1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionCache.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopAccessAnalysis.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolution.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/TargetTransformInfo.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/IR/Verifier.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/BranchProbability.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/VectorUtils.h" 96 #include <algorithm> 97 #include <map> 98 #include <tuple> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define LV_NAME "loop-vectorize" 104 #define DEBUG_TYPE LV_NAME 105 106 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 107 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 108 109 static cl::opt<bool> 110 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 111 cl::desc("Enable if-conversion during vectorization.")); 112 113 /// We don't vectorize loops with a known constant trip count below this number. 114 static cl::opt<unsigned> 115 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 116 cl::Hidden, 117 cl::desc("Don't vectorize loops with a constant " 118 "trip count that is smaller than this " 119 "value.")); 120 121 /// This enables versioning on the strides of symbolically striding memory 122 /// accesses in code like the following. 123 /// for (i = 0; i < N; ++i) 124 /// A[i * Stride1] += B[i * Stride2] ... 125 /// 126 /// Will be roughly translated to 127 /// if (Stride1 == 1 && Stride2 == 1) { 128 /// for (i = 0; i < N; i+=4) 129 /// A[i:i+3] += ... 130 /// } else 131 /// ... 132 static cl::opt<bool> EnableMemAccessVersioning( 133 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 134 cl::desc("Enable symblic stride memory access versioning")); 135 136 /// We don't unroll loops with a known constant trip count below this number. 137 static const unsigned TinyTripCountUnrollThreshold = 128; 138 139 static cl::opt<unsigned> ForceTargetNumScalarRegs( 140 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 141 cl::desc("A flag that overrides the target's number of scalar registers.")); 142 143 static cl::opt<unsigned> ForceTargetNumVectorRegs( 144 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of vector registers.")); 146 147 /// Maximum vectorization interleave count. 148 static const unsigned MaxInterleaveFactor = 16; 149 150 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 151 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 152 cl::desc("A flag that overrides the target's max interleave factor for " 153 "scalar loops.")); 154 155 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 156 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's max interleave factor for " 158 "vectorized loops.")); 159 160 static cl::opt<unsigned> ForceTargetInstructionCost( 161 "force-target-instruction-cost", cl::init(0), cl::Hidden, 162 cl::desc("A flag that overrides the target's expected cost for " 163 "an instruction to a single constant value. Mostly " 164 "useful for getting consistent testing.")); 165 166 static cl::opt<unsigned> SmallLoopCost( 167 "small-loop-cost", cl::init(20), cl::Hidden, 168 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 169 170 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 171 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 172 cl::desc("Enable the use of the block frequency analysis to access PGO " 173 "heuristics minimizing code growth in cold regions and being more " 174 "aggressive in hot regions.")); 175 176 // Runtime unroll loops for load/store throughput. 177 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 178 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 179 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 180 181 /// The number of stores in a loop that are allowed to need predication. 182 static cl::opt<unsigned> NumberOfStoresToPredicate( 183 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 184 cl::desc("Max number of stores to be predicated behind an if.")); 185 186 static cl::opt<bool> EnableIndVarRegisterHeur( 187 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 188 cl::desc("Count the induction variable only once when unrolling")); 189 190 static cl::opt<bool> EnableCondStoresVectorization( 191 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 192 cl::desc("Enable if predication of stores during vectorization.")); 193 194 static cl::opt<unsigned> MaxNestedScalarReductionUF( 195 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 196 cl::desc("The maximum unroll factor to use when unrolling a scalar " 197 "reduction in a nested loop.")); 198 199 namespace { 200 201 // Forward declarations. 202 class LoopVectorizationLegality; 203 class LoopVectorizationCostModel; 204 class LoopVectorizeHints; 205 206 /// \brief This modifies LoopAccessReport to initialize message with 207 /// loop-vectorizer-specific part. 208 class VectorizationReport : public LoopAccessReport { 209 public: 210 VectorizationReport(Instruction *I = nullptr) 211 : LoopAccessReport("loop not vectorized: ", I) {} 212 213 /// \brief This allows promotion of the loop-access analysis report into the 214 /// loop-vectorizer report. It modifies the message to add the 215 /// loop-vectorizer-specific part of the message. 216 explicit VectorizationReport(const LoopAccessReport &R) 217 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 218 R.getInstr()) {} 219 }; 220 221 /// InnerLoopVectorizer vectorizes loops which contain only one basic 222 /// block to a specified vectorization factor (VF). 223 /// This class performs the widening of scalars into vectors, or multiple 224 /// scalars. This class also implements the following features: 225 /// * It inserts an epilogue loop for handling loops that don't have iteration 226 /// counts that are known to be a multiple of the vectorization factor. 227 /// * It handles the code generation for reduction variables. 228 /// * Scalarization (implementation using scalars) of un-vectorizable 229 /// instructions. 230 /// InnerLoopVectorizer does not perform any vectorization-legality 231 /// checks, and relies on the caller to check for the different legality 232 /// aspects. The InnerLoopVectorizer relies on the 233 /// LoopVectorizationLegality class to provide information about the induction 234 /// and reduction variables that were found to a given vectorization factor. 235 class InnerLoopVectorizer { 236 public: 237 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 238 DominatorTree *DT, const DataLayout *DL, 239 const TargetLibraryInfo *TLI, unsigned VecWidth, 240 unsigned UnrollFactor) 241 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 242 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 243 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 244 Legal(nullptr) {} 245 246 // Perform the actual loop widening (vectorization). 247 void vectorize(LoopVectorizationLegality *L) { 248 Legal = L; 249 // Create a new empty loop. Unlink the old loop and connect the new one. 250 createEmptyLoop(); 251 // Widen each instruction in the old loop to a new one in the new loop. 252 // Use the Legality module to find the induction and reduction variables. 253 vectorizeLoop(); 254 // Register the new loop and update the analysis passes. 255 updateAnalysis(); 256 } 257 258 virtual ~InnerLoopVectorizer() {} 259 260 protected: 261 /// A small list of PHINodes. 262 typedef SmallVector<PHINode*, 4> PhiVector; 263 /// When we unroll loops we have multiple vector values for each scalar. 264 /// This data structure holds the unrolled and vectorized values that 265 /// originated from one scalar instruction. 266 typedef SmallVector<Value*, 2> VectorParts; 267 268 // When we if-convert we need create edge masks. We have to cache values so 269 // that we don't end up with exponential recursion/IR. 270 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 271 VectorParts> EdgeMaskCache; 272 273 /// \brief Add checks for strides that where assumed to be 1. 274 /// 275 /// Returns the last check instruction and the first check instruction in the 276 /// pair as (first, last). 277 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 278 279 /// Create an empty loop, based on the loop ranges of the old loop. 280 void createEmptyLoop(); 281 /// Copy and widen the instructions from the old loop. 282 virtual void vectorizeLoop(); 283 284 /// \brief The Loop exit block may have single value PHI nodes where the 285 /// incoming value is 'Undef'. While vectorizing we only handled real values 286 /// that were defined inside the loop. Here we fix the 'undef case'. 287 /// See PR14725. 288 void fixLCSSAPHIs(); 289 290 /// A helper function that computes the predicate of the block BB, assuming 291 /// that the header block of the loop is set to True. It returns the *entry* 292 /// mask for the block BB. 293 VectorParts createBlockInMask(BasicBlock *BB); 294 /// A helper function that computes the predicate of the edge between SRC 295 /// and DST. 296 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 297 298 /// A helper function to vectorize a single BB within the innermost loop. 299 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 300 301 /// Vectorize a single PHINode in a block. This method handles the induction 302 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 303 /// arbitrary length vectors. 304 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 305 unsigned UF, unsigned VF, PhiVector *PV); 306 307 /// Insert the new loop to the loop hierarchy and pass manager 308 /// and update the analysis passes. 309 void updateAnalysis(); 310 311 /// This instruction is un-vectorizable. Implement it as a sequence 312 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 313 /// scalarized instruction behind an if block predicated on the control 314 /// dependence of the instruction. 315 virtual void scalarizeInstruction(Instruction *Instr, 316 bool IfPredicateStore=false); 317 318 /// Vectorize Load and Store instructions, 319 virtual void vectorizeMemoryInstruction(Instruction *Instr); 320 321 /// Create a broadcast instruction. This method generates a broadcast 322 /// instruction (shuffle) for loop invariant values and for the induction 323 /// value. If this is the induction variable then we extend it to N, N+1, ... 324 /// this is needed because each iteration in the loop corresponds to a SIMD 325 /// element. 326 virtual Value *getBroadcastInstrs(Value *V); 327 328 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 329 /// to each vector element of Val. The sequence starts at StartIndex. 330 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 331 332 /// When we go over instructions in the basic block we rely on previous 333 /// values within the current basic block or on loop invariant values. 