682 // We handle calls that: 4683 // * Are debug info intrinsics. 4684 // * Have a mapping to an IR intrinsic. 4685 // * Have a vector version available. 4686 CallInst *CI = dyn_cast<CallInst>(it); 4687 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4688 !(CI->getCalledFunction() && TLI && 4689 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4690 emitAnalysis(VectorizationReport(&*it) 4691 << "call instruction cannot be vectorized"); 4692 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4693 return false; 4694 } 4695 4696 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4697 // second argument is the same (i.e. loop invariant) 4698 if (CI && 4699 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 4700 auto *SE = PSE.getSE(); 4701 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4702 emitAnalysis(VectorizationReport(&*it) 4703 << "intrinsic instruction cannot be vectorized"); 4704 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4705 return false; 4706 } 4707 } 4708 4709 // Check that the instruction return type is vectorizable. 4710 // Also, we can't vectorize extractelement instructions. 4711 if ((!VectorType::isValidElementType(it->getType()) && 4712 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4713 emitAnalysis(VectorizationReport(&*it) 4714 << "instruction return type cannot be vectorized"); 4715 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4716 return false; 4717 } 4718 4719 // Check that the stored type is vectorizable. 4720 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4721 Type *T = ST->getValueOperand()->getType(); 4722 if (!VectorType::isValidElementType(T)) { 4723 emitAnalysis(VectorizationReport(ST) << 4724 "store instruction cannot be vectorized"); 4725 return false; 4726 } 4727 if (EnableMemAccessVersioning) 4728 collectStridedAccess(ST); 4729 4730 } else if (LoadInst *LI = dyn_cast<LoadInst>(it)) { 4731 if (EnableMemAccessVersioning) 4732 collectStridedAccess(LI); 4733 4734 // FP instructions can allow unsafe algebra, thus vectorizable by 4735 // non-IEEE-754 compliant SIMD units. 4736 // This applies to floating-point math operations and calls, not memory 4737 // operations, shuffles, or casts, as they don't change precision or 4738 // semantics. 4739 } else if (it->getType()->isFloatingPointTy() && 4740 (CI || it->isBinaryOp()) && 4741 !it->hasUnsafeAlgebra()) { 4742 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4743 Hints->setPotentiallyUnsafe(); 4744 } 4745 4746 // Reduction instructions are allowed to have exit users. 4747 // All other instructions must not have external users. 4748 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4749 emitAnalysis(VectorizationReport(&*it) << 4750 "value cannot be used outside the loop"); 4751 return false; 4752 } 4753 4754 } // next instr. 4755 4756 } 4757 4758 if (!Induction) { 4759 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4760 if (Inductions.empty()) { 4761 emitAnalysis(VectorizationReport() 4762 << "loop induction variable could not be identified"); 4763 return false; 4764 } 4765 } 4766 4767 // Now we know the widest induction type, check if our found induction 4768 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4769 // will create another. 4770 if (Induction && WidestIndTy != Induction->getType()) 4771 Induction = nullptr; 4772 4773 return true; 4774 } 4775 4776 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4777 Value *Ptr = nullptr; 4778 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4779 Ptr = LI->getPointerOperand(); 4780 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4781 Ptr = SI->getPointerOperand(); 4782 else 4783 return; 4784 4785 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); 4786 if (!Stride) 4787 return; 4788 4789 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4790 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4791 Strides[Ptr] = Stride; 4792 StrideSet.insert(Stride); 4793 } 4794 4795 void LoopVectorizationLegality::collectLoopUniforms() { 4796 // We now know that the loop is vectorizable! 4797 // Collect variables that will remain uniform after vectorization. 4798 std::vector<Value*> Worklist; 4799 BasicBlock *Latch = TheLoop->getLoopLatch(); 4800 4801 // Start with the conditional branch and walk up the block. 4802 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4803 4804 // Also add all consecutive pointer values; these values will be uniform 4805 // after vectorization (and subsequent cleanup) and, until revectorization is 4806 // supported, all dependencies must also be uniform. 4807 for (Loop::block_iterator B = TheLoop->block_begin(), 4808 BE = TheLoop->block_end(); B != BE; ++B) 4809 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4810 I != IE; ++I) 4811 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4812 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4813 4814 while (!Worklist.empty()) { 4815 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4816 Worklist.pop_back(); 4817 4818 // Look at instructions inside this loop. 4819 // Stop when reaching PHI nodes. 4820 // TODO: we need to follow values all over the loop, not only in this block. 4821 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4822 continue; 4823 4824 // This is a known uniform. 4825 Uniforms.insert(I); 4826 4827 // Insert all operands. 4828 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4829 } 4830 } 4831 4832 bool LoopVectorizationLegality::canVectorizeMemory() { 4833 LAI = &LAA->getInfo(TheLoop, Strides); 4834 auto &OptionalReport = LAI->getReport(); 4835 if (OptionalReport) 4836 emitAnalysis(VectorizationReport(*OptionalReport)); 4837 if (!LAI->canVectorizeMemory()) 4838 return false; 4839 4840 if (LAI->hasStoreToLoopInvariantAddress()) { 4841 emitAnalysis( 4842 VectorizationReport() 4843 << "write to a loop invariant address could not be vectorized"); 4844 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4845 return false; 4846 } 4847 4848 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4849 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 4850 4851 return true; 4852 } 4853 4854 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4855 Value *In0 = const_cast<Value*>(V); 4856 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4857 if (!PN) 4858 return false; 4859 4860 return Inductions.count(PN); 4861 } 4862 4863 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 4864 return FirstOrderRecurrences.count(Phi); 4865 } 4866 4867 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4868 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4869 } 4870 4871 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4872 SmallPtrSetImpl<Value *> &SafePtrs) { 4873 4874 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4875 // Check that we don't have a constant expression that can trap as operand. 