1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = VectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM) 399 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 400 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 401 Builder(PSE.getSE()->getContext()), 402 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 403 virtual ~InnerLoopVectorizer() = default; 404 405 /// Create a new empty loop. Unlink the old loop and connect the new one. 406 /// Return the pre-header block of the new loop. 407 BasicBlock *createVectorizedLoopSkeleton(); 408 409 /// Widen a single instruction within the innermost loop. 410 void widenInstruction(Instruction &I, VPUser &Operands, 411 VPTransformState &State); 412 413 /// Widen a single call instruction within the innermost loop. 414 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 415 VPTransformState &State); 416 417 /// Widen a single select instruction within the innermost loop. 418 void widenSelectInstruction(SelectInst &I, bool InvariantCond); 419 420 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 421 void fixVectorizedLoop(); 422 423 // Return true if any runtime check is added. 424 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 425 426 /// A type for vectorized values in the new loop. Each value from the 427 /// original loop, when vectorized, is represented by UF vector values in the 428 /// new unrolled loop, where UF is the unroll factor. 429 using VectorParts = SmallVector<Value *, 2>; 430 431 /// Vectorize a single GetElementPtrInst based on information gathered and 432 /// decisions taken during planning. 433 void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF, 434 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant); 435 436 /// Vectorize a single PHINode in a block. This method handles the induction 437 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 438 /// arbitrary length vectors. 439 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 440 441 /// A helper function to scalarize a single Instruction in the innermost loop. 442 /// Generates a sequence of scalar instances for each lane between \p MinLane 443 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 444 /// inclusive.. 445 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 446 bool IfPredicateInstr); 447 448 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 449 /// is provided, the integer induction variable will first be truncated to 450 /// the corresponding type. 451 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 452 453 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 454 /// vector or scalar value on-demand if one is not yet available. When 455 /// vectorizing a loop, we visit the definition of an instruction before its 456 /// uses. When visiting the definition, we either vectorize or scalarize the 457 /// instruction, creating an entry for it in the corresponding map. (In some 458 /// cases, such as induction variables, we will create both vector and scalar 459 /// entries.) Then, as we encounter uses of the definition, we derive values 460 /// for each scalar or vector use unless such a value is already available. 461 /// For example, if we scalarize a definition and one of its uses is vector, 462 /// we build the required vector on-demand with an insertelement sequence 463 /// when visiting the use. Otherwise, if the use is scalar, we can use the 464 /// existing scalar definition. 465 /// 466 /// Return a value in the new loop corresponding to \p V from the original 467 /// loop at unroll index \p Part. If the value has already been vectorized, 468 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 469 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 470 /// a new vector value on-demand by inserting the scalar values into a vector 471 /// with an insertelement sequence. If the value has been neither vectorized 472 /// nor scalarized, it must be loop invariant, so we simply broadcast the 473 /// value into a vector. 474 Value *getOrCreateVectorValue(Value *V, unsigned Part); 475 476 /// Return a value in the new loop corresponding to \p V from the original 477 /// loop at unroll and vector indices \p Instance. If the value has been 478 /// vectorized but not scalarized, the necessary extractelement instruction 479 /// will be generated. 480 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 481 482 /// Construct the vector value of a scalarized value \p V one lane at a time. 483 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 484 485 /// Try to vectorize interleaved access group \p Group with the base address 486 /// given in \p Addr, optionally masking the vector operations if \p 487 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 488 /// values in the vectorized loop. 489 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 490 VPTransformState &State, VPValue *Addr, 491 VPValue *BlockInMask = nullptr); 492 493 /// Vectorize Load and Store instructions with the base address given in \p 494 /// Addr, optionally masking the vector operations if \p BlockInMask is 495 /// non-null. Use \p State to translate given VPValues to IR values in the 496 /// vectorized loop. 497 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 498 VPValue *Addr, VPValue *StoredValue, 499 VPValue *BlockInMask); 500 501 /// Set the debug location in the builder using the debug location in 502 /// the instruction. 503 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 504 505 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 506 void fixNonInductionPHIs(void); 507 508 protected: 509 friend class LoopVectorizationPlanner; 510 511 /// A small list of PHINodes. 512 using PhiVector = SmallVector<PHINode *, 4>; 513 514 /// A type for scalarized values in the new loop. Each value from the 515 /// original loop, when scalarized, is represented by UF x VF scalar values 516 /// in the new unrolled loop, where UF is the unroll factor and VF is the 517 /// vectorization factor. 518 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 519 520 /// Set up the values of the IVs correctly when exiting the vector loop. 521 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 522 Value *CountRoundDown, Value *EndValue, 523 BasicBlock *MiddleBlock); 524 525 /// Create a new induction variable inside L. 526 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 527 Value *Step, Instruction *DL); 528 529 /// Handle all cross-iteration phis in the header. 530 void fixCrossIterationPHIs(); 531 532 /// Fix a first-order recurrence. This is the second phase of vectorizing 533 /// this phi node. 534 void fixFirstOrderRecurrence(PHINode *Phi); 535 536 /// Fix a reduction cross-iteration phi. This is the second phase of 537 /// vectorizing this phi node. 538 void fixReduction(PHINode *Phi); 539 540 /// Clear NSW/NUW flags from reduction instructions if necessary. 541 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 542 543 /// The Loop exit block may have single value PHI nodes with some 544 /// incoming value. While vectorizing we only handled real values 545 /// that were defined inside the loop and we should have one value for 546 /// each predecessor of its parent basic block. See PR14725. 547 void fixLCSSAPHIs(); 548 549 /// Iteratively sink the scalarized operands of a predicated instruction into 550 /// the block that was created for it. 551 void sinkScalarOperands(Instruction *PredInst); 552 553 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 554 /// represented as. 555 void truncateToMinimalBitwidths(); 556 557 /// Create a broadcast instruction. This method generates a broadcast 558 /// instruction (shuffle) for loop invariant values and for the induction 559 /// value. If this is the induction variable then we extend it to N, N+1, ... 560 /// this is needed because each iteration in the loop corresponds to a SIMD 561 /// element. 562 virtual Value *getBroadcastInstrs(Value *V); 563 564 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 565 /// to each vector element of Val. The sequence starts at StartIndex. 566 /// \p Opcode is relevant for FP induction variable. 567 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 568 Instruction::BinaryOps Opcode = 569 Instruction::BinaryOpsEnd); 570 571 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 572 /// variable on which to base the steps, \p Step is the size of the step, and 573 /// \p EntryVal is the value from the original loop that maps to the steps. 574 /// Note that \p EntryVal doesn't have to be an induction variable - it 575 /// can also be a truncate instruction. 576 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 577 const InductionDescriptor &ID); 578 579 /// Create a vector induction phi node based on an existing scalar one. \p 580 /// EntryVal is the value from the original loop that maps to the vector phi 581 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 582 /// truncate instruction, instead of widening the original IV, we widen a 583 /// version of the IV truncated to \p EntryVal's type. 584 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 585 Value *Step, Instruction *EntryVal); 586 587 /// Returns true if an instruction \p I should be scalarized instead of 588 /// vectorized for the chosen vectorization factor. 589 bool shouldScalarizeInstruction(Instruction *I) const; 590 591 /// Returns true if we should generate a scalar version of \p IV. 592 bool needsScalarInduction(Instruction *IV) const; 593 594 /// If there is a cast involved in the induction variable \p ID, which should 595 /// be ignored in the vectorized loop body, this function records the 596 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 597 /// cast. We had already proved that the casted Phi is equal to the uncasted 598 /// Phi in the vectorized loop (under a runtime guard), and therefore 599 /// there is no need to vectorize the cast - the same value can be used in the 600 /// vector loop for both the Phi and the cast. 601 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 602 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 603 /// 604 /// \p EntryVal is the value from the original loop that maps to the vector 605 /// phi node and is used to distinguish what is the IV currently being 606 /// processed - original one (if \p EntryVal is a phi corresponding to the 607 /// original IV) or the "newly-created" one based on the proof mentioned above 608 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 609 /// latter case \p EntryVal is a TruncInst and we must not record anything for 610 /// that IV, but it's error-prone to expect callers of this routine to care 611 /// about that, hence this explicit parameter. 612 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 613 const Instruction *EntryVal, 614 Value *VectorLoopValue, 615 unsigned Part, 616 unsigned Lane = UINT_MAX); 617 618 /// Generate a shuffle sequence that will reverse the vector Vec. 619 virtual Value *reverseVector(Value *Vec); 620 621 /// Returns (and creates if needed) the original loop trip count. 622 Value *getOrCreateTripCount(Loop *NewLoop); 623 624 /// Returns (and creates if needed) the trip count of the widened loop. 625 Value *getOrCreateVectorTripCount(Loop *NewLoop); 626 627 /// Returns a bitcasted value to the requested vector type. 628 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 629 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 630 const DataLayout &DL); 631 632 /// Emit a bypass check to see if the vector trip count is zero, including if 633 /// it overflows. 634 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 635 636 /// Emit a bypass check to see if all of the SCEV assumptions we've 637 /// had to make are correct. 638 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 639 640 /// Emit bypass checks to check any memory assumptions we may have made. 641 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 642 643 /// Compute the transformed value of Index at offset StartValue using step 644 /// StepValue. 645 /// For integer induction, returns StartValue + Index * StepValue. 646 /// For pointer induction, returns StartValue[Index * StepValue]. 647 /// FIXME: The newly created binary instructions should contain nsw/nuw 648 /// flags, which can be found from the original scalar operations. 649 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 650 const DataLayout &DL, 651 const InductionDescriptor &ID) const; 652 653 /// Add additional metadata to \p To that was not present on \p Orig. 654 /// 655 /// Currently this is used to add the noalias annotations based on the 656 /// inserted memchecks. Use this for instructions that are *cloned* into the 657 /// vector loop. 658 void addNewMetadata(Instruction *To, const Instruction *Orig); 659 660 /// Add metadata from one instruction to another. 661 /// 662 /// This includes both the original MDs from \p From and additional ones (\see 663 /// addNewMetadata). Use this for *newly created* instructions in the vector 664 /// loop. 665 void addMetadata(Instruction *To, Instruction *From); 666 667 /// Similar to the previous function but it adds the metadata to a 668 /// vector of instructions. 669 void addMetadata(ArrayRef<Value *> To, Instruction *From); 670 671 /// The original loop. 672 Loop *OrigLoop; 673 674 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 675 /// dynamic knowledge to simplify SCEV expressions and converts them to a 676 /// more usable form. 677 PredicatedScalarEvolution &PSE; 678 679 /// Loop Info. 680 LoopInfo *LI; 681 682 /// Dominator Tree. 683 DominatorTree *DT; 684 685 /// Alias Analysis. 686 AliasAnalysis *AA; 687 688 /// Target Library Info. 689 const TargetLibraryInfo *TLI; 690 691 /// Target Transform Info. 692 const TargetTransformInfo *TTI; 693 694 /// Assumption Cache. 695 AssumptionCache *AC; 696 697 /// Interface to emit optimization remarks. 698 OptimizationRemarkEmitter *ORE; 699 700 /// LoopVersioning. It's only set up (non-null) if memchecks were 701 /// used. 702 /// 703 /// This is currently only used to add no-alias metadata based on the 704 /// memchecks. The actually versioning is performed manually. 705 std::unique_ptr<LoopVersioning> LVer; 706 707 /// The vectorization SIMD factor to use. Each vector will have this many 708 /// vector elements. 709 unsigned VF; 710 711 /// The vectorization unroll factor to use. Each scalar is vectorized to this 712 /// many different vector instructions. 713 unsigned UF; 714 715 /// The builder that we use 716 IRBuilder<> Builder; 717 718 // --- Vectorization state --- 719 720 /// The vector-loop preheader. 721 BasicBlock *LoopVectorPreHeader; 722 723 /// The scalar-loop preheader. 724 BasicBlock *LoopScalarPreHeader; 725 726 /// Middle Block between the vector and the scalar. 727 BasicBlock *LoopMiddleBlock; 728 729 /// The ExitBlock of the scalar loop. 730 BasicBlock *LoopExitBlock; 731 732 /// The vector loop body. 733 BasicBlock *LoopVectorBody; 734 735 /// The scalar loop body. 736 BasicBlock *LoopScalarBody; 737 738 /// A list of all bypass blocks. The first block is the entry of the loop. 739 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 740 741 /// The new Induction variable which was added to the new block. 742 PHINode *Induction = nullptr; 743 744 /// The induction variable of the old basic block. 745 PHINode *OldInduction = nullptr; 746 747 /// Maps values from the original loop to their corresponding values in the 748 /// vectorized loop. A key value can map to either vector values, scalar 749 /// values or both kinds of values, depending on whether the key was 750 /// vectorized and scalarized. 751 VectorizerValueMap VectorLoopValueMap; 752 753 /// Store instructions that were predicated. 754 SmallVector<Instruction *, 4> PredicatedInstructions; 755 756 /// Trip count of the original loop. 757 Value *TripCount = nullptr; 758 759 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 760 Value *VectorTripCount = nullptr; 761 762 /// The legality analysis. 763 LoopVectorizationLegality *Legal; 764 765 /// The profitablity analysis. 766 LoopVectorizationCostModel *Cost; 767 768 // Record whether runtime checks are added. 769 bool AddedSafetyChecks = false; 770 771 // Holds the end values for each induction variable. We save the end values 772 // so we can later fix-up the external users of the induction variables. 773 DenseMap<PHINode *, Value *> IVEndValues; 774 775 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 776 // fixed up at the end of vector code generation. 777 SmallVector<PHINode *, 8> OrigPHIsToFix; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM) 789 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 790 UnrollFactor, LVL, CM) {} 791 792 private: 793 Value *getBroadcastInstrs(Value *V) override; 794 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 795 Instruction::BinaryOps Opcode = 796 Instruction::BinaryOpsEnd) override; 797 Value *reverseVector(Value *Vec) override; 798 }; 799 800 } // end namespace llvm 801 802 /// Look for a meaningful debug location on the instruction or it's 803 /// operands. 804 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 805 if (!I) 806 return I; 807 808 DebugLoc Empty; 809 if (I->getDebugLoc() != Empty) 810 return I; 811 812 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 813 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 814 if (OpInst->getDebugLoc() != Empty) 815 return OpInst; 816 } 817 818 return I; 819 } 820 821 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 822 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 823 const DILocation *DIL = Inst->getDebugLoc(); 824 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 825 !isa<DbgInfoIntrinsic>(Inst)) { 826 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 827 if (NewDIL) 828 B.SetCurrentDebugLocation(NewDIL.getValue()); 829 else 830 LLVM_DEBUG(dbgs() 831 << "Failed to create new discriminator: " 832 << DIL->getFilename() << " Line: " << DIL->getLine()); 833 } 834 else 835 B.SetCurrentDebugLocation(DIL); 836 } else 837 B.SetCurrentDebugLocation(DebugLoc()); 838 } 839 840 /// Write a record \p DebugMsg about vectorization failure to the debug 841 /// output stream. If \p I is passed, it is an instruction that prevents 842 /// vectorization. 843 #ifndef NDEBUG 844 static void debugVectorizationFailure(const StringRef DebugMsg, 845 Instruction *I) { 846 dbgs() << "LV: Not vectorizing: " << DebugMsg; 847 if (I != nullptr) 848 dbgs() << " " << *I; 849 else 850 dbgs() << '.'; 851 dbgs() << '\n'; 852 } 853 #endif 854 855 /// Create an analysis remark that explains why vectorization failed 856 /// 857 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 858 /// RemarkName is the identifier for the remark. If \p I is passed it is an 859 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 860 /// the location of the remark. \return the remark object that can be 861 /// streamed to. 862 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 863 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 864 Value *CodeRegion = TheLoop->getHeader(); 865 DebugLoc DL = TheLoop->getStartLoc(); 866 867 if (I) { 868 CodeRegion = I->getParent(); 869 // If there is no debug location attached to the instruction, revert back to 870 // using the loop's. 871 if (I->getDebugLoc()) 872 DL = I->getDebugLoc(); 873 } 874 875 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 876 R << "loop not vectorized: "; 877 return R; 878 } 879 880 namespace llvm { 881 882 void reportVectorizationFailure(const StringRef DebugMsg, 883 const StringRef OREMsg, const StringRef ORETag, 884 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 885 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 886 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 887 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 888 ORETag, TheLoop, I) << OREMsg); 889 } 890 891 } // end namespace llvm 892 893 #ifndef NDEBUG 894 /// \return string containing a file name and a line # for the given loop. 895 static std::string getDebugLocString(const Loop *L) { 896 std::string Result; 897 if (L) { 898 raw_string_ostream OS(Result); 899 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 900 LoopDbgLoc.print(OS); 901 else 902 // Just print the module name. 903 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 904 OS.flush(); 905 } 906 return Result; 907 } 908 #endif 909 910 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 911 const Instruction *Orig) { 912 // If the loop was versioned with memchecks, add the corresponding no-alias 913 // metadata. 914 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 915 LVer->annotateInstWithNoAlias(To, Orig); 916 } 917 918 void InnerLoopVectorizer::addMetadata(Instruction *To, 919 Instruction *From) { 920 propagateMetadata(To, From); 921 addNewMetadata(To, From); 922 } 923 924 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 925 Instruction *From) { 926 for (Value *V : To) { 927 if (Instruction *I = dyn_cast<Instruction>(V)) 928 addMetadata(I, From); 929 } 930 } 931 932 namespace llvm { 933 934 // Loop vectorization cost-model hints how the scalar epilogue loop should be 935 // lowered. 936 enum ScalarEpilogueLowering { 937 938 // The default: allowing scalar epilogues. 939 CM_ScalarEpilogueAllowed, 940 941 // Vectorization with OptForSize: don't allow epilogues. 942 CM_ScalarEpilogueNotAllowedOptSize, 943 944 // A special case of vectorisation with OptForSize: loops with a very small 945 // trip count are considered for vectorization under OptForSize, thereby 946 // making sure the cost of their loop body is dominant, free of runtime 947 // guards and scalar iteration overheads. 948 CM_ScalarEpilogueNotAllowedLowTripLoop, 949 950 // Loop hint predicate indicating an epilogue is undesired. 951 CM_ScalarEpilogueNotNeededUsePredicate 952 }; 953 954 /// LoopVectorizationCostModel - estimates the expected speedups due to 955 /// vectorization. 956 /// In many cases vectorization is not profitable. This can happen because of 957 /// a number of reasons. In this class we mainly attempt to predict the 958 /// expected speedup/slowdowns due to the supported instruction set. We use the 959 /// TargetTransformInfo to query the different backends for the cost of 960 /// different operations. 961 class LoopVectorizationCostModel { 962 public: 963 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 964 PredicatedScalarEvolution &PSE, LoopInfo *LI, 965 LoopVectorizationLegality *Legal, 966 const TargetTransformInfo &TTI, 967 const TargetLibraryInfo *TLI, DemandedBits *DB, 968 AssumptionCache *AC, 969 OptimizationRemarkEmitter *ORE, const Function *F, 970 const LoopVectorizeHints *Hints, 971 InterleavedAccessInfo &IAI) 972 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 973 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 974 Hints(Hints), InterleaveInfo(IAI) {} 975 976 /// \return An upper bound for the vectorization factor, or None if 977 /// vectorization and interleaving should be avoided up front. 978 Optional<unsigned> computeMaxVF(); 979 980 /// \return True if runtime checks are required for vectorization, and false 981 /// otherwise. 982 bool runtimeChecksRequired(); 983 984 /// \return The most profitable vectorization factor and the cost of that VF. 985 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 986 /// then this vectorization factor will be selected if vectorization is 987 /// possible. 988 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 989 990 /// Setup cost-based decisions for user vectorization factor. 991 void selectUserVectorizationFactor(unsigned UserVF) { 992 collectUniformsAndScalars(UserVF); 993 collectInstsToScalarize(UserVF); 994 } 995 996 /// \return The size (in bits) of the smallest and widest types in the code 997 /// that needs to be vectorized. We ignore values that remain scalar such as 998 /// 64 bit loop indices. 999 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1000 1001 /// \return The desired interleave count. 1002 /// If interleave count has been specified by metadata it will be returned. 1003 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1004 /// are the selected vectorization factor and the cost of the selected VF. 1005 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1006 1007 /// Memory access instruction may be vectorized in more than one way. 1008 /// Form of instruction after vectorization depends on cost. 1009 /// This function takes cost-based decisions for Load/Store instructions 1010 /// and collects them in a map. This decisions map is used for building 1011 /// the lists of loop-uniform and loop-scalar instructions. 1012 /// The calculated cost is saved with widening decision in order to 1013 /// avoid redundant calculations. 1014 void setCostBasedWideningDecision(unsigned VF); 1015 1016 /// A struct that represents some properties of the register usage 1017 /// of a loop. 1018 struct RegisterUsage { 1019 /// Holds the number of loop invariant values that are used in the loop. 1020 /// The key is ClassID of target-provided register class. 1021 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1022 /// Holds the maximum number of concurrent live intervals in the loop. 1023 /// The key is ClassID of target-provided register class. 1024 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1025 }; 1026 1027 /// \return Returns information about the register usages of the loop for the 1028 /// given vectorization factors. 1029 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1030 1031 /// Collect values we want to ignore in the cost model. 1032 void collectValuesToIgnore(); 1033 1034 /// \returns The smallest bitwidth each instruction can be represented with. 1035 /// The vector equivalents of these instructions should be truncated to this 1036 /// type. 1037 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1038 return MinBWs; 1039 } 1040 1041 /// \returns True if it is more profitable to scalarize instruction \p I for 1042 /// vectorization factor \p VF. 1043 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1044 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1045 1046 // Cost model is not run in the VPlan-native path - return conservative 1047 // result until this changes. 1048 if (EnableVPlanNativePath) 1049 return false; 1050 1051 auto Scalars = InstsToScalarize.find(VF); 1052 assert(Scalars != InstsToScalarize.end() && 1053 "VF not yet analyzed for scalarization profitability"); 1054 return Scalars->second.find(I) != Scalars->second.end(); 1055 } 1056 1057 /// Returns true if \p I is known to be uniform after vectorization. 1058 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1059 if (VF == 1) 1060 return true; 1061 1062 // Cost model is not run in the VPlan-native path - return conservative 1063 // result until this changes. 1064 if (EnableVPlanNativePath) 1065 return false; 1066 1067 auto UniformsPerVF = Uniforms.find(VF); 1068 assert(UniformsPerVF != Uniforms.end() && 1069 "VF not yet analyzed for uniformity"); 1070 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1071 } 1072 1073 /// Returns true if \p I is known to be scalar after vectorization. 1074 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1075 if (VF == 1) 1076 return true; 1077 1078 // Cost model is not run in the VPlan-native path - return conservative 1079 // result until this changes. 1080 if (EnableVPlanNativePath) 1081 return false; 1082 1083 auto ScalarsPerVF = Scalars.find(VF); 1084 assert(ScalarsPerVF != Scalars.end() && 1085 "Scalar values are not calculated for VF"); 1086 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1087 } 1088 1089 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1090 /// for vectorization factor \p VF. 1091 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1092 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1093 !isProfitableToScalarize(I, VF) && 1094 !isScalarAfterVectorization(I, VF); 1095 } 1096 1097 /// Decision that was taken during cost calculation for memory instruction. 1098 enum InstWidening { 1099 CM_Unknown, 1100 CM_Widen, // For consecutive accesses with stride +1. 1101 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1102 CM_Interleave, 1103 CM_GatherScatter, 1104 CM_Scalarize 1105 }; 1106 1107 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1108 /// instruction \p I and vector width \p VF. 1109 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1110 unsigned Cost) { 1111 assert(VF >= 2 && "Expected VF >=2"); 1112 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1113 } 1114 1115 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1116 /// interleaving group \p Grp and vector width \p VF. 1117 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1118 InstWidening W, unsigned Cost) { 1119 assert(VF >= 2 && "Expected VF >=2"); 1120 /// Broadcast this decicion to all instructions inside the group. 1121 /// But the cost will be assigned to one instruction only. 1122 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1123 if (auto *I = Grp->getMember(i)) { 1124 if (Grp->getInsertPos() == I) 1125 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1126 else 1127 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1128 } 1129 } 1130 } 1131 1132 /// Return the cost model decision for the given instruction \p I and vector 1133 /// width \p VF. Return CM_Unknown if this instruction did not pass 1134 /// through the cost modeling. 1135 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1136 assert(VF >= 2 && "Expected VF >=2"); 1137 1138 // Cost model is not run in the VPlan-native path - return conservative 1139 // result until this changes. 1140 if (EnableVPlanNativePath) 1141 return CM_GatherScatter; 1142 1143 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1144 auto Itr = WideningDecisions.find(InstOnVF); 1145 if (Itr == WideningDecisions.end()) 1146 return CM_Unknown; 1147 return Itr->second.first; 1148 } 1149 1150 /// Return the vectorization cost for the given instruction \p I and vector 1151 /// width \p VF. 1152 unsigned getWideningCost(Instruction *I, unsigned VF) { 1153 assert(VF >= 2 && "Expected VF >=2"); 1154 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1155 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1156 "The cost is not calculated"); 1157 return WideningDecisions[InstOnVF].second; 1158 } 1159 1160 /// Return True if instruction \p I is an optimizable truncate whose operand 1161 /// is an induction variable. Such a truncate will be removed by adding a new 1162 /// induction variable with the destination type. 1163 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1164 // If the instruction is not a truncate, return false. 1165 auto *Trunc = dyn_cast<TruncInst>(I); 1166 if (!Trunc) 1167 return false; 1168 1169 // Get the source and destination types of the truncate. 1170 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1171 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1172 1173 // If the truncate is free for the given types, return false. Replacing a 1174 // free truncate with an induction variable would add an induction variable 1175 // update instruction to each iteration of the loop. We exclude from this 1176 // check the primary induction variable since it will need an update 1177 // instruction regardless. 1178 Value *Op = Trunc->getOperand(0); 1179 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1180 return false; 1181 1182 // If the truncated value is not an induction variable, return false. 1183 return Legal->isInductionPhi(Op); 1184 } 1185 1186 /// Collects the instructions to scalarize for each predicated instruction in 1187 /// the loop. 1188 void collectInstsToScalarize(unsigned VF); 1189 1190 /// Collect Uniform and Scalar values for the given \p VF. 1191 /// The sets depend on CM decision for Load/Store instructions 1192 /// that may be vectorized as interleave, gather-scatter or scalarized. 1193 void collectUniformsAndScalars(unsigned VF) { 1194 // Do the analysis once. 1195 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1196 return; 1197 setCostBasedWideningDecision(VF); 1198 collectLoopUniforms(VF); 1199 collectLoopScalars(VF); 1200 } 1201 1202 /// Returns true if the target machine supports masked store operation 1203 /// for the given \p DataType and kind of access to \p Ptr. 1204 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1205 return Legal->isConsecutivePtr(Ptr) && 1206 TTI.isLegalMaskedStore(DataType, Alignment); 1207 } 1208 1209 /// Returns true if the target machine supports masked load operation 1210 /// for the given \p DataType and kind of access to \p Ptr. 1211 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1212 return Legal->isConsecutivePtr(Ptr) && 1213 TTI.isLegalMaskedLoad(DataType, Alignment); 1214 } 1215 1216 /// Returns true if the target machine supports masked scatter operation 1217 /// for the given \p DataType. 1218 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) { 1219 return TTI.isLegalMaskedScatter(DataType, Alignment); 1220 } 1221 1222 /// Returns true if the target machine supports masked gather operation 1223 /// for the given \p DataType. 1224 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) { 1225 return TTI.isLegalMaskedGather(DataType, Alignment); 1226 } 1227 1228 /// Returns true if the target machine can represent \p V as a masked gather 1229 /// or scatter operation. 1230 bool isLegalGatherOrScatter(Value *V) { 1231 bool LI = isa<LoadInst>(V); 1232 bool SI = isa<StoreInst>(V); 1233 if (!LI && !SI) 1234 return false; 1235 auto *Ty = getMemInstValueType(V); 1236 Align Align = getLoadStoreAlignment(V); 1237 return (LI && isLegalMaskedGather(Ty, Align)) || 1238 (SI && isLegalMaskedScatter(Ty, Align)); 1239 } 1240 1241 /// Returns true if \p I is an instruction that will be scalarized with 1242 /// predication. Such instructions include conditional stores and 1243 /// instructions that may divide by zero. 1244 /// If a non-zero VF has been calculated, we check if I will be scalarized 1245 /// predication for that VF. 1246 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1247 1248 // Returns true if \p I is an instruction that will be predicated either 1249 // through scalar predication or masked load/store or masked gather/scatter. 1250 // Superset of instructions that return true for isScalarWithPredication. 1251 bool isPredicatedInst(Instruction *I) { 1252 if (!blockNeedsPredication(I->getParent())) 1253 return false; 1254 // Loads and stores that need some form of masked operation are predicated 1255 // instructions. 1256 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1257 return Legal->isMaskRequired(I); 1258 return isScalarWithPredication(I); 1259 } 1260 1261 /// Returns true if \p I is a memory instruction with consecutive memory 1262 /// access that can be widened. 1263 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1264 1265 /// Returns true if \p I is a memory instruction in an interleaved-group 1266 /// of memory accesses that can be vectorized with wide vector loads/stores 1267 /// and shuffles. 1268 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1269 1270 /// Check if \p Instr belongs to any interleaved access group. 1271 bool isAccessInterleaved(Instruction *Instr) { 1272 return InterleaveInfo.isInterleaved(Instr); 1273 } 1274 1275 /// Get the interleaved access group that \p Instr belongs to. 1276 const InterleaveGroup<Instruction> * 1277 getInterleavedAccessGroup(Instruction *Instr) { 1278 return InterleaveInfo.getInterleaveGroup(Instr); 1279 } 1280 1281 /// Returns true if an interleaved group requires a scalar iteration 1282 /// to handle accesses with gaps, and there is nothing preventing us from 1283 /// creating a scalar epilogue. 1284 bool requiresScalarEpilogue() const { 1285 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1286 } 1287 1288 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1289 /// loop hint annotation. 1290 bool isScalarEpilogueAllowed() const { 1291 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1292 } 1293 1294 /// Returns true if all loop blocks should be masked to fold tail loop. 1295 bool foldTailByMasking() const { return FoldTailByMasking; } 1296 1297 bool blockNeedsPredication(BasicBlock *BB) { 1298 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1299 } 1300 1301 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1302 /// with factor VF. Return the cost of the instruction, including 1303 /// scalarization overhead if it's needed. 1304 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1305 1306 /// Estimate cost of a call instruction CI if it were vectorized with factor 1307 /// VF. Return the cost of the instruction, including scalarization overhead 1308 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1309 /// scalarized - 1310 /// i.e. either vector version isn't available, or is too expensive. 1311 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1312 1313 /// Invalidates decisions already taken by the cost model. 1314 void invalidateCostModelingDecisions() { 1315 WideningDecisions.clear(); 1316 Uniforms.clear(); 1317 Scalars.clear(); 1318 } 1319 1320 private: 1321 unsigned NumPredStores = 0; 1322 1323 /// \return An upper bound for the vectorization factor, larger than zero. 1324 /// One is returned if vectorization should best be avoided due to cost. 1325 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1326 1327 /// The vectorization cost is a combination of the cost itself and a boolean 1328 /// indicating whether any of the contributing operations will actually 1329 /// operate on 1330 /// vector values after type legalization in the backend. If this latter value 1331 /// is 1332 /// false, then all operations will be scalarized (i.e. no vectorization has 1333 /// actually taken place). 1334 using VectorizationCostTy = std::pair<unsigned, bool>; 1335 1336 /// Returns the expected execution cost. The unit of the cost does 1337 /// not matter because we use the 'cost' units to compare different 1338 /// vector widths. The cost that is returned is *not* normalized by 1339 /// the factor width. 1340 VectorizationCostTy expectedCost(unsigned VF); 1341 1342 /// Returns the execution time cost of an instruction for a given vector 1343 /// width. Vector width of one means scalar. 1344 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1345 1346 /// The cost-computation logic from getInstructionCost which provides 1347 /// the vector type as an output parameter. 