334 /// When we widen (vectorize) values we place them in the map. If the values 335 /// are not within the map, they have to be loop invariant, so we simply 336 /// broadcast them into a vector. 337 VectorParts &getVectorValue(Value *V); 338 339 /// Generate a shuffle sequence that will reverse the vector Vec. 340 virtual Value *reverseVector(Value *Vec); 341 342 /// This is a helper class that holds the vectorizer state. It maps scalar 343 /// instructions to vector instructions. When the code is 'unrolled' then 344 /// then a single scalar value is mapped to multiple vector parts. The parts 345 /// are stored in the VectorPart type. 346 struct ValueMap { 347 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 348 /// are mapped. 349 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 350 351 /// \return True if 'Key' is saved in the Value Map. 352 bool has(Value *Key) const { return MapStorage.count(Key); } 353 354 /// Initializes a new entry in the map. Sets all of the vector parts to the 355 /// save value in 'Val'. 356 /// \return A reference to a vector with splat values. 357 VectorParts &splat(Value *Key, Value *Val) { 358 VectorParts &Entry = MapStorage[Key]; 359 Entry.assign(UF, Val); 360 return Entry; 361 } 362 363 ///\return A reference to the value that is stored at 'Key'. 364 VectorParts &get(Value *Key) { 365 VectorParts &Entry = MapStorage[Key]; 366 if (Entry.empty()) 367 Entry.resize(UF); 368 assert(Entry.size() == UF); 369 return Entry; 370 } 371 372 private: 373 /// The unroll factor. Each entry in the map stores this number of vector 374 /// elements. 375 unsigned UF; 376 377 /// Map storage. We use std::map and not DenseMap because insertions to a 378 /// dense map invalidates its iterators. 379 std::map<Value *, VectorParts> MapStorage; 380 }; 381 382 /// The original loop. 383 Loop *OrigLoop; 384 /// Scev analysis to use. 385 ScalarEvolution *SE; 386 /// Loop Info. 387 LoopInfo *LI; 388 /// Dominator Tree. 389 DominatorTree *DT; 390 /// Alias Analysis. 391 AliasAnalysis *AA; 392 /// Data Layout. 393 const DataLayout *DL; 394 /// Target Library Info. 395 const TargetLibraryInfo *TLI; 396 397 /// The vectorization SIMD factor to use. Each vector will have this many 398 /// vector elements. 399 unsigned VF; 400 401 protected: 402 /// The vectorization unroll factor to use. Each scalar is vectorized to this 403 /// many different vector instructions. 404 unsigned UF; 405 406 /// The builder that we use 407 IRBuilder<> Builder; 408 409 // --- Vectorization state --- 410 411 /// The vector-loop preheader. 412 BasicBlock *LoopVectorPreHeader; 413 /// The scalar-loop preheader. 414 BasicBlock *LoopScalarPreHeader; 415 /// Middle Block between the vector and the scalar. 416 BasicBlock *LoopMiddleBlock; 417 ///The ExitBlock of the scalar loop. 418 BasicBlock *LoopExitBlock; 419 ///The vector loop body. 420 SmallVector<BasicBlock *, 4> LoopVectorBody; 421 ///The scalar loop body. 422 BasicBlock *LoopScalarBody; 423 /// A list of all bypass blocks. The first block is the entry of the loop. 424 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 425 426 /// The new Induction variable which was added to the new block. 427 PHINode *Induction; 428 /// The induction variable of the old basic block. 429 PHINode *OldInduction; 430 /// Holds the extended (to the widest induction type) start index. 431 Value *ExtendedIdx; 432 /// Maps scalars to widened vectors. 433 ValueMap WidenMap; 434 EdgeMaskCache MaskCache; 435 436 LoopVectorizationLegality *Legal; 437 }; 438 439 class InnerLoopUnroller : public InnerLoopVectorizer { 440 public: 441 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 442 DominatorTree *DT, const DataLayout *DL, 443 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 444 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 445 446 private: 447 void scalarizeInstruction(Instruction *Instr, 448 bool IfPredicateStore = false) override; 449 void vectorizeMemoryInstruction(Instruction *Instr) override; 450 Value *getBroadcastInstrs(Value *V) override; 451 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 452 Value *reverseVector(Value *Vec) override; 453 }; 454 455 /// \brief Look for a meaningful debug location on the instruction or it's 456 /// operands. 457 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 458 if (!I) 459 return I; 460 461 DebugLoc Empty; 462 if (I->getDebugLoc() != Empty) 463 return I; 464 465 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 466 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 467 if (OpInst->getDebugLoc() != Empty) 468 return OpInst; 469 } 470 471 return I; 472 } 473 474 /// \brief Set the debug location in the builder using the debug location in the 475 /// instruction. 476 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 477 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 478 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 479 else 480 B.SetCurrentDebugLocation(DebugLoc()); 481 } 482 483 #ifndef NDEBUG 484 /// \return string containing a file name and a line # for the given loop. 485 static std::string getDebugLocString(const Loop *L) { 486 std::string Result; 487 if (L) { 488 raw_string_ostream OS(Result); 489 const DebugLoc LoopDbgLoc = L->getStartLoc(); 490 if (!LoopDbgLoc.isUnknown()) 491 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 492 else 493 // Just print the module name. 494 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 495 OS.flush(); 496 } 497 return Result; 498 } 499 #endif 500 501 /// \brief Propagate known metadata from one instruction to another. 502 static void propagateMetadata(Instruction *To, const Instruction *From) { 503 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 504 From->getAllMetadataOtherThanDebugLoc(Metadata); 505 506 for (auto M : Metadata) { 507 unsigned Kind = M.first; 508 509 // These are safe to transfer (this is safe for TBAA, even when we 510 // if-convert, because should that metadata have had a control dependency 511 // on the condition, and thus actually aliased with some other 512 // non-speculated memory access when the condition was false, this would be 513 // caught by the runtime overlap checks). 514 if (Kind != LLVMContext::MD_tbaa && 515 Kind != LLVMContext::MD_alias_scope && 516 Kind != LLVMContext::MD_noalias && 517 Kind != LLVMContext::MD_fpmath) 518 continue; 519 520 To->setMetadata(Kind, M.second); 521 } 522 } 523 524 /// \brief Propagate known metadata from one instruction to a vector of others. 525 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 526 for (Value *V : To) 527 if (Instruction *I = dyn_cast<Instruction>(V)) 528 propagateMetadata(I, From); 529 } 530 531 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 532 /// to what vectorization factor. 533 /// This class does not look at the profitability of vectorization, only the 534 /// legality. This class has two main kinds of checks: 535 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 536 /// will change the order of memory accesses in a way that will change the 537 /// correctness of the program. 538 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 539 /// checks for a number of different conditions, such as the availability of a 540 /// single induction variable, that all types are supported and vectorize-able, 541 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 542 /// This class is also used by InnerLoopVectorizer for identifying 543 /// induction variable and the different reduction variables. 544 class LoopVectorizationLegality { 545 public: 546 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 547 DominatorTree *DT, TargetLibraryInfo *TLI, 548 AliasAnalysis *AA, Function *F, 549 const TargetTransformInfo *TTI, 550 LoopAccessAnalysis *LAA) 551 : NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 552 TLI(TLI), TheFunction(F), TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), 553 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} 554 555 /// This enum represents the kinds of reductions that we support. 556 enum ReductionKind { 557 RK_NoReduction, ///< Not a reduction. 558 RK_IntegerAdd, ///< Sum of integers. 559 RK_IntegerMult, ///< Product of integers. 560 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 561 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 562 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 563 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 564 RK_FloatAdd, ///< Sum of floats. 565 RK_FloatMult, ///< Product of floats. 566 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 567 }; 568 569 /// This enum represents the kinds of inductions that we support. 570 enum InductionKind { 571 IK_NoInduction, ///< Not an induction variable. 572 IK_IntInduction, ///< Integer induction variable. Step = C. 573 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). 574 }; 575 576 // This enum represents the kind of minmax reduction. 577 enum MinMaxReductionKind { 578 MRK_Invalid, 579 MRK_UIntMin, 580 MRK_UIntMax, 581 MRK_SIntMin, 582 MRK_SIntMax, 583 MRK_FloatMin, 584 MRK_FloatMax 585 }; 586 587 /// This struct holds information about reduction variables. 588 struct ReductionDescriptor { 589 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 590 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 591 592 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 593 MinMaxReductionKind MK) 594 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 595 596 // The starting value of the reduction. 597 // It does not have to be zero! 598 TrackingVH<Value> StartValue; 599 // The instruction who's value is used outside the loop. 600 Instruction *LoopExitInstr; 601 // The kind of the reduction. 602 ReductionKind Kind; 603 // If this a min/max reduction the kind of reduction. 604 MinMaxReductionKind MinMaxKind; 605 }; 606 607 /// This POD struct holds information about a potential reduction operation. 608 struct ReductionInstDesc { 609 ReductionInstDesc(bool IsRedux, Instruction *I) : 610 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 611 612 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 613 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 614 615 // Is this instruction a reduction candidate. 616 bool IsReduction; 617 // The last instruction in a min/max pattern (select of the select(icmp()) 618 // pattern), or the current reduction instruction otherwise. 619 Instruction *PatternLastInst; 620 // If this is a min/max pattern the comparison predicate. 621 MinMaxReductionKind MinMaxKind; 622 }; 623 624 /// A struct for saving information about induction variables. 