4876 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4877 OI != OE; ++OI) { 4878 if (Constant *C = dyn_cast<Constant>(*OI)) 4879 if (C->canTrap()) 4880 return false; 4881 } 4882 // We might be able to hoist the load. 4883 if (it->mayReadFromMemory()) { 4884 LoadInst *LI = dyn_cast<LoadInst>(it); 4885 if (!LI) 4886 return false; 4887 if (!SafePtrs.count(LI->getPointerOperand())) { 4888 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 4889 isLegalMaskedGather(LI->getType())) { 4890 MaskedOp.insert(LI); 4891 continue; 4892 } 4893 return false; 4894 } 4895 } 4896 4897 // We don't predicate stores at the moment. 4898 if (it->mayWriteToMemory()) { 4899 StoreInst *SI = dyn_cast<StoreInst>(it); 4900 // We only support predication of stores in basic blocks with one 4901 // predecessor. 4902 if (!SI) 4903 return false; 4904 4905 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4906 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4907 4908 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4909 !isSinglePredecessor) { 4910 // Build a masked store if it is legal for the target, otherwise 4911 // scalarize the block. 4912 bool isLegalMaskedOp = 4913 isLegalMaskedStore(SI->getValueOperand()->getType(), 4914 SI->getPointerOperand()) || 4915 isLegalMaskedScatter(SI->getValueOperand()->getType()); 4916 if (isLegalMaskedOp) { 4917 --NumPredStores; 4918 MaskedOp.insert(SI); 4919 continue; 4920 } 4921 return false; 4922 } 4923 } 4924 if (it->mayThrow()) 4925 return false; 4926 4927 // The instructions below can trap. 4928 switch (it->getOpcode()) { 4929 default: continue; 4930 case Instruction::UDiv: 4931 case Instruction::SDiv: 4932 case Instruction::URem: 4933 case Instruction::SRem: 4934 return false; 4935 } 4936 } 4937 4938 return true; 4939 } 4940 4941 void InterleavedAccessInfo::collectConstStridedAccesses( 4942 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4943 const ValueToValueMap &Strides) { 4944 // Holds load/store instructions in program order. 4945 SmallVector<Instruction *, 16> AccessList; 4946 4947 for (auto *BB : TheLoop->getBlocks()) { 4948 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4949 4950 for (auto &I : *BB) { 4951 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4952 continue; 4953 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4954 if (IsPred) 4955 return; 4956 4957 AccessList.push_back(&I); 4958 } 4959 } 4960 4961 if (AccessList.empty()) 4962 return; 4963 4964 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4965 for (auto I : AccessList) { 4966 LoadInst *LI = dyn_cast<LoadInst>(I); 4967 StoreInst *SI = dyn_cast<StoreInst>(I); 4968 4969 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4970 int Stride = isStridedPtr(PSE, Ptr, TheLoop, Strides); 4971 4972 // The factor of the corresponding interleave group. 4973 unsigned Factor = std::abs(Stride); 4974 4975 // Ignore the access if the factor is too small or too large. 4976 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 4977 continue; 4978 4979 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4980 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4981 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4982 4983 // An alignment of 0 means target ABI alignment. 4984 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4985 if (!Align) 4986 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4987 4988 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 4989 } 4990 } 4991 4992 // Analyze interleaved accesses and collect them into interleave groups. 4993 // 4994 // Notice that the vectorization on interleaved groups will change instruction 4995 // orders and may break dependences. But the memory dependence check guarantees 4996 // that there is no overlap between two pointers of different strides, element 4997 // sizes or underlying bases. 4998 // 4999 // For pointers sharing the same stride, element size and underlying base, no 5000 // need to worry about Read-After-Write dependences and Write-After-Read 5001 // dependences. 5002 // 5003 // E.g. The RAW dependence: A[i] = a; 5004 // b = A[i]; 5005 // This won't exist as it is a store-load forwarding conflict, which has 5006 // already been checked and forbidden in the dependence check. 5007 // 5008 // E.g. The WAR dependence: a = A[i]; // (1) 5009 // A[i] = b; // (2) 5010 // The store group of (2) is always inserted at or below (2), and the load group 5011 // of (1) is always inserted at or above (1). The dependence is safe. 5012 void InterleavedAccessInfo::analyzeInterleaving( 5013 const ValueToValueMap &Strides) { 5014 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5015 5016 // Holds all the stride accesses. 5017 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 5018 collectConstStridedAccesses(StrideAccesses, Strides); 5019 5020 if (StrideAccesses.empty()) 5021 return; 5022 5023 // Holds all interleaved store groups temporarily. 5024 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5025 // Holds all interleaved load groups temporarily. 5026 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5027 5028 // Search the load-load/write-write pair B-A in bottom-up order and try to 5029 // insert B into the interleave group of A according to 3 rules: 5030 // 1. A and B have the same stride. 5031 // 2. A and B have the same memory object size. 5032 // 3. B belongs to the group according to the distance. 5033 // 5034 // The bottom-up order can avoid breaking the Write-After-Write dependences 5035 // between two pointers of the same base. 5036 // E.g. A[i] = a; (1) 5037 // A[i] = b; (2) 5038 // A[i+1] = c (3) 5039 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 5040 // above (1), which guarantees that (1) is always above (2). 5041 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 5042 ++I) { 5043 Instruction *A = I->first; 5044 StrideDescriptor DesA = I->second; 5045 5046 InterleaveGroup *Group = getInterleaveGroup(A); 5047 if (!Group) { 5048 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5049 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5050 } 5051 5052 if (A->mayWriteToMemory()) 5053 StoreGroups.insert(Group); 5054 else 5055 LoadGroups.insert(Group); 5056 5057 for (auto II = std::next(I); II != E; ++II) { 5058 Instruction *B = II->first; 5059 StrideDescriptor DesB = II->second; 5060 5061 // Ignore if B is already in a group or B is a different memory operation. 5062 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5063 continue; 5064 5065 // Check the rule 1 and 2. 5066 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5067 continue; 5068 5069 // Calculate the distance and prepare for the rule 3. 5070 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5071 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5072 if (!DistToA) 5073 continue; 5074 5075 int DistanceToA = DistToA->getAPInt().getSExtValue(); 5076 5077 // Skip if the distance is not multiple of size as they are not in the 5078 // same group. 5079 if (DistanceToA % static_cast<int>(DesA.Size)) 5080 continue; 5081 5082 // The index of B is the index of A plus the related index to A. 5083 int IndexB = 5084 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 5085 5086 // Try to insert B into the group. 