1348 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1349 1350 /// Calculate vectorization cost of memory instruction \p I. 1351 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1352 1353 /// The cost computation for scalarized memory instruction. 1354 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1355 1356 /// The cost computation for interleaving group of memory instructions. 1357 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1358 1359 /// The cost computation for Gather/Scatter instruction. 1360 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1361 1362 /// The cost computation for widening instruction \p I with consecutive 1363 /// memory access. 1364 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1365 1366 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1367 /// Load: scalar load + broadcast. 1368 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1369 /// element) 1370 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1371 1372 /// Estimate the overhead of scalarizing an instruction. This is a 1373 /// convenience wrapper for the type-based getScalarizationOverhead API. 1374 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1375 1376 /// Returns whether the instruction is a load or store and will be a emitted 1377 /// as a vector operation. 1378 bool isConsecutiveLoadOrStore(Instruction *I); 1379 1380 /// Returns true if an artificially high cost for emulated masked memrefs 1381 /// should be used. 1382 bool useEmulatedMaskMemRefHack(Instruction *I); 1383 1384 /// Map of scalar integer values to the smallest bitwidth they can be legally 1385 /// represented as. The vector equivalents of these values should be truncated 1386 /// to this type. 1387 MapVector<Instruction *, uint64_t> MinBWs; 1388 1389 /// A type representing the costs for instructions if they were to be 1390 /// scalarized rather than vectorized. The entries are Instruction-Cost 1391 /// pairs. 1392 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1393 1394 /// A set containing all BasicBlocks that are known to present after 1395 /// vectorization as a predicated block. 1396 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1397 1398 /// Records whether it is allowed to have the original scalar loop execute at 1399 /// least once. This may be needed as a fallback loop in case runtime 1400 /// aliasing/dependence checks fail, or to handle the tail/remainder 1401 /// iterations when the trip count is unknown or doesn't divide by the VF, 1402 /// or as a peel-loop to handle gaps in interleave-groups. 1403 /// Under optsize and when the trip count is very small we don't allow any 1404 /// iterations to execute in the scalar loop. 1405 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1406 1407 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1408 bool FoldTailByMasking = false; 1409 1410 /// A map holding scalar costs for different vectorization factors. The 1411 /// presence of a cost for an instruction in the mapping indicates that the 1412 /// instruction will be scalarized when vectorizing with the associated 1413 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1414 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1415 1416 /// Holds the instructions known to be uniform after vectorization. 1417 /// The data is collected per VF. 1418 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1419 1420 /// Holds the instructions known to be scalar after vectorization. 1421 /// The data is collected per VF. 1422 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1423 1424 /// Holds the instructions (address computations) that are forced to be 1425 /// scalarized. 1426 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1427 1428 /// Returns the expected difference in cost from scalarizing the expression 1429 /// feeding a predicated instruction \p PredInst. The instructions to 1430 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1431 /// non-negative return value implies the expression will be scalarized. 1432 /// Currently, only single-use chains are considered for scalarization. 1433 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1434 unsigned VF); 1435 1436 /// Collect the instructions that are uniform after vectorization. An 1437 /// instruction is uniform if we represent it with a single scalar value in 1438 /// the vectorized loop corresponding to each vector iteration. Examples of 1439 /// uniform instructions include pointer operands of consecutive or 1440 /// interleaved memory accesses. Note that although uniformity implies an 1441 /// instruction will be scalar, the reverse is not true. In general, a 1442 /// scalarized instruction will be represented by VF scalar values in the 1443 /// vectorized loop, each corresponding to an iteration of the original 1444 /// scalar loop. 1445 void collectLoopUniforms(unsigned VF); 1446 1447 /// Collect the instructions that are scalar after vectorization. An 1448 /// instruction is scalar if it is known to be uniform or will be scalarized 1449 /// during vectorization. Non-uniform scalarized instructions will be 1450 /// represented by VF values in the vectorized loop, each corresponding to an 1451 /// iteration of the original scalar loop. 1452 void collectLoopScalars(unsigned VF); 1453 1454 /// Keeps cost model vectorization decision and cost for instructions. 1455 /// Right now it is used for memory instructions only. 1456 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1457 std::pair<InstWidening, unsigned>>; 1458 1459 DecisionList WideningDecisions; 1460 1461 /// Returns true if \p V is expected to be vectorized and it needs to be 1462 /// extracted. 1463 bool needsExtract(Value *V, unsigned VF) const { 1464 Instruction *I = dyn_cast<Instruction>(V); 1465 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1466 return false; 1467 1468 // Assume we can vectorize V (and hence we need extraction) if the 1469 // scalars are not computed yet. This can happen, because it is called 1470 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1471 // the scalars are collected. That should be a safe assumption in most 1472 // cases, because we check if the operands have vectorizable types 1473 // beforehand in LoopVectorizationLegality. 1474 return Scalars.find(VF) == Scalars.end() || 1475 !isScalarAfterVectorization(I, VF); 1476 }; 1477 1478 /// Returns a range containing only operands needing to be extracted. 1479 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1480 unsigned VF) { 1481 return SmallVector<Value *, 4>(make_filter_range( 1482 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1483 } 1484 1485 public: 1486 /// The loop that we evaluate. 1487 Loop *TheLoop; 1488 1489 /// Predicated scalar evolution analysis. 1490 PredicatedScalarEvolution &PSE; 1491 1492 /// Loop Info analysis. 1493 LoopInfo *LI; 1494 1495 /// Vectorization legality. 1496 LoopVectorizationLegality *Legal; 1497 1498 /// Vector target information. 1499 const TargetTransformInfo &TTI; 1500 1501 /// Target Library Info. 1502 const TargetLibraryInfo *TLI; 1503 1504 /// Demanded bits analysis. 1505 DemandedBits *DB; 1506 1507 /// Assumption cache. 1508 AssumptionCache *AC; 1509 1510 /// Interface to emit optimization remarks. 1511 OptimizationRemarkEmitter *ORE; 1512 1513 const Function *TheFunction; 1514 1515 /// Loop Vectorize Hint. 1516 const LoopVectorizeHints *Hints; 1517 1518 /// The interleave access information contains groups of interleaved accesses 1519 /// with the same stride and close to each other. 1520 InterleavedAccessInfo &InterleaveInfo; 1521 1522 /// Values to ignore in the cost model. 1523 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1524 1525 /// Values to ignore in the cost model when VF > 1. 1526 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1527 }; 1528 1529 } // end namespace llvm 1530 1531 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1532 // vectorization. The loop needs to be annotated with #pragma omp simd 1533 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1534 // vector length information is not provided, vectorization is not considered 1535 // explicit. Interleave hints are not allowed either. These limitations will be 1536 // relaxed in the future. 1537 // Please, note that we are currently forced to abuse the pragma 'clang 1538 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1539 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1540 // provides *explicit vectorization hints* (LV can bypass legal checks and 1541 // assume that vectorization is legal). However, both hints are implemented 1542 // using the same metadata (llvm.loop.vectorize, processed by 1543 // LoopVectorizeHints). This will be fixed in the future when the native IR 1544 // representation for pragma 'omp simd' is introduced. 1545 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1546 OptimizationRemarkEmitter *ORE) { 1547 assert(!OuterLp->empty() && "This is not an outer loop"); 1548 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1549 1550 // Only outer loops with an explicit vectorization hint are supported. 1551 // Unannotated outer loops are ignored. 1552 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1553 return false; 1554 1555 Function *Fn = OuterLp->getHeader()->getParent(); 1556 if (!Hints.allowVectorization(Fn, OuterLp, 1557 true /*VectorizeOnlyWhenForced*/)) { 1558 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1559 return false; 1560 } 1561 1562 if (Hints.getInterleave() > 1) { 1563 // TODO: Interleave support is future work. 1564 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1565 "outer loops.\n"); 1566 Hints.emitRemarkWithHints(); 1567 return false; 1568 } 1569 1570 return true; 1571 } 1572 1573 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1574 OptimizationRemarkEmitter *ORE, 1575 SmallVectorImpl<Loop *> &V) { 1576 // Collect inner loops and outer loops without irreducible control flow. For 1577 // now, only collect outer loops that have explicit vectorization hints. If we 1578 // are stress testing the VPlan H-CFG construction, we collect the outermost 1579 // loop of every loop nest. 1580 if (L.empty() || VPlanBuildStressTest || 1581 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1582 LoopBlocksRPO RPOT(&L); 1583 RPOT.perform(LI); 1584 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1585 V.push_back(&L); 1586 // TODO: Collect inner loops inside marked outer loops in case 1587 // vectorization fails for the outer loop. Do not invoke 1588 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1589 // already known to be reducible. We can use an inherited attribute for 1590 // that. 1591 return; 1592 } 1593 } 1594 for (Loop *InnerL : L) 1595 collectSupportedLoops(*InnerL, LI, ORE, V); 1596 } 1597 1598 namespace { 1599 1600 /// The LoopVectorize Pass. 1601 struct LoopVectorize : public FunctionPass { 1602 /// Pass identification, replacement for typeid 1603 static char ID; 1604 1605 LoopVectorizePass Impl; 1606 1607 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1608 bool VectorizeOnlyWhenForced = false) 1609 : FunctionPass(ID), 1610 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1611 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1612 } 1613 1614 bool runOnFunction(Function &F) override { 1615 if (skipFunction(F)) 1616 return false; 1617 1618 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1619 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1620 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1621 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1622 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1623 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1624 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1625 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1626 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1627 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1628 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1629 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1630 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1631 1632 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1633 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1634 1635 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1636 GetLAA, *ORE, PSI).MadeAnyChange; 1637 } 1638 1639 void getAnalysisUsage(AnalysisUsage &AU) const override { 1640 AU.addRequired<AssumptionCacheTracker>(); 1641 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1642 AU.addRequired<DominatorTreeWrapperPass>(); 1643 AU.addRequired<LoopInfoWrapperPass>(); 1644 AU.addRequired<ScalarEvolutionWrapperPass>(); 1645 AU.addRequired<TargetTransformInfoWrapperPass>(); 1646 AU.addRequired<AAResultsWrapperPass>(); 1647 AU.addRequired<LoopAccessLegacyAnalysis>(); 1648 AU.addRequired<DemandedBitsWrapperPass>(); 1649 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1650 AU.addRequired<InjectTLIMappingsLegacy>(); 1651 1652 // We currently do not preserve loopinfo/dominator analyses with outer loop 1653 // vectorization. Until this is addressed, mark these analyses as preserved 1654 // only for non-VPlan-native path. 1655 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1656 if (!EnableVPlanNativePath) { 1657 AU.addPreserved<LoopInfoWrapperPass>(); 1658 AU.addPreserved<DominatorTreeWrapperPass>(); 1659 } 1660 1661 AU.addPreserved<BasicAAWrapperPass>(); 1662 AU.addPreserved<GlobalsAAWrapperPass>(); 1663 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1664 } 1665 }; 1666 1667 } // end anonymous namespace 1668 1669 //===----------------------------------------------------------------------===// 1670 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1671 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1672 //===----------------------------------------------------------------------===// 1673 1674 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1675 // We need to place the broadcast of invariant variables outside the loop, 1676 // but only if it's proven safe to do so. Else, broadcast will be inside 1677 // vector loop body. 1678 Instruction *Instr = dyn_cast<Instruction>(V); 1679 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1680 (!Instr || 1681 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1682 // Place the code for broadcasting invariant variables in the new preheader. 1683 IRBuilder<>::InsertPointGuard Guard(Builder); 1684 if (SafeToHoist) 1685 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1686 1687 // Broadcast the scalar into all locations in the vector. 1688 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1689 1690 return Shuf; 1691 } 1692 1693 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1694 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1695 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1696 "Expected either an induction phi-node or a truncate of it!"); 1697 Value *Start = II.getStartValue(); 1698 1699 // Construct the initial value of the vector IV in the vector loop preheader 1700 auto CurrIP = Builder.saveIP(); 1701 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1702 if (isa<TruncInst>(EntryVal)) { 1703 assert(Start->getType()->isIntegerTy() && 1704 "Truncation requires an integer type"); 1705 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1706 Step = Builder.CreateTrunc(Step, TruncType); 1707 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1708 } 1709 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1710 Value *SteppedStart = 1711 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1712 1713 // We create vector phi nodes for both integer and floating-point induction 1714 // variables. Here, we determine the kind of arithmetic we will perform. 1715 Instruction::BinaryOps AddOp; 1716 Instruction::BinaryOps MulOp; 1717 if (Step->getType()->isIntegerTy()) { 1718 AddOp = Instruction::Add; 1719 MulOp = Instruction::Mul; 1720 } else { 1721 AddOp = II.getInductionOpcode(); 1722 MulOp = Instruction::FMul; 1723 } 1724 1725 // Multiply the vectorization factor by the step using integer or 1726 // floating-point arithmetic as appropriate. 1727 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1728 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1729 1730 // Create a vector splat to use in the induction update. 1731 // 1732 // FIXME: If the step is non-constant, we create the vector splat with 1733 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1734 // handle a constant vector splat. 1735 Value *SplatVF = 1736 isa<Constant>(Mul) 1737 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1738 : Builder.CreateVectorSplat(VF, Mul); 1739 Builder.restoreIP(CurrIP); 1740 1741 // We may need to add the step a number of times, depending on the unroll 1742 // factor. The last of those goes into the PHI. 1743 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1744 &*LoopVectorBody->getFirstInsertionPt()); 1745 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1746 Instruction *LastInduction = VecInd; 1747 for (unsigned Part = 0; Part < UF; ++Part) { 1748 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1749 1750 if (isa<TruncInst>(EntryVal)) 1751 addMetadata(LastInduction, EntryVal); 1752 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1753 1754 LastInduction = cast<Instruction>(addFastMathFlag( 1755 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1756 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1757 } 1758 1759 // Move the last step to the end of the latch block. This ensures consistent 1760 // placement of all induction updates. 1761 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1762 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1763 auto *ICmp = cast<Instruction>(Br->getCondition()); 1764 LastInduction->moveBefore(ICmp); 1765 LastInduction->setName("vec.ind.next"); 1766 1767 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1768 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1769 } 1770 1771 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1772 return Cost->isScalarAfterVectorization(I, VF) || 1773 Cost->isProfitableToScalarize(I, VF); 1774 } 1775 1776 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1777 if (shouldScalarizeInstruction(IV)) 1778 return true; 1779 auto isScalarInst = [&](User *U) -> bool { 1780 auto *I = cast<Instruction>(U); 1781 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1782 }; 1783 return llvm::any_of(IV->users(), isScalarInst); 1784 } 1785 1786 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1787 const InductionDescriptor &ID, const Instruction *EntryVal, 1788 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1789 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1790 "Expected either an induction phi-node or a truncate of it!"); 1791 1792 // This induction variable is not the phi from the original loop but the 1793 // newly-created IV based on the proof that casted Phi is equal to the 1794 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1795 // re-uses the same InductionDescriptor that original IV uses but we don't 1796 // have to do any recording in this case - that is done when original IV is 1797 // processed. 1798 if (isa<TruncInst>(EntryVal)) 1799 return; 1800 1801 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1802 if (Casts.empty()) 1803 return; 1804 // Only the first Cast instruction in the Casts vector is of interest. 1805 // The rest of the Casts (if exist) have no uses outside the 1806 // induction update chain itself. 1807 Instruction *CastInst = *Casts.begin(); 1808 if (Lane < UINT_MAX) 1809 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1810 else 1811 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1812 } 1813 1814 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1815 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1816 "Primary induction variable must have an integer type"); 1817 1818 auto II = Legal->getInductionVars().find(IV); 1819 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1820 1821 auto ID = II->second; 1822 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1823 1824 // The value from the original loop to which we are mapping the new induction 1825 // variable. 1826 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1827 1828 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1829 1830 // Generate code for the induction step. Note that induction steps are 1831 // required to be loop-invariant 1832 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1833 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1834 "Induction step should be loop invariant"); 1835 if (PSE.getSE()->isSCEVable(IV->getType())) { 1836 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1837 return Exp.expandCodeFor(Step, Step->getType(), 1838 LoopVectorPreHeader->getTerminator()); 1839 } 1840 return cast<SCEVUnknown>(Step)->getValue(); 1841 }; 1842 1843 // The scalar value to broadcast. This is derived from the canonical 1844 // induction variable. If a truncation type is given, truncate the canonical 1845 // induction variable and step. Otherwise, derive these values from the 1846 // induction descriptor. 1847 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1848 Value *ScalarIV = Induction; 1849 if (IV != OldInduction) { 1850 ScalarIV = IV->getType()->isIntegerTy() 1851 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1852 : Builder.CreateCast(Instruction::SIToFP, Induction, 1853 IV->getType()); 1854 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1855 ScalarIV->setName("offset.idx"); 1856 } 1857 if (Trunc) { 1858 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1859 assert(Step->getType()->isIntegerTy() && 1860 "Truncation requires an integer step"); 1861 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1862 Step = Builder.CreateTrunc(Step, TruncType); 1863 } 1864 return ScalarIV; 1865 }; 1866 1867 // Create the vector values from the scalar IV, in the absence of creating a 1868 // vector IV. 1869 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1870 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1871 for (unsigned Part = 0; Part < UF; ++Part) { 1872 Value *EntryPart = 1873 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1874 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1875 if (Trunc) 1876 addMetadata(EntryPart, Trunc); 1877 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1878 } 1879 }; 1880 1881 // Now do the actual transformations, and start with creating the step value. 1882 Value *Step = CreateStepValue(ID.getStep()); 1883 if (VF <= 1) { 1884 Value *ScalarIV = CreateScalarIV(Step); 1885 CreateSplatIV(ScalarIV, Step); 1886 return; 1887 } 1888 1889 // Determine if we want a scalar version of the induction variable. This is 1890 // true if the induction variable itself is not widened, or if it has at 1891 // least one user in the loop that is not widened. 1892 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1893 if (!NeedsScalarIV) { 1894 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1895 return; 1896 } 1897 1898 // Try to create a new independent vector induction variable. If we can't 1899 // create the phi node, we will splat the scalar induction variable in each 1900 // loop iteration. 1901 if (!shouldScalarizeInstruction(EntryVal)) { 1902 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1903 Value *ScalarIV = CreateScalarIV(Step); 1904 // Create scalar steps that can be used by instructions we will later 1905 // scalarize. Note that the addition of the scalar steps will not increase 1906 // the number of instructions in the loop in the common case prior to 1907 // InstCombine. We will be trading one vector extract for each scalar step. 1908 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1909 return; 1910 } 1911 1912 // All IV users are scalar instructions, so only emit a scalar IV, not a 1913 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 1914 // predicate used by the masked loads/stores. 1915 Value *ScalarIV = CreateScalarIV(Step); 1916 if (!Cost->isScalarEpilogueAllowed()) 1917 CreateSplatIV(ScalarIV, Step); 1918 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1919 } 1920 1921 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1922 Instruction::BinaryOps BinOp) { 1923 // Create and check the types. 1924 auto *ValVTy = cast<VectorType>(Val->getType()); 1925 int VLen = ValVTy->getNumElements(); 1926 1927 Type *STy = Val->getType()->getScalarType(); 1928 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1929 "Induction Step must be an integer or FP"); 1930 assert(Step->getType() == STy && "Step has wrong type"); 1931 1932 SmallVector<Constant *, 8> Indices; 1933 1934 if (STy->isIntegerTy()) { 1935 // Create a vector of consecutive numbers from zero to VF. 1936 for (int i = 0; i < VLen; ++i) 1937 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1938 1939 // Add the consecutive indices to the vector value. 1940 Constant *Cv = ConstantVector::get(Indices); 1941 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1942 Step = Builder.CreateVectorSplat(VLen, Step); 1943 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1944 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1945 // which can be found from the original scalar operations. 1946 Step = Builder.CreateMul(Cv, Step); 1947 return Builder.CreateAdd(Val, Step, "induction"); 1948 } 1949 1950 // Floating point induction. 1951 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1952 "Binary Opcode should be specified for FP induction"); 1953 // Create a vector of consecutive numbers from zero to VF. 1954 for (int i = 0; i < VLen; ++i) 1955 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1956 1957 // Add the consecutive indices to the vector value. 1958 Constant *Cv = ConstantVector::get(Indices); 1959 1960 Step = Builder.CreateVectorSplat(VLen, Step); 1961 1962 // Floating point operations had to be 'fast' to enable the induction. 1963 FastMathFlags Flags; 1964 Flags.setFast(); 1965 1966 Value *MulOp = Builder.CreateFMul(Cv, Step); 1967 if (isa<Instruction>(MulOp)) 1968 // Have to check, MulOp may be a constant 1969 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1970 1971 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1972 if (isa<Instruction>(BOp)) 1973 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1974 return BOp; 1975 } 1976 1977 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1978 Instruction *EntryVal, 1979 const InductionDescriptor &ID) { 1980 // We shouldn't have to build scalar steps if we aren't vectorizing. 1981 assert(VF > 1 && "VF should be greater than one"); 1982 1983 // Get the value type and ensure it and the step have the same integer type. 1984 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1985 assert(ScalarIVTy == Step->getType() && 1986 "Val and Step should have the same type"); 1987 1988 // We build scalar steps for both integer and floating-point induction 1989 // variables. Here, we determine the kind of arithmetic we will perform. 1990 Instruction::BinaryOps AddOp; 1991 Instruction::BinaryOps MulOp; 1992 if (ScalarIVTy->isIntegerTy()) { 1993 AddOp = Instruction::Add; 1994 MulOp = Instruction::Mul; 1995 } else { 1996 AddOp = ID.getInductionOpcode(); 1997 MulOp = Instruction::FMul; 1998 } 1999 2000 // Determine the number of scalars we need to generate for each unroll 2001 // iteration. If EntryVal is uniform, we only need to generate the first 2002 // lane. Otherwise, we generate all VF values. 2003 unsigned Lanes = 2004 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2005 : VF; 2006 // Compute the scalar steps and save the results in VectorLoopValueMap. 2007 for (unsigned Part = 0; Part < UF; ++Part) { 2008 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2009 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2010 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2011 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2012 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2013 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2014 } 2015 } 2016 } 2017 2018 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2019 assert(V != Induction && "The new induction variable should not be used."); 2020 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2021 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2022 2023 // If we have a stride that is replaced by one, do it here. Defer this for 2024 // the VPlan-native path until we start running Legal checks in that path. 2025 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2026 V = ConstantInt::get(V->getType(), 1); 2027 2028 // If we have a vector mapped to this value, return it. 2029 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2030 return VectorLoopValueMap.getVectorValue(V, Part); 2031 2032 // If the value has not been vectorized, check if it has been scalarized 2033 // instead. If it has been scalarized, and we actually need the value in 2034 // vector form, we will construct the vector values on demand. 2035 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2036 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2037 2038 // If we've scalarized a value, that value should be an instruction. 2039 auto *I = cast<Instruction>(V); 2040 2041 // If we aren't vectorizing, we can just copy the scalar map values over to 2042 // the vector map. 2043 if (VF == 1) { 2044 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2045 return ScalarValue; 2046 } 2047 2048 // Get the last scalar instruction we generated for V and Part. If the value 2049 // is known to be uniform after vectorization, this corresponds to lane zero 2050 // of the Part unroll iteration. Otherwise, the last instruction is the one 2051 // we created for the last vector lane of the Part unroll iteration. 2052 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2053 auto *LastInst = cast<Instruction>( 2054 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2055 2056 // Set the insert point after the last scalarized instruction. This ensures 2057 // the insertelement sequence will directly follow the scalar definitions. 2058 auto OldIP = Builder.saveIP(); 2059 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2060 Builder.SetInsertPoint(&*NewIP); 2061 2062 // However, if we are vectorizing, we need to construct the vector values. 2063 // If the value is known to be uniform after vectorization, we can just 2064 // broadcast the scalar value corresponding to lane zero for each unroll 2065 // iteration. Otherwise, we construct the vector values using insertelement 2066 // instructions. Since the resulting vectors are stored in 2067 // VectorLoopValueMap, we will only generate the insertelements once. 2068 Value *VectorValue = nullptr; 2069 if (Cost->isUniformAfterVectorization(I, VF)) { 2070 VectorValue = getBroadcastInstrs(ScalarValue); 2071 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2072 } else { 2073 // Initialize packing with insertelements to start from undef. 2074 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2075 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2076 for (unsigned Lane = 0; Lane < VF; ++Lane) 2077 packScalarIntoVectorValue(V, {Part, Lane}); 2078 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2079 } 2080 Builder.restoreIP(OldIP); 2081 return VectorValue; 2082 } 2083 2084 // If this scalar is unknown, assume that it is a constant or that it is 2085 // loop invariant. Broadcast V and save the value for future uses. 2086 Value *B = getBroadcastInstrs(V); 2087 VectorLoopValueMap.setVectorValue(V, Part, B); 2088 return B; 2089 } 2090 2091 Value * 2092 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2093 const VPIteration &Instance) { 2094 // If the value is not an instruction contained in the loop, it should 2095 // already be scalar. 2096 if (OrigLoop->isLoopInvariant(V)) 2097 return V; 2098 2099 assert(Instance.Lane > 0 2100 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2101 : true && "Uniform values only have lane zero"); 2102 2103 // If the value from the original loop has not been vectorized, it is 2104 // represented by UF x VF scalar values in the new loop. Return the requested 2105 // scalar value. 2106 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2107 return VectorLoopValueMap.getScalarValue(V, Instance); 2108 2109 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2110 // for the given unroll part. If this entry is not a vector type (i.e., the 2111 // vectorization factor is one), there is no need to generate an 2112 // extractelement instruction. 2113 auto *U = getOrCreateVectorValue(V, Instance.Part); 2114 if (!U->getType()->isVectorTy()) { 2115 assert(VF == 1 && "Value not scalarized has non-vector type"); 2116 return U; 2117 } 2118 2119 // Otherwise, the value from the original loop has been vectorized and is 2120 // represented by UF vector values. Extract and return the requested scalar 2121 // value from the appropriate vector lane. 2122 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2123 } 2124 2125 void InnerLoopVectorizer::packScalarIntoVectorValue( 2126 Value *V, const VPIteration &Instance) { 2127 assert(V != Induction && "The new induction variable should not be used."); 2128 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2129 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2130 2131 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2132 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2133 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2134 Builder.getInt32(Instance.Lane)); 2135 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2136 } 2137 2138 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2139 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2140 SmallVector<int, 8> ShuffleMask; 2141 for (unsigned i = 0; i < VF; ++i) 2142 ShuffleMask.push_back(VF - i - 1); 2143 2144 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2145 ShuffleMask, "reverse"); 2146 } 2147 2148 // Return whether we allow using masked interleave-groups (for dealing with 2149 // strided loads/stores that reside in predicated blocks, or for dealing 2150 // with gaps). 2151 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2152 // If an override option has been passed in for interleaved accesses, use it. 2153 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2154 return EnableMaskedInterleavedMemAccesses; 2155 2156 return TTI.enableMaskedInterleavedAccessVectorization(); 2157 } 2158 2159 // Try to vectorize the interleave group that \p Instr belongs to. 2160 // 2161 // E.g. Translate following interleaved load group (factor = 3): 2162 // for (i = 0; i < N; i+=3) { 2163 // R = Pic[i]; // Member of index 0 2164 // G = Pic[i+1]; // Member of index 1 2165 // B = Pic[i+2]; // Member of index 2 2166 // ... // do something to R, G, B 2167 // } 2168 // To: 2169 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2170 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2171 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2172 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2173 // 2174 // Or translate following interleaved store group (factor = 3): 2175 // for (i = 0; i < N; i+=3) { 2176 // ... do something to R, G, B 2177 // Pic[i] = R; // Member of index 0 2178 // Pic[i+1] = G; // Member of index 1 2179 // Pic[i+2] = B; // Member of index 2 2180 // } 2181 // To: 2182 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2183 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2184 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2185 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2186 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2187 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2188 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2189 VPValue *Addr, VPValue *BlockInMask) { 2190 Instruction *Instr = Group->getInsertPos(); 2191 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2192 2193 // Prepare for the vector type of the interleaved load/store. 2194 Type *ScalarTy = getMemInstValueType(Instr); 2195 unsigned InterleaveFactor = Group->getFactor(); 2196 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2197 2198 // Prepare for the new pointers. 2199 SmallVector<Value *, 2> AddrParts; 2200 unsigned Index = Group->getIndex(Instr); 2201 2202 // TODO: extend the masked interleaved-group support to reversed access. 2203 assert((!BlockInMask || !Group->isReverse()) && 2204 "Reversed masked interleave-group not supported."); 2205 2206 // If the group is reverse, adjust the index to refer to the last vector lane 2207 // instead of the first. We adjust the index from the first vector lane, 2208 // rather than directly getting the pointer for lane VF - 1, because the 2209 // pointer operand of the interleaved access is supposed to be uniform. For 2210 // uniform instructions, we're only required to generate a value for the 2211 // first vector lane in each unroll iteration. 2212 if (Group->isReverse()) 2213 Index += (VF - 1) * Group->getFactor(); 2214 2215 for (unsigned Part = 0; Part < UF; Part++) { 2216 Value *AddrPart = State.get(Addr, {Part, 0}); 2217 setDebugLocFromInst(Builder, AddrPart); 2218 2219 // Notice current instruction could be any index. Need to adjust the address 2220 // to the member of index 0. 2221 // 2222 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2223 // b = A[i]; // Member of index 0 2224 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2225 // 2226 // E.g. A[i+1] = a; // Member of index 1 2227 // A[i] = b; // Member of index 0 2228 // A[i+2] = c; // Member of index 2 (Current instruction) 2229 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2230 2231 bool InBounds = false; 2232 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2233 InBounds = gep->isInBounds(); 2234 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2235 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2236 2237 // Cast to the vector pointer type. 2238 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2239 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2240 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2241 } 2242 2243 setDebugLocFromInst(Builder, Instr); 2244 Value *UndefVec = UndefValue::get(VecTy); 2245 2246 Value *MaskForGaps = nullptr; 2247 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2248 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2249 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2250 } 2251 2252 // Vectorize the interleaved load group. 2253 if (isa<LoadInst>(Instr)) { 2254 // For each unroll part, create a wide load for the group. 