1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// We don't vectorize loops with a known constant trip count below this number. 118 static cl::opt<unsigned> TinyTripCountVectorThreshold( 119 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 120 cl::desc("Don't vectorize loops with a constant " 121 "trip count that is smaller than this " 122 "value.")); 123 124 static cl::opt<bool> MaximizeBandwidth( 125 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 126 cl::desc("Maximize bandwidth when selecting vectorization factor which " 127 "will be determined by the smallest type in loop.")); 128 129 static cl::opt<bool> EnableInterleavedMemAccesses( 130 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 131 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 132 133 /// Maximum factor for an interleaved memory access. 134 static cl::opt<unsigned> MaxInterleaveGroupFactor( 135 "max-interleave-group-factor", cl::Hidden, 136 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 137 cl::init(8)); 138 139 /// We don't interleave loops with a known constant trip count below this 140 /// number. 141 static const unsigned TinyTripCountInterleaveThreshold = 128; 142 143 static cl::opt<unsigned> ForceTargetNumScalarRegs( 144 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of scalar registers.")); 146 147 static cl::opt<unsigned> ForceTargetNumVectorRegs( 148 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 149 cl::desc("A flag that overrides the target's number of vector registers.")); 150 151 /// Maximum vectorization interleave count. 152 static const unsigned MaxInterleaveFactor = 16; 153 154 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 155 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's max interleave factor for " 157 "scalar loops.")); 158 159 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 160 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 161 cl::desc("A flag that overrides the target's max interleave factor for " 162 "vectorized loops.")); 163 164 static cl::opt<unsigned> ForceTargetInstructionCost( 165 "force-target-instruction-cost", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's expected cost for " 167 "an instruction to a single constant value. Mostly " 168 "useful for getting consistent testing.")); 169 170 static cl::opt<unsigned> SmallLoopCost( 171 "small-loop-cost", cl::init(20), cl::Hidden, 172 cl::desc( 173 "The cost of a loop that is considered 'small' by the interleaver.")); 174 175 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 176 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 177 cl::desc("Enable the use of the block frequency analysis to access PGO " 178 "heuristics minimizing code growth in cold regions and being more " 179 "aggressive in hot regions.")); 180 181 // Runtime interleave loops for load/store throughput. 182 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 183 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 184 cl::desc( 185 "Enable runtime interleaving until load/store ports are saturated")); 186 187 /// The number of stores in a loop that are allowed to need predication. 188 static cl::opt<unsigned> NumberOfStoresToPredicate( 189 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 190 cl::desc("Max number of stores to be predicated behind an if.")); 191 192 static cl::opt<bool> EnableIndVarRegisterHeur( 193 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 194 cl::desc("Count the induction variable only once when interleaving")); 195 196 static cl::opt<bool> EnableCondStoresVectorization( 197 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 198 cl::desc("Enable if predication of stores during vectorization.")); 199 200 static cl::opt<unsigned> MaxNestedScalarReductionIC( 201 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 202 cl::desc("The maximum interleave count to use when interleaving a scalar " 203 "reduction in a nested loop.")); 204 205 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 206 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 207 cl::desc("The maximum allowed number of runtime memory checks with a " 208 "vectorize(enable) pragma.")); 209 210 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 211 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 212 cl::desc("The maximum number of SCEV checks allowed.")); 213 214 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 215 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 216 cl::desc("The maximum number of SCEV checks allowed with a " 217 "vectorize(enable) pragma")); 218 219 /// Create an analysis remark that explains why vectorization failed 220 /// 221 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 222 /// RemarkName is the identifier for the remark. If \p I is passed it is an 223 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 224 /// the location of the remark. \return the remark object that can be 225 /// streamed to. 226 static OptimizationRemarkAnalysis 227 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 228 Instruction *I = nullptr) { 229 Value *CodeRegion = TheLoop->getHeader(); 230 DebugLoc DL = TheLoop->getStartLoc(); 231 232 if (I) { 233 CodeRegion = I->getParent(); 234 // If there is no debug location attached to the instruction, revert back to 235 // using the loop's. 236 if (I->getDebugLoc()) 237 DL = I->getDebugLoc(); 238 } 239 240 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 241 R << "loop not vectorized: "; 242 return R; 243 } 244 245 namespace { 246 247 // Forward declarations. 248 class LoopVectorizeHints; 249 class LoopVectorizationLegality; 250 class LoopVectorizationCostModel; 251 class LoopVectorizationRequirements; 252 253 /// Returns true if the given loop body has a cycle, excluding the loop 254 /// itself. 255 static bool hasCyclesInLoopBody(const Loop &L) { 256 if (!L.empty()) 257 return true; 258 259 for (const auto &SCC : 260 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 261 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 262 if (SCC.size() > 1) { 263 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 264 DEBUG(L.dump()); 265 return true; 266 } 267 } 268 return false; 269 } 270 271 /// A helper function for converting Scalar types to vector types. 272 /// If the incoming type is void, we return void. If the VF is 1, we return 273 /// the scalar type. 274 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 275 if (Scalar->isVoidTy() || VF == 1) 276 return Scalar; 277 return VectorType::get(Scalar, VF); 278 } 279 280 // FIXME: The following helper functions have multiple implementations 281 // in the project. They can be effectively organized in a common Load/Store 282 // utilities unit. 283 284 /// A helper function that returns the pointer operand of a load or store 285 /// instruction. 286 static Value *getPointerOperand(Value *I) { 287 if (auto *LI = dyn_cast<LoadInst>(I)) 288 return LI->getPointerOperand(); 289 if (auto *SI = dyn_cast<StoreInst>(I)) 290 return SI->getPointerOperand(); 291 return nullptr; 292 } 293 294 /// A helper function that returns the type of loaded or stored value. 295 static Type *getMemInstValueType(Value *I) { 296 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 297 "Expected Load or Store instruction"); 298 if (auto *LI = dyn_cast<LoadInst>(I)) 299 return LI->getType(); 300 return cast<StoreInst>(I)->getValueOperand()->getType(); 301 } 302 303 /// A helper function that returns the alignment of load or store instruction. 304 static unsigned getMemInstAlignment(Value *I) { 305 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 306 "Expected Load or Store instruction"); 307 if (auto *LI = dyn_cast<LoadInst>(I)) 308 return LI->getAlignment(); 309 return cast<StoreInst>(I)->getAlignment(); 310 } 311 312 /// A helper function that returns the address space of the pointer operand of 313 /// load or store instruction. 314 static unsigned getMemInstAddressSpace(Value *I) { 315 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 316 "Expected Load or Store instruction"); 317 if (auto *LI = dyn_cast<LoadInst>(I)) 318 return LI->getPointerAddressSpace(); 319 return cast<StoreInst>(I)->getPointerAddressSpace(); 320 } 321 322 /// A helper function that returns true if the given type is irregular. The 323 /// type is irregular if its allocated size doesn't equal the store size of an 324 /// element of the corresponding vector type at the given vectorization factor. 325 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 326 327 // Determine if an array of VF elements of type Ty is "bitcast compatible" 328 // with a <VF x Ty> vector. 329 if (VF > 1) { 330 auto *VectorTy = VectorType::get(Ty, VF); 331 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 332 } 333 334 // If the vectorization factor is one, we just check if an array of type Ty 335 // requires padding between elements. 336 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 337 } 338 339 /// A helper function that returns the reciprocal of the block probability of 340 /// predicated blocks. If we return X, we are assuming the predicated block 341 /// will execute once for for every X iterations of the loop header. 342 /// 343 /// TODO: We should use actual block probability here, if available. Currently, 344 /// we always assume predicated blocks have a 50% chance of executing. 345 static unsigned getReciprocalPredBlockProb() { return 2; } 346 347 /// A helper function that adds a 'fast' flag to floating-point operations. 348 static Value *addFastMathFlag(Value *V) { 349 if (isa<FPMathOperator>(V)) { 350 FastMathFlags Flags; 351 Flags.setUnsafeAlgebra(); 352 cast<Instruction>(V)->setFastMathFlags(Flags); 353 } 354 return V; 355 } 356 357 /// A helper function that returns an integer or floating-point constant with 358 /// value C. 359 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 360 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 361 : ConstantFP::get(Ty, C); 362 } 363 364 /// InnerLoopVectorizer vectorizes loops which contain only one basic 365 /// block to a specified vectorization factor (VF). 366 /// This class performs the widening of scalars into vectors, or multiple 367 /// scalars. This class also implements the following features: 368 /// * It inserts an epilogue loop for handling loops that don't have iteration 369 /// counts that are known to be a multiple of the vectorization factor. 370 /// * It handles the code generation for reduction variables. 371 /// * Scalarization (implementation using scalars) of un-vectorizable 372 /// instructions. 373 /// InnerLoopVectorizer does not perform any vectorization-legality 374 /// checks, and relies on the caller to check for the different legality 375 /// aspects. The InnerLoopVectorizer relies on the 376 /// LoopVectorizationLegality class to provide information about the induction 377 /// and reduction variables that were found to a given vectorization factor. 378 class InnerLoopVectorizer { 379 public: 380 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 381 LoopInfo *LI, DominatorTree *DT, 382 const TargetLibraryInfo *TLI, 383 const TargetTransformInfo *TTI, AssumptionCache *AC, 384 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 385 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 386 LoopVectorizationCostModel *CM) 387 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 388 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 389 Builder(PSE.getSE()->getContext()), Induction(nullptr), 390 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 391 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 392 AddedSafetyChecks(false) {} 393 394 // Perform the actual loop widening (vectorization). 395 void vectorize() { 396 // Create a new empty loop. Unlink the old loop and connect the new one. 397 createEmptyLoop(); 398 // Widen each instruction in the old loop to a new one in the new loop. 399 vectorizeLoop(); 400 } 401 402 // Return true if any runtime check is added. 403 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 404 405 virtual ~InnerLoopVectorizer() {} 406 407 protected: 408 /// A small list of PHINodes. 409 typedef SmallVector<PHINode *, 4> PhiVector; 410 411 /// A type for vectorized values in the new loop. Each value from the 412 /// original loop, when vectorized, is represented by UF vector values in the 413 /// new unrolled loop, where UF is the unroll factor. 414 typedef SmallVector<Value *, 2> VectorParts; 415 416 /// A type for scalarized values in the new loop. Each value from the 417 /// original loop, when scalarized, is represented by UF x VF scalar values 418 /// in the new unrolled loop, where UF is the unroll factor and VF is the 419 /// vectorization factor. 420 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 421 422 // When we if-convert we need to create edge masks. We have to cache values 423 // so that we don't end up with exponential recursion/IR. 424 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 425 EdgeMaskCache; 426 427 /// Create an empty loop, based on the loop ranges of the old loop. 428 void createEmptyLoop(); 429 430 /// Set up the values of the IVs correctly when exiting the vector loop. 431 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 432 Value *CountRoundDown, Value *EndValue, 433 BasicBlock *MiddleBlock); 434 435 /// Create a new induction variable inside L. 436 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 437 Value *Step, Instruction *DL); 438 /// Copy and widen the instructions from the old loop. 439 virtual void vectorizeLoop(); 440 441 /// Handle all cross-iteration phis in the header. 442 void fixCrossIterationPHIs(); 443 444 /// Fix a first-order recurrence. This is the second phase of vectorizing 445 /// this phi node. 446 void fixFirstOrderRecurrence(PHINode *Phi); 447 448 /// Fix a reduction cross-iteration phi. This is the second phase of 449 /// vectorizing this phi node. 450 void fixReduction(PHINode *Phi); 451 452 /// \brief The Loop exit block may have single value PHI nodes where the 453 /// incoming value is 'Undef'. While vectorizing we only handled real values 454 /// that were defined inside the loop. Here we fix the 'undef case'. 455 /// See PR14725. 456 void fixLCSSAPHIs(); 457 458 /// Iteratively sink the scalarized operands of a predicated instruction into 459 /// the block that was created for it. 460 void sinkScalarOperands(Instruction *PredInst); 461 462 /// Predicate conditional instructions that require predication on their 463 /// respective conditions. 464 void predicateInstructions(); 465 466 /// Collect the instructions from the original loop that would be trivially 467 /// dead in the vectorized loop if generated. 468 void collectTriviallyDeadInstructions( 469 SmallPtrSetImpl<Instruction *> &DeadInstructions); 470 471 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 472 /// represented as. 473 void truncateToMinimalBitwidths(); 474 475 /// A helper function that computes the predicate of the block BB, assuming 476 /// that the header block of the loop is set to True. It returns the *entry* 477 /// mask for the block BB. 478 VectorParts createBlockInMask(BasicBlock *BB); 479 /// A helper function that computes the predicate of the edge between SRC 480 /// and DST. 481 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 482 483 /// A helper function to vectorize a single instruction within the innermost 484 /// loop. 485 void vectorizeInstruction(Instruction &I); 486 487 /// Vectorize a single PHINode in a block. This method handles the induction 488 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 489 /// arbitrary length vectors. 490 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 491 492 /// Insert the new loop to the loop hierarchy and pass manager 493 /// and update the analysis passes. 494 void updateAnalysis(); 495 496 /// This instruction is un-vectorizable. Implement it as a sequence 497 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 498 /// scalarized instruction behind an if block predicated on the control 499 /// dependence of the instruction. 500 virtual void scalarizeInstruction(Instruction *Instr, 501 bool IfPredicateInstr = false); 502 503 /// Vectorize Load and Store instructions, 504 virtual void vectorizeMemoryInstruction(Instruction *Instr); 505 506 /// Create a broadcast instruction. This method generates a broadcast 507 /// instruction (shuffle) for loop invariant values and for the induction 508 /// value. If this is the induction variable then we extend it to N, N+1, ... 509 /// this is needed because each iteration in the loop corresponds to a SIMD 510 /// element. 511 virtual Value *getBroadcastInstrs(Value *V); 512 513 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 514 /// to each vector element of Val. The sequence starts at StartIndex. 515 /// \p Opcode is relevant for FP induction variable. 516 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 517 Instruction::BinaryOps Opcode = 518 Instruction::BinaryOpsEnd); 519 520 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 521 /// variable on which to base the steps, \p Step is the size of the step, and 522 /// \p EntryVal is the value from the original loop that maps to the steps. 523 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 524 /// can be a truncate instruction). 525 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 526 const InductionDescriptor &ID); 527 528 /// Create a vector induction phi node based on an existing scalar one. \p 529 /// EntryVal is the value from the original loop that maps to the vector phi 530 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 531 /// truncate instruction, instead of widening the original IV, we widen a 532 /// version of the IV truncated to \p EntryVal's type. 533 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 534 Value *Step, Instruction *EntryVal); 535 536 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 537 /// is provided, the integer induction variable will first be truncated to 538 /// the corresponding type. 539 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 540 541 /// Returns true if an instruction \p I should be scalarized instead of 542 /// vectorized for the chosen vectorization factor. 543 bool shouldScalarizeInstruction(Instruction *I) const; 544 545 /// Returns true if we should generate a scalar version of \p IV. 546 bool needsScalarInduction(Instruction *IV) const; 547 548 /// Return a constant reference to the VectorParts corresponding to \p V from 549 /// the original loop. If the value has already been vectorized, the 550 /// corresponding vector entry in VectorLoopValueMap is returned. If, 551 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 552 /// new vector values on-demand by inserting the scalar values into vectors 553 /// with an insertelement sequence. If the value has been neither vectorized 554 /// nor scalarized, it must be loop invariant, so we simply broadcast the 555 /// value into vectors. 556 const VectorParts &getVectorValue(Value *V); 557 558 /// Return a value in the new loop corresponding to \p V from the original 559 /// loop at unroll index \p Part and vector index \p Lane. If the value has 560 /// been vectorized but not scalarized, the necessary extractelement 561 /// instruction will be generated. 562 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 563 564 /// Try to vectorize the interleaved access group that \p Instr belongs to. 565 void vectorizeInterleaveGroup(Instruction *Instr); 566 567 /// Generate a shuffle sequence that will reverse the vector Vec. 568 virtual Value *reverseVector(Value *Vec); 569 570 /// Returns (and creates if needed) the original loop trip count. 571 Value *getOrCreateTripCount(Loop *NewLoop); 572 573 /// Returns (and creates if needed) the trip count of the widened loop. 574 Value *getOrCreateVectorTripCount(Loop *NewLoop); 575 576 /// Emit a bypass check to see if the trip count would overflow, or we 577 /// wouldn't have enough iterations to execute one vector loop. 578 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 579 /// Emit a bypass check to see if the vector trip count is nonzero. 580 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 581 /// Emit a bypass check to see if all of the SCEV assumptions we've 582 /// had to make are correct. 583 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 584 /// Emit bypass checks to check any memory assumptions we may have made. 585 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 586 587 /// Add additional metadata to \p To that was not present on \p Orig. 588 /// 589 /// Currently this is used to add the noalias annotations based on the 590 /// inserted memchecks. Use this for instructions that are *cloned* into the 591 /// vector loop. 592 void addNewMetadata(Instruction *To, const Instruction *Orig); 593 594 /// Add metadata from one instruction to another. 595 /// 596 /// This includes both the original MDs from \p From and additional ones (\see 597 /// addNewMetadata). Use this for *newly created* instructions in the vector 598 /// loop. 599 void addMetadata(Instruction *To, Instruction *From); 600 601 /// \brief Similar to the previous function but it adds the metadata to a 602 /// vector of instructions. 603 void addMetadata(ArrayRef<Value *> To, Instruction *From); 604 605 /// \brief Set the debug location in the builder using the debug location in 606 /// the instruction. 607 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 608 609 /// This is a helper class for maintaining vectorization state. It's used for 610 /// mapping values from the original loop to their corresponding values in 611 /// the new loop. Two mappings are maintained: one for vectorized values and 612 /// one for scalarized values. Vectorized values are represented with UF 613 /// vector values in the new loop, and scalarized values are represented with 614 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 615 /// vectorization factors, respectively. 616 /// 617 /// Entries can be added to either map with initVector and initScalar, which 618 /// initialize and return a constant reference to the new entry. If a 619 /// non-constant reference to a vector entry is required, getVector can be 620 /// used to retrieve a mutable entry. We currently directly modify the mapped 621 /// values during "fix-up" operations that occur once the first phase of 622 /// widening is complete. These operations include type truncation and the 623 /// second phase of recurrence widening. 624 /// 625 /// Otherwise, entries from either map should be accessed using the 626 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 627 /// getVectorValue and getScalarValue coordinate to generate a vector or 628 /// scalar value on-demand if one is not yet available. When vectorizing a 629 /// loop, we visit the definition of an instruction before its uses. When 630 /// visiting the definition, we either vectorize or scalarize the 631 /// instruction, creating an entry for it in the corresponding map. (In some 632 /// cases, such as induction variables, we will create both vector and scalar 633 /// entries.) Then, as we encounter uses of the definition, we derive values 634 /// for each scalar or vector use unless such a value is already available. 635 /// For example, if we scalarize a definition and one of its uses is vector, 636 /// we build the required vector on-demand with an insertelement sequence 637 /// when visiting the use. Otherwise, if the use is scalar, we can use the 638 /// existing scalar definition. 639 struct ValueMap { 640 641 /// Construct an empty map with the given unroll and vectorization factors. 642 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 643 : UF(UnrollFactor), VF(VecWidth) { 644 // The unroll and vectorization factors are only used in asserts builds 645 // to verify map entries are sized appropriately. 646 (void)UF; 647 (void)VF; 648 } 649 650 /// \return True if the map has a vector entry for \p Key. 651 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 652 653 /// \return True if the map has a scalar entry for \p Key. 654 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 655 656 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 657 /// constant reference to the new vector map entry. The given key should 658 /// not already be in the map, and the given VectorParts should be 659 /// correctly sized for the current unroll factor. 660 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 661 assert(!hasVector(Key) && "Vector entry already initialized"); 662 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 663 VectorMapStorage[Key] = Entry; 664 return VectorMapStorage[Key]; 665 } 666 667 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 668 /// constant reference to the new scalar map entry. The given key should 669 /// not already be in the map, and the given ScalarParts should be 670 /// correctly sized for the current unroll and vectorization factors. 671 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 672 assert(!hasScalar(Key) && "Scalar entry already initialized"); 673 assert(Entry.size() == UF && 674 all_of(make_range(Entry.begin(), Entry.end()), 675 [&](const SmallVectorImpl<Value *> &Values) -> bool { 676 return Values.size() == VF; 677 }) && 678 "ScalarParts has wrong dimensions"); 679 ScalarMapStorage[Key] = Entry; 680 return ScalarMapStorage[Key]; 681 } 682 683 /// \return A reference to the vector map entry corresponding to \p Key. 684 /// The key should already be in the map. This function should only be used 685 /// when it's necessary to update values that have already been vectorized. 686 /// This is the case for "fix-up" operations including type truncation and 687 /// the second phase of recurrence vectorization. If a non-const reference 688 /// isn't required, getVectorValue should be used instead. 689 VectorParts &getVector(Value *Key) { 690 assert(hasVector(Key) && "Vector entry not initialized"); 691 return VectorMapStorage.find(Key)->second; 692 } 693 694 /// Retrieve an entry from the vector or scalar maps. The preferred way to 695 /// access an existing mapped entry is with getVectorValue or 696 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 697 /// moved inside ValueMap, we have to declare them as friends. 698 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 699 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 700 unsigned Lane); 701 702 private: 703 /// The unroll factor. Each entry in the vector map contains UF vector 704 /// values. 705 unsigned UF; 706 707 /// The vectorization factor. Each entry in the scalar map contains UF x VF 708 /// scalar values. 709 unsigned VF; 710 711 /// The vector and scalar map storage. We use std::map and not DenseMap 712 /// because insertions to DenseMap invalidate its iterators. 713 std::map<Value *, VectorParts> VectorMapStorage; 714 std::map<Value *, ScalarParts> ScalarMapStorage; 715 }; 716 717 /// The original loop. 718 Loop *OrigLoop; 719 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 720 /// dynamic knowledge to simplify SCEV expressions and converts them to a 721 /// more usable form. 722 PredicatedScalarEvolution &PSE; 723 /// Loop Info. 724 LoopInfo *LI; 725 /// Dominator Tree. 726 DominatorTree *DT; 727 /// Alias Analysis. 728 AliasAnalysis *AA; 729 /// Target Library Info. 730 const TargetLibraryInfo *TLI; 731 /// Target Transform Info. 732 const TargetTransformInfo *TTI; 733 /// Assumption Cache. 734 AssumptionCache *AC; 735 /// Interface to emit optimization remarks. 736 OptimizationRemarkEmitter *ORE; 737 738 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 739 /// used. 740 /// 741 /// This is currently only used to add no-alias metadata based on the 742 /// memchecks. The actually versioning is performed manually. 743 std::unique_ptr<LoopVersioning> LVer; 744 745 /// The vectorization SIMD factor to use. Each vector will have this many 746 /// vector elements. 747 unsigned VF; 748 749 protected: 750 /// The vectorization unroll factor to use. Each scalar is vectorized to this 751 /// many different vector instructions. 752 unsigned UF; 753 754 /// The builder that we use 755 IRBuilder<> Builder; 756 757 // --- Vectorization state --- 758 759 /// The vector-loop preheader. 760 BasicBlock *LoopVectorPreHeader; 761 /// The scalar-loop preheader. 762 BasicBlock *LoopScalarPreHeader; 763 /// Middle Block between the vector and the scalar. 764 BasicBlock *LoopMiddleBlock; 765 /// The ExitBlock of the scalar loop. 766 BasicBlock *LoopExitBlock; 767 /// The vector loop body. 768 BasicBlock *LoopVectorBody; 769 /// The scalar loop body. 770 BasicBlock *LoopScalarBody; 771 /// A list of all bypass blocks. The first block is the entry of the loop. 772 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 773 774 /// The new Induction variable which was added to the new block. 775 PHINode *Induction; 776 /// The induction variable of the old basic block. 777 PHINode *OldInduction; 778 779 /// Maps values from the original loop to their corresponding values in the 780 /// vectorized loop. A key value can map to either vector values, scalar 781 /// values or both kinds of values, depending on whether the key was 782 /// vectorized and scalarized. 783 ValueMap VectorLoopValueMap; 784 785 /// Store instructions that should be predicated, as a pair 786 /// <StoreInst, Predicate> 787 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 788 EdgeMaskCache MaskCache; 789 /// Trip count of the original loop. 790 Value *TripCount; 791 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 792 Value *VectorTripCount; 793 794 /// The legality analysis. 795 LoopVectorizationLegality *Legal; 796 797 /// The profitablity analysis. 798 LoopVectorizationCostModel *Cost; 799 800 // Record whether runtime checks are added. 801 bool AddedSafetyChecks; 802 803 // Holds the end values for each induction variable. We save the end values 804 // so we can later fix-up the external users of the induction variables. 805 DenseMap<PHINode *, Value *> IVEndValues; 806 }; 807 808 class InnerLoopUnroller : public InnerLoopVectorizer { 809 public: 810 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 811 LoopInfo *LI, DominatorTree *DT, 812 const TargetLibraryInfo *TLI, 813 const TargetTransformInfo *TTI, AssumptionCache *AC, 814 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 815 LoopVectorizationLegality *LVL, 816 LoopVectorizationCostModel *CM) 817 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 818 UnrollFactor, LVL, CM) {} 819 820 private: 821 void vectorizeMemoryInstruction(Instruction *Instr) override; 822 Value *getBroadcastInstrs(Value *V) override; 823 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 824 Instruction::BinaryOps Opcode = 825 Instruction::BinaryOpsEnd) override; 826 Value *reverseVector(Value *Vec) override; 827 }; 828 829 /// \brief Look for a meaningful debug location on the instruction or it's 830 /// operands. 831 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 832 if (!I) 833 return I; 834 835 DebugLoc Empty; 836 if (I->getDebugLoc() != Empty) 837 return I; 838 839 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 840 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 841 if (OpInst->getDebugLoc() != Empty) 842 return OpInst; 843 } 844 845 return I; 846 } 847 848 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 849 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 850 const DILocation *DIL = Inst->getDebugLoc(); 851 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 852 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 853 else 854 B.SetCurrentDebugLocation(DIL); 855 } else 856 B.SetCurrentDebugLocation(DebugLoc()); 857 } 858 859 #ifndef NDEBUG 860 /// \return string containing a file name and a line # for the given loop. 861 static std::string getDebugLocString(const Loop *L) { 862 std::string Result; 863 if (L) { 864 raw_string_ostream OS(Result); 865 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 866 LoopDbgLoc.print(OS); 867 else 868 // Just print the module name. 869 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 870 OS.flush(); 871 } 872 return Result; 873 } 874 #endif 875 876 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 877 const Instruction *Orig) { 878 // If the loop was versioned with memchecks, add the corresponding no-alias 879 // metadata. 880 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 881 LVer->annotateInstWithNoAlias(To, Orig); 882 } 883 884 void InnerLoopVectorizer::addMetadata(Instruction *To, 885 Instruction *From) { 886 propagateMetadata(To, From); 887 addNewMetadata(To, From); 888 } 889 890 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 891 Instruction *From) { 892 for (Value *V : To) { 893 if (Instruction *I = dyn_cast<Instruction>(V)) 894 addMetadata(I, From); 895 } 896 } 897 898 /// \brief The group of interleaved loads/stores sharing the same stride and 899 /// close to each other. 900 /// 901 /// Each member in this group has an index starting from 0, and the largest 902 /// index should be less than interleaved factor, which is equal to the absolute 903 /// value of the access's stride. 904 /// 905 /// E.g. An interleaved load group of factor 4: 906 /// for (unsigned i = 0; i < 1024; i+=4) { 907 /// a = A[i]; // Member of index 0 908 /// b = A[i+1]; // Member of index 1 909 /// d = A[i+3]; // Member of index 3 910 /// ... 911 /// } 912 /// 913 /// An interleaved store group of factor 4: 914 /// for (unsigned i = 0; i < 1024; i+=4) { 915 /// ... 916 /// A[i] = a; // Member of index 0 917 /// A[i+1] = b; // Member of index 1 918 /// A[i+2] = c; // Member of index 2 919 /// A[i+3] = d; // Member of index 3 920 /// } 921 /// 922 /// Note: the interleaved load group could have gaps (missing members), but 923 /// the interleaved store group doesn't allow gaps. 924 class InterleaveGroup { 925 public: 926 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 927 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 928 assert(Align && "The alignment should be non-zero"); 929 930 Factor = std::abs(Stride); 931 assert(Factor > 1 && "Invalid interleave factor"); 932 933 Reverse = Stride < 0; 934 Members[0] = Instr; 935 } 936 937 bool isReverse() const { return Reverse; } 938 unsigned getFactor() const { return Factor; } 939 unsigned getAlignment() const { return Align; } 940 unsigned getNumMembers() const { return Members.size(); } 941 942 /// \brief Try to insert a new member \p Instr with index \p Index and 943 /// alignment \p NewAlign. The index is related to the leader and it could be 944 /// negative if it is the new leader. 945 /// 946 /// \returns false if the instruction doesn't belong to the group. 947 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 948 assert(NewAlign && "The new member's alignment should be non-zero"); 949 950 int Key = Index + SmallestKey; 951 952 // Skip if there is already a member with the same index. 953 if (Members.count(Key)) 954 return false; 955 956 if (Key > LargestKey) { 957 // The largest index is always less than the interleave factor. 958 if (Index >= static_cast<int>(Factor)) 959 return false; 960 961 LargestKey = Key; 962 } else if (Key < SmallestKey) { 963 // The largest index is always less than the interleave factor. 964 if (LargestKey - Key >= static_cast<int>(Factor)) 965 return false; 966 967 SmallestKey = Key; 968 } 969 970 // It's always safe to select the minimum alignment. 971 Align = std::min(Align, NewAlign); 972 Members[Key] = Instr; 973 return true; 974 } 975 976 /// \brief Get the member with the given index \p Index 977 /// 978 /// \returns nullptr if contains no such member. 979 Instruction *getMember(unsigned Index) const { 980 int Key = SmallestKey + Index; 981 if (!Members.count(Key)) 982 return nullptr; 983 984 return Members.find(Key)->second; 985 } 986 987 /// \brief Get the index for the given member. Unlike the key in the member 988 /// map, the index starts from 0. 989 unsigned getIndex(Instruction *Instr) const { 990 for (auto I : Members) 991 if (I.second == Instr) 992 return I.first - SmallestKey; 993 994 llvm_unreachable("InterleaveGroup contains no such member"); 995 } 996 997 Instruction *getInsertPos() const { return InsertPos; } 998 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 999 1000 private: 1001 unsigned Factor; // Interleave Factor. 1002 bool Reverse; 1003 unsigned Align; 1004 DenseMap<int, Instruction *> Members; 1005 int SmallestKey; 1006 int LargestKey; 1007 1008 // To avoid breaking dependences, vectorized instructions of an interleave 1009 // group should be inserted at either the first load or the last store in 1010 // program order. 1011 // 1012 // E.g. %even = load i32 // Insert Position 1013 // %add = add i32 %even // Use of %even 1014 // %odd = load i32 1015 // 1016 // store i32 %even 1017 // %odd = add i32 // Def of %odd 1018 // store i32 %odd // Insert Position 1019 Instruction *InsertPos; 1020 }; 1021 1022 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1023 /// 1024 /// Use this class to analyze interleaved accesses only when we can vectorize 1025 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1026 /// on interleaved accesses is unsafe. 1027 /// 1028 /// The analysis collects interleave groups and records the relationships 1029 /// between the member and the group in a map. 1030 class InterleavedAccessInfo { 1031 public: 1032 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1033 DominatorTree *DT, LoopInfo *LI) 1034 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1035 RequiresScalarEpilogue(false) {} 1036 1037 ~InterleavedAccessInfo() { 1038 SmallSet<InterleaveGroup *, 4> DelSet; 1039 // Avoid releasing a pointer twice. 1040 for (auto &I : InterleaveGroupMap) 1041 DelSet.insert(I.second); 1042 for (auto *Ptr : DelSet) 1043 delete Ptr; 1044 } 1045 1046 /// \brief Analyze the interleaved accesses and collect them in interleave 1047 /// groups. Substitute symbolic strides using \p Strides. 1048 void analyzeInterleaving(const ValueToValueMap &Strides); 1049 1050 /// \brief Check if \p Instr belongs to any interleave group. 1051 bool isInterleaved(Instruction *Instr) const { 1052 return InterleaveGroupMap.count(Instr); 1053 } 1054 1055 /// \brief Return the maximum interleave factor of all interleaved groups. 1056 unsigned getMaxInterleaveFactor() const { 1057 unsigned MaxFactor = 1; 1058 for (auto &Entry : InterleaveGroupMap) 1059 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1060 return MaxFactor; 1061 } 1062 1063 /// \brief Get the interleave group that \p Instr belongs to. 1064 /// 1065 /// \returns nullptr if doesn't have such group. 