5087 if (Group->insertMember(B, IndexB, DesB.Align)) { 5088 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5089 << " into the interleave group with" << *A << '\n'); 5090 InterleaveGroupMap[B] = Group; 5091 5092 // Set the first load in program order as the insert position. 5093 if (B->mayReadFromMemory()) 5094 Group->setInsertPos(B); 5095 } 5096 } // Iteration on instruction B 5097 } // Iteration on instruction A 5098 5099 // Remove interleaved store groups with gaps. 5100 for (InterleaveGroup *Group : StoreGroups) 5101 if (Group->getNumMembers() != Group->getFactor()) 5102 releaseGroup(Group); 5103 5104 // Remove interleaved load groups that don't have the first and last member. 5105 // This guarantees that we won't do speculative out of bounds loads. 5106 for (InterleaveGroup *Group : LoadGroups) 5107 if (!Group->getMember(0) || !Group->getMember(Group->getFactor() - 1)) 5108 releaseGroup(Group); 5109 } 5110 5111 LoopVectorizationCostModel::VectorizationFactor 5112 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5113 // Width 1 means no vectorize 5114 VectorizationFactor Factor = { 1U, 0U }; 5115 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5116 emitAnalysis(VectorizationReport() << 5117 "runtime pointer checks needed. Enable vectorization of this " 5118 "loop with '#pragma clang loop vectorize(enable)' when " 5119 "compiling with -Os/-Oz"); 5120 DEBUG(dbgs() << 5121 "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5122 return Factor; 5123 } 5124 5125 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5126 emitAnalysis(VectorizationReport() << 5127 "store that is conditionally executed prevents vectorization"); 5128 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5129 return Factor; 5130 } 5131 5132 // Find the trip count. 5133 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5134 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5135 5136 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5137 unsigned SmallestType, WidestType; 5138 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5139 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5140 unsigned MaxSafeDepDist = -1U; 5141 if (Legal->getMaxSafeDepDistBytes() != -1U) 5142 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5143 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5144 WidestRegister : MaxSafeDepDist); 5145 unsigned MaxVectorSize = WidestRegister / WidestType; 5146 5147 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5148 << WidestType << " bits.\n"); 5149 DEBUG(dbgs() << "LV: The Widest register is: " 5150 << WidestRegister << " bits.\n"); 5151 5152 if (MaxVectorSize == 0) { 5153 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5154 MaxVectorSize = 1; 5155 } 5156 5157 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5158 " into one vector!"); 5159 5160 unsigned VF = MaxVectorSize; 5161 if (MaximizeBandwidth && !OptForSize) { 5162 // Collect all viable vectorization factors. 5163 SmallVector<unsigned, 8> VFs; 5164 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5165 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5166 VFs.push_back(VS); 5167 5168 // For each VF calculate its register usage. 5169 auto RUs = calculateRegisterUsage(VFs); 5170 5171 // Select the largest VF which doesn't require more registers than existing 5172 // ones. 5173 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5174 for (int i = RUs.size() - 1; i >= 0; --i) { 5175 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5176 VF = VFs[i]; 5177 break; 5178 } 5179 } 5180 } 5181 5182 // If we optimize the program for size, avoid creating the tail loop. 5183 if (OptForSize) { 5184 // If we are unable to calculate the trip count then don't try to vectorize. 5185 if (TC < 2) { 5186 emitAnalysis 5187 (VectorizationReport() << 5188 "unable to calculate the loop count due to complex control flow"); 5189 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5190 return Factor; 5191 } 5192 5193 // Find the maximum SIMD width that can fit within the trip count. 5194 VF = TC % MaxVectorSize; 5195 5196 if (VF == 0) 5197 VF = MaxVectorSize; 5198 else { 5199 // If the trip count that we found modulo the vectorization factor is not 5200 // zero then we require a tail. 5201 emitAnalysis(VectorizationReport() << 5202 "cannot optimize for size and vectorize at the " 5203 "same time. Enable vectorization of this loop " 5204 "with '#pragma clang loop vectorize(enable)' " 5205 "when compiling with -Os/-Oz"); 5206 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5207 return Factor; 5208 } 5209 } 5210 5211 int UserVF = Hints->getWidth(); 5212 if (UserVF != 0) { 5213 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5214 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5215 5216 Factor.Width = UserVF; 5217 return Factor; 5218 } 5219 5220 float Cost = expectedCost(1).first; 5221 #ifndef NDEBUG 5222 const float ScalarCost = Cost; 5223 #endif /* NDEBUG */ 5224 unsigned Width = 1; 5225 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5226 5227 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5228 // Ignore scalar width, because the user explicitly wants vectorization. 5229 if (ForceVectorization && VF > 1) { 5230 Width = 2; 5231 Cost = expectedCost(Width).first / (float)Width; 5232 } 5233 5234 for (unsigned i=2; i <= VF; i*=2) { 5235 // Notice that the vector loop needs to be executed less times, so 5236 // we need to divide the cost of the vector loops by the width of 5237 // the vector elements. 5238 VectorizationCostTy C = expectedCost(i); 5239 float VectorCost = C.first / (float)i; 5240 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5241 (int)VectorCost << ".\n"); 5242 if (!C.second && !ForceVectorization) { 5243 DEBUG(dbgs() << "LV: Not considering vector loop of width " << i << 5244 " because it will not generate any vector instructions.\n"); 5245 continue; 5246 } 5247 if (VectorCost < Cost) { 5248 Cost = VectorCost; 5249 Width = i; 5250 } 5251 } 5252 5253 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5254 << "LV: Vectorization seems to be not beneficial, " 5255 << "but was forced by a user.\n"); 5256 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5257 Factor.Width = Width; 5258 Factor.Cost = Width * Cost; 5259 return Factor; 5260 } 5261 5262 std::pair<unsigned, unsigned> 5263 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5264 unsigned MinWidth = -1U; 5265 unsigned MaxWidth = 8; 5266 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5267 5268 // For each block. 5269 for (Loop::block_iterator bb = TheLoop->block_begin(), 5270 be = TheLoop->block_end(); bb != be; ++bb) { 5271 BasicBlock *BB = *bb; 5272 5273 // For each instruction in the loop. 5274 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5275 Type *T = it->getType(); 5276 5277 // Skip ignored values. 5278 if (ValuesToIgnore.count(&*it)) 5279 continue; 5280 5281 // Only examine Loads, Stores and PHINodes. 