2255 SmallVector<Value *, 2> NewLoads; 2256 for (unsigned Part = 0; Part < UF; Part++) { 2257 Instruction *NewLoad; 2258 if (BlockInMask || MaskForGaps) { 2259 assert(useMaskedInterleavedAccesses(*TTI) && 2260 "masked interleaved groups are not allowed."); 2261 Value *GroupMask = MaskForGaps; 2262 if (BlockInMask) { 2263 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2264 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2265 Value *ShuffledMask = Builder.CreateShuffleVector( 2266 BlockInMaskPart, Undefs, 2267 createReplicatedMask(InterleaveFactor, VF), "interleaved.mask"); 2268 GroupMask = MaskForGaps 2269 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2270 MaskForGaps) 2271 : ShuffledMask; 2272 } 2273 NewLoad = 2274 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2275 GroupMask, UndefVec, "wide.masked.vec"); 2276 } 2277 else 2278 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2279 Group->getAlign(), "wide.vec"); 2280 Group->addMetadata(NewLoad); 2281 NewLoads.push_back(NewLoad); 2282 } 2283 2284 // For each member in the group, shuffle out the appropriate data from the 2285 // wide loads. 2286 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2287 Instruction *Member = Group->getMember(I); 2288 2289 // Skip the gaps in the group. 2290 if (!Member) 2291 continue; 2292 2293 auto StrideMask = createStrideMask(I, InterleaveFactor, VF); 2294 for (unsigned Part = 0; Part < UF; Part++) { 2295 Value *StridedVec = Builder.CreateShuffleVector( 2296 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2297 2298 // If this member has different type, cast the result type. 2299 if (Member->getType() != ScalarTy) { 2300 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2301 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2302 } 2303 2304 if (Group->isReverse()) 2305 StridedVec = reverseVector(StridedVec); 2306 2307 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2308 } 2309 } 2310 return; 2311 } 2312 2313 // The sub vector type for current instruction. 2314 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2315 2316 // Vectorize the interleaved store group. 2317 for (unsigned Part = 0; Part < UF; Part++) { 2318 // Collect the stored vector from each member. 2319 SmallVector<Value *, 4> StoredVecs; 2320 for (unsigned i = 0; i < InterleaveFactor; i++) { 2321 // Interleaved store group doesn't allow a gap, so each index has a member 2322 Instruction *Member = Group->getMember(i); 2323 assert(Member && "Fail to get a member from an interleaved store group"); 2324 2325 Value *StoredVec = getOrCreateVectorValue( 2326 cast<StoreInst>(Member)->getValueOperand(), Part); 2327 if (Group->isReverse()) 2328 StoredVec = reverseVector(StoredVec); 2329 2330 // If this member has different type, cast it to a unified type. 2331 2332 if (StoredVec->getType() != SubVT) 2333 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2334 2335 StoredVecs.push_back(StoredVec); 2336 } 2337 2338 // Concatenate all vectors into a wide vector. 2339 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2340 2341 // Interleave the elements in the wide vector. 2342 Value *IVec = Builder.CreateShuffleVector( 2343 WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor), 2344 "interleaved.vec"); 2345 2346 Instruction *NewStoreInstr; 2347 if (BlockInMask) { 2348 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2349 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2350 Value *ShuffledMask = Builder.CreateShuffleVector( 2351 BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF), 2352 "interleaved.mask"); 2353 NewStoreInstr = Builder.CreateMaskedStore( 2354 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2355 } 2356 else 2357 NewStoreInstr = 2358 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2359 2360 Group->addMetadata(NewStoreInstr); 2361 } 2362 } 2363 2364 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2365 VPTransformState &State, 2366 VPValue *Addr, 2367 VPValue *StoredValue, 2368 VPValue *BlockInMask) { 2369 // Attempt to issue a wide load. 2370 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2371 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2372 2373 assert((LI || SI) && "Invalid Load/Store instruction"); 2374 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2375 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2376 2377 LoopVectorizationCostModel::InstWidening Decision = 2378 Cost->getWideningDecision(Instr, VF); 2379 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2380 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2381 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2382 "CM decision is not to widen the memory instruction"); 2383 2384 Type *ScalarDataTy = getMemInstValueType(Instr); 2385 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2386 const Align Alignment = getLoadStoreAlignment(Instr); 2387 2388 // Determine if the pointer operand of the access is either consecutive or 2389 // reverse consecutive. 2390 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2391 bool ConsecutiveStride = 2392 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2393 bool CreateGatherScatter = 2394 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2395 2396 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2397 // gather/scatter. Otherwise Decision should have been to Scalarize. 2398 assert((ConsecutiveStride || CreateGatherScatter) && 2399 "The instruction should be scalarized"); 2400 (void)ConsecutiveStride; 2401 2402 VectorParts BlockInMaskParts(UF); 2403 bool isMaskRequired = BlockInMask; 2404 if (isMaskRequired) 2405 for (unsigned Part = 0; Part < UF; ++Part) 2406 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2407 2408 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2409 // Calculate the pointer for the specific unroll-part. 2410 GetElementPtrInst *PartPtr = nullptr; 2411 2412 bool InBounds = false; 2413 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2414 InBounds = gep->isInBounds(); 2415 2416 if (Reverse) { 2417 // If the address is consecutive but reversed, then the 2418 // wide store needs to start at the last vector element. 2419 PartPtr = cast<GetElementPtrInst>( 2420 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2421 PartPtr->setIsInBounds(InBounds); 2422 PartPtr = cast<GetElementPtrInst>( 2423 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2424 PartPtr->setIsInBounds(InBounds); 2425 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2426 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2427 } else { 2428 PartPtr = cast<GetElementPtrInst>( 2429 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2430 PartPtr->setIsInBounds(InBounds); 2431 } 2432 2433 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2434 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2435 }; 2436 2437 // Handle Stores: 2438 if (SI) { 2439 setDebugLocFromInst(Builder, SI); 2440 2441 for (unsigned Part = 0; Part < UF; ++Part) { 2442 Instruction *NewSI = nullptr; 2443 Value *StoredVal = State.get(StoredValue, Part); 2444 if (CreateGatherScatter) { 2445 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2446 Value *VectorGep = State.get(Addr, Part); 2447 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2448 MaskPart); 2449 } else { 2450 if (Reverse) { 2451 // If we store to reverse consecutive memory locations, then we need 2452 // to reverse the order of elements in the stored value. 2453 StoredVal = reverseVector(StoredVal); 2454 // We don't want to update the value in the map as it might be used in 2455 // another expression. So don't call resetVectorValue(StoredVal). 2456 } 2457 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2458 if (isMaskRequired) 2459 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2460 BlockInMaskParts[Part]); 2461 else 2462 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2463 } 2464 addMetadata(NewSI, SI); 2465 } 2466 return; 2467 } 2468 2469 // Handle loads. 2470 assert(LI && "Must have a load instruction"); 2471 setDebugLocFromInst(Builder, LI); 2472 for (unsigned Part = 0; Part < UF; ++Part) { 2473 Value *NewLI; 2474 if (CreateGatherScatter) { 2475 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2476 Value *VectorGep = State.get(Addr, Part); 2477 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2478 nullptr, "wide.masked.gather"); 2479 addMetadata(NewLI, LI); 2480 } else { 2481 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2482 if (isMaskRequired) 2483 NewLI = Builder.CreateMaskedLoad( 2484 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2485 "wide.masked.load"); 2486 else 2487 NewLI = 2488 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2489 2490 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2491 addMetadata(NewLI, LI); 2492 if (Reverse) 2493 NewLI = reverseVector(NewLI); 2494 } 2495 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2496 } 2497 } 2498 2499 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2500 const VPIteration &Instance, 2501 bool IfPredicateInstr) { 2502 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2503 2504 setDebugLocFromInst(Builder, Instr); 2505 2506 // Does this instruction return a value ? 2507 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2508 2509 Instruction *Cloned = Instr->clone(); 2510 if (!IsVoidRetTy) 2511 Cloned->setName(Instr->getName() + ".cloned"); 2512 2513 // Replace the operands of the cloned instructions with their scalar 2514 // equivalents in the new loop. 2515 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2516 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2517 Cloned->setOperand(op, NewOp); 2518 } 2519 addNewMetadata(Cloned, Instr); 2520 2521 // Place the cloned scalar in the new loop. 2522 Builder.Insert(Cloned); 2523 2524 // Add the cloned scalar to the scalar map entry. 2525 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2526 2527 // If we just cloned a new assumption, add it the assumption cache. 2528 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2529 if (II->getIntrinsicID() == Intrinsic::assume) 2530 AC->registerAssumption(II); 2531 2532 // End if-block. 2533 if (IfPredicateInstr) 2534 PredicatedInstructions.push_back(Cloned); 2535 } 2536 2537 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2538 Value *End, Value *Step, 2539 Instruction *DL) { 2540 BasicBlock *Header = L->getHeader(); 2541 BasicBlock *Latch = L->getLoopLatch(); 2542 // As we're just creating this loop, it's possible no latch exists 2543 // yet. If so, use the header as this will be a single block loop. 2544 if (!Latch) 2545 Latch = Header; 2546 2547 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2548 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2549 setDebugLocFromInst(Builder, OldInst); 2550 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2551 2552 Builder.SetInsertPoint(Latch->getTerminator()); 2553 setDebugLocFromInst(Builder, OldInst); 2554 2555 // Create i+1 and fill the PHINode. 2556 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2557 Induction->addIncoming(Start, L->getLoopPreheader()); 2558 Induction->addIncoming(Next, Latch); 2559 // Create the compare. 2560 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2561 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2562 2563 // Now we have two terminators. Remove the old one from the block. 2564 Latch->getTerminator()->eraseFromParent(); 2565 2566 return Induction; 2567 } 2568 2569 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2570 if (TripCount) 2571 return TripCount; 2572 2573 assert(L && "Create Trip Count for null loop."); 2574 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2575 // Find the loop boundaries. 2576 ScalarEvolution *SE = PSE.getSE(); 2577 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2578 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2579 "Invalid loop count"); 2580 2581 Type *IdxTy = Legal->getWidestInductionType(); 2582 assert(IdxTy && "No type for induction"); 2583 2584 // The exit count might have the type of i64 while the phi is i32. This can 2585 // happen if we have an induction variable that is sign extended before the 2586 // compare. The only way that we get a backedge taken count is that the 2587 // induction variable was signed and as such will not overflow. In such a case 2588 // truncation is legal. 2589 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2590 IdxTy->getPrimitiveSizeInBits()) 2591 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2592 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2593 2594 // Get the total trip count from the count by adding 1. 2595 const SCEV *ExitCount = SE->getAddExpr( 2596 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2597 2598 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2599 2600 // Expand the trip count and place the new instructions in the preheader. 2601 // Notice that the pre-header does not change, only the loop body. 2602 SCEVExpander Exp(*SE, DL, "induction"); 2603 2604 // Count holds the overall loop count (N). 2605 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2606 L->getLoopPreheader()->getTerminator()); 2607 2608 if (TripCount->getType()->isPointerTy()) 2609 TripCount = 2610 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2611 L->getLoopPreheader()->getTerminator()); 2612 2613 return TripCount; 2614 } 2615 2616 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2617 if (VectorTripCount) 2618 return VectorTripCount; 2619 2620 Value *TC = getOrCreateTripCount(L); 2621 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2622 2623 Type *Ty = TC->getType(); 2624 Constant *Step = ConstantInt::get(Ty, VF * UF); 2625 2626 // If the tail is to be folded by masking, round the number of iterations N 2627 // up to a multiple of Step instead of rounding down. This is done by first 2628 // adding Step-1 and then rounding down. Note that it's ok if this addition 2629 // overflows: the vector induction variable will eventually wrap to zero given 2630 // that it starts at zero and its Step is a power of two; the loop will then 2631 // exit, with the last early-exit vector comparison also producing all-true. 2632 if (Cost->foldTailByMasking()) { 2633 assert(isPowerOf2_32(VF * UF) && 2634 "VF*UF must be a power of 2 when folding tail by masking"); 2635 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2636 } 2637 2638 // Now we need to generate the expression for the part of the loop that the 2639 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2640 // iterations are not required for correctness, or N - Step, otherwise. Step 2641 // is equal to the vectorization factor (number of SIMD elements) times the 2642 // unroll factor (number of SIMD instructions). 2643 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2644 2645 // If there is a non-reversed interleaved group that may speculatively access 2646 // memory out-of-bounds, we need to ensure that there will be at least one 2647 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2648 // the trip count, we set the remainder to be equal to the step. If the step 2649 // does not evenly divide the trip count, no adjustment is necessary since 2650 // there will already be scalar iterations. Note that the minimum iterations 2651 // check ensures that N >= Step. 2652 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2653 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2654 R = Builder.CreateSelect(IsZero, Step, R); 2655 } 2656 2657 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2658 2659 return VectorTripCount; 2660 } 2661 2662 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2663 const DataLayout &DL) { 2664 // Verify that V is a vector type with same number of elements as DstVTy. 2665 unsigned VF = DstVTy->getNumElements(); 2666 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2667 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2668 Type *SrcElemTy = SrcVecTy->getElementType(); 2669 Type *DstElemTy = DstVTy->getElementType(); 2670 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2671 "Vector elements must have same size"); 2672 2673 // Do a direct cast if element types are castable. 2674 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2675 return Builder.CreateBitOrPointerCast(V, DstVTy); 2676 } 2677 // V cannot be directly casted to desired vector type. 2678 // May happen when V is a floating point vector but DstVTy is a vector of 2679 // pointers or vice-versa. Handle this using a two-step bitcast using an 2680 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2681 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2682 "Only one type should be a pointer type"); 2683 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2684 "Only one type should be a floating point type"); 2685 Type *IntTy = 2686 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2687 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2688 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2689 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2690 } 2691 2692 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2693 BasicBlock *Bypass) { 2694 Value *Count = getOrCreateTripCount(L); 2695 // Reuse existing vector loop preheader for TC checks. 2696 // Note that new preheader block is generated for vector loop. 2697 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2698 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2699 2700 // Generate code to check if the loop's trip count is less than VF * UF, or 2701 // equal to it in case a scalar epilogue is required; this implies that the 2702 // vector trip count is zero. This check also covers the case where adding one 2703 // to the backedge-taken count overflowed leading to an incorrect trip count 2704 // of zero. In this case we will also jump to the scalar loop. 2705 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2706 : ICmpInst::ICMP_ULT; 2707 2708 // If tail is to be folded, vector loop takes care of all iterations. 2709 Value *CheckMinIters = Builder.getFalse(); 2710 if (!Cost->foldTailByMasking()) 2711 CheckMinIters = Builder.CreateICmp( 2712 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2713 "min.iters.check"); 2714 2715 // Create new preheader for vector loop. 2716 LoopVectorPreHeader = 2717 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2718 "vector.ph"); 2719 2720 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2721 DT->getNode(Bypass)->getIDom()) && 2722 "TC check is expected to dominate Bypass"); 2723 2724 // Update dominator for Bypass & LoopExit. 2725 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2726 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2727 2728 ReplaceInstWithInst( 2729 TCCheckBlock->getTerminator(), 2730 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2731 LoopBypassBlocks.push_back(TCCheckBlock); 2732 } 2733 2734 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2735 // Reuse existing vector loop preheader for SCEV checks. 2736 // Note that new preheader block is generated for vector loop. 2737 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2738 2739 // Generate the code to check that the SCEV assumptions that we made. 2740 // We want the new basic block to start at the first instruction in a 2741 // sequence of instructions that form a check. 2742 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2743 "scev.check"); 2744 Value *SCEVCheck = Exp.expandCodeForPredicate( 2745 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2746 2747 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2748 if (C->isZero()) 2749 return; 2750 2751 assert(!SCEVCheckBlock->getParent()->hasOptSize() && 2752 "Cannot SCEV check stride or overflow when optimizing for size"); 2753 2754 SCEVCheckBlock->setName("vector.scevcheck"); 2755 // Create new preheader for vector loop. 2756 LoopVectorPreHeader = 2757 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2758 nullptr, "vector.ph"); 2759 2760 // Update dominator only if this is first RT check. 2761 if (LoopBypassBlocks.empty()) { 2762 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2763 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2764 } 2765 2766 ReplaceInstWithInst( 2767 SCEVCheckBlock->getTerminator(), 2768 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2769 LoopBypassBlocks.push_back(SCEVCheckBlock); 2770 AddedSafetyChecks = true; 2771 } 2772 2773 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2774 // VPlan-native path does not do any analysis for runtime checks currently. 2775 if (EnableVPlanNativePath) 2776 return; 2777 2778 // Reuse existing vector loop preheader for runtime memory checks. 2779 // Note that new preheader block is generated for vector loop. 2780 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2781 2782 // Generate the code that checks in runtime if arrays overlap. We put the 2783 // checks into a separate block to make the more common case of few elements 2784 // faster. 2785 auto *LAI = Legal->getLAI(); 2786 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2787 if (!RtPtrChecking.Need) 2788 return; 2789 Instruction *FirstCheckInst; 2790 Instruction *MemRuntimeCheck; 2791 std::tie(FirstCheckInst, MemRuntimeCheck) = 2792 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2793 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2794 if (!MemRuntimeCheck) 2795 return; 2796 2797 if (MemCheckBlock->getParent()->hasOptSize()) { 2798 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2799 "Cannot emit memory checks when optimizing for size, unless forced " 2800 "to vectorize."); 2801 ORE->emit([&]() { 2802 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2803 L->getStartLoc(), L->getHeader()) 2804 << "Code-size may be reduced by not forcing " 2805 "vectorization, or by source-code modifications " 2806 "eliminating the need for runtime checks " 2807 "(e.g., adding 'restrict')."; 2808 }); 2809 } 2810 2811 MemCheckBlock->setName("vector.memcheck"); 2812 // Create new preheader for vector loop. 2813 LoopVectorPreHeader = 2814 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2815 "vector.ph"); 2816 2817 // Update dominator only if this is first RT check. 2818 if (LoopBypassBlocks.empty()) { 2819 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2820 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2821 } 2822 2823 ReplaceInstWithInst( 2824 MemCheckBlock->getTerminator(), 2825 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2826 LoopBypassBlocks.push_back(MemCheckBlock); 2827 AddedSafetyChecks = true; 2828 2829 // We currently don't use LoopVersioning for the actual loop cloning but we 2830 // still use it to add the noalias metadata. 2831 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2832 PSE.getSE()); 2833 LVer->prepareNoAliasMetadata(); 2834 } 2835 2836 Value *InnerLoopVectorizer::emitTransformedIndex( 2837 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2838 const InductionDescriptor &ID) const { 2839 2840 SCEVExpander Exp(*SE, DL, "induction"); 2841 auto Step = ID.getStep(); 2842 auto StartValue = ID.getStartValue(); 2843 assert(Index->getType() == Step->getType() && 2844 "Index type does not match StepValue type"); 2845 2846 // Note: the IR at this point is broken. We cannot use SE to create any new 2847 // SCEV and then expand it, hoping that SCEV's simplification will give us 2848 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2849 // lead to various SCEV crashes. So all we can do is to use builder and rely 2850 // on InstCombine for future simplifications. Here we handle some trivial 2851 // cases only. 2852 auto CreateAdd = [&B](Value *X, Value *Y) { 2853 assert(X->getType() == Y->getType() && "Types don't match!"); 2854 if (auto *CX = dyn_cast<ConstantInt>(X)) 2855 if (CX->isZero()) 2856 return Y; 2857 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2858 if (CY->isZero()) 2859 return X; 2860 return B.CreateAdd(X, Y); 2861 }; 2862 2863 auto CreateMul = [&B](Value *X, Value *Y) { 2864 assert(X->getType() == Y->getType() && "Types don't match!"); 2865 if (auto *CX = dyn_cast<ConstantInt>(X)) 2866 if (CX->isOne()) 2867 return Y; 2868 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2869 if (CY->isOne()) 2870 return X; 2871 return B.CreateMul(X, Y); 2872 }; 2873 2874 switch (ID.getKind()) { 2875 case InductionDescriptor::IK_IntInduction: { 2876 assert(Index->getType() == StartValue->getType() && 2877 "Index type does not match StartValue type"); 2878 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2879 return B.CreateSub(StartValue, Index); 2880 auto *Offset = CreateMul( 2881 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2882 return CreateAdd(StartValue, Offset); 2883 } 2884 case InductionDescriptor::IK_PtrInduction: { 2885 assert(isa<SCEVConstant>(Step) && 2886 "Expected constant step for pointer induction"); 2887 return B.CreateGEP( 2888 StartValue->getType()->getPointerElementType(), StartValue, 2889 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2890 &*B.GetInsertPoint()))); 2891 } 2892 case InductionDescriptor::IK_FpInduction: { 2893 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2894 auto InductionBinOp = ID.getInductionBinOp(); 2895 assert(InductionBinOp && 2896 (InductionBinOp->getOpcode() == Instruction::FAdd || 2897 InductionBinOp->getOpcode() == Instruction::FSub) && 2898 "Original bin op should be defined for FP induction"); 2899 2900 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2901 2902 // Floating point operations had to be 'fast' to enable the induction. 2903 FastMathFlags Flags; 2904 Flags.setFast(); 2905 2906 Value *MulExp = B.CreateFMul(StepValue, Index); 2907 if (isa<Instruction>(MulExp)) 2908 // We have to check, the MulExp may be a constant. 2909 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2910 2911 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2912 "induction"); 2913 if (isa<Instruction>(BOp)) 2914 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2915 2916 return BOp; 2917 } 2918 case InductionDescriptor::IK_NoInduction: 2919 return nullptr; 2920 } 2921 llvm_unreachable("invalid enum"); 2922 } 2923 2924 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2925 /* 2926 In this function we generate a new loop. The new loop will contain 2927 the vectorized instructions while the old loop will continue to run the 2928 scalar remainder. 2929 2930 [ ] <-- loop iteration number check. 2931 / | 2932 / v 2933 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2934 | / | 2935 | / v 2936 || [ ] <-- vector pre header. 2937 |/ | 2938 | v 2939 | [ ] \ 2940 | [ ]_| <-- vector loop. 2941 | | 2942 | v 2943 | -[ ] <--- middle-block. 2944 | / | 2945 | / v 2946 -|- >[ ] <--- new preheader. 2947 | | 2948 | v 2949 | [ ] \ 2950 | [ ]_| <-- old scalar loop to handle remainder. 2951 \ | 2952 \ v 2953 >[ ] <-- exit block. 2954 ... 2955 */ 2956 2957 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2958 2959 // Some loops have a single integer induction variable, while other loops 2960 // don't. One example is c++ iterators that often have multiple pointer 2961 // induction variables. In the code below we also support a case where we 2962 // don't have a single induction variable. 2963 // 2964 // We try to obtain an induction variable from the original loop as hard 2965 // as possible. However if we don't find one that: 2966 // - is an integer 2967 // - counts from zero, stepping by one 2968 // - is the size of the widest induction variable type 2969 // then we create a new one. 2970 OldInduction = Legal->getPrimaryInduction(); 2971 Type *IdxTy = Legal->getWidestInductionType(); 2972 2973 // Split the single block loop into the two loop structure described above. 2974 LoopScalarBody = OrigLoop->getHeader(); 2975 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2976 LoopExitBlock = OrigLoop->getExitBlock(); 2977 assert(LoopExitBlock && "Must have an exit block"); 2978 assert(LoopVectorPreHeader && "Invalid loop structure"); 2979 2980 LoopMiddleBlock = 2981 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2982 LI, nullptr, "middle.block"); 2983 LoopScalarPreHeader = 2984 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 2985 nullptr, "scalar.ph"); 2986 // We intentionally don't let SplitBlock to update LoopInfo since 2987 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 2988 // LoopVectorBody is explicitly added to the correct place few lines later. 2989 LoopVectorBody = 2990 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2991 nullptr, nullptr, "vector.body"); 2992 2993 // Update dominator for loop exit. 2994 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 2995 2996 // Create and register the new vector loop. 2997 Loop *Lp = LI->AllocateLoop(); 2998 Loop *ParentLoop = OrigLoop->getParentLoop(); 2999 3000 // Insert the new loop into the loop nest and register the new basic blocks 3001 // before calling any utilities such as SCEV that require valid LoopInfo. 3002 if (ParentLoop) { 3003 ParentLoop->addChildLoop(Lp); 3004 } else { 3005 LI->addTopLevelLoop(Lp); 3006 } 3007 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3008 3009 // Find the loop boundaries. 3010 Value *Count = getOrCreateTripCount(Lp); 3011 3012 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3013 3014 // Now, compare the new count to zero. If it is zero skip the vector loop and 3015 // jump to the scalar loop. This check also covers the case where the 3016 // backedge-taken count is uint##_max: adding one to it will overflow leading 3017 // to an incorrect trip count of zero. In this (rare) case we will also jump 3018 // to the scalar loop. 3019 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3020 3021 // Generate the code to check any assumptions that we've made for SCEV 3022 // expressions. 3023 emitSCEVChecks(Lp, LoopScalarPreHeader); 3024 3025 // Generate the code that checks in runtime if arrays overlap. We put the 3026 // checks into a separate block to make the more common case of few elements 3027 // faster. 3028 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3029 3030 // Generate the induction variable. 3031 // The loop step is equal to the vectorization factor (num of SIMD elements) 3032 // times the unroll factor (num of SIMD instructions). 3033 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3034 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3035 Induction = 3036 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3037 getDebugLocFromInstOrOperands(OldInduction)); 3038 3039 // We are going to resume the execution of the scalar loop. 3040 // Go over all of the induction variables that we found and fix the 3041 // PHIs that are left in the scalar version of the loop. 3042 // The starting values of PHI nodes depend on the counter of the last 3043 // iteration in the vectorized loop. 3044 // If we come from a bypass edge then we need to start from the original 3045 // start value. 3046 3047 // This variable saves the new starting index for the scalar loop. It is used 3048 // to test if there are any tail iterations left once the vector loop has 3049 // completed. 3050 for (auto &InductionEntry : Legal->getInductionVars()) { 3051 PHINode *OrigPhi = InductionEntry.first; 3052 InductionDescriptor II = InductionEntry.second; 3053 3054 // Create phi nodes to merge from the backedge-taken check block. 3055 PHINode *BCResumeVal = 3056 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3057 LoopScalarPreHeader->getTerminator()); 3058 // Copy original phi DL over to the new one. 3059 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3060 Value *&EndValue = IVEndValues[OrigPhi]; 3061 if (OrigPhi == OldInduction) { 3062 // We know what the end value is. 3063 EndValue = CountRoundDown; 3064 } else { 3065 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3066 Type *StepType = II.getStep()->getType(); 3067 Instruction::CastOps CastOp = 3068 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3069 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3070 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3071 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3072 EndValue->setName("ind.end"); 3073 } 3074 3075 // The new PHI merges the original incoming value, in case of a bypass, 3076 // or the value at the end of the vectorized loop. 3077 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3078 3079 // Fix the scalar body counter (PHI node). 3080 // The old induction's phi node in the scalar body needs the truncated 3081 // value. 3082 for (BasicBlock *BB : LoopBypassBlocks) 3083 BCResumeVal->addIncoming(II.getStartValue(), BB); 3084 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3085 } 3086 3087 // We need the OrigLoop (scalar loop part) latch terminator to help 3088 // produce correct debug info for the middle block BB instructions. 3089 // The legality check stage guarantees that the loop will have a single 3090 // latch. 3091 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3092 "Scalar loop latch terminator isn't a branch"); 3093 BranchInst *ScalarLatchBr = 3094 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3095 3096 // Add a check in the middle block to see if we have completed 3097 // all of the iterations in the first vector loop. 3098 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3099 // If tail is to be folded, we know we don't need to run the remainder. 3100 Value *CmpN = Builder.getTrue(); 3101 if (!Cost->foldTailByMasking()) { 3102 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3103 CountRoundDown, "cmp.n", 3104 LoopMiddleBlock->getTerminator()); 3105 3106 // Here we use the same DebugLoc as the scalar loop latch branch instead 3107 // of the corresponding compare because they may have ended up with 3108 // different line numbers and we want to avoid awkward line stepping while 3109 // debugging. Eg. if the compare has got a line number inside the loop. 3110 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3111 } 3112 3113 BranchInst *BrInst = 3114 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3115 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3116 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3117 3118 // Get ready to start creating new instructions into the vectorized body. 3119 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3120 "Inconsistent vector loop preheader"); 3121 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3122 3123 Optional<MDNode *> VectorizedLoopID = 3124 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3125 LLVMLoopVectorizeFollowupVectorized}); 3126 if (VectorizedLoopID.hasValue()) { 3127 Lp->setLoopID(VectorizedLoopID.getValue()); 3128 3129 // Do not setAlreadyVectorized if loop attributes have been defined 3130 // explicitly. 3131 return LoopVectorPreHeader; 3132 } 3133 3134 // Keep all loop hints from the original loop on the vector loop (we'll 3135 // replace the vectorizer-specific hints below). 3136 if (MDNode *LID = OrigLoop->getLoopID()) 3137 Lp->setLoopID(LID); 3138 3139 LoopVectorizeHints Hints(Lp, true, *ORE); 3140 Hints.setAlreadyVectorized(); 3141 3142 #ifdef EXPENSIVE_CHECKS 3143 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3144 LI->verify(*DT); 3145 #endif 3146 3147 return LoopVectorPreHeader; 3148 } 3149 3150 // Fix up external users of the induction variable. At this point, we are 3151 // in LCSSA form, with all external PHIs that use the IV having one input value, 3152 // coming from the remainder loop. We need those PHIs to also have a correct 3153 // value for the IV when arriving directly from the middle block. 3154 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3155 const InductionDescriptor &II, 3156 Value *CountRoundDown, Value *EndValue, 3157 BasicBlock *MiddleBlock) { 3158 // There are two kinds of external IV usages - those that use the value 3159 // computed in the last iteration (the PHI) and those that use the penultimate 3160 // value (the value that feeds into the phi from the loop latch). 3161 // We allow both, but they, obviously, have different values. 3162 3163 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3164 3165 DenseMap<Value *, Value *> MissingVals; 3166 3167 // An external user of the last iteration's value should see the value that 3168 // the remainder loop uses to initialize its own IV. 3169 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3170 for (User *U : PostInc->users()) { 3171 Instruction *UI = cast<Instruction>(U); 3172 if (!OrigLoop->contains(UI)) { 3173 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3174 MissingVals[UI] = EndValue; 3175 } 3176 } 3177 3178 // An external user of the penultimate value need to see EndValue - Step. 3179 // The simplest way to get this is to recompute it from the constituent SCEVs, 3180 // that is Start + (Step * (CRD - 1)). 3181 for (User *U : OrigPhi->users()) { 3182 auto *UI = cast<Instruction>(U); 3183 if (!OrigLoop->contains(UI)) { 3184 const DataLayout &DL = 3185 OrigLoop->getHeader()->getModule()->getDataLayout(); 3186 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3187 3188 IRBuilder<> B(MiddleBlock->getTerminator()); 3189 Value *CountMinusOne = B.CreateSub( 3190 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3191 Value *CMO = 3192 !II.getStep()->getType()->isIntegerTy() 3193 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3194 II.getStep()->getType()) 3195 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3196 CMO->setName("cast.cmo"); 3197 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3198 Escape->setName("ind.escape"); 3199 MissingVals[UI] = Escape; 3200 } 3201 } 3202 3203 for (auto &I : MissingVals) { 3204 PHINode *PHI = cast<PHINode>(I.first); 3205 // One corner case we have to handle is two IVs "chasing" each-other, 3206 // that is %IV2 = phi [...], [ %IV1, %latch ] 3207 // In this case, if IV1 has an external use, we need to avoid adding both 3208 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3209 // don't already have an incoming value for the middle block. 3210 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3211 PHI->addIncoming(I.second, MiddleBlock); 3212 } 3213 } 3214 3215 namespace { 3216 3217 struct CSEDenseMapInfo { 3218 static bool canHandle(const Instruction *I) { 3219 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3220 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3221 } 3222 3223 static inline Instruction *getEmptyKey() { 3224 return DenseMapInfo<Instruction *>::getEmptyKey(); 3225 } 3226 3227 static inline Instruction *getTombstoneKey() { 3228 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3229 } 3230 3231 static unsigned getHashValue(const Instruction *I) { 3232 assert(canHandle(I) && "Unknown instruction!"); 3233 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3234 I->value_op_end())); 3235 } 3236 3237 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3238 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3239 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3240 return LHS == RHS; 3241 return LHS->isIdenticalTo(RHS); 3242 } 3243 }; 3244 3245 } // end anonymous namespace 3246 3247 ///Perform cse of induction variable instructions. 