1066 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1067 if (InterleaveGroupMap.count(Instr)) 1068 return InterleaveGroupMap.find(Instr)->second; 1069 return nullptr; 1070 } 1071 1072 /// \brief Returns true if an interleaved group that may access memory 1073 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1074 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1075 1076 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1077 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1078 1079 private: 1080 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1081 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1082 /// The interleaved access analysis can also add new predicates (for example 1083 /// by versioning strides of pointers). 1084 PredicatedScalarEvolution &PSE; 1085 Loop *TheLoop; 1086 DominatorTree *DT; 1087 LoopInfo *LI; 1088 const LoopAccessInfo *LAI; 1089 1090 /// True if the loop may contain non-reversed interleaved groups with 1091 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1092 /// out-of-bounds by executing at least one scalar epilogue iteration. 1093 bool RequiresScalarEpilogue; 1094 1095 /// Holds the relationships between the members and the interleave group. 1096 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1097 1098 /// Holds dependences among the memory accesses in the loop. It maps a source 1099 /// access to a set of dependent sink accesses. 1100 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1101 1102 /// \brief The descriptor for a strided memory access. 1103 struct StrideDescriptor { 1104 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1105 unsigned Align) 1106 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1107 1108 StrideDescriptor() = default; 1109 1110 // The access's stride. It is negative for a reverse access. 1111 int64_t Stride = 0; 1112 const SCEV *Scev = nullptr; // The scalar expression of this access 1113 uint64_t Size = 0; // The size of the memory object. 1114 unsigned Align = 0; // The alignment of this access. 1115 }; 1116 1117 /// \brief A type for holding instructions and their stride descriptors. 1118 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1119 1120 /// \brief Create a new interleave group with the given instruction \p Instr, 1121 /// stride \p Stride and alignment \p Align. 1122 /// 1123 /// \returns the newly created interleave group. 1124 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1125 unsigned Align) { 1126 assert(!InterleaveGroupMap.count(Instr) && 1127 "Already in an interleaved access group"); 1128 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1129 return InterleaveGroupMap[Instr]; 1130 } 1131 1132 /// \brief Release the group and remove all the relationships. 1133 void releaseGroup(InterleaveGroup *Group) { 1134 for (unsigned i = 0; i < Group->getFactor(); i++) 1135 if (Instruction *Member = Group->getMember(i)) 1136 InterleaveGroupMap.erase(Member); 1137 1138 delete Group; 1139 } 1140 1141 /// \brief Collect all the accesses with a constant stride in program order. 1142 void collectConstStrideAccesses( 1143 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1144 const ValueToValueMap &Strides); 1145 1146 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1147 static bool isStrided(int Stride) { 1148 unsigned Factor = std::abs(Stride); 1149 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1150 } 1151 1152 /// \brief Returns true if \p BB is a predicated block. 1153 bool isPredicated(BasicBlock *BB) const { 1154 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1155 } 1156 1157 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1158 bool areDependencesValid() const { 1159 return LAI && LAI->getDepChecker().getDependences(); 1160 } 1161 1162 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1163 /// necessary, when constructing interleaved groups. 1164 /// 1165 /// \p A must precede \p B in program order. We return false if reordering is 1166 /// not necessary or is prevented because \p A and \p B may be dependent. 1167 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1168 StrideEntry *B) const { 1169 1170 // Code motion for interleaved accesses can potentially hoist strided loads 1171 // and sink strided stores. The code below checks the legality of the 1172 // following two conditions: 1173 // 1174 // 1. Potentially moving a strided load (B) before any store (A) that 1175 // precedes B, or 1176 // 1177 // 2. Potentially moving a strided store (A) after any load or store (B) 1178 // that A precedes. 1179 // 1180 // It's legal to reorder A and B if we know there isn't a dependence from A 1181 // to B. Note that this determination is conservative since some 1182 // dependences could potentially be reordered safely. 1183 1184 // A is potentially the source of a dependence. 1185 auto *Src = A->first; 1186 auto SrcDes = A->second; 1187 1188 // B is potentially the sink of a dependence. 1189 auto *Sink = B->first; 1190 auto SinkDes = B->second; 1191 1192 // Code motion for interleaved accesses can't violate WAR dependences. 1193 // Thus, reordering is legal if the source isn't a write. 1194 if (!Src->mayWriteToMemory()) 1195 return true; 1196 1197 // At least one of the accesses must be strided. 1198 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1199 return true; 1200 1201 // If dependence information is not available from LoopAccessInfo, 1202 // conservatively assume the instructions can't be reordered. 1203 if (!areDependencesValid()) 1204 return false; 1205 1206 // If we know there is a dependence from source to sink, assume the 1207 // instructions can't be reordered. Otherwise, reordering is legal. 1208 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1209 } 1210 1211 /// \brief Collect the dependences from LoopAccessInfo. 1212 /// 1213 /// We process the dependences once during the interleaved access analysis to 1214 /// enable constant-time dependence queries. 1215 void collectDependences() { 1216 if (!areDependencesValid()) 1217 return; 1218 auto *Deps = LAI->getDepChecker().getDependences(); 1219 for (auto Dep : *Deps) 1220 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1221 } 1222 }; 1223 1224 /// Utility class for getting and setting loop vectorizer hints in the form 1225 /// of loop metadata. 1226 /// This class keeps a number of loop annotations locally (as member variables) 1227 /// and can, upon request, write them back as metadata on the loop. It will 1228 /// initially scan the loop for existing metadata, and will update the local 1229 /// values based on information in the loop. 1230 /// We cannot write all values to metadata, as the mere presence of some info, 1231 /// for example 'force', means a decision has been made. So, we need to be 1232 /// careful NOT to add them if the user hasn't specifically asked so. 1233 class LoopVectorizeHints { 1234 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1235 1236 /// Hint - associates name and validation with the hint value. 1237 struct Hint { 1238 const char *Name; 1239 unsigned Value; // This may have to change for non-numeric values. 1240 HintKind Kind; 1241 1242 Hint(const char *Name, unsigned Value, HintKind Kind) 1243 : Name(Name), Value(Value), Kind(Kind) {} 1244 1245 bool validate(unsigned Val) { 1246 switch (Kind) { 1247 case HK_WIDTH: 1248 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1249 case HK_UNROLL: 1250 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1251 case HK_FORCE: 1252 return (Val <= 1); 1253 } 1254 return false; 1255 } 1256 }; 1257 1258 /// Vectorization width. 1259 Hint Width; 1260 /// Vectorization interleave factor. 1261 Hint Interleave; 1262 /// Vectorization forced 1263 Hint Force; 1264 1265 /// Return the loop metadata prefix. 1266 static StringRef Prefix() { return "llvm.loop."; } 1267 1268 /// True if there is any unsafe math in the loop. 1269 bool PotentiallyUnsafe; 1270 1271 public: 1272 enum ForceKind { 1273 FK_Undefined = -1, ///< Not selected. 1274 FK_Disabled = 0, ///< Forcing disabled. 1275 FK_Enabled = 1, ///< Forcing enabled. 1276 }; 1277 1278 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1279 OptimizationRemarkEmitter &ORE) 1280 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1281 HK_WIDTH), 1282 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1283 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1284 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1285 // Populate values with existing loop metadata. 1286 getHintsFromMetadata(); 1287 1288 // force-vector-interleave overrides DisableInterleaving. 1289 if (VectorizerParams::isInterleaveForced()) 1290 Interleave.Value = VectorizerParams::VectorizationInterleave; 1291 1292 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1293 << "LV: Interleaving disabled by the pass manager\n"); 1294 } 1295 1296 /// Mark the loop L as already vectorized by setting the width to 1. 1297 void setAlreadyVectorized() { 1298 Width.Value = Interleave.Value = 1; 1299 Hint Hints[] = {Width, Interleave}; 1300 writeHintsToMetadata(Hints); 1301 } 1302 1303 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1304 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1305 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1306 emitRemarkWithHints(); 1307 return false; 1308 } 1309 1310 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1311 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1312 emitRemarkWithHints(); 1313 return false; 1314 } 1315 1316 if (getWidth() == 1 && getInterleave() == 1) { 1317 // FIXME: Add a separate metadata to indicate when the loop has already 1318 // been vectorized instead of setting width and count to 1. 1319 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1320 // FIXME: Add interleave.disable metadata. This will allow 1321 // vectorize.disable to be used without disabling the pass and errors 1322 // to differentiate between disabled vectorization and a width of 1. 1323 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1324 "AllDisabled", L->getStartLoc(), 1325 L->getHeader()) 1326 << "loop not vectorized: vectorization and interleaving are " 1327 "explicitly disabled, or vectorize width and interleave " 1328 "count are both set to 1"); 1329 return false; 1330 } 1331 1332 return true; 1333 } 1334 1335 /// Dumps all the hint information. 1336 void emitRemarkWithHints() const { 1337 using namespace ore; 1338 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1339 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1340 TheLoop->getStartLoc(), 1341 TheLoop->getHeader()) 1342 << "loop not vectorized: vectorization is explicitly disabled"); 1343 else { 1344 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1345 TheLoop->getStartLoc(), TheLoop->getHeader()); 1346 R << "loop not vectorized"; 1347 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1348 R << " (Force=" << NV("Force", true); 1349 if (Width.Value != 0) 1350 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1351 if (Interleave.Value != 0) 1352 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1353 R << ")"; 1354 } 1355 ORE.emit(R); 1356 } 1357 } 1358 1359 unsigned getWidth() const { return Width.Value; } 1360 unsigned getInterleave() const { return Interleave.Value; } 1361 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1362 1363 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1364 /// pass name to force the frontend to print the diagnostic. 1365 const char *vectorizeAnalysisPassName() const { 1366 if (getWidth() == 1) 1367 return LV_NAME; 1368 if (getForce() == LoopVectorizeHints::FK_Disabled) 1369 return LV_NAME; 1370 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1371 return LV_NAME; 1372 return OptimizationRemarkAnalysis::AlwaysPrint; 1373 } 1374 1375 bool allowReordering() const { 1376 // When enabling loop hints are provided we allow the vectorizer to change 1377 // the order of operations that is given by the scalar loop. This is not 1378 // enabled by default because can be unsafe or inefficient. For example, 1379 // reordering floating-point operations will change the way round-off 1380 // error accumulates in the loop. 1381 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1382 } 1383 1384 bool isPotentiallyUnsafe() const { 1385 // Avoid FP vectorization if the target is unsure about proper support. 1386 // This may be related to the SIMD unit in the target not handling 1387 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1388 // Otherwise, a sequence of vectorized loops, even without reduction, 1389 // could lead to different end results on the destination vectors. 1390 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1391 } 1392 1393 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1394 1395 private: 1396 /// Find hints specified in the loop metadata and update local values. 1397 void getHintsFromMetadata() { 1398 MDNode *LoopID = TheLoop->getLoopID(); 1399 if (!LoopID) 1400 return; 1401 1402 // First operand should refer to the loop id itself. 1403 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1404 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1405 1406 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1407 const MDString *S = nullptr; 1408 SmallVector<Metadata *, 4> Args; 1409 1410 // The expected hint is either a MDString or a MDNode with the first 1411 // operand a MDString. 1412 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1413 if (!MD || MD->getNumOperands() == 0) 1414 continue; 1415 S = dyn_cast<MDString>(MD->getOperand(0)); 1416 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1417 Args.push_back(MD->getOperand(i)); 1418 } else { 1419 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1420 assert(Args.size() == 0 && "too many arguments for MDString"); 1421 } 1422 1423 if (!S) 1424 continue; 1425 1426 // Check if the hint starts with the loop metadata prefix. 1427 StringRef Name = S->getString(); 1428 if (Args.size() == 1) 1429 setHint(Name, Args[0]); 1430 } 1431 } 1432 1433 /// Checks string hint with one operand and set value if valid. 1434 void setHint(StringRef Name, Metadata *Arg) { 1435 if (!Name.startswith(Prefix())) 1436 return; 1437 Name = Name.substr(Prefix().size(), StringRef::npos); 1438 1439 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1440 if (!C) 1441 return; 1442 unsigned Val = C->getZExtValue(); 1443 1444 Hint *Hints[] = {&Width, &Interleave, &Force}; 1445 for (auto H : Hints) { 1446 if (Name == H->Name) { 1447 if (H->validate(Val)) 1448 H->Value = Val; 1449 else 1450 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1451 break; 1452 } 1453 } 1454 } 1455 1456 /// Create a new hint from name / value pair. 1457 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1458 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1459 Metadata *MDs[] = {MDString::get(Context, Name), 1460 ConstantAsMetadata::get( 1461 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1462 return MDNode::get(Context, MDs); 1463 } 1464 1465 /// Matches metadata with hint name. 1466 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1467 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1468 if (!Name) 1469 return false; 1470 1471 for (auto H : HintTypes) 1472 if (Name->getString().endswith(H.Name)) 1473 return true; 1474 return false; 1475 } 1476 1477 /// Sets current hints into loop metadata, keeping other values intact. 1478 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1479 if (HintTypes.size() == 0) 1480 return; 1481 1482 // Reserve the first element to LoopID (see below). 1483 SmallVector<Metadata *, 4> MDs(1); 1484 // If the loop already has metadata, then ignore the existing operands. 1485 MDNode *LoopID = TheLoop->getLoopID(); 1486 if (LoopID) { 1487 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1488 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1489 // If node in update list, ignore old value. 1490 if (!matchesHintMetadataName(Node, HintTypes)) 1491 MDs.push_back(Node); 1492 } 1493 } 1494 1495 // Now, add the missing hints. 1496 for (auto H : HintTypes) 1497 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1498 1499 // Replace current metadata node with new one. 1500 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1501 MDNode *NewLoopID = MDNode::get(Context, MDs); 1502 // Set operand 0 to refer to the loop id itself. 1503 NewLoopID->replaceOperandWith(0, NewLoopID); 1504 1505 TheLoop->setLoopID(NewLoopID); 1506 } 1507 1508 /// The loop these hints belong to. 1509 const Loop *TheLoop; 1510 1511 /// Interface to emit optimization remarks. 1512 OptimizationRemarkEmitter &ORE; 1513 }; 1514 1515 static void emitMissedWarning(Function *F, Loop *L, 1516 const LoopVectorizeHints &LH, 1517 OptimizationRemarkEmitter *ORE) { 1518 LH.emitRemarkWithHints(); 1519 1520 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1521 if (LH.getWidth() != 1) 1522 ORE->emit(DiagnosticInfoOptimizationFailure( 1523 DEBUG_TYPE, "FailedRequestedVectorization", 1524 L->getStartLoc(), L->getHeader()) 1525 << "loop not vectorized: " 1526 << "failed explicitly specified loop vectorization"); 1527 else if (LH.getInterleave() != 1) 1528 ORE->emit(DiagnosticInfoOptimizationFailure( 1529 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1530 L->getHeader()) 1531 << "loop not interleaved: " 1532 << "failed explicitly specified loop interleaving"); 1533 } 1534 } 1535 1536 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1537 /// to what vectorization factor. 1538 /// This class does not look at the profitability of vectorization, only the 1539 /// legality. This class has two main kinds of checks: 1540 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1541 /// will change the order of memory accesses in a way that will change the 1542 /// correctness of the program. 1543 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1544 /// checks for a number of different conditions, such as the availability of a 1545 /// single induction variable, that all types are supported and vectorize-able, 1546 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1547 /// This class is also used by InnerLoopVectorizer for identifying 1548 /// induction variable and the different reduction variables. 1549 class LoopVectorizationLegality { 1550 public: 1551 LoopVectorizationLegality( 1552 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1553 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1554 const TargetTransformInfo *TTI, 1555 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1556 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1557 LoopVectorizeHints *H) 1558 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1559 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1560 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1561 Requirements(R), Hints(H) {} 1562 1563 /// ReductionList contains the reduction descriptors for all 1564 /// of the reductions that were found in the loop. 1565 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1566 1567 /// InductionList saves induction variables and maps them to the 1568 /// induction descriptor. 1569 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1570 1571 /// RecurrenceSet contains the phi nodes that are recurrences other than 1572 /// inductions and reductions. 1573 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1574 1575 /// Returns true if it is legal to vectorize this loop. 1576 /// This does not mean that it is profitable to vectorize this 1577 /// loop, only that it is legal to do so. 1578 bool canVectorize(); 1579 1580 /// Returns the primary induction variable. 1581 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1582 1583 /// Returns the reduction variables found in the loop. 1584 ReductionList *getReductionVars() { return &Reductions; } 1585 1586 /// Returns the induction variables found in the loop. 1587 InductionList *getInductionVars() { return &Inductions; } 1588 1589 /// Return the first-order recurrences found in the loop. 1590 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1591 1592 /// Returns the widest induction type. 1593 Type *getWidestInductionType() { return WidestIndTy; } 1594 1595 /// Returns True if V is an induction variable in this loop. 1596 bool isInductionVariable(const Value *V); 1597 1598 /// Returns True if PN is a reduction variable in this loop. 1599 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1600 1601 /// Returns True if Phi is a first-order recurrence in this loop. 1602 bool isFirstOrderRecurrence(const PHINode *Phi); 1603 1604 /// Return true if the block BB needs to be predicated in order for the loop 1605 /// to be vectorized. 1606 bool blockNeedsPredication(BasicBlock *BB); 1607 1608 /// Check if this pointer is consecutive when vectorizing. This happens 1609 /// when the last index of the GEP is the induction variable, or that the 1610 /// pointer itself is an induction variable. 1611 /// This check allows us to vectorize A[idx] into a wide load/store. 1612 /// Returns: 1613 /// 0 - Stride is unknown or non-consecutive. 1614 /// 1 - Address is consecutive. 1615 /// -1 - Address is consecutive, and decreasing. 1616 int isConsecutivePtr(Value *Ptr); 1617 1618 /// Returns true if the value V is uniform within the loop. 1619 bool isUniform(Value *V); 1620 1621 /// Returns the information that we collected about runtime memory check. 1622 const RuntimePointerChecking *getRuntimePointerChecking() const { 1623 return LAI->getRuntimePointerChecking(); 1624 } 1625 1626 const LoopAccessInfo *getLAI() const { return LAI; } 1627 1628 /// \brief Check if \p Instr belongs to any interleaved access group. 1629 bool isAccessInterleaved(Instruction *Instr) { 1630 return InterleaveInfo.isInterleaved(Instr); 1631 } 1632 1633 /// \brief Return the maximum interleave factor of all interleaved groups. 1634 unsigned getMaxInterleaveFactor() const { 1635 return InterleaveInfo.getMaxInterleaveFactor(); 1636 } 1637 1638 /// \brief Get the interleaved access group that \p Instr belongs to. 1639 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1640 return InterleaveInfo.getInterleaveGroup(Instr); 1641 } 1642 1643 /// \brief Returns true if an interleaved group requires a scalar iteration 1644 /// to handle accesses with gaps. 1645 bool requiresScalarEpilogue() const { 1646 return InterleaveInfo.requiresScalarEpilogue(); 1647 } 1648 1649 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1650 1651 bool hasStride(Value *V) { return LAI->hasStride(V); } 1652 1653 /// Returns true if the target machine supports masked store operation 1654 /// for the given \p DataType and kind of access to \p Ptr. 1655 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1656 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1657 } 1658 /// Returns true if the target machine supports masked load operation 1659 /// for the given \p DataType and kind of access to \p Ptr. 1660 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1661 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1662 } 1663 /// Returns true if the target machine supports masked scatter operation 1664 /// for the given \p DataType. 1665 bool isLegalMaskedScatter(Type *DataType) { 1666 return TTI->isLegalMaskedScatter(DataType); 1667 } 1668 /// Returns true if the target machine supports masked gather operation 1669 /// for the given \p DataType. 1670 bool isLegalMaskedGather(Type *DataType) { 1671 return TTI->isLegalMaskedGather(DataType); 1672 } 1673 /// Returns true if the target machine can represent \p V as a masked gather 1674 /// or scatter operation. 1675 bool isLegalGatherOrScatter(Value *V) { 1676 auto *LI = dyn_cast<LoadInst>(V); 1677 auto *SI = dyn_cast<StoreInst>(V); 1678 if (!LI && !SI) 1679 return false; 1680 auto *Ptr = getPointerOperand(V); 1681 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1682 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1683 } 1684 1685 /// Returns true if vector representation of the instruction \p I 1686 /// requires mask. 1687 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1688 unsigned getNumStores() const { return LAI->getNumStores(); } 1689 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1690 unsigned getNumPredStores() const { return NumPredStores; } 1691 1692 /// Returns true if \p I is an instruction that will be scalarized with 1693 /// predication. Such instructions include conditional stores and 1694 /// instructions that may divide by zero. 1695 bool isScalarWithPredication(Instruction *I); 1696 1697 /// Returns true if \p I is a memory instruction with consecutive memory 1698 /// access that can be widened. 1699 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1700 1701 private: 1702 /// Check if a single basic block loop is vectorizable. 1703 /// At this point we know that this is a loop with a constant trip count 1704 /// and we only need to check individual instructions. 1705 bool canVectorizeInstrs(); 1706 1707 /// When we vectorize loops we may change the order in which 1708 /// we read and write from memory. This method checks if it is 1709 /// legal to vectorize the code, considering only memory constrains. 1710 /// Returns true if the loop is vectorizable 1711 bool canVectorizeMemory(); 1712 1713 /// Return true if we can vectorize this loop using the IF-conversion 1714 /// transformation. 1715 bool canVectorizeWithIfConvert(); 1716 1717 /// Return true if all of the instructions in the block can be speculatively 1718 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1719 /// and we know that we can read from them without segfault. 1720 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1721 1722 /// Updates the vectorization state by adding \p Phi to the inductions list. 1723 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1724 /// better choice for the main induction than the existing one. 1725 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1726 SmallPtrSetImpl<Value *> &AllowedExit); 1727 1728 /// Create an analysis remark that explains why vectorization failed 1729 /// 1730 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1731 /// an instruction that prevents vectorization. Otherwise the loop is used 1732 /// for the location of the remark. \return the remark object that can be 1733 /// streamed to. 1734 OptimizationRemarkAnalysis 1735 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1736 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1737 RemarkName, TheLoop, I); 1738 } 1739 1740 /// \brief If an access has a symbolic strides, this maps the pointer value to 1741 /// the stride symbol. 1742 const ValueToValueMap *getSymbolicStrides() { 1743 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1744 // it's collected. This happens from canVectorizeWithIfConvert, when the 1745 // pointer is checked to reference consecutive elements suitable for a 1746 // masked access. 1747 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1748 } 1749 1750 unsigned NumPredStores; 1751 1752 /// The loop that we evaluate. 1753 Loop *TheLoop; 1754 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1755 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1756 /// of existing SCEV assumptions. The analysis will also add a minimal set 1757 /// of new predicates if this is required to enable vectorization and 1758 /// unrolling. 1759 PredicatedScalarEvolution &PSE; 1760 /// Target Library Info. 1761 TargetLibraryInfo *TLI; 1762 /// Target Transform Info 1763 const TargetTransformInfo *TTI; 1764 /// Dominator Tree. 1765 DominatorTree *DT; 1766 // LoopAccess analysis. 1767 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1768 // And the loop-accesses info corresponding to this loop. This pointer is 1769 // null until canVectorizeMemory sets it up. 1770 const LoopAccessInfo *LAI; 1771 /// Interface to emit optimization remarks. 1772 OptimizationRemarkEmitter *ORE; 1773 1774 /// The interleave access information contains groups of interleaved accesses 1775 /// with the same stride and close to each other. 1776 InterleavedAccessInfo InterleaveInfo; 1777 1778 // --- vectorization state --- // 1779 1780 /// Holds the primary induction variable. This is the counter of the 1781 /// loop. 1782 PHINode *PrimaryInduction; 1783 /// Holds the reduction variables. 1784 ReductionList Reductions; 1785 /// Holds all of the induction variables that we found in the loop. 1786 /// Notice that inductions don't need to start at zero and that induction 1787 /// variables can be pointers. 1788 InductionList Inductions; 1789 /// Holds the phi nodes that are first-order recurrences. 1790 RecurrenceSet FirstOrderRecurrences; 1791 /// Holds the widest induction type encountered. 1792 Type *WidestIndTy; 1793 1794 /// Allowed outside users. This holds the induction and reduction 1795 /// vars which can be accessed from outside the loop. 1796 SmallPtrSet<Value *, 4> AllowedExit; 1797 1798 /// Can we assume the absence of NaNs. 1799 bool HasFunNoNaNAttr; 1800 1801 /// Vectorization requirements that will go through late-evaluation. 1802 LoopVectorizationRequirements *Requirements; 1803 1804 /// Used to emit an analysis of any legality issues. 1805 LoopVectorizeHints *Hints; 1806 1807 /// While vectorizing these instructions we have to generate a 1808 /// call to the appropriate masked intrinsic 1809 SmallPtrSet<const Instruction *, 8> MaskedOp; 1810 }; 1811 1812 /// LoopVectorizationCostModel - estimates the expected speedups due to 1813 /// vectorization. 1814 /// In many cases vectorization is not profitable. This can happen because of 1815 /// a number of reasons. In this class we mainly attempt to predict the 1816 /// expected speedup/slowdowns due to the supported instruction set. We use the 1817 /// TargetTransformInfo to query the different backends for the cost of 1818 /// different operations. 1819 class LoopVectorizationCostModel { 1820 public: 1821 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1822 LoopInfo *LI, LoopVectorizationLegality *Legal, 1823 const TargetTransformInfo &TTI, 1824 const TargetLibraryInfo *TLI, DemandedBits *DB, 1825 AssumptionCache *AC, 1826 OptimizationRemarkEmitter *ORE, const Function *F, 1827 const LoopVectorizeHints *Hints) 1828 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1829 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1830 1831 /// \return An upper bound for the vectorization factor, or None if 1832 /// vectorization should be avoided up front. 1833 Optional<unsigned> computeMaxVF(bool OptForSize); 1834 1835 /// Information about vectorization costs 1836 struct VectorizationFactor { 1837 unsigned Width; // Vector width with best cost 1838 unsigned Cost; // Cost of the loop with that width 1839 }; 1840 /// \return The most profitable vectorization factor and the cost of that VF. 1841 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1842 /// then this vectorization factor will be selected if vectorization is 1843 /// possible. 1844 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1845 1846 /// Setup cost-based decisions for user vectorization factor. 1847 void selectUserVectorizationFactor(unsigned UserVF) { 1848 collectUniformsAndScalars(UserVF); 1849 collectInstsToScalarize(UserVF); 1850 } 1851 1852 /// \return The size (in bits) of the smallest and widest types in the code 1853 /// that needs to be vectorized. We ignore values that remain scalar such as 1854 /// 64 bit loop indices. 1855 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1856 1857 /// \return The desired interleave count. 1858 /// If interleave count has been specified by metadata it will be returned. 1859 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1860 /// are the selected vectorization factor and the cost of the selected VF. 1861 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1862 unsigned LoopCost); 1863 1864 /// Memory access instruction may be vectorized in more than one way. 1865 /// Form of instruction after vectorization depends on cost. 1866 /// This function takes cost-based decisions for Load/Store instructions 1867 /// and collects them in a map. This decisions map is used for building 1868 /// the lists of loop-uniform and loop-scalar instructions. 1869 /// The calculated cost is saved with widening decision in order to 1870 /// avoid redundant calculations. 1871 void setCostBasedWideningDecision(unsigned VF); 1872 1873 /// \brief A struct that represents some properties of the register usage 1874 /// of a loop. 1875 struct RegisterUsage { 1876 /// Holds the number of loop invariant values that are used in the loop. 1877 unsigned LoopInvariantRegs; 1878 /// Holds the maximum number of concurrent live intervals in the loop. 1879 unsigned MaxLocalUsers; 1880 /// Holds the number of instructions in the loop. 1881 unsigned NumInstructions; 1882 }; 1883 1884 /// \return Returns information about the register usages of the loop for the 1885 /// given vectorization factors. 1886 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1887 1888 /// Collect values we want to ignore in the cost model. 1889 void collectValuesToIgnore(); 1890 1891 /// \returns The smallest bitwidth each instruction can be represented with. 1892 /// The vector equivalents of these instructions should be truncated to this 1893 /// type. 1894 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1895 return MinBWs; 1896 } 1897 1898 /// \returns True if it is more profitable to scalarize instruction \p I for 1899 /// vectorization factor \p VF. 1900 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1901 auto Scalars = InstsToScalarize.find(VF); 1902 assert(Scalars != InstsToScalarize.end() && 1903 "VF not yet analyzed for scalarization profitability"); 1904 return Scalars->second.count(I); 1905 } 1906 1907 /// Returns true if \p I is known to be uniform after vectorization. 1908 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1909 if (VF == 1) 1910 return true; 1911 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1912 auto UniformsPerVF = Uniforms.find(VF); 1913 return UniformsPerVF->second.count(I); 1914 } 1915 1916 /// Returns true if \p I is known to be scalar after vectorization. 1917 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1918 if (VF == 1) 1919 return true; 1920 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1921 auto ScalarsPerVF = Scalars.find(VF); 1922 return ScalarsPerVF->second.count(I); 1923 } 1924 1925 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1926 /// for vectorization factor \p VF. 1927 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1928 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1929 !isScalarAfterVectorization(I, VF); 1930 } 1931 1932 /// Decision that was taken during cost calculation for memory instruction. 1933 enum InstWidening { 1934 CM_Unknown, 1935 CM_Widen, 1936 CM_Interleave, 1937 CM_GatherScatter, 1938 CM_Scalarize 1939 }; 1940 1941 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1942 /// instruction \p I and vector width \p VF. 1943 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1944 unsigned Cost) { 1945 assert(VF >= 2 && "Expected VF >=2"); 1946 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1947 } 1948 1949 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1950 /// interleaving group \p Grp and vector width \p VF. 1951 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1952 InstWidening W, unsigned Cost) { 1953 assert(VF >= 2 && "Expected VF >=2"); 1954 /// Broadcast this decicion to all instructions inside the group. 1955 /// But the cost will be assigned to one instruction only. 1956 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1957 if (auto *I = Grp->getMember(i)) { 1958 if (Grp->getInsertPos() == I) 1959 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1960 else 1961 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1962 } 1963 } 1964 } 1965 1966 /// Return the cost model decision for the given instruction \p I and vector 1967 /// width \p VF. Return CM_Unknown if this instruction did not pass 1968 /// through the cost modeling. 1969 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1970 assert(VF >= 2 && "Expected VF >=2"); 1971 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1972 auto Itr = WideningDecisions.find(InstOnVF); 1973 if (Itr == WideningDecisions.end()) 1974 return CM_Unknown; 1975 return Itr->second.first; 1976 } 1977 1978 /// Return the vectorization cost for the given instruction \p I and vector 1979 /// width \p VF. 1980 unsigned getWideningCost(Instruction *I, unsigned VF) { 1981 assert(VF >= 2 && "Expected VF >=2"); 1982 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1983 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1984 return WideningDecisions[InstOnVF].second; 1985 } 1986 1987 /// Return True if instruction \p I is an optimizable truncate whose operand 1988 /// is an induction variable. Such a truncate will be removed by adding a new 1989 /// induction variable with the destination type. 1990 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1991 1992 // If the instruction is not a truncate, return false. 1993 auto *Trunc = dyn_cast<TruncInst>(I); 1994 if (!Trunc) 1995 return false; 1996 1997 // Get the source and destination types of the truncate. 1998 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1999 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2000 2001 // If the truncate is free for the given types, return false. Replacing a 2002 // free truncate with an induction variable would add an induction variable 2003 // update instruction to each iteration of the loop. We exclude from this 2004 // check the primary induction variable since it will need an update 2005 // instruction regardless. 2006 Value *Op = Trunc->getOperand(0); 2007 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2008 return false; 2009 2010 // If the truncated value is not an induction variable, return false. 2011 return Legal->isInductionVariable(Op); 2012 } 2013 2014 private: 2015 /// \return An upper bound for the vectorization factor, larger than zero. 2016 /// One is returned if vectorization should best be avoided due to cost. 2017 unsigned computeFeasibleMaxVF(bool OptForSize); 2018 2019 /// The vectorization cost is a combination of the cost itself and a boolean 2020 /// indicating whether any of the contributing operations will actually 2021 /// operate on 2022 /// vector values after type legalization in the backend. If this latter value 2023 /// is 2024 /// false, then all operations will be scalarized (i.e. no vectorization has 2025 /// actually taken place). 2026 typedef std::pair<unsigned, bool> VectorizationCostTy; 2027 2028 /// Returns the expected execution cost. The unit of the cost does 2029 /// not matter because we use the 'cost' units to compare different 2030 /// vector widths. The cost that is returned is *not* normalized by 2031 /// the factor width. 2032 VectorizationCostTy expectedCost(unsigned VF); 2033 2034 /// Returns the execution time cost of an instruction for a given vector 2035 /// width. Vector width of one means scalar. 2036 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2037 2038 /// The cost-computation logic from getInstructionCost which provides 2039 /// the vector type as an output parameter. 