5282 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5283 continue; 5284 5285 // Examine PHI nodes that are reduction variables. Update the type to 5286 // account for the recurrence type. 5287 if (PHINode *PN = dyn_cast<PHINode>(it)) { 5288 if (!Legal->isReductionVariable(PN)) 5289 continue; 5290 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5291 T = RdxDesc.getRecurrenceType(); 5292 } 5293 5294 // Examine the stored values. 5295 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5296 T = ST->getValueOperand()->getType(); 5297 5298 // Ignore loaded pointer types and stored pointer types that are not 5299 // consecutive. However, we do want to take consecutive stores/loads of 5300 // pointer vectors into account. 5301 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 5302 continue; 5303 5304 MinWidth = std::min(MinWidth, 5305 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5306 MaxWidth = std::max(MaxWidth, 5307 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5308 } 5309 } 5310 5311 return {MinWidth, MaxWidth}; 5312 } 5313 5314 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5315 unsigned VF, 5316 unsigned LoopCost) { 5317 5318 // -- The interleave heuristics -- 5319 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5320 // There are many micro-architectural considerations that we can't predict 5321 // at this level. For example, frontend pressure (on decode or fetch) due to 5322 // code size, or the number and capabilities of the execution ports. 5323 // 5324 // We use the following heuristics to select the interleave count: 5325 // 1. If the code has reductions, then we interleave to break the cross 5326 // iteration dependency. 5327 // 2. If the loop is really small, then we interleave to reduce the loop 5328 // overhead. 5329 // 3. We don't interleave if we think that we will spill registers to memory 5330 // due to the increased register pressure. 5331 5332 // When we optimize for size, we don't interleave. 5333 if (OptForSize) 5334 return 1; 5335 5336 // We used the distance for the interleave count. 5337 if (Legal->getMaxSafeDepDistBytes() != -1U) 5338 return 1; 5339 5340 // Do not interleave loops with a relatively small trip count. 5341 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5342 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5343 return 1; 5344 5345 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5346 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5347 " registers\n"); 5348 5349 if (VF == 1) { 5350 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5351 TargetNumRegisters = ForceTargetNumScalarRegs; 5352 } else { 5353 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5354 TargetNumRegisters = ForceTargetNumVectorRegs; 5355 } 5356 5357 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5358 // We divide by these constants so assume that we have at least one 5359 // instruction that uses at least one register. 5360 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5361 R.NumInstructions = std::max(R.NumInstructions, 1U); 5362 5363 // We calculate the interleave count using the following formula. 5364 // Subtract the number of loop invariants from the number of available 5365 // registers. These registers are used by all of the interleaved instances. 5366 // Next, divide the remaining registers by the number of registers that is 5367 // required by the loop, in order to estimate how many parallel instances 5368 // fit without causing spills. All of this is rounded down if necessary to be 5369 // a power of two. We want power of two interleave count to simplify any 5370 // addressing operations or alignment considerations. 5371 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5372 R.MaxLocalUsers); 5373 5374 // Don't count the induction variable as interleaved. 5375 if (EnableIndVarRegisterHeur) 5376 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5377 std::max(1U, (R.MaxLocalUsers - 1))); 5378 5379 // Clamp the interleave ranges to reasonable counts. 5380 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5381 5382 // Check if the user has overridden the max. 5383 if (VF == 1) { 5384 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5385 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5386 } else { 5387 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5388 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5389 } 5390 5391 // If we did not calculate the cost for VF (because the user selected the VF) 5392 // then we calculate the cost of VF here. 5393 if (LoopCost == 0) 5394 LoopCost = expectedCost(VF).first; 5395 5396 // Clamp the calculated IC to be between the 1 and the max interleave count 5397 // that the target allows. 5398 if (IC > MaxInterleaveCount) 5399 IC = MaxInterleaveCount; 5400 else if (IC < 1) 5401 IC = 1; 5402 5403 // Interleave if we vectorized this loop and there is a reduction that could 5404 // benefit from interleaving. 5405 if (VF > 1 && Legal->getReductionVars()->size()) { 5406 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5407 return IC; 5408 } 5409 5410 // Note that if we've already vectorized the loop we will have done the 5411 // runtime check and so interleaving won't require further checks. 5412 bool InterleavingRequiresRuntimePointerCheck = 5413 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5414 5415 // We want to interleave small loops in order to reduce the loop overhead and 5416 // potentially expose ILP opportunities. 5417 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5418 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5419 // We assume that the cost overhead is 1 and we use the cost model 5420 // to estimate the cost of the loop and interleave until the cost of the 5421 // loop overhead is about 5% of the cost of the loop. 5422 unsigned SmallIC = 5423 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5424 5425 // Interleave until store/load ports (estimated by max interleave count) are 5426 // saturated. 5427 unsigned NumStores = Legal->getNumStores(); 5428 unsigned NumLoads = Legal->getNumLoads(); 5429 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5430 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5431 5432 // If we have a scalar reduction (vector reductions are already dealt with 5433 // by this point), we can increase the critical path length if the loop 5434 // we're interleaving is inside another loop. Limit, by default to 2, so the 5435 // critical path only gets increased by one reduction operation. 5436 if (Legal->getReductionVars()->size() && 5437 TheLoop->getLoopDepth() > 1) { 5438 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5439 SmallIC = std::min(SmallIC, F); 5440 StoresIC = std::min(StoresIC, F); 5441 LoadsIC = std::min(LoadsIC, F); 5442 } 5443 5444 if (EnableLoadStoreRuntimeInterleave && 5445 std::max(StoresIC, LoadsIC) > SmallIC) { 5446 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5447 return std::max(StoresIC, LoadsIC); 5448 } 5449 5450 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5451 return SmallIC; 5452 } 5453 5454 // Interleave if this is a large loop (small loops are already dealt with by 5455 // this point) that could benefit from interleaving. 