625 struct InductionInfo { 626 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) 627 : StartValue(Start), IK(K), StepValue(Step) { 628 assert(IK != IK_NoInduction && "Not an induction"); 629 assert(StartValue && "StartValue is null"); 630 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 631 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 632 "StartValue is not a pointer for pointer induction"); 633 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 634 "StartValue is not an integer for integer induction"); 635 assert(StepValue->getType()->isIntegerTy() && 636 "StepValue is not an integer"); 637 } 638 InductionInfo() 639 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} 640 641 /// Get the consecutive direction. Returns: 642 /// 0 - unknown or non-consecutive. 643 /// 1 - consecutive and increasing. 644 /// -1 - consecutive and decreasing. 645 int getConsecutiveDirection() const { 646 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 647 return StepValue->getSExtValue(); 648 return 0; 649 } 650 651 /// Compute the transformed value of Index at offset StartValue using step 652 /// StepValue. 653 /// For integer induction, returns StartValue + Index * StepValue. 654 /// For pointer induction, returns StartValue[Index * StepValue]. 655 /// FIXME: The newly created binary instructions should contain nsw/nuw 656 /// flags, which can be found from the original scalar operations. 657 Value *transform(IRBuilder<> &B, Value *Index) const { 658 switch (IK) { 659 case IK_IntInduction: 660 assert(Index->getType() == StartValue->getType() && 661 "Index type does not match StartValue type"); 662 if (StepValue->isMinusOne()) 663 return B.CreateSub(StartValue, Index); 664 if (!StepValue->isOne()) 665 Index = B.CreateMul(Index, StepValue); 666 return B.CreateAdd(StartValue, Index); 667 668 case IK_PtrInduction: 669 if (StepValue->isMinusOne()) 670 Index = B.CreateNeg(Index); 671 else if (!StepValue->isOne()) 672 Index = B.CreateMul(Index, StepValue); 673 return B.CreateGEP(StartValue, Index); 674 675 case IK_NoInduction: 676 return nullptr; 677 } 678 llvm_unreachable("invalid enum"); 679 } 680 681 /// Start value. 682 TrackingVH<Value> StartValue; 683 /// Induction kind. 684 InductionKind IK; 685 /// Step value. 686 ConstantInt *StepValue; 687 }; 688 689 /// ReductionList contains the reduction descriptors for all 690 /// of the reductions that were found in the loop. 691 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 692 693 /// InductionList saves induction variables and maps them to the 694 /// induction descriptor. 695 typedef MapVector<PHINode*, InductionInfo> InductionList; 696 697 /// Returns true if it is legal to vectorize this loop. 698 /// This does not mean that it is profitable to vectorize this 699 /// loop, only that it is legal to do so. 700 bool canVectorize(); 701 702 /// Returns the Induction variable. 703 PHINode *getInduction() { return Induction; } 704 705 /// Returns the reduction variables found in the loop. 706 ReductionList *getReductionVars() { return &Reductions; } 707 708 /// Returns the induction variables found in the loop. 709 InductionList *getInductionVars() { return &Inductions; } 710 711 /// Returns the widest induction type. 712 Type *getWidestInductionType() { return WidestIndTy; } 713 714 /// Returns True if V is an induction variable in this loop. 715 bool isInductionVariable(const Value *V); 716 717 /// Return true if the block BB needs to be predicated in order for the loop 718 /// to be vectorized. 719 bool blockNeedsPredication(BasicBlock *BB); 720 721 /// Check if this pointer is consecutive when vectorizing. This happens 722 /// when the last index of the GEP is the induction variable, or that the 723 /// pointer itself is an induction variable. 724 /// This check allows us to vectorize A[idx] into a wide load/store. 725 /// Returns: 726 /// 0 - Stride is unknown or non-consecutive. 727 /// 1 - Address is consecutive. 728 /// -1 - Address is consecutive, and decreasing. 729 int isConsecutivePtr(Value *Ptr); 730 731 /// Returns true if the value V is uniform within the loop. 732 bool isUniform(Value *V); 733 734 /// Returns true if this instruction will remain scalar after vectorization. 735 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 736 737 /// Returns the information that we collected about runtime memory check. 738 const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const { 739 return LAI->getRuntimePointerCheck(); 740 } 741 742 const LoopAccessInfo *getLAI() const { 743 return LAI; 744 } 745 746 /// This function returns the identity element (or neutral element) for 747 /// the operation K. 748 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 749 750 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 751 752 bool hasStride(Value *V) { return StrideSet.count(V); } 753 bool mustCheckStrides() { return !StrideSet.empty(); } 754 SmallPtrSet<Value *, 8>::iterator strides_begin() { 755 return StrideSet.begin(); 756 } 757 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 758 759 /// Returns true if the target machine supports masked store operation 760 /// for the given \p DataType and kind of access to \p Ptr. 761 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 762 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 763 } 764 /// Returns true if the target machine supports masked load operation 765 /// for the given \p DataType and kind of access to \p Ptr. 766 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 767 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 768 } 769 /// Returns true if vector representation of the instruction \p I 770 /// requires mask. 771 bool isMaskRequired(const Instruction* I) { 772 return (MaskedOp.count(I) != 0); 773 } 774 unsigned getNumStores() const { 775 return LAI->getNumStores(); 776 } 777 unsigned getNumLoads() const { 778 return LAI->getNumLoads(); 779 } 780 unsigned getNumPredStores() const { 781 return NumPredStores; 782 } 783 private: 784 /// Check if a single basic block loop is vectorizable. 785 /// At this point we know that this is a loop with a constant trip count 786 /// and we only need to check individual instructions. 787 bool canVectorizeInstrs(); 788 789 /// When we vectorize loops we may change the order in which 790 /// we read and write from memory. This method checks if it is 791 /// legal to vectorize the code, considering only memory constrains. 792 /// Returns true if the loop is vectorizable 793 bool canVectorizeMemory(); 794 795 /// Return true if we can vectorize this loop using the IF-conversion 796 /// transformation. 797 bool canVectorizeWithIfConvert(); 798 799 /// Collect the variables that need to stay uniform after vectorization. 800 void collectLoopUniforms(); 801 802 /// Return true if all of the instructions in the block can be speculatively 803 /// executed. \p SafePtrs is a list of addresses that are known to be legal 804 /// and we know that we can read from them without segfault. 805 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 806 807 /// Returns True, if 'Phi' is the kind of reduction variable for type 808 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 809 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 810 /// Returns a struct describing if the instruction 'I' can be a reduction 811 /// variable of type 'Kind'. If the reduction is a min/max pattern of 812 /// select(icmp()) this function advances the instruction pointer 'I' from the 813 /// compare instruction to the select instruction and stores this pointer in 814 /// 'PatternLastInst' member of the returned struct. 815 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 816 ReductionInstDesc &Desc); 817 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 818 /// pattern corresponding to a min(X, Y) or max(X, Y). 819 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 820 ReductionInstDesc &Prev); 821 /// Returns the induction kind of Phi and record the step. This function may 822 /// return NoInduction if the PHI is not an induction variable. 823 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); 824 825 /// \brief Collect memory access with loop invariant strides. 826 /// 827 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 828 /// invariant. 829 void collectStridedAccess(Value *LoadOrStoreInst); 830 831 /// Report an analysis message to assist the user in diagnosing loops that are 832 /// not vectorized. These are handled as LoopAccessReport rather than 833 /// VectorizationReport because the << operator of VectorizationReport returns 834 /// LoopAccessReport. 835 void emitAnalysis(const LoopAccessReport &Message) { 836 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 837 } 838 839 unsigned NumPredStores; 840 841 /// The loop that we evaluate. 842 Loop *TheLoop; 843 /// Scev analysis. 844 ScalarEvolution *SE; 845 /// DataLayout analysis. 846 const DataLayout *DL; 847 /// Target Library Info. 848 TargetLibraryInfo *TLI; 849 /// Parent function 850 Function *TheFunction; 851 /// Target Transform Info 852 const TargetTransformInfo *TTI; 853 /// Dominator Tree. 854 DominatorTree *DT; 855 // LoopAccess analysis. 856 LoopAccessAnalysis *LAA; 857 // And the loop-accesses info corresponding to this loop. This pointer is 858 // null until canVectorizeMemory sets it up. 859 const LoopAccessInfo *LAI; 860 861 // --- vectorization state --- // 862 863 /// Holds the integer induction variable. This is the counter of the 864 /// loop. 865 PHINode *Induction; 866 /// Holds the reduction variables. 867 ReductionList Reductions; 868 /// Holds all of the induction variables that we found in the loop. 869 /// Notice that inductions don't need to start at zero and that induction 870 /// variables can be pointers. 871 InductionList Inductions; 872 /// Holds the widest induction type encountered. 873 Type *WidestIndTy; 874 875 /// Allowed outside users. This holds the reduction 876 /// vars which can be accessed from outside the loop. 877 SmallPtrSet<Value*, 4> AllowedExit; 878 /// This set holds the variables which are known to be uniform after 879 /// vectorization. 880 SmallPtrSet<Instruction*, 4> Uniforms; 881 882 /// Can we assume the absence of NaNs. 883 bool HasFunNoNaNAttr; 884 885 ValueToValueMap Strides; 886 SmallPtrSet<Value *, 8> StrideSet; 887 888 /// While vectorizing these instructions we have to generate a 889 /// call to the appropriate masked intrinsic 890 SmallPtrSet<const Instruction*, 8> MaskedOp; 891 }; 892 893 /// LoopVectorizationCostModel - estimates the expected speedups due to 894 /// vectorization. 895 /// In many cases vectorization is not profitable. This can happen because of 896 /// a number of reasons. In this class we mainly attempt to predict the 897 /// expected speedup/slowdowns due to the supported instruction set. We use the 898 /// TargetTransformInfo to query the different backends for the cost of 899 /// different operations. 