3248 static void cse(BasicBlock *BB) { 3249 // Perform simple cse. 3250 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3251 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3252 Instruction *In = &*I++; 3253 3254 if (!CSEDenseMapInfo::canHandle(In)) 3255 continue; 3256 3257 // Check if we can replace this instruction with any of the 3258 // visited instructions. 3259 if (Instruction *V = CSEMap.lookup(In)) { 3260 In->replaceAllUsesWith(V); 3261 In->eraseFromParent(); 3262 continue; 3263 } 3264 3265 CSEMap[In] = In; 3266 } 3267 } 3268 3269 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3270 unsigned VF, 3271 bool &NeedToScalarize) { 3272 Function *F = CI->getCalledFunction(); 3273 Type *ScalarRetTy = CI->getType(); 3274 SmallVector<Type *, 4> Tys, ScalarTys; 3275 for (auto &ArgOp : CI->arg_operands()) 3276 ScalarTys.push_back(ArgOp->getType()); 3277 3278 // Estimate cost of scalarized vector call. The source operands are assumed 3279 // to be vectors, so we need to extract individual elements from there, 3280 // execute VF scalar calls, and then gather the result into the vector return 3281 // value. 3282 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3283 TTI::TCK_RecipThroughput); 3284 if (VF == 1) 3285 return ScalarCallCost; 3286 3287 // Compute corresponding vector type for return value and arguments. 3288 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3289 for (Type *ScalarTy : ScalarTys) 3290 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3291 3292 // Compute costs of unpacking argument values for the scalar calls and 3293 // packing the return values to a vector. 3294 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3295 3296 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3297 3298 // If we can't emit a vector call for this function, then the currently found 3299 // cost is the cost we need to return. 3300 NeedToScalarize = true; 3301 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3302 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3303 3304 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3305 return Cost; 3306 3307 // If the corresponding vector cost is cheaper, return its cost. 3308 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3309 TTI::TCK_RecipThroughput); 3310 if (VectorCallCost < Cost) { 3311 NeedToScalarize = false; 3312 return VectorCallCost; 3313 } 3314 return Cost; 3315 } 3316 3317 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3318 unsigned VF) { 3319 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3320 assert(ID && "Expected intrinsic call!"); 3321 3322 FastMathFlags FMF; 3323 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3324 FMF = FPMO->getFastMathFlags(); 3325 3326 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3327 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF, 3328 TargetTransformInfo::TCK_RecipThroughput, 3329 CI); 3330 } 3331 3332 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3333 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3334 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3335 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3336 } 3337 3338 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3339 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3340 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3341 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3342 } 3343 3344 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3345 // For every instruction `I` in MinBWs, truncate the operands, create a 3346 // truncated version of `I` and reextend its result. InstCombine runs 3347 // later and will remove any ext/trunc pairs. 3348 SmallPtrSet<Value *, 4> Erased; 3349 for (const auto &KV : Cost->getMinimalBitwidths()) { 3350 // If the value wasn't vectorized, we must maintain the original scalar 3351 // type. The absence of the value from VectorLoopValueMap indicates that it 3352 // wasn't vectorized. 3353 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3354 continue; 3355 for (unsigned Part = 0; Part < UF; ++Part) { 3356 Value *I = getOrCreateVectorValue(KV.first, Part); 3357 if (Erased.find(I) != Erased.end() || I->use_empty() || 3358 !isa<Instruction>(I)) 3359 continue; 3360 Type *OriginalTy = I->getType(); 3361 Type *ScalarTruncatedTy = 3362 IntegerType::get(OriginalTy->getContext(), KV.second); 3363 Type *TruncatedTy = VectorType::get( 3364 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements()); 3365 if (TruncatedTy == OriginalTy) 3366 continue; 3367 3368 IRBuilder<> B(cast<Instruction>(I)); 3369 auto ShrinkOperand = [&](Value *V) -> Value * { 3370 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3371 if (ZI->getSrcTy() == TruncatedTy) 3372 return ZI->getOperand(0); 3373 return B.CreateZExtOrTrunc(V, TruncatedTy); 3374 }; 3375 3376 // The actual instruction modification depends on the instruction type, 3377 // unfortunately. 3378 Value *NewI = nullptr; 3379 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3380 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3381 ShrinkOperand(BO->getOperand(1))); 3382 3383 // Any wrapping introduced by shrinking this operation shouldn't be 3384 // considered undefined behavior. So, we can't unconditionally copy 3385 // arithmetic wrapping flags to NewI. 3386 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3387 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3388 NewI = 3389 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3390 ShrinkOperand(CI->getOperand(1))); 3391 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3392 NewI = B.CreateSelect(SI->getCondition(), 3393 ShrinkOperand(SI->getTrueValue()), 3394 ShrinkOperand(SI->getFalseValue())); 3395 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3396 switch (CI->getOpcode()) { 3397 default: 3398 llvm_unreachable("Unhandled cast!"); 3399 case Instruction::Trunc: 3400 NewI = ShrinkOperand(CI->getOperand(0)); 3401 break; 3402 case Instruction::SExt: 3403 NewI = B.CreateSExtOrTrunc( 3404 CI->getOperand(0), 3405 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3406 break; 3407 case Instruction::ZExt: 3408 NewI = B.CreateZExtOrTrunc( 3409 CI->getOperand(0), 3410 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3411 break; 3412 } 3413 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3414 auto Elements0 = 3415 cast<VectorType>(SI->getOperand(0)->getType())->getNumElements(); 3416 auto *O0 = B.CreateZExtOrTrunc( 3417 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3418 auto Elements1 = 3419 cast<VectorType>(SI->getOperand(1)->getType())->getNumElements(); 3420 auto *O1 = B.CreateZExtOrTrunc( 3421 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3422 3423 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3424 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3425 // Don't do anything with the operands, just extend the result. 3426 continue; 3427 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3428 auto Elements = 3429 cast<VectorType>(IE->getOperand(0)->getType())->getNumElements(); 3430 auto *O0 = B.CreateZExtOrTrunc( 3431 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3432 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3433 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3434 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3435 auto Elements = 3436 cast<VectorType>(EE->getOperand(0)->getType())->getNumElements(); 3437 auto *O0 = B.CreateZExtOrTrunc( 3438 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3439 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3440 } else { 3441 // If we don't know what to do, be conservative and don't do anything. 3442 continue; 3443 } 3444 3445 // Lastly, extend the result. 3446 NewI->takeName(cast<Instruction>(I)); 3447 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3448 I->replaceAllUsesWith(Res); 3449 cast<Instruction>(I)->eraseFromParent(); 3450 Erased.insert(I); 3451 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3452 } 3453 } 3454 3455 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3456 for (const auto &KV : Cost->getMinimalBitwidths()) { 3457 // If the value wasn't vectorized, we must maintain the original scalar 3458 // type. The absence of the value from VectorLoopValueMap indicates that it 3459 // wasn't vectorized. 3460 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3461 continue; 3462 for (unsigned Part = 0; Part < UF; ++Part) { 3463 Value *I = getOrCreateVectorValue(KV.first, Part); 3464 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3465 if (Inst && Inst->use_empty()) { 3466 Value *NewI = Inst->getOperand(0); 3467 Inst->eraseFromParent(); 3468 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3469 } 3470 } 3471 } 3472 } 3473 3474 void InnerLoopVectorizer::fixVectorizedLoop() { 3475 // Insert truncates and extends for any truncated instructions as hints to 3476 // InstCombine. 3477 if (VF > 1) 3478 truncateToMinimalBitwidths(); 3479 3480 // Fix widened non-induction PHIs by setting up the PHI operands. 3481 if (OrigPHIsToFix.size()) { 3482 assert(EnableVPlanNativePath && 3483 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3484 fixNonInductionPHIs(); 3485 } 3486 3487 // At this point every instruction in the original loop is widened to a 3488 // vector form. Now we need to fix the recurrences in the loop. These PHI 3489 // nodes are currently empty because we did not want to introduce cycles. 3490 // This is the second stage of vectorizing recurrences. 3491 fixCrossIterationPHIs(); 3492 3493 // Forget the original basic block. 3494 PSE.getSE()->forgetLoop(OrigLoop); 3495 3496 // Fix-up external users of the induction variables. 3497 for (auto &Entry : Legal->getInductionVars()) 3498 fixupIVUsers(Entry.first, Entry.second, 3499 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3500 IVEndValues[Entry.first], LoopMiddleBlock); 3501 3502 fixLCSSAPHIs(); 3503 for (Instruction *PI : PredicatedInstructions) 3504 sinkScalarOperands(&*PI); 3505 3506 // Remove redundant induction instructions. 3507 cse(LoopVectorBody); 3508 3509 // Set/update profile weights for the vector and remainder loops as original 3510 // loop iterations are now distributed among them. Note that original loop 3511 // represented by LoopScalarBody becomes remainder loop after vectorization. 3512 // 3513 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3514 // end up getting slightly roughened result but that should be OK since 3515 // profile is not inherently precise anyway. Note also possible bypass of 3516 // vector code caused by legality checks is ignored, assigning all the weight 3517 // to the vector loop, optimistically. 3518 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3519 LI->getLoopFor(LoopVectorBody), 3520 LI->getLoopFor(LoopScalarBody), VF * UF); 3521 } 3522 3523 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3524 // In order to support recurrences we need to be able to vectorize Phi nodes. 3525 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3526 // stage #2: We now need to fix the recurrences by adding incoming edges to 3527 // the currently empty PHI nodes. At this point every instruction in the 3528 // original loop is widened to a vector form so we can use them to construct 3529 // the incoming edges. 3530 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3531 // Handle first-order recurrences and reductions that need to be fixed. 3532 if (Legal->isFirstOrderRecurrence(&Phi)) 3533 fixFirstOrderRecurrence(&Phi); 3534 else if (Legal->isReductionVariable(&Phi)) 3535 fixReduction(&Phi); 3536 } 3537 } 3538 3539 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3540 // This is the second phase of vectorizing first-order recurrences. An 3541 // overview of the transformation is described below. Suppose we have the 3542 // following loop. 3543 // 3544 // for (int i = 0; i < n; ++i) 3545 // b[i] = a[i] - a[i - 1]; 3546 // 3547 // There is a first-order recurrence on "a". For this loop, the shorthand 3548 // scalar IR looks like: 3549 // 3550 // scalar.ph: 3551 // s_init = a[-1] 3552 // br scalar.body 3553 // 3554 // scalar.body: 3555 // i = phi [0, scalar.ph], [i+1, scalar.body] 3556 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3557 // s2 = a[i] 3558 // b[i] = s2 - s1 3559 // br cond, scalar.body, ... 3560 // 3561 // In this example, s1 is a recurrence because it's value depends on the 3562 // previous iteration. In the first phase of vectorization, we created a 3563 // temporary value for s1. We now complete the vectorization and produce the 3564 // shorthand vector IR shown below (for VF = 4, UF = 1). 3565 // 3566 // vector.ph: 3567 // v_init = vector(..., ..., ..., a[-1]) 3568 // br vector.body 3569 // 3570 // vector.body 3571 // i = phi [0, vector.ph], [i+4, vector.body] 3572 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3573 // v2 = a[i, i+1, i+2, i+3]; 3574 // v3 = vector(v1(3), v2(0, 1, 2)) 3575 // b[i, i+1, i+2, i+3] = v2 - v3 3576 // br cond, vector.body, middle.block 3577 // 3578 // middle.block: 3579 // x = v2(3) 3580 // br scalar.ph 3581 // 3582 // scalar.ph: 3583 // s_init = phi [x, middle.block], [a[-1], otherwise] 3584 // br scalar.body 3585 // 3586 // After execution completes the vector loop, we extract the next value of 3587 // the recurrence (x) to use as the initial value in the scalar loop. 3588 3589 // Get the original loop preheader and single loop latch. 3590 auto *Preheader = OrigLoop->getLoopPreheader(); 3591 auto *Latch = OrigLoop->getLoopLatch(); 3592 3593 // Get the initial and previous values of the scalar recurrence. 3594 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3595 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3596 3597 // Create a vector from the initial value. 3598 auto *VectorInit = ScalarInit; 3599 if (VF > 1) { 3600 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3601 VectorInit = Builder.CreateInsertElement( 3602 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3603 Builder.getInt32(VF - 1), "vector.recur.init"); 3604 } 3605 3606 // We constructed a temporary phi node in the first phase of vectorization. 3607 // This phi node will eventually be deleted. 3608 Builder.SetInsertPoint( 3609 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3610 3611 // Create a phi node for the new recurrence. The current value will either be 3612 // the initial value inserted into a vector or loop-varying vector value. 3613 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3614 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3615 3616 // Get the vectorized previous value of the last part UF - 1. It appears last 3617 // among all unrolled iterations, due to the order of their construction. 3618 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3619 3620 // Find and set the insertion point after the previous value if it is an 3621 // instruction. 3622 BasicBlock::iterator InsertPt; 3623 // Note that the previous value may have been constant-folded so it is not 3624 // guaranteed to be an instruction in the vector loop. 3625 // FIXME: Loop invariant values do not form recurrences. We should deal with 3626 // them earlier. 3627 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3628 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3629 else { 3630 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3631 if (isa<PHINode>(PreviousLastPart)) 3632 // If the previous value is a phi node, we should insert after all the phi 3633 // nodes in the block containing the PHI to avoid breaking basic block 3634 // verification. Note that the basic block may be different to 3635 // LoopVectorBody, in case we predicate the loop. 3636 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3637 else 3638 InsertPt = ++PreviousInst->getIterator(); 3639 } 3640 Builder.SetInsertPoint(&*InsertPt); 3641 3642 // We will construct a vector for the recurrence by combining the values for 3643 // the current and previous iterations. This is the required shuffle mask. 3644 SmallVector<int, 8> ShuffleMask(VF); 3645 ShuffleMask[0] = VF - 1; 3646 for (unsigned I = 1; I < VF; ++I) 3647 ShuffleMask[I] = I + VF - 1; 3648 3649 // The vector from which to take the initial value for the current iteration 3650 // (actual or unrolled). Initially, this is the vector phi node. 3651 Value *Incoming = VecPhi; 3652 3653 // Shuffle the current and previous vector and update the vector parts. 3654 for (unsigned Part = 0; Part < UF; ++Part) { 3655 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3656 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3657 auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3658 ShuffleMask) 3659 : Incoming; 3660 PhiPart->replaceAllUsesWith(Shuffle); 3661 cast<Instruction>(PhiPart)->eraseFromParent(); 3662 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3663 Incoming = PreviousPart; 3664 } 3665 3666 // Fix the latch value of the new recurrence in the vector loop. 3667 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3668 3669 // Extract the last vector element in the middle block. This will be the 3670 // initial value for the recurrence when jumping to the scalar loop. 3671 auto *ExtractForScalar = Incoming; 3672 if (VF > 1) { 3673 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3674 ExtractForScalar = Builder.CreateExtractElement( 3675 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3676 } 3677 // Extract the second last element in the middle block if the 3678 // Phi is used outside the loop. We need to extract the phi itself 3679 // and not the last element (the phi update in the current iteration). This 3680 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3681 // when the scalar loop is not run at all. 3682 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3683 if (VF > 1) 3684 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3685 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3686 // When loop is unrolled without vectorizing, initialize 3687 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3688 // `Incoming`. This is analogous to the vectorized case above: extracting the 3689 // second last element when VF > 1. 3690 else if (UF > 1) 3691 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3692 3693 // Fix the initial value of the original recurrence in the scalar loop. 3694 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3695 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3696 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3697 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3698 Start->addIncoming(Incoming, BB); 3699 } 3700 3701 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3702 Phi->setName("scalar.recur"); 3703 3704 // Finally, fix users of the recurrence outside the loop. The users will need 3705 // either the last value of the scalar recurrence or the last value of the 3706 // vector recurrence we extracted in the middle block. Since the loop is in 3707 // LCSSA form, we just need to find all the phi nodes for the original scalar 3708 // recurrence in the exit block, and then add an edge for the middle block. 3709 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3710 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3711 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3712 } 3713 } 3714 } 3715 3716 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3717 Constant *Zero = Builder.getInt32(0); 3718 3719 // Get it's reduction variable descriptor. 3720 assert(Legal->isReductionVariable(Phi) && 3721 "Unable to find the reduction variable"); 3722 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3723 3724 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3725 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3726 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3727 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3728 RdxDesc.getMinMaxRecurrenceKind(); 3729 setDebugLocFromInst(Builder, ReductionStartValue); 3730 3731 // We need to generate a reduction vector from the incoming scalar. 3732 // To do so, we need to generate the 'identity' vector and override 3733 // one of the elements with the incoming scalar reduction. We need 3734 // to do it in the vector-loop preheader. 3735 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3736 3737 // This is the vector-clone of the value that leaves the loop. 3738 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3739 3740 // Find the reduction identity variable. Zero for addition, or, xor, 3741 // one for multiplication, -1 for And. 3742 Value *Identity; 3743 Value *VectorStart; 3744 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3745 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3746 // MinMax reduction have the start value as their identify. 3747 if (VF == 1) { 3748 VectorStart = Identity = ReductionStartValue; 3749 } else { 3750 VectorStart = Identity = 3751 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3752 } 3753 } else { 3754 // Handle other reduction kinds: 3755 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3756 RK, VecTy->getScalarType()); 3757 if (VF == 1) { 3758 Identity = Iden; 3759 // This vector is the Identity vector where the first element is the 3760 // incoming scalar reduction. 3761 VectorStart = ReductionStartValue; 3762 } else { 3763 Identity = ConstantVector::getSplat({VF, false}, Iden); 3764 3765 // This vector is the Identity vector where the first element is the 3766 // incoming scalar reduction. 3767 VectorStart = 3768 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3769 } 3770 } 3771 3772 // Wrap flags are in general invalid after vectorization, clear them. 3773 clearReductionWrapFlags(RdxDesc); 3774 3775 // Fix the vector-loop phi. 3776 3777 // Reductions do not have to start at zero. They can start with 3778 // any loop invariant values. 3779 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3780 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3781 3782 for (unsigned Part = 0; Part < UF; ++Part) { 3783 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3784 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3785 // Make sure to add the reduction start value only to the 3786 // first unroll part. 3787 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3788 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3789 cast<PHINode>(VecRdxPhi) 3790 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3791 } 3792 3793 // Before each round, move the insertion point right between 3794 // the PHIs and the values we are going to write. 3795 // This allows us to write both PHINodes and the extractelement 3796 // instructions. 3797 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3798 3799 setDebugLocFromInst(Builder, LoopExitInst); 3800 3801 // If tail is folded by masking, the vector value to leave the loop should be 3802 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3803 // instead of the former. 3804 if (Cost->foldTailByMasking()) { 3805 for (unsigned Part = 0; Part < UF; ++Part) { 3806 Value *VecLoopExitInst = 3807 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3808 Value *Sel = nullptr; 3809 for (User *U : VecLoopExitInst->users()) { 3810 if (isa<SelectInst>(U)) { 3811 assert(!Sel && "Reduction exit feeding two selects"); 3812 Sel = U; 3813 } else 3814 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3815 } 3816 assert(Sel && "Reduction exit feeds no select"); 3817 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3818 } 3819 } 3820 3821 // If the vector reduction can be performed in a smaller type, we truncate 3822 // then extend the loop exit value to enable InstCombine to evaluate the 3823 // entire expression in the smaller type. 3824 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3825 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3826 Builder.SetInsertPoint( 3827 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3828 VectorParts RdxParts(UF); 3829 for (unsigned Part = 0; Part < UF; ++Part) { 3830 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3831 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3832 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3833 : Builder.CreateZExt(Trunc, VecTy); 3834 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3835 UI != RdxParts[Part]->user_end();) 3836 if (*UI != Trunc) { 3837 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3838 RdxParts[Part] = Extnd; 3839 } else { 3840 ++UI; 3841 } 3842 } 3843 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3844 for (unsigned Part = 0; Part < UF; ++Part) { 3845 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3846 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3847 } 3848 } 3849 3850 // Reduce all of the unrolled parts into a single vector. 3851 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3852 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3853 3854 // The middle block terminator has already been assigned a DebugLoc here (the 3855 // OrigLoop's single latch terminator). We want the whole middle block to 3856 // appear to execute on this line because: (a) it is all compiler generated, 3857 // (b) these instructions are always executed after evaluating the latch 3858 // conditional branch, and (c) other passes may add new predecessors which 3859 // terminate on this line. This is the easiest way to ensure we don't 3860 // accidentally cause an extra step back into the loop while debugging. 3861 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3862 for (unsigned Part = 1; Part < UF; ++Part) { 3863 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3864 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3865 // Floating point operations had to be 'fast' to enable the reduction. 3866 ReducedPartRdx = addFastMathFlag( 3867 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3868 ReducedPartRdx, "bin.rdx"), 3869 RdxDesc.getFastMathFlags()); 3870 else 3871 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3872 RdxPart); 3873 } 3874 3875 if (VF > 1) { 3876 bool NoNaN = Legal->hasFunNoNaNAttr(); 3877 ReducedPartRdx = 3878 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3879 // If the reduction can be performed in a smaller type, we need to extend 3880 // the reduction to the wider type before we branch to the original loop. 3881 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3882 ReducedPartRdx = 3883 RdxDesc.isSigned() 3884 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3885 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3886 } 3887 3888 // Create a phi node that merges control-flow from the backedge-taken check 3889 // block and the middle block. 3890 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3891 LoopScalarPreHeader->getTerminator()); 3892 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3893 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3894 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3895 3896 // Now, we need to fix the users of the reduction variable 3897 // inside and outside of the scalar remainder loop. 3898 // We know that the loop is in LCSSA form. We need to update the 3899 // PHI nodes in the exit blocks. 3900 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3901 // All PHINodes need to have a single entry edge, or two if 3902 // we already fixed them. 3903 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3904 3905 // We found a reduction value exit-PHI. Update it with the 3906 // incoming bypass edge. 3907 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3908 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3909 } // end of the LCSSA phi scan. 3910 3911 // Fix the scalar loop reduction variable with the incoming reduction sum 3912 // from the vector body and from the backedge value. 3913 int IncomingEdgeBlockIdx = 3914 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3915 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3916 // Pick the other block. 3917 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3918 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3919 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3920 } 3921 3922 void InnerLoopVectorizer::clearReductionWrapFlags( 3923 RecurrenceDescriptor &RdxDesc) { 3924 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3925 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3926 RK != RecurrenceDescriptor::RK_IntegerMult) 3927 return; 3928 3929 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3930 assert(LoopExitInstr && "null loop exit instruction"); 3931 SmallVector<Instruction *, 8> Worklist; 3932 SmallPtrSet<Instruction *, 8> Visited; 3933 Worklist.push_back(LoopExitInstr); 3934 Visited.insert(LoopExitInstr); 3935 3936 while (!Worklist.empty()) { 3937 Instruction *Cur = Worklist.pop_back_val(); 3938 if (isa<OverflowingBinaryOperator>(Cur)) 3939 for (unsigned Part = 0; Part < UF; ++Part) { 3940 Value *V = getOrCreateVectorValue(Cur, Part); 3941 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3942 } 3943 3944 for (User *U : Cur->users()) { 3945 Instruction *UI = cast<Instruction>(U); 3946 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3947 Visited.insert(UI).second) 3948 Worklist.push_back(UI); 3949 } 3950 } 3951 } 3952 3953 void InnerLoopVectorizer::fixLCSSAPHIs() { 3954 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3955 if (LCSSAPhi.getNumIncomingValues() == 1) { 3956 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3957 // Non-instruction incoming values will have only one value. 3958 unsigned LastLane = 0; 3959 if (isa<Instruction>(IncomingValue)) 3960 LastLane = Cost->isUniformAfterVectorization( 3961 cast<Instruction>(IncomingValue), VF) 3962 ? 0 3963 : VF - 1; 3964 // Can be a loop invariant incoming value or the last scalar value to be 3965 // extracted from the vectorized loop. 3966 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3967 Value *lastIncomingValue = 3968 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3969 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3970 } 3971 } 3972 } 3973 3974 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3975 // The basic block and loop containing the predicated instruction. 3976 auto *PredBB = PredInst->getParent(); 3977 auto *VectorLoop = LI->getLoopFor(PredBB); 3978 3979 // Initialize a worklist with the operands of the predicated instruction. 3980 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3981 3982 // Holds instructions that we need to analyze again. An instruction may be 3983 // reanalyzed if we don't yet know if we can sink it or not. 3984 SmallVector<Instruction *, 8> InstsToReanalyze; 3985 3986 // Returns true if a given use occurs in the predicated block. Phi nodes use 3987 // their operands in their corresponding predecessor blocks. 3988 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3989 auto *I = cast<Instruction>(U.getUser()); 3990 BasicBlock *BB = I->getParent(); 3991 if (auto *Phi = dyn_cast<PHINode>(I)) 3992 BB = Phi->getIncomingBlock( 3993 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3994 return BB == PredBB; 3995 }; 3996 3997 // Iteratively sink the scalarized operands of the predicated instruction 3998 // into the block we created for it. When an instruction is sunk, it's 3999 // operands are then added to the worklist. The algorithm ends after one pass 4000 // through the worklist doesn't sink a single instruction. 4001 bool Changed; 4002 do { 4003 // Add the instructions that need to be reanalyzed to the worklist, and 4004 // reset the changed indicator. 4005 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4006 InstsToReanalyze.clear(); 4007 Changed = false; 4008 4009 while (!Worklist.empty()) { 4010 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4011 4012 // We can't sink an instruction if it is a phi node, is already in the 4013 // predicated block, is not in the loop, or may have side effects. 4014 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4015 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4016 continue; 4017 4018 // It's legal to sink the instruction if all its uses occur in the 4019 // predicated block. Otherwise, there's nothing to do yet, and we may 4020 // need to reanalyze the instruction. 4021 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4022 InstsToReanalyze.push_back(I); 4023 continue; 4024 } 4025 4026 // Move the instruction to the beginning of the predicated block, and add 4027 // it's operands to the worklist. 4028 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4029 Worklist.insert(I->op_begin(), I->op_end()); 4030 4031 // The sinking may have enabled other instructions to be sunk, so we will 4032 // need to iterate. 4033 Changed = true; 4034 } 4035 } while (Changed); 4036 } 4037 4038 void InnerLoopVectorizer::fixNonInductionPHIs() { 4039 for (PHINode *OrigPhi : OrigPHIsToFix) { 4040 PHINode *NewPhi = 4041 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4042 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4043 4044 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4045 predecessors(OrigPhi->getParent())); 4046 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4047 predecessors(NewPhi->getParent())); 4048 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4049 "Scalar and Vector BB should have the same number of predecessors"); 4050 4051 // The insertion point in Builder may be invalidated by the time we get 4052 // here. Force the Builder insertion point to something valid so that we do 4053 // not run into issues during insertion point restore in 4054 // getOrCreateVectorValue calls below. 4055 Builder.SetInsertPoint(NewPhi); 4056 4057 // The predecessor order is preserved and we can rely on mapping between 4058 // scalar and vector block predecessors. 4059 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4060 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4061 4062 // When looking up the new scalar/vector values to fix up, use incoming 4063 // values from original phi. 4064 Value *ScIncV = 4065 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4066 4067 // Scalar incoming value may need a broadcast 4068 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4069 NewPhi->addIncoming(NewIncV, NewPredBB); 4070 } 4071 } 4072 } 4073 4074 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF, 4075 unsigned VF, bool IsPtrLoopInvariant, 4076 SmallBitVector &IsIndexLoopInvariant) { 4077 // Construct a vector GEP by widening the operands of the scalar GEP as 4078 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4079 // results in a vector of pointers when at least one operand of the GEP 4080 // is vector-typed. Thus, to keep the representation compact, we only use 4081 // vector-typed operands for loop-varying values. 4082 4083 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4084 // If we are vectorizing, but the GEP has only loop-invariant operands, 4085 // the GEP we build (by only using vector-typed operands for 4086 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4087 // produce a vector of pointers, we need to either arbitrarily pick an 4088 // operand to broadcast, or broadcast a clone of the original GEP. 4089 // Here, we broadcast a clone of the original. 4090 // 4091 // TODO: If at some point we decide to scalarize instructions having 4092 // loop-invariant operands, this special case will no longer be 4093 // required. We would add the scalarization decision to 4094 // collectLoopScalars() and teach getVectorValue() to broadcast 4095 // the lane-zero scalar value. 4096 auto *Clone = Builder.Insert(GEP->clone()); 4097 for (unsigned Part = 0; Part < UF; ++Part) { 4098 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4099 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4100 addMetadata(EntryPart, GEP); 4101 } 4102 } else { 4103 // If the GEP has at least one loop-varying operand, we are sure to 4104 // produce a vector of pointers. But if we are only unrolling, we want 4105 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4106 // produce with the code below will be scalar (if VF == 1) or vector 4107 // (otherwise). Note that for the unroll-only case, we still maintain 4108 // values in the vector mapping with initVector, as we do for other 4109 // instructions. 4110 for (unsigned Part = 0; Part < UF; ++Part) { 4111 // The pointer operand of the new GEP. If it's loop-invariant, we 4112 // won't broadcast it. 4113 auto *Ptr = IsPtrLoopInvariant 4114 ? GEP->getPointerOperand() 4115 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4116 4117 // Collect all the indices for the new GEP. If any index is 4118 // loop-invariant, we won't broadcast it. 4119 SmallVector<Value *, 4> Indices; 4120 for (auto Index : enumerate(GEP->indices())) { 4121 Value *User = Index.value().get(); 4122 if (IsIndexLoopInvariant[Index.index()]) 4123 Indices.push_back(User); 4124 else 4125 Indices.push_back(getOrCreateVectorValue(User, Part)); 4126 } 4127 4128 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4129 // but it should be a vector, otherwise. 4130 auto *NewGEP = 4131 GEP->isInBounds() 4132 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4133 Indices) 4134 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4135 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4136 "NewGEP is not a pointer vector"); 4137 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4138 addMetadata(NewGEP, GEP); 4139 } 4140 } 4141 } 4142 4143 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4144 unsigned VF) { 4145 PHINode *P = cast<PHINode>(PN); 4146 if (EnableVPlanNativePath) { 4147 // Currently we enter here in the VPlan-native path for non-induction 4148 // PHIs where all control flow is uniform. We simply widen these PHIs. 4149 // Create a vector phi with no operands - the vector phi operands will be 4150 // set at the end of vector code generation. 4151 Type *VecTy = 4152 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4153 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4154 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4155 OrigPHIsToFix.push_back(P); 4156 4157 return; 4158 } 4159 4160 assert(PN->getParent() == OrigLoop->getHeader() && 4161 "Non-header phis should have been handled elsewhere"); 4162 4163 // In order to support recurrences we need to be able to vectorize Phi nodes. 