2040 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2041 2042 /// Calculate vectorization cost of memory instruction \p I. 2043 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2044 2045 /// The cost computation for scalarized memory instruction. 2046 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2047 2048 /// The cost computation for interleaving group of memory instructions. 2049 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2050 2051 /// The cost computation for Gather/Scatter instruction. 2052 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2053 2054 /// The cost computation for widening instruction \p I with consecutive 2055 /// memory access. 2056 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2057 2058 /// The cost calculation for Load instruction \p I with uniform pointer - 2059 /// scalar load + broadcast. 2060 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2061 2062 /// Returns whether the instruction is a load or store and will be a emitted 2063 /// as a vector operation. 2064 bool isConsecutiveLoadOrStore(Instruction *I); 2065 2066 /// Create an analysis remark that explains why vectorization failed 2067 /// 2068 /// \p RemarkName is the identifier for the remark. \return the remark object 2069 /// that can be streamed to. 2070 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2071 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2072 RemarkName, TheLoop); 2073 } 2074 2075 /// Map of scalar integer values to the smallest bitwidth they can be legally 2076 /// represented as. The vector equivalents of these values should be truncated 2077 /// to this type. 2078 MapVector<Instruction *, uint64_t> MinBWs; 2079 2080 /// A type representing the costs for instructions if they were to be 2081 /// scalarized rather than vectorized. The entries are Instruction-Cost 2082 /// pairs. 2083 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2084 2085 /// A set containing all BasicBlocks that are known to present after 2086 /// vectorization as a predicated block. 2087 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2088 2089 /// A map holding scalar costs for different vectorization factors. The 2090 /// presence of a cost for an instruction in the mapping indicates that the 2091 /// instruction will be scalarized when vectorizing with the associated 2092 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2093 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2094 2095 /// Holds the instructions known to be uniform after vectorization. 2096 /// The data is collected per VF. 2097 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2098 2099 /// Holds the instructions known to be scalar after vectorization. 2100 /// The data is collected per VF. 2101 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2102 2103 /// Returns the expected difference in cost from scalarizing the expression 2104 /// feeding a predicated instruction \p PredInst. The instructions to 2105 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2106 /// non-negative return value implies the expression will be scalarized. 2107 /// Currently, only single-use chains are considered for scalarization. 2108 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2109 unsigned VF); 2110 2111 /// Collects the instructions to scalarize for each predicated instruction in 2112 /// the loop. 2113 void collectInstsToScalarize(unsigned VF); 2114 2115 /// Collect the instructions that are uniform after vectorization. An 2116 /// instruction is uniform if we represent it with a single scalar value in 2117 /// the vectorized loop corresponding to each vector iteration. Examples of 2118 /// uniform instructions include pointer operands of consecutive or 2119 /// interleaved memory accesses. Note that although uniformity implies an 2120 /// instruction will be scalar, the reverse is not true. In general, a 2121 /// scalarized instruction will be represented by VF scalar values in the 2122 /// vectorized loop, each corresponding to an iteration of the original 2123 /// scalar loop. 2124 void collectLoopUniforms(unsigned VF); 2125 2126 /// Collect the instructions that are scalar after vectorization. An 2127 /// instruction is scalar if it is known to be uniform or will be scalarized 2128 /// during vectorization. Non-uniform scalarized instructions will be 2129 /// represented by VF values in the vectorized loop, each corresponding to an 2130 /// iteration of the original scalar loop. 2131 void collectLoopScalars(unsigned VF); 2132 2133 /// Collect Uniform and Scalar values for the given \p VF. 2134 /// The sets depend on CM decision for Load/Store instructions 2135 /// that may be vectorized as interleave, gather-scatter or scalarized. 2136 void collectUniformsAndScalars(unsigned VF) { 2137 // Do the analysis once. 2138 if (VF == 1 || Uniforms.count(VF)) 2139 return; 2140 setCostBasedWideningDecision(VF); 2141 collectLoopUniforms(VF); 2142 collectLoopScalars(VF); 2143 } 2144 2145 /// Keeps cost model vectorization decision and cost for instructions. 2146 /// Right now it is used for memory instructions only. 2147 typedef DenseMap<std::pair<Instruction *, unsigned>, 2148 std::pair<InstWidening, unsigned>> 2149 DecisionList; 2150 2151 DecisionList WideningDecisions; 2152 2153 public: 2154 /// The loop that we evaluate. 2155 Loop *TheLoop; 2156 /// Predicated scalar evolution analysis. 2157 PredicatedScalarEvolution &PSE; 2158 /// Loop Info analysis. 2159 LoopInfo *LI; 2160 /// Vectorization legality. 2161 LoopVectorizationLegality *Legal; 2162 /// Vector target information. 2163 const TargetTransformInfo &TTI; 2164 /// Target Library Info. 2165 const TargetLibraryInfo *TLI; 2166 /// Demanded bits analysis. 2167 DemandedBits *DB; 2168 /// Assumption cache. 2169 AssumptionCache *AC; 2170 /// Interface to emit optimization remarks. 2171 OptimizationRemarkEmitter *ORE; 2172 2173 const Function *TheFunction; 2174 /// Loop Vectorize Hint. 2175 const LoopVectorizeHints *Hints; 2176 /// Values to ignore in the cost model. 2177 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2178 /// Values to ignore in the cost model when VF > 1. 2179 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2180 }; 2181 2182 /// LoopVectorizationPlanner - drives the vectorization process after having 2183 /// passed Legality checks. 2184 class LoopVectorizationPlanner { 2185 public: 2186 LoopVectorizationPlanner(LoopVectorizationCostModel &CM) : CM(CM) {} 2187 2188 ~LoopVectorizationPlanner() {} 2189 2190 /// Plan how to best vectorize, return the best VF and its cost. 2191 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2192 unsigned UserVF); 2193 2194 private: 2195 /// The profitablity analysis. 2196 LoopVectorizationCostModel &CM; 2197 }; 2198 2199 /// \brief This holds vectorization requirements that must be verified late in 2200 /// the process. The requirements are set by legalize and costmodel. Once 2201 /// vectorization has been determined to be possible and profitable the 2202 /// requirements can be verified by looking for metadata or compiler options. 2203 /// For example, some loops require FP commutativity which is only allowed if 2204 /// vectorization is explicitly specified or if the fast-math compiler option 2205 /// has been provided. 2206 /// Late evaluation of these requirements allows helpful diagnostics to be 2207 /// composed that tells the user what need to be done to vectorize the loop. For 2208 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2209 /// evaluation should be used only when diagnostics can generated that can be 2210 /// followed by a non-expert user. 2211 class LoopVectorizationRequirements { 2212 public: 2213 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2214 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2215 2216 void addUnsafeAlgebraInst(Instruction *I) { 2217 // First unsafe algebra instruction. 2218 if (!UnsafeAlgebraInst) 2219 UnsafeAlgebraInst = I; 2220 } 2221 2222 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2223 2224 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2225 const char *PassName = Hints.vectorizeAnalysisPassName(); 2226 bool Failed = false; 2227 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2228 ORE.emit( 2229 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2230 UnsafeAlgebraInst->getDebugLoc(), 2231 UnsafeAlgebraInst->getParent()) 2232 << "loop not vectorized: cannot prove it is safe to reorder " 2233 "floating-point operations"); 2234 Failed = true; 2235 } 2236 2237 // Test if runtime memcheck thresholds are exceeded. 2238 bool PragmaThresholdReached = 2239 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2240 bool ThresholdReached = 2241 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2242 if ((ThresholdReached && !Hints.allowReordering()) || 2243 PragmaThresholdReached) { 2244 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2245 L->getStartLoc(), 2246 L->getHeader()) 2247 << "loop not vectorized: cannot prove it is safe to reorder " 2248 "memory operations"); 2249 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2250 Failed = true; 2251 } 2252 2253 return Failed; 2254 } 2255 2256 private: 2257 unsigned NumRuntimePointerChecks; 2258 Instruction *UnsafeAlgebraInst; 2259 2260 /// Interface to emit optimization remarks. 2261 OptimizationRemarkEmitter &ORE; 2262 }; 2263 2264 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2265 if (L.empty()) { 2266 if (!hasCyclesInLoopBody(L)) 2267 V.push_back(&L); 2268 return; 2269 } 2270 for (Loop *InnerL : L) 2271 addAcyclicInnerLoop(*InnerL, V); 2272 } 2273 2274 /// The LoopVectorize Pass. 2275 struct LoopVectorize : public FunctionPass { 2276 /// Pass identification, replacement for typeid 2277 static char ID; 2278 2279 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2280 : FunctionPass(ID) { 2281 Impl.DisableUnrolling = NoUnrolling; 2282 Impl.AlwaysVectorize = AlwaysVectorize; 2283 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2284 } 2285 2286 LoopVectorizePass Impl; 2287 2288 bool runOnFunction(Function &F) override { 2289 if (skipFunction(F)) 2290 return false; 2291 2292 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2293 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2294 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2295 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2296 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2297 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2298 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2299 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2300 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2301 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2302 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2303 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2304 2305 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2306 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2307 2308 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2309 GetLAA, *ORE); 2310 } 2311 2312 void getAnalysisUsage(AnalysisUsage &AU) const override { 2313 AU.addRequired<AssumptionCacheTracker>(); 2314 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2315 AU.addRequired<DominatorTreeWrapperPass>(); 2316 AU.addRequired<LoopInfoWrapperPass>(); 2317 AU.addRequired<ScalarEvolutionWrapperPass>(); 2318 AU.addRequired<TargetTransformInfoWrapperPass>(); 2319 AU.addRequired<AAResultsWrapperPass>(); 2320 AU.addRequired<LoopAccessLegacyAnalysis>(); 2321 AU.addRequired<DemandedBitsWrapperPass>(); 2322 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2323 AU.addPreserved<LoopInfoWrapperPass>(); 2324 AU.addPreserved<DominatorTreeWrapperPass>(); 2325 AU.addPreserved<BasicAAWrapperPass>(); 2326 AU.addPreserved<GlobalsAAWrapperPass>(); 2327 } 2328 }; 2329 2330 } // end anonymous namespace 2331 2332 //===----------------------------------------------------------------------===// 2333 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2334 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2335 //===----------------------------------------------------------------------===// 2336 2337 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2338 // We need to place the broadcast of invariant variables outside the loop. 2339 Instruction *Instr = dyn_cast<Instruction>(V); 2340 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2341 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2342 2343 // Place the code for broadcasting invariant variables in the new preheader. 2344 IRBuilder<>::InsertPointGuard Guard(Builder); 2345 if (Invariant) 2346 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2347 2348 // Broadcast the scalar into all locations in the vector. 2349 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2350 2351 return Shuf; 2352 } 2353 2354 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2355 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2356 Value *Start = II.getStartValue(); 2357 2358 // Construct the initial value of the vector IV in the vector loop preheader 2359 auto CurrIP = Builder.saveIP(); 2360 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2361 if (isa<TruncInst>(EntryVal)) { 2362 assert(Start->getType()->isIntegerTy() && 2363 "Truncation requires an integer type"); 2364 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2365 Step = Builder.CreateTrunc(Step, TruncType); 2366 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2367 } 2368 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2369 Value *SteppedStart = 2370 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2371 2372 // We create vector phi nodes for both integer and floating-point induction 2373 // variables. Here, we determine the kind of arithmetic we will perform. 2374 Instruction::BinaryOps AddOp; 2375 Instruction::BinaryOps MulOp; 2376 if (Step->getType()->isIntegerTy()) { 2377 AddOp = Instruction::Add; 2378 MulOp = Instruction::Mul; 2379 } else { 2380 AddOp = II.getInductionOpcode(); 2381 MulOp = Instruction::FMul; 2382 } 2383 2384 // Multiply the vectorization factor by the step using integer or 2385 // floating-point arithmetic as appropriate. 2386 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2387 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2388 2389 // Create a vector splat to use in the induction update. 2390 // 2391 // FIXME: If the step is non-constant, we create the vector splat with 2392 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2393 // handle a constant vector splat. 2394 Value *SplatVF = isa<Constant>(Mul) 2395 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2396 : Builder.CreateVectorSplat(VF, Mul); 2397 Builder.restoreIP(CurrIP); 2398 2399 // We may need to add the step a number of times, depending on the unroll 2400 // factor. The last of those goes into the PHI. 2401 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2402 &*LoopVectorBody->getFirstInsertionPt()); 2403 Instruction *LastInduction = VecInd; 2404 VectorParts Entry(UF); 2405 for (unsigned Part = 0; Part < UF; ++Part) { 2406 Entry[Part] = LastInduction; 2407 LastInduction = cast<Instruction>(addFastMathFlag( 2408 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2409 } 2410 VectorLoopValueMap.initVector(EntryVal, Entry); 2411 if (isa<TruncInst>(EntryVal)) 2412 addMetadata(Entry, EntryVal); 2413 2414 // Move the last step to the end of the latch block. This ensures consistent 2415 // placement of all induction updates. 2416 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2417 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2418 auto *ICmp = cast<Instruction>(Br->getCondition()); 2419 LastInduction->moveBefore(ICmp); 2420 LastInduction->setName("vec.ind.next"); 2421 2422 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2423 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2424 } 2425 2426 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2427 return Cost->isScalarAfterVectorization(I, VF) || 2428 Cost->isProfitableToScalarize(I, VF); 2429 } 2430 2431 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2432 if (shouldScalarizeInstruction(IV)) 2433 return true; 2434 auto isScalarInst = [&](User *U) -> bool { 2435 auto *I = cast<Instruction>(U); 2436 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2437 }; 2438 return any_of(IV->users(), isScalarInst); 2439 } 2440 2441 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2442 2443 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2444 "Primary induction variable must have an integer type"); 2445 2446 auto II = Legal->getInductionVars()->find(IV); 2447 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2448 2449 auto ID = II->second; 2450 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2451 2452 // The scalar value to broadcast. This will be derived from the canonical 2453 // induction variable. 2454 Value *ScalarIV = nullptr; 2455 2456 // The value from the original loop to which we are mapping the new induction 2457 // variable. 2458 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2459 2460 // True if we have vectorized the induction variable. 2461 auto VectorizedIV = false; 2462 2463 // Determine if we want a scalar version of the induction variable. This is 2464 // true if the induction variable itself is not widened, or if it has at 2465 // least one user in the loop that is not widened. 2466 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2467 2468 // Generate code for the induction step. Note that induction steps are 2469 // required to be loop-invariant 2470 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2471 "Induction step should be loop invariant"); 2472 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2473 Value *Step = nullptr; 2474 if (PSE.getSE()->isSCEVable(IV->getType())) { 2475 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2476 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2477 LoopVectorPreHeader->getTerminator()); 2478 } else { 2479 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2480 } 2481 2482 // Try to create a new independent vector induction variable. If we can't 2483 // create the phi node, we will splat the scalar induction variable in each 2484 // loop iteration. 2485 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2486 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2487 VectorizedIV = true; 2488 } 2489 2490 // If we haven't yet vectorized the induction variable, or if we will create 2491 // a scalar one, we need to define the scalar induction variable and step 2492 // values. If we were given a truncation type, truncate the canonical 2493 // induction variable and step. Otherwise, derive these values from the 2494 // induction descriptor. 2495 if (!VectorizedIV || NeedsScalarIV) { 2496 ScalarIV = Induction; 2497 if (IV != OldInduction) { 2498 ScalarIV = IV->getType()->isIntegerTy() 2499 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2500 : Builder.CreateCast(Instruction::SIToFP, Induction, 2501 IV->getType()); 2502 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2503 ScalarIV->setName("offset.idx"); 2504 } 2505 if (Trunc) { 2506 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2507 assert(Step->getType()->isIntegerTy() && 2508 "Truncation requires an integer step"); 2509 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2510 Step = Builder.CreateTrunc(Step, TruncType); 2511 } 2512 } 2513 2514 // If we haven't yet vectorized the induction variable, splat the scalar 2515 // induction variable, and build the necessary step vectors. 2516 if (!VectorizedIV) { 2517 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2518 VectorParts Entry(UF); 2519 for (unsigned Part = 0; Part < UF; ++Part) 2520 Entry[Part] = 2521 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2522 VectorLoopValueMap.initVector(EntryVal, Entry); 2523 if (Trunc) 2524 addMetadata(Entry, Trunc); 2525 } 2526 2527 // If an induction variable is only used for counting loop iterations or 2528 // calculating addresses, it doesn't need to be widened. Create scalar steps 2529 // that can be used by instructions we will later scalarize. Note that the 2530 // addition of the scalar steps will not increase the number of instructions 2531 // in the loop in the common case prior to InstCombine. We will be trading 2532 // one vector extract for each scalar step. 2533 if (NeedsScalarIV) 2534 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2535 } 2536 2537 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2538 Instruction::BinaryOps BinOp) { 2539 // Create and check the types. 2540 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2541 int VLen = Val->getType()->getVectorNumElements(); 2542 2543 Type *STy = Val->getType()->getScalarType(); 2544 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2545 "Induction Step must be an integer or FP"); 2546 assert(Step->getType() == STy && "Step has wrong type"); 2547 2548 SmallVector<Constant *, 8> Indices; 2549 2550 if (STy->isIntegerTy()) { 2551 // Create a vector of consecutive numbers from zero to VF. 2552 for (int i = 0; i < VLen; ++i) 2553 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2554 2555 // Add the consecutive indices to the vector value. 2556 Constant *Cv = ConstantVector::get(Indices); 2557 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2558 Step = Builder.CreateVectorSplat(VLen, Step); 2559 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2560 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2561 // which can be found from the original scalar operations. 2562 Step = Builder.CreateMul(Cv, Step); 2563 return Builder.CreateAdd(Val, Step, "induction"); 2564 } 2565 2566 // Floating point induction. 2567 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2568 "Binary Opcode should be specified for FP induction"); 2569 // Create a vector of consecutive numbers from zero to VF. 2570 for (int i = 0; i < VLen; ++i) 2571 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2572 2573 // Add the consecutive indices to the vector value. 2574 Constant *Cv = ConstantVector::get(Indices); 2575 2576 Step = Builder.CreateVectorSplat(VLen, Step); 2577 2578 // Floating point operations had to be 'fast' to enable the induction. 2579 FastMathFlags Flags; 2580 Flags.setUnsafeAlgebra(); 2581 2582 Value *MulOp = Builder.CreateFMul(Cv, Step); 2583 if (isa<Instruction>(MulOp)) 2584 // Have to check, MulOp may be a constant 2585 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2586 2587 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2588 if (isa<Instruction>(BOp)) 2589 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2590 return BOp; 2591 } 2592 2593 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2594 Value *EntryVal, 2595 const InductionDescriptor &ID) { 2596 2597 // We shouldn't have to build scalar steps if we aren't vectorizing. 2598 assert(VF > 1 && "VF should be greater than one"); 2599 2600 // Get the value type and ensure it and the step have the same integer type. 2601 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2602 assert(ScalarIVTy == Step->getType() && 2603 "Val and Step should have the same type"); 2604 2605 // We build scalar steps for both integer and floating-point induction 2606 // variables. Here, we determine the kind of arithmetic we will perform. 2607 Instruction::BinaryOps AddOp; 2608 Instruction::BinaryOps MulOp; 2609 if (ScalarIVTy->isIntegerTy()) { 2610 AddOp = Instruction::Add; 2611 MulOp = Instruction::Mul; 2612 } else { 2613 AddOp = ID.getInductionOpcode(); 2614 MulOp = Instruction::FMul; 2615 } 2616 2617 // Determine the number of scalars we need to generate for each unroll 2618 // iteration. If EntryVal is uniform, we only need to generate the first 2619 // lane. Otherwise, we generate all VF values. 2620 unsigned Lanes = 2621 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2622 2623 // Compute the scalar steps and save the results in VectorLoopValueMap. 2624 ScalarParts Entry(UF); 2625 for (unsigned Part = 0; Part < UF; ++Part) { 2626 Entry[Part].resize(VF); 2627 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2628 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2629 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2630 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2631 Entry[Part][Lane] = Add; 2632 } 2633 } 2634 VectorLoopValueMap.initScalar(EntryVal, Entry); 2635 } 2636 2637 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2638 2639 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2640 ValueToValueMap(); 2641 2642 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2643 if (Stride == 1 || Stride == -1) 2644 return Stride; 2645 return 0; 2646 } 2647 2648 bool LoopVectorizationLegality::isUniform(Value *V) { 2649 return LAI->isUniform(V); 2650 } 2651 2652 const InnerLoopVectorizer::VectorParts & 2653 InnerLoopVectorizer::getVectorValue(Value *V) { 2654 assert(V != Induction && "The new induction variable should not be used."); 2655 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2656 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2657 2658 // If we have a stride that is replaced by one, do it here. 2659 if (Legal->hasStride(V)) 2660 V = ConstantInt::get(V->getType(), 1); 2661 2662 // If we have this scalar in the map, return it. 2663 if (VectorLoopValueMap.hasVector(V)) 2664 return VectorLoopValueMap.VectorMapStorage[V]; 2665 2666 // If the value has not been vectorized, check if it has been scalarized 2667 // instead. If it has been scalarized, and we actually need the value in 2668 // vector form, we will construct the vector values on demand. 2669 if (VectorLoopValueMap.hasScalar(V)) { 2670 2671 // Initialize a new vector map entry. 2672 VectorParts Entry(UF); 2673 2674 // If we've scalarized a value, that value should be an instruction. 2675 auto *I = cast<Instruction>(V); 2676 2677 // If we aren't vectorizing, we can just copy the scalar map values over to 2678 // the vector map. 2679 if (VF == 1) { 2680 for (unsigned Part = 0; Part < UF; ++Part) 2681 Entry[Part] = getScalarValue(V, Part, 0); 2682 return VectorLoopValueMap.initVector(V, Entry); 2683 } 2684 2685 // Get the last scalar instruction we generated for V. If the value is 2686 // known to be uniform after vectorization, this corresponds to lane zero 2687 // of the last unroll iteration. Otherwise, the last instruction is the one 2688 // we created for the last vector lane of the last unroll iteration. 2689 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2690 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2691 2692 // Set the insert point after the last scalarized instruction. This ensures 2693 // the insertelement sequence will directly follow the scalar definitions. 2694 auto OldIP = Builder.saveIP(); 2695 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2696 Builder.SetInsertPoint(&*NewIP); 2697 2698 // However, if we are vectorizing, we need to construct the vector values. 2699 // If the value is known to be uniform after vectorization, we can just 2700 // broadcast the scalar value corresponding to lane zero for each unroll 2701 // iteration. Otherwise, we construct the vector values using insertelement 2702 // instructions. Since the resulting vectors are stored in 2703 // VectorLoopValueMap, we will only generate the insertelements once. 2704 for (unsigned Part = 0; Part < UF; ++Part) { 2705 Value *VectorValue = nullptr; 2706 if (Cost->isUniformAfterVectorization(I, VF)) { 2707 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2708 } else { 2709 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2710 for (unsigned Lane = 0; Lane < VF; ++Lane) 2711 VectorValue = Builder.CreateInsertElement( 2712 VectorValue, getScalarValue(V, Part, Lane), 2713 Builder.getInt32(Lane)); 2714 } 2715 Entry[Part] = VectorValue; 2716 } 2717 Builder.restoreIP(OldIP); 2718 return VectorLoopValueMap.initVector(V, Entry); 2719 } 2720 2721 // If this scalar is unknown, assume that it is a constant or that it is 2722 // loop invariant. Broadcast V and save the value for future uses. 2723 Value *B = getBroadcastInstrs(V); 2724 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2725 } 2726 2727 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2728 unsigned Lane) { 2729 2730 // If the value is not an instruction contained in the loop, it should 2731 // already be scalar. 2732 if (OrigLoop->isLoopInvariant(V)) 2733 return V; 2734 2735 assert(Lane > 0 ? 2736 !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2737 : true && "Uniform values only have lane zero"); 2738 2739 // If the value from the original loop has not been vectorized, it is 2740 // represented by UF x VF scalar values in the new loop. Return the requested 2741 // scalar value. 2742 if (VectorLoopValueMap.hasScalar(V)) 2743 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2744 2745 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2746 // for the given unroll part. If this entry is not a vector type (i.e., the 2747 // vectorization factor is one), there is no need to generate an 2748 // extractelement instruction. 2749 auto *U = getVectorValue(V)[Part]; 2750 if (!U->getType()->isVectorTy()) { 2751 assert(VF == 1 && "Value not scalarized has non-vector type"); 2752 return U; 2753 } 2754 2755 // Otherwise, the value from the original loop has been vectorized and is 2756 // represented by UF vector values. Extract and return the requested scalar 2757 // value from the appropriate vector lane. 2758 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2759 } 2760 2761 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2762 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2763 SmallVector<Constant *, 8> ShuffleMask; 2764 for (unsigned i = 0; i < VF; ++i) 2765 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2766 2767 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2768 ConstantVector::get(ShuffleMask), 2769 "reverse"); 2770 } 2771 2772 // Try to vectorize the interleave group that \p Instr belongs to. 2773 // 2774 // E.g. Translate following interleaved load group (factor = 3): 2775 // for (i = 0; i < N; i+=3) { 2776 // R = Pic[i]; // Member of index 0 2777 // G = Pic[i+1]; // Member of index 1 2778 // B = Pic[i+2]; // Member of index 2 2779 // ... // do something to R, G, B 2780 // } 2781 // To: 2782 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2783 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2784 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2785 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2786 // 2787 // Or translate following interleaved store group (factor = 3): 2788 // for (i = 0; i < N; i+=3) { 2789 // ... do something to R, G, B 2790 // Pic[i] = R; // Member of index 0 2791 // Pic[i+1] = G; // Member of index 1 2792 // Pic[i+2] = B; // Member of index 2 2793 // } 2794 // To: 2795 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2796 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2797 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2798 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2799 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2800 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2801 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2802 assert(Group && "Fail to get an interleaved access group."); 2803 2804 // Skip if current instruction is not the insert position. 2805 if (Instr != Group->getInsertPos()) 2806 return; 2807 2808 Value *Ptr = getPointerOperand(Instr); 2809 2810 // Prepare for the vector type of the interleaved load/store. 2811 Type *ScalarTy = getMemInstValueType(Instr); 2812 unsigned InterleaveFactor = Group->getFactor(); 2813 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2814 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2815 2816 // Prepare for the new pointers. 2817 setDebugLocFromInst(Builder, Ptr); 2818 SmallVector<Value *, 2> NewPtrs; 2819 unsigned Index = Group->getIndex(Instr); 2820 2821 // If the group is reverse, adjust the index to refer to the last vector lane 2822 // instead of the first. We adjust the index from the first vector lane, 2823 // rather than directly getting the pointer for lane VF - 1, because the 2824 // pointer operand of the interleaved access is supposed to be uniform. For 2825 // uniform instructions, we're only required to generate a value for the 2826 // first vector lane in each unroll iteration. 2827 if (Group->isReverse()) 2828 Index += (VF - 1) * Group->getFactor(); 2829 2830 for (unsigned Part = 0; Part < UF; Part++) { 2831 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2832 2833 // Notice current instruction could be any index. Need to adjust the address 2834 // to the member of index 0. 2835 // 2836 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2837 // b = A[i]; // Member of index 0 2838 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2839 // 2840 // E.g. A[i+1] = a; // Member of index 1 2841 // A[i] = b; // Member of index 0 2842 // A[i+2] = c; // Member of index 2 (Current instruction) 2843 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2844 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2845 2846 // Cast to the vector pointer type. 2847 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2848 } 2849 2850 setDebugLocFromInst(Builder, Instr); 2851 Value *UndefVec = UndefValue::get(VecTy); 2852 2853 // Vectorize the interleaved load group. 2854 if (isa<LoadInst>(Instr)) { 2855 2856 // For each unroll part, create a wide load for the group. 2857 SmallVector<Value *, 2> NewLoads; 2858 for (unsigned Part = 0; Part < UF; Part++) { 2859 auto *NewLoad = Builder.CreateAlignedLoad( 2860 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2861 addMetadata(NewLoad, Instr); 2862 NewLoads.push_back(NewLoad); 2863 } 2864 2865 // For each member in the group, shuffle out the appropriate data from the 2866 // wide loads. 2867 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2868 Instruction *Member = Group->getMember(I); 2869 2870 // Skip the gaps in the group. 2871 if (!Member) 2872 continue; 2873 2874 VectorParts Entry(UF); 2875 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2876 for (unsigned Part = 0; Part < UF; Part++) { 2877 Value *StridedVec = Builder.CreateShuffleVector( 2878 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2879 2880 // If this member has different type, cast the result type. 2881 if (Member->getType() != ScalarTy) { 2882 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2883 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2884 } 2885 2886 Entry[Part] = 2887 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2888 } 2889 VectorLoopValueMap.initVector(Member, Entry); 2890 } 2891 return; 2892 } 2893 2894 // The sub vector type for current instruction. 2895 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2896 2897 // Vectorize the interleaved store group. 2898 for (unsigned Part = 0; Part < UF; Part++) { 2899 // Collect the stored vector from each member. 2900 SmallVector<Value *, 4> StoredVecs; 2901 for (unsigned i = 0; i < InterleaveFactor; i++) { 2902 // Interleaved store group doesn't allow a gap, so each index has a member 2903 Instruction *Member = Group->getMember(i); 2904 assert(Member && "Fail to get a member from an interleaved store group"); 2905 2906 Value *StoredVec = 2907 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2908 if (Group->isReverse()) 2909 StoredVec = reverseVector(StoredVec); 2910 2911 // If this member has different type, cast it to an unified type. 2912 if (StoredVec->getType() != SubVT) 2913 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2914 2915 StoredVecs.push_back(StoredVec); 2916 } 2917 2918 // Concatenate all vectors into a wide vector. 2919 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2920 2921 // Interleave the elements in the wide vector. 2922 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2923 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2924 "interleaved.vec"); 2925 2926 Instruction *NewStoreInstr = 2927 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2928 addMetadata(NewStoreInstr, Instr); 2929 } 2930 } 2931 2932 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2933 // Attempt to issue a wide load. 2934 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2935 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2936 2937 assert((LI || SI) && "Invalid Load/Store instruction"); 2938 2939 LoopVectorizationCostModel::InstWidening Decision = 2940 Cost->getWideningDecision(Instr, VF); 2941 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2942 "CM decision should be taken at this point"); 2943 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2944 return vectorizeInterleaveGroup(Instr); 2945 2946 Type *ScalarDataTy = getMemInstValueType(Instr); 2947 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2948 Value *Ptr = getPointerOperand(Instr); 2949 unsigned Alignment = getMemInstAlignment(Instr); 2950 // An alignment of 0 means target abi alignment. We need to use the scalar's 2951 // target abi alignment in such a case. 2952 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2953 if (!Alignment) 2954 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2955 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2956 2957 // Scalarize the memory instruction if necessary. 2958 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2959 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2960 2961 // Determine if the pointer operand of the access is either consecutive or 2962 // reverse consecutive. 2963 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2964 bool Reverse = ConsecutiveStride < 0; 2965 bool CreateGatherScatter = 2966 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2967 2968 VectorParts VectorGep; 2969 2970 // Handle consecutive loads/stores. 2971 if (ConsecutiveStride) { 2972 Ptr = getScalarValue(Ptr, 0, 0); 2973 } else { 2974 // At this point we should vector version of GEP for Gather or Scatter 2975 assert(CreateGatherScatter && "The instruction should be scalarized"); 2976 VectorGep = getVectorValue(Ptr); 2977 } 2978 2979 VectorParts Mask = createBlockInMask(Instr->getParent()); 2980 // Handle Stores: 2981 if (SI) { 2982 assert(!Legal->isUniform(SI->getPointerOperand()) && 2983 "We do not allow storing to uniform addresses"); 2984 setDebugLocFromInst(Builder, SI); 2985 // We don't want to update the value in the map as it might be used in 2986 // another expression. So don't use a reference type for "StoredVal". 2987 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2988 2989 for (unsigned Part = 0; Part < UF; ++Part) { 2990 Instruction *NewSI = nullptr; 2991 if (CreateGatherScatter) { 2992 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2993 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2994 Alignment, MaskPart); 2995 } else { 2996 // Calculate the pointer for the specific unroll-part. 2997 Value *PartPtr = 2998 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2999 3000 if (Reverse) { 3001 // If we store to reverse consecutive memory locations, then we need 3002 // to reverse the order of elements in the stored value. 