900 class LoopVectorizationCostModel { 901 public: 902 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 903 LoopVectorizationLegality *Legal, 904 const TargetTransformInfo &TTI, 905 const DataLayout *DL, const TargetLibraryInfo *TLI, 906 AssumptionCache *AC, const Function *F, 907 const LoopVectorizeHints *Hints) 908 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), 909 TheFunction(F), Hints(Hints) { 910 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 911 } 912 913 /// Information about vectorization costs 914 struct VectorizationFactor { 915 unsigned Width; // Vector width with best cost 916 unsigned Cost; // Cost of the loop with that width 917 }; 918 /// \return The most profitable vectorization factor and the cost of that VF. 919 /// This method checks every power of two up to VF. If UserVF is not ZERO 920 /// then this vectorization factor will be selected if vectorization is 921 /// possible. 922 VectorizationFactor selectVectorizationFactor(bool OptForSize); 923 924 /// \return The size (in bits) of the widest type in the code that 925 /// needs to be vectorized. We ignore values that remain scalar such as 926 /// 64 bit loop indices. 927 unsigned getWidestType(); 928 929 /// \return The most profitable unroll factor. 930 /// If UserUF is non-zero then this method finds the best unroll-factor 931 /// based on register pressure and other parameters. 932 /// VF and LoopCost are the selected vectorization factor and the cost of the 933 /// selected VF. 934 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 935 936 /// \brief A struct that represents some properties of the register usage 937 /// of a loop. 938 struct RegisterUsage { 939 /// Holds the number of loop invariant values that are used in the loop. 940 unsigned LoopInvariantRegs; 941 /// Holds the maximum number of concurrent live intervals in the loop. 942 unsigned MaxLocalUsers; 943 /// Holds the number of instructions in the loop. 944 unsigned NumInstructions; 945 }; 946 947 /// \return information about the register usage of the loop. 948 RegisterUsage calculateRegisterUsage(); 949 950 private: 951 /// Returns the expected execution cost. The unit of the cost does 952 /// not matter because we use the 'cost' units to compare different 953 /// vector widths. The cost that is returned is *not* normalized by 954 /// the factor width. 955 unsigned expectedCost(unsigned VF); 956 957 /// Returns the execution time cost of an instruction for a given vector 958 /// width. Vector width of one means scalar. 959 unsigned getInstructionCost(Instruction *I, unsigned VF); 960 961 /// A helper function for converting Scalar types to vector types. 962 /// If the incoming type is void, we return void. If the VF is 1, we return 963 /// the scalar type. 964 static Type* ToVectorTy(Type *Scalar, unsigned VF); 965 966 /// Returns whether the instruction is a load or store and will be a emitted 967 /// as a vector operation. 968 bool isConsecutiveLoadOrStore(Instruction *I); 969 970 /// Report an analysis message to assist the user in diagnosing loops that are 971 /// not vectorized. These are handled as LoopAccessReport rather than 972 /// VectorizationReport because the << operator of VectorizationReport returns 973 /// LoopAccessReport. 974 void emitAnalysis(const LoopAccessReport &Message) { 975 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 976 } 977 978 /// Values used only by @llvm.assume calls. 979 SmallPtrSet<const Value *, 32> EphValues; 980 981 /// The loop that we evaluate. 982 Loop *TheLoop; 983 /// Scev analysis. 984 ScalarEvolution *SE; 985 /// Loop Info analysis. 986 LoopInfo *LI; 987 /// Vectorization legality. 988 LoopVectorizationLegality *Legal; 989 /// Vector target information. 990 const TargetTransformInfo &TTI; 991 /// Target data layout information. 992 const DataLayout *DL; 993 /// Target Library Info. 994 const TargetLibraryInfo *TLI; 995 const Function *TheFunction; 996 // Loop Vectorize Hint. 997 const LoopVectorizeHints *Hints; 998 }; 999 1000 /// Utility class for getting and setting loop vectorizer hints in the form 1001 /// of loop metadata. 1002 /// This class keeps a number of loop annotations locally (as member variables) 1003 /// and can, upon request, write them back as metadata on the loop. It will 1004 /// initially scan the loop for existing metadata, and will update the local 1005 /// values based on information in the loop. 1006 /// We cannot write all values to metadata, as the mere presence of some info, 1007 /// for example 'force', means a decision has been made. So, we need to be 1008 /// careful NOT to add them if the user hasn't specifically asked so. 1009 class LoopVectorizeHints { 1010 enum HintKind { 1011 HK_WIDTH, 1012 HK_UNROLL, 1013 HK_FORCE 1014 }; 1015 1016 /// Hint - associates name and validation with the hint value. 1017 struct Hint { 1018 const char * Name; 1019 unsigned Value; // This may have to change for non-numeric values. 1020 HintKind Kind; 1021 1022 Hint(const char * Name, unsigned Value, HintKind Kind) 1023 : Name(Name), Value(Value), Kind(Kind) { } 1024 1025 bool validate(unsigned Val) { 1026 switch (Kind) { 1027 case HK_WIDTH: 1028 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1029 case HK_UNROLL: 1030 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1031 case HK_FORCE: 1032 return (Val <= 1); 1033 } 1034 return false; 1035 } 1036 }; 1037 1038 /// Vectorization width. 1039 Hint Width; 1040 /// Vectorization interleave factor. 1041 Hint Interleave; 1042 /// Vectorization forced 1043 Hint Force; 1044 1045 /// Return the loop metadata prefix. 1046 static StringRef Prefix() { return "llvm.loop."; } 1047 1048 public: 1049 enum ForceKind { 1050 FK_Undefined = -1, ///< Not selected. 1051 FK_Disabled = 0, ///< Forcing disabled. 1052 FK_Enabled = 1, ///< Forcing enabled. 1053 }; 1054 1055 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1056 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1057 HK_WIDTH), 1058 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1059 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1060 TheLoop(L) { 1061 // Populate values with existing loop metadata. 1062 getHintsFromMetadata(); 1063 1064 // force-vector-interleave overrides DisableInterleaving. 1065 if (VectorizerParams::isInterleaveForced()) 1066 Interleave.Value = VectorizerParams::VectorizationInterleave; 1067 1068 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1069 << "LV: Interleaving disabled by the pass manager\n"); 1070 } 1071 1072 /// Mark the loop L as already vectorized by setting the width to 1. 1073 void setAlreadyVectorized() { 1074 Width.Value = Interleave.Value = 1; 1075 Hint Hints[] = {Width, Interleave}; 1076 writeHintsToMetadata(Hints); 1077 } 1078 1079 /// Dumps all the hint information. 1080 std::string emitRemark() const { 1081 VectorizationReport R; 1082 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1083 R << "vectorization is explicitly disabled"; 1084 else { 1085 R << "use -Rpass-analysis=loop-vectorize for more info"; 1086 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1087 R << " (Force=true"; 1088 if (Width.Value != 0) 1089 R << ", Vector Width=" << Width.Value; 1090 if (Interleave.Value != 0) 1091 R << ", Interleave Count=" << Interleave.Value; 1092 R << ")"; 1093 } 1094 } 1095 1096 return R.str(); 1097 } 1098 1099 unsigned getWidth() const { return Width.Value; } 1100 unsigned getInterleave() const { return Interleave.Value; } 1101 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1102 1103 private: 1104 /// Find hints specified in the loop metadata and update local values. 1105 void getHintsFromMetadata() { 1106 MDNode *LoopID = TheLoop->getLoopID(); 1107 if (!LoopID) 1108 return; 1109 1110 // First operand should refer to the loop id itself. 1111 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1112 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1113 1114 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1115 const MDString *S = nullptr; 1116 SmallVector<Metadata *, 4> Args; 1117 1118 // The expected hint is either a MDString or a MDNode with the first 1119 // operand a MDString. 1120 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1121 if (!MD || MD->getNumOperands() == 0) 1122 continue; 1123 S = dyn_cast<MDString>(MD->getOperand(0)); 1124 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1125 Args.push_back(MD->getOperand(i)); 1126 } else { 1127 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1128 assert(Args.size() == 0 && "too many arguments for MDString"); 1129 } 1130 1131 if (!S) 1132 continue; 1133 1134 // Check if the hint starts with the loop metadata prefix. 1135 StringRef Name = S->getString(); 1136 if (Args.size() == 1) 1137 setHint(Name, Args[0]); 1138 } 1139 } 1140 1141 /// Checks string hint with one operand and set value if valid. 1142 void setHint(StringRef Name, Metadata *Arg) { 1143 if (!Name.startswith(Prefix())) 1144 return; 1145 Name = Name.substr(Prefix().size(), StringRef::npos); 1146 1147 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1148 if (!C) return; 1149 unsigned Val = C->getZExtValue(); 1150 1151 Hint *Hints[] = {&Width, &Interleave, &Force}; 1152 for (auto H : Hints) { 1153 if (Name == H->Name) { 1154 if (H->validate(Val)) 1155 H->Value = Val; 1156 else 1157 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1158 break; 1159 } 1160 } 1161 } 1162 1163 /// Create a new hint from name / value pair. 1164 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1165 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1166 Metadata *MDs[] = {MDString::get(Context, Name), 1167 ConstantAsMetadata::get( 1168 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1169 return MDNode::get(Context, MDs); 1170 } 1171 1172 /// Matches metadata with hint name. 1173 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1174 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1175 if (!Name) 1176 return false; 1177 1178 for (auto H : HintTypes) 1179 if (Name->getString().endswith(H.Name)) 1180 return true; 1181 return false; 1182 } 1183 1184 /// Sets current hints into loop metadata, keeping other values intact. 1185 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1186 if (HintTypes.size() == 0) 1187 return; 1188 1189 // Reserve the first element to LoopID (see below). 1190 SmallVector<Metadata *, 4> MDs(1); 1191 // If the loop already has metadata, then ignore the existing operands. 1192 MDNode *LoopID = TheLoop->getLoopID(); 1193 if (LoopID) { 1194 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1195 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1196 // If node in update list, ignore old value. 