4164 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4165 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4166 // this value when we vectorize all of the instructions that use the PHI. 4167 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4168 for (unsigned Part = 0; Part < UF; ++Part) { 4169 // This is phase one of vectorizing PHIs. 4170 Type *VecTy = 4171 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4172 Value *EntryPart = PHINode::Create( 4173 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4174 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4175 } 4176 return; 4177 } 4178 4179 setDebugLocFromInst(Builder, P); 4180 4181 // This PHINode must be an induction variable. 4182 // Make sure that we know about it. 4183 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4184 4185 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4186 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4187 4188 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4189 // which can be found from the original scalar operations. 4190 switch (II.getKind()) { 4191 case InductionDescriptor::IK_NoInduction: 4192 llvm_unreachable("Unknown induction"); 4193 case InductionDescriptor::IK_IntInduction: 4194 case InductionDescriptor::IK_FpInduction: 4195 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4196 case InductionDescriptor::IK_PtrInduction: { 4197 // Handle the pointer induction variable case. 4198 assert(P->getType()->isPointerTy() && "Unexpected type."); 4199 // This is the normalized GEP that starts counting at zero. 4200 Value *PtrInd = Induction; 4201 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4202 // Determine the number of scalars we need to generate for each unroll 4203 // iteration. If the instruction is uniform, we only need to generate the 4204 // first lane. Otherwise, we generate all VF values. 4205 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4206 // These are the scalar results. Notice that we don't generate vector GEPs 4207 // because scalar GEPs result in better code. 4208 for (unsigned Part = 0; Part < UF; ++Part) { 4209 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4210 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4211 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4212 Value *SclrGep = 4213 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4214 SclrGep->setName("next.gep"); 4215 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4216 } 4217 } 4218 return; 4219 } 4220 } 4221 } 4222 4223 /// A helper function for checking whether an integer division-related 4224 /// instruction may divide by zero (in which case it must be predicated if 4225 /// executed conditionally in the scalar code). 4226 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4227 /// Non-zero divisors that are non compile-time constants will not be 4228 /// converted into multiplication, so we will still end up scalarizing 4229 /// the division, but can do so w/o predication. 4230 static bool mayDivideByZero(Instruction &I) { 4231 assert((I.getOpcode() == Instruction::UDiv || 4232 I.getOpcode() == Instruction::SDiv || 4233 I.getOpcode() == Instruction::URem || 4234 I.getOpcode() == Instruction::SRem) && 4235 "Unexpected instruction"); 4236 Value *Divisor = I.getOperand(1); 4237 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4238 return !CInt || CInt->isZero(); 4239 } 4240 4241 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4242 VPTransformState &State) { 4243 switch (I.getOpcode()) { 4244 case Instruction::Call: 4245 case Instruction::Br: 4246 case Instruction::PHI: 4247 case Instruction::GetElementPtr: 4248 case Instruction::Select: 4249 llvm_unreachable("This instruction is handled by a different recipe."); 4250 case Instruction::UDiv: 4251 case Instruction::SDiv: 4252 case Instruction::SRem: 4253 case Instruction::URem: 4254 case Instruction::Add: 4255 case Instruction::FAdd: 4256 case Instruction::Sub: 4257 case Instruction::FSub: 4258 case Instruction::FNeg: 4259 case Instruction::Mul: 4260 case Instruction::FMul: 4261 case Instruction::FDiv: 4262 case Instruction::FRem: 4263 case Instruction::Shl: 4264 case Instruction::LShr: 4265 case Instruction::AShr: 4266 case Instruction::And: 4267 case Instruction::Or: 4268 case Instruction::Xor: { 4269 // Just widen unops and binops. 4270 setDebugLocFromInst(Builder, &I); 4271 4272 for (unsigned Part = 0; Part < UF; ++Part) { 4273 SmallVector<Value *, 2> Ops; 4274 for (VPValue *VPOp : User.operands()) 4275 Ops.push_back(State.get(VPOp, Part)); 4276 4277 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4278 4279 if (auto *VecOp = dyn_cast<Instruction>(V)) 4280 VecOp->copyIRFlags(&I); 4281 4282 // Use this vector value for all users of the original instruction. 4283 VectorLoopValueMap.setVectorValue(&I, Part, V); 4284 addMetadata(V, &I); 4285 } 4286 4287 break; 4288 } 4289 case Instruction::ICmp: 4290 case Instruction::FCmp: { 4291 // Widen compares. Generate vector compares. 4292 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4293 auto *Cmp = cast<CmpInst>(&I); 4294 setDebugLocFromInst(Builder, Cmp); 4295 for (unsigned Part = 0; Part < UF; ++Part) { 4296 Value *A = State.get(User.getOperand(0), Part); 4297 Value *B = State.get(User.getOperand(1), Part); 4298 Value *C = nullptr; 4299 if (FCmp) { 4300 // Propagate fast math flags. 4301 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4302 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4303 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4304 } else { 4305 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4306 } 4307 VectorLoopValueMap.setVectorValue(&I, Part, C); 4308 addMetadata(C, &I); 4309 } 4310 4311 break; 4312 } 4313 4314 case Instruction::ZExt: 4315 case Instruction::SExt: 4316 case Instruction::FPToUI: 4317 case Instruction::FPToSI: 4318 case Instruction::FPExt: 4319 case Instruction::PtrToInt: 4320 case Instruction::IntToPtr: 4321 case Instruction::SIToFP: 4322 case Instruction::UIToFP: 4323 case Instruction::Trunc: 4324 case Instruction::FPTrunc: 4325 case Instruction::BitCast: { 4326 auto *CI = cast<CastInst>(&I); 4327 setDebugLocFromInst(Builder, CI); 4328 4329 /// Vectorize casts. 4330 Type *DestTy = 4331 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4332 4333 for (unsigned Part = 0; Part < UF; ++Part) { 4334 Value *A = State.get(User.getOperand(0), Part); 4335 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4336 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4337 addMetadata(Cast, &I); 4338 } 4339 break; 4340 } 4341 default: 4342 // This instruction is not vectorized by simple widening. 4343 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4344 llvm_unreachable("Unhandled instruction!"); 4345 } // end of switch. 4346 } 4347 4348 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4349 VPTransformState &State) { 4350 assert(!isa<DbgInfoIntrinsic>(I) && 4351 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4352 setDebugLocFromInst(Builder, &I); 4353 4354 Module *M = I.getParent()->getParent()->getParent(); 4355 auto *CI = cast<CallInst>(&I); 4356 4357 SmallVector<Type *, 4> Tys; 4358 for (Value *ArgOperand : CI->arg_operands()) 4359 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4360 4361 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4362 4363 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4364 // version of the instruction. 4365 // Is it beneficial to perform intrinsic call compared to lib call? 4366 bool NeedToScalarize = false; 4367 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4368 bool UseVectorIntrinsic = 4369 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4370 assert((UseVectorIntrinsic || !NeedToScalarize) && 4371 "Instruction should be scalarized elsewhere."); 4372 4373 for (unsigned Part = 0; Part < UF; ++Part) { 4374 SmallVector<Value *, 4> Args; 4375 for (auto &I : enumerate(ArgOperands.operands())) { 4376 // Some intrinsics have a scalar argument - don't replace it with a 4377 // vector. 4378 Value *Arg; 4379 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4380 Arg = State.get(I.value(), Part); 4381 else 4382 Arg = State.get(I.value(), {0, 0}); 4383 Args.push_back(Arg); 4384 } 4385 4386 Function *VectorF; 4387 if (UseVectorIntrinsic) { 4388 // Use vector version of the intrinsic. 4389 Type *TysForDecl[] = {CI->getType()}; 4390 if (VF > 1) 4391 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4392 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4393 assert(VectorF && "Can't retrieve vector intrinsic."); 4394 } else { 4395 // Use vector version of the function call. 4396 const VFShape Shape = 4397 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4398 #ifndef NDEBUG 4399 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4400 "Can't create vector function."); 4401 #endif 4402 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4403 } 4404 SmallVector<OperandBundleDef, 1> OpBundles; 4405 CI->getOperandBundlesAsDefs(OpBundles); 4406 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4407 4408 if (isa<FPMathOperator>(V)) 4409 V->copyFastMathFlags(CI); 4410 4411 VectorLoopValueMap.setVectorValue(&I, Part, V); 4412 addMetadata(V, &I); 4413 } 4414 } 4415 4416 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4417 bool InvariantCond) { 4418 setDebugLocFromInst(Builder, &I); 4419 4420 // The condition can be loop invariant but still defined inside the 4421 // loop. This means that we can't just use the original 'cond' value. 4422 // We have to take the 'vectorized' value and pick the first lane. 4423 // Instcombine will make this a no-op. 4424 4425 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4426 4427 for (unsigned Part = 0; Part < UF; ++Part) { 4428 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4429 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4430 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4431 Value *Sel = 4432 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4433 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4434 addMetadata(Sel, &I); 4435 } 4436 } 4437 4438 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4439 // We should not collect Scalars more than once per VF. Right now, this 4440 // function is called from collectUniformsAndScalars(), which already does 4441 // this check. Collecting Scalars for VF=1 does not make any sense. 4442 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4443 "This function should not be visited twice for the same VF"); 4444 4445 SmallSetVector<Instruction *, 8> Worklist; 4446 4447 // These sets are used to seed the analysis with pointers used by memory 4448 // accesses that will remain scalar. 4449 SmallSetVector<Instruction *, 8> ScalarPtrs; 4450 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4451 4452 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4453 // The pointer operands of loads and stores will be scalar as long as the 4454 // memory access is not a gather or scatter operation. The value operand of a 4455 // store will remain scalar if the store is scalarized. 4456 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4457 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4458 assert(WideningDecision != CM_Unknown && 4459 "Widening decision should be ready at this moment"); 4460 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4461 if (Ptr == Store->getValueOperand()) 4462 return WideningDecision == CM_Scalarize; 4463 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4464 "Ptr is neither a value or pointer operand"); 4465 return WideningDecision != CM_GatherScatter; 4466 }; 4467 4468 // A helper that returns true if the given value is a bitcast or 4469 // getelementptr instruction contained in the loop. 4470 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4471 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4472 isa<GetElementPtrInst>(V)) && 4473 !TheLoop->isLoopInvariant(V); 4474 }; 4475 4476 // A helper that evaluates a memory access's use of a pointer. If the use 4477 // will be a scalar use, and the pointer is only used by memory accesses, we 4478 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4479 // PossibleNonScalarPtrs. 4480 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4481 // We only care about bitcast and getelementptr instructions contained in 4482 // the loop. 4483 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4484 return; 4485 4486 // If the pointer has already been identified as scalar (e.g., if it was 4487 // also identified as uniform), there's nothing to do. 4488 auto *I = cast<Instruction>(Ptr); 4489 if (Worklist.count(I)) 4490 return; 4491 4492 // If the use of the pointer will be a scalar use, and all users of the 4493 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4494 // place the pointer in PossibleNonScalarPtrs. 4495 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4496 return isa<LoadInst>(U) || isa<StoreInst>(U); 4497 })) 4498 ScalarPtrs.insert(I); 4499 else 4500 PossibleNonScalarPtrs.insert(I); 4501 }; 4502 4503 // We seed the scalars analysis with three classes of instructions: (1) 4504 // instructions marked uniform-after-vectorization, (2) bitcast and 4505 // getelementptr instructions used by memory accesses requiring a scalar use, 4506 // and (3) pointer induction variables and their update instructions (we 4507 // currently only scalarize these). 4508 // 4509 // (1) Add to the worklist all instructions that have been identified as 4510 // uniform-after-vectorization. 4511 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4512 4513 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4514 // memory accesses requiring a scalar use. The pointer operands of loads and 4515 // stores will be scalar as long as the memory accesses is not a gather or 4516 // scatter operation. The value operand of a store will remain scalar if the 4517 // store is scalarized. 4518 for (auto *BB : TheLoop->blocks()) 4519 for (auto &I : *BB) { 4520 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4521 evaluatePtrUse(Load, Load->getPointerOperand()); 4522 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4523 evaluatePtrUse(Store, Store->getPointerOperand()); 4524 evaluatePtrUse(Store, Store->getValueOperand()); 4525 } 4526 } 4527 for (auto *I : ScalarPtrs) 4528 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4529 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4530 Worklist.insert(I); 4531 } 4532 4533 // (3) Add to the worklist all pointer induction variables and their update 4534 // instructions. 4535 // 4536 // TODO: Once we are able to vectorize pointer induction variables we should 4537 // no longer insert them into the worklist here. 4538 auto *Latch = TheLoop->getLoopLatch(); 4539 for (auto &Induction : Legal->getInductionVars()) { 4540 auto *Ind = Induction.first; 4541 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4542 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4543 continue; 4544 Worklist.insert(Ind); 4545 Worklist.insert(IndUpdate); 4546 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4547 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4548 << "\n"); 4549 } 4550 4551 // Insert the forced scalars. 4552 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4553 // induction variable when the PHI user is scalarized. 4554 auto ForcedScalar = ForcedScalars.find(VF); 4555 if (ForcedScalar != ForcedScalars.end()) 4556 for (auto *I : ForcedScalar->second) 4557 Worklist.insert(I); 4558 4559 // Expand the worklist by looking through any bitcasts and getelementptr 4560 // instructions we've already identified as scalar. This is similar to the 4561 // expansion step in collectLoopUniforms(); however, here we're only 4562 // expanding to include additional bitcasts and getelementptr instructions. 4563 unsigned Idx = 0; 4564 while (Idx != Worklist.size()) { 4565 Instruction *Dst = Worklist[Idx++]; 4566 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4567 continue; 4568 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4569 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4570 auto *J = cast<Instruction>(U); 4571 return !TheLoop->contains(J) || Worklist.count(J) || 4572 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4573 isScalarUse(J, Src)); 4574 })) { 4575 Worklist.insert(Src); 4576 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4577 } 4578 } 4579 4580 // An induction variable will remain scalar if all users of the induction 4581 // variable and induction variable update remain scalar. 4582 for (auto &Induction : Legal->getInductionVars()) { 4583 auto *Ind = Induction.first; 4584 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4585 4586 // We already considered pointer induction variables, so there's no reason 4587 // to look at their users again. 4588 // 4589 // TODO: Once we are able to vectorize pointer induction variables we 4590 // should no longer skip over them here. 4591 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4592 continue; 4593 4594 // If tail-folding is applied, the primary induction variable will be used 4595 // to feed a vector compare. 4596 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4597 continue; 4598 4599 // Determine if all users of the induction variable are scalar after 4600 // vectorization. 4601 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4602 auto *I = cast<Instruction>(U); 4603 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4604 }); 4605 if (!ScalarInd) 4606 continue; 4607 4608 // Determine if all users of the induction variable update instruction are 4609 // scalar after vectorization. 4610 auto ScalarIndUpdate = 4611 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4612 auto *I = cast<Instruction>(U); 4613 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4614 }); 4615 if (!ScalarIndUpdate) 4616 continue; 4617 4618 // The induction variable and its update instruction will remain scalar. 4619 Worklist.insert(Ind); 4620 Worklist.insert(IndUpdate); 4621 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4622 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4623 << "\n"); 4624 } 4625 4626 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4627 } 4628 4629 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4630 if (!blockNeedsPredication(I->getParent())) 4631 return false; 4632 switch(I->getOpcode()) { 4633 default: 4634 break; 4635 case Instruction::Load: 4636 case Instruction::Store: { 4637 if (!Legal->isMaskRequired(I)) 4638 return false; 4639 auto *Ptr = getLoadStorePointerOperand(I); 4640 auto *Ty = getMemInstValueType(I); 4641 // We have already decided how to vectorize this instruction, get that 4642 // result. 4643 if (VF > 1) { 4644 InstWidening WideningDecision = getWideningDecision(I, VF); 4645 assert(WideningDecision != CM_Unknown && 4646 "Widening decision should be ready at this moment"); 4647 return WideningDecision == CM_Scalarize; 4648 } 4649 const Align Alignment = getLoadStoreAlignment(I); 4650 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4651 isLegalMaskedGather(Ty, Alignment)) 4652 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4653 isLegalMaskedScatter(Ty, Alignment)); 4654 } 4655 case Instruction::UDiv: 4656 case Instruction::SDiv: 4657 case Instruction::SRem: 4658 case Instruction::URem: 4659 return mayDivideByZero(*I); 4660 } 4661 return false; 4662 } 4663 4664 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4665 unsigned VF) { 4666 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4667 assert(getWideningDecision(I, VF) == CM_Unknown && 4668 "Decision should not be set yet."); 4669 auto *Group = getInterleavedAccessGroup(I); 4670 assert(Group && "Must have a group."); 4671 4672 // If the instruction's allocated size doesn't equal it's type size, it 4673 // requires padding and will be scalarized. 4674 auto &DL = I->getModule()->getDataLayout(); 4675 auto *ScalarTy = getMemInstValueType(I); 4676 if (hasIrregularType(ScalarTy, DL, VF)) 4677 return false; 4678 4679 // Check if masking is required. 4680 // A Group may need masking for one of two reasons: it resides in a block that 4681 // needs predication, or it was decided to use masking to deal with gaps. 4682 bool PredicatedAccessRequiresMasking = 4683 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4684 bool AccessWithGapsRequiresMasking = 4685 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4686 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4687 return true; 4688 4689 // If masked interleaving is required, we expect that the user/target had 4690 // enabled it, because otherwise it either wouldn't have been created or 4691 // it should have been invalidated by the CostModel. 4692 assert(useMaskedInterleavedAccesses(TTI) && 4693 "Masked interleave-groups for predicated accesses are not enabled."); 4694 4695 auto *Ty = getMemInstValueType(I); 4696 const Align Alignment = getLoadStoreAlignment(I); 4697 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4698 : TTI.isLegalMaskedStore(Ty, Alignment); 4699 } 4700 4701 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4702 unsigned VF) { 4703 // Get and ensure we have a valid memory instruction. 4704 LoadInst *LI = dyn_cast<LoadInst>(I); 4705 StoreInst *SI = dyn_cast<StoreInst>(I); 4706 assert((LI || SI) && "Invalid memory instruction"); 4707 4708 auto *Ptr = getLoadStorePointerOperand(I); 4709 4710 // In order to be widened, the pointer should be consecutive, first of all. 4711 if (!Legal->isConsecutivePtr(Ptr)) 4712 return false; 4713 4714 // If the instruction is a store located in a predicated block, it will be 4715 // scalarized. 4716 if (isScalarWithPredication(I)) 4717 return false; 4718 4719 // If the instruction's allocated size doesn't equal it's type size, it 4720 // requires padding and will be scalarized. 4721 auto &DL = I->getModule()->getDataLayout(); 4722 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4723 if (hasIrregularType(ScalarTy, DL, VF)) 4724 return false; 4725 4726 return true; 4727 } 4728 4729 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4730 // We should not collect Uniforms more than once per VF. Right now, 4731 // this function is called from collectUniformsAndScalars(), which 4732 // already does this check. Collecting Uniforms for VF=1 does not make any 4733 // sense. 4734 4735 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4736 "This function should not be visited twice for the same VF"); 4737 4738 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4739 // not analyze again. Uniforms.count(VF) will return 1. 4740 Uniforms[VF].clear(); 4741 4742 // We now know that the loop is vectorizable! 4743 // Collect instructions inside the loop that will remain uniform after 4744 // vectorization. 4745 4746 // Global values, params and instructions outside of current loop are out of 4747 // scope. 4748 auto isOutOfScope = [&](Value *V) -> bool { 4749 Instruction *I = dyn_cast<Instruction>(V); 4750 return (!I || !TheLoop->contains(I)); 4751 }; 4752 4753 SetVector<Instruction *> Worklist; 4754 BasicBlock *Latch = TheLoop->getLoopLatch(); 4755 4756 // Instructions that are scalar with predication must not be considered 4757 // uniform after vectorization, because that would create an erroneous 4758 // replicating region where only a single instance out of VF should be formed. 4759 // TODO: optimize such seldom cases if found important, see PR40816. 4760 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4761 if (isScalarWithPredication(I, VF)) { 4762 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4763 << *I << "\n"); 4764 return; 4765 } 4766 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4767 Worklist.insert(I); 4768 }; 4769 4770 // Start with the conditional branch. If the branch condition is an 4771 // instruction contained in the loop that is only used by the branch, it is 4772 // uniform. 4773 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4774 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4775 addToWorklistIfAllowed(Cmp); 4776 4777 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4778 // are pointers that are treated like consecutive pointers during 4779 // vectorization. The pointer operands of interleaved accesses are an 4780 // example. 4781 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4782 4783 // Holds pointer operands of instructions that are possibly non-uniform. 4784 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4785 4786 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4787 InstWidening WideningDecision = getWideningDecision(I, VF); 4788 assert(WideningDecision != CM_Unknown && 4789 "Widening decision should be ready at this moment"); 4790 4791 return (WideningDecision == CM_Widen || 4792 WideningDecision == CM_Widen_Reverse || 4793 WideningDecision == CM_Interleave); 4794 }; 4795 // Iterate over the instructions in the loop, and collect all 4796 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4797 // that a consecutive-like pointer operand will be scalarized, we collect it 4798 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4799 // getelementptr instruction can be used by both vectorized and scalarized 4800 // memory instructions. For example, if a loop loads and stores from the same 4801 // location, but the store is conditional, the store will be scalarized, and 4802 // the getelementptr won't remain uniform. 4803 for (auto *BB : TheLoop->blocks()) 4804 for (auto &I : *BB) { 4805 // If there's no pointer operand, there's nothing to do. 4806 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4807 if (!Ptr) 4808 continue; 4809 4810 // True if all users of Ptr are memory accesses that have Ptr as their 4811 // pointer operand. 4812 auto UsersAreMemAccesses = 4813 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4814 return getLoadStorePointerOperand(U) == Ptr; 4815 }); 4816 4817 // Ensure the memory instruction will not be scalarized or used by 4818 // gather/scatter, making its pointer operand non-uniform. If the pointer 4819 // operand is used by any instruction other than a memory access, we 4820 // conservatively assume the pointer operand may be non-uniform. 4821 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4822 PossibleNonUniformPtrs.insert(Ptr); 4823 4824 // If the memory instruction will be vectorized and its pointer operand 4825 // is consecutive-like, or interleaving - the pointer operand should 4826 // remain uniform. 4827 else 4828 ConsecutiveLikePtrs.insert(Ptr); 4829 } 4830 4831 // Add to the Worklist all consecutive and consecutive-like pointers that 4832 // aren't also identified as possibly non-uniform. 4833 for (auto *V : ConsecutiveLikePtrs) 4834 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) 4835 addToWorklistIfAllowed(V); 4836 4837 // Expand Worklist in topological order: whenever a new instruction 4838 // is added , its users should be already inside Worklist. It ensures 4839 // a uniform instruction will only be used by uniform instructions. 4840 unsigned idx = 0; 4841 while (idx != Worklist.size()) { 4842 Instruction *I = Worklist[idx++]; 4843 4844 for (auto OV : I->operand_values()) { 4845 // isOutOfScope operands cannot be uniform instructions. 4846 if (isOutOfScope(OV)) 4847 continue; 4848 // First order recurrence Phi's should typically be considered 4849 // non-uniform. 4850 auto *OP = dyn_cast<PHINode>(OV); 4851 if (OP && Legal->isFirstOrderRecurrence(OP)) 4852 continue; 4853 // If all the users of the operand are uniform, then add the 4854 // operand into the uniform worklist. 4855 auto *OI = cast<Instruction>(OV); 4856 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4857 auto *J = cast<Instruction>(U); 4858 return Worklist.count(J) || 4859 (OI == getLoadStorePointerOperand(J) && 4860 isUniformDecision(J, VF)); 4861 })) 4862 addToWorklistIfAllowed(OI); 4863 } 4864 } 4865 4866 // Returns true if Ptr is the pointer operand of a memory access instruction 4867 // I, and I is known to not require scalarization. 4868 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4869 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4870 }; 4871 4872 // For an instruction to be added into Worklist above, all its users inside 4873 // the loop should also be in Worklist. However, this condition cannot be 4874 // true for phi nodes that form a cyclic dependence. We must process phi 4875 // nodes separately. An induction variable will remain uniform if all users 4876 // of the induction variable and induction variable update remain uniform. 4877 // The code below handles both pointer and non-pointer induction variables. 4878 for (auto &Induction : Legal->getInductionVars()) { 4879 auto *Ind = Induction.first; 4880 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4881 4882 // Determine if all users of the induction variable are uniform after 4883 // vectorization. 4884 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4885 auto *I = cast<Instruction>(U); 4886 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4887 isVectorizedMemAccessUse(I, Ind); 4888 }); 4889 if (!UniformInd) 4890 continue; 4891 4892 // Determine if all users of the induction variable update instruction are 4893 // uniform after vectorization. 4894 auto UniformIndUpdate = 4895 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4896 auto *I = cast<Instruction>(U); 4897 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4898 isVectorizedMemAccessUse(I, IndUpdate); 4899 }); 4900 if (!UniformIndUpdate) 4901 continue; 4902 4903 // The induction variable and its update instruction will remain uniform. 4904 addToWorklistIfAllowed(Ind); 4905 addToWorklistIfAllowed(IndUpdate); 4906 } 4907 4908 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4909 } 4910 4911 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4912 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4913 4914 if (Legal->getRuntimePointerChecking()->Need) { 4915 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4916 "runtime pointer checks needed. Enable vectorization of this " 4917 "loop with '#pragma clang loop vectorize(enable)' when " 4918 "compiling with -Os/-Oz", 4919 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4920 return true; 4921 } 4922 4923 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4924 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4925 "runtime SCEV checks needed. Enable vectorization of this " 4926 "loop with '#pragma clang loop vectorize(enable)' when " 4927 "compiling with -Os/-Oz", 4928 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4929 return true; 4930 } 4931 4932 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4933 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4934 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4935 "runtime stride == 1 checks needed. Enable vectorization of " 4936 "this loop with '#pragma clang loop vectorize(enable)' when " 4937 "compiling with -Os/-Oz", 4938 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4939 return true; 4940 } 4941 4942 return false; 4943 } 4944 4945 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4946 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4947 // TODO: It may by useful to do since it's still likely to be dynamically 4948 // uniform if the target can skip. 4949 reportVectorizationFailure( 4950 "Not inserting runtime ptr check for divergent target", 4951 "runtime pointer checks needed. Not enabled for divergent target", 4952 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4953 return None; 4954 } 4955 4956 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4957 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4958 if (TC == 1) { 4959 reportVectorizationFailure("Single iteration (non) loop", 4960 "loop trip count is one, irrelevant for vectorization", 4961 "SingleIterationLoop", ORE, TheLoop); 4962 return None; 4963 } 4964 4965 switch (ScalarEpilogueStatus) { 4966 case CM_ScalarEpilogueAllowed: 4967 return computeFeasibleMaxVF(TC); 4968 case CM_ScalarEpilogueNotNeededUsePredicate: 4969 LLVM_DEBUG( 4970 dbgs() << "LV: vector predicate hint/switch found.\n" 4971 << "LV: Not allowing scalar epilogue, creating predicated " 4972 << "vector loop.\n"); 4973 break; 4974 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4975 // fallthrough as a special case of OptForSize 4976 case CM_ScalarEpilogueNotAllowedOptSize: 4977 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4978 LLVM_DEBUG( 4979 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4980 else 4981 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4982 << "count.\n"); 4983 4984 // Bail if runtime checks are required, which are not good when optimising 4985 // for size. 4986 if (runtimeChecksRequired()) 4987 return None; 4988 break; 4989 } 4990 4991 // Now try the tail folding 4992 4993 // Invalidate interleave groups that require an epilogue if we can't mask 4994 // the interleave-group. 4995 if (!useMaskedInterleavedAccesses(TTI)) { 4996 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 4997 "No decisions should have been taken at this point"); 4998 // Note: There is no need to invalidate any cost modeling decisions here, as 4999 // non where taken so far. 5000 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5001 } 5002 5003 unsigned MaxVF = computeFeasibleMaxVF(TC); 5004 if (TC > 0 && TC % MaxVF == 0) { 5005 // Accept MaxVF if we do not have a tail. 5006 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5007 return MaxVF; 5008 } 5009 5010 // If we don't know the precise trip count, or if the trip count that we 5011 // found modulo the vectorization factor is not zero, try to fold the tail 5012 // by masking. 5013 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5014 if (Legal->prepareToFoldTailByMasking()) { 5015 FoldTailByMasking = true; 5016 return MaxVF; 5017 } 5018 5019 if (TC == 0) { 5020 reportVectorizationFailure( 5021 "Unable to calculate the loop count due to complex control flow", 5022 "unable to calculate the loop count due to complex control flow", 5023 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5024 return None; 5025 } 5026 5027 reportVectorizationFailure( 5028 "Cannot optimize for size and vectorize at the same time.", 5029 "cannot optimize for size and vectorize at the same time. " 5030 "Enable vectorization of this loop with '#pragma clang loop " 5031 "vectorize(enable)' when compiling with -Os/-Oz", 5032 "NoTailLoopWithOptForSize", ORE, TheLoop); 5033 return None; 5034 } 5035 5036 unsigned 5037 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5038 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5039 unsigned SmallestType, WidestType; 5040 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5041 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5042 5043 // Get the maximum safe dependence distance in bits computed by LAA. 5044 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5045 // the memory accesses that is most restrictive (involved in the smallest 5046 // dependence distance). 5047 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5048 5049 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5050 5051 unsigned MaxVectorSize = WidestRegister / WidestType; 5052 5053 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5054 << " / " << WidestType << " bits.\n"); 5055 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5056 << WidestRegister << " bits.\n"); 5057 5058 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5059 " into one vector!"); 5060 if (MaxVectorSize == 0) { 5061 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5062 MaxVectorSize = 1; 5063 return MaxVectorSize; 5064 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5065 isPowerOf2_32(ConstTripCount)) { 5066 // We need to clamp the VF to be the ConstTripCount. There is no point in 5067 // choosing a higher viable VF as done in the loop below. 5068 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5069 << ConstTripCount << "\n"); 5070 MaxVectorSize = ConstTripCount; 5071 return MaxVectorSize; 5072 } 5073 5074 unsigned MaxVF = MaxVectorSize; 5075 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5076 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5077 // Collect all viable vectorization factors larger than the default MaxVF 5078 // (i.e. MaxVectorSize). 5079 SmallVector<unsigned, 8> VFs; 5080 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5081 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5082 VFs.push_back(VS); 5083 5084 // For each VF calculate its register usage. 5085 auto RUs = calculateRegisterUsage(VFs); 5086 5087 // Select the largest VF which doesn't require more registers than existing 5088 // ones. 5089 for (int i = RUs.size() - 1; i >= 0; --i) { 5090 bool Selected = true; 5091 for (auto& pair : RUs[i].MaxLocalUsers) { 5092 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5093 if (pair.second > TargetNumRegisters) 5094 Selected = false; 5095 } 5096 if (Selected) { 5097 MaxVF = VFs[i]; 5098 break; 5099 } 5100 } 5101 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5102 if (MaxVF < MinVF) { 5103 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5104 << ") with target's minimum: " << MinVF << '\n'); 5105 MaxVF = MinVF; 5106 } 5107 } 5108 } 5109 return MaxVF; 5110 } 5111 5112 VectorizationFactor 5113 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5114 float Cost = expectedCost(1).first; 5115 const float ScalarCost = Cost; 5116 unsigned Width = 1; 5117 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5118 5119 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5120 if (ForceVectorization && MaxVF > 1) { 5121 // Ignore scalar width, because the user explicitly wants vectorization. 5122 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5123 // evaluation. 5124 Cost = std::numeric_limits<float>::max(); 5125 } 5126 5127 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5128 // Notice that the vector loop needs to be executed less times, so 5129 // we need to divide the cost of the vector loops by the width of 5130 // the vector elements. 5131 VectorizationCostTy C = expectedCost(i); 5132 float VectorCost = C.first / (float)i; 5133 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5134 << " costs: " << (int)VectorCost << ".\n"); 5135 if (!C.second && !ForceVectorization) { 5136 LLVM_DEBUG( 5137 dbgs() << "LV: Not considering vector loop of width " << i 5138 << " because it will not generate any vector instructions.