5456 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5457 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5458 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5459 return IC; 5460 } 5461 5462 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5463 return 1; 5464 } 5465 5466 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5467 LoopVectorizationCostModel::calculateRegisterUsage( 5468 const SmallVector<unsigned, 8> &VFs) { 5469 // This function calculates the register usage by measuring the highest number 5470 // of values that are alive at a single location. Obviously, this is a very 5471 // rough estimation. We scan the loop in a topological order in order and 5472 // assign a number to each instruction. We use RPO to ensure that defs are 5473 // met before their users. We assume that each instruction that has in-loop 5474 // users starts an interval. We record every time that an in-loop value is 5475 // used, so we have a list of the first and last occurrences of each 5476 // instruction. Next, we transpose this data structure into a multi map that 5477 // holds the list of intervals that *end* at a specific location. This multi 5478 // map allows us to perform a linear search. We scan the instructions linearly 5479 // and record each time that a new interval starts, by placing it in a set. 5480 // If we find this value in the multi-map then we remove it from the set. 5481 // The max register usage is the maximum size of the set. 5482 // We also search for instructions that are defined outside the loop, but are 5483 // used inside the loop. We need this number separately from the max-interval 5484 // usage number because when we unroll, loop-invariant values do not take 5485 // more register. 5486 LoopBlocksDFS DFS(TheLoop); 5487 DFS.perform(LI); 5488 5489 RegisterUsage RU; 5490 RU.NumInstructions = 0; 5491 5492 // Each 'key' in the map opens a new interval. The values 5493 // of the map are the index of the 'last seen' usage of the 5494 // instruction that is the key. 5495 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5496 // Maps instruction to its index. 5497 DenseMap<unsigned, Instruction*> IdxToInstr; 5498 // Marks the end of each interval. 5499 IntervalMap EndPoint; 5500 // Saves the list of instruction indices that are used in the loop. 5501 SmallSet<Instruction*, 8> Ends; 5502 // Saves the list of values that are used in the loop but are 5503 // defined outside the loop, such as arguments and constants. 5504 SmallPtrSet<Value*, 8> LoopInvariants; 5505 5506 unsigned Index = 0; 5507 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5508 be = DFS.endRPO(); bb != be; ++bb) { 5509 RU.NumInstructions += (*bb)->size(); 5510 for (Instruction &I : **bb) { 5511 IdxToInstr[Index++] = &I; 5512 5513 // Save the end location of each USE. 5514 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5515 Value *U = I.getOperand(i); 5516 Instruction *Instr = dyn_cast<Instruction>(U); 5517 5518 // Ignore non-instruction values such as arguments, constants, etc. 5519 if (!Instr) continue; 5520 5521 // If this instruction is outside the loop then record it and continue. 5522 if (!TheLoop->contains(Instr)) { 5523 LoopInvariants.insert(Instr); 5524 continue; 5525 } 5526 5527 // Overwrite previous end points. 5528 EndPoint[Instr] = Index; 5529 Ends.insert(Instr); 5530 } 5531 } 5532 } 5533 5534 // Saves the list of intervals that end with the index in 'key'. 5535 typedef SmallVector<Instruction*, 2> InstrList; 5536 DenseMap<unsigned, InstrList> TransposeEnds; 5537 5538 // Transpose the EndPoints to a list of values that end at each index. 5539 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5540 it != e; ++it) 5541 TransposeEnds[it->second].push_back(it->first); 5542 5543 SmallSet<Instruction*, 8> OpenIntervals; 5544 5545 // Get the size of the widest register. 5546 unsigned MaxSafeDepDist = -1U; 5547 if (Legal->getMaxSafeDepDistBytes() != -1U) 5548 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5549 unsigned WidestRegister = 5550 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5551 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5552 5553 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5554 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5555 5556 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5557 5558 // A lambda that gets the register usage for the given type and VF. 5559 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5560 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5561 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5562 }; 5563 5564 for (unsigned int i = 0; i < Index; ++i) { 5565 Instruction *I = IdxToInstr[i]; 5566 // Ignore instructions that are never used within the loop. 5567 if (!Ends.count(I)) continue; 5568 5569 // Skip ignored values. 5570 if (ValuesToIgnore.count(I)) 5571 continue; 5572 5573 // Remove all of the instructions that end at this location. 5574 InstrList &List = TransposeEnds[i]; 5575 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5576 OpenIntervals.erase(List[j]); 5577 5578 // For each VF find the maximum usage of registers. 5579 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5580 if (VFs[j] == 1) { 5581 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5582 continue; 5583 } 5584 5585 // Count the number of live intervals. 5586 unsigned RegUsage = 0; 5587 for (auto Inst : OpenIntervals) 5588 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5589 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5590 } 5591 5592 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5593 << OpenIntervals.size() << '\n'); 5594 5595 // Add the current instruction to the list of open intervals. 5596 OpenIntervals.insert(I); 5597 } 5598 5599 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5600 unsigned Invariant = 0; 5601 if (VFs[i] == 1) 5602 Invariant = LoopInvariants.size(); 5603 else { 5604 for (auto Inst : LoopInvariants) 5605 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5606 } 5607 5608 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5609 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5610 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5611 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5612 5613 RU.LoopInvariantRegs = Invariant; 5614 RU.MaxLocalUsers = MaxUsages[i]; 5615 RUs[i] = RU; 5616 } 5617 5618 return RUs; 5619 } 5620 5621 LoopVectorizationCostModel::VectorizationCostTy 5622 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5623 VectorizationCostTy Cost; 5624 5625 // For each block. 5626 for (Loop::block_iterator bb = TheLoop->block_begin(), 5627 be = TheLoop->block_end(); bb != be; ++bb) { 5628 VectorizationCostTy BlockCost; 5629 BasicBlock *BB = *bb; 5630 5631 // For each instruction in the old loop. 5632 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5633 // Skip dbg intrinsics. 5634 if (isa<DbgInfoIntrinsic>(it)) 5635 continue; 5636 5637 // Skip ignored values. 