3003 StoredVal[Part] = reverseVector(StoredVal[Part]); 3004 // If the address is consecutive but reversed, then the 3005 // wide store needs to start at the last vector element. 3006 PartPtr = 3007 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3008 PartPtr = 3009 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3010 Mask[Part] = reverseVector(Mask[Part]); 3011 } 3012 3013 Value *VecPtr = 3014 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3015 3016 if (Legal->isMaskRequired(SI)) 3017 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 3018 Mask[Part]); 3019 else 3020 NewSI = 3021 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 3022 } 3023 addMetadata(NewSI, SI); 3024 } 3025 return; 3026 } 3027 3028 // Handle loads. 3029 assert(LI && "Must have a load instruction"); 3030 setDebugLocFromInst(Builder, LI); 3031 VectorParts Entry(UF); 3032 for (unsigned Part = 0; Part < UF; ++Part) { 3033 Instruction *NewLI; 3034 if (CreateGatherScatter) { 3035 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3036 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 3037 0, "wide.masked.gather"); 3038 Entry[Part] = NewLI; 3039 } else { 3040 // Calculate the pointer for the specific unroll-part. 3041 Value *PartPtr = 3042 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3043 3044 if (Reverse) { 3045 // If the address is consecutive but reversed, then the 3046 // wide load needs to start at the last vector element. 3047 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3048 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3049 Mask[Part] = reverseVector(Mask[Part]); 3050 } 3051 3052 Value *VecPtr = 3053 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3054 if (Legal->isMaskRequired(LI)) 3055 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3056 UndefValue::get(DataTy), 3057 "wide.masked.load"); 3058 else 3059 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3060 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3061 } 3062 addMetadata(NewLI, LI); 3063 } 3064 VectorLoopValueMap.initVector(Instr, Entry); 3065 } 3066 3067 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3068 bool IfPredicateInstr) { 3069 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3070 DEBUG(dbgs() << "LV: Scalarizing" 3071 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3072 << '\n'); 3073 // Holds vector parameters or scalars, in case of uniform vals. 3074 SmallVector<VectorParts, 4> Params; 3075 3076 setDebugLocFromInst(Builder, Instr); 3077 3078 // Does this instruction return a value ? 3079 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3080 3081 // Initialize a new scalar map entry. 3082 ScalarParts Entry(UF); 3083 3084 VectorParts Cond; 3085 if (IfPredicateInstr) 3086 Cond = createBlockInMask(Instr->getParent()); 3087 3088 // Determine the number of scalars we need to generate for each unroll 3089 // iteration. If the instruction is uniform, we only need to generate the 3090 // first lane. Otherwise, we generate all VF values. 3091 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3092 3093 // For each vector unroll 'part': 3094 for (unsigned Part = 0; Part < UF; ++Part) { 3095 Entry[Part].resize(VF); 3096 // For each scalar that we create: 3097 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3098 3099 // Start if-block. 3100 Value *Cmp = nullptr; 3101 if (IfPredicateInstr) { 3102 Cmp = Cond[Part]; 3103 if (Cmp->getType()->isVectorTy()) 3104 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3105 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3106 ConstantInt::get(Cmp->getType(), 1)); 3107 } 3108 3109 Instruction *Cloned = Instr->clone(); 3110 if (!IsVoidRetTy) 3111 Cloned->setName(Instr->getName() + ".cloned"); 3112 3113 // Replace the operands of the cloned instructions with their scalar 3114 // equivalents in the new loop. 3115 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3116 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3117 Cloned->setOperand(op, NewOp); 3118 } 3119 addNewMetadata(Cloned, Instr); 3120 3121 // Place the cloned scalar in the new loop. 3122 Builder.Insert(Cloned); 3123 3124 // Add the cloned scalar to the scalar map entry. 3125 Entry[Part][Lane] = Cloned; 3126 3127 // If we just cloned a new assumption, add it the assumption cache. 3128 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3129 if (II->getIntrinsicID() == Intrinsic::assume) 3130 AC->registerAssumption(II); 3131 3132 // End if-block. 3133 if (IfPredicateInstr) 3134 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3135 } 3136 } 3137 VectorLoopValueMap.initScalar(Instr, Entry); 3138 } 3139 3140 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3141 Value *End, Value *Step, 3142 Instruction *DL) { 3143 BasicBlock *Header = L->getHeader(); 3144 BasicBlock *Latch = L->getLoopLatch(); 3145 // As we're just creating this loop, it's possible no latch exists 3146 // yet. If so, use the header as this will be a single block loop. 3147 if (!Latch) 3148 Latch = Header; 3149 3150 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3151 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3152 setDebugLocFromInst(Builder, OldInst); 3153 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3154 3155 Builder.SetInsertPoint(Latch->getTerminator()); 3156 setDebugLocFromInst(Builder, OldInst); 3157 3158 // Create i+1 and fill the PHINode. 3159 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3160 Induction->addIncoming(Start, L->getLoopPreheader()); 3161 Induction->addIncoming(Next, Latch); 3162 // Create the compare. 3163 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3164 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3165 3166 // Now we have two terminators. Remove the old one from the block. 3167 Latch->getTerminator()->eraseFromParent(); 3168 3169 return Induction; 3170 } 3171 3172 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3173 if (TripCount) 3174 return TripCount; 3175 3176 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3177 // Find the loop boundaries. 3178 ScalarEvolution *SE = PSE.getSE(); 3179 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3180 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3181 "Invalid loop count"); 3182 3183 Type *IdxTy = Legal->getWidestInductionType(); 3184 3185 // The exit count might have the type of i64 while the phi is i32. This can 3186 // happen if we have an induction variable that is sign extended before the 3187 // compare. The only way that we get a backedge taken count is that the 3188 // induction variable was signed and as such will not overflow. In such a case 3189 // truncation is legal. 3190 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3191 IdxTy->getPrimitiveSizeInBits()) 3192 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3193 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3194 3195 // Get the total trip count from the count by adding 1. 3196 const SCEV *ExitCount = SE->getAddExpr( 3197 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3198 3199 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3200 3201 // Expand the trip count and place the new instructions in the preheader. 3202 // Notice that the pre-header does not change, only the loop body. 3203 SCEVExpander Exp(*SE, DL, "induction"); 3204 3205 // Count holds the overall loop count (N). 3206 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3207 L->getLoopPreheader()->getTerminator()); 3208 3209 if (TripCount->getType()->isPointerTy()) 3210 TripCount = 3211 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3212 L->getLoopPreheader()->getTerminator()); 3213 3214 return TripCount; 3215 } 3216 3217 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3218 if (VectorTripCount) 3219 return VectorTripCount; 3220 3221 Value *TC = getOrCreateTripCount(L); 3222 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3223 3224 // Now we need to generate the expression for the part of the loop that the 3225 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3226 // iterations are not required for correctness, or N - Step, otherwise. Step 3227 // is equal to the vectorization factor (number of SIMD elements) times the 3228 // unroll factor (number of SIMD instructions). 3229 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3230 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3231 3232 // If there is a non-reversed interleaved group that may speculatively access 3233 // memory out-of-bounds, we need to ensure that there will be at least one 3234 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3235 // the trip count, we set the remainder to be equal to the step. If the step 3236 // does not evenly divide the trip count, no adjustment is necessary since 3237 // there will already be scalar iterations. Note that the minimum iterations 3238 // check ensures that N >= Step. 3239 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3240 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3241 R = Builder.CreateSelect(IsZero, Step, R); 3242 } 3243 3244 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3245 3246 return VectorTripCount; 3247 } 3248 3249 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3250 BasicBlock *Bypass) { 3251 Value *Count = getOrCreateTripCount(L); 3252 BasicBlock *BB = L->getLoopPreheader(); 3253 IRBuilder<> Builder(BB->getTerminator()); 3254 3255 // Generate code to check that the loop's trip count that we computed by 3256 // adding one to the backedge-taken count will not overflow. 3257 Value *CheckMinIters = Builder.CreateICmpULT( 3258 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3259 3260 BasicBlock *NewBB = 3261 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3262 // Update dominator tree immediately if the generated block is a 3263 // LoopBypassBlock because SCEV expansions to generate loop bypass 3264 // checks may query it before the current function is finished. 3265 DT->addNewBlock(NewBB, BB); 3266 if (L->getParentLoop()) 3267 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3268 ReplaceInstWithInst(BB->getTerminator(), 3269 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3270 LoopBypassBlocks.push_back(BB); 3271 } 3272 3273 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3274 BasicBlock *Bypass) { 3275 Value *TC = getOrCreateVectorTripCount(L); 3276 BasicBlock *BB = L->getLoopPreheader(); 3277 IRBuilder<> Builder(BB->getTerminator()); 3278 3279 // Now, compare the new count to zero. If it is zero skip the vector loop and 3280 // jump to the scalar loop. 3281 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3282 "cmp.zero"); 3283 3284 // Generate code to check that the loop's trip count that we computed by 3285 // adding one to the backedge-taken count will not overflow. 3286 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3287 // Update dominator tree immediately if the generated block is a 3288 // LoopBypassBlock because SCEV expansions to generate loop bypass 3289 // checks may query it before the current function is finished. 3290 DT->addNewBlock(NewBB, BB); 3291 if (L->getParentLoop()) 3292 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3293 ReplaceInstWithInst(BB->getTerminator(), 3294 BranchInst::Create(Bypass, NewBB, Cmp)); 3295 LoopBypassBlocks.push_back(BB); 3296 } 3297 3298 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3299 BasicBlock *BB = L->getLoopPreheader(); 3300 3301 // Generate the code to check that the SCEV assumptions that we made. 3302 // We want the new basic block to start at the first instruction in a 3303 // sequence of instructions that form a check. 3304 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3305 "scev.check"); 3306 Value *SCEVCheck = 3307 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3308 3309 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3310 if (C->isZero()) 3311 return; 3312 3313 // Create a new block containing the stride check. 3314 BB->setName("vector.scevcheck"); 3315 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3316 // Update dominator tree immediately if the generated block is a 3317 // LoopBypassBlock because SCEV expansions to generate loop bypass 3318 // checks may query it before the current function is finished. 3319 DT->addNewBlock(NewBB, BB); 3320 if (L->getParentLoop()) 3321 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3322 ReplaceInstWithInst(BB->getTerminator(), 3323 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3324 LoopBypassBlocks.push_back(BB); 3325 AddedSafetyChecks = true; 3326 } 3327 3328 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3329 BasicBlock *BB = L->getLoopPreheader(); 3330 3331 // Generate the code that checks in runtime if arrays overlap. We put the 3332 // checks into a separate block to make the more common case of few elements 3333 // faster. 3334 Instruction *FirstCheckInst; 3335 Instruction *MemRuntimeCheck; 3336 std::tie(FirstCheckInst, MemRuntimeCheck) = 3337 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3338 if (!MemRuntimeCheck) 3339 return; 3340 3341 // Create a new block containing the memory check. 3342 BB->setName("vector.memcheck"); 3343 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3344 // Update dominator tree immediately if the generated block is a 3345 // LoopBypassBlock because SCEV expansions to generate loop bypass 3346 // checks may query it before the current function is finished. 3347 DT->addNewBlock(NewBB, BB); 3348 if (L->getParentLoop()) 3349 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3350 ReplaceInstWithInst(BB->getTerminator(), 3351 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3352 LoopBypassBlocks.push_back(BB); 3353 AddedSafetyChecks = true; 3354 3355 // We currently don't use LoopVersioning for the actual loop cloning but we 3356 // still use it to add the noalias metadata. 3357 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3358 PSE.getSE()); 3359 LVer->prepareNoAliasMetadata(); 3360 } 3361 3362 void InnerLoopVectorizer::createEmptyLoop() { 3363 /* 3364 In this function we generate a new loop. The new loop will contain 3365 the vectorized instructions while the old loop will continue to run the 3366 scalar remainder. 3367 3368 [ ] <-- loop iteration number check. 3369 / | 3370 / v 3371 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3372 | / | 3373 | / v 3374 || [ ] <-- vector pre header. 3375 |/ | 3376 | v 3377 | [ ] \ 3378 | [ ]_| <-- vector loop. 3379 | | 3380 | v 3381 | -[ ] <--- middle-block. 3382 | / | 3383 | / v 3384 -|- >[ ] <--- new preheader. 3385 | | 3386 | v 3387 | [ ] \ 3388 | [ ]_| <-- old scalar loop to handle remainder. 3389 \ | 3390 \ v 3391 >[ ] <-- exit block. 3392 ... 3393 */ 3394 3395 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3396 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3397 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3398 assert(VectorPH && "Invalid loop structure"); 3399 assert(ExitBlock && "Must have an exit block"); 3400 3401 // Some loops have a single integer induction variable, while other loops 3402 // don't. One example is c++ iterators that often have multiple pointer 3403 // induction variables. In the code below we also support a case where we 3404 // don't have a single induction variable. 3405 // 3406 // We try to obtain an induction variable from the original loop as hard 3407 // as possible. However if we don't find one that: 3408 // - is an integer 3409 // - counts from zero, stepping by one 3410 // - is the size of the widest induction variable type 3411 // then we create a new one. 3412 OldInduction = Legal->getPrimaryInduction(); 3413 Type *IdxTy = Legal->getWidestInductionType(); 3414 3415 // Split the single block loop into the two loop structure described above. 3416 BasicBlock *VecBody = 3417 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3418 BasicBlock *MiddleBlock = 3419 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3420 BasicBlock *ScalarPH = 3421 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3422 3423 // Create and register the new vector loop. 3424 Loop *Lp = new Loop(); 3425 Loop *ParentLoop = OrigLoop->getParentLoop(); 3426 3427 // Insert the new loop into the loop nest and register the new basic blocks 3428 // before calling any utilities such as SCEV that require valid LoopInfo. 3429 if (ParentLoop) { 3430 ParentLoop->addChildLoop(Lp); 3431 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3432 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3433 } else { 3434 LI->addTopLevelLoop(Lp); 3435 } 3436 Lp->addBasicBlockToLoop(VecBody, *LI); 3437 3438 // Find the loop boundaries. 3439 Value *Count = getOrCreateTripCount(Lp); 3440 3441 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3442 3443 // We need to test whether the backedge-taken count is uint##_max. Adding one 3444 // to it will cause overflow and an incorrect loop trip count in the vector 3445 // body. In case of overflow we want to directly jump to the scalar remainder 3446 // loop. 3447 emitMinimumIterationCountCheck(Lp, ScalarPH); 3448 // Now, compare the new count to zero. If it is zero skip the vector loop and 3449 // jump to the scalar loop. 3450 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3451 // Generate the code to check any assumptions that we've made for SCEV 3452 // expressions. 3453 emitSCEVChecks(Lp, ScalarPH); 3454 3455 // Generate the code that checks in runtime if arrays overlap. We put the 3456 // checks into a separate block to make the more common case of few elements 3457 // faster. 3458 emitMemRuntimeChecks(Lp, ScalarPH); 3459 3460 // Generate the induction variable. 3461 // The loop step is equal to the vectorization factor (num of SIMD elements) 3462 // times the unroll factor (num of SIMD instructions). 3463 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3464 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3465 Induction = 3466 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3467 getDebugLocFromInstOrOperands(OldInduction)); 3468 3469 // We are going to resume the execution of the scalar loop. 3470 // Go over all of the induction variables that we found and fix the 3471 // PHIs that are left in the scalar version of the loop. 3472 // The starting values of PHI nodes depend on the counter of the last 3473 // iteration in the vectorized loop. 3474 // If we come from a bypass edge then we need to start from the original 3475 // start value. 3476 3477 // This variable saves the new starting index for the scalar loop. It is used 3478 // to test if there are any tail iterations left once the vector loop has 3479 // completed. 3480 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3481 for (auto &InductionEntry : *List) { 3482 PHINode *OrigPhi = InductionEntry.first; 3483 InductionDescriptor II = InductionEntry.second; 3484 3485 // Create phi nodes to merge from the backedge-taken check block. 3486 PHINode *BCResumeVal = PHINode::Create( 3487 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3488 Value *&EndValue = IVEndValues[OrigPhi]; 3489 if (OrigPhi == OldInduction) { 3490 // We know what the end value is. 3491 EndValue = CountRoundDown; 3492 } else { 3493 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3494 Type *StepType = II.getStep()->getType(); 3495 Instruction::CastOps CastOp = 3496 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3497 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3498 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3499 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3500 EndValue->setName("ind.end"); 3501 } 3502 3503 // The new PHI merges the original incoming value, in case of a bypass, 3504 // or the value at the end of the vectorized loop. 3505 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3506 3507 // Fix the scalar body counter (PHI node). 3508 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3509 3510 // The old induction's phi node in the scalar body needs the truncated 3511 // value. 3512 for (BasicBlock *BB : LoopBypassBlocks) 3513 BCResumeVal->addIncoming(II.getStartValue(), BB); 3514 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3515 } 3516 3517 // Add a check in the middle block to see if we have completed 3518 // all of the iterations in the first vector loop. 3519 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3520 Value *CmpN = 3521 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3522 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3523 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3524 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3525 3526 // Get ready to start creating new instructions into the vectorized body. 3527 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3528 3529 // Save the state. 3530 LoopVectorPreHeader = Lp->getLoopPreheader(); 3531 LoopScalarPreHeader = ScalarPH; 3532 LoopMiddleBlock = MiddleBlock; 3533 LoopExitBlock = ExitBlock; 3534 LoopVectorBody = VecBody; 3535 LoopScalarBody = OldBasicBlock; 3536 3537 // Keep all loop hints from the original loop on the vector loop (we'll 3538 // replace the vectorizer-specific hints below). 3539 if (MDNode *LID = OrigLoop->getLoopID()) 3540 Lp->setLoopID(LID); 3541 3542 LoopVectorizeHints Hints(Lp, true, *ORE); 3543 Hints.setAlreadyVectorized(); 3544 } 3545 3546 // Fix up external users of the induction variable. At this point, we are 3547 // in LCSSA form, with all external PHIs that use the IV having one input value, 3548 // coming from the remainder loop. We need those PHIs to also have a correct 3549 // value for the IV when arriving directly from the middle block. 3550 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3551 const InductionDescriptor &II, 3552 Value *CountRoundDown, Value *EndValue, 3553 BasicBlock *MiddleBlock) { 3554 // There are two kinds of external IV usages - those that use the value 3555 // computed in the last iteration (the PHI) and those that use the penultimate 3556 // value (the value that feeds into the phi from the loop latch). 3557 // We allow both, but they, obviously, have different values. 3558 3559 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3560 3561 DenseMap<Value *, Value *> MissingVals; 3562 3563 // An external user of the last iteration's value should see the value that 3564 // the remainder loop uses to initialize its own IV. 3565 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3566 for (User *U : PostInc->users()) { 3567 Instruction *UI = cast<Instruction>(U); 3568 if (!OrigLoop->contains(UI)) { 3569 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3570 MissingVals[UI] = EndValue; 3571 } 3572 } 3573 3574 // An external user of the penultimate value need to see EndValue - Step. 3575 // The simplest way to get this is to recompute it from the constituent SCEVs, 3576 // that is Start + (Step * (CRD - 1)). 3577 for (User *U : OrigPhi->users()) { 3578 auto *UI = cast<Instruction>(U); 3579 if (!OrigLoop->contains(UI)) { 3580 const DataLayout &DL = 3581 OrigLoop->getHeader()->getModule()->getDataLayout(); 3582 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3583 3584 IRBuilder<> B(MiddleBlock->getTerminator()); 3585 Value *CountMinusOne = B.CreateSub( 3586 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3587 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3588 "cast.cmo"); 3589 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3590 Escape->setName("ind.escape"); 3591 MissingVals[UI] = Escape; 3592 } 3593 } 3594 3595 for (auto &I : MissingVals) { 3596 PHINode *PHI = cast<PHINode>(I.first); 3597 // One corner case we have to handle is two IVs "chasing" each-other, 3598 // that is %IV2 = phi [...], [ %IV1, %latch ] 3599 // In this case, if IV1 has an external use, we need to avoid adding both 3600 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3601 // don't already have an incoming value for the middle block. 3602 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3603 PHI->addIncoming(I.second, MiddleBlock); 3604 } 3605 } 3606 3607 namespace { 3608 struct CSEDenseMapInfo { 3609 static bool canHandle(const Instruction *I) { 3610 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3611 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3612 } 3613 static inline Instruction *getEmptyKey() { 3614 return DenseMapInfo<Instruction *>::getEmptyKey(); 3615 } 3616 static inline Instruction *getTombstoneKey() { 3617 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3618 } 3619 static unsigned getHashValue(const Instruction *I) { 3620 assert(canHandle(I) && "Unknown instruction!"); 3621 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3622 I->value_op_end())); 3623 } 3624 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3625 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3626 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3627 return LHS == RHS; 3628 return LHS->isIdenticalTo(RHS); 3629 } 3630 }; 3631 } 3632 3633 ///\brief Perform cse of induction variable instructions. 3634 static void cse(BasicBlock *BB) { 3635 // Perform simple cse. 3636 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3637 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3638 Instruction *In = &*I++; 3639 3640 if (!CSEDenseMapInfo::canHandle(In)) 3641 continue; 3642 3643 // Check if we can replace this instruction with any of the 3644 // visited instructions. 3645 if (Instruction *V = CSEMap.lookup(In)) { 3646 In->replaceAllUsesWith(V); 3647 In->eraseFromParent(); 3648 continue; 3649 } 3650 3651 CSEMap[In] = In; 3652 } 3653 } 3654 3655 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3656 /// convenience wrapper for the type-based getScalarizationOverhead API. 3657 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3658 const TargetTransformInfo &TTI) { 3659 if (VF == 1) 3660 return 0; 3661 3662 unsigned Cost = 0; 3663 Type *RetTy = ToVectorTy(I->getType(), VF); 3664 if (!RetTy->isVoidTy() && 3665 (!isa<LoadInst>(I) || 3666 !TTI.supportsEfficientVectorElementLoadStore())) 3667 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3668 3669 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3670 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3671 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3672 } 3673 else if (!isa<StoreInst>(I) || 3674 !TTI.supportsEfficientVectorElementLoadStore()) { 3675 SmallVector<const Value *, 4> Operands(I->operand_values()); 3676 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3677 } 3678 3679 return Cost; 3680 } 3681 3682 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3683 // Return the cost of the instruction, including scalarization overhead if it's 3684 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3685 // i.e. either vector version isn't available, or is too expensive. 3686 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3687 const TargetTransformInfo &TTI, 3688 const TargetLibraryInfo *TLI, 3689 bool &NeedToScalarize) { 3690 Function *F = CI->getCalledFunction(); 3691 StringRef FnName = CI->getCalledFunction()->getName(); 3692 Type *ScalarRetTy = CI->getType(); 3693 SmallVector<Type *, 4> Tys, ScalarTys; 3694 for (auto &ArgOp : CI->arg_operands()) 3695 ScalarTys.push_back(ArgOp->getType()); 3696 3697 // Estimate cost of scalarized vector call. The source operands are assumed 3698 // to be vectors, so we need to extract individual elements from there, 3699 // execute VF scalar calls, and then gather the result into the vector return 3700 // value. 3701 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3702 if (VF == 1) 3703 return ScalarCallCost; 3704 3705 // Compute corresponding vector type for return value and arguments. 3706 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3707 for (Type *ScalarTy : ScalarTys) 3708 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3709 3710 // Compute costs of unpacking argument values for the scalar calls and 3711 // packing the return values to a vector. 3712 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3713 3714 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3715 3716 // If we can't emit a vector call for this function, then the currently found 3717 // cost is the cost we need to return. 3718 NeedToScalarize = true; 3719 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3720 return Cost; 3721 3722 // If the corresponding vector cost is cheaper, return its cost. 3723 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3724 if (VectorCallCost < Cost) { 3725 NeedToScalarize = false; 3726 return VectorCallCost; 3727 } 3728 return Cost; 3729 } 3730 3731 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3732 // factor VF. Return the cost of the instruction, including scalarization 3733 // overhead if it's needed. 3734 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3735 const TargetTransformInfo &TTI, 3736 const TargetLibraryInfo *TLI) { 3737 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3738 assert(ID && "Expected intrinsic call!"); 3739 3740 FastMathFlags FMF; 3741 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3742 FMF = FPMO->getFastMathFlags(); 3743 3744 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3745 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3746 } 3747 3748 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3749 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3750 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3751 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3752 } 3753 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3754 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3755 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3756 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3757 } 3758 3759 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3760 // For every instruction `I` in MinBWs, truncate the operands, create a 3761 // truncated version of `I` and reextend its result. InstCombine runs 3762 // later and will remove any ext/trunc pairs. 3763 // 3764 SmallPtrSet<Value *, 4> Erased; 3765 for (const auto &KV : Cost->getMinimalBitwidths()) { 3766 // If the value wasn't vectorized, we must maintain the original scalar 3767 // type. The absence of the value from VectorLoopValueMap indicates that it 3768 // wasn't vectorized. 3769 if (!VectorLoopValueMap.hasVector(KV.first)) 3770 continue; 3771 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3772 for (Value *&I : Parts) { 3773 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3774 continue; 3775 Type *OriginalTy = I->getType(); 3776 Type *ScalarTruncatedTy = 3777 IntegerType::get(OriginalTy->getContext(), KV.second); 3778 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3779 OriginalTy->getVectorNumElements()); 3780 if (TruncatedTy == OriginalTy) 3781 continue; 3782 3783 IRBuilder<> B(cast<Instruction>(I)); 3784 auto ShrinkOperand = [&](Value *V) -> Value * { 3785 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3786 if (ZI->getSrcTy() == TruncatedTy) 3787 return ZI->getOperand(0); 3788 return B.CreateZExtOrTrunc(V, TruncatedTy); 3789 }; 3790 3791 // The actual instruction modification depends on the instruction type, 3792 // unfortunately. 3793 Value *NewI = nullptr; 3794 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3795 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3796 ShrinkOperand(BO->getOperand(1))); 3797 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3798 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3799 NewI = 3800 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3801 ShrinkOperand(CI->getOperand(1))); 3802 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3803 NewI = B.CreateSelect(SI->getCondition(), 3804 ShrinkOperand(SI->getTrueValue()), 3805 ShrinkOperand(SI->getFalseValue())); 3806 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3807 switch (CI->getOpcode()) { 3808 default: 3809 llvm_unreachable("Unhandled cast!"); 3810 case Instruction::Trunc: 3811 NewI = ShrinkOperand(CI->getOperand(0)); 3812 break; 3813 case Instruction::SExt: 3814 NewI = B.CreateSExtOrTrunc( 3815 CI->getOperand(0), 3816 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3817 break; 3818 case Instruction::ZExt: 3819 NewI = B.CreateZExtOrTrunc( 3820 CI->getOperand(0), 3821 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3822 break; 3823 } 3824 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3825 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3826 auto *O0 = B.CreateZExtOrTrunc( 3827 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3828 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3829 auto *O1 = B.CreateZExtOrTrunc( 3830 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3831 3832 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3833 } else if (isa<LoadInst>(I)) { 3834 // Don't do anything with the operands, just extend the result. 3835 continue; 3836 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3837 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3838 auto *O0 = B.CreateZExtOrTrunc( 3839 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3840 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3841 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3842 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3843 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3844 auto *O0 = B.CreateZExtOrTrunc( 3845 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3846 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3847 } else { 3848 llvm_unreachable("Unhandled instruction type!"); 3849 } 3850 3851 // Lastly, extend the result. 3852 NewI->takeName(cast<Instruction>(I)); 3853 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3854 I->replaceAllUsesWith(Res); 3855 cast<Instruction>(I)->eraseFromParent(); 3856 Erased.insert(I); 3857 I = Res; 3858 } 3859 } 3860 3861 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3862 for (const auto &KV : Cost->getMinimalBitwidths()) { 3863 // If the value wasn't vectorized, we must maintain the original scalar 3864 // type. The absence of the value from VectorLoopValueMap indicates that it 3865 // wasn't vectorized. 3866 if (!VectorLoopValueMap.hasVector(KV.first)) 3867 continue; 3868 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3869 for (Value *&I : Parts) { 3870 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3871 if (Inst && Inst->use_empty()) { 3872 Value *NewI = Inst->getOperand(0); 3873 Inst->eraseFromParent(); 3874 I = NewI; 3875 } 3876 } 3877 } 3878 } 3879 3880 void InnerLoopVectorizer::vectorizeLoop() { 3881 //===------------------------------------------------===// 3882 // 3883 // Notice: any optimization or new instruction that go 3884 // into the code below should be also be implemented in 3885 // the cost-model. 3886 // 3887 //===------------------------------------------------===// 3888 3889 // Collect instructions from the original loop that will become trivially dead 3890 // in the vectorized loop. We don't need to vectorize these instructions. For 3891 // example, original induction update instructions can become dead because we 3892 // separately emit induction "steps" when generating code for the new loop. 3893 // Similarly, we create a new latch condition when setting up the structure 3894 // of the new loop, so the old one can become dead. 3895 SmallPtrSet<Instruction *, 4> DeadInstructions; 3896 collectTriviallyDeadInstructions(DeadInstructions); 3897 3898 // Scan the loop in a topological order to ensure that defs are vectorized 3899 // before users. 3900 LoopBlocksDFS DFS(OrigLoop); 3901 DFS.perform(LI); 3902 3903 // Vectorize all instructions in the original loop that will not become 3904 // trivially dead when vectorized. 3905 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3906 for (Instruction &I : *BB) 3907 if (!DeadInstructions.count(&I)) 3908 vectorizeInstruction(I); 3909 3910 // Insert truncates and extends for any truncated instructions as hints to 3911 // InstCombine. 3912 if (VF > 1) 3913 truncateToMinimalBitwidths(); 3914 3915 // At this point every instruction in the original loop is widened to a 3916 // vector form. Now we need to fix the recurrences in the loop. These PHI 3917 // nodes are currently empty because we did not want to introduce cycles. 3918 // This is the second stage of vectorizing recurrences. 3919 fixCrossIterationPHIs(); 3920 3921 // Update the dominator tree. 3922 // 3923 // FIXME: After creating the structure of the new loop, the dominator tree is 3924 // no longer up-to-date, and it remains that way until we update it 3925 // here. An out-of-date dominator tree is problematic for SCEV, 3926 // because SCEVExpander uses it to guide code generation. The 3927 // vectorizer use SCEVExpanders in several places. Instead, we should 3928 // keep the dominator tree up-to-date as we go. 3929 updateAnalysis(); 3930 3931 // Fix-up external users of the induction variables. 3932 for (auto &Entry : *Legal->getInductionVars()) 3933 fixupIVUsers(Entry.first, Entry.second, 3934 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3935 IVEndValues[Entry.first], LoopMiddleBlock); 3936 3937 fixLCSSAPHIs(); 3938 predicateInstructions(); 3939 3940 // Remove redundant induction instructions. 3941 cse(LoopVectorBody); 3942 } 3943 3944 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3945 // In order to support recurrences we need to be able to vectorize Phi nodes. 3946 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3947 // stage #2: We now need to fix the recurrences by adding incoming edges to 3948 // the currently empty PHI nodes. At this point every instruction in the 3949 // original loop is widened to a vector form so we can use them to construct 3950 // the incoming edges. 3951 for (Instruction &I : *OrigLoop->getHeader()) { 3952 PHINode *Phi = dyn_cast<PHINode>(&I); 3953 if (!Phi) 3954 break; 3955 // Handle first-order recurrences and reductions that need to be fixed. 3956 if (Legal->isFirstOrderRecurrence(Phi)) 3957 fixFirstOrderRecurrence(Phi); 3958 else if (Legal->isReductionVariable(Phi)) 3959 fixReduction(Phi); 3960 } 3961 } 3962 3963 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3964 3965 // This is the second phase of vectorizing first-order recurrences. An 3966 // overview of the transformation is described below. Suppose we have the 3967 // following loop. 3968 // 3969 // for (int i = 0; i < n; ++i) 3970 // b[i] = a[i] - a[i - 1]; 3971 // 3972 // There is a first-order recurrence on "a". For this loop, the shorthand 3973 // scalar IR looks like: 3974 // 3975 // scalar.ph: 3976 // s_init = a[-1] 3977 // br scalar.body 3978 // 3979 // scalar.body: 3980 // i = phi [0, scalar.ph], [i+1, scalar.body] 3981 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3982 // s2 = a[i] 3983 // b[i] = s2 - s1 3984 // br cond, scalar.body, ... 