\n"); 5139 continue; 5140 } 5141 if (VectorCost < Cost) { 5142 Cost = VectorCost; 5143 Width = i; 5144 } 5145 } 5146 5147 if (!EnableCondStoresVectorization && NumPredStores) { 5148 reportVectorizationFailure("There are conditional stores.", 5149 "store that is conditionally executed prevents vectorization", 5150 "ConditionalStore", ORE, TheLoop); 5151 Width = 1; 5152 Cost = ScalarCost; 5153 } 5154 5155 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5156 << "LV: Vectorization seems to be not beneficial, " 5157 << "but was forced by a user.\n"); 5158 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5159 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5160 return Factor; 5161 } 5162 5163 std::pair<unsigned, unsigned> 5164 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5165 unsigned MinWidth = -1U; 5166 unsigned MaxWidth = 8; 5167 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5168 5169 // For each block. 5170 for (BasicBlock *BB : TheLoop->blocks()) { 5171 // For each instruction in the loop. 5172 for (Instruction &I : BB->instructionsWithoutDebug()) { 5173 Type *T = I.getType(); 5174 5175 // Skip ignored values. 5176 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5177 continue; 5178 5179 // Only examine Loads, Stores and PHINodes. 5180 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5181 continue; 5182 5183 // Examine PHI nodes that are reduction variables. Update the type to 5184 // account for the recurrence type. 5185 if (auto *PN = dyn_cast<PHINode>(&I)) { 5186 if (!Legal->isReductionVariable(PN)) 5187 continue; 5188 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5189 T = RdxDesc.getRecurrenceType(); 5190 } 5191 5192 // Examine the stored values. 5193 if (auto *ST = dyn_cast<StoreInst>(&I)) 5194 T = ST->getValueOperand()->getType(); 5195 5196 // Ignore loaded pointer types and stored pointer types that are not 5197 // vectorizable. 5198 // 5199 // FIXME: The check here attempts to predict whether a load or store will 5200 // be vectorized. We only know this for certain after a VF has 5201 // been selected. Here, we assume that if an access can be 5202 // vectorized, it will be. We should also look at extending this 5203 // optimization to non-pointer types. 5204 // 5205 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5206 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5207 continue; 5208 5209 MinWidth = std::min(MinWidth, 5210 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5211 MaxWidth = std::max(MaxWidth, 5212 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5213 } 5214 } 5215 5216 return {MinWidth, MaxWidth}; 5217 } 5218 5219 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5220 unsigned LoopCost) { 5221 // -- The interleave heuristics -- 5222 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5223 // There are many micro-architectural considerations that we can't predict 5224 // at this level. For example, frontend pressure (on decode or fetch) due to 5225 // code size, or the number and capabilities of the execution ports. 5226 // 5227 // We use the following heuristics to select the interleave count: 5228 // 1. If the code has reductions, then we interleave to break the cross 5229 // iteration dependency. 5230 // 2. If the loop is really small, then we interleave to reduce the loop 5231 // overhead. 5232 // 3. We don't interleave if we think that we will spill registers to memory 5233 // due to the increased register pressure. 5234 5235 if (!isScalarEpilogueAllowed()) 5236 return 1; 5237 5238 // We used the distance for the interleave count. 5239 if (Legal->getMaxSafeDepDistBytes() != -1U) 5240 return 1; 5241 5242 // Do not interleave loops with a relatively small known or estimated trip 5243 // count. 5244 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5245 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5246 return 1; 5247 5248 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5249 // We divide by these constants so assume that we have at least one 5250 // instruction that uses at least one register. 5251 for (auto& pair : R.MaxLocalUsers) { 5252 pair.second = std::max(pair.second, 1U); 5253 } 5254 5255 // We calculate the interleave count using the following formula. 5256 // Subtract the number of loop invariants from the number of available 5257 // registers. These registers are used by all of the interleaved instances. 5258 // Next, divide the remaining registers by the number of registers that is 5259 // required by the loop, in order to estimate how many parallel instances 5260 // fit without causing spills. All of this is rounded down if necessary to be 5261 // a power of two. We want power of two interleave count to simplify any 5262 // addressing operations or alignment considerations. 5263 // We also want power of two interleave counts to ensure that the induction 5264 // variable of the vector loop wraps to zero, when tail is folded by masking; 5265 // this currently happens when OptForSize, in which case IC is set to 1 above. 5266 unsigned IC = UINT_MAX; 5267 5268 for (auto& pair : R.MaxLocalUsers) { 5269 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5270 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5271 << " registers of " 5272 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5273 if (VF == 1) { 5274 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5275 TargetNumRegisters = ForceTargetNumScalarRegs; 5276 } else { 5277 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5278 TargetNumRegisters = ForceTargetNumVectorRegs; 5279 } 5280 unsigned MaxLocalUsers = pair.second; 5281 unsigned LoopInvariantRegs = 0; 5282 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5283 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5284 5285 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5286 // Don't count the induction variable as interleaved. 5287 if (EnableIndVarRegisterHeur) { 5288 TmpIC = 5289 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5290 std::max(1U, (MaxLocalUsers - 1))); 5291 } 5292 5293 IC = std::min(IC, TmpIC); 5294 } 5295 5296 // Clamp the interleave ranges to reasonable counts. 5297 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5298 5299 // Check if the user has overridden the max. 5300 if (VF == 1) { 5301 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5302 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5303 } else { 5304 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5305 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5306 } 5307 5308 // If trip count is known or estimated compile time constant, limit the 5309 // interleave count to be less than the trip count divided by VF. 5310 if (BestKnownTC) { 5311 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5312 } 5313 5314 // If we did not calculate the cost for VF (because the user selected the VF) 5315 // then we calculate the cost of VF here. 5316 if (LoopCost == 0) 5317 LoopCost = expectedCost(VF).first; 5318 5319 assert(LoopCost && "Non-zero loop cost expected"); 5320 5321 // Clamp the calculated IC to be between the 1 and the max interleave count 5322 // that the target and trip count allows. 5323 if (IC > MaxInterleaveCount) 5324 IC = MaxInterleaveCount; 5325 else if (IC < 1) 5326 IC = 1; 5327 5328 // Interleave if we vectorized this loop and there is a reduction that could 5329 // benefit from interleaving. 5330 if (VF > 1 && !Legal->getReductionVars().empty()) { 5331 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5332 return IC; 5333 } 5334 5335 // Note that if we've already vectorized the loop we will have done the 5336 // runtime check and so interleaving won't require further checks. 5337 bool InterleavingRequiresRuntimePointerCheck = 5338 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5339 5340 // We want to interleave small loops in order to reduce the loop overhead and 5341 // potentially expose ILP opportunities. 5342 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5343 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5344 // We assume that the cost overhead is 1 and we use the cost model 5345 // to estimate the cost of the loop and interleave until the cost of the 5346 // loop overhead is about 5% of the cost of the loop. 5347 unsigned SmallIC = 5348 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5349 5350 // Interleave until store/load ports (estimated by max interleave count) are 5351 // saturated. 5352 unsigned NumStores = Legal->getNumStores(); 5353 unsigned NumLoads = Legal->getNumLoads(); 5354 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5355 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5356 5357 // If we have a scalar reduction (vector reductions are already dealt with 5358 // by this point), we can increase the critical path length if the loop 5359 // we're interleaving is inside another loop. Limit, by default to 2, so the 5360 // critical path only gets increased by one reduction operation. 5361 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5362 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5363 SmallIC = std::min(SmallIC, F); 5364 StoresIC = std::min(StoresIC, F); 5365 LoadsIC = std::min(LoadsIC, F); 5366 } 5367 5368 if (EnableLoadStoreRuntimeInterleave && 5369 std::max(StoresIC, LoadsIC) > SmallIC) { 5370 LLVM_DEBUG( 5371 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5372 return std::max(StoresIC, LoadsIC); 5373 } 5374 5375 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5376 return SmallIC; 5377 } 5378 5379 // Interleave if this is a large loop (small loops are already dealt with by 5380 // this point) that could benefit from interleaving. 5381 bool HasReductions = !Legal->getReductionVars().empty(); 5382 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5383 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5384 return IC; 5385 } 5386 5387 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5388 return 1; 5389 } 5390 5391 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5392 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5393 // This function calculates the register usage by measuring the highest number 5394 // of values that are alive at a single location. Obviously, this is a very 5395 // rough estimation. We scan the loop in a topological order in order and 5396 // assign a number to each instruction. We use RPO to ensure that defs are 5397 // met before their users. We assume that each instruction that has in-loop 5398 // users starts an interval. We record every time that an in-loop value is 5399 // used, so we have a list of the first and last occurrences of each 5400 // instruction. Next, we transpose this data structure into a multi map that 5401 // holds the list of intervals that *end* at a specific location. This multi 5402 // map allows us to perform a linear search. We scan the instructions linearly 5403 // and record each time that a new interval starts, by placing it in a set. 5404 // If we find this value in the multi-map then we remove it from the set. 5405 // The max register usage is the maximum size of the set. 5406 // We also search for instructions that are defined outside the loop, but are 5407 // used inside the loop. We need this number separately from the max-interval 5408 // usage number because when we unroll, loop-invariant values do not take 5409 // more register. 5410 LoopBlocksDFS DFS(TheLoop); 5411 DFS.perform(LI); 5412 5413 RegisterUsage RU; 5414 5415 // Each 'key' in the map opens a new interval. The values 5416 // of the map are the index of the 'last seen' usage of the 5417 // instruction that is the key. 5418 using IntervalMap = DenseMap<Instruction *, unsigned>; 5419 5420 // Maps instruction to its index. 5421 SmallVector<Instruction *, 64> IdxToInstr; 5422 // Marks the end of each interval. 5423 IntervalMap EndPoint; 5424 // Saves the list of instruction indices that are used in the loop. 5425 SmallPtrSet<Instruction *, 8> Ends; 5426 // Saves the list of values that are used in the loop but are 5427 // defined outside the loop, such as arguments and constants. 5428 SmallPtrSet<Value *, 8> LoopInvariants; 5429 5430 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5431 for (Instruction &I : BB->instructionsWithoutDebug()) { 5432 IdxToInstr.push_back(&I); 5433 5434 // Save the end location of each USE. 5435 for (Value *U : I.operands()) { 5436 auto *Instr = dyn_cast<Instruction>(U); 5437 5438 // Ignore non-instruction values such as arguments, constants, etc. 5439 if (!Instr) 5440 continue; 5441 5442 // If this instruction is outside the loop then record it and continue. 5443 if (!TheLoop->contains(Instr)) { 5444 LoopInvariants.insert(Instr); 5445 continue; 5446 } 5447 5448 // Overwrite previous end points. 5449 EndPoint[Instr] = IdxToInstr.size(); 5450 Ends.insert(Instr); 5451 } 5452 } 5453 } 5454 5455 // Saves the list of intervals that end with the index in 'key'. 5456 using InstrList = SmallVector<Instruction *, 2>; 5457 DenseMap<unsigned, InstrList> TransposeEnds; 5458 5459 // Transpose the EndPoints to a list of values that end at each index. 5460 for (auto &Interval : EndPoint) 5461 TransposeEnds[Interval.second].push_back(Interval.first); 5462 5463 SmallPtrSet<Instruction *, 8> OpenIntervals; 5464 5465 // Get the size of the widest register. 5466 unsigned MaxSafeDepDist = -1U; 5467 if (Legal->getMaxSafeDepDistBytes() != -1U) 5468 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5469 unsigned WidestRegister = 5470 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5471 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5472 5473 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5474 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5475 5476 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5477 5478 // A lambda that gets the register usage for the given type and VF. 5479 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5480 if (Ty->isTokenTy()) 5481 return 0U; 5482 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5483 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5484 }; 5485 5486 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5487 Instruction *I = IdxToInstr[i]; 5488 5489 // Remove all of the instructions that end at this location. 5490 InstrList &List = TransposeEnds[i]; 5491 for (Instruction *ToRemove : List) 5492 OpenIntervals.erase(ToRemove); 5493 5494 // Ignore instructions that are never used within the loop. 5495 if (Ends.find(I) == Ends.end()) 5496 continue; 5497 5498 // Skip ignored values. 5499 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5500 continue; 5501 5502 // For each VF find the maximum usage of registers. 5503 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5504 // Count the number of live intervals. 5505 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5506 5507 if (VFs[j] == 1) { 5508 for (auto Inst : OpenIntervals) { 5509 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5510 if (RegUsage.find(ClassID) == RegUsage.end()) 5511 RegUsage[ClassID] = 1; 5512 else 5513 RegUsage[ClassID] += 1; 5514 } 5515 } else { 5516 collectUniformsAndScalars(VFs[j]); 5517 for (auto Inst : OpenIntervals) { 5518 // Skip ignored values for VF > 1. 5519 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end()) 5520 continue; 5521 if (isScalarAfterVectorization(Inst, VFs[j])) { 5522 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5523 if (RegUsage.find(ClassID) == RegUsage.end()) 5524 RegUsage[ClassID] = 1; 5525 else 5526 RegUsage[ClassID] += 1; 5527 } else { 5528 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5529 if (RegUsage.find(ClassID) == RegUsage.end()) 5530 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5531 else 5532 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5533 } 5534 } 5535 } 5536 5537 for (auto& pair : RegUsage) { 5538 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5539 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5540 else 5541 MaxUsages[j][pair.first] = pair.second; 5542 } 5543 } 5544 5545 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5546 << OpenIntervals.size() << '\n'); 5547 5548 // Add the current instruction to the list of open intervals. 5549 OpenIntervals.insert(I); 5550 } 5551 5552 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5553 SmallMapVector<unsigned, unsigned, 4> Invariant; 5554 5555 for (auto Inst : LoopInvariants) { 5556 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5557 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5558 if (Invariant.find(ClassID) == Invariant.end()) 5559 Invariant[ClassID] = Usage; 5560 else 5561 Invariant[ClassID] += Usage; 5562 } 5563 5564 LLVM_DEBUG({ 5565 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5566 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5567 << " item\n"; 5568 for (const auto &pair : MaxUsages[i]) { 5569 dbgs() << "LV(REG): RegisterClass: " 5570 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5571 << " registers\n"; 5572 } 5573 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5574 << " item\n"; 5575 for (const auto &pair : Invariant) { 5576 dbgs() << "LV(REG): RegisterClass: " 5577 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5578 << " registers\n"; 5579 } 5580 }); 5581 5582 RU.LoopInvariantRegs = Invariant; 5583 RU.MaxLocalUsers = MaxUsages[i]; 5584 RUs[i] = RU; 5585 } 5586 5587 return RUs; 5588 } 5589 5590 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5591 // TODO: Cost model for emulated masked load/store is completely 5592 // broken. This hack guides the cost model to use an artificially 5593 // high enough value to practically disable vectorization with such 5594 // operations, except where previously deployed legality hack allowed 5595 // using very low cost values. This is to avoid regressions coming simply 5596 // from moving "masked load/store" check from legality to cost model. 5597 // Masked Load/Gather emulation was previously never allowed. 5598 // Limited number of Masked Store/Scatter emulation was allowed. 5599 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5600 return isa<LoadInst>(I) || 5601 (isa<StoreInst>(I) && 5602 NumPredStores > NumberOfStoresToPredicate); 5603 } 5604 5605 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5606 // If we aren't vectorizing the loop, or if we've already collected the 5607 // instructions to scalarize, there's nothing to do. Collection may already 5608 // have occurred if we have a user-selected VF and are now computing the 5609 // expected cost for interleaving. 5610 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5611 return; 5612 5613 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5614 // not profitable to scalarize any instructions, the presence of VF in the 5615 // map will indicate that we've analyzed it already. 5616 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5617 5618 // Find all the instructions that are scalar with predication in the loop and 5619 // determine if it would be better to not if-convert the blocks they are in. 5620 // If so, we also record the instructions to scalarize. 5621 for (BasicBlock *BB : TheLoop->blocks()) { 5622 if (!blockNeedsPredication(BB)) 5623 continue; 5624 for (Instruction &I : *BB) 5625 if (isScalarWithPredication(&I)) { 5626 ScalarCostsTy ScalarCosts; 5627 // Do not apply discount logic if hacked cost is needed 5628 // for emulated masked memrefs. 5629 if (!useEmulatedMaskMemRefHack(&I) && 5630 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5631 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5632 // Remember that BB will remain after vectorization. 5633 PredicatedBBsAfterVectorization.insert(BB); 5634 } 5635 } 5636 } 5637 5638 int LoopVectorizationCostModel::computePredInstDiscount( 5639 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5640 unsigned VF) { 5641 assert(!isUniformAfterVectorization(PredInst, VF) && 5642 "Instruction marked uniform-after-vectorization will be predicated"); 5643 5644 // Initialize the discount to zero, meaning that the scalar version and the 5645 // vector version cost the same. 5646 int Discount = 0; 5647 5648 // Holds instructions to analyze. The instructions we visit are mapped in 5649 // ScalarCosts. Those instructions are the ones that would be scalarized if 5650 // we find that the scalar version costs less. 5651 SmallVector<Instruction *, 8> Worklist; 5652 5653 // Returns true if the given instruction can be scalarized. 5654 auto canBeScalarized = [&](Instruction *I) -> bool { 5655 // We only attempt to scalarize instructions forming a single-use chain 5656 // from the original predicated block that would otherwise be vectorized. 5657 // Although not strictly necessary, we give up on instructions we know will 5658 // already be scalar to avoid traversing chains that are unlikely to be 5659 // beneficial. 5660 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5661 isScalarAfterVectorization(I, VF)) 5662 return false; 5663 5664 // If the instruction is scalar with predication, it will be analyzed 5665 // separately. We ignore it within the context of PredInst. 5666 if (isScalarWithPredication(I)) 5667 return false; 5668 5669 // If any of the instruction's operands are uniform after vectorization, 5670 // the instruction cannot be scalarized. This prevents, for example, a 5671 // masked load from being scalarized. 5672 // 5673 // We assume we will only emit a value for lane zero of an instruction 5674 // marked uniform after vectorization, rather than VF identical values. 5675 // Thus, if we scalarize an instruction that uses a uniform, we would 5676 // create uses of values corresponding to the lanes we aren't emitting code 5677 // for. This behavior can be changed by allowing getScalarValue to clone 5678 // the lane zero values for uniforms rather than asserting. 5679 for (Use &U : I->operands()) 5680 if (auto *J = dyn_cast<Instruction>(U.get())) 5681 if (isUniformAfterVectorization(J, VF)) 5682 return false; 5683 5684 // Otherwise, we can scalarize the instruction. 5685 return true; 5686 }; 5687 5688 // Compute the expected cost discount from scalarizing the entire expression 5689 // feeding the predicated instruction. We currently only consider expressions 5690 // that are single-use instruction chains. 5691 Worklist.push_back(PredInst); 5692 while (!Worklist.empty()) { 5693 Instruction *I = Worklist.pop_back_val(); 5694 5695 // If we've already analyzed the instruction, there's nothing to do. 5696 if (ScalarCosts.find(I) != ScalarCosts.end()) 5697 continue; 5698 5699 // Compute the cost of the vector instruction. Note that this cost already 5700 // includes the scalarization overhead of the predicated instruction. 5701 unsigned VectorCost = getInstructionCost(I, VF).first; 5702 5703 // Compute the cost of the scalarized instruction. This cost is the cost of 5704 // the instruction as if it wasn't if-converted and instead remained in the 5705 // predicated block. We will scale this cost by block probability after 5706 // computing the scalarization overhead. 5707 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5708 5709 // Compute the scalarization overhead of needed insertelement instructions 5710 // and phi nodes. 5711 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5712 ScalarCost += TTI.getScalarizationOverhead( 5713 cast<VectorType>(ToVectorTy(I->getType(), VF)), 5714 APInt::getAllOnesValue(VF), true, false); 5715 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5716 } 5717 5718 // Compute the scalarization overhead of needed extractelement 5719 // instructions. For each of the instruction's operands, if the operand can 5720 // be scalarized, add it to the worklist; otherwise, account for the 5721 // overhead. 5722 for (Use &U : I->operands()) 5723 if (auto *J = dyn_cast<Instruction>(U.get())) { 5724 assert(VectorType::isValidElementType(J->getType()) && 5725 "Instruction has non-scalar type"); 5726 if (canBeScalarized(J)) 5727 Worklist.push_back(J); 5728 else if (needsExtract(J, VF)) 5729 ScalarCost += TTI.getScalarizationOverhead( 5730 cast<VectorType>(ToVectorTy(J->getType(), VF)), 5731 APInt::getAllOnesValue(VF), false, true); 5732 } 5733 5734 // Scale the total scalar cost by block probability. 5735 ScalarCost /= getReciprocalPredBlockProb(); 5736 5737 // Compute the discount. A non-negative discount means the vector version 5738 // of the instruction costs more, and scalarizing would be beneficial. 5739 Discount += VectorCost - ScalarCost; 5740 ScalarCosts[I] = ScalarCost; 5741 } 5742 5743 return Discount; 5744 } 5745 5746 LoopVectorizationCostModel::VectorizationCostTy 5747 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5748 VectorizationCostTy Cost; 5749 5750 // For each block. 5751 for (BasicBlock *BB : TheLoop->blocks()) { 5752 VectorizationCostTy BlockCost; 5753 5754 // For each instruction in the old loop. 5755 for (Instruction &I : BB->instructionsWithoutDebug()) { 5756 // Skip ignored values. 5757 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5758 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5759 continue; 5760 5761 VectorizationCostTy C = getInstructionCost(&I, VF); 5762 5763 // Check if we should override the cost. 5764 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5765 C.first = ForceTargetInstructionCost; 5766 5767 BlockCost.first += C.first; 5768 BlockCost.second |= C.second; 5769 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5770 << " for VF " << VF << " For instruction: " << I 5771 << '\n'); 5772 } 5773 5774 // If we are vectorizing a predicated block, it will have been 5775 // if-converted. This means that the block's instructions (aside from 5776 // stores and instructions that may divide by zero) will now be 5777 // unconditionally executed. For the scalar case, we may not always execute 5778 // the predicated block. Thus, scale the block's cost by the probability of 5779 // executing it. 5780 if (VF == 1 && blockNeedsPredication(BB)) 5781 BlockCost.first /= getReciprocalPredBlockProb(); 5782 5783 Cost.first += BlockCost.first; 5784 Cost.second |= BlockCost.second; 5785 } 5786 5787 return Cost; 5788 } 5789 5790 /// Gets Address Access SCEV after verifying that the access pattern 5791 /// is loop invariant except the induction variable dependence. 5792 /// 5793 /// This SCEV can be sent to the Target in order to estimate the address 5794 /// calculation cost. 5795 static const SCEV *getAddressAccessSCEV( 5796 Value *Ptr, 5797 LoopVectorizationLegality *Legal, 5798 PredicatedScalarEvolution &PSE, 5799 const Loop *TheLoop) { 5800 5801 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5802 if (!Gep) 5803 return nullptr; 5804 5805 // We are looking for a gep with all loop invariant indices except for one 5806 // which should be an induction variable. 5807 auto SE = PSE.getSE(); 5808 unsigned NumOperands = Gep->getNumOperands(); 5809 for (unsigned i = 1; i < NumOperands; ++i) { 5810 Value *Opd = Gep->getOperand(i); 5811 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5812 !Legal->isInductionVariable(Opd)) 5813 return nullptr; 5814 } 5815 5816 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5817 return PSE.getSCEV(Ptr); 5818 } 5819 5820 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5821 return Legal->hasStride(I->getOperand(0)) || 5822 Legal->hasStride(I->getOperand(1)); 5823 } 5824 5825 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5826 unsigned VF) { 5827 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5828 Type *ValTy = getMemInstValueType(I); 5829 auto SE = PSE.getSE(); 5830 5831 unsigned AS = getLoadStoreAddressSpace(I); 5832 Value *Ptr = getLoadStorePointerOperand(I); 5833 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5834 5835 // Figure out whether the access is strided and get the stride value 5836 // if it's known in compile time 5837 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5838 5839 // Get the cost of the scalar memory instruction and address computation. 5840 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5841 5842 // Don't pass *I here, since it is scalar but will actually be part of a 5843 // vectorized loop where the user of it is a vectorized instruction. 5844 const Align Alignment = getLoadStoreAlignment(I); 5845 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5846 Alignment, AS, 5847 TTI::TCK_RecipThroughput); 5848 5849 // Get the overhead of the extractelement and insertelement instructions 5850 // we might create due to scalarization. 5851 Cost += getScalarizationOverhead(I, VF); 5852 5853 // If we have a predicated store, it may not be executed for each vector 5854 // lane. Scale the cost by the probability of executing the predicated 5855 // block. 5856 if (isPredicatedInst(I)) { 5857 Cost /= getReciprocalPredBlockProb(); 5858 5859 if (useEmulatedMaskMemRefHack(I)) 5860 // Artificially setting to a high enough value to practically disable 5861 // vectorization with such operations. 5862 Cost = 3000000; 5863 } 5864 5865 return Cost; 5866 } 5867 5868 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5869 unsigned VF) { 5870 Type *ValTy = getMemInstValueType(I); 5871 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5872 Value *Ptr = getLoadStorePointerOperand(I); 5873 unsigned AS = getLoadStoreAddressSpace(I); 5874 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5875 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5876 5877 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5878 "Stride should be 1 or -1 for consecutive memory access"); 5879 const Align Alignment = getLoadStoreAlignment(I); 5880 unsigned Cost = 0; 5881 if (Legal->isMaskRequired(I)) 5882 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, 5883 Alignment.value(), AS, CostKind); 5884 else 5885 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5886 CostKind, I); 5887 5888 bool Reverse = ConsecutiveStride < 0; 5889 if (Reverse) 5890 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5891 return Cost; 5892 } 5893 5894 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5895 unsigned VF) { 5896 Type *ValTy = getMemInstValueType(I); 5897 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5898 const Align Alignment = getLoadStoreAlignment(I); 5899 unsigned AS = getLoadStoreAddressSpace(I); 5900 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5901 if (isa<LoadInst>(I)) { 5902 return TTI.getAddressComputationCost(ValTy) + 5903 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5904 CostKind) + 5905 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5906 } 5907 StoreInst *SI = cast<StoreInst>(I); 5908 5909 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5910 return TTI.getAddressComputationCost(ValTy) + 5911 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5912 CostKind) + 5913 (isLoopInvariantStoreValue 5914 ? 0 5915 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5916 VF - 1)); 5917 } 5918 5919 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5920 unsigned VF) { 5921 Type *ValTy = getMemInstValueType(I); 5922 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5923 const Align Alignment = getLoadStoreAlignment(I); 5924 Value *Ptr = getLoadStorePointerOperand(I); 5925 5926 return TTI.getAddressComputationCost(VectorTy) + 5927 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5928 Legal->isMaskRequired(I), Alignment.value(), 5929 TargetTransformInfo::TCK_RecipThroughput, 5930 I); 5931 } 5932 5933 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5934 unsigned VF) { 5935 Type *ValTy = getMemInstValueType(I); 5936 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5937 unsigned AS = getLoadStoreAddressSpace(I); 5938 5939 auto Group = getInterleavedAccessGroup(I); 5940 assert(Group && "Fail to get an interleaved access group."); 5941 5942 unsigned InterleaveFactor = Group->getFactor(); 5943 VectorType *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5944 5945 // Holds the indices of existing members in an interleaved load group. 5946 // An interleaved store group doesn't need this as it doesn't allow gaps. 5947 SmallVector<unsigned, 4> Indices; 5948 if (isa<LoadInst>(I)) { 5949 for (unsigned i = 0; i < InterleaveFactor; i++) 5950 if (Group->getMember(i)) 5951 Indices.push_back(i); 5952 } 5953 5954 // Calculate the cost of the whole interleaved group. 5955 bool UseMaskForGaps = 5956 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5957 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5958 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5959 Group->getAlign().value(), AS, TTI::TCK_RecipThroughput, 5960 Legal->isMaskRequired(I), UseMaskForGaps); 5961 5962 if (Group->isReverse()) { 5963 // TODO: Add support for reversed masked interleaved access. 5964 assert(!Legal->isMaskRequired(I) && 5965 "Reverse masked interleaved access not supported."); 5966 Cost += Group->getNumMembers() * 5967 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5968 } 5969 return Cost; 5970 } 5971 5972 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5973 unsigned VF) { 5974 // Calculate scalar cost only. Vectorization cost should be ready at this 5975 // moment. 5976 if (VF == 1) { 5977 Type *ValTy = getMemInstValueType(I); 5978 const Align Alignment = getLoadStoreAlignment(I); 5979 unsigned AS = getLoadStoreAddressSpace(I); 5980 5981 return TTI.getAddressComputationCost(ValTy) + 5982 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 5983 TTI::TCK_RecipThroughput, I); 5984 } 5985 return getWideningCost(I, VF); 5986 } 5987 5988 LoopVectorizationCostModel::VectorizationCostTy 5989 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5990 // If we know that this instruction will remain uniform, check the cost of 5991 // the scalar version. 5992 if (isUniformAfterVectorization(I, VF)) 5993 VF = 1; 5994 5995 if (VF > 1 && isProfitableToScalarize(I, VF)) 5996 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5997 5998 // Forced scalars do not have any scalarization overhead. 5999 auto ForcedScalar = ForcedScalars.find(VF); 6000 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 6001 auto InstSet = ForcedScalar->second; 6002 if (InstSet.find(I) != InstSet.end()) 6003 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6004 } 6005 6006 Type *VectorTy; 6007 unsigned C = getInstructionCost(I, VF, VectorTy); 6008 6009 bool TypeNotScalarized = 6010 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6011 return VectorizationCostTy(C, TypeNotScalarized); 6012 } 6013 6014 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6015 unsigned VF) { 6016 6017 if (VF == 1) 6018 return 0; 6019 6020 unsigned Cost = 0; 6021 Type *RetTy = ToVectorTy(I->getType(), VF); 6022 if (!RetTy->isVoidTy() && 6023 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6024 Cost += TTI.getScalarizationOverhead( 6025 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false); 6026 6027 // Some targets keep addresses scalar. 6028 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6029 return Cost; 6030 6031 // Some targets support efficient element stores. 6032 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6033 return Cost; 6034 6035 // Collect operands to consider. 6036 CallInst *CI = dyn_cast<CallInst>(I); 6037 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6038 6039 // Skip operands that do not require extraction/scalarization and do not incur 6040 // any overhead. 6041 return Cost + TTI.getOperandsScalarizationOverhead( 6042 filterExtractingOperands(Ops, VF), VF); 6043 } 6044 6045 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6046 if (VF == 1) 6047 return; 6048 NumPredStores = 0; 6049 for (BasicBlock *BB : TheLoop->blocks()) { 6050 // For each instruction in the old loop. 6051 for (Instruction &I : *BB) { 6052 Value *Ptr = getLoadStorePointerOperand(&I); 6053 if (!Ptr) 6054 continue; 6055 6056 // TODO: We should generate better code and update the cost model for 6057 // predicated uniform stores. Today they are treated as any other 6058 // predicated store (see added test cases in 6059 // invariant-store-vectorization.ll). 6060 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6061 NumPredStores++; 6062 6063 if (Legal->isUniform(Ptr) && 6064 // Conditional loads and stores should be scalarized and predicated. 6065 // isScalarWithPredication cannot be used here since masked 6066 // gather/scatters are not considered scalar with predication. 6067 !Legal->blockNeedsPredication(I.getParent())) { 6068 // TODO: Avoid replicating loads and stores instead of 6069 // relying on instcombine to remove them. 6070 // Load: Scalar load + broadcast 6071 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6072 unsigned Cost = getUniformMemOpCost(&I, VF); 6073 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6074 continue; 6075 } 6076 6077 // We assume that widening is the best solution when possible. 6078 if (memoryInstructionCanBeWidened(&I, VF)) { 6079 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6080 int ConsecutiveStride = 6081 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6082 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6083 "Expected consecutive stride."); 6084 InstWidening Decision = 6085 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6086 setWideningDecision(&I, VF, Decision, Cost); 6087 continue; 6088 } 6089 6090 // Choose between Interleaving, Gather/Scatter or Scalarization. 6091 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6092 unsigned NumAccesses = 1; 6093 if (isAccessInterleaved(&I)) { 6094 auto Group = getInterleavedAccessGroup(&I); 6095 assert(Group && "Fail to get an interleaved access group."); 6096 6097 // Make one decision for the whole group. 6098 if (getWideningDecision(&I, VF) != CM_Unknown) 6099 continue; 6100 6101 NumAccesses = Group->getNumMembers(); 6102 if (interleavedAccessCanBeWidened(&I, VF)) 6103 InterleaveCost = getInterleaveGroupCost(&I, VF); 6104 } 6105 6106 unsigned GatherScatterCost = 6107 isLegalGatherOrScatter(&I) 6108 ? getGatherScatterCost(&I, VF) * NumAccesses 6109 : std::numeric_limits<unsigned>::max(); 6110 6111 unsigned ScalarizationCost = 6112 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6113 6114 // Choose better solution for the current VF, 6115 // write down this decision and use it during vectorization. 6116 unsigned Cost; 6117 InstWidening Decision; 6118 if (InterleaveCost <= GatherScatterCost && 6119 InterleaveCost < ScalarizationCost) { 6120 Decision = CM_Interleave; 6121 Cost = InterleaveCost; 6122 } else if (GatherScatterCost < ScalarizationCost) { 6123 Decision = CM_GatherScatter; 6124 Cost = GatherScatterCost; 6125 } else { 6126 Decision = CM_Scalarize; 6127 Cost = ScalarizationCost; 6128 } 6129 // If the instructions belongs to an interleave group, the whole group 6130 // receives the same decision. The whole group receives the cost, but 6131 // the cost will actually be assigned to one instruction. 