1197 if (!matchesHintMetadataName(Node, HintTypes)) 1198 MDs.push_back(Node); 1199 } 1200 } 1201 1202 // Now, add the missing hints. 1203 for (auto H : HintTypes) 1204 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1205 1206 // Replace current metadata node with new one. 1207 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1208 MDNode *NewLoopID = MDNode::get(Context, MDs); 1209 // Set operand 0 to refer to the loop id itself. 1210 NewLoopID->replaceOperandWith(0, NewLoopID); 1211 1212 TheLoop->setLoopID(NewLoopID); 1213 } 1214 1215 /// The loop these hints belong to. 1216 const Loop *TheLoop; 1217 }; 1218 1219 static void emitMissedWarning(Function *F, Loop *L, 1220 const LoopVectorizeHints &LH) { 1221 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1222 L->getStartLoc(), LH.emitRemark()); 1223 1224 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1225 if (LH.getWidth() != 1) 1226 emitLoopVectorizeWarning( 1227 F->getContext(), *F, L->getStartLoc(), 1228 "failed explicitly specified loop vectorization"); 1229 else if (LH.getInterleave() != 1) 1230 emitLoopInterleaveWarning( 1231 F->getContext(), *F, L->getStartLoc(), 1232 "failed explicitly specified loop interleaving"); 1233 } 1234 } 1235 1236 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1237 if (L.empty()) 1238 return V.push_back(&L); 1239 1240 for (Loop *InnerL : L) 1241 addInnerLoop(*InnerL, V); 1242 } 1243 1244 /// The LoopVectorize Pass. 1245 struct LoopVectorize : public FunctionPass { 1246 /// Pass identification, replacement for typeid 1247 static char ID; 1248 1249 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1250 : FunctionPass(ID), 1251 DisableUnrolling(NoUnrolling), 1252 AlwaysVectorize(AlwaysVectorize) { 1253 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1254 } 1255 1256 ScalarEvolution *SE; 1257 const DataLayout *DL; 1258 LoopInfo *LI; 1259 TargetTransformInfo *TTI; 1260 DominatorTree *DT; 1261 BlockFrequencyInfo *BFI; 1262 TargetLibraryInfo *TLI; 1263 AliasAnalysis *AA; 1264 AssumptionCache *AC; 1265 LoopAccessAnalysis *LAA; 1266 bool DisableUnrolling; 1267 bool AlwaysVectorize; 1268 1269 BlockFrequency ColdEntryFreq; 1270 1271 bool runOnFunction(Function &F) override { 1272 SE = &getAnalysis<ScalarEvolution>(); 1273 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1274 DL = DLP ? &DLP->getDataLayout() : nullptr; 1275 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1276 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1277 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1278 BFI = &getAnalysis<BlockFrequencyInfo>(); 1279 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1280 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1281 AA = &getAnalysis<AliasAnalysis>(); 1282 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1283 LAA = &getAnalysis<LoopAccessAnalysis>(); 1284 1285 // Compute some weights outside of the loop over the loops. Compute this 1286 // using a BranchProbability to re-use its scaling math. 1287 const BranchProbability ColdProb(1, 5); // 20% 1288 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1289 1290 // If the target claims to have no vector registers don't attempt 1291 // vectorization. 1292 if (!TTI->getNumberOfRegisters(true)) 1293 return false; 1294 1295 if (!DL) { 1296 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1297 << ": Missing data layout\n"); 1298 return false; 1299 } 1300 1301 // Build up a worklist of inner-loops to vectorize. This is necessary as 1302 // the act of vectorizing or partially unrolling a loop creates new loops 1303 // and can invalidate iterators across the loops. 1304 SmallVector<Loop *, 8> Worklist; 1305 1306 for (Loop *L : *LI) 1307 addInnerLoop(*L, Worklist); 1308 1309 LoopsAnalyzed += Worklist.size(); 1310 1311 // Now walk the identified inner loops. 1312 bool Changed = false; 1313 while (!Worklist.empty()) 1314 Changed |= processLoop(Worklist.pop_back_val()); 1315 1316 // Process each loop nest in the function. 1317 return Changed; 1318 } 1319 1320 bool processLoop(Loop *L) { 1321 assert(L->empty() && "Only process inner loops."); 1322 1323 #ifndef NDEBUG 1324 const std::string DebugLocStr = getDebugLocString(L); 1325 #endif /* NDEBUG */ 1326 1327 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1328 << L->getHeader()->getParent()->getName() << "\" from " 1329 << DebugLocStr << "\n"); 1330 1331 LoopVectorizeHints Hints(L, DisableUnrolling); 1332 1333 DEBUG(dbgs() << "LV: Loop hints:" 1334 << " force=" 1335 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1336 ? "disabled" 1337 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1338 ? "enabled" 1339 : "?")) << " width=" << Hints.getWidth() 1340 << " unroll=" << Hints.getInterleave() << "\n"); 1341 1342 // Function containing loop 1343 Function *F = L->getHeader()->getParent(); 1344 1345 // Looking at the diagnostic output is the only way to determine if a loop 1346 // was vectorized (other than looking at the IR or machine code), so it 1347 // is important to generate an optimization remark for each loop. Most of 1348 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1349 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1350 // less verbose reporting vectorized loops and unvectorized loops that may 1351 // benefit from vectorization, respectively. 1352 1353 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1354 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1355 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1356 L->getStartLoc(), Hints.emitRemark()); 1357 return false; 1358 } 1359 1360 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1361 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1362 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1363 L->getStartLoc(), Hints.emitRemark()); 1364 return false; 1365 } 1366 1367 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1368 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1369 emitOptimizationRemarkAnalysis( 1370 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1371 "loop not vectorized: vector width and interleave count are " 1372 "explicitly set to 1"); 1373 return false; 1374 } 1375 1376 // Check the loop for a trip count threshold: 1377 // do not vectorize loops with a tiny trip count. 1378 const unsigned TC = SE->getSmallConstantTripCount(L); 1379 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1380 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1381 << "This loop is not worth vectorizing."); 1382 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1383 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1384 else { 1385 DEBUG(dbgs() << "\n"); 1386 emitOptimizationRemarkAnalysis( 1387 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1388 "vectorization is not beneficial and is not explicitly forced"); 1389 return false; 1390 } 1391 } 1392 1393 // Check if it is legal to vectorize the loop. 1394 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI, LAA); 1395 if (!LVL.canVectorize()) { 1396 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1397 emitMissedWarning(F, L, Hints); 1398 return false; 1399 } 1400 1401 // Use the cost model. 1402 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F, 1403 &Hints); 1404 1405 // Check the function attributes to find out if this function should be 1406 // optimized for size. 1407 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1408 F->hasFnAttribute(Attribute::OptimizeForSize); 1409 1410 // Compute the weighted frequency of this loop being executed and see if it 1411 // is less than 20% of the function entry baseline frequency. Note that we 1412 // always have a canonical loop here because we think we *can* vectoriez. 1413 // FIXME: This is hidden behind a flag due to pervasive problems with 1414 // exactly what block frequency models. 1415 if (LoopVectorizeWithBlockFrequency) { 1416 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1417 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1418 LoopEntryFreq < ColdEntryFreq) 1419 OptForSize = true; 1420 } 1421 1422 // Check the function attributes to see if implicit floats are allowed.a 1423 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1424 // an integer loop and the vector instructions selected are purely integer 1425 // vector instructions? 1426 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1427 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1428 "attribute is used.\n"); 1429 emitOptimizationRemarkAnalysis( 1430 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1431 "loop not vectorized due to NoImplicitFloat attribute"); 1432 emitMissedWarning(F, L, Hints); 1433 return false; 1434 } 1435 1436 // Select the optimal vectorization factor. 1437 const LoopVectorizationCostModel::VectorizationFactor VF = 1438 CM.selectVectorizationFactor(OptForSize); 1439 1440 // Select the unroll factor. 1441 const unsigned UF = 1442 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1443 1444 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1445 << DebugLocStr << '\n'); 1446 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1447 1448 if (VF.Width == 1) { 1449 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1450 1451 if (UF == 1) { 1452 emitOptimizationRemarkAnalysis( 1453 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1454 "not beneficial to vectorize and user disabled interleaving"); 1455 return false; 1456 } 1457 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1458 1459 // Report the unrolling decision. 1460 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1461 Twine("unrolled with interleaving factor " + 1462 Twine(UF) + 1463 " (vectorization not beneficial)")); 1464 1465 // We decided not to vectorize, but we may want to unroll. 1466 1467 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1468 Unroller.vectorize(&LVL); 1469 } else { 1470 // If we decided that it is *legal* to vectorize the loop then do it. 1471 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1472 LB.vectorize(&LVL); 1473 ++LoopsVectorized; 1474 1475 // Report the vectorization decision. 1476 emitOptimizationRemark( 1477 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1478 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1479 ", unrolling interleave factor: " + Twine(UF) + ")"); 1480 } 1481 1482 // Mark the loop as already vectorized to avoid vectorizing again. 