3985 // 3986 // In this example, s1 is a recurrence because it's value depends on the 3987 // previous iteration. In the first phase of vectorization, we created a 3988 // temporary value for s1. We now complete the vectorization and produce the 3989 // shorthand vector IR shown below (for VF = 4, UF = 1). 3990 // 3991 // vector.ph: 3992 // v_init = vector(..., ..., ..., a[-1]) 3993 // br vector.body 3994 // 3995 // vector.body 3996 // i = phi [0, vector.ph], [i+4, vector.body] 3997 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3998 // v2 = a[i, i+1, i+2, i+3]; 3999 // v3 = vector(v1(3), v2(0, 1, 2)) 4000 // b[i, i+1, i+2, i+3] = v2 - v3 4001 // br cond, vector.body, middle.block 4002 // 4003 // middle.block: 4004 // x = v2(3) 4005 // br scalar.ph 4006 // 4007 // scalar.ph: 4008 // s_init = phi [x, middle.block], [a[-1], otherwise] 4009 // br scalar.body 4010 // 4011 // After execution completes the vector loop, we extract the next value of 4012 // the recurrence (x) to use as the initial value in the scalar loop. 4013 4014 // Get the original loop preheader and single loop latch. 4015 auto *Preheader = OrigLoop->getLoopPreheader(); 4016 auto *Latch = OrigLoop->getLoopLatch(); 4017 4018 // Get the initial and previous values of the scalar recurrence. 4019 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4020 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4021 4022 // Create a vector from the initial value. 4023 auto *VectorInit = ScalarInit; 4024 if (VF > 1) { 4025 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4026 VectorInit = Builder.CreateInsertElement( 4027 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4028 Builder.getInt32(VF - 1), "vector.recur.init"); 4029 } 4030 4031 // We constructed a temporary phi node in the first phase of vectorization. 4032 // This phi node will eventually be deleted. 4033 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4034 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4035 4036 // Create a phi node for the new recurrence. The current value will either be 4037 // the initial value inserted into a vector or loop-varying vector value. 4038 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4039 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4040 4041 // Get the vectorized previous value. 4042 auto &PreviousParts = getVectorValue(Previous); 4043 4044 // Set the insertion point after the previous value if it is an instruction. 4045 // Note that the previous value may have been constant-folded so it is not 4046 // guaranteed to be an instruction in the vector loop. 4047 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousParts[UF - 1])) 4048 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4049 else 4050 Builder.SetInsertPoint( 4051 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4052 4053 // We will construct a vector for the recurrence by combining the values for 4054 // the current and previous iterations. This is the required shuffle mask. 4055 SmallVector<Constant *, 8> ShuffleMask(VF); 4056 ShuffleMask[0] = Builder.getInt32(VF - 1); 4057 for (unsigned I = 1; I < VF; ++I) 4058 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4059 4060 // The vector from which to take the initial value for the current iteration 4061 // (actual or unrolled). Initially, this is the vector phi node. 4062 Value *Incoming = VecPhi; 4063 4064 // Shuffle the current and previous vector and update the vector parts. 4065 for (unsigned Part = 0; Part < UF; ++Part) { 4066 auto *Shuffle = 4067 VF > 1 4068 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4069 ConstantVector::get(ShuffleMask)) 4070 : Incoming; 4071 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4072 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4073 PhiParts[Part] = Shuffle; 4074 Incoming = PreviousParts[Part]; 4075 } 4076 4077 // Fix the latch value of the new recurrence in the vector loop. 4078 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4079 4080 // Extract the last vector element in the middle block. This will be the 4081 // initial value for the recurrence when jumping to the scalar loop. 4082 auto *ExtractForScalar = Incoming; 4083 if (VF > 1) { 4084 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4085 ExtractForScalar = Builder.CreateExtractElement( 4086 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4087 } 4088 // Extract the second last element in the middle block if the 4089 // Phi is used outside the loop. We need to extract the phi itself 4090 // and not the last element (the phi update in the current iteration). This 4091 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4092 // when the scalar loop is not run at all. 4093 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4094 if (VF > 1) 4095 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4096 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4097 // When loop is unrolled without vectorizing, initialize 4098 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4099 // `Incoming`. This is analogous to the vectorized case above: extracting the 4100 // second last element when VF > 1. 4101 else if (UF > 1) 4102 ExtractForPhiUsedOutsideLoop = PreviousParts[UF - 2]; 4103 4104 // Fix the initial value of the original recurrence in the scalar loop. 4105 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4106 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4107 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4108 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4109 Start->addIncoming(Incoming, BB); 4110 } 4111 4112 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4113 Phi->setName("scalar.recur"); 4114 4115 // Finally, fix users of the recurrence outside the loop. The users will need 4116 // either the last value of the scalar recurrence or the last value of the 4117 // vector recurrence we extracted in the middle block. Since the loop is in 4118 // LCSSA form, we just need to find the phi node for the original scalar 4119 // recurrence in the exit block, and then add an edge for the middle block. 4120 for (auto &I : *LoopExitBlock) { 4121 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4122 if (!LCSSAPhi) 4123 break; 4124 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4125 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4126 break; 4127 } 4128 } 4129 } 4130 4131 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4132 Constant *Zero = Builder.getInt32(0); 4133 4134 // Get it's reduction variable descriptor. 4135 assert(Legal->isReductionVariable(Phi) && 4136 "Unable to find the reduction variable"); 4137 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4138 4139 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4140 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4141 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4142 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4143 RdxDesc.getMinMaxRecurrenceKind(); 4144 setDebugLocFromInst(Builder, ReductionStartValue); 4145 4146 // We need to generate a reduction vector from the incoming scalar. 4147 // To do so, we need to generate the 'identity' vector and override 4148 // one of the elements with the incoming scalar reduction. We need 4149 // to do it in the vector-loop preheader. 4150 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 4151 4152 // This is the vector-clone of the value that leaves the loop. 4153 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 4154 Type *VecTy = VectorExit[0]->getType(); 4155 4156 // Find the reduction identity variable. Zero for addition, or, xor, 4157 // one for multiplication, -1 for And. 4158 Value *Identity; 4159 Value *VectorStart; 4160 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4161 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4162 // MinMax reduction have the start value as their identify. 4163 if (VF == 1) { 4164 VectorStart = Identity = ReductionStartValue; 4165 } else { 4166 VectorStart = Identity = 4167 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4168 } 4169 } else { 4170 // Handle other reduction kinds: 4171 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4172 RK, VecTy->getScalarType()); 4173 if (VF == 1) { 4174 Identity = Iden; 4175 // This vector is the Identity vector where the first element is the 4176 // incoming scalar reduction. 4177 VectorStart = ReductionStartValue; 4178 } else { 4179 Identity = ConstantVector::getSplat(VF, Iden); 4180 4181 // This vector is the Identity vector where the first element is the 4182 // incoming scalar reduction. 4183 VectorStart = 4184 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4185 } 4186 } 4187 4188 // Fix the vector-loop phi. 4189 4190 // Reductions do not have to start at zero. They can start with 4191 // any loop invariant values. 4192 const VectorParts &VecRdxPhi = getVectorValue(Phi); 4193 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4194 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4195 const VectorParts &Val = getVectorValue(LoopVal); 4196 for (unsigned part = 0; part < UF; ++part) { 4197 // Make sure to add the reduction stat value only to the 4198 // first unroll part. 4199 Value *StartVal = (part == 0) ? VectorStart : Identity; 4200 cast<PHINode>(VecRdxPhi[part]) 4201 ->addIncoming(StartVal, LoopVectorPreHeader); 4202 cast<PHINode>(VecRdxPhi[part]) 4203 ->addIncoming(Val[part], LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4204 } 4205 4206 // Before each round, move the insertion point right between 4207 // the PHIs and the values we are going to write. 4208 // This allows us to write both PHINodes and the extractelement 4209 // instructions. 4210 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4211 4212 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 4213 setDebugLocFromInst(Builder, LoopExitInst); 4214 4215 // If the vector reduction can be performed in a smaller type, we truncate 4216 // then extend the loop exit value to enable InstCombine to evaluate the 4217 // entire expression in the smaller type. 4218 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4219 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4220 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4221 for (unsigned part = 0; part < UF; ++part) { 4222 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4223 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4224 : Builder.CreateZExt(Trunc, VecTy); 4225 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4226 UI != RdxParts[part]->user_end();) 4227 if (*UI != Trunc) { 4228 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4229 RdxParts[part] = Extnd; 4230 } else { 4231 ++UI; 4232 } 4233 } 4234 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4235 for (unsigned part = 0; part < UF; ++part) 4236 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4237 } 4238 4239 // Reduce all of the unrolled parts into a single vector. 4240 Value *ReducedPartRdx = RdxParts[0]; 4241 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4242 setDebugLocFromInst(Builder, ReducedPartRdx); 4243 for (unsigned part = 1; part < UF; ++part) { 4244 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4245 // Floating point operations had to be 'fast' to enable the reduction. 4246 ReducedPartRdx = addFastMathFlag( 4247 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4248 ReducedPartRdx, "bin.rdx")); 4249 else 4250 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4251 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4252 } 4253 4254 if (VF > 1) { 4255 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 4256 // and vector ops, reducing the set of values being computed by half each 4257 // round. 4258 assert(isPowerOf2_32(VF) && 4259 "Reduction emission only supported for pow2 vectors!"); 4260 Value *TmpVec = ReducedPartRdx; 4261 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 4262 for (unsigned i = VF; i != 1; i >>= 1) { 4263 // Move the upper half of the vector to the lower half. 4264 for (unsigned j = 0; j != i / 2; ++j) 4265 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 4266 4267 // Fill the rest of the mask with undef. 4268 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 4269 UndefValue::get(Builder.getInt32Ty())); 4270 4271 Value *Shuf = Builder.CreateShuffleVector( 4272 TmpVec, UndefValue::get(TmpVec->getType()), 4273 ConstantVector::get(ShuffleMask), "rdx.shuf"); 4274 4275 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4276 // Floating point operations had to be 'fast' to enable the reduction. 4277 TmpVec = addFastMathFlag(Builder.CreateBinOp( 4278 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 4279 else 4280 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 4281 TmpVec, Shuf); 4282 } 4283 4284 // The result is in the first element of the vector. 4285 ReducedPartRdx = 4286 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4287 4288 // If the reduction can be performed in a smaller type, we need to extend 4289 // the reduction to the wider type before we branch to the original loop. 4290 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4291 ReducedPartRdx = 4292 RdxDesc.isSigned() 4293 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4294 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4295 } 4296 4297 // Create a phi node that merges control-flow from the backedge-taken check 4298 // block and the middle block. 4299 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4300 LoopScalarPreHeader->getTerminator()); 4301 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4302 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4303 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4304 4305 // Now, we need to fix the users of the reduction variable 4306 // inside and outside of the scalar remainder loop. 4307 // We know that the loop is in LCSSA form. We need to update the 4308 // PHI nodes in the exit blocks. 4309 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4310 LEE = LoopExitBlock->end(); 4311 LEI != LEE; ++LEI) { 4312 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4313 if (!LCSSAPhi) 4314 break; 4315 4316 // All PHINodes need to have a single entry edge, or two if 4317 // we already fixed them. 4318 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4319 4320 // We found a reduction value exit-PHI. Update it with the 4321 // incoming bypass edge. 4322 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4323 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4324 } // end of the LCSSA phi scan. 4325 4326 // Fix the scalar loop reduction variable with the incoming reduction sum 4327 // from the vector body and from the backedge value. 4328 int IncomingEdgeBlockIdx = 4329 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4330 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4331 // Pick the other block. 4332 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4333 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4334 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4335 } 4336 4337 void InnerLoopVectorizer::fixLCSSAPHIs() { 4338 for (Instruction &LEI : *LoopExitBlock) { 4339 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4340 if (!LCSSAPhi) 4341 break; 4342 if (LCSSAPhi->getNumIncomingValues() == 1) 4343 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4344 LoopMiddleBlock); 4345 } 4346 } 4347 4348 void InnerLoopVectorizer::collectTriviallyDeadInstructions( 4349 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 4350 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4351 4352 // We create new control-flow for the vectorized loop, so the original 4353 // condition will be dead after vectorization if it's only used by the 4354 // branch. 4355 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4356 if (Cmp && Cmp->hasOneUse()) 4357 DeadInstructions.insert(Cmp); 4358 4359 // We create new "steps" for induction variable updates to which the original 4360 // induction variables map. An original update instruction will be dead if 4361 // all its users except the induction variable are dead. 4362 for (auto &Induction : *Legal->getInductionVars()) { 4363 PHINode *Ind = Induction.first; 4364 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4365 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4366 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4367 })) 4368 DeadInstructions.insert(IndUpdate); 4369 } 4370 } 4371 4372 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4373 4374 // The basic block and loop containing the predicated instruction. 4375 auto *PredBB = PredInst->getParent(); 4376 auto *VectorLoop = LI->getLoopFor(PredBB); 4377 4378 // Initialize a worklist with the operands of the predicated instruction. 4379 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4380 4381 // Holds instructions that we need to analyze again. An instruction may be 4382 // reanalyzed if we don't yet know if we can sink it or not. 4383 SmallVector<Instruction *, 8> InstsToReanalyze; 4384 4385 // Returns true if a given use occurs in the predicated block. Phi nodes use 4386 // their operands in their corresponding predecessor blocks. 4387 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4388 auto *I = cast<Instruction>(U.getUser()); 4389 BasicBlock *BB = I->getParent(); 4390 if (auto *Phi = dyn_cast<PHINode>(I)) 4391 BB = Phi->getIncomingBlock( 4392 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4393 return BB == PredBB; 4394 }; 4395 4396 // Iteratively sink the scalarized operands of the predicated instruction 4397 // into the block we created for it. When an instruction is sunk, it's 4398 // operands are then added to the worklist. The algorithm ends after one pass 4399 // through the worklist doesn't sink a single instruction. 4400 bool Changed; 4401 do { 4402 4403 // Add the instructions that need to be reanalyzed to the worklist, and 4404 // reset the changed indicator. 4405 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4406 InstsToReanalyze.clear(); 4407 Changed = false; 4408 4409 while (!Worklist.empty()) { 4410 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4411 4412 // We can't sink an instruction if it is a phi node, is already in the 4413 // predicated block, is not in the loop, or may have side effects. 4414 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4415 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4416 continue; 4417 4418 // It's legal to sink the instruction if all its uses occur in the 4419 // predicated block. Otherwise, there's nothing to do yet, and we may 4420 // need to reanalyze the instruction. 4421 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4422 InstsToReanalyze.push_back(I); 4423 continue; 4424 } 4425 4426 // Move the instruction to the beginning of the predicated block, and add 4427 // it's operands to the worklist. 4428 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4429 Worklist.insert(I->op_begin(), I->op_end()); 4430 4431 // The sinking may have enabled other instructions to be sunk, so we will 4432 // need to iterate. 4433 Changed = true; 4434 } 4435 } while (Changed); 4436 } 4437 4438 void InnerLoopVectorizer::predicateInstructions() { 4439 4440 // For each instruction I marked for predication on value C, split I into its 4441 // own basic block to form an if-then construct over C. Since I may be fed by 4442 // an extractelement instruction or other scalar operand, we try to 4443 // iteratively sink its scalar operands into the predicated block. If I feeds 4444 // an insertelement instruction, we try to move this instruction into the 4445 // predicated block as well. For non-void types, a phi node will be created 4446 // for the resulting value (either vector or scalar). 4447 // 4448 // So for some predicated instruction, e.g. the conditional sdiv in: 4449 // 4450 // for.body: 4451 // ... 4452 // %add = add nsw i32 %mul, %0 4453 // %cmp5 = icmp sgt i32 %2, 7 4454 // br i1 %cmp5, label %if.then, label %if.end 4455 // 4456 // if.then: 4457 // %div = sdiv i32 %0, %1 4458 // br label %if.end 4459 // 4460 // if.end: 4461 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4462 // 4463 // the sdiv at this point is scalarized and if-converted using a select. 4464 // The inactive elements in the vector are not used, but the predicated 4465 // instruction is still executed for all vector elements, essentially: 4466 // 4467 // vector.body: 4468 // ... 4469 // %17 = add nsw <2 x i32> %16, %wide.load 4470 // %29 = extractelement <2 x i32> %wide.load, i32 0 4471 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4472 // %31 = sdiv i32 %29, %30 4473 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4474 // %35 = extractelement <2 x i32> %wide.load, i32 1 4475 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4476 // %37 = sdiv i32 %35, %36 4477 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4478 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4479 // 4480 // Predication will now re-introduce the original control flow to avoid false 4481 // side-effects by the sdiv instructions on the inactive elements, yielding 4482 // (after cleanup): 4483 // 4484 // vector.body: 4485 // ... 4486 // %5 = add nsw <2 x i32> %4, %wide.load 4487 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4488 // %9 = extractelement <2 x i1> %8, i32 0 4489 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4490 // 4491 // pred.sdiv.if: 4492 // %10 = extractelement <2 x i32> %wide.load, i32 0 4493 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4494 // %12 = sdiv i32 %10, %11 4495 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4496 // br label %pred.sdiv.continue 4497 // 4498 // pred.sdiv.continue: 4499 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4500 // %15 = extractelement <2 x i1> %8, i32 1 4501 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4502 // 4503 // pred.sdiv.if54: 4504 // %16 = extractelement <2 x i32> %wide.load, i32 1 4505 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4506 // %18 = sdiv i32 %16, %17 4507 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4508 // br label %pred.sdiv.continue55 4509 // 4510 // pred.sdiv.continue55: 4511 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4512 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4513 4514 for (auto KV : PredicatedInstructions) { 4515 BasicBlock::iterator I(KV.first); 4516 BasicBlock *Head = I->getParent(); 4517 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4518 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4519 /*BranchWeights=*/nullptr, DT, LI); 4520 I->moveBefore(T); 4521 sinkScalarOperands(&*I); 4522 4523 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4524 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4525 4526 // If the instruction is non-void create a Phi node at reconvergence point. 4527 if (!I->getType()->isVoidTy()) { 4528 Value *IncomingTrue = nullptr; 4529 Value *IncomingFalse = nullptr; 4530 4531 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4532 // If the predicated instruction is feeding an insert-element, move it 4533 // into the Then block; Phi node will be created for the vector. 4534 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4535 IEI->moveBefore(T); 4536 IncomingTrue = IEI; // the new vector with the inserted element. 4537 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4538 } else { 4539 // Phi node will be created for the scalar predicated instruction. 4540 IncomingTrue = &*I; 4541 IncomingFalse = UndefValue::get(I->getType()); 4542 } 4543 4544 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4545 assert(PostDom && "Then block has multiple successors"); 4546 PHINode *Phi = 4547 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4548 IncomingTrue->replaceAllUsesWith(Phi); 4549 Phi->addIncoming(IncomingFalse, Head); 4550 Phi->addIncoming(IncomingTrue, I->getParent()); 4551 } 4552 } 4553 4554 DEBUG(DT->verifyDomTree()); 4555 } 4556 4557 InnerLoopVectorizer::VectorParts 4558 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4559 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4560 4561 // Look for cached value. 4562 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4563 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4564 if (ECEntryIt != MaskCache.end()) 4565 return ECEntryIt->second; 4566 4567 VectorParts SrcMask = createBlockInMask(Src); 4568 4569 // The terminator has to be a branch inst! 4570 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4571 assert(BI && "Unexpected terminator found"); 4572 4573 if (BI->isConditional()) { 4574 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4575 4576 if (BI->getSuccessor(0) != Dst) 4577 for (unsigned part = 0; part < UF; ++part) 4578 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4579 4580 for (unsigned part = 0; part < UF; ++part) 4581 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4582 4583 MaskCache[Edge] = EdgeMask; 4584 return EdgeMask; 4585 } 4586 4587 MaskCache[Edge] = SrcMask; 4588 return SrcMask; 4589 } 4590 4591 InnerLoopVectorizer::VectorParts 4592 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4593 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4594 4595 // Loop incoming mask is all-one. 4596 if (OrigLoop->getHeader() == BB) { 4597 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4598 return getVectorValue(C); 4599 } 4600 4601 // This is the block mask. We OR all incoming edges, and with zero. 4602 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4603 VectorParts BlockMask = getVectorValue(Zero); 4604 4605 // For each pred: 4606 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4607 VectorParts EM = createEdgeMask(*it, BB); 4608 for (unsigned part = 0; part < UF; ++part) 4609 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4610 } 4611 4612 return BlockMask; 4613 } 4614 4615 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4616 unsigned VF) { 4617 PHINode *P = cast<PHINode>(PN); 4618 // In order to support recurrences we need to be able to vectorize Phi nodes. 4619 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4620 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4621 // this value when we vectorize all of the instructions that use the PHI. 4622 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4623 VectorParts Entry(UF); 4624 for (unsigned part = 0; part < UF; ++part) { 4625 // This is phase one of vectorizing PHIs. 4626 Type *VecTy = 4627 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4628 Entry[part] = PHINode::Create( 4629 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4630 } 4631 VectorLoopValueMap.initVector(P, Entry); 4632 return; 4633 } 4634 4635 setDebugLocFromInst(Builder, P); 4636 // Check for PHI nodes that are lowered to vector selects. 4637 if (P->getParent() != OrigLoop->getHeader()) { 4638 // We know that all PHIs in non-header blocks are converted into 4639 // selects, so we don't have to worry about the insertion order and we 4640 // can just use the builder. 4641 // At this point we generate the predication tree. There may be 4642 // duplications since this is a simple recursive scan, but future 4643 // optimizations will clean it up. 4644 4645 unsigned NumIncoming = P->getNumIncomingValues(); 4646 4647 // Generate a sequence of selects of the form: 4648 // SELECT(Mask3, In3, 4649 // SELECT(Mask2, In2, 4650 // ( ...))) 4651 VectorParts Entry(UF); 4652 for (unsigned In = 0; In < NumIncoming; In++) { 4653 VectorParts Cond = 4654 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4655 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4656 4657 for (unsigned part = 0; part < UF; ++part) { 4658 // We might have single edge PHIs (blocks) - use an identity 4659 // 'select' for the first PHI operand. 4660 if (In == 0) 4661 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4662 else 4663 // Select between the current value and the previous incoming edge 4664 // based on the incoming mask. 4665 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4666 "predphi"); 4667 } 4668 } 4669 VectorLoopValueMap.initVector(P, Entry); 4670 return; 4671 } 4672 4673 // This PHINode must be an induction variable. 4674 // Make sure that we know about it. 4675 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4676 4677 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4678 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4679 4680 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4681 // which can be found from the original scalar operations. 4682 switch (II.getKind()) { 4683 case InductionDescriptor::IK_NoInduction: 4684 llvm_unreachable("Unknown induction"); 4685 case InductionDescriptor::IK_IntInduction: 4686 case InductionDescriptor::IK_FpInduction: 4687 return widenIntOrFpInduction(P); 4688 case InductionDescriptor::IK_PtrInduction: { 4689 // Handle the pointer induction variable case. 4690 assert(P->getType()->isPointerTy() && "Unexpected type."); 4691 // This is the normalized GEP that starts counting at zero. 4692 Value *PtrInd = Induction; 4693 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4694 // Determine the number of scalars we need to generate for each unroll 4695 // iteration. If the instruction is uniform, we only need to generate the 4696 // first lane. Otherwise, we generate all VF values. 4697 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4698 // These are the scalar results. Notice that we don't generate vector GEPs 4699 // because scalar GEPs result in better code. 4700 ScalarParts Entry(UF); 4701 for (unsigned Part = 0; Part < UF; ++Part) { 4702 Entry[Part].resize(VF); 4703 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4704 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4705 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4706 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4707 SclrGep->setName("next.gep"); 4708 Entry[Part][Lane] = SclrGep; 4709 } 4710 } 4711 VectorLoopValueMap.initScalar(P, Entry); 4712 return; 4713 } 4714 } 4715 } 4716 4717 /// A helper function for checking whether an integer division-related 4718 /// instruction may divide by zero (in which case it must be predicated if 4719 /// executed conditionally in the scalar code). 4720 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4721 /// Non-zero divisors that are non compile-time constants will not be 4722 /// converted into multiplication, so we will still end up scalarizing 4723 /// the division, but can do so w/o predication. 4724 static bool mayDivideByZero(Instruction &I) { 4725 assert((I.getOpcode() == Instruction::UDiv || 4726 I.getOpcode() == Instruction::SDiv || 4727 I.getOpcode() == Instruction::URem || 4728 I.getOpcode() == Instruction::SRem) && 4729 "Unexpected instruction"); 4730 Value *Divisor = I.getOperand(1); 4731 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4732 return !CInt || CInt->isZero(); 4733 } 4734 4735 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) { 4736 // Scalarize instructions that should remain scalar after vectorization. 4737 if (VF > 1 && 4738 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) && 4739 shouldScalarizeInstruction(&I)) { 4740 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4741 return; 4742 } 4743 4744 switch (I.getOpcode()) { 4745 case Instruction::Br: 4746 // Nothing to do for PHIs and BR, since we already took care of the 4747 // loop control flow instructions. 4748 break; 4749 case Instruction::PHI: { 4750 // Vectorize PHINodes. 4751 widenPHIInstruction(&I, UF, VF); 4752 break; 4753 } // End of PHI. 4754 case Instruction::GetElementPtr: { 4755 // Construct a vector GEP by widening the operands of the scalar GEP as 4756 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4757 // results in a vector of pointers when at least one operand of the GEP 4758 // is vector-typed. Thus, to keep the representation compact, we only use 4759 // vector-typed operands for loop-varying values. 4760 auto *GEP = cast<GetElementPtrInst>(&I); 4761 VectorParts Entry(UF); 4762 4763 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4764 // If we are vectorizing, but the GEP has only loop-invariant operands, 4765 // the GEP we build (by only using vector-typed operands for 4766 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4767 // produce a vector of pointers, we need to either arbitrarily pick an 4768 // operand to broadcast, or broadcast a clone of the original GEP. 4769 // Here, we broadcast a clone of the original. 4770 // 4771 // TODO: If at some point we decide to scalarize instructions having 4772 // loop-invariant operands, this special case will no longer be 4773 // required. We would add the scalarization decision to 4774 // collectLoopScalars() and teach getVectorValue() to broadcast 4775 // the lane-zero scalar value. 4776 auto *Clone = Builder.Insert(GEP->clone()); 4777 for (unsigned Part = 0; Part < UF; ++Part) 4778 Entry[Part] = Builder.CreateVectorSplat(VF, Clone); 4779 } else { 4780 // If the GEP has at least one loop-varying operand, we are sure to 4781 // produce a vector of pointers. But if we are only unrolling, we want 4782 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4783 // produce with the code below will be scalar (if VF == 1) or vector 4784 // (otherwise). Note that for the unroll-only case, we still maintain 4785 // values in the vector mapping with initVector, as we do for other 4786 // instructions. 4787 for (unsigned Part = 0; Part < UF; ++Part) { 4788 4789 // The pointer operand of the new GEP. If it's loop-invariant, we 4790 // won't broadcast it. 4791 auto *Ptr = OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4792 ? GEP->getPointerOperand() 4793 : getVectorValue(GEP->getPointerOperand())[Part]; 4794 4795 // Collect all the indices for the new GEP. If any index is 4796 // loop-invariant, we won't broadcast it. 4797 SmallVector<Value *, 4> Indices; 4798 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4799 if (OrigLoop->isLoopInvariant(U.get())) 4800 Indices.push_back(U.get()); 4801 else 4802 Indices.push_back(getVectorValue(U.get())[Part]); 4803 } 4804 4805 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4806 // but it should be a vector, otherwise. 4807 auto *NewGEP = GEP->isInBounds() 4808 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4809 : Builder.CreateGEP(Ptr, Indices); 4810 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4811 "NewGEP is not a pointer vector"); 4812 Entry[Part] = NewGEP; 4813 } 4814 } 4815 4816 VectorLoopValueMap.initVector(&I, Entry); 4817 addMetadata(Entry, GEP); 4818 break; 4819 } 4820 case Instruction::UDiv: 4821 case Instruction::SDiv: 4822 case Instruction::SRem: 4823 case Instruction::URem: 4824 // Scalarize with predication if this instruction may divide by zero and 4825 // block execution is conditional, otherwise fallthrough. 4826 if (Legal->isScalarWithPredication(&I)) { 4827 scalarizeInstruction(&I, true); 4828 break; 4829 } 4830 case Instruction::Add: 4831 case Instruction::FAdd: 4832 case Instruction::Sub: 4833 case Instruction::FSub: 4834 case Instruction::Mul: 4835 case Instruction::FMul: 4836 case Instruction::FDiv: 4837 case Instruction::FRem: 4838 case Instruction::Shl: 4839 case Instruction::LShr: 4840 case Instruction::AShr: 4841 case Instruction::And: 4842 case Instruction::Or: 4843 case Instruction::Xor: { 4844 // Just widen binops. 4845 auto *BinOp = cast<BinaryOperator>(&I); 4846 setDebugLocFromInst(Builder, BinOp); 4847 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4848 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4849 4850 // Use this vector value for all users of the original instruction. 4851 VectorParts Entry(UF); 4852 for (unsigned Part = 0; Part < UF; ++Part) { 4853 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4854 4855 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4856 VecOp->copyIRFlags(BinOp); 4857 4858 Entry[Part] = V; 4859 } 4860 4861 VectorLoopValueMap.initVector(&I, Entry); 4862 addMetadata(Entry, BinOp); 4863 break; 4864 } 4865 case Instruction::Select: { 4866 // Widen selects. 4867 // If the selector is loop invariant we can create a select 4868 // instruction with a scalar condition. Otherwise, use vector-select. 4869 auto *SE = PSE.getSE(); 4870 bool InvariantCond = 4871 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4872 setDebugLocFromInst(Builder, &I); 4873 4874 // The condition can be loop invariant but still defined inside the 4875 // loop. This means that we can't just use the original 'cond' value. 4876 // We have to take the 'vectorized' value and pick the first lane. 4877 // Instcombine will make this a no-op. 4878 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4879 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4880 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4881 4882 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4883 4884 VectorParts Entry(UF); 4885 for (unsigned Part = 0; Part < UF; ++Part) { 4886 Entry[Part] = Builder.CreateSelect( 4887 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4888 } 4889 4890 VectorLoopValueMap.initVector(&I, Entry); 4891 addMetadata(Entry, &I); 4892 break; 4893 } 4894 4895 case Instruction::ICmp: 4896 case Instruction::FCmp: { 4897 // Widen compares. Generate vector compares. 4898 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4899 auto *Cmp = dyn_cast<CmpInst>(&I); 4900 setDebugLocFromInst(Builder, Cmp); 4901 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4902 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4903 VectorParts Entry(UF); 4904 for (unsigned Part = 0; Part < UF; ++Part) { 4905 Value *C = nullptr; 4906 if (FCmp) { 4907 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4908 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4909 } else { 4910 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4911 } 4912 Entry[Part] = C; 4913 } 4914 4915 VectorLoopValueMap.initVector(&I, Entry); 4916 addMetadata(Entry, &I); 4917 break; 4918 } 4919 4920 case Instruction::Store: 4921 case Instruction::Load: 4922 vectorizeMemoryInstruction(&I); 4923 break; 4924 case Instruction::ZExt: 4925 case Instruction::SExt: 4926 case Instruction::FPToUI: 4927 case Instruction::FPToSI: 4928 case Instruction::FPExt: 4929 case Instruction::PtrToInt: 4930 case Instruction::IntToPtr: 4931 case Instruction::SIToFP: 4932 case Instruction::UIToFP: 4933 case Instruction::Trunc: 4934 case Instruction::FPTrunc: 4935 case Instruction::BitCast: { 4936 auto *CI = dyn_cast<CastInst>(&I); 4937 setDebugLocFromInst(Builder, CI); 4938 4939 // Optimize the special case where the source is a constant integer 4940 // induction variable. Notice that we can only optimize the 'trunc' case 4941 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4942 // (c) other casts depend on pointer size. 4943 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4944 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4945 cast<TruncInst>(CI)); 4946 break; 4947 } 4948 4949 /// Vectorize casts. 