6132 if (auto Group = getInterleavedAccessGroup(&I)) 6133 setWideningDecision(Group, VF, Decision, Cost); 6134 else 6135 setWideningDecision(&I, VF, Decision, Cost); 6136 } 6137 } 6138 6139 // Make sure that any load of address and any other address computation 6140 // remains scalar unless there is gather/scatter support. This avoids 6141 // inevitable extracts into address registers, and also has the benefit of 6142 // activating LSR more, since that pass can't optimize vectorized 6143 // addresses. 6144 if (TTI.prefersVectorizedAddressing()) 6145 return; 6146 6147 // Start with all scalar pointer uses. 6148 SmallPtrSet<Instruction *, 8> AddrDefs; 6149 for (BasicBlock *BB : TheLoop->blocks()) 6150 for (Instruction &I : *BB) { 6151 Instruction *PtrDef = 6152 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6153 if (PtrDef && TheLoop->contains(PtrDef) && 6154 getWideningDecision(&I, VF) != CM_GatherScatter) 6155 AddrDefs.insert(PtrDef); 6156 } 6157 6158 // Add all instructions used to generate the addresses. 6159 SmallVector<Instruction *, 4> Worklist; 6160 for (auto *I : AddrDefs) 6161 Worklist.push_back(I); 6162 while (!Worklist.empty()) { 6163 Instruction *I = Worklist.pop_back_val(); 6164 for (auto &Op : I->operands()) 6165 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6166 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6167 AddrDefs.insert(InstOp).second) 6168 Worklist.push_back(InstOp); 6169 } 6170 6171 for (auto *I : AddrDefs) { 6172 if (isa<LoadInst>(I)) { 6173 // Setting the desired widening decision should ideally be handled in 6174 // by cost functions, but since this involves the task of finding out 6175 // if the loaded register is involved in an address computation, it is 6176 // instead changed here when we know this is the case. 6177 InstWidening Decision = getWideningDecision(I, VF); 6178 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6179 // Scalarize a widened load of address. 6180 setWideningDecision(I, VF, CM_Scalarize, 6181 (VF * getMemoryInstructionCost(I, 1))); 6182 else if (auto Group = getInterleavedAccessGroup(I)) { 6183 // Scalarize an interleave group of address loads. 6184 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6185 if (Instruction *Member = Group->getMember(I)) 6186 setWideningDecision(Member, VF, CM_Scalarize, 6187 (VF * getMemoryInstructionCost(Member, 1))); 6188 } 6189 } 6190 } else 6191 // Make sure I gets scalarized and a cost estimate without 6192 // scalarization overhead. 6193 ForcedScalars[VF].insert(I); 6194 } 6195 } 6196 6197 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6198 unsigned VF, 6199 Type *&VectorTy) { 6200 Type *RetTy = I->getType(); 6201 if (canTruncateToMinimalBitwidth(I, VF)) 6202 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6203 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6204 auto SE = PSE.getSE(); 6205 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6206 6207 // TODO: We need to estimate the cost of intrinsic calls. 6208 switch (I->getOpcode()) { 6209 case Instruction::GetElementPtr: 6210 // We mark this instruction as zero-cost because the cost of GEPs in 6211 // vectorized code depends on whether the corresponding memory instruction 6212 // is scalarized or not. Therefore, we handle GEPs with the memory 6213 // instruction cost. 6214 return 0; 6215 case Instruction::Br: { 6216 // In cases of scalarized and predicated instructions, there will be VF 6217 // predicated blocks in the vectorized loop. Each branch around these 6218 // blocks requires also an extract of its vector compare i1 element. 6219 bool ScalarPredicatedBB = false; 6220 BranchInst *BI = cast<BranchInst>(I); 6221 if (VF > 1 && BI->isConditional() && 6222 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6223 PredicatedBBsAfterVectorization.end() || 6224 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6225 PredicatedBBsAfterVectorization.end())) 6226 ScalarPredicatedBB = true; 6227 6228 if (ScalarPredicatedBB) { 6229 // Return cost for branches around scalarized and predicated blocks. 6230 VectorType *Vec_i1Ty = 6231 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6232 return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF), 6233 false, true) + 6234 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6235 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6236 // The back-edge branch will remain, as will all scalar branches. 6237 return TTI.getCFInstrCost(Instruction::Br); 6238 else 6239 // This branch will be eliminated by if-conversion. 6240 return 0; 6241 // Note: We currently assume zero cost for an unconditional branch inside 6242 // a predicated block since it will become a fall-through, although we 6243 // may decide in the future to call TTI for all branches. 6244 } 6245 case Instruction::PHI: { 6246 auto *Phi = cast<PHINode>(I); 6247 6248 // First-order recurrences are replaced by vector shuffles inside the loop. 6249 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6250 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6251 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6252 cast<VectorType>(VectorTy), VF - 1, 6253 VectorType::get(RetTy, 1)); 6254 6255 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6256 // converted into select instructions. We require N - 1 selects per phi 6257 // node, where N is the number of incoming values. 6258 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6259 return (Phi->getNumIncomingValues() - 1) * 6260 TTI.getCmpSelInstrCost( 6261 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6262 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6263 CostKind); 6264 6265 return TTI.getCFInstrCost(Instruction::PHI); 6266 } 6267 case Instruction::UDiv: 6268 case Instruction::SDiv: 6269 case Instruction::URem: 6270 case Instruction::SRem: 6271 // If we have a predicated instruction, it may not be executed for each 6272 // vector lane. Get the scalarization cost and scale this amount by the 6273 // probability of executing the predicated block. If the instruction is not 6274 // predicated, we fall through to the next case. 6275 if (VF > 1 && isScalarWithPredication(I)) { 6276 unsigned Cost = 0; 6277 6278 // These instructions have a non-void type, so account for the phi nodes 6279 // that we will create. This cost is likely to be zero. The phi node 6280 // cost, if any, should be scaled by the block probability because it 6281 // models a copy at the end of each predicated block. 6282 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6283 6284 // The cost of the non-predicated instruction. 6285 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6286 6287 // The cost of insertelement and extractelement instructions needed for 6288 // scalarization. 6289 Cost += getScalarizationOverhead(I, VF); 6290 6291 // Scale the cost by the probability of executing the predicated blocks. 6292 // This assumes the predicated block for each vector lane is equally 6293 // likely. 6294 return Cost / getReciprocalPredBlockProb(); 6295 } 6296 LLVM_FALLTHROUGH; 6297 case Instruction::Add: 6298 case Instruction::FAdd: 6299 case Instruction::Sub: 6300 case Instruction::FSub: 6301 case Instruction::Mul: 6302 case Instruction::FMul: 6303 case Instruction::FDiv: 6304 case Instruction::FRem: 6305 case Instruction::Shl: 6306 case Instruction::LShr: 6307 case Instruction::AShr: 6308 case Instruction::And: 6309 case Instruction::Or: 6310 case Instruction::Xor: { 6311 // Since we will replace the stride by 1 the multiplication should go away. 6312 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6313 return 0; 6314 // Certain instructions can be cheaper to vectorize if they have a constant 6315 // second vector operand. One example of this are shifts on x86. 6316 Value *Op2 = I->getOperand(1); 6317 TargetTransformInfo::OperandValueProperties Op2VP; 6318 TargetTransformInfo::OperandValueKind Op2VK = 6319 TTI.getOperandInfo(Op2, Op2VP); 6320 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6321 Op2VK = TargetTransformInfo::OK_UniformValue; 6322 6323 SmallVector<const Value *, 4> Operands(I->operand_values()); 6324 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6325 return N * TTI.getArithmeticInstrCost( 6326 I->getOpcode(), VectorTy, CostKind, 6327 TargetTransformInfo::OK_AnyValue, 6328 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6329 } 6330 case Instruction::FNeg: { 6331 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6332 return N * TTI.getArithmeticInstrCost( 6333 I->getOpcode(), VectorTy, CostKind, 6334 TargetTransformInfo::OK_AnyValue, 6335 TargetTransformInfo::OK_AnyValue, 6336 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6337 I->getOperand(0), I); 6338 } 6339 case Instruction::Select: { 6340 SelectInst *SI = cast<SelectInst>(I); 6341 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6342 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6343 Type *CondTy = SI->getCondition()->getType(); 6344 if (!ScalarCond) 6345 CondTy = VectorType::get(CondTy, VF); 6346 6347 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6348 CostKind, I); 6349 } 6350 case Instruction::ICmp: 6351 case Instruction::FCmp: { 6352 Type *ValTy = I->getOperand(0)->getType(); 6353 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6354 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6355 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6356 VectorTy = ToVectorTy(ValTy, VF); 6357 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6358 I); 6359 } 6360 case Instruction::Store: 6361 case Instruction::Load: { 6362 unsigned Width = VF; 6363 if (Width > 1) { 6364 InstWidening Decision = getWideningDecision(I, Width); 6365 assert(Decision != CM_Unknown && 6366 "CM decision should be taken at this point"); 6367 if (Decision == CM_Scalarize) 6368 Width = 1; 6369 } 6370 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6371 return getMemoryInstructionCost(I, VF); 6372 } 6373 case Instruction::ZExt: 6374 case Instruction::SExt: 6375 case Instruction::FPToUI: 6376 case Instruction::FPToSI: 6377 case Instruction::FPExt: 6378 case Instruction::PtrToInt: 6379 case Instruction::IntToPtr: 6380 case Instruction::SIToFP: 6381 case Instruction::UIToFP: 6382 case Instruction::Trunc: 6383 case Instruction::FPTrunc: 6384 case Instruction::BitCast: { 6385 // We optimize the truncation of induction variables having constant 6386 // integer steps. The cost of these truncations is the same as the scalar 6387 // operation. 6388 if (isOptimizableIVTruncate(I, VF)) { 6389 auto *Trunc = cast<TruncInst>(I); 6390 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6391 Trunc->getSrcTy(), CostKind, Trunc); 6392 } 6393 6394 Type *SrcScalarTy = I->getOperand(0)->getType(); 6395 Type *SrcVecTy = 6396 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6397 if (canTruncateToMinimalBitwidth(I, VF)) { 6398 // This cast is going to be shrunk. This may remove the cast or it might 6399 // turn it into slightly different cast. For example, if MinBW == 16, 6400 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6401 // 6402 // Calculate the modified src and dest types. 6403 Type *MinVecTy = VectorTy; 6404 if (I->getOpcode() == Instruction::Trunc) { 6405 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6406 VectorTy = 6407 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6408 } else if (I->getOpcode() == Instruction::ZExt || 6409 I->getOpcode() == Instruction::SExt) { 6410 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6411 VectorTy = 6412 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6413 } 6414 } 6415 6416 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6417 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, 6418 CostKind, I); 6419 } 6420 case Instruction::Call: { 6421 bool NeedToScalarize; 6422 CallInst *CI = cast<CallInst>(I); 6423 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6424 if (getVectorIntrinsicIDForCall(CI, TLI)) 6425 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6426 return CallCost; 6427 } 6428 default: 6429 // The cost of executing VF copies of the scalar instruction. This opcode 6430 // is unknown. Assume that it is the same as 'mul'. 6431 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, 6432 CostKind) + 6433 getScalarizationOverhead(I, VF); 6434 } // end of switch. 6435 } 6436 6437 char LoopVectorize::ID = 0; 6438 6439 static const char lv_name[] = "Loop Vectorization"; 6440 6441 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6442 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6443 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6444 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6445 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6446 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6447 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6448 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6449 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6450 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6451 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6452 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6453 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6454 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6455 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6456 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6457 6458 namespace llvm { 6459 6460 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6461 6462 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6463 bool VectorizeOnlyWhenForced) { 6464 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6465 } 6466 6467 } // end namespace llvm 6468 6469 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6470 // Check if the pointer operand of a load or store instruction is 6471 // consecutive. 6472 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6473 return Legal->isConsecutivePtr(Ptr); 6474 return false; 6475 } 6476 6477 void LoopVectorizationCostModel::collectValuesToIgnore() { 6478 // Ignore ephemeral values. 6479 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6480 6481 // Ignore type-promoting instructions we identified during reduction 6482 // detection. 6483 for (auto &Reduction : Legal->getReductionVars()) { 6484 RecurrenceDescriptor &RedDes = Reduction.second; 6485 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6486 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6487 } 6488 // Ignore type-casting instructions we identified during induction 6489 // detection. 6490 for (auto &Induction : Legal->getInductionVars()) { 6491 InductionDescriptor &IndDes = Induction.second; 6492 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6493 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6494 } 6495 } 6496 6497 // TODO: we could return a pair of values that specify the max VF and 6498 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6499 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6500 // doesn't have a cost model that can choose which plan to execute if 6501 // more than one is generated. 6502 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6503 LoopVectorizationCostModel &CM) { 6504 unsigned WidestType; 6505 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6506 return WidestVectorRegBits / WidestType; 6507 } 6508 6509 VectorizationFactor 6510 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6511 unsigned VF = UserVF; 6512 // Outer loop handling: They may require CFG and instruction level 6513 // transformations before even evaluating whether vectorization is profitable. 6514 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6515 // the vectorization pipeline. 6516 if (!OrigLoop->empty()) { 6517 // If the user doesn't provide a vectorization factor, determine a 6518 // reasonable one. 6519 if (!UserVF) { 6520 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6521 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6522 6523 // Make sure we have a VF > 1 for stress testing. 6524 if (VPlanBuildStressTest && VF < 2) { 6525 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6526 << "overriding computed VF.\n"); 6527 VF = 4; 6528 } 6529 } 6530 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6531 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6532 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6533 << " to build VPlans.\n"); 6534 buildVPlans(VF, VF); 6535 6536 // For VPlan build stress testing, we bail out after VPlan construction. 6537 if (VPlanBuildStressTest) 6538 return VectorizationFactor::Disabled(); 6539 6540 return {VF, 0}; 6541 } 6542 6543 LLVM_DEBUG( 6544 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6545 "VPlan-native path.\n"); 6546 return VectorizationFactor::Disabled(); 6547 } 6548 6549 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6550 assert(OrigLoop->empty() && "Inner loop expected."); 6551 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6552 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6553 return None; 6554 6555 // Invalidate interleave groups if all blocks of loop will be predicated. 6556 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6557 !useMaskedInterleavedAccesses(*TTI)) { 6558 LLVM_DEBUG( 6559 dbgs() 6560 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6561 "which requires masked-interleaved support.\n"); 6562 if (CM.InterleaveInfo.invalidateGroups()) 6563 // Invalidating interleave groups also requires invalidating all decisions 6564 // based on them, which includes widening decisions and uniform and scalar 6565 // values. 6566 CM.invalidateCostModelingDecisions(); 6567 } 6568 6569 if (UserVF) { 6570 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6571 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6572 // Collect the instructions (and their associated costs) that will be more 6573 // profitable to scalarize. 6574 CM.selectUserVectorizationFactor(UserVF); 6575 buildVPlansWithVPRecipes(UserVF, UserVF); 6576 LLVM_DEBUG(printPlans(dbgs())); 6577 return {{UserVF, 0}}; 6578 } 6579 6580 unsigned MaxVF = MaybeMaxVF.getValue(); 6581 assert(MaxVF != 0 && "MaxVF is zero."); 6582 6583 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6584 // Collect Uniform and Scalar instructions after vectorization with VF. 6585 CM.collectUniformsAndScalars(VF); 6586 6587 // Collect the instructions (and their associated costs) that will be more 6588 // profitable to scalarize. 6589 if (VF > 1) 6590 CM.collectInstsToScalarize(VF); 6591 } 6592 6593 buildVPlansWithVPRecipes(1, MaxVF); 6594 LLVM_DEBUG(printPlans(dbgs())); 6595 if (MaxVF == 1) 6596 return VectorizationFactor::Disabled(); 6597 6598 // Select the optimal vectorization factor. 6599 return CM.selectVectorizationFactor(MaxVF); 6600 } 6601 6602 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6603 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6604 << '\n'); 6605 BestVF = VF; 6606 BestUF = UF; 6607 6608 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6609 return !Plan->hasVF(VF); 6610 }); 6611 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6612 } 6613 6614 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6615 DominatorTree *DT) { 6616 // Perform the actual loop transformation. 6617 6618 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6619 VPCallbackILV CallbackILV(ILV); 6620 6621 VPTransformState State{BestVF, BestUF, LI, 6622 DT, ILV.Builder, ILV.VectorLoopValueMap, 6623 &ILV, CallbackILV}; 6624 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6625 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6626 State.CanonicalIV = ILV.Induction; 6627 6628 //===------------------------------------------------===// 6629 // 6630 // Notice: any optimization or new instruction that go 6631 // into the code below should also be implemented in 6632 // the cost-model. 6633 // 6634 //===------------------------------------------------===// 6635 6636 // 2. Copy and widen instructions from the old loop into the new loop. 6637 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6638 VPlans.front()->execute(&State); 6639 6640 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6641 // predication, updating analyses. 6642 ILV.fixVectorizedLoop(); 6643 } 6644 6645 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6646 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6647 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6648 6649 // We create new control-flow for the vectorized loop, so the original 6650 // condition will be dead after vectorization if it's only used by the 6651 // branch. 6652 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6653 if (Cmp && Cmp->hasOneUse()) 6654 DeadInstructions.insert(Cmp); 6655 6656 // We create new "steps" for induction variable updates to which the original 6657 // induction variables map. An original update instruction will be dead if 6658 // all its users except the induction variable are dead. 6659 for (auto &Induction : Legal->getInductionVars()) { 6660 PHINode *Ind = Induction.first; 6661 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6662 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6663 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6664 DeadInstructions.end(); 6665 })) 6666 DeadInstructions.insert(IndUpdate); 6667 6668 // We record as "Dead" also the type-casting instructions we had identified 6669 // during induction analysis. We don't need any handling for them in the 6670 // vectorized loop because we have proven that, under a proper runtime 6671 // test guarding the vectorized loop, the value of the phi, and the casted 6672 // value of the phi, are the same. The last instruction in this casting chain 6673 // will get its scalar/vector/widened def from the scalar/vector/widened def 6674 // of the respective phi node. Any other casts in the induction def-use chain 6675 // have no other uses outside the phi update chain, and will be ignored. 6676 InductionDescriptor &IndDes = Induction.second; 6677 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6678 DeadInstructions.insert(Casts.begin(), Casts.end()); 6679 } 6680 } 6681 6682 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6683 6684 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6685 6686 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6687 Instruction::BinaryOps BinOp) { 6688 // When unrolling and the VF is 1, we only need to add a simple scalar. 6689 Type *Ty = Val->getType(); 6690 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6691 6692 if (Ty->isFloatingPointTy()) { 6693 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6694 6695 // Floating point operations had to be 'fast' to enable the unrolling. 6696 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6697 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6698 } 6699 Constant *C = ConstantInt::get(Ty, StartIdx); 6700 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6701 } 6702 6703 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6704 SmallVector<Metadata *, 4> MDs; 6705 // Reserve first location for self reference to the LoopID metadata node. 6706 MDs.push_back(nullptr); 6707 bool IsUnrollMetadata = false; 6708 MDNode *LoopID = L->getLoopID(); 6709 if (LoopID) { 6710 // First find existing loop unrolling disable metadata. 6711 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6712 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6713 if (MD) { 6714 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6715 IsUnrollMetadata = 6716 S && S->getString().startswith("llvm.loop.unroll.disable"); 6717 } 6718 MDs.push_back(LoopID->getOperand(i)); 6719 } 6720 } 6721 6722 if (!IsUnrollMetadata) { 6723 // Add runtime unroll disable metadata. 6724 LLVMContext &Context = L->getHeader()->getContext(); 6725 SmallVector<Metadata *, 1> DisableOperands; 6726 DisableOperands.push_back( 6727 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6728 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6729 MDs.push_back(DisableNode); 6730 MDNode *NewLoopID = MDNode::get(Context, MDs); 6731 // Set operand 0 to refer to the loop id itself. 6732 NewLoopID->replaceOperandWith(0, NewLoopID); 6733 L->setLoopID(NewLoopID); 6734 } 6735 } 6736 6737 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6738 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6739 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6740 bool PredicateAtRangeStart = Predicate(Range.Start); 6741 6742 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6743 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6744 Range.End = TmpVF; 6745 break; 6746 } 6747 6748 return PredicateAtRangeStart; 6749 } 6750 6751 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6752 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6753 /// of VF's starting at a given VF and extending it as much as possible. Each 6754 /// vectorization decision can potentially shorten this sub-range during 6755 /// buildVPlan(). 6756 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6757 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6758 VFRange SubRange = {VF, MaxVF + 1}; 6759 VPlans.push_back(buildVPlan(SubRange)); 6760 VF = SubRange.End; 6761 } 6762 } 6763 6764 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6765 VPlanPtr &Plan) { 6766 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6767 6768 // Look for cached value. 6769 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6770 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6771 if (ECEntryIt != EdgeMaskCache.end()) 6772 return ECEntryIt->second; 6773 6774 VPValue *SrcMask = createBlockInMask(Src, Plan); 6775 6776 // The terminator has to be a branch inst! 6777 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6778 assert(BI && "Unexpected terminator found"); 6779 6780 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6781 return EdgeMaskCache[Edge] = SrcMask; 6782 6783 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6784 assert(EdgeMask && "No Edge Mask found for condition"); 6785 6786 if (BI->getSuccessor(0) != Dst) 6787 EdgeMask = Builder.createNot(EdgeMask); 6788 6789 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6790 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6791 6792 return EdgeMaskCache[Edge] = EdgeMask; 6793 } 6794 6795 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6796 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6797 6798 // Look for cached value. 6799 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6800 if (BCEntryIt != BlockMaskCache.end()) 6801 return BCEntryIt->second; 6802 6803 // All-one mask is modelled as no-mask following the convention for masked 6804 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6805 VPValue *BlockMask = nullptr; 6806 6807 if (OrigLoop->getHeader() == BB) { 6808 if (!CM.blockNeedsPredication(BB)) 6809 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6810 6811 // Introduce the early-exit compare IV <= BTC to form header block mask. 6812 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6813 // Start by constructing the desired canonical IV. 6814 VPValue *IV = nullptr; 6815 if (Legal->getPrimaryInduction()) 6816 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6817 else { 6818 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6819 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6820 IV = IVRecipe->getVPValue(); 6821 } 6822 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6823 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6824 return BlockMaskCache[BB] = BlockMask; 6825 } 6826 6827 // This is the block mask. We OR all incoming edges. 6828 for (auto *Predecessor : predecessors(BB)) { 6829 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6830 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6831 return BlockMaskCache[BB] = EdgeMask; 6832 6833 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6834 BlockMask = EdgeMask; 6835 continue; 6836 } 6837 6838 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6839 } 6840 6841 return BlockMaskCache[BB] = BlockMask; 6842 } 6843 6844 VPWidenMemoryInstructionRecipe * 6845 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6846 VPlanPtr &Plan) { 6847 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6848 "Must be called with either a load or store"); 6849 6850 auto willWiden = [&](unsigned VF) -> bool { 6851 if (VF == 1) 6852 return false; 6853 LoopVectorizationCostModel::InstWidening Decision = 6854 CM.getWideningDecision(I, VF); 6855 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6856 "CM decision should be taken at this point."); 6857 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6858 return true; 6859 if (CM.isScalarAfterVectorization(I, VF) || 6860 CM.isProfitableToScalarize(I, VF)) 6861 return false; 6862 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6863 }; 6864 6865 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6866 return nullptr; 6867 6868 VPValue *Mask = nullptr; 6869 if (Legal->isMaskRequired(I)) 6870 Mask = createBlockInMask(I->getParent(), Plan); 6871 6872 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6873 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6874 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6875 6876 StoreInst *Store = cast<StoreInst>(I); 6877 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6878 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6879 } 6880 6881 VPWidenIntOrFpInductionRecipe * 6882 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 6883 // Check if this is an integer or fp induction. If so, build the recipe that 6884 // produces its scalar and vector values. 6885 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6886 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6887 II.getKind() == InductionDescriptor::IK_FpInduction) 6888 return new VPWidenIntOrFpInductionRecipe(Phi); 6889 6890 return nullptr; 6891 } 6892 6893 VPWidenIntOrFpInductionRecipe * 6894 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 6895 VFRange &Range) const { 6896 // Optimize the special case where the source is a constant integer 6897 // induction variable. Notice that we can only optimize the 'trunc' case 6898 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6899 // (c) other casts depend on pointer size. 6900 6901 // Determine whether \p K is a truncation based on an induction variable that 6902 // can be optimized. 6903 auto isOptimizableIVTruncate = 6904 [&](Instruction *K) -> std::function<bool(unsigned)> { 6905 return 6906 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6907 }; 6908 6909 if (LoopVectorizationPlanner::getDecisionAndClampRange( 6910 isOptimizableIVTruncate(I), Range)) 6911 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6912 I); 6913 return nullptr; 6914 } 6915 6916 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 6917 // We know that all PHIs in non-header blocks are converted into selects, so 6918 // we don't have to worry about the insertion order and we can just use the 6919 // builder. At this point we generate the predication tree. There may be 6920 // duplications since this is a simple recursive scan, but future 6921 // optimizations will clean it up. 6922 6923 SmallVector<VPValue *, 2> Operands; 6924 unsigned NumIncoming = Phi->getNumIncomingValues(); 6925 for (unsigned In = 0; In < NumIncoming; In++) { 6926 VPValue *EdgeMask = 6927 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6928 assert((EdgeMask || NumIncoming == 1) && 6929 "Multiple predecessors with one having a full mask"); 6930 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 6931 if (EdgeMask) 6932 Operands.push_back(EdgeMask); 6933 } 6934 return new VPBlendRecipe(Phi, Operands); 6935 } 6936 6937 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 6938 VPlan &Plan) const { 6939 6940 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6941 [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); }, 6942 Range); 6943 6944 if (IsPredicated) 6945 return nullptr; 6946 6947 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6948 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6949 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6950 return nullptr; 6951 6952 auto willWiden = [&](unsigned VF) -> bool { 6953 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6954 // The following case may be scalarized depending on the VF. 6955 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6956 // version of the instruction. 6957 // Is it beneficial to perform intrinsic call compared to lib call? 6958 bool NeedToScalarize = false; 6959 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6960 bool UseVectorIntrinsic = 6961 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6962 return UseVectorIntrinsic || !NeedToScalarize; 6963 }; 6964 6965 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6966 return nullptr; 6967 6968 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 6969 } 6970 6971 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 6972 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 6973 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 6974 // Instruction should be widened, unless it is scalar after vectorization, 6975 // scalarization is profitable or it is predicated. 6976 auto WillScalarize = [this, I](unsigned VF) -> bool { 6977 return CM.isScalarAfterVectorization(I, VF) || 6978 CM.isProfitableToScalarize(I, VF) || 6979 CM.isScalarWithPredication(I, VF); 6980 }; 6981 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 6982 Range); 6983 } 6984 6985 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 6986 auto IsVectorizableOpcode = [](unsigned Opcode) { 6987 switch (Opcode) { 6988 case Instruction::Add: 6989 case Instruction::And: 6990 case Instruction::AShr: 6991 case Instruction::BitCast: 6992 case Instruction::FAdd: 6993 case Instruction::FCmp: 6994 case Instruction::FDiv: 6995 case Instruction::FMul: 6996 case Instruction::FNeg: 6997 case Instruction::FPExt: 6998 case Instruction::FPToSI: 6999 case Instruction::FPToUI: 7000 case Instruction::FPTrunc: 7001 case Instruction::FRem: 7002 case Instruction::FSub: 7003 case Instruction::ICmp: 7004 case Instruction::IntToPtr: 7005 case Instruction::LShr: 7006 case Instruction::Mul: 7007 case Instruction::Or: 7008 case Instruction::PtrToInt: 7009 case Instruction::SDiv: 7010 case Instruction::Select: 7011 case Instruction::SExt: 7012 case Instruction::Shl: 7013 case Instruction::SIToFP: 7014 case Instruction::SRem: 7015 case Instruction::Sub: 7016 case Instruction::Trunc: 7017 case Instruction::UDiv: 7018 case Instruction::UIToFP: 7019 case Instruction::URem: 7020 case Instruction::Xor: 7021 case Instruction::ZExt: 7022 return true; 7023 } 7024 return false; 7025 }; 7026 7027 if (!IsVectorizableOpcode(I->getOpcode())) 7028 return nullptr; 7029 7030 // Success: widen this instruction. 7031 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7032 } 7033 7034 VPBasicBlock *VPRecipeBuilder::handleReplication( 7035 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7036 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7037 VPlanPtr &Plan) { 7038 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7039 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7040 Range); 7041 7042 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7043 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7044 7045 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7046 setRecipe(I, Recipe); 7047 7048 // Find if I uses a predicated instruction. If so, it will use its scalar 7049 // value. Avoid hoisting the insert-element which packs the scalar value into 7050 // a vector value, as that happens iff all users use the vector value. 7051 for (auto &Op : I->operands()) 7052 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7053 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7054 PredInst2Recipe[PredInst]->setAlsoPack(false); 7055 7056 // Finalize the recipe for Instr, first if it is not predicated. 7057 if (!IsPredicated) { 7058 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7059 VPBB->appendRecipe(Recipe); 7060 return VPBB; 7061 } 7062 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7063 assert(VPBB->getSuccessors().empty() && 7064 "VPBB has successors when handling predicated replication."); 7065 // Record predicated instructions for above packing optimizations. 7066 PredInst2Recipe[I] = Recipe; 7067 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7068 VPBlockUtils::insertBlockAfter(Region, VPBB); 7069 auto *RegSucc = new VPBasicBlock(); 7070 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7071 return RegSucc; 7072 } 7073 7074 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7075 VPRecipeBase *PredRecipe, 7076 VPlanPtr &Plan) { 7077 // Instructions marked for predication are replicated and placed under an 7078 // if-then construct to prevent side-effects. 7079 7080 // Generate recipes to compute the block mask for this region. 7081 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7082 7083 // Build the triangular if-then region. 7084 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7085 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7086 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7087 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7088 auto *PHIRecipe = 7089 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7090 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7091 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7092 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7093 7094 // Note: first set Entry as region entry and then connect successors starting 7095 // from it in order, to propagate the "parent" of each VPBasicBlock. 7096 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7097 VPBlockUtils::connectBlocks(Pred, Exit); 7098 7099 return Region; 7100 } 7101 7102 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7103 VFRange &Range, 7104 VPlanPtr &Plan) { 7105 // First, check for specific widening recipes that deal with calls, memory 7106 // operations, inductions and Phi nodes. 