1483 Hints.setAlreadyVectorized(); 1484 1485 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1486 return true; 1487 } 1488 1489 void getAnalysisUsage(AnalysisUsage &AU) const override { 1490 AU.addRequired<AssumptionCacheTracker>(); 1491 AU.addRequiredID(LoopSimplifyID); 1492 AU.addRequiredID(LCSSAID); 1493 AU.addRequired<BlockFrequencyInfo>(); 1494 AU.addRequired<DominatorTreeWrapperPass>(); 1495 AU.addRequired<LoopInfoWrapperPass>(); 1496 AU.addRequired<ScalarEvolution>(); 1497 AU.addRequired<TargetTransformInfoWrapperPass>(); 1498 AU.addRequired<AliasAnalysis>(); 1499 AU.addRequired<LoopAccessAnalysis>(); 1500 AU.addPreserved<LoopInfoWrapperPass>(); 1501 AU.addPreserved<DominatorTreeWrapperPass>(); 1502 AU.addPreserved<AliasAnalysis>(); 1503 } 1504 1505 }; 1506 1507 } // end anonymous namespace 1508 1509 //===----------------------------------------------------------------------===// 1510 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1511 // LoopVectorizationCostModel. 1512 //===----------------------------------------------------------------------===// 1513 1514 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1515 // We need to place the broadcast of invariant variables outside the loop. 1516 Instruction *Instr = dyn_cast<Instruction>(V); 1517 bool NewInstr = 1518 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1519 Instr->getParent()) != LoopVectorBody.end()); 1520 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1521 1522 // Place the code for broadcasting invariant variables in the new preheader. 1523 IRBuilder<>::InsertPointGuard Guard(Builder); 1524 if (Invariant) 1525 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1526 1527 // Broadcast the scalar into all locations in the vector. 1528 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1529 1530 return Shuf; 1531 } 1532 1533 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1534 Value *Step) { 1535 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1536 assert(Val->getType()->getScalarType()->isIntegerTy() && 1537 "Elem must be an integer"); 1538 assert(Step->getType() == Val->getType()->getScalarType() && 1539 "Step has wrong type"); 1540 // Create the types. 1541 Type *ITy = Val->getType()->getScalarType(); 1542 VectorType *Ty = cast<VectorType>(Val->getType()); 1543 int VLen = Ty->getNumElements(); 1544 SmallVector<Constant*, 8> Indices; 1545 1546 // Create a vector of consecutive numbers from zero to VF. 1547 for (int i = 0; i < VLen; ++i) 1548 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1549 1550 // Add the consecutive indices to the vector value. 1551 Constant *Cv = ConstantVector::get(Indices); 1552 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1553 Step = Builder.CreateVectorSplat(VLen, Step); 1554 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1555 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1556 // which can be found from the original scalar operations. 1557 Step = Builder.CreateMul(Cv, Step); 1558 return Builder.CreateAdd(Val, Step, "induction"); 1559 } 1560 1561 /// \brief Find the operand of the GEP that should be checked for consecutive 1562 /// stores. This ignores trailing indices that have no effect on the final 1563 /// pointer. 1564 static unsigned getGEPInductionOperand(const DataLayout *DL, 1565 const GetElementPtrInst *Gep) { 1566 unsigned LastOperand = Gep->getNumOperands() - 1; 1567 unsigned GEPAllocSize = DL->getTypeAllocSize( 1568 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1569 1570 // Walk backwards and try to peel off zeros. 1571 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1572 // Find the type we're currently indexing into. 1573 gep_type_iterator GEPTI = gep_type_begin(Gep); 1574 std::advance(GEPTI, LastOperand - 1); 1575 1576 // If it's a type with the same allocation size as the result of the GEP we 1577 // can peel off the zero index. 1578 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1579 break; 1580 --LastOperand; 1581 } 1582 1583 return LastOperand; 1584 } 1585 1586 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1587 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1588 // Make sure that the pointer does not point to structs. 1589 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1590 return 0; 1591 1592 // If this value is a pointer induction variable we know it is consecutive. 1593 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1594 if (Phi && Inductions.count(Phi)) { 1595 InductionInfo II = Inductions[Phi]; 1596 return II.getConsecutiveDirection(); 1597 } 1598 1599 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1600 if (!Gep) 1601 return 0; 1602 1603 unsigned NumOperands = Gep->getNumOperands(); 1604 Value *GpPtr = Gep->getPointerOperand(); 1605 // If this GEP value is a consecutive pointer induction variable and all of 1606 // the indices are constant then we know it is consecutive. We can 1607 Phi = dyn_cast<PHINode>(GpPtr); 1608 if (Phi && Inductions.count(Phi)) { 1609 1610 // Make sure that the pointer does not point to structs. 1611 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1612 if (GepPtrType->getElementType()->isAggregateType()) 1613 return 0; 1614 1615 // Make sure that all of the index operands are loop invariant. 1616 for (unsigned i = 1; i < NumOperands; ++i) 1617 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1618 return 0; 1619 1620 InductionInfo II = Inductions[Phi]; 1621 return II.getConsecutiveDirection(); 1622 } 1623 1624 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1625 1626 // Check that all of the gep indices are uniform except for our induction 1627 // operand. 1628 for (unsigned i = 0; i != NumOperands; ++i) 1629 if (i != InductionOperand && 1630 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1631 return 0; 1632 1633 // We can emit wide load/stores only if the last non-zero index is the 1634 // induction variable. 1635 const SCEV *Last = nullptr; 1636 if (!Strides.count(Gep)) 1637 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1638 else { 1639 // Because of the multiplication by a stride we can have a s/zext cast. 1640 // We are going to replace this stride by 1 so the cast is safe to ignore. 1641 // 1642 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1643 // %0 = trunc i64 %indvars.iv to i32 1644 // %mul = mul i32 %0, %Stride1 1645 // %idxprom = zext i32 %mul to i64 << Safe cast. 1646 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1647 // 1648 Last = replaceSymbolicStrideSCEV(SE, Strides, 1649 Gep->getOperand(InductionOperand), Gep); 1650 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1651 Last = 1652 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1653 ? C->getOperand() 1654 : Last; 1655 } 1656 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1657 const SCEV *Step = AR->getStepRecurrence(*SE); 1658 1659 // The memory is consecutive because the last index is consecutive 1660 // and all other indices are loop invariant. 1661 if (Step->isOne()) 1662 return 1; 1663 if (Step->isAllOnesValue()) 1664 return -1; 1665 } 1666 1667 return 0; 1668 } 1669 1670 bool LoopVectorizationLegality::isUniform(Value *V) { 1671 return LAI->isUniform(V); 1672 } 1673 1674 InnerLoopVectorizer::VectorParts& 1675 InnerLoopVectorizer::getVectorValue(Value *V) { 1676 assert(V != Induction && "The new induction variable should not be used."); 1677 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1678 1679 // If we have a stride that is replaced by one, do it here. 1680 if (Legal->hasStride(V)) 1681 V = ConstantInt::get(V->getType(), 1); 1682 1683 // If we have this scalar in the map, return it. 1684 if (WidenMap.has(V)) 1685 return WidenMap.get(V); 1686 1687 // If this scalar is unknown, assume that it is a constant or that it is 1688 // loop invariant. Broadcast V and save the value for future uses. 1689 Value *B = getBroadcastInstrs(V); 1690 return WidenMap.splat(V, B); 1691 } 1692 1693 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1694 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1695 SmallVector<Constant*, 8> ShuffleMask; 1696 for (unsigned i = 0; i < VF; ++i) 1697 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1698 1699 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1700 ConstantVector::get(ShuffleMask), 1701 "reverse"); 1702 } 1703 1704 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1705 // Attempt to issue a wide load. 1706 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1707 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1708 1709 assert((LI || SI) && "Invalid Load/Store instruction"); 1710 1711 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1712 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1713 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1714 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1715 // An alignment of 0 means target abi alignment. We need to use the scalar's 1716 // target abi alignment in such a case. 1717 if (!Alignment) 1718 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1719 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1720 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1721 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1722 1723 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 1724 !Legal->isMaskRequired(SI)) 1725 return scalarizeInstruction(Instr, true); 1726 1727 if (ScalarAllocatedSize != VectorElementSize) 1728 return scalarizeInstruction(Instr); 1729 1730 // If the pointer is loop invariant or if it is non-consecutive, 1731 // scalarize the load. 1732 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1733 bool Reverse = ConsecutiveStride < 0; 1734 bool UniformLoad = LI && Legal->isUniform(Ptr); 1735 if (!ConsecutiveStride || UniformLoad) 1736 return scalarizeInstruction(Instr); 1737 1738 Constant *Zero = Builder.getInt32(0); 1739 VectorParts &Entry = WidenMap.get(Instr); 1740 1741 // Handle consecutive loads/stores. 1742 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1743 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1744 setDebugLocFromInst(Builder, Gep); 1745 Value *PtrOperand = Gep->getPointerOperand(); 1746 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1747 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1748 1749 // Create the new GEP with the new induction variable. 1750 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1751 Gep2->setOperand(0, FirstBasePtr); 1752 Gep2->setName("gep.indvar.base"); 1753 Ptr = Builder.Insert(Gep2); 1754 } else if (Gep) { 1755 setDebugLocFromInst(Builder, Gep); 1756 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1757 OrigLoop) && "Base ptr must be invariant"); 1758 1759 // The last index does not have to be the induction. It can be 1760 // consecutive and be a function of the index. For example A[I+1]; 1761 unsigned NumOperands = Gep->getNumOperands(); 1762 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1763 // Create the new GEP with the new induction variable. 