4950 Type *DestTy = 4951 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4952 4953 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4954 VectorParts Entry(UF); 4955 for (unsigned Part = 0; Part < UF; ++Part) 4956 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4957 VectorLoopValueMap.initVector(&I, Entry); 4958 addMetadata(Entry, &I); 4959 break; 4960 } 4961 4962 case Instruction::Call: { 4963 // Ignore dbg intrinsics. 4964 if (isa<DbgInfoIntrinsic>(I)) 4965 break; 4966 setDebugLocFromInst(Builder, &I); 4967 4968 Module *M = I.getParent()->getParent()->getParent(); 4969 auto *CI = cast<CallInst>(&I); 4970 4971 StringRef FnName = CI->getCalledFunction()->getName(); 4972 Function *F = CI->getCalledFunction(); 4973 Type *RetTy = ToVectorTy(CI->getType(), VF); 4974 SmallVector<Type *, 4> Tys; 4975 for (Value *ArgOperand : CI->arg_operands()) 4976 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4977 4978 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4979 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4980 ID == Intrinsic::lifetime_start)) { 4981 scalarizeInstruction(&I); 4982 break; 4983 } 4984 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4985 // version of the instruction. 4986 // Is it beneficial to perform intrinsic call compared to lib call? 4987 bool NeedToScalarize; 4988 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4989 bool UseVectorIntrinsic = 4990 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4991 if (!UseVectorIntrinsic && NeedToScalarize) { 4992 scalarizeInstruction(&I); 4993 break; 4994 } 4995 4996 VectorParts Entry(UF); 4997 for (unsigned Part = 0; Part < UF; ++Part) { 4998 SmallVector<Value *, 4> Args; 4999 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 5000 Value *Arg = CI->getArgOperand(i); 5001 // Some intrinsics have a scalar argument - don't replace it with a 5002 // vector. 5003 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 5004 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 5005 Arg = VectorArg[Part]; 5006 } 5007 Args.push_back(Arg); 5008 } 5009 5010 Function *VectorF; 5011 if (UseVectorIntrinsic) { 5012 // Use vector version of the intrinsic. 5013 Type *TysForDecl[] = {CI->getType()}; 5014 if (VF > 1) 5015 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5016 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5017 } else { 5018 // Use vector version of the library call. 5019 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 5020 assert(!VFnName.empty() && "Vector function name is empty."); 5021 VectorF = M->getFunction(VFnName); 5022 if (!VectorF) { 5023 // Generate a declaration 5024 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 5025 VectorF = 5026 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 5027 VectorF->copyAttributesFrom(F); 5028 } 5029 } 5030 assert(VectorF && "Can't create vector function."); 5031 5032 SmallVector<OperandBundleDef, 1> OpBundles; 5033 CI->getOperandBundlesAsDefs(OpBundles); 5034 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5035 5036 if (isa<FPMathOperator>(V)) 5037 V->copyFastMathFlags(CI); 5038 5039 Entry[Part] = V; 5040 } 5041 5042 VectorLoopValueMap.initVector(&I, Entry); 5043 addMetadata(Entry, &I); 5044 break; 5045 } 5046 5047 default: 5048 // All other instructions are unsupported. Scalarize them. 5049 scalarizeInstruction(&I); 5050 break; 5051 } // end of switch. 5052 } 5053 5054 void InnerLoopVectorizer::updateAnalysis() { 5055 // Forget the original basic block. 5056 PSE.getSE()->forgetLoop(OrigLoop); 5057 5058 // Update the dominator tree information. 5059 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5060 "Entry does not dominate exit."); 5061 5062 DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(), 5063 LoopVectorPreHeader); 5064 DT->addNewBlock(LoopMiddleBlock, 5065 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 5066 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5067 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5068 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5069 5070 DEBUG(DT->verifyDomTree()); 5071 } 5072 5073 /// \brief Check whether it is safe to if-convert this phi node. 5074 /// 5075 /// Phi nodes with constant expressions that can trap are not safe to if 5076 /// convert. 5077 static bool canIfConvertPHINodes(BasicBlock *BB) { 5078 for (Instruction &I : *BB) { 5079 auto *Phi = dyn_cast<PHINode>(&I); 5080 if (!Phi) 5081 return true; 5082 for (Value *V : Phi->incoming_values()) 5083 if (auto *C = dyn_cast<Constant>(V)) 5084 if (C->canTrap()) 5085 return false; 5086 } 5087 return true; 5088 } 5089 5090 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5091 if (!EnableIfConversion) { 5092 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5093 << "if-conversion is disabled"); 5094 return false; 5095 } 5096 5097 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5098 5099 // A list of pointers that we can safely read and write to. 5100 SmallPtrSet<Value *, 8> SafePointes; 5101 5102 // Collect safe addresses. 5103 for (BasicBlock *BB : TheLoop->blocks()) { 5104 if (blockNeedsPredication(BB)) 5105 continue; 5106 5107 for (Instruction &I : *BB) 5108 if (auto *Ptr = getPointerOperand(&I)) 5109 SafePointes.insert(Ptr); 5110 } 5111 5112 // Collect the blocks that need predication. 5113 BasicBlock *Header = TheLoop->getHeader(); 5114 for (BasicBlock *BB : TheLoop->blocks()) { 5115 // We don't support switch statements inside loops. 5116 if (!isa<BranchInst>(BB->getTerminator())) { 5117 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5118 << "loop contains a switch statement"); 5119 return false; 5120 } 5121 5122 // We must be able to predicate all blocks that need to be predicated. 5123 if (blockNeedsPredication(BB)) { 5124 if (!blockCanBePredicated(BB, SafePointes)) { 5125 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5126 << "control flow cannot be substituted for a select"); 5127 return false; 5128 } 5129 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5130 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5131 << "control flow cannot be substituted for a select"); 5132 return false; 5133 } 5134 } 5135 5136 // We can if-convert this loop. 5137 return true; 5138 } 5139 5140 bool LoopVectorizationLegality::canVectorize() { 5141 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5142 // be canonicalized. 5143 if (!TheLoop->getLoopPreheader()) { 5144 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5145 << "loop control flow is not understood by vectorizer"); 5146 return false; 5147 } 5148 5149 // FIXME: The code is currently dead, since the loop gets sent to 5150 // LoopVectorizationLegality is already an innermost loop. 5151 // 5152 // We can only vectorize innermost loops. 5153 if (!TheLoop->empty()) { 5154 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5155 << "loop is not the innermost loop"); 5156 return false; 5157 } 5158 5159 // We must have a single backedge. 5160 if (TheLoop->getNumBackEdges() != 1) { 5161 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5162 << "loop control flow is not understood by vectorizer"); 5163 return false; 5164 } 5165 5166 // We must have a single exiting block. 5167 if (!TheLoop->getExitingBlock()) { 5168 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5169 << "loop control flow is not understood by vectorizer"); 5170 return false; 5171 } 5172 5173 // We only handle bottom-tested loops, i.e. loop in which the condition is 5174 // checked at the end of each iteration. With that we can assume that all 5175 // instructions in the loop are executed the same number of times. 5176 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5177 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5178 << "loop control flow is not understood by vectorizer"); 5179 return false; 5180 } 5181 5182 // We need to have a loop header. 5183 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5184 << '\n'); 5185 5186 // Check if we can if-convert non-single-bb loops. 5187 unsigned NumBlocks = TheLoop->getNumBlocks(); 5188 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5189 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5190 return false; 5191 } 5192 5193 // ScalarEvolution needs to be able to find the exit count. 5194 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5195 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5196 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5197 << "could not determine number of loop iterations"); 5198 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5199 return false; 5200 } 5201 5202 // Check if we can vectorize the instructions and CFG in this loop. 5203 if (!canVectorizeInstrs()) { 5204 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5205 return false; 5206 } 5207 5208 // Go over each instruction and look at memory deps. 5209 if (!canVectorizeMemory()) { 5210 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5211 return false; 5212 } 5213 5214 DEBUG(dbgs() << "LV: We can vectorize this loop" 5215 << (LAI->getRuntimePointerChecking()->Need 5216 ? " (with a runtime bound check)" 5217 : "") 5218 << "!\n"); 5219 5220 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5221 5222 // If an override option has been passed in for interleaved accesses, use it. 5223 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5224 UseInterleaved = EnableInterleavedMemAccesses; 5225 5226 // Analyze interleaved memory accesses. 5227 if (UseInterleaved) 5228 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5229 5230 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5231 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5232 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5233 5234 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5235 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5236 << "Too many SCEV assumptions need to be made and checked " 5237 << "at runtime"); 5238 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5239 return false; 5240 } 5241 5242 // Okay! We can vectorize. At this point we don't have any other mem analysis 5243 // which may limit our maximum vectorization factor, so just return true with 5244 // no restrictions. 5245 return true; 5246 } 5247 5248 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5249 if (Ty->isPointerTy()) 5250 return DL.getIntPtrType(Ty); 5251 5252 // It is possible that char's or short's overflow when we ask for the loop's 5253 // trip count, work around this by changing the type size. 5254 if (Ty->getScalarSizeInBits() < 32) 5255 return Type::getInt32Ty(Ty->getContext()); 5256 5257 return Ty; 5258 } 5259 5260 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5261 Ty0 = convertPointerToIntegerType(DL, Ty0); 5262 Ty1 = convertPointerToIntegerType(DL, Ty1); 5263 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5264 return Ty0; 5265 return Ty1; 5266 } 5267 5268 /// \brief Check that the instruction has outside loop users and is not an 5269 /// identified reduction variable. 5270 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5271 SmallPtrSetImpl<Value *> &AllowedExit) { 5272 // Reduction and Induction instructions are allowed to have exit users. All 5273 // other instructions must not have external users. 5274 if (!AllowedExit.count(Inst)) 5275 // Check that all of the users of the loop are inside the BB. 5276 for (User *U : Inst->users()) { 5277 Instruction *UI = cast<Instruction>(U); 5278 // This user may be a reduction exit value. 5279 if (!TheLoop->contains(UI)) { 5280 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5281 return true; 5282 } 5283 } 5284 return false; 5285 } 5286 5287 void LoopVectorizationLegality::addInductionPhi( 5288 PHINode *Phi, const InductionDescriptor &ID, 5289 SmallPtrSetImpl<Value *> &AllowedExit) { 5290 Inductions[Phi] = ID; 5291 Type *PhiTy = Phi->getType(); 5292 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5293 5294 // Get the widest type. 5295 if (!PhiTy->isFloatingPointTy()) { 5296 if (!WidestIndTy) 5297 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5298 else 5299 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5300 } 5301 5302 // Int inductions are special because we only allow one IV. 5303 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5304 ID.getConstIntStepValue() && 5305 ID.getConstIntStepValue()->isOne() && 5306 isa<Constant>(ID.getStartValue()) && 5307 cast<Constant>(ID.getStartValue())->isNullValue()) { 5308 5309 // Use the phi node with the widest type as induction. Use the last 5310 // one if there are multiple (no good reason for doing this other 5311 // than it is expedient). We've checked that it begins at zero and 5312 // steps by one, so this is a canonical induction variable. 5313 if (!PrimaryInduction || PhiTy == WidestIndTy) 5314 PrimaryInduction = Phi; 5315 } 5316 5317 // Both the PHI node itself, and the "post-increment" value feeding 5318 // back into the PHI node may have external users. 5319 AllowedExit.insert(Phi); 5320 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5321 5322 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5323 return; 5324 } 5325 5326 bool LoopVectorizationLegality::canVectorizeInstrs() { 5327 BasicBlock *Header = TheLoop->getHeader(); 5328 5329 // Look for the attribute signaling the absence of NaNs. 5330 Function &F = *Header->getParent(); 5331 HasFunNoNaNAttr = 5332 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5333 5334 // For each block in the loop. 5335 for (BasicBlock *BB : TheLoop->blocks()) { 5336 // Scan the instructions in the block and look for hazards. 5337 for (Instruction &I : *BB) { 5338 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5339 Type *PhiTy = Phi->getType(); 5340 // Check that this PHI type is allowed. 5341 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5342 !PhiTy->isPointerTy()) { 5343 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5344 << "loop control flow is not understood by vectorizer"); 5345 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5346 return false; 5347 } 5348 5349 // If this PHINode is not in the header block, then we know that we 5350 // can convert it to select during if-conversion. No need to check if 5351 // the PHIs in this block are induction or reduction variables. 5352 if (BB != Header) { 5353 // Check that this instruction has no outside users or is an 5354 // identified reduction value with an outside user. 5355 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5356 continue; 5357 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5358 << "value could not be identified as " 5359 "an induction or reduction variable"); 5360 return false; 5361 } 5362 5363 // We only allow if-converted PHIs with exactly two incoming values. 5364 if (Phi->getNumIncomingValues() != 2) { 5365 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5366 << "control flow not understood by vectorizer"); 5367 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5368 return false; 5369 } 5370 5371 RecurrenceDescriptor RedDes; 5372 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5373 if (RedDes.hasUnsafeAlgebra()) 5374 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5375 AllowedExit.insert(RedDes.getLoopExitInstr()); 5376 Reductions[Phi] = RedDes; 5377 continue; 5378 } 5379 5380 InductionDescriptor ID; 5381 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5382 addInductionPhi(Phi, ID, AllowedExit); 5383 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5384 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5385 continue; 5386 } 5387 5388 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5389 FirstOrderRecurrences.insert(Phi); 5390 continue; 5391 } 5392 5393 // As a last resort, coerce the PHI to a AddRec expression 5394 // and re-try classifying it a an induction PHI. 5395 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5396 addInductionPhi(Phi, ID, AllowedExit); 5397 continue; 5398 } 5399 5400 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5401 << "value that could not be identified as " 5402 "reduction is used outside the loop"); 5403 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5404 return false; 5405 } // end of PHI handling 5406 5407 // We handle calls that: 5408 // * Are debug info intrinsics. 5409 // * Have a mapping to an IR intrinsic. 5410 // * Have a vector version available. 5411 auto *CI = dyn_cast<CallInst>(&I); 5412 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5413 !isa<DbgInfoIntrinsic>(CI) && 5414 !(CI->getCalledFunction() && TLI && 5415 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5416 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5417 << "call instruction cannot be vectorized"); 5418 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5419 return false; 5420 } 5421 5422 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5423 // second argument is the same (i.e. loop invariant) 5424 if (CI && hasVectorInstrinsicScalarOpd( 5425 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5426 auto *SE = PSE.getSE(); 5427 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5428 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5429 << "intrinsic instruction cannot be vectorized"); 5430 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5431 return false; 5432 } 5433 } 5434 5435 // Check that the instruction return type is vectorizable. 5436 // Also, we can't vectorize extractelement instructions. 5437 if ((!VectorType::isValidElementType(I.getType()) && 5438 !I.getType()->isVoidTy()) || 5439 isa<ExtractElementInst>(I)) { 5440 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5441 << "instruction return type cannot be vectorized"); 5442 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5443 return false; 5444 } 5445 5446 // Check that the stored type is vectorizable. 5447 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5448 Type *T = ST->getValueOperand()->getType(); 5449 if (!VectorType::isValidElementType(T)) { 5450 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5451 << "store instruction cannot be vectorized"); 5452 return false; 5453 } 5454 5455 // FP instructions can allow unsafe algebra, thus vectorizable by 5456 // non-IEEE-754 compliant SIMD units. 5457 // This applies to floating-point math operations and calls, not memory 5458 // operations, shuffles, or casts, as they don't change precision or 5459 // semantics. 5460 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5461 !I.hasUnsafeAlgebra()) { 5462 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5463 Hints->setPotentiallyUnsafe(); 5464 } 5465 5466 // Reduction instructions are allowed to have exit users. 5467 // All other instructions must not have external users. 5468 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5469 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5470 << "value cannot be used outside the loop"); 5471 return false; 5472 } 5473 5474 } // next instr. 5475 } 5476 5477 if (!PrimaryInduction) { 5478 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5479 if (Inductions.empty()) { 5480 ORE->emit(createMissedAnalysis("NoInductionVariable") 5481 << "loop induction variable could not be identified"); 5482 return false; 5483 } 5484 } 5485 5486 // Now we know the widest induction type, check if our found induction 5487 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5488 // will create another. 5489 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5490 PrimaryInduction = nullptr; 5491 5492 return true; 5493 } 5494 5495 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5496 5497 // We should not collect Scalars more than once per VF. Right now, this 5498 // function is called from collectUniformsAndScalars(), which already does 5499 // this check. Collecting Scalars for VF=1 does not make any sense. 5500 assert(VF >= 2 && !Scalars.count(VF) && 5501 "This function should not be visited twice for the same VF"); 5502 5503 SmallSetVector<Instruction *, 8> Worklist; 5504 5505 // These sets are used to seed the analysis with pointers used by memory 5506 // accesses that will remain scalar. 5507 SmallSetVector<Instruction *, 8> ScalarPtrs; 5508 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5509 5510 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5511 // The pointer operands of loads and stores will be scalar as long as the 5512 // memory access is not a gather or scatter operation. The value operand of a 5513 // store will remain scalar if the store is scalarized. 5514 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5515 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5516 assert(WideningDecision != CM_Unknown && 5517 "Widening decision should be ready at this moment"); 5518 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5519 if (Ptr == Store->getValueOperand()) 5520 return WideningDecision == CM_Scalarize; 5521 assert(Ptr == getPointerOperand(MemAccess) && 5522 "Ptr is neither a value or pointer operand"); 5523 return WideningDecision != CM_GatherScatter; 5524 }; 5525 5526 // A helper that returns true if the given value is a bitcast or 5527 // getelementptr instruction contained in the loop. 5528 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5529 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5530 isa<GetElementPtrInst>(V)) && 5531 !TheLoop->isLoopInvariant(V); 5532 }; 5533 5534 // A helper that evaluates a memory access's use of a pointer. If the use 5535 // will be a scalar use, and the pointer is only used by memory accesses, we 5536 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5537 // PossibleNonScalarPtrs. 5538 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5539 5540 // We only care about bitcast and getelementptr instructions contained in 5541 // the loop. 5542 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5543 return; 5544 5545 // If the pointer has already been identified as scalar (e.g., if it was 5546 // also identified as uniform), there's nothing to do. 5547 auto *I = cast<Instruction>(Ptr); 5548 if (Worklist.count(I)) 5549 return; 5550 5551 // If the use of the pointer will be a scalar use, and all users of the 5552 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5553 // place the pointer in PossibleNonScalarPtrs. 5554 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5555 return isa<LoadInst>(U) || isa<StoreInst>(U); 5556 })) 5557 ScalarPtrs.insert(I); 5558 else 5559 PossibleNonScalarPtrs.insert(I); 5560 }; 5561 5562 // We seed the scalars analysis with three classes of instructions: (1) 5563 // instructions marked uniform-after-vectorization, (2) bitcast and 5564 // getelementptr instructions used by memory accesses requiring a scalar use, 5565 // and (3) pointer induction variables and their update instructions (we 5566 // currently only scalarize these). 5567 // 5568 // (1) Add to the worklist all instructions that have been identified as 5569 // uniform-after-vectorization. 5570 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5571 5572 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5573 // memory accesses requiring a scalar use. The pointer operands of loads and 5574 // stores will be scalar as long as the memory accesses is not a gather or 5575 // scatter operation. The value operand of a store will remain scalar if the 5576 // store is scalarized. 5577 for (auto *BB : TheLoop->blocks()) 5578 for (auto &I : *BB) { 5579 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5580 evaluatePtrUse(Load, Load->getPointerOperand()); 5581 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5582 evaluatePtrUse(Store, Store->getPointerOperand()); 5583 evaluatePtrUse(Store, Store->getValueOperand()); 5584 } 5585 } 5586 for (auto *I : ScalarPtrs) 5587 if (!PossibleNonScalarPtrs.count(I)) { 5588 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5589 Worklist.insert(I); 5590 } 5591 5592 // (3) Add to the worklist all pointer induction variables and their update 5593 // instructions. 5594 // 5595 // TODO: Once we are able to vectorize pointer induction variables we should 5596 // no longer insert them into the worklist here. 5597 auto *Latch = TheLoop->getLoopLatch(); 5598 for (auto &Induction : *Legal->getInductionVars()) { 5599 auto *Ind = Induction.first; 5600 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5601 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5602 continue; 5603 Worklist.insert(Ind); 5604 Worklist.insert(IndUpdate); 5605 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5606 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5607 } 5608 5609 // Expand the worklist by looking through any bitcasts and getelementptr 5610 // instructions we've already identified as scalar. This is similar to the 5611 // expansion step in collectLoopUniforms(); however, here we're only 5612 // expanding to include additional bitcasts and getelementptr instructions. 5613 unsigned Idx = 0; 5614 while (Idx != Worklist.size()) { 5615 Instruction *Dst = Worklist[Idx++]; 5616 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5617 continue; 5618 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5619 if (all_of(Src->users(), [&](User *U) -> bool { 5620 auto *J = cast<Instruction>(U); 5621 return !TheLoop->contains(J) || Worklist.count(J) || 5622 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5623 isScalarUse(J, Src)); 5624 })) { 5625 Worklist.insert(Src); 5626 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5627 } 5628 } 5629 5630 // An induction variable will remain scalar if all users of the induction 5631 // variable and induction variable update remain scalar. 5632 for (auto &Induction : *Legal->getInductionVars()) { 5633 auto *Ind = Induction.first; 5634 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5635 5636 // We already considered pointer induction variables, so there's no reason 5637 // to look at their users again. 5638 // 5639 // TODO: Once we are able to vectorize pointer induction variables we 5640 // should no longer skip over them here. 5641 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5642 continue; 5643 5644 // Determine if all users of the induction variable are scalar after 5645 // vectorization. 5646 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5647 auto *I = cast<Instruction>(U); 5648 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5649 }); 5650 if (!ScalarInd) 5651 continue; 5652 5653 // Determine if all users of the induction variable update instruction are 5654 // scalar after vectorization. 5655 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5656 auto *I = cast<Instruction>(U); 5657 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5658 }); 5659 if (!ScalarIndUpdate) 5660 continue; 5661 5662 // The induction variable and its update instruction will remain scalar. 5663 Worklist.insert(Ind); 5664 Worklist.insert(IndUpdate); 5665 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5666 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5667 } 5668 5669 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5670 } 5671 5672 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5673 if (!blockNeedsPredication(I->getParent())) 5674 return false; 5675 switch(I->getOpcode()) { 5676 default: 5677 break; 5678 case Instruction::Store: 5679 return !isMaskRequired(I); 5680 case Instruction::UDiv: 5681 case Instruction::SDiv: 5682 case Instruction::SRem: 5683 case Instruction::URem: 5684 return mayDivideByZero(*I); 5685 } 5686 return false; 5687 } 5688 5689 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5690 unsigned VF) { 5691 // Get and ensure we have a valid memory instruction. 5692 LoadInst *LI = dyn_cast<LoadInst>(I); 5693 StoreInst *SI = dyn_cast<StoreInst>(I); 5694 assert((LI || SI) && "Invalid memory instruction"); 5695 5696 auto *Ptr = getPointerOperand(I); 5697 5698 // In order to be widened, the pointer should be consecutive, first of all. 5699 if (!isConsecutivePtr(Ptr)) 5700 return false; 5701 5702 // If the instruction is a store located in a predicated block, it will be 5703 // scalarized. 5704 if (isScalarWithPredication(I)) 5705 return false; 5706 5707 // If the instruction's allocated size doesn't equal it's type size, it 5708 // requires padding and will be scalarized. 5709 auto &DL = I->getModule()->getDataLayout(); 5710 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5711 if (hasIrregularType(ScalarTy, DL, VF)) 5712 return false; 5713 5714 return true; 5715 } 5716 5717 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5718 5719 // We should not collect Uniforms more than once per VF. Right now, 5720 // this function is called from collectUniformsAndScalars(), which 5721 // already does this check. Collecting Uniforms for VF=1 does not make any 5722 // sense. 5723 5724 assert(VF >= 2 && !Uniforms.count(VF) && 5725 "This function should not be visited twice for the same VF"); 5726 5727 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5728 // not analyze again. Uniforms.count(VF) will return 1. 5729 Uniforms[VF].clear(); 5730 5731 // We now know that the loop is vectorizable! 5732 // Collect instructions inside the loop that will remain uniform after 5733 // vectorization. 5734 5735 // Global values, params and instructions outside of current loop are out of 5736 // scope. 5737 auto isOutOfScope = [&](Value *V) -> bool { 5738 Instruction *I = dyn_cast<Instruction>(V); 5739 return (!I || !TheLoop->contains(I)); 5740 }; 5741 5742 SetVector<Instruction *> Worklist; 5743 BasicBlock *Latch = TheLoop->getLoopLatch(); 5744 5745 // Start with the conditional branch. If the branch condition is an 5746 // instruction contained in the loop that is only used by the branch, it is 5747 // uniform. 5748 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5749 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5750 Worklist.insert(Cmp); 5751 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5752 } 5753 5754 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5755 // are pointers that are treated like consecutive pointers during 5756 // vectorization. The pointer operands of interleaved accesses are an 5757 // example. 5758 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5759 5760 // Holds pointer operands of instructions that are possibly non-uniform. 5761 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5762 5763 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5764 InstWidening WideningDecision = getWideningDecision(I, VF); 5765 assert(WideningDecision != CM_Unknown && 5766 "Widening decision should be ready at this moment"); 5767 5768 return (WideningDecision == CM_Widen || 5769 WideningDecision == CM_Interleave); 5770 }; 5771 // Iterate over the instructions in the loop, and collect all 5772 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5773 // that a consecutive-like pointer operand will be scalarized, we collect it 5774 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5775 // getelementptr instruction can be used by both vectorized and scalarized 5776 // memory instructions. For example, if a loop loads and stores from the same 5777 // location, but the store is conditional, the store will be scalarized, and 5778 // the getelementptr won't remain uniform. 5779 for (auto *BB : TheLoop->blocks()) 5780 for (auto &I : *BB) { 5781 5782 // If there's no pointer operand, there's nothing to do. 5783 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5784 if (!Ptr) 5785 continue; 5786 5787 // True if all users of Ptr are memory accesses that have Ptr as their 5788 // pointer operand. 5789 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5790 return getPointerOperand(U) == Ptr; 5791 }); 5792 5793 // Ensure the memory instruction will not be scalarized or used by 5794 // gather/scatter, making its pointer operand non-uniform. If the pointer 5795 // operand is used by any instruction other than a memory access, we 5796 // conservatively assume the pointer operand may be non-uniform. 5797 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5798 PossibleNonUniformPtrs.insert(Ptr); 5799 5800 // If the memory instruction will be vectorized and its pointer operand 5801 // is consecutive-like, or interleaving - the pointer operand should 5802 // remain uniform. 5803 else 5804 ConsecutiveLikePtrs.insert(Ptr); 5805 } 5806 5807 // Add to the Worklist all consecutive and consecutive-like pointers that 5808 // aren't also identified as possibly non-uniform. 5809 for (auto *V : ConsecutiveLikePtrs) 5810 if (!PossibleNonUniformPtrs.count(V)) { 5811 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5812 Worklist.insert(V); 5813 } 5814 5815 // Expand Worklist in topological order: whenever a new instruction 5816 // is added , its users should be either already inside Worklist, or 5817 // out of scope. It ensures a uniform instruction will only be used 5818 // by uniform instructions or out of scope instructions. 5819 unsigned idx = 0; 5820 while (idx != Worklist.size()) { 5821 Instruction *I = Worklist[idx++]; 5822 5823 for (auto OV : I->operand_values()) { 5824 if (isOutOfScope(OV)) 5825 continue; 5826 auto *OI = cast<Instruction>(OV); 5827 if (all_of(OI->users(), [&](User *U) -> bool { 5828 auto *J = cast<Instruction>(U); 5829 return !TheLoop->contains(J) || Worklist.count(J) || 5830 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5831 })) { 5832 Worklist.insert(OI); 5833 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5834 } 5835 } 5836 } 5837 5838 // Returns true if Ptr is the pointer operand of a memory access instruction 5839 // I, and I is known to not require scalarization. 5840 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5841 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5842 }; 5843 5844 // For an instruction to be added into Worklist above, all its users inside 5845 // the loop should also be in Worklist. However, this condition cannot be 5846 // true for phi nodes that form a cyclic dependence. We must process phi 5847 // nodes separately. An induction variable will remain uniform if all users 5848 // of the induction variable and induction variable update remain uniform. 5849 // The code below handles both pointer and non-pointer induction variables. 5850 for (auto &Induction : *Legal->getInductionVars()) { 5851 auto *Ind = Induction.first; 5852 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5853 5854 // Determine if all users of the induction variable are uniform after 5855 // vectorization. 5856 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5857 auto *I = cast<Instruction>(U); 5858 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5859 isVectorizedMemAccessUse(I, Ind); 5860 }); 5861 if (!UniformInd) 5862 continue; 5863 5864 // Determine if all users of the induction variable update instruction are 5865 // uniform after vectorization. 5866 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5867 auto *I = cast<Instruction>(U); 5868 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5869 isVectorizedMemAccessUse(I, IndUpdate); 5870 }); 5871 if (!UniformIndUpdate) 5872 continue; 5873 5874 // The induction variable and its update instruction will remain uniform. 5875 Worklist.insert(Ind); 5876 Worklist.insert(IndUpdate); 5877 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5878 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5879 } 5880 5881 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5882 } 5883 5884 bool LoopVectorizationLegality::canVectorizeMemory() { 5885 LAI = &(*GetLAA)(*TheLoop); 5886 InterleaveInfo.setLAI(LAI); 5887 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5888 if (LAR) { 5889 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5890 "loop not vectorized: ", *LAR); 5891 ORE->emit(VR); 5892 } 5893 if (!LAI->canVectorizeMemory()) 5894 return false; 5895 5896 if (LAI->hasStoreToLoopInvariantAddress()) { 5897 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5898 << "write to a loop invariant address could not be vectorized"); 5899 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5900 return false; 5901 } 5902 5903 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5904 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5905 5906 return true; 5907 } 5908 5909 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5910 Value *In0 = const_cast<Value *>(V); 5911 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5912 if (!PN) 5913 return false; 5914 5915 return Inductions.count(PN); 5916 } 5917 5918 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5919 return FirstOrderRecurrences.count(Phi); 5920 } 5921 5922 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5923 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5924 } 5925 5926 bool LoopVectorizationLegality::blockCanBePredicated( 5927 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5928 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5929 5930 for (Instruction &I : *BB) { 5931 // Check that we don't have a constant expression that can trap as operand. 5932 for (Value *Operand : I.operands()) { 5933 if (auto *C = dyn_cast<Constant>(Operand)) 5934 if (C->canTrap()) 5935 return false; 5936 } 5937 // We might be able to hoist the load. 5938 if (I.mayReadFromMemory()) { 5939 auto *LI = dyn_cast<LoadInst>(&I); 5940 if (!LI) 5941 return false; 5942 if (!SafePtrs.count(LI->getPointerOperand())) { 5943 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5944 isLegalMaskedGather(LI->getType())) { 5945 MaskedOp.insert(LI); 5946 continue; 5947 } 5948 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5949 if (IsAnnotatedParallel) 5950 continue; 5951 return false; 5952 } 5953 } 5954 5955 if (I.mayWriteToMemory()) { 5956 auto *SI = dyn_cast<StoreInst>(&I); 5957 // We only support predication of stores in basic blocks with one 5958 // predecessor. 5959 if (!SI) 5960 return false; 5961 5962 // Build a masked store if it is legal for the target. 5963 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5964 SI->getPointerOperand()) || 5965 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5966 MaskedOp.insert(SI); 5967 continue; 5968 } 5969 5970 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5971 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5972 5973 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5974 !isSinglePredecessor) 5975 return false; 5976 } 5977 if (I.mayThrow()) 5978 return false; 5979 } 5980 5981 return true; 5982 } 5983 5984 void InterleavedAccessInfo::collectConstStrideAccesses( 5985 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5986 const ValueToValueMap &Strides) { 5987 5988 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5989 5990 // Since it's desired that the load/store instructions be maintained in 5991 // "program order" for the interleaved access analysis, we have to visit the 5992 // blocks in the loop in reverse postorder (i.e., in a topological order). 