7107 if (auto *CI = dyn_cast<CallInst>(Instr)) 7108 return tryToWidenCall(CI, Range, *Plan); 7109 7110 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7111 return tryToWidenMemory(Instr, Range, Plan); 7112 7113 VPRecipeBase *Recipe; 7114 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7115 if (Phi->getParent() != OrigLoop->getHeader()) 7116 return tryToBlend(Phi, Plan); 7117 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7118 return Recipe; 7119 return new VPWidenPHIRecipe(Phi); 7120 return new VPWidenPHIRecipe(Phi); 7121 } 7122 7123 if (isa<TruncInst>(Instr) && 7124 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7125 return Recipe; 7126 7127 if (!shouldWiden(Instr, Range)) 7128 return nullptr; 7129 7130 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7131 return new VPWidenGEPRecipe(GEP, OrigLoop); 7132 7133 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7134 bool InvariantCond = 7135 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7136 return new VPWidenSelectRecipe(*SI, InvariantCond); 7137 } 7138 7139 return tryToWiden(Instr, *Plan); 7140 } 7141 7142 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7143 unsigned MaxVF) { 7144 assert(OrigLoop->empty() && "Inner loop expected."); 7145 7146 // Collect conditions feeding internal conditional branches; they need to be 7147 // represented in VPlan for it to model masking. 7148 SmallPtrSet<Value *, 1> NeedDef; 7149 7150 auto *Latch = OrigLoop->getLoopLatch(); 7151 for (BasicBlock *BB : OrigLoop->blocks()) { 7152 if (BB == Latch) 7153 continue; 7154 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7155 if (Branch && Branch->isConditional()) 7156 NeedDef.insert(Branch->getCondition()); 7157 } 7158 7159 // If the tail is to be folded by masking, the primary induction variable, if 7160 // exists needs to be represented in VPlan for it to model early-exit masking. 7161 // Also, both the Phi and the live-out instruction of each reduction are 7162 // required in order to introduce a select between them in VPlan. 7163 if (CM.foldTailByMasking()) { 7164 if (Legal->getPrimaryInduction()) 7165 NeedDef.insert(Legal->getPrimaryInduction()); 7166 for (auto &Reduction : Legal->getReductionVars()) { 7167 NeedDef.insert(Reduction.first); 7168 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7169 } 7170 } 7171 7172 // Collect instructions from the original loop that will become trivially dead 7173 // in the vectorized loop. We don't need to vectorize these instructions. For 7174 // example, original induction update instructions can become dead because we 7175 // separately emit induction "steps" when generating code for the new loop. 7176 // Similarly, we create a new latch condition when setting up the structure 7177 // of the new loop, so the old one can become dead. 7178 SmallPtrSet<Instruction *, 4> DeadInstructions; 7179 collectTriviallyDeadInstructions(DeadInstructions); 7180 7181 // Add assume instructions we need to drop to DeadInstructions, to prevent 7182 // them from being added to the VPlan. 7183 // TODO: We only need to drop assumes in blocks that get flattend. If the 7184 // control flow is preserved, we should keep them. 7185 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7186 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7187 7188 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7189 // Dead instructions do not need sinking. Remove them from SinkAfter. 7190 for (Instruction *I : DeadInstructions) 7191 SinkAfter.erase(I); 7192 7193 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7194 VFRange SubRange = {VF, MaxVF + 1}; 7195 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7196 DeadInstructions, SinkAfter)); 7197 VF = SubRange.End; 7198 } 7199 } 7200 7201 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7202 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7203 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7204 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7205 7206 // Hold a mapping from predicated instructions to their recipes, in order to 7207 // fix their AlsoPack behavior if a user is determined to replicate and use a 7208 // scalar instead of vector value. 7209 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7210 7211 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7212 7213 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7214 7215 // --------------------------------------------------------------------------- 7216 // Pre-construction: record ingredients whose recipes we'll need to further 7217 // process after constructing the initial VPlan. 7218 // --------------------------------------------------------------------------- 7219 7220 // Mark instructions we'll need to sink later and their targets as 7221 // ingredients whose recipe we'll need to record. 7222 for (auto &Entry : SinkAfter) { 7223 RecipeBuilder.recordRecipeOf(Entry.first); 7224 RecipeBuilder.recordRecipeOf(Entry.second); 7225 } 7226 7227 // For each interleave group which is relevant for this (possibly trimmed) 7228 // Range, add it to the set of groups to be later applied to the VPlan and add 7229 // placeholders for its members' Recipes which we'll be replacing with a 7230 // single VPInterleaveRecipe. 7231 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7232 auto applyIG = [IG, this](unsigned VF) -> bool { 7233 return (VF >= 2 && // Query is illegal for VF == 1 7234 CM.getWideningDecision(IG->getInsertPos(), VF) == 7235 LoopVectorizationCostModel::CM_Interleave); 7236 }; 7237 if (!getDecisionAndClampRange(applyIG, Range)) 7238 continue; 7239 InterleaveGroups.insert(IG); 7240 for (unsigned i = 0; i < IG->getFactor(); i++) 7241 if (Instruction *Member = IG->getMember(i)) 7242 RecipeBuilder.recordRecipeOf(Member); 7243 }; 7244 7245 // --------------------------------------------------------------------------- 7246 // Build initial VPlan: Scan the body of the loop in a topological order to 7247 // visit each basic block after having visited its predecessor basic blocks. 7248 // --------------------------------------------------------------------------- 7249 7250 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7251 auto Plan = std::make_unique<VPlan>(); 7252 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7253 Plan->setEntry(VPBB); 7254 7255 // Represent values that will have defs inside VPlan. 7256 for (Value *V : NeedDef) 7257 Plan->addVPValue(V); 7258 7259 // Scan the body of the loop in a topological order to visit each basic block 7260 // after having visited its predecessor basic blocks. 7261 LoopBlocksDFS DFS(OrigLoop); 7262 DFS.perform(LI); 7263 7264 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7265 // Relevant instructions from basic block BB will be grouped into VPRecipe 7266 // ingredients and fill a new VPBasicBlock. 7267 unsigned VPBBsForBB = 0; 7268 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7269 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7270 VPBB = FirstVPBBForBB; 7271 Builder.setInsertPoint(VPBB); 7272 7273 // Introduce each ingredient into VPlan. 7274 // TODO: Model and preserve debug instrinsics in VPlan. 7275 for (Instruction &I : BB->instructionsWithoutDebug()) { 7276 Instruction *Instr = &I; 7277 7278 // First filter out irrelevant instructions, to ensure no recipes are 7279 // built for them. 7280 if (isa<BranchInst>(Instr) || 7281 DeadInstructions.find(Instr) != DeadInstructions.end()) 7282 continue; 7283 7284 if (auto Recipe = 7285 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7286 RecipeBuilder.setRecipe(Instr, Recipe); 7287 VPBB->appendRecipe(Recipe); 7288 continue; 7289 } 7290 7291 // Otherwise, if all widening options failed, Instruction is to be 7292 // replicated. This may create a successor for VPBB. 7293 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7294 Instr, Range, VPBB, PredInst2Recipe, Plan); 7295 if (NextVPBB != VPBB) { 7296 VPBB = NextVPBB; 7297 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7298 : ""); 7299 } 7300 } 7301 } 7302 7303 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7304 // may also be empty, such as the last one VPBB, reflecting original 7305 // basic-blocks with no recipes. 7306 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7307 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7308 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7309 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7310 delete PreEntry; 7311 7312 // --------------------------------------------------------------------------- 7313 // Transform initial VPlan: Apply previously taken decisions, in order, to 7314 // bring the VPlan to its final state. 7315 // --------------------------------------------------------------------------- 7316 7317 // Apply Sink-After legal constraints. 7318 for (auto &Entry : SinkAfter) { 7319 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7320 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7321 Sink->moveAfter(Target); 7322 } 7323 7324 // Interleave memory: for each Interleave Group we marked earlier as relevant 7325 // for this VPlan, replace the Recipes widening its memory instructions with a 7326 // single VPInterleaveRecipe at its insertion point. 7327 for (auto IG : InterleaveGroups) { 7328 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7329 RecipeBuilder.getRecipe(IG->getInsertPos())); 7330 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7331 ->insertBefore(Recipe); 7332 7333 for (unsigned i = 0; i < IG->getFactor(); ++i) 7334 if (Instruction *Member = IG->getMember(i)) { 7335 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7336 } 7337 } 7338 7339 // Finally, if tail is folded by masking, introduce selects between the phi 7340 // and the live-out instruction of each reduction, at the end of the latch. 7341 if (CM.foldTailByMasking()) { 7342 Builder.setInsertPoint(VPBB); 7343 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7344 for (auto &Reduction : Legal->getReductionVars()) { 7345 VPValue *Phi = Plan->getVPValue(Reduction.first); 7346 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7347 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7348 } 7349 } 7350 7351 std::string PlanName; 7352 raw_string_ostream RSO(PlanName); 7353 unsigned VF = Range.Start; 7354 Plan->addVF(VF); 7355 RSO << "Initial VPlan for VF={" << VF; 7356 for (VF *= 2; VF < Range.End; VF *= 2) { 7357 Plan->addVF(VF); 7358 RSO << "," << VF; 7359 } 7360 RSO << "},UF>=1"; 7361 RSO.flush(); 7362 Plan->setName(PlanName); 7363 7364 return Plan; 7365 } 7366 7367 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7368 // Outer loop handling: They may require CFG and instruction level 7369 // transformations before even evaluating whether vectorization is profitable. 7370 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7371 // the vectorization pipeline. 7372 assert(!OrigLoop->empty()); 7373 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7374 7375 // Create new empty VPlan 7376 auto Plan = std::make_unique<VPlan>(); 7377 7378 // Build hierarchical CFG 7379 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7380 HCFGBuilder.buildHierarchicalCFG(); 7381 7382 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7383 Plan->addVF(VF); 7384 7385 if (EnableVPlanPredication) { 7386 VPlanPredicator VPP(*Plan); 7387 VPP.predicate(); 7388 7389 // Avoid running transformation to recipes until masked code generation in 7390 // VPlan-native path is in place. 7391 return Plan; 7392 } 7393 7394 SmallPtrSet<Instruction *, 1> DeadInstructions; 7395 VPlanTransforms::VPInstructionsToVPRecipes( 7396 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7397 return Plan; 7398 } 7399 7400 Value* LoopVectorizationPlanner::VPCallbackILV:: 7401 getOrCreateVectorValues(Value *V, unsigned Part) { 7402 return ILV.getOrCreateVectorValue(V, Part); 7403 } 7404 7405 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7406 Value *V, const VPIteration &Instance) { 7407 return ILV.getOrCreateScalarValue(V, Instance); 7408 } 7409 7410 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7411 VPSlotTracker &SlotTracker) const { 7412 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7413 IG->getInsertPos()->printAsOperand(O, false); 7414 O << ", "; 7415 getAddr()->printAsOperand(O, SlotTracker); 7416 VPValue *Mask = getMask(); 7417 if (Mask) { 7418 O << ", "; 7419 Mask->printAsOperand(O, SlotTracker); 7420 } 7421 for (unsigned i = 0; i < IG->getFactor(); ++i) 7422 if (Instruction *I = IG->getMember(i)) 7423 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7424 } 7425 7426 void VPWidenCallRecipe::execute(VPTransformState &State) { 7427 State.ILV->widenCallInstruction(Ingredient, User, State); 7428 } 7429 7430 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7431 State.ILV->widenSelectInstruction(Ingredient, InvariantCond); 7432 } 7433 7434 void VPWidenRecipe::execute(VPTransformState &State) { 7435 State.ILV->widenInstruction(Ingredient, User, State); 7436 } 7437 7438 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7439 State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant, 7440 IsIndexLoopInvariant); 7441 } 7442 7443 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7444 assert(!State.Instance && "Int or FP induction being replicated."); 7445 State.ILV->widenIntOrFpInduction(IV, Trunc); 7446 } 7447 7448 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7449 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7450 } 7451 7452 void VPBlendRecipe::execute(VPTransformState &State) { 7453 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7454 // We know that all PHIs in non-header blocks are converted into 7455 // selects, so we don't have to worry about the insertion order and we 7456 // can just use the builder. 7457 // At this point we generate the predication tree. There may be 7458 // duplications since this is a simple recursive scan, but future 7459 // optimizations will clean it up. 7460 7461 unsigned NumIncoming = getNumIncomingValues(); 7462 7463 // Generate a sequence of selects of the form: 7464 // SELECT(Mask3, In3, 7465 // SELECT(Mask2, In2, 7466 // SELECT(Mask1, In1, 7467 // In0))) 7468 // Note that Mask0 is never used: lanes for which no path reaches this phi and 7469 // are essentially undef are taken from In0. 7470 InnerLoopVectorizer::VectorParts Entry(State.UF); 7471 for (unsigned In = 0; In < NumIncoming; ++In) { 7472 for (unsigned Part = 0; Part < State.UF; ++Part) { 7473 // We might have single edge PHIs (blocks) - use an identity 7474 // 'select' for the first PHI operand. 7475 Value *In0 = State.get(getIncomingValue(In), Part); 7476 if (In == 0) 7477 Entry[Part] = In0; // Initialize with the first incoming value. 7478 else { 7479 // Select between the current value and the previous incoming edge 7480 // based on the incoming mask. 7481 Value *Cond = State.get(getMask(In), Part); 7482 Entry[Part] = 7483 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7484 } 7485 } 7486 } 7487 for (unsigned Part = 0; Part < State.UF; ++Part) 7488 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7489 } 7490 7491 void VPInterleaveRecipe::execute(VPTransformState &State) { 7492 assert(!State.Instance && "Interleave group being replicated."); 7493 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 7494 } 7495 7496 void VPReplicateRecipe::execute(VPTransformState &State) { 7497 if (State.Instance) { // Generate a single instance. 7498 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7499 // Insert scalar instance packing it into a vector. 7500 if (AlsoPack && State.VF > 1) { 7501 // If we're constructing lane 0, initialize to start from undef. 7502 if (State.Instance->Lane == 0) { 7503 Value *Undef = 7504 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7505 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7506 } 7507 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7508 } 7509 return; 7510 } 7511 7512 // Generate scalar instances for all VF lanes of all UF parts, unless the 7513 // instruction is uniform inwhich case generate only the first lane for each 7514 // of the UF parts. 7515 unsigned EndLane = IsUniform ? 1 : State.VF; 7516 for (unsigned Part = 0; Part < State.UF; ++Part) 7517 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7518 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7519 } 7520 7521 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7522 assert(State.Instance && "Branch on Mask works only on single instance."); 7523 7524 unsigned Part = State.Instance->Part; 7525 unsigned Lane = State.Instance->Lane; 7526 7527 Value *ConditionBit = nullptr; 7528 if (!User) // Block in mask is all-one. 7529 ConditionBit = State.Builder.getTrue(); 7530 else { 7531 VPValue *BlockInMask = User->getOperand(0); 7532 ConditionBit = State.get(BlockInMask, Part); 7533 if (ConditionBit->getType()->isVectorTy()) 7534 ConditionBit = State.Builder.CreateExtractElement( 7535 ConditionBit, State.Builder.getInt32(Lane)); 7536 } 7537 7538 // Replace the temporary unreachable terminator with a new conditional branch, 7539 // whose two destinations will be set later when they are created. 7540 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7541 assert(isa<UnreachableInst>(CurrentTerminator) && 7542 "Expected to replace unreachable terminator with conditional branch."); 7543 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7544 CondBr->setSuccessor(0, nullptr); 7545 ReplaceInstWithInst(CurrentTerminator, CondBr); 7546 } 7547 7548 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7549 assert(State.Instance && "Predicated instruction PHI works per instance."); 7550 Instruction *ScalarPredInst = cast<Instruction>( 7551 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7552 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7553 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7554 assert(PredicatingBB && "Predicated block has no single predecessor."); 7555 7556 // By current pack/unpack logic we need to generate only a single phi node: if 7557 // a vector value for the predicated instruction exists at this point it means 7558 // the instruction has vector users only, and a phi for the vector value is 7559 // needed. In this case the recipe of the predicated instruction is marked to 7560 // also do that packing, thereby "hoisting" the insert-element sequence. 7561 // Otherwise, a phi node for the scalar value is needed. 7562 unsigned Part = State.Instance->Part; 7563 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7564 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7565 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7566 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7567 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7568 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7569 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7570 } else { 7571 Type *PredInstType = PredInst->getType(); 7572 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7573 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7574 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7575 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7576 } 7577 } 7578 7579 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7580 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7581 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7582 getMask()); 7583 } 7584 7585 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7586 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7587 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7588 // for predication. 7589 static ScalarEpilogueLowering getScalarEpilogueLowering( 7590 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7591 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7592 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7593 LoopVectorizationLegality &LVL) { 7594 bool OptSize = 7595 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7596 PGSOQueryType::IRPass); 7597 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7598 // don't look at hints or options, and don't request a scalar epilogue. 7599 if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) 7600 return CM_ScalarEpilogueNotAllowedOptSize; 7601 7602 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7603 !PreferPredicateOverEpilog; 7604 7605 // 2) Next, if disabling predication is requested on the command line, honour 7606 // this and request a scalar epilogue. 7607 if (PredicateOptDisabled) 7608 return CM_ScalarEpilogueAllowed; 7609 7610 // 3) and 4) look if enabling predication is requested on the command line, 7611 // with a loop hint, or if the TTI hook indicates this is profitable, request 7612 // predication . 7613 if (PreferPredicateOverEpilog || 7614 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7615 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7616 LVL.getLAI()) && 7617 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7618 return CM_ScalarEpilogueNotNeededUsePredicate; 7619 7620 return CM_ScalarEpilogueAllowed; 7621 } 7622 7623 // Process the loop in the VPlan-native vectorization path. This path builds 7624 // VPlan upfront in the vectorization pipeline, which allows to apply 7625 // VPlan-to-VPlan transformations from the very beginning without modifying the 7626 // input LLVM IR. 7627 static bool processLoopInVPlanNativePath( 7628 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7629 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7630 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7631 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7632 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7633 7634 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7635 Function *F = L->getHeader()->getParent(); 7636 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7637 7638 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7639 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7640 7641 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7642 &Hints, IAI); 7643 // Use the planner for outer loop vectorization. 7644 // TODO: CM is not used at this point inside the planner. Turn CM into an 7645 // optional argument if we don't need it in the future. 7646 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7647 7648 // Get user vectorization factor. 7649 const unsigned UserVF = Hints.getWidth(); 7650 7651 // Plan how to best vectorize, return the best VF and its cost. 7652 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7653 7654 // If we are stress testing VPlan builds, do not attempt to generate vector 7655 // code. Masked vector code generation support will follow soon. 7656 // Also, do not attempt to vectorize if no vector code will be produced. 7657 if (VPlanBuildStressTest || EnableVPlanPredication || 7658 VectorizationFactor::Disabled() == VF) 7659 return false; 7660 7661 LVP.setBestPlan(VF.Width, 1); 7662 7663 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7664 &CM); 7665 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7666 << L->getHeader()->getParent()->getName() << "\"\n"); 7667 LVP.executePlan(LB, DT); 7668 7669 // Mark the loop as already vectorized to avoid vectorizing again. 7670 Hints.setAlreadyVectorized(); 7671 7672 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7673 return true; 7674 } 7675 7676 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 7677 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 7678 !EnableLoopInterleaving), 7679 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 7680 !EnableLoopVectorization) {} 7681 7682 bool LoopVectorizePass::processLoop(Loop *L) { 7683 assert((EnableVPlanNativePath || L->empty()) && 7684 "VPlan-native path is not enabled. Only process inner loops."); 7685 7686 #ifndef NDEBUG 7687 const std::string DebugLocStr = getDebugLocString(L); 7688 #endif /* NDEBUG */ 7689 7690 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7691 << L->getHeader()->getParent()->getName() << "\" from " 7692 << DebugLocStr << "\n"); 7693 7694 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7695 7696 LLVM_DEBUG( 7697 dbgs() << "LV: Loop hints:" 7698 << " force=" 7699 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7700 ? "disabled" 7701 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7702 ? "enabled" 7703 : "?")) 7704 << " width=" << Hints.getWidth() 7705 << " unroll=" << Hints.getInterleave() << "\n"); 7706 7707 // Function containing loop 7708 Function *F = L->getHeader()->getParent(); 7709 7710 // Looking at the diagnostic output is the only way to determine if a loop 7711 // was vectorized (other than looking at the IR or machine code), so it 7712 // is important to generate an optimization remark for each loop. Most of 7713 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7714 // generated as OptimizationRemark and OptimizationRemarkMissed are 7715 // less verbose reporting vectorized loops and unvectorized loops that may 7716 // benefit from vectorization, respectively. 7717 7718 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7719 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7720 return false; 7721 } 7722 7723 PredicatedScalarEvolution PSE(*SE, *L); 7724 7725 // Check if it is legal to vectorize the loop. 7726 LoopVectorizationRequirements Requirements(*ORE); 7727 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7728 &Requirements, &Hints, DB, AC); 7729 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7730 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7731 Hints.emitRemarkWithHints(); 7732 return false; 7733 } 7734 7735 // Check the function attributes and profiles to find out if this function 7736 // should be optimized for size. 7737 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7738 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7739 7740 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7741 // here. They may require CFG and instruction level transformations before 7742 // even evaluating whether vectorization is profitable. Since we cannot modify 7743 // the incoming IR, we need to build VPlan upfront in the vectorization 7744 // pipeline. 7745 if (!L->empty()) 7746 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7747 ORE, BFI, PSI, Hints); 7748 7749 assert(L->empty() && "Inner loop expected."); 7750 7751 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7752 // count by optimizing for size, to minimize overheads. 7753 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7754 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7755 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7756 << "This loop is worth vectorizing only if no scalar " 7757 << "iteration overheads are incurred."); 7758 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7759 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7760 else { 7761 LLVM_DEBUG(dbgs() << "\n"); 7762 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7763 } 7764 } 7765 7766 // Check the function attributes to see if implicit floats are allowed. 7767 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7768 // an integer loop and the vector instructions selected are purely integer 7769 // vector instructions? 7770 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7771 reportVectorizationFailure( 7772 "Can't vectorize when the NoImplicitFloat attribute is used", 7773 "loop not vectorized due to NoImplicitFloat attribute", 7774 "NoImplicitFloat", ORE, L); 7775 Hints.emitRemarkWithHints(); 7776 return false; 7777 } 7778 7779 // Check if the target supports potentially unsafe FP vectorization. 7780 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7781 // for the target we're vectorizing for, to make sure none of the 7782 // additional fp-math flags can help. 7783 if (Hints.isPotentiallyUnsafe() && 7784 TTI->isFPVectorizationPotentiallyUnsafe()) { 7785 reportVectorizationFailure( 7786 "Potentially unsafe FP op prevents vectorization", 7787 "loop not vectorized due to unsafe FP support.", 7788 "UnsafeFP", ORE, L); 7789 Hints.emitRemarkWithHints(); 7790 return false; 7791 } 7792 7793 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7794 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7795 7796 // If an override option has been passed in for interleaved accesses, use it. 7797 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7798 UseInterleaved = EnableInterleavedMemAccesses; 7799 7800 // Analyze interleaved memory accesses. 7801 if (UseInterleaved) { 7802 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7803 } 7804 7805 // Use the cost model. 7806 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7807 F, &Hints, IAI); 7808 CM.collectValuesToIgnore(); 7809 7810 // Use the planner for vectorization. 7811 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7812 7813 // Get user vectorization factor. 7814 unsigned UserVF = Hints.getWidth(); 7815 7816 // Plan how to best vectorize, return the best VF and its cost. 7817 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7818 7819 VectorizationFactor VF = VectorizationFactor::Disabled(); 7820 unsigned IC = 1; 7821 unsigned UserIC = Hints.getInterleave(); 7822 7823 if (MaybeVF) { 7824 VF = *MaybeVF; 7825 // Select the interleave count. 7826 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7827 } 7828 7829 // Identify the diagnostic messages that should be produced. 7830 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7831 bool VectorizeLoop = true, InterleaveLoop = true; 7832 if (Requirements.doesNotMeet(F, L, Hints)) { 7833 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7834 "requirements.\n"); 7835 Hints.emitRemarkWithHints(); 7836 return false; 7837 } 7838 7839 if (VF.Width == 1) { 7840 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7841 VecDiagMsg = std::make_pair( 7842 "VectorizationNotBeneficial", 7843 "the cost-model indicates that vectorization is not beneficial"); 7844 VectorizeLoop = false; 7845 } 7846 7847 if (!MaybeVF && UserIC > 1) { 7848 // Tell the user interleaving was avoided up-front, despite being explicitly 7849 // requested. 7850 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7851 "interleaving should be avoided up front\n"); 7852 IntDiagMsg = std::make_pair( 7853 "InterleavingAvoided", 7854 "Ignoring UserIC, because interleaving was avoided up front"); 7855 InterleaveLoop = false; 7856 } else if (IC == 1 && UserIC <= 1) { 7857 // Tell the user interleaving is not beneficial. 7858 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7859 IntDiagMsg = std::make_pair( 7860 "InterleavingNotBeneficial", 7861 "the cost-model indicates that interleaving is not beneficial"); 7862 InterleaveLoop = false; 7863 if (UserIC == 1) { 7864 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7865 IntDiagMsg.second += 7866 " and is explicitly disabled or interleave count is set to 1"; 7867 } 7868 } else if (IC > 1 && UserIC == 1) { 7869 // Tell the user interleaving is beneficial, but it explicitly disabled. 7870 LLVM_DEBUG( 7871 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7872 IntDiagMsg = std::make_pair( 7873 "InterleavingBeneficialButDisabled", 7874 "the cost-model indicates that interleaving is beneficial " 7875 "but is explicitly disabled or interleave count is set to 1"); 7876 InterleaveLoop = false; 7877 } 7878 7879 // Override IC if user provided an interleave count. 7880 IC = UserIC > 0 ? UserIC : IC; 7881 7882 // Emit diagnostic messages, if any. 7883 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7884 if (!VectorizeLoop && !InterleaveLoop) { 7885 // Do not vectorize or interleaving the loop. 7886 ORE->emit([&]() { 7887 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7888 L->getStartLoc(), L->getHeader()) 7889 << VecDiagMsg.second; 7890 }); 7891 ORE->emit([&]() { 7892 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7893 L->getStartLoc(), L->getHeader()) 7894 << IntDiagMsg.second; 7895 }); 7896 return false; 7897 } else if (!VectorizeLoop && InterleaveLoop) { 7898 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7899 ORE->emit([&]() { 7900 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7901 L->getStartLoc(), L->getHeader()) 7902 << VecDiagMsg.second; 7903 }); 7904 } else if (VectorizeLoop && !InterleaveLoop) { 7905 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7906 << ") in " << DebugLocStr << '\n'); 7907 ORE->emit([&]() { 7908 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7909 L->getStartLoc(), L->getHeader()) 7910 << IntDiagMsg.second; 7911 }); 7912 } else if (VectorizeLoop && InterleaveLoop) { 7913 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7914 << ") in " << DebugLocStr << '\n'); 7915 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7916 } 7917 7918 LVP.setBestPlan(VF.Width, IC); 7919 7920 using namespace ore; 7921 bool DisableRuntimeUnroll = false; 7922 MDNode *OrigLoopID = L->getLoopID(); 7923 7924 if (!VectorizeLoop) { 7925 assert(IC > 1 && "interleave count should not be 1 or 0"); 7926 // If we decided that it is not legal to vectorize the loop, then 7927 // interleave it. 7928 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7929 &CM); 7930 LVP.executePlan(Unroller, DT); 7931 7932 ORE->emit([&]() { 7933 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7934 L->getHeader()) 7935 << "interleaved loop (interleaved count: " 7936 << NV("InterleaveCount", IC) << ")"; 7937 }); 7938 } else { 7939 // If we decided that it is *legal* to vectorize the loop, then do it. 7940 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7941 &LVL, &CM); 7942 LVP.executePlan(LB, DT); 7943 ++LoopsVectorized; 7944 7945 // Add metadata to disable runtime unrolling a scalar loop when there are 7946 // no runtime checks about strides and memory. A scalar loop that is 7947 // rarely used is not worth unrolling. 7948 if (!LB.areSafetyChecksAdded()) 7949 DisableRuntimeUnroll = true; 7950 7951 // Report the vectorization decision. 7952 ORE->emit([&]() { 7953 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7954 L->getHeader()) 7955 << "vectorized loop (vectorization width: " 7956 << NV("VectorizationFactor", VF.Width) 7957 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7958 }); 7959 } 7960 7961 Optional<MDNode *> RemainderLoopID = 7962 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7963 LLVMLoopVectorizeFollowupEpilogue}); 7964 if (RemainderLoopID.hasValue()) { 7965 L->setLoopID(RemainderLoopID.getValue()); 7966 } else { 7967 if (DisableRuntimeUnroll) 7968 AddRuntimeUnrollDisableMetaData(L); 7969 7970 // Mark the loop as already vectorized to avoid vectorizing again. 7971 Hints.setAlreadyVectorized(); 7972 } 7973 7974 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7975 return true; 7976 } 7977 7978 LoopVectorizeResult LoopVectorizePass::runImpl( 7979 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7980 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7981 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7982 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7983 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7984 SE = &SE_; 7985 LI = &LI_; 7986 TTI = &TTI_; 7987 DT = &DT_; 7988 BFI = &BFI_; 7989 TLI = TLI_; 7990 AA = &AA_; 7991 AC = &AC_; 7992 GetLAA = &GetLAA_; 7993 DB = &DB_; 7994 ORE = &ORE_; 7995 PSI = PSI_; 7996 7997 // Don't attempt if 7998 // 1. the target claims to have no vector registers, and 7999 // 2. interleaving won't help ILP. 8000 // 8001 // The second condition is necessary because, even if the target has no 8002 // vector registers, loop vectorization may still enable scalar 8003 // interleaving. 8004 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8005 TTI->getMaxInterleaveFactor(1) < 2) 8006 return LoopVectorizeResult(false, false); 8007 8008 bool Changed = false, CFGChanged = false; 8009 8010 // The vectorizer requires loops to be in simplified form. 8011 // Since simplification may add new inner loops, it has to run before the 8012 // legality and profitability checks. This means running the loop vectorizer 8013 // will simplify all loops, regardless of whether anything end up being 8014 // vectorized. 8015 for (auto &L : *LI) 8016 Changed |= CFGChanged |= 8017 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8018 8019 // Build up a worklist of inner-loops to vectorize. This is necessary as 8020 // the act of vectorizing or partially unrolling a loop creates new loops 8021 // and can invalidate iterators across the loops. 8022 SmallVector<Loop *, 8> Worklist; 8023 8024 for (Loop *L : *LI) 8025 collectSupportedLoops(*L, LI, ORE, Worklist); 8026 8027 LoopsAnalyzed += Worklist.size(); 8028 8029 // Now walk the identified inner loops. 8030 while (!Worklist.empty()) { 8031 Loop *L = Worklist.pop_back_val(); 8032 8033 // For the inner loops we actually process, form LCSSA to simplify the 8034 // transform. 8035 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8036 8037 Changed |= CFGChanged |= processLoop(L); 8038 } 8039 8040 // Process each loop nest in the function. 8041 return LoopVectorizeResult(Changed, CFGChanged); 8042 } 8043 8044 PreservedAnalyses LoopVectorizePass::run(Function &F, 8045 FunctionAnalysisManager &AM) { 8046 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8047 auto &LI = AM.getResult<LoopAnalysis>(F); 8048 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8049 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8050 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8051 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8052 auto &AA = AM.getResult<AAManager>(F); 8053 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8054 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8055 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8056 MemorySSA *MSSA = EnableMSSALoopDependency 8057 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8058 : nullptr; 8059 8060 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8061 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8062 [&](Loop &L) -> const LoopAccessInfo & { 8063 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8064 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8065 }; 8066 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8067 ProfileSummaryInfo *PSI = 8068 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8069 LoopVectorizeResult Result = 8070 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8071 if (!Result.MadeAnyChange) 8072 return PreservedAnalyses::all(); 8073 PreservedAnalyses PA; 8074 8075 // We currently do not preserve loopinfo/dominator analyses with outer loop 8076 // vectorization. Until this is addressed, mark these analyses as preserved 8077 // only for non-VPlan-native path. 8078 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8079 if (!EnableVPlanNativePath) { 8080 PA.preserve<LoopAnalysis>(); 8081 PA.preserve<DominatorTreeAnalysis>(); 8082 } 8083 PA.preserve<BasicAA>(); 8084 PA.preserve<GlobalsAA>(); 8085 if (!Result.MadeCFGChange) 8086 PA.preserveSet<CFGAnalyses>(); 8087 return PA; 8088 } 8089