5638 if (ValuesToIgnore.count(&*it)) 5639 continue; 5640 5641 VectorizationCostTy C = getInstructionCost(&*it, VF); 5642 5643 // Check if we should override the cost. 5644 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5645 C.first = ForceTargetInstructionCost; 5646 5647 BlockCost.first += C.first; 5648 BlockCost.second |= C.second; 5649 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << 5650 " for VF " << VF << " For instruction: " << *it << '\n'); 5651 } 5652 5653 // We assume that if-converted blocks have a 50% chance of being executed. 5654 // When the code is scalar then some of the blocks are avoided due to CF. 5655 // When the code is vectorized we execute all code paths. 5656 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5657 BlockCost.first /= 2; 5658 5659 Cost.first += BlockCost.first; 5660 Cost.second |= BlockCost.second; 5661 } 5662 5663 return Cost; 5664 } 5665 5666 /// \brief Check if the load/store instruction \p I may be translated into 5667 /// gather/scatter during vectorization. 5668 /// 5669 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5670 /// instruction. We need it to retrieve data type. 5671 /// Using gather/scatter is possible when it is supported by target. 5672 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5673 LoopVectorizationLegality *Legal) { 5674 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5675 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5676 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5677 } 5678 5679 /// \brief Check whether the address computation for a non-consecutive memory 5680 /// access looks like an unlikely candidate for being merged into the indexing 5681 /// mode. 5682 /// 5683 /// We look for a GEP which has one index that is an induction variable and all 5684 /// other indices are loop invariant. If the stride of this access is also 5685 /// within a small bound we decide that this address computation can likely be 5686 /// merged into the addressing mode. 5687 /// In all other cases, we identify the address computation as complex. 5688 static bool isLikelyComplexAddressComputation(Value *Ptr, 5689 LoopVectorizationLegality *Legal, 5690 ScalarEvolution *SE, 5691 const Loop *TheLoop) { 5692 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5693 if (!Gep) 5694 return true; 5695 5696 // We are looking for a gep with all loop invariant indices except for one 5697 // which should be an induction variable. 5698 unsigned NumOperands = Gep->getNumOperands(); 5699 for (unsigned i = 1; i < NumOperands; ++i) { 5700 Value *Opd = Gep->getOperand(i); 5701 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5702 !Legal->isInductionVariable(Opd)) 5703 return true; 5704 } 5705 5706 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5707 // can likely be merged into the address computation. 5708 unsigned MaxMergeDistance = 64; 5709 5710 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5711 if (!AddRec) 5712 return true; 5713 5714 // Check the step is constant. 5715 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5716 // Calculate the pointer stride and check if it is consecutive. 5717 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5718 if (!C) 5719 return true; 5720 5721 const APInt &APStepVal = C->getAPInt(); 5722 5723 // Huge step value - give up. 5724 if (APStepVal.getBitWidth() > 64) 5725 return true; 5726 5727 int64_t StepVal = APStepVal.getSExtValue(); 5728 5729 return StepVal > MaxMergeDistance; 5730 } 5731 5732 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5733 return Legal->hasStride(I->getOperand(0)) || 5734 Legal->hasStride(I->getOperand(1)); 5735 } 5736 5737 LoopVectorizationCostModel::VectorizationCostTy 5738 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5739 // If we know that this instruction will remain uniform, check the cost of 5740 // the scalar version. 5741 if (Legal->isUniformAfterVectorization(I)) 5742 VF = 1; 5743 5744 Type *VectorTy; 5745 unsigned C = getInstructionCost(I, VF, VectorTy); 5746 5747 bool TypeNotScalarized = VF > 1 && !VectorTy->isVoidTy() && 5748 TTI.getNumberOfParts(VectorTy) < VF; 5749 return VectorizationCostTy(C, TypeNotScalarized); 5750 } 5751 5752 unsigned 5753 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF, 5754 Type *&VectorTy) { 5755 Type *RetTy = I->getType(); 5756 if (VF > 1 && MinBWs.count(I)) 5757 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5758 VectorTy = ToVectorTy(RetTy, VF); 5759 5760 // TODO: We need to estimate the cost of intrinsic calls. 5761 switch (I->getOpcode()) { 5762 case Instruction::GetElementPtr: 5763 // We mark this instruction as zero-cost because the cost of GEPs in 5764 // vectorized code depends on whether the corresponding memory instruction 5765 // is scalarized or not. Therefore, we handle GEPs with the memory 5766 // instruction cost. 5767 return 0; 5768 case Instruction::Br: { 5769 return TTI.getCFInstrCost(I->getOpcode()); 5770 } 5771 case Instruction::PHI: { 5772 auto *Phi = cast<PHINode>(I); 5773 5774 // First-order recurrences are replaced by vector shuffles inside the loop. 5775 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5776 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5777 VectorTy, VF - 1, VectorTy); 5778 5779 // TODO: IF-converted IFs become selects. 5780 return 0; 5781 } 5782 case Instruction::Add: 5783 case Instruction::FAdd: 5784 case Instruction::Sub: 5785 case Instruction::FSub: 5786 case Instruction::Mul: 5787 case Instruction::FMul: 5788 case Instruction::UDiv: 5789 case Instruction::SDiv: 5790 case Instruction::FDiv: 5791 case Instruction::URem: 5792 case Instruction::SRem: 5793 case Instruction::FRem: 5794 case Instruction::Shl: 5795 case Instruction::LShr: 5796 case Instruction::AShr: 5797 case Instruction::And: 5798 case Instruction::Or: 5799 case Instruction::Xor: { 5800 // Since we will replace the stride by 1 the multiplication should go away. 5801 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5802 return 0; 5803 // Certain instructions can be cheaper to vectorize if they have a constant 5804 // second vector operand. One example of this are shifts on x86. 5805 TargetTransformInfo::OperandValueKind Op1VK = 5806 TargetTransformInfo::OK_AnyValue; 5807 TargetTransformInfo::OperandValueKind Op2VK = 5808 TargetTransformInfo::OK_AnyValue; 5809 TargetTransformInfo::OperandValueProperties Op1VP = 5810 TargetTransformInfo::OP_None; 5811 TargetTransformInfo::OperandValueProperties Op2VP = 5812 TargetTransformInfo::OP_None; 5813 Value *Op2 = I->getOperand(1); 5814 5815 // Check for a splat of a constant or for a non uniform vector of constants. 