1764 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1765 1766 for (unsigned i = 0; i < NumOperands; ++i) { 1767 Value *GepOperand = Gep->getOperand(i); 1768 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1769 1770 // Update last index or loop invariant instruction anchored in loop. 1771 if (i == InductionOperand || 1772 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1773 assert((i == InductionOperand || 1774 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1775 "Must be last index or loop invariant"); 1776 1777 VectorParts &GEPParts = getVectorValue(GepOperand); 1778 Value *Index = GEPParts[0]; 1779 Index = Builder.CreateExtractElement(Index, Zero); 1780 Gep2->setOperand(i, Index); 1781 Gep2->setName("gep.indvar.idx"); 1782 } 1783 } 1784 Ptr = Builder.Insert(Gep2); 1785 } else { 1786 // Use the induction element ptr. 1787 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1788 setDebugLocFromInst(Builder, Ptr); 1789 VectorParts &PtrVal = getVectorValue(Ptr); 1790 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1791 } 1792 1793 VectorParts Mask = createBlockInMask(Instr->getParent()); 1794 // Handle Stores: 1795 if (SI) { 1796 assert(!Legal->isUniform(SI->getPointerOperand()) && 1797 "We do not allow storing to uniform addresses"); 1798 setDebugLocFromInst(Builder, SI); 1799 // We don't want to update the value in the map as it might be used in 1800 // another expression. So don't use a reference type for "StoredVal". 1801 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1802 1803 for (unsigned Part = 0; Part < UF; ++Part) { 1804 // Calculate the pointer for the specific unroll-part. 1805 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1806 1807 if (Reverse) { 1808 // If we store to reverse consecutive memory locations then we need 1809 // to reverse the order of elements in the stored value. 1810 StoredVal[Part] = reverseVector(StoredVal[Part]); 1811 // If the address is consecutive but reversed, then the 1812 // wide store needs to start at the last vector element. 1813 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1814 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1815 Mask[Part] = reverseVector(Mask[Part]); 1816 } 1817 1818 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1819 DataTy->getPointerTo(AddressSpace)); 1820 1821 Instruction *NewSI; 1822 if (Legal->isMaskRequired(SI)) 1823 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 1824 Mask[Part]); 1825 else 1826 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1827 propagateMetadata(NewSI, SI); 1828 } 1829 return; 1830 } 1831 1832 // Handle loads. 1833 assert(LI && "Must have a load instruction"); 1834 setDebugLocFromInst(Builder, LI); 1835 for (unsigned Part = 0; Part < UF; ++Part) { 1836 // Calculate the pointer for the specific unroll-part. 1837 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1838 1839 if (Reverse) { 1840 // If the address is consecutive but reversed, then the 1841 // wide load needs to start at the last vector element. 1842 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1843 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1844 Mask[Part] = reverseVector(Mask[Part]); 1845 } 1846 1847 Instruction* NewLI; 1848 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1849 DataTy->getPointerTo(AddressSpace)); 1850 if (Legal->isMaskRequired(LI)) 1851 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 1852 UndefValue::get(DataTy), 1853 "wide.masked.load"); 1854 else 1855 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1856 propagateMetadata(NewLI, LI); 1857 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1858 } 1859 } 1860 1861 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1862 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1863 // Holds vector parameters or scalars, in case of uniform vals. 1864 SmallVector<VectorParts, 4> Params; 1865 1866 setDebugLocFromInst(Builder, Instr); 1867 1868 // Find all of the vectorized parameters. 1869 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1870 Value *SrcOp = Instr->getOperand(op); 1871 1872 // If we are accessing the old induction variable, use the new one. 1873 if (SrcOp == OldInduction) { 1874 Params.push_back(getVectorValue(SrcOp)); 1875 continue; 1876 } 1877 1878 // Try using previously calculated values. 1879 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1880 1881 // If the src is an instruction that appeared earlier in the basic block 1882 // then it should already be vectorized. 1883 if (SrcInst && OrigLoop->contains(SrcInst)) { 1884 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1885 // The parameter is a vector value from earlier. 1886 Params.push_back(WidenMap.get(SrcInst)); 1887 } else { 1888 // The parameter is a scalar from outside the loop. Maybe even a constant. 1889 VectorParts Scalars; 1890 Scalars.append(UF, SrcOp); 1891 Params.push_back(Scalars); 1892 } 1893 } 1894 1895 assert(Params.size() == Instr->getNumOperands() && 1896 "Invalid number of operands"); 1897 1898 // Does this instruction return a value ? 1899 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1900 1901 Value *UndefVec = IsVoidRetTy ? nullptr : 1902 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1903 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1904 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1905 1906 Instruction *InsertPt = Builder.GetInsertPoint(); 1907 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1908 BasicBlock *CondBlock = nullptr; 1909 1910 VectorParts Cond; 1911 Loop *VectorLp = nullptr; 1912 if (IfPredicateStore) { 1913 assert(Instr->getParent()->getSinglePredecessor() && 1914 "Only support single predecessor blocks"); 1915 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1916 Instr->getParent()); 1917 VectorLp = LI->getLoopFor(IfBlock); 1918 assert(VectorLp && "Must have a loop for this block"); 1919 } 1920 1921 // For each vector unroll 'part': 1922 for (unsigned Part = 0; Part < UF; ++Part) { 1923 // For each scalar that we create: 1924 for (unsigned Width = 0; Width < VF; ++Width) { 1925 1926 // Start if-block. 1927 Value *Cmp = nullptr; 1928 if (IfPredicateStore) { 1929 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1930 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1931 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1932 LoopVectorBody.push_back(CondBlock); 1933 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 1934 // Update Builder with newly created basic block. 1935 Builder.SetInsertPoint(InsertPt); 1936 } 1937 1938 Instruction *Cloned = Instr->clone(); 1939 if (!IsVoidRetTy) 1940 Cloned->setName(Instr->getName() + ".cloned"); 1941 // Replace the operands of the cloned instructions with extracted scalars. 1942 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1943 Value *Op = Params[op][Part]; 1944 // Param is a vector. Need to extract the right lane. 1945 if (Op->getType()->isVectorTy()) 1946 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1947 Cloned->setOperand(op, Op); 1948 } 1949 1950 // Place the cloned scalar in the new loop. 1951 Builder.Insert(Cloned); 1952 1953 // If the original scalar returns a value we need to place it in a vector 1954 // so that future users will be able to use it. 1955 if (!IsVoidRetTy) 1956 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1957 Builder.getInt32(Width)); 1958 // End if-block. 1959 if (IfPredicateStore) { 1960 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1961 LoopVectorBody.push_back(NewIfBlock); 1962 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 1963 Builder.SetInsertPoint(InsertPt); 1964 Instruction *OldBr = IfBlock->getTerminator(); 1965 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1966 OldBr->eraseFromParent(); 1967 IfBlock = NewIfBlock; 1968 } 1969 } 1970 } 1971 } 1972 1973 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1974 Instruction *Loc) { 1975 if (FirstInst) 1976 return FirstInst; 1977 if (Instruction *I = dyn_cast<Instruction>(V)) 1978 return I->getParent() == Loc->getParent() ? I : nullptr; 1979 return nullptr; 1980 } 1981 1982 std::pair<Instruction *, Instruction *> 1983 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1984 Instruction *tnullptr = nullptr; 1985 if (!Legal->mustCheckStrides()) 1986 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1987 1988 IRBuilder<> ChkBuilder(Loc); 1989 1990 // Emit checks. 1991 Value *Check = nullptr; 1992 Instruction *FirstInst = nullptr; 1993 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1994 SE = Legal->strides_end(); 1995 SI != SE; ++SI) { 1996 Value *Ptr = stripIntegerCast(*SI); 1997 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1998 "stride.chk"); 1999 // Store the first instruction we create. 2000 FirstInst = getFirstInst(FirstInst, C, Loc); 2001 if (Check) 2002 Check = ChkBuilder.CreateOr(Check, C); 2003 else 2004 Check = C; 2005 } 2006 2007 // We have to do this trickery because the IRBuilder might fold the check to a 2008 // constant expression in which case there is no Instruction anchored in a 2009 // the block. 2010 LLVMContext &Ctx = Loc->getContext(); 2011 Instruction *TheCheck = 2012 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2013 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2014 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2015 2016 return std::make_pair(FirstInst, TheCheck); 2017 } 2018 2019 void InnerLoopVectorizer::createEmptyLoop() { 2020 /* 2021 In this function we generate a new loop. The new loop will contain 2022 the vectorized instructions while the old loop will continue to run the 2023 scalar remainder. 2024 2025 [ ] <-- Back-edge taken count overflow check. 2026 / | 2027 / v 2028 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2029 | / | 2030 | / v 2031 || [ ] <-- vector pre header. 2032 || | 2033 || v 2034 || [ ] \ 2035 || [ ]_| <-- vector loop. 2036 || | 2037 | \ v 2038 | >[ ] <--- middle-block. 2039 | / | 2040 | / v 2041 -|- >[ ] <--- new preheader. 2042 | | 2043 | v 2044 | [ ] \ 2045 | [ ]_| <-- old scalar loop to handle remainder. 2046 \ | 2047 \ v 2048 >[ ] <-- exit block. 2049 ... 2050 */ 2051 2052 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2053 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2054 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2055 assert(BypassBlock && "Invalid loop structure"); 2056 assert(ExitBlock && "Must have an exit block"); 2057 2058 // Some loops have a single integer induction variable, while other loops 2059 // don't. One example is c++ iterators that often have multiple pointer 2060 // induction variables. In the code below we also support a case where we 2061 // don't have a single induction variable. 2062 OldInduction = Legal->getInduction(); 2063 Type *IdxTy = Legal->getWidestInductionType(); 2064 2065 // Find the loop boundaries. 