5993 // Such an ordering will ensure that any load/store that may be executed 5994 // before a second load/store will precede the second load/store in 5995 // AccessStrideInfo. 5996 LoopBlocksDFS DFS(TheLoop); 5997 DFS.perform(LI); 5998 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5999 for (auto &I : *BB) { 6000 auto *LI = dyn_cast<LoadInst>(&I); 6001 auto *SI = dyn_cast<StoreInst>(&I); 6002 if (!LI && !SI) 6003 continue; 6004 6005 Value *Ptr = getPointerOperand(&I); 6006 // We don't check wrapping here because we don't know yet if Ptr will be 6007 // part of a full group or a group with gaps. Checking wrapping for all 6008 // pointers (even those that end up in groups with no gaps) will be overly 6009 // conservative. For full groups, wrapping should be ok since if we would 6010 // wrap around the address space we would do a memory access at nullptr 6011 // even without the transformation. The wrapping checks are therefore 6012 // deferred until after we've formed the interleaved groups. 6013 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 6014 /*Assume=*/true, /*ShouldCheckWrap=*/false); 6015 6016 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 6017 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 6018 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 6019 6020 // An alignment of 0 means target ABI alignment. 6021 unsigned Align = getMemInstAlignment(&I); 6022 if (!Align) 6023 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 6024 6025 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 6026 } 6027 } 6028 6029 // Analyze interleaved accesses and collect them into interleaved load and 6030 // store groups. 6031 // 6032 // When generating code for an interleaved load group, we effectively hoist all 6033 // loads in the group to the location of the first load in program order. When 6034 // generating code for an interleaved store group, we sink all stores to the 6035 // location of the last store. This code motion can change the order of load 6036 // and store instructions and may break dependences. 6037 // 6038 // The code generation strategy mentioned above ensures that we won't violate 6039 // any write-after-read (WAR) dependences. 6040 // 6041 // E.g., for the WAR dependence: a = A[i]; // (1) 6042 // A[i] = b; // (2) 6043 // 6044 // The store group of (2) is always inserted at or below (2), and the load 6045 // group of (1) is always inserted at or above (1). Thus, the instructions will 6046 // never be reordered. All other dependences are checked to ensure the 6047 // correctness of the instruction reordering. 6048 // 6049 // The algorithm visits all memory accesses in the loop in bottom-up program 6050 // order. Program order is established by traversing the blocks in the loop in 6051 // reverse postorder when collecting the accesses. 6052 // 6053 // We visit the memory accesses in bottom-up order because it can simplify the 6054 // construction of store groups in the presence of write-after-write (WAW) 6055 // dependences. 6056 // 6057 // E.g., for the WAW dependence: A[i] = a; // (1) 6058 // A[i] = b; // (2) 6059 // A[i + 1] = c; // (3) 6060 // 6061 // We will first create a store group with (3) and (2). (1) can't be added to 6062 // this group because it and (2) are dependent. However, (1) can be grouped 6063 // with other accesses that may precede it in program order. Note that a 6064 // bottom-up order does not imply that WAW dependences should not be checked. 6065 void InterleavedAccessInfo::analyzeInterleaving( 6066 const ValueToValueMap &Strides) { 6067 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6068 6069 // Holds all accesses with a constant stride. 6070 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6071 collectConstStrideAccesses(AccessStrideInfo, Strides); 6072 6073 if (AccessStrideInfo.empty()) 6074 return; 6075 6076 // Collect the dependences in the loop. 6077 collectDependences(); 6078 6079 // Holds all interleaved store groups temporarily. 6080 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6081 // Holds all interleaved load groups temporarily. 6082 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6083 6084 // Search in bottom-up program order for pairs of accesses (A and B) that can 6085 // form interleaved load or store groups. In the algorithm below, access A 6086 // precedes access B in program order. We initialize a group for B in the 6087 // outer loop of the algorithm, and then in the inner loop, we attempt to 6088 // insert each A into B's group if: 6089 // 6090 // 1. A and B have the same stride, 6091 // 2. A and B have the same memory object size, and 6092 // 3. A belongs in B's group according to its distance from B. 6093 // 6094 // Special care is taken to ensure group formation will not break any 6095 // dependences. 6096 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6097 BI != E; ++BI) { 6098 Instruction *B = BI->first; 6099 StrideDescriptor DesB = BI->second; 6100 6101 // Initialize a group for B if it has an allowable stride. Even if we don't 6102 // create a group for B, we continue with the bottom-up algorithm to ensure 6103 // we don't break any of B's dependences. 6104 InterleaveGroup *Group = nullptr; 6105 if (isStrided(DesB.Stride)) { 6106 Group = getInterleaveGroup(B); 6107 if (!Group) { 6108 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6109 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6110 } 6111 if (B->mayWriteToMemory()) 6112 StoreGroups.insert(Group); 6113 else 6114 LoadGroups.insert(Group); 6115 } 6116 6117 for (auto AI = std::next(BI); AI != E; ++AI) { 6118 Instruction *A = AI->first; 6119 StrideDescriptor DesA = AI->second; 6120 6121 // Our code motion strategy implies that we can't have dependences 6122 // between accesses in an interleaved group and other accesses located 6123 // between the first and last member of the group. Note that this also 6124 // means that a group can't have more than one member at a given offset. 6125 // The accesses in a group can have dependences with other accesses, but 6126 // we must ensure we don't extend the boundaries of the group such that 6127 // we encompass those dependent accesses. 6128 // 6129 // For example, assume we have the sequence of accesses shown below in a 6130 // stride-2 loop: 6131 // 6132 // (1, 2) is a group | A[i] = a; // (1) 6133 // | A[i-1] = b; // (2) | 6134 // A[i-3] = c; // (3) 6135 // A[i] = d; // (4) | (2, 4) is not a group 6136 // 6137 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6138 // but not with (4). If we did, the dependent access (3) would be within 6139 // the boundaries of the (2, 4) group. 6140 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6141 6142 // If a dependence exists and A is already in a group, we know that A 6143 // must be a store since A precedes B and WAR dependences are allowed. 6144 // Thus, A would be sunk below B. We release A's group to prevent this 6145 // illegal code motion. A will then be free to form another group with 6146 // instructions that precede it. 6147 if (isInterleaved(A)) { 6148 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6149 StoreGroups.remove(StoreGroup); 6150 releaseGroup(StoreGroup); 6151 } 6152 6153 // If a dependence exists and A is not already in a group (or it was 6154 // and we just released it), B might be hoisted above A (if B is a 6155 // load) or another store might be sunk below A (if B is a store). In 6156 // either case, we can't add additional instructions to B's group. B 6157 // will only form a group with instructions that it precedes. 6158 break; 6159 } 6160 6161 // At this point, we've checked for illegal code motion. If either A or B 6162 // isn't strided, there's nothing left to do. 6163 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6164 continue; 6165 6166 // Ignore A if it's already in a group or isn't the same kind of memory 6167 // operation as B. 6168 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6169 continue; 6170 6171 // Check rules 1 and 2. Ignore A if its stride or size is different from 6172 // that of B. 6173 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6174 continue; 6175 6176 // Ignore A if the memory object of A and B don't belong to the same 6177 // address space 6178 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6179 continue; 6180 6181 // Calculate the distance from A to B. 6182 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6183 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6184 if (!DistToB) 6185 continue; 6186 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6187 6188 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6189 // size. 6190 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6191 continue; 6192 6193 // Ignore A if either A or B is in a predicated block. Although we 6194 // currently prevent group formation for predicated accesses, we may be 6195 // able to relax this limitation in the future once we handle more 6196 // complicated blocks. 6197 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6198 continue; 6199 6200 // The index of A is the index of B plus A's distance to B in multiples 6201 // of the size. 6202 int IndexA = 6203 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6204 6205 // Try to insert A into B's group. 6206 if (Group->insertMember(A, IndexA, DesA.Align)) { 6207 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6208 << " into the interleave group with" << *B << '\n'); 6209 InterleaveGroupMap[A] = Group; 6210 6211 // Set the first load in program order as the insert position. 6212 if (A->mayReadFromMemory()) 6213 Group->setInsertPos(A); 6214 } 6215 } // Iteration over A accesses. 6216 } // Iteration over B accesses. 6217 6218 // Remove interleaved store groups with gaps. 6219 for (InterleaveGroup *Group : StoreGroups) 6220 if (Group->getNumMembers() != Group->getFactor()) 6221 releaseGroup(Group); 6222 6223 // Remove interleaved groups with gaps (currently only loads) whose memory 6224 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6225 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6226 // not check wrapping (see documentation there). 6227 // FORNOW we use Assume=false; 6228 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6229 // of runtime SCEV assumptions checks (thereby potentially failing to 6230 // vectorize altogether). 6231 // Additional optional optimizations: 6232 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6233 // wrap then we can deduce that all pointers in the group don't wrap. 6234 // This means that we can forcefully peel the loop in order to only have to 6235 // check the first pointer for no-wrap. When we'll change to use Assume=true 6236 // we'll only need at most one runtime check per interleaved group. 6237 // 6238 for (InterleaveGroup *Group : LoadGroups) { 6239 6240 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6241 // load would wrap around the address space we would do a memory access at 6242 // nullptr even without the transformation. 6243 if (Group->getNumMembers() == Group->getFactor()) 6244 continue; 6245 6246 // Case 2: If first and last members of the group don't wrap this implies 6247 // that all the pointers in the group don't wrap. 6248 // So we check only group member 0 (which is always guaranteed to exist), 6249 // and group member Factor - 1; If the latter doesn't exist we rely on 6250 // peeling (if it is a non-reveresed accsess -- see Case 3). 6251 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6252 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6253 /*ShouldCheckWrap=*/true)) { 6254 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6255 "first group member potentially pointer-wrapping.\n"); 6256 releaseGroup(Group); 6257 continue; 6258 } 6259 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6260 if (LastMember) { 6261 Value *LastMemberPtr = getPointerOperand(LastMember); 6262 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6263 /*ShouldCheckWrap=*/true)) { 6264 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6265 "last group member potentially pointer-wrapping.\n"); 6266 releaseGroup(Group); 6267 } 6268 } else { 6269 // Case 3: A non-reversed interleaved load group with gaps: We need 6270 // to execute at least one scalar epilogue iteration. This will ensure 6271 // we don't speculatively access memory out-of-bounds. We only need 6272 // to look for a member at index factor - 1, since every group must have 6273 // a member at index zero. 6274 if (Group->isReverse()) { 6275 releaseGroup(Group); 6276 continue; 6277 } 6278 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6279 RequiresScalarEpilogue = true; 6280 } 6281 } 6282 } 6283 6284 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6285 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6286 ORE->emit(createMissedAnalysis("ConditionalStore") 6287 << "store that is conditionally executed prevents vectorization"); 6288 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6289 return None; 6290 } 6291 6292 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6293 return computeFeasibleMaxVF(OptForSize); 6294 6295 if (Legal->getRuntimePointerChecking()->Need) { 6296 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6297 << "runtime pointer checks needed. Enable vectorization of this " 6298 "loop with '#pragma clang loop vectorize(enable)' when " 6299 "compiling with -Os/-Oz"); 6300 DEBUG(dbgs() 6301 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6302 return None; 6303 } 6304 6305 // If we optimize the program for size, avoid creating the tail loop. 6306 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6307 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6308 6309 // If we don't know the precise trip count, don't try to vectorize. 6310 if (TC < 2) { 6311 ORE->emit( 6312 createMissedAnalysis("UnknownLoopCountComplexCFG") 6313 << "unable to calculate the loop count due to complex control flow"); 6314 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6315 return None; 6316 } 6317 6318 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6319 6320 if (TC % MaxVF != 0) { 6321 // If the trip count that we found modulo the vectorization factor is not 6322 // zero then we require a tail. 6323 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6324 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6325 // smaller MaxVF that does not require a scalar epilog. 6326 6327 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6328 << "cannot optimize for size and vectorize at the " 6329 "same time. Enable vectorization of this loop " 6330 "with '#pragma clang loop vectorize(enable)' " 6331 "when compiling with -Os/-Oz"); 6332 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6333 return None; 6334 } 6335 6336 return MaxVF; 6337 } 6338 6339 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6340 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6341 unsigned SmallestType, WidestType; 6342 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6343 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6344 unsigned MaxSafeDepDist = -1U; 6345 6346 // Get the maximum safe dependence distance in bits computed by LAA. If the 6347 // loop contains any interleaved accesses, we divide the dependence distance 6348 // by the maximum interleave factor of all interleaved groups. Note that 6349 // although the division ensures correctness, this is a fairly conservative 6350 // computation because the maximum distance computed by LAA may not involve 6351 // any of the interleaved accesses. 6352 if (Legal->getMaxSafeDepDistBytes() != -1U) 6353 MaxSafeDepDist = 6354 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6355 6356 WidestRegister = 6357 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6358 unsigned MaxVectorSize = WidestRegister / WidestType; 6359 6360 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6361 << WidestType << " bits.\n"); 6362 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6363 << " bits.\n"); 6364 6365 if (MaxVectorSize == 0) { 6366 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6367 MaxVectorSize = 1; 6368 } 6369 6370 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6371 " into one vector!"); 6372 6373 unsigned MaxVF = MaxVectorSize; 6374 if (MaximizeBandwidth && !OptForSize) { 6375 // Collect all viable vectorization factors. 6376 SmallVector<unsigned, 8> VFs; 6377 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6378 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6379 VFs.push_back(VS); 6380 6381 // For each VF calculate its register usage. 6382 auto RUs = calculateRegisterUsage(VFs); 6383 6384 // Select the largest VF which doesn't require more registers than existing 6385 // ones. 6386 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6387 for (int i = RUs.size() - 1; i >= 0; --i) { 6388 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6389 MaxVF = VFs[i]; 6390 break; 6391 } 6392 } 6393 } 6394 return MaxVF; 6395 } 6396 6397 LoopVectorizationCostModel::VectorizationFactor 6398 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6399 float Cost = expectedCost(1).first; 6400 #ifndef NDEBUG 6401 const float ScalarCost = Cost; 6402 #endif /* NDEBUG */ 6403 unsigned Width = 1; 6404 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6405 6406 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6407 // Ignore scalar width, because the user explicitly wants vectorization. 6408 if (ForceVectorization && MaxVF > 1) { 6409 Width = 2; 6410 Cost = expectedCost(Width).first / (float)Width; 6411 } 6412 6413 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6414 // Notice that the vector loop needs to be executed less times, so 6415 // we need to divide the cost of the vector loops by the width of 6416 // the vector elements. 6417 VectorizationCostTy C = expectedCost(i); 6418 float VectorCost = C.first / (float)i; 6419 DEBUG(dbgs() << "LV: Vector loop of width " << i 6420 << " costs: " << (int)VectorCost << ".\n"); 6421 if (!C.second && !ForceVectorization) { 6422 DEBUG( 6423 dbgs() << "LV: Not considering vector loop of width " << i 6424 << " because it will not generate any vector instructions.\n"); 6425 continue; 6426 } 6427 if (VectorCost < Cost) { 6428 Cost = VectorCost; 6429 Width = i; 6430 } 6431 } 6432 6433 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6434 << "LV: Vectorization seems to be not beneficial, " 6435 << "but was forced by a user.\n"); 6436 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6437 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6438 return Factor; 6439 } 6440 6441 std::pair<unsigned, unsigned> 6442 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6443 unsigned MinWidth = -1U; 6444 unsigned MaxWidth = 8; 6445 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6446 6447 // For each block. 6448 for (BasicBlock *BB : TheLoop->blocks()) { 6449 // For each instruction in the loop. 6450 for (Instruction &I : *BB) { 6451 Type *T = I.getType(); 6452 6453 // Skip ignored values. 6454 if (ValuesToIgnore.count(&I)) 6455 continue; 6456 6457 // Only examine Loads, Stores and PHINodes. 6458 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6459 continue; 6460 6461 // Examine PHI nodes that are reduction variables. Update the type to 6462 // account for the recurrence type. 6463 if (auto *PN = dyn_cast<PHINode>(&I)) { 6464 if (!Legal->isReductionVariable(PN)) 6465 continue; 6466 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6467 T = RdxDesc.getRecurrenceType(); 6468 } 6469 6470 // Examine the stored values. 6471 if (auto *ST = dyn_cast<StoreInst>(&I)) 6472 T = ST->getValueOperand()->getType(); 6473 6474 // Ignore loaded pointer types and stored pointer types that are not 6475 // vectorizable. 6476 // 6477 // FIXME: The check here attempts to predict whether a load or store will 6478 // be vectorized. We only know this for certain after a VF has 6479 // been selected. Here, we assume that if an access can be 6480 // vectorized, it will be. We should also look at extending this 6481 // optimization to non-pointer types. 6482 // 6483 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6484 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6485 continue; 6486 6487 MinWidth = std::min(MinWidth, 6488 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6489 MaxWidth = std::max(MaxWidth, 6490 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6491 } 6492 } 6493 6494 return {MinWidth, MaxWidth}; 6495 } 6496 6497 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6498 unsigned VF, 6499 unsigned LoopCost) { 6500 6501 // -- The interleave heuristics -- 6502 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6503 // There are many micro-architectural considerations that we can't predict 6504 // at this level. For example, frontend pressure (on decode or fetch) due to 6505 // code size, or the number and capabilities of the execution ports. 6506 // 6507 // We use the following heuristics to select the interleave count: 6508 // 1. If the code has reductions, then we interleave to break the cross 6509 // iteration dependency. 6510 // 2. If the loop is really small, then we interleave to reduce the loop 6511 // overhead. 6512 // 3. We don't interleave if we think that we will spill registers to memory 6513 // due to the increased register pressure. 6514 6515 // When we optimize for size, we don't interleave. 6516 if (OptForSize) 6517 return 1; 6518 6519 // We used the distance for the interleave count. 6520 if (Legal->getMaxSafeDepDistBytes() != -1U) 6521 return 1; 6522 6523 // Do not interleave loops with a relatively small trip count. 6524 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6525 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6526 return 1; 6527 6528 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6529 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6530 << " registers\n"); 6531 6532 if (VF == 1) { 6533 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6534 TargetNumRegisters = ForceTargetNumScalarRegs; 6535 } else { 6536 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6537 TargetNumRegisters = ForceTargetNumVectorRegs; 6538 } 6539 6540 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6541 // We divide by these constants so assume that we have at least one 6542 // instruction that uses at least one register. 6543 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6544 R.NumInstructions = std::max(R.NumInstructions, 1U); 6545 6546 // We calculate the interleave count using the following formula. 6547 // Subtract the number of loop invariants from the number of available 6548 // registers. These registers are used by all of the interleaved instances. 6549 // Next, divide the remaining registers by the number of registers that is 6550 // required by the loop, in order to estimate how many parallel instances 6551 // fit without causing spills. All of this is rounded down if necessary to be 6552 // a power of two. We want power of two interleave count to simplify any 6553 // addressing operations or alignment considerations. 6554 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6555 R.MaxLocalUsers); 6556 6557 // Don't count the induction variable as interleaved. 6558 if (EnableIndVarRegisterHeur) 6559 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6560 std::max(1U, (R.MaxLocalUsers - 1))); 6561 6562 // Clamp the interleave ranges to reasonable counts. 6563 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6564 6565 // Check if the user has overridden the max. 6566 if (VF == 1) { 6567 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6568 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6569 } else { 6570 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6571 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6572 } 6573 6574 // If we did not calculate the cost for VF (because the user selected the VF) 6575 // then we calculate the cost of VF here. 6576 if (LoopCost == 0) 6577 LoopCost = expectedCost(VF).first; 6578 6579 // Clamp the calculated IC to be between the 1 and the max interleave count 6580 // that the target allows. 6581 if (IC > MaxInterleaveCount) 6582 IC = MaxInterleaveCount; 6583 else if (IC < 1) 6584 IC = 1; 6585 6586 // Interleave if we vectorized this loop and there is a reduction that could 6587 // benefit from interleaving. 6588 if (VF > 1 && Legal->getReductionVars()->size()) { 6589 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6590 return IC; 6591 } 6592 6593 // Note that if we've already vectorized the loop we will have done the 6594 // runtime check and so interleaving won't require further checks. 6595 bool InterleavingRequiresRuntimePointerCheck = 6596 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6597 6598 // We want to interleave small loops in order to reduce the loop overhead and 6599 // potentially expose ILP opportunities. 6600 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6601 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6602 // We assume that the cost overhead is 1 and we use the cost model 6603 // to estimate the cost of the loop and interleave until the cost of the 6604 // loop overhead is about 5% of the cost of the loop. 6605 unsigned SmallIC = 6606 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6607 6608 // Interleave until store/load ports (estimated by max interleave count) are 6609 // saturated. 6610 unsigned NumStores = Legal->getNumStores(); 6611 unsigned NumLoads = Legal->getNumLoads(); 6612 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6613 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6614 6615 // If we have a scalar reduction (vector reductions are already dealt with 6616 // by this point), we can increase the critical path length if the loop 6617 // we're interleaving is inside another loop. Limit, by default to 2, so the 6618 // critical path only gets increased by one reduction operation. 6619 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6620 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6621 SmallIC = std::min(SmallIC, F); 6622 StoresIC = std::min(StoresIC, F); 6623 LoadsIC = std::min(LoadsIC, F); 6624 } 6625 6626 if (EnableLoadStoreRuntimeInterleave && 6627 std::max(StoresIC, LoadsIC) > SmallIC) { 6628 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6629 return std::max(StoresIC, LoadsIC); 6630 } 6631 6632 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6633 return SmallIC; 6634 } 6635 6636 // Interleave if this is a large loop (small loops are already dealt with by 6637 // this point) that could benefit from interleaving. 6638 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6639 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6640 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6641 return IC; 6642 } 6643 6644 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6645 return 1; 6646 } 6647 6648 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6649 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6650 // This function calculates the register usage by measuring the highest number 6651 // of values that are alive at a single location. Obviously, this is a very 6652 // rough estimation. We scan the loop in a topological order in order and 6653 // assign a number to each instruction. We use RPO to ensure that defs are 6654 // met before their users. We assume that each instruction that has in-loop 6655 // users starts an interval. We record every time that an in-loop value is 6656 // used, so we have a list of the first and last occurrences of each 6657 // instruction. Next, we transpose this data structure into a multi map that 6658 // holds the list of intervals that *end* at a specific location. This multi 6659 // map allows us to perform a linear search. We scan the instructions linearly 6660 // and record each time that a new interval starts, by placing it in a set. 6661 // If we find this value in the multi-map then we remove it from the set. 6662 // The max register usage is the maximum size of the set. 6663 // We also search for instructions that are defined outside the loop, but are 6664 // used inside the loop. We need this number separately from the max-interval 6665 // usage number because when we unroll, loop-invariant values do not take 6666 // more register. 6667 LoopBlocksDFS DFS(TheLoop); 6668 DFS.perform(LI); 6669 6670 RegisterUsage RU; 6671 RU.NumInstructions = 0; 6672 6673 // Each 'key' in the map opens a new interval. The values 6674 // of the map are the index of the 'last seen' usage of the 6675 // instruction that is the key. 6676 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6677 // Maps instruction to its index. 6678 DenseMap<unsigned, Instruction *> IdxToInstr; 6679 // Marks the end of each interval. 6680 IntervalMap EndPoint; 6681 // Saves the list of instruction indices that are used in the loop. 6682 SmallSet<Instruction *, 8> Ends; 6683 // Saves the list of values that are used in the loop but are 6684 // defined outside the loop, such as arguments and constants. 6685 SmallPtrSet<Value *, 8> LoopInvariants; 6686 6687 unsigned Index = 0; 6688 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6689 RU.NumInstructions += BB->size(); 6690 for (Instruction &I : *BB) { 6691 IdxToInstr[Index++] = &I; 6692 6693 // Save the end location of each USE. 6694 for (Value *U : I.operands()) { 6695 auto *Instr = dyn_cast<Instruction>(U); 6696 6697 // Ignore non-instruction values such as arguments, constants, etc. 6698 if (!Instr) 6699 continue; 6700 6701 // If this instruction is outside the loop then record it and continue. 6702 if (!TheLoop->contains(Instr)) { 6703 LoopInvariants.insert(Instr); 6704 continue; 6705 } 6706 6707 // Overwrite previous end points. 6708 EndPoint[Instr] = Index; 6709 Ends.insert(Instr); 6710 } 6711 } 6712 } 6713 6714 // Saves the list of intervals that end with the index in 'key'. 6715 typedef SmallVector<Instruction *, 2> InstrList; 6716 DenseMap<unsigned, InstrList> TransposeEnds; 6717 6718 // Transpose the EndPoints to a list of values that end at each index. 6719 for (auto &Interval : EndPoint) 6720 TransposeEnds[Interval.second].push_back(Interval.first); 6721 6722 SmallSet<Instruction *, 8> OpenIntervals; 6723 6724 // Get the size of the widest register. 6725 unsigned MaxSafeDepDist = -1U; 6726 if (Legal->getMaxSafeDepDistBytes() != -1U) 6727 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6728 unsigned WidestRegister = 6729 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6730 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6731 6732 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6733 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6734 6735 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6736 6737 // A lambda that gets the register usage for the given type and VF. 6738 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6739 if (Ty->isTokenTy()) 6740 return 0U; 6741 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6742 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6743 }; 6744 6745 for (unsigned int i = 0; i < Index; ++i) { 6746 Instruction *I = IdxToInstr[i]; 6747 6748 // Remove all of the instructions that end at this location. 6749 InstrList &List = TransposeEnds[i]; 6750 for (Instruction *ToRemove : List) 6751 OpenIntervals.erase(ToRemove); 6752 6753 // Ignore instructions that are never used within the loop. 6754 if (!Ends.count(I)) 6755 continue; 6756 6757 // Skip ignored values. 6758 if (ValuesToIgnore.count(I)) 6759 continue; 6760 6761 // For each VF find the maximum usage of registers. 6762 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6763 if (VFs[j] == 1) { 6764 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6765 continue; 6766 } 6767 collectUniformsAndScalars(VFs[j]); 6768 // Count the number of live intervals. 6769 unsigned RegUsage = 0; 6770 for (auto Inst : OpenIntervals) { 6771 // Skip ignored values for VF > 1. 6772 if (VecValuesToIgnore.count(Inst) || 6773 isScalarAfterVectorization(Inst, VFs[j])) 6774 continue; 6775 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6776 } 6777 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6778 } 6779 6780 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6781 << OpenIntervals.size() << '\n'); 6782 6783 // Add the current instruction to the list of open intervals. 6784 OpenIntervals.insert(I); 6785 } 6786 6787 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6788 unsigned Invariant = 0; 6789 if (VFs[i] == 1) 6790 Invariant = LoopInvariants.size(); 6791 else { 6792 for (auto Inst : LoopInvariants) 6793 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6794 } 6795 6796 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6797 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6798 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6799 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6800 6801 RU.LoopInvariantRegs = Invariant; 6802 RU.MaxLocalUsers = MaxUsages[i]; 6803 RUs[i] = RU; 6804 } 6805 6806 return RUs; 6807 } 6808 6809 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6810 6811 // If we aren't vectorizing the loop, or if we've already collected the 6812 // instructions to scalarize, there's nothing to do. Collection may already 6813 // have occurred if we have a user-selected VF and are now computing the 6814 // expected cost for interleaving. 6815 if (VF < 2 || InstsToScalarize.count(VF)) 6816 return; 6817 6818 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6819 // not profitable to scalarize any instructions, the presence of VF in the 6820 // map will indicate that we've analyzed it already. 6821 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6822 6823 // Find all the instructions that are scalar with predication in the loop and 6824 // determine if it would be better to not if-convert the blocks they are in. 6825 // If so, we also record the instructions to scalarize. 6826 for (BasicBlock *BB : TheLoop->blocks()) { 6827 if (!Legal->blockNeedsPredication(BB)) 6828 continue; 6829 for (Instruction &I : *BB) 6830 if (Legal->isScalarWithPredication(&I)) { 6831 ScalarCostsTy ScalarCosts; 6832 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6833 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6834 6835 // Remember that BB will remain after vectorization. 6836 PredicatedBBsAfterVectorization.insert(BB); 6837 } 6838 } 6839 } 6840 6841 int LoopVectorizationCostModel::computePredInstDiscount( 6842 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6843 unsigned VF) { 6844 6845 assert(!isUniformAfterVectorization(PredInst, VF) && 6846 "Instruction marked uniform-after-vectorization will be predicated"); 6847 6848 // Initialize the discount to zero, meaning that the scalar version and the 6849 // vector version cost the same. 6850 int Discount = 0; 6851 6852 // Holds instructions to analyze. The instructions we visit are mapped in 6853 // ScalarCosts. Those instructions are the ones that would be scalarized if 6854 // we find that the scalar version costs less. 6855 SmallVector<Instruction *, 8> Worklist; 6856 6857 // Returns true if the given instruction can be scalarized. 6858 auto canBeScalarized = [&](Instruction *I) -> bool { 6859 6860 // We only attempt to scalarize instructions forming a single-use chain 6861 // from the original predicated block that would otherwise be vectorized. 6862 // Although not strictly necessary, we give up on instructions we know will 6863 // already be scalar to avoid traversing chains that are unlikely to be 6864 // beneficial. 6865 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6866 isScalarAfterVectorization(I, VF)) 6867 return false; 6868 6869 // If the instruction is scalar with predication, it will be analyzed 6870 // separately. We ignore it within the context of PredInst. 6871 if (Legal->isScalarWithPredication(I)) 6872 return false; 6873 6874 // If any of the instruction's operands are uniform after vectorization, 6875 // the instruction cannot be scalarized. This prevents, for example, a 6876 // masked load from being scalarized. 6877 // 6878 // We assume we will only emit a value for lane zero of an instruction 6879 // marked uniform after vectorization, rather than VF identical values. 6880 // Thus, if we scalarize an instruction that uses a uniform, we would 6881 // create uses of values corresponding to the lanes we aren't emitting code 6882 // for. This behavior can be changed by allowing getScalarValue to clone 6883 // the lane zero values for uniforms rather than asserting. 6884 for (Use &U : I->operands()) 6885 if (auto *J = dyn_cast<Instruction>(U.get())) 6886 if (isUniformAfterVectorization(J, VF)) 6887 return false; 6888 6889 // Otherwise, we can scalarize the instruction. 6890 return true; 6891 }; 6892 6893 // Returns true if an operand that cannot be scalarized must be extracted 6894 // from a vector. We will account for this scalarization overhead below. Note 6895 // that the non-void predicated instructions are placed in their own blocks, 6896 // and their return values are inserted into vectors. Thus, an extract would 6897 // still be required. 6898 auto needsExtract = [&](Instruction *I) -> bool { 6899 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6900 }; 6901 6902 // Compute the expected cost discount from scalarizing the entire expression 6903 // feeding the predicated instruction. We currently only consider expressions 6904 // that are single-use instruction chains. 6905 Worklist.push_back(PredInst); 6906 while (!Worklist.empty()) { 6907 Instruction *I = Worklist.pop_back_val(); 6908 6909 // If we've already analyzed the instruction, there's nothing to do. 6910 if (ScalarCosts.count(I)) 6911 continue; 6912 6913 // Compute the cost of the vector instruction. Note that this cost already 6914 // includes the scalarization overhead of the predicated instruction. 6915 unsigned VectorCost = getInstructionCost(I, VF).first; 6916 6917 // Compute the cost of the scalarized instruction. This cost is the cost of 6918 // the instruction as if it wasn't if-converted and instead remained in the 6919 // predicated block. We will scale this cost by block probability after 6920 // computing the scalarization overhead. 6921 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6922 6923 // Compute the scalarization overhead of needed insertelement instructions 6924 // and phi nodes. 6925 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6926 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6927 true, false); 6928 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6929 } 6930 6931 // Compute the scalarization overhead of needed extractelement 6932 // instructions. For each of the instruction's operands, if the operand can 6933 // be scalarized, add it to the worklist; otherwise, account for the 6934 // overhead. 