5816 if (isa<ConstantInt>(Op2)) { 5817 ConstantInt *CInt = cast<ConstantInt>(Op2); 5818 if (CInt && CInt->getValue().isPowerOf2()) 5819 Op2VP = TargetTransformInfo::OP_PowerOf2; 5820 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5821 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5822 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5823 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5824 if (SplatValue) { 5825 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5826 if (CInt && CInt->getValue().isPowerOf2()) 5827 Op2VP = TargetTransformInfo::OP_PowerOf2; 5828 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5829 } 5830 } 5831 5832 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5833 Op1VP, Op2VP); 5834 } 5835 case Instruction::Select: { 5836 SelectInst *SI = cast<SelectInst>(I); 5837 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5838 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5839 Type *CondTy = SI->getCondition()->getType(); 5840 if (!ScalarCond) 5841 CondTy = VectorType::get(CondTy, VF); 5842 5843 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5844 } 5845 case Instruction::ICmp: 5846 case Instruction::FCmp: { 5847 Type *ValTy = I->getOperand(0)->getType(); 5848 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5849 auto It = MinBWs.find(Op0AsInstruction); 5850 if (VF > 1 && It != MinBWs.end()) 5851 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5852 VectorTy = ToVectorTy(ValTy, VF); 5853 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5854 } 5855 case Instruction::Store: 5856 case Instruction::Load: { 5857 StoreInst *SI = dyn_cast<StoreInst>(I); 5858 LoadInst *LI = dyn_cast<LoadInst>(I); 5859 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5860 LI->getType()); 5861 VectorTy = ToVectorTy(ValTy, VF); 5862 5863 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5864 unsigned AS = SI ? SI->getPointerAddressSpace() : 5865 LI->getPointerAddressSpace(); 5866 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5867 // We add the cost of address computation here instead of with the gep 5868 // instruction because only here we know whether the operation is 5869 // scalarized. 5870 if (VF == 1) 5871 return TTI.getAddressComputationCost(VectorTy) + 5872 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5873 5874 if (LI && Legal->isUniform(Ptr)) { 5875 // Scalar load + broadcast 5876 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 5877 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5878 Alignment, AS); 5879 return Cost + TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, 5880 ValTy); 5881 } 5882 5883 // For an interleaved access, calculate the total cost of the whole 5884 // interleave group. 5885 if (Legal->isAccessInterleaved(I)) { 5886 auto Group = Legal->getInterleavedAccessGroup(I); 5887 assert(Group && "Fail to get an interleaved access group."); 5888 5889 // Only calculate the cost once at the insert position. 5890 if (Group->getInsertPos() != I) 5891 return 0; 5892 5893 unsigned InterleaveFactor = Group->getFactor(); 5894 Type *WideVecTy = 5895 VectorType::get(VectorTy->getVectorElementType(), 5896 VectorTy->getVectorNumElements() * InterleaveFactor); 5897 5898 // Holds the indices of existing members in an interleaved load group. 5899 // An interleaved store group doesn't need this as it dones't allow gaps. 5900 SmallVector<unsigned, 4> Indices; 5901 if (LI) { 5902 for (unsigned i = 0; i < InterleaveFactor; i++) 5903 if (Group->getMember(i)) 5904 Indices.push_back(i); 5905 } 5906 5907 // Calculate the cost of the whole interleaved group. 5908 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5909 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5910 Group->getAlignment(), AS); 5911 5912 if (Group->isReverse()) 5913 Cost += 5914 Group->getNumMembers() * 5915 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5916 5917 // FIXME: The interleaved load group with a huge gap could be even more 5918 // expensive than scalar operations. Then we could ignore such group and 5919 // use scalar operations instead. 5920 return Cost; 5921 } 5922 5923 // Scalarized loads/stores. 5924 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5925 bool UseGatherOrScatter = (ConsecutiveStride == 0) && 5926 isGatherOrScatterLegal(I, Ptr, Legal); 5927 5928 bool Reverse = ConsecutiveStride < 0; 5929 const DataLayout &DL = I->getModule()->getDataLayout(); 5930 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5931 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5932 if ((!ConsecutiveStride && !UseGatherOrScatter) || 5933 ScalarAllocatedSize != VectorElementSize) { 5934 bool IsComplexComputation = 5935 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5936 unsigned Cost = 0; 5937 // The cost of extracting from the value vector and pointer vector. 5938 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5939 for (unsigned i = 0; i < VF; ++i) { 5940 // The cost of extracting the pointer operand. 5941 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5942 // In case of STORE, the cost of ExtractElement from the vector. 5943 // In case of LOAD, the cost of InsertElement into the returned 5944 // vector. 5945 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5946 Instruction::InsertElement, 5947 VectorTy, i); 5948 } 5949 5950 // The cost of the scalar loads/stores. 5951 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5952 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5953 Alignment, AS); 5954 return Cost; 5955 } 5956 5957 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5958 if (UseGatherOrScatter) { 5959 assert(ConsecutiveStride == 0 && 5960 "Gather/Scatter are not used for consecutive stride"); 5961 return Cost + 5962 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5963 Legal->isMaskRequired(I), Alignment); 5964 } 5965 // Wide load/stores. 5966 if (Legal->isMaskRequired(I)) 5967 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5968 AS); 5969 else 5970 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5971 5972 if (Reverse) 5973 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5974 VectorTy, 0); 5975 return Cost; 5976 } 5977 case Instruction::ZExt: 5978 case Instruction::SExt: 5979 case Instruction::FPToUI: 5980 case Instruction::FPToSI: 5981 case Instruction::FPExt: 5982 case Instruction::PtrToInt: 5983 case Instruction::IntToPtr: 5984 case Instruction::SIToFP: 5985 case Instruction::UIToFP: 5986 case Instruction::Trunc: 5987 case Instruction::FPTrunc: 5988 case Instruction::BitCast: { 5989 // We optimize the truncation of induction variable. 5990 // The cost of these is the same as the scalar operation. 5991 if (I->getOpcode() == Instruction::Trunc && 5992 Legal->isInductionVariable(I->getOperand(0))) 5993 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5994 I->getOperand(0)->getType()); 5995 5996 Type *SrcScalarTy = I->getOperand(0)->getType(); 5997 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 5998 if (VF > 1 && MinBWs.count(I)) { 5999 // This cast is going to be shrunk. This may remove the cast or it might 6000 // turn it into slightly different cast. For example, if MinBW == 16, 6001 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6002 // 6003 // Calculate the modified src and dest types. 6004 Type *MinVecTy = VectorTy; 6005 if (I->getOpcode() == Instruction::Trunc) { 6006 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6007 VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF), 6008 MinVecTy); 6009 } else if (I->getOpcode() == Instruction::ZExt || 6010 I->getOpcode() == Instruction::SExt) { 6011 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6012 VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF), 6013 MinVecTy); 6014 } 6015 } 6016 6017 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6018 } 6019 case Instruction::Call: { 6020 bool NeedToScalarize; 6021 CallInst *CI = cast<CallInst>(I); 6022 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6023 if (getIntrinsicIDForCall(CI, TLI)) 6024 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6025 return CallCost; 6026 } 6027 default: { 6028 // We are scalarizing the instruction. Return the cost of the scalar 6029 // instruction, plus the cost of insert and extract into vector 6030 // elements, times the vector width. 6031 unsigned Cost = 0; 6032 6033 if (!RetTy->isVoidTy() && VF != 1) { 6034 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 6035 VectorTy); 6036 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 6037 VectorTy); 6038 6039 // The cost of inserting the results plus extracting each one of the 6040 // operands. 6041 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6042 } 6043 6044 // The cost of executing VF copies of the scalar instruction. This opcode 6045 // is unknown. Assume that it is the same as 'mul'. 6046 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6047 return Cost; 6048 } 6049 }// end of switch. 6050 } 6051 6052 char LoopVectorize::ID = 0; 6053 static const char lv_name[] = "Loop Vectorization"; 6054 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6055 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6056 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6057 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6058 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6059 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6060 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6061 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6062 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6063 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6064 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6065 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6066 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 6067 INITIALIZE_PASS_DEPENDENCY(DemandedBits) 6068 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6069 6070 namespace llvm { 6071 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6072 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6073 } 6074 } 6075 6076 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6077 // Check for a store. 6078 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6079 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6080 6081 // Check for a load. 6082 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6083 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6084 6085 return false; 6086 } 6087 6088 6089 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6090 bool IfPredicateStore) { 6091 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6092 // Holds vector parameters or scalars, in case of uniform vals. 6093 SmallVector<VectorParts, 4> Params; 6094 6095 setDebugLocFromInst(Builder, Instr); 6096 6097 // Find all of the vectorized parameters. 6098 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6099 Value *SrcOp = Instr->getOperand(op); 6100 6101 // If we are accessing the old induction variable, use the new one. 6102 if (SrcOp == OldInduction) { 6103 Params.push_back(getVectorValue(SrcOp)); 6104 continue; 6105 } 6106 6107 // Try using previously calculated values. 6108 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6109 6110 // If the src is an instruction that appeared earlier in the basic block 6111 // then it should already be vectorized. 6112 if (SrcInst && OrigLoop->contains(SrcInst)) { 6113 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6114 // The parameter is a vector value from earlier. 6115 Params.push_back(WidenMap.get(SrcInst)); 6116 } else { 6117 // The parameter is a scalar from outside the loop. Maybe even a constant. 6118 VectorParts Scalars; 6119 Scalars.append(UF, SrcOp); 6120 Params.push_back(Scalars); 6121 } 6122 } 6123 6124 assert(Params.size() == Instr->getNumOperands() && 6125 "Invalid number of operands"); 6126 6127 // Does this instruction return a value ? 6128 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6129 6130 Value *UndefVec = IsVoidRetTy ? nullptr : 6131 UndefValue::get(Instr->getType()); 6132 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6133 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6134 6135 VectorParts Cond; 6136 if (IfPredicateStore) { 6137 assert(Instr->getParent()->getSinglePredecessor() && 6138 "Only support single predecessor blocks"); 6139 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6140 Instr->getParent()); 6141 } 6142 6143 // For each vector unroll 'part': 6144 for (unsigned Part = 0; Part < UF; ++Part) { 6145 // For each scalar that we create: 6146 6147 // Start an "if (pred) a[i] = ..." block. 6148 Value *Cmp = nullptr; 6149 if (IfPredicateStore) { 6150 if (Cond[Part]->getType()->isVectorTy()) 6151 Cond[Part] = 6152 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6153 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6154 ConstantInt::get(Cond[Part]->getType(), 1)); 6155 } 6156 6157 Instruction *Cloned = Instr->clone(); 6158 if (!IsVoidRetTy) 6159 Cloned->setName(Instr->getName() + ".cloned"); 6160 // Replace the operands of the cloned instructions with extracted scalars. 6161 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6162 Value *Op = Params[op][Part]; 6163 Cloned->setOperand(op, Op); 6164 } 6165 6166 // Place the cloned scalar in the new loop. 6167 Builder.Insert(Cloned); 6168 6169 // If we just cloned a new assumption, add it the assumption cache. 6170 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6171 if (II->getIntrinsicID() == Intrinsic::assume) 6172 AC->registerAssumption(II); 6173 6174 // If the original scalar returns a value we need to place it in a vector 6175 // so that future users will be able to use it. 6176 if (!IsVoidRetTy) 6177 VecResults[Part] = Cloned; 6178 6179 // End if-block. 6180 if (IfPredicateStore) 6181 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 6182 Cmp)); 6183 } 6184 } 6185 6186 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6187 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6188 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6189 6190 return scalarizeInstruction(Instr, IfPredicateStore); 6191 } 6192 6193 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6194 return Vec; 6195 } 6196 6197 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6198 return V; 6199 } 6200 6201 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6202 // When unrolling and the VF is 1, we only need to add a simple scalar. 6203 Type *ITy = Val->getType(); 6204 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6205 Constant *C = ConstantInt::get(ITy, StartIdx); 6206 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6207 } 6208