6935 for (Use &U : I->operands()) 6936 if (auto *J = dyn_cast<Instruction>(U.get())) { 6937 assert(VectorType::isValidElementType(J->getType()) && 6938 "Instruction has non-scalar type"); 6939 if (canBeScalarized(J)) 6940 Worklist.push_back(J); 6941 else if (needsExtract(J)) 6942 ScalarCost += TTI.getScalarizationOverhead( 6943 ToVectorTy(J->getType(),VF), false, true); 6944 } 6945 6946 // Scale the total scalar cost by block probability. 6947 ScalarCost /= getReciprocalPredBlockProb(); 6948 6949 // Compute the discount. A non-negative discount means the vector version 6950 // of the instruction costs more, and scalarizing would be beneficial. 6951 Discount += VectorCost - ScalarCost; 6952 ScalarCosts[I] = ScalarCost; 6953 } 6954 6955 return Discount; 6956 } 6957 6958 LoopVectorizationCostModel::VectorizationCostTy 6959 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6960 VectorizationCostTy Cost; 6961 6962 // Collect Uniform and Scalar instructions after vectorization with VF. 6963 collectUniformsAndScalars(VF); 6964 6965 // Collect the instructions (and their associated costs) that will be more 6966 // profitable to scalarize. 6967 collectInstsToScalarize(VF); 6968 6969 // For each block. 6970 for (BasicBlock *BB : TheLoop->blocks()) { 6971 VectorizationCostTy BlockCost; 6972 6973 // For each instruction in the old loop. 6974 for (Instruction &I : *BB) { 6975 // Skip dbg intrinsics. 6976 if (isa<DbgInfoIntrinsic>(I)) 6977 continue; 6978 6979 // Skip ignored values. 6980 if (ValuesToIgnore.count(&I)) 6981 continue; 6982 6983 VectorizationCostTy C = getInstructionCost(&I, VF); 6984 6985 // Check if we should override the cost. 6986 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6987 C.first = ForceTargetInstructionCost; 6988 6989 BlockCost.first += C.first; 6990 BlockCost.second |= C.second; 6991 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6992 << VF << " For instruction: " << I << '\n'); 6993 } 6994 6995 // If we are vectorizing a predicated block, it will have been 6996 // if-converted. This means that the block's instructions (aside from 6997 // stores and instructions that may divide by zero) will now be 6998 // unconditionally executed. For the scalar case, we may not always execute 6999 // the predicated block. Thus, scale the block's cost by the probability of 7000 // executing it. 7001 if (VF == 1 && Legal->blockNeedsPredication(BB)) 7002 BlockCost.first /= getReciprocalPredBlockProb(); 7003 7004 Cost.first += BlockCost.first; 7005 Cost.second |= BlockCost.second; 7006 } 7007 7008 return Cost; 7009 } 7010 7011 /// \brief Gets Address Access SCEV after verifying that the access pattern 7012 /// is loop invariant except the induction variable dependence. 7013 /// 7014 /// This SCEV can be sent to the Target in order to estimate the address 7015 /// calculation cost. 7016 static const SCEV *getAddressAccessSCEV( 7017 Value *Ptr, 7018 LoopVectorizationLegality *Legal, 7019 ScalarEvolution *SE, 7020 const Loop *TheLoop) { 7021 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7022 if (!Gep) 7023 return nullptr; 7024 7025 // We are looking for a gep with all loop invariant indices except for one 7026 // which should be an induction variable. 7027 unsigned NumOperands = Gep->getNumOperands(); 7028 for (unsigned i = 1; i < NumOperands; ++i) { 7029 Value *Opd = Gep->getOperand(i); 7030 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7031 !Legal->isInductionVariable(Opd)) 7032 return nullptr; 7033 } 7034 7035 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7036 return SE->getSCEV(Ptr); 7037 } 7038 7039 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7040 return Legal->hasStride(I->getOperand(0)) || 7041 Legal->hasStride(I->getOperand(1)); 7042 } 7043 7044 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7045 unsigned VF) { 7046 Type *ValTy = getMemInstValueType(I); 7047 auto SE = PSE.getSE(); 7048 7049 unsigned Alignment = getMemInstAlignment(I); 7050 unsigned AS = getMemInstAddressSpace(I); 7051 Value *Ptr = getPointerOperand(I); 7052 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7053 7054 // Figure out whether the access is strided and get the stride value 7055 // if it's known in compile time 7056 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7057 7058 // Get the cost of the scalar memory instruction and address computation. 7059 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7060 7061 Cost += VF * 7062 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7063 AS, I); 7064 7065 // Get the overhead of the extractelement and insertelement instructions 7066 // we might create due to scalarization. 7067 Cost += getScalarizationOverhead(I, VF, TTI); 7068 7069 // If we have a predicated store, it may not be executed for each vector 7070 // lane. Scale the cost by the probability of executing the predicated 7071 // block. 7072 if (Legal->isScalarWithPredication(I)) 7073 Cost /= getReciprocalPredBlockProb(); 7074 7075 return Cost; 7076 } 7077 7078 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7079 unsigned VF) { 7080 Type *ValTy = getMemInstValueType(I); 7081 Type *VectorTy = ToVectorTy(ValTy, VF); 7082 unsigned Alignment = getMemInstAlignment(I); 7083 Value *Ptr = getPointerOperand(I); 7084 unsigned AS = getMemInstAddressSpace(I); 7085 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7086 7087 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7088 "Stride should be 1 or -1 for consecutive memory access"); 7089 unsigned Cost = 0; 7090 if (Legal->isMaskRequired(I)) 7091 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7092 else 7093 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7094 7095 bool Reverse = ConsecutiveStride < 0; 7096 if (Reverse) 7097 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7098 return Cost; 7099 } 7100 7101 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7102 unsigned VF) { 7103 LoadInst *LI = cast<LoadInst>(I); 7104 Type *ValTy = LI->getType(); 7105 Type *VectorTy = ToVectorTy(ValTy, VF); 7106 unsigned Alignment = LI->getAlignment(); 7107 unsigned AS = LI->getPointerAddressSpace(); 7108 7109 return TTI.getAddressComputationCost(ValTy) + 7110 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7111 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7112 } 7113 7114 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7115 unsigned VF) { 7116 Type *ValTy = getMemInstValueType(I); 7117 Type *VectorTy = ToVectorTy(ValTy, VF); 7118 unsigned Alignment = getMemInstAlignment(I); 7119 Value *Ptr = getPointerOperand(I); 7120 7121 return TTI.getAddressComputationCost(VectorTy) + 7122 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7123 Legal->isMaskRequired(I), Alignment); 7124 } 7125 7126 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7127 unsigned VF) { 7128 Type *ValTy = getMemInstValueType(I); 7129 Type *VectorTy = ToVectorTy(ValTy, VF); 7130 unsigned AS = getMemInstAddressSpace(I); 7131 7132 auto Group = Legal->getInterleavedAccessGroup(I); 7133 assert(Group && "Fail to get an interleaved access group."); 7134 7135 unsigned InterleaveFactor = Group->getFactor(); 7136 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7137 7138 // Holds the indices of existing members in an interleaved load group. 7139 // An interleaved store group doesn't need this as it doesn't allow gaps. 7140 SmallVector<unsigned, 4> Indices; 7141 if (isa<LoadInst>(I)) { 7142 for (unsigned i = 0; i < InterleaveFactor; i++) 7143 if (Group->getMember(i)) 7144 Indices.push_back(i); 7145 } 7146 7147 // Calculate the cost of the whole interleaved group. 7148 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7149 Group->getFactor(), Indices, 7150 Group->getAlignment(), AS); 7151 7152 if (Group->isReverse()) 7153 Cost += Group->getNumMembers() * 7154 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7155 return Cost; 7156 } 7157 7158 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7159 unsigned VF) { 7160 7161 // Calculate scalar cost only. Vectorization cost should be ready at this 7162 // moment. 7163 if (VF == 1) { 7164 Type *ValTy = getMemInstValueType(I); 7165 unsigned Alignment = getMemInstAlignment(I); 7166 unsigned AS = getMemInstAlignment(I); 7167 7168 return TTI.getAddressComputationCost(ValTy) + 7169 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7170 } 7171 return getWideningCost(I, VF); 7172 } 7173 7174 LoopVectorizationCostModel::VectorizationCostTy 7175 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7176 // If we know that this instruction will remain uniform, check the cost of 7177 // the scalar version. 7178 if (isUniformAfterVectorization(I, VF)) 7179 VF = 1; 7180 7181 if (VF > 1 && isProfitableToScalarize(I, VF)) 7182 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7183 7184 Type *VectorTy; 7185 unsigned C = getInstructionCost(I, VF, VectorTy); 7186 7187 bool TypeNotScalarized = 7188 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 7189 return VectorizationCostTy(C, TypeNotScalarized); 7190 } 7191 7192 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7193 if (VF == 1) 7194 return; 7195 for (BasicBlock *BB : TheLoop->blocks()) { 7196 // For each instruction in the old loop. 7197 for (Instruction &I : *BB) { 7198 Value *Ptr = getPointerOperand(&I); 7199 if (!Ptr) 7200 continue; 7201 7202 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7203 // Scalar load + broadcast 7204 unsigned Cost = getUniformMemOpCost(&I, VF); 7205 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7206 continue; 7207 } 7208 7209 // We assume that widening is the best solution when possible. 7210 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7211 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7212 setWideningDecision(&I, VF, CM_Widen, Cost); 7213 continue; 7214 } 7215 7216 // Choose between Interleaving, Gather/Scatter or Scalarization. 7217 unsigned InterleaveCost = UINT_MAX; 7218 unsigned NumAccesses = 1; 7219 if (Legal->isAccessInterleaved(&I)) { 7220 auto Group = Legal->getInterleavedAccessGroup(&I); 7221 assert(Group && "Fail to get an interleaved access group."); 7222 7223 // Make one decision for the whole group. 7224 if (getWideningDecision(&I, VF) != CM_Unknown) 7225 continue; 7226 7227 NumAccesses = Group->getNumMembers(); 7228 InterleaveCost = getInterleaveGroupCost(&I, VF); 7229 } 7230 7231 unsigned GatherScatterCost = 7232 Legal->isLegalGatherOrScatter(&I) 7233 ? getGatherScatterCost(&I, VF) * NumAccesses 7234 : UINT_MAX; 7235 7236 unsigned ScalarizationCost = 7237 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7238 7239 // Choose better solution for the current VF, 7240 // write down this decision and use it during vectorization. 7241 unsigned Cost; 7242 InstWidening Decision; 7243 if (InterleaveCost <= GatherScatterCost && 7244 InterleaveCost < ScalarizationCost) { 7245 Decision = CM_Interleave; 7246 Cost = InterleaveCost; 7247 } else if (GatherScatterCost < ScalarizationCost) { 7248 Decision = CM_GatherScatter; 7249 Cost = GatherScatterCost; 7250 } else { 7251 Decision = CM_Scalarize; 7252 Cost = ScalarizationCost; 7253 } 7254 // If the instructions belongs to an interleave group, the whole group 7255 // receives the same decision. The whole group receives the cost, but 7256 // the cost will actually be assigned to one instruction. 7257 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7258 setWideningDecision(Group, VF, Decision, Cost); 7259 else 7260 setWideningDecision(&I, VF, Decision, Cost); 7261 } 7262 } 7263 } 7264 7265 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7266 unsigned VF, 7267 Type *&VectorTy) { 7268 Type *RetTy = I->getType(); 7269 if (canTruncateToMinimalBitwidth(I, VF)) 7270 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7271 VectorTy = ToVectorTy(RetTy, VF); 7272 auto SE = PSE.getSE(); 7273 7274 // TODO: We need to estimate the cost of intrinsic calls. 7275 switch (I->getOpcode()) { 7276 case Instruction::GetElementPtr: 7277 // We mark this instruction as zero-cost because the cost of GEPs in 7278 // vectorized code depends on whether the corresponding memory instruction 7279 // is scalarized or not. Therefore, we handle GEPs with the memory 7280 // instruction cost. 7281 return 0; 7282 case Instruction::Br: { 7283 // In cases of scalarized and predicated instructions, there will be VF 7284 // predicated blocks in the vectorized loop. Each branch around these 7285 // blocks requires also an extract of its vector compare i1 element. 7286 bool ScalarPredicatedBB = false; 7287 BranchInst *BI = cast<BranchInst>(I); 7288 if (VF > 1 && BI->isConditional() && 7289 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7290 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7291 ScalarPredicatedBB = true; 7292 7293 if (ScalarPredicatedBB) { 7294 // Return cost for branches around scalarized and predicated blocks. 7295 Type *Vec_i1Ty = 7296 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7297 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7298 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7299 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7300 // The back-edge branch will remain, as will all scalar branches. 7301 return TTI.getCFInstrCost(Instruction::Br); 7302 else 7303 // This branch will be eliminated by if-conversion. 7304 return 0; 7305 // Note: We currently assume zero cost for an unconditional branch inside 7306 // a predicated block since it will become a fall-through, although we 7307 // may decide in the future to call TTI for all branches. 7308 } 7309 case Instruction::PHI: { 7310 auto *Phi = cast<PHINode>(I); 7311 7312 // First-order recurrences are replaced by vector shuffles inside the loop. 7313 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7314 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7315 VectorTy, VF - 1, VectorTy); 7316 7317 // TODO: IF-converted IFs become selects. 7318 return 0; 7319 } 7320 case Instruction::UDiv: 7321 case Instruction::SDiv: 7322 case Instruction::URem: 7323 case Instruction::SRem: 7324 // If we have a predicated instruction, it may not be executed for each 7325 // vector lane. Get the scalarization cost and scale this amount by the 7326 // probability of executing the predicated block. If the instruction is not 7327 // predicated, we fall through to the next case. 7328 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7329 unsigned Cost = 0; 7330 7331 // These instructions have a non-void type, so account for the phi nodes 7332 // that we will create. This cost is likely to be zero. The phi node 7333 // cost, if any, should be scaled by the block probability because it 7334 // models a copy at the end of each predicated block. 7335 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7336 7337 // The cost of the non-predicated instruction. 7338 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7339 7340 // The cost of insertelement and extractelement instructions needed for 7341 // scalarization. 7342 Cost += getScalarizationOverhead(I, VF, TTI); 7343 7344 // Scale the cost by the probability of executing the predicated blocks. 7345 // This assumes the predicated block for each vector lane is equally 7346 // likely. 7347 return Cost / getReciprocalPredBlockProb(); 7348 } 7349 case Instruction::Add: 7350 case Instruction::FAdd: 7351 case Instruction::Sub: 7352 case Instruction::FSub: 7353 case Instruction::Mul: 7354 case Instruction::FMul: 7355 case Instruction::FDiv: 7356 case Instruction::FRem: 7357 case Instruction::Shl: 7358 case Instruction::LShr: 7359 case Instruction::AShr: 7360 case Instruction::And: 7361 case Instruction::Or: 7362 case Instruction::Xor: { 7363 // Since we will replace the stride by 1 the multiplication should go away. 7364 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7365 return 0; 7366 // Certain instructions can be cheaper to vectorize if they have a constant 7367 // second vector operand. One example of this are shifts on x86. 7368 TargetTransformInfo::OperandValueKind Op1VK = 7369 TargetTransformInfo::OK_AnyValue; 7370 TargetTransformInfo::OperandValueKind Op2VK = 7371 TargetTransformInfo::OK_AnyValue; 7372 TargetTransformInfo::OperandValueProperties Op1VP = 7373 TargetTransformInfo::OP_None; 7374 TargetTransformInfo::OperandValueProperties Op2VP = 7375 TargetTransformInfo::OP_None; 7376 Value *Op2 = I->getOperand(1); 7377 7378 // Check for a splat or for a non uniform vector of constants. 7379 if (isa<ConstantInt>(Op2)) { 7380 ConstantInt *CInt = cast<ConstantInt>(Op2); 7381 if (CInt && CInt->getValue().isPowerOf2()) 7382 Op2VP = TargetTransformInfo::OP_PowerOf2; 7383 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7384 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7385 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7386 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7387 if (SplatValue) { 7388 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7389 if (CInt && CInt->getValue().isPowerOf2()) 7390 Op2VP = TargetTransformInfo::OP_PowerOf2; 7391 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7392 } 7393 } else if (Legal->isUniform(Op2)) { 7394 Op2VK = TargetTransformInfo::OK_UniformValue; 7395 } 7396 SmallVector<const Value *, 4> Operands(I->operand_values()); 7397 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7398 Op2VK, Op1VP, Op2VP, Operands); 7399 } 7400 case Instruction::Select: { 7401 SelectInst *SI = cast<SelectInst>(I); 7402 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7403 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7404 Type *CondTy = SI->getCondition()->getType(); 7405 if (!ScalarCond) 7406 CondTy = VectorType::get(CondTy, VF); 7407 7408 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7409 } 7410 case Instruction::ICmp: 7411 case Instruction::FCmp: { 7412 Type *ValTy = I->getOperand(0)->getType(); 7413 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7414 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7415 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7416 VectorTy = ToVectorTy(ValTy, VF); 7417 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7418 } 7419 case Instruction::Store: 7420 case Instruction::Load: { 7421 VectorTy = ToVectorTy(getMemInstValueType(I), VF); 7422 return getMemoryInstructionCost(I, VF); 7423 } 7424 case Instruction::ZExt: 7425 case Instruction::SExt: 7426 case Instruction::FPToUI: 7427 case Instruction::FPToSI: 7428 case Instruction::FPExt: 7429 case Instruction::PtrToInt: 7430 case Instruction::IntToPtr: 7431 case Instruction::SIToFP: 7432 case Instruction::UIToFP: 7433 case Instruction::Trunc: 7434 case Instruction::FPTrunc: 7435 case Instruction::BitCast: { 7436 // We optimize the truncation of induction variables having constant 7437 // integer steps. The cost of these truncations is the same as the scalar 7438 // operation. 7439 if (isOptimizableIVTruncate(I, VF)) { 7440 auto *Trunc = cast<TruncInst>(I); 7441 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7442 Trunc->getSrcTy(), Trunc); 7443 } 7444 7445 Type *SrcScalarTy = I->getOperand(0)->getType(); 7446 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7447 if (canTruncateToMinimalBitwidth(I, VF)) { 7448 // This cast is going to be shrunk. This may remove the cast or it might 7449 // turn it into slightly different cast. For example, if MinBW == 16, 7450 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7451 // 7452 // Calculate the modified src and dest types. 7453 Type *MinVecTy = VectorTy; 7454 if (I->getOpcode() == Instruction::Trunc) { 7455 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7456 VectorTy = 7457 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7458 } else if (I->getOpcode() == Instruction::ZExt || 7459 I->getOpcode() == Instruction::SExt) { 7460 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7461 VectorTy = 7462 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7463 } 7464 } 7465 7466 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7467 } 7468 case Instruction::Call: { 7469 bool NeedToScalarize; 7470 CallInst *CI = cast<CallInst>(I); 7471 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7472 if (getVectorIntrinsicIDForCall(CI, TLI)) 7473 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7474 return CallCost; 7475 } 7476 default: 7477 // The cost of executing VF copies of the scalar instruction. This opcode 7478 // is unknown. Assume that it is the same as 'mul'. 7479 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7480 getScalarizationOverhead(I, VF, TTI); 7481 } // end of switch. 7482 } 7483 7484 char LoopVectorize::ID = 0; 7485 static const char lv_name[] = "Loop Vectorization"; 7486 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7487 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7488 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7489 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7490 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7491 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7492 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7493 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7494 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7495 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7496 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7497 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7498 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7499 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7500 7501 namespace llvm { 7502 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7503 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7504 } 7505 } 7506 7507 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7508 7509 // Check if the pointer operand of a load or store instruction is 7510 // consecutive. 7511 if (auto *Ptr = getPointerOperand(Inst)) 7512 return Legal->isConsecutivePtr(Ptr); 7513 return false; 7514 } 7515 7516 void LoopVectorizationCostModel::collectValuesToIgnore() { 7517 // Ignore ephemeral values. 7518 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7519 7520 // Ignore type-promoting instructions we identified during reduction 7521 // detection. 7522 for (auto &Reduction : *Legal->getReductionVars()) { 7523 RecurrenceDescriptor &RedDes = Reduction.second; 7524 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7525 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7526 } 7527 } 7528 7529 LoopVectorizationCostModel::VectorizationFactor 7530 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7531 7532 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7533 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7534 0U}; 7535 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7536 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7537 return NoVectorization; 7538 7539 if (UserVF) { 7540 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7541 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7542 // Collect the instructions (and their associated costs) that will be more 7543 // profitable to scalarize. 7544 CM.selectUserVectorizationFactor(UserVF); 7545 return {UserVF, 0}; 7546 } 7547 7548 unsigned MaxVF = MaybeMaxVF.getValue(); 7549 assert(MaxVF != 0 && "MaxVF is zero."); 7550 if (MaxVF == 1) 7551 return NoVectorization; 7552 7553 // Select the optimal vectorization factor. 7554 return CM.selectVectorizationFactor(MaxVF); 7555 } 7556 7557 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7558 auto *SI = dyn_cast<StoreInst>(Instr); 7559 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7560 7561 return scalarizeInstruction(Instr, IfPredicateInstr); 7562 } 7563 7564 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7565 7566 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7567 7568 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7569 Instruction::BinaryOps BinOp) { 7570 // When unrolling and the VF is 1, we only need to add a simple scalar. 7571 Type *Ty = Val->getType(); 7572 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7573 7574 if (Ty->isFloatingPointTy()) { 7575 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7576 7577 // Floating point operations had to be 'fast' to enable the unrolling. 7578 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7579 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7580 } 7581 Constant *C = ConstantInt::get(Ty, StartIdx); 7582 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7583 } 7584 7585 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7586 SmallVector<Metadata *, 4> MDs; 7587 // Reserve first location for self reference to the LoopID metadata node. 7588 MDs.push_back(nullptr); 7589 bool IsUnrollMetadata = false; 7590 MDNode *LoopID = L->getLoopID(); 7591 if (LoopID) { 7592 // First find existing loop unrolling disable metadata. 7593 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7594 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7595 if (MD) { 7596 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7597 IsUnrollMetadata = 7598 S && S->getString().startswith("llvm.loop.unroll.disable"); 7599 } 7600 MDs.push_back(LoopID->getOperand(i)); 7601 } 7602 } 7603 7604 if (!IsUnrollMetadata) { 7605 // Add runtime unroll disable metadata. 7606 LLVMContext &Context = L->getHeader()->getContext(); 7607 SmallVector<Metadata *, 1> DisableOperands; 7608 DisableOperands.push_back( 7609 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7610 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7611 MDs.push_back(DisableNode); 7612 MDNode *NewLoopID = MDNode::get(Context, MDs); 7613 // Set operand 0 to refer to the loop id itself. 7614 NewLoopID->replaceOperandWith(0, NewLoopID); 7615 L->setLoopID(NewLoopID); 7616 } 7617 } 7618 7619 bool LoopVectorizePass::processLoop(Loop *L) { 7620 assert(L->empty() && "Only process inner loops."); 7621 7622 #ifndef NDEBUG 7623 const std::string DebugLocStr = getDebugLocString(L); 7624 #endif /* NDEBUG */ 7625 7626 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7627 << L->getHeader()->getParent()->getName() << "\" from " 7628 << DebugLocStr << "\n"); 7629 7630 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7631 7632 DEBUG(dbgs() << "LV: Loop hints:" 7633 << " force=" 7634 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7635 ? "disabled" 7636 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7637 ? "enabled" 7638 : "?")) 7639 << " width=" << Hints.getWidth() 7640 << " unroll=" << Hints.getInterleave() << "\n"); 7641 7642 // Function containing loop 7643 Function *F = L->getHeader()->getParent(); 7644 7645 // Looking at the diagnostic output is the only way to determine if a loop 7646 // was vectorized (other than looking at the IR or machine code), so it 7647 // is important to generate an optimization remark for each loop. Most of 7648 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7649 // generated as OptimizationRemark and OptimizationRemarkMissed are 7650 // less verbose reporting vectorized loops and unvectorized loops that may 7651 // benefit from vectorization, respectively. 7652 7653 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7654 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7655 return false; 7656 } 7657 7658 // Check the loop for a trip count threshold: 7659 // do not vectorize loops with a tiny trip count. 7660 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7661 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7662 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7663 << "This loop is not worth vectorizing."); 7664 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7665 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7666 else { 7667 DEBUG(dbgs() << "\n"); 7668 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7669 "NotBeneficial", L) 7670 << "vectorization is not beneficial " 7671 "and is not explicitly forced"); 7672 return false; 7673 } 7674 } 7675 7676 PredicatedScalarEvolution PSE(*SE, *L); 7677 7678 // Check if it is legal to vectorize the loop. 7679 LoopVectorizationRequirements Requirements(*ORE); 7680 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7681 &Requirements, &Hints); 7682 if (!LVL.canVectorize()) { 7683 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7684 emitMissedWarning(F, L, Hints, ORE); 7685 return false; 7686 } 7687 7688 // Check the function attributes to find out if this function should be 7689 // optimized for size. 7690 bool OptForSize = 7691 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7692 7693 // Compute the weighted frequency of this loop being executed and see if it 7694 // is less than 20% of the function entry baseline frequency. Note that we 7695 // always have a canonical loop here because we think we *can* vectorize. 7696 // FIXME: This is hidden behind a flag due to pervasive problems with 7697 // exactly what block frequency models. 7698 if (LoopVectorizeWithBlockFrequency) { 7699 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7700 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7701 LoopEntryFreq < ColdEntryFreq) 7702 OptForSize = true; 7703 } 7704 7705 // Check the function attributes to see if implicit floats are allowed. 7706 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7707 // an integer loop and the vector instructions selected are purely integer 7708 // vector instructions? 7709 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7710 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7711 "attribute is used.\n"); 7712 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7713 "NoImplicitFloat", L) 7714 << "loop not vectorized due to NoImplicitFloat attribute"); 7715 emitMissedWarning(F, L, Hints, ORE); 7716 return false; 7717 } 7718 7719 // Check if the target supports potentially unsafe FP vectorization. 7720 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7721 // for the target we're vectorizing for, to make sure none of the 7722 // additional fp-math flags can help. 7723 if (Hints.isPotentiallyUnsafe() && 7724 TTI->isFPVectorizationPotentiallyUnsafe()) { 7725 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7726 ORE->emit( 7727 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7728 << "loop not vectorized due to unsafe FP support."); 7729 emitMissedWarning(F, L, Hints, ORE); 7730 return false; 7731 } 7732 7733 // Use the cost model. 7734 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7735 &Hints); 7736 CM.collectValuesToIgnore(); 7737 7738 // Use the planner for vectorization. 7739 LoopVectorizationPlanner LVP(CM); 7740 7741 // Get user vectorization factor. 7742 unsigned UserVF = Hints.getWidth(); 7743 7744 // Plan how to best vectorize, return the best VF and its cost. 7745 LoopVectorizationCostModel::VectorizationFactor VF = 7746 LVP.plan(OptForSize, UserVF); 7747 7748 // Select the interleave count. 7749 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7750 7751 // Get user interleave count. 7752 unsigned UserIC = Hints.getInterleave(); 7753 7754 // Identify the diagnostic messages that should be produced. 7755 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7756 bool VectorizeLoop = true, InterleaveLoop = true; 7757 if (Requirements.doesNotMeet(F, L, Hints)) { 7758 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7759 "requirements.\n"); 7760 emitMissedWarning(F, L, Hints, ORE); 7761 return false; 7762 } 7763 7764 if (VF.Width == 1) { 7765 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7766 VecDiagMsg = std::make_pair( 7767 "VectorizationNotBeneficial", 7768 "the cost-model indicates that vectorization is not beneficial"); 7769 VectorizeLoop = false; 7770 } 7771 7772 if (IC == 1 && UserIC <= 1) { 7773 // Tell the user interleaving is not beneficial. 7774 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7775 IntDiagMsg = std::make_pair( 7776 "InterleavingNotBeneficial", 7777 "the cost-model indicates that interleaving is not beneficial"); 7778 InterleaveLoop = false; 7779 if (UserIC == 1) { 7780 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7781 IntDiagMsg.second += 7782 " and is explicitly disabled or interleave count is set to 1"; 7783 } 7784 } else if (IC > 1 && UserIC == 1) { 7785 // Tell the user interleaving is beneficial, but it explicitly disabled. 7786 DEBUG(dbgs() 7787 << "LV: Interleaving is beneficial but is explicitly disabled."); 7788 IntDiagMsg = std::make_pair( 7789 "InterleavingBeneficialButDisabled", 7790 "the cost-model indicates that interleaving is beneficial " 7791 "but is explicitly disabled or interleave count is set to 1"); 7792 InterleaveLoop = false; 7793 } 7794 7795 // Override IC if user provided an interleave count. 7796 IC = UserIC > 0 ? UserIC : IC; 7797 7798 // Emit diagnostic messages, if any. 7799 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7800 if (!VectorizeLoop && !InterleaveLoop) { 7801 // Do not vectorize or interleaving the loop. 7802 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7803 L->getStartLoc(), L->getHeader()) 7804 << VecDiagMsg.second); 7805 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7806 L->getStartLoc(), L->getHeader()) 7807 << IntDiagMsg.second); 7808 return false; 7809 } else if (!VectorizeLoop && InterleaveLoop) { 7810 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7811 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7812 L->getStartLoc(), L->getHeader()) 7813 << VecDiagMsg.second); 7814 } else if (VectorizeLoop && !InterleaveLoop) { 7815 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7816 << DebugLocStr << '\n'); 7817 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7818 L->getStartLoc(), L->getHeader()) 7819 << IntDiagMsg.second); 7820 } else if (VectorizeLoop && InterleaveLoop) { 7821 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7822 << DebugLocStr << '\n'); 7823 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7824 } 7825 7826 using namespace ore; 7827 if (!VectorizeLoop) { 7828 assert(IC > 1 && "interleave count should not be 1 or 0"); 7829 // If we decided that it is not legal to vectorize the loop, then 7830 // interleave it. 7831 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7832 &CM); 7833 Unroller.vectorize(); 7834 7835 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7836 L->getHeader()) 7837 << "interleaved loop (interleaved count: " 7838 << NV("InterleaveCount", IC) << ")"); 7839 } else { 7840 // If we decided that it is *legal* to vectorize the loop, then do it. 7841 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7842 &LVL, &CM); 7843 LB.vectorize(); 7844 ++LoopsVectorized; 7845 7846 // Add metadata to disable runtime unrolling a scalar loop when there are 7847 // no runtime checks about strides and memory. A scalar loop that is 7848 // rarely used is not worth unrolling. 7849 if (!LB.areSafetyChecksAdded()) 7850 AddRuntimeUnrollDisableMetaData(L); 7851 7852 // Report the vectorization decision. 7853 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7854 L->getHeader()) 7855 << "vectorized loop (vectorization width: " 7856 << NV("VectorizationFactor", VF.Width) 7857 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7858 } 7859 7860 // Mark the loop as already vectorized to avoid vectorizing again. 7861 Hints.setAlreadyVectorized(); 7862 7863 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7864 return true; 7865 } 7866 7867 bool LoopVectorizePass::runImpl( 7868 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7869 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7870 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7871 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7872 OptimizationRemarkEmitter &ORE_) { 7873 7874 SE = &SE_; 7875 LI = &LI_; 7876 TTI = &TTI_; 7877 DT = &DT_; 7878 BFI = &BFI_; 7879 TLI = TLI_; 7880 AA = &AA_; 7881 AC = &AC_; 7882 GetLAA = &GetLAA_; 7883 DB = &DB_; 7884 ORE = &ORE_; 7885 7886 // Compute some weights outside of the loop over the loops. Compute this 7887 // using a BranchProbability to re-use its scaling math. 7888 const BranchProbability ColdProb(1, 5); // 20% 7889 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7890 7891 // Don't attempt if 7892 // 1. the target claims to have no vector registers, and 7893 // 2. interleaving won't help ILP. 7894 // 7895 // The second condition is necessary because, even if the target has no 7896 // vector registers, loop vectorization may still enable scalar 7897 // interleaving. 7898 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7899 return false; 7900 7901 bool Changed = false; 7902 7903 // The vectorizer requires loops to be in simplified form. 7904 // Since simplification may add new inner loops, it has to run before the 7905 // legality and profitability checks. This means running the loop vectorizer 7906 // will simplify all loops, regardless of whether anything end up being 7907 // vectorized. 7908 for (auto &L : *LI) 7909 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7910 7911 // Build up a worklist of inner-loops to vectorize. This is necessary as 7912 // the act of vectorizing or partially unrolling a loop creates new loops 7913 // and can invalidate iterators across the loops. 7914 SmallVector<Loop *, 8> Worklist; 7915 7916 for (Loop *L : *LI) 7917 addAcyclicInnerLoop(*L, Worklist); 7918 7919 LoopsAnalyzed += Worklist.size(); 7920 7921 // Now walk the identified inner loops. 7922 while (!Worklist.empty()) { 7923 Loop *L = Worklist.pop_back_val(); 7924 7925 // For the inner loops we actually process, form LCSSA to simplify the 7926 // transform. 7927 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7928 7929 Changed |= processLoop(L); 7930 } 7931 7932 // Process each loop nest in the function. 7933 return Changed; 7934 7935 } 7936 7937 7938 PreservedAnalyses LoopVectorizePass::run(Function &F, 7939 FunctionAnalysisManager &AM) { 7940 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7941 auto &LI = AM.getResult<LoopAnalysis>(F); 7942 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7943 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7944 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7945 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7946 auto &AA = AM.getResult<AAManager>(F); 7947 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7948 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7949 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7950 7951 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7952 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7953 [&](Loop &L) -> const LoopAccessInfo & { 7954 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 7955 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7956 }; 7957 bool Changed = 7958 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7959 if (!Changed) 7960 return PreservedAnalyses::all(); 7961 PreservedAnalyses PA; 7962 PA.preserve<LoopAnalysis>(); 7963 PA.preserve<DominatorTreeAnalysis>(); 7964 PA.preserve<BasicAA>(); 7965 PA.preserve<GlobalsAA>(); 7966 return PA; 7967 } 7968