2066 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2067 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2068 2069 // The exit count might have the type of i64 while the phi is i32. This can 2070 // happen if we have an induction variable that is sign extended before the 2071 // compare. The only way that we get a backedge taken count is that the 2072 // induction variable was signed and as such will not overflow. In such a case 2073 // truncation is legal. 2074 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2075 IdxTy->getPrimitiveSizeInBits()) 2076 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2077 2078 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2079 // Get the total trip count from the count by adding 1. 2080 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2081 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2082 2083 // Expand the trip count and place the new instructions in the preheader. 2084 // Notice that the pre-header does not change, only the loop body. 2085 SCEVExpander Exp(*SE, "induction"); 2086 2087 // We need to test whether the backedge-taken count is uint##_max. Adding one 2088 // to it will cause overflow and an incorrect loop trip count in the vector 2089 // body. In case of overflow we want to directly jump to the scalar remainder 2090 // loop. 2091 Value *BackedgeCount = 2092 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2093 BypassBlock->getTerminator()); 2094 if (BackedgeCount->getType()->isPointerTy()) 2095 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2096 "backedge.ptrcnt.to.int", 2097 BypassBlock->getTerminator()); 2098 Instruction *CheckBCOverflow = 2099 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2100 Constant::getAllOnesValue(BackedgeCount->getType()), 2101 "backedge.overflow", BypassBlock->getTerminator()); 2102 2103 // The loop index does not have to start at Zero. Find the original start 2104 // value from the induction PHI node. If we don't have an induction variable 2105 // then we know that it starts at zero. 2106 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2107 Value *StartIdx = ExtendedIdx = OldInduction ? 2108 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2109 IdxTy): 2110 ConstantInt::get(IdxTy, 0); 2111 2112 // We need an instruction to anchor the overflow check on. StartIdx needs to 2113 // be defined before the overflow check branch. Because the scalar preheader 2114 // is going to merge the start index and so the overflow branch block needs to 2115 // contain a definition of the start index. 2116 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2117 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2118 BypassBlock->getTerminator()); 2119 2120 // Count holds the overall loop count (N). 2121 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2122 BypassBlock->getTerminator()); 2123 2124 LoopBypassBlocks.push_back(BypassBlock); 2125 2126 // Split the single block loop into the two loop structure described above. 2127 BasicBlock *VectorPH = 2128 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2129 BasicBlock *VecBody = 2130 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2131 BasicBlock *MiddleBlock = 2132 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2133 BasicBlock *ScalarPH = 2134 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2135 2136 // Create and register the new vector loop. 2137 Loop* Lp = new Loop(); 2138 Loop *ParentLoop = OrigLoop->getParentLoop(); 2139 2140 // Insert the new loop into the loop nest and register the new basic blocks 2141 // before calling any utilities such as SCEV that require valid LoopInfo. 2142 if (ParentLoop) { 2143 ParentLoop->addChildLoop(Lp); 2144 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2145 ParentLoop->addBasicBlockToLoop(VectorPH, *LI); 2146 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2147 } else { 2148 LI->addTopLevelLoop(Lp); 2149 } 2150 Lp->addBasicBlockToLoop(VecBody, *LI); 2151 2152 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2153 // inside the loop. 2154 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2155 2156 // Generate the induction variable. 2157 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2158 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2159 // The loop step is equal to the vectorization factor (num of SIMD elements) 2160 // times the unroll factor (num of SIMD instructions). 2161 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2162 2163 // This is the IR builder that we use to add all of the logic for bypassing 2164 // the new vector loop. 2165 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2166 setDebugLocFromInst(BypassBuilder, 2167 getDebugLocFromInstOrOperands(OldInduction)); 2168 2169 // We may need to extend the index in case there is a type mismatch. 2170 // We know that the count starts at zero and does not overflow. 2171 if (Count->getType() != IdxTy) { 2172 // The exit count can be of pointer type. Convert it to the correct 2173 // integer type. 2174 if (ExitCount->getType()->isPointerTy()) 2175 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2176 else 2177 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2178 } 2179 2180 // Add the start index to the loop count to get the new end index. 2181 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2182 2183 // Now we need to generate the expression for N - (N % VF), which is 2184 // the part that the vectorized body will execute. 2185 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2186 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2187 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2188 "end.idx.rnd.down"); 2189 2190 // Now, compare the new count to zero. If it is zero skip the vector loop and 2191 // jump to the scalar loop. 2192 Value *Cmp = 2193 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2194 2195 BasicBlock *LastBypassBlock = BypassBlock; 2196 2197 // Generate code to check that the loops trip count that we computed by adding 2198 // one to the backedge-taken count will not overflow. 2199 { 2200 auto PastOverflowCheck = 2201 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2202 BasicBlock *CheckBlock = 2203 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2204 if (ParentLoop) 2205 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2206 LoopBypassBlocks.push_back(CheckBlock); 2207 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2208 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2209 OldTerm->eraseFromParent(); 2210 LastBypassBlock = CheckBlock; 2211 } 2212 2213 // Generate the code to check that the strides we assumed to be one are really 2214 // one. We want the new basic block to start at the first instruction in a 2215 // sequence of instructions that form a check. 2216 Instruction *StrideCheck; 2217 Instruction *FirstCheckInst; 2218 std::tie(FirstCheckInst, StrideCheck) = 2219 addStrideCheck(LastBypassBlock->getTerminator()); 2220 if (StrideCheck) { 2221 // Create a new block containing the stride check. 2222 BasicBlock *CheckBlock = 2223 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2224 if (ParentLoop) 2225 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2226 LoopBypassBlocks.push_back(CheckBlock); 2227 2228 // Replace the branch into the memory check block with a conditional branch 2229 // for the "few elements case". 2230 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2231 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2232 OldTerm->eraseFromParent(); 2233 2234 Cmp = StrideCheck; 2235 LastBypassBlock = CheckBlock; 2236 } 2237 2238 // Generate the code that checks in runtime if arrays overlap. We put the 2239 // checks into a separate block to make the more common case of few elements 2240 // faster. 2241 Instruction *MemRuntimeCheck; 2242 std::tie(FirstCheckInst, MemRuntimeCheck) = 2243 Legal->getLAI()->addRuntimeCheck(LastBypassBlock->getTerminator()); 2244 if (MemRuntimeCheck) { 2245 // Create a new block containing the memory check. 2246 BasicBlock *CheckBlock = 2247 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.memcheck"); 2248 if (ParentLoop) 2249 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2250 LoopBypassBlocks.push_back(CheckBlock); 2251 2252 // Replace the branch into the memory check block with a conditional branch 2253 // for the "few elements case". 2254 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2255 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2256 OldTerm->eraseFromParent(); 2257 2258 Cmp = MemRuntimeCheck; 2259 LastBypassBlock = CheckBlock; 2260 } 2261 2262 LastBypassBlock->getTerminator()->eraseFromParent(); 2263 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2264 LastBypassBlock); 2265 2266 // We are going to resume the execution of the scalar loop. 2267 // Go over all of the induction variables that we found and fix the 2268 // PHIs that are left in the scalar version of the loop. 2269 // The starting values of PHI nodes depend on the counter of the last 2270 // iteration in the vectorized loop. 2271 // If we come from a bypass edge then we need to start from the original 2272 // start value. 2273 2274 // This variable saves the new starting index for the scalar loop. 2275 PHINode *ResumeIndex = nullptr; 2276 LoopVectorizationLegality::InductionList::iterator I, E; 2277 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2278 // Set builder to point to last bypass block. 2279 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2280 for (I = List->begin(), E = List->end(); I != E; ++I) { 2281 PHINode *OrigPhi = I->first; 2282 LoopVectorizationLegality::InductionInfo II = I->second; 2283 2284 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2285 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2286 MiddleBlock->getTerminator()); 2287 // We might have extended the type of the induction variable but we need a 2288 // truncated version for the scalar loop. 2289 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2290 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2291 MiddleBlock->getTerminator()) : nullptr; 2292 2293 // Create phi nodes to merge from the backedge-taken check block. 2294 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2295 ScalarPH->getTerminator()); 2296 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2297 2298 PHINode *BCTruncResumeVal = nullptr; 2299 if (OrigPhi == OldInduction) { 2300 BCTruncResumeVal = 2301 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2302 ScalarPH->getTerminator()); 2303 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2304 } 2305 2306 Value *EndValue = nullptr; 2307 switch (II.IK) { 2308 case LoopVectorizationLegality::IK_NoInduction: 2309 llvm_unreachable("Unknown induction"); 2310 case LoopVectorizationLegality::IK_IntInduction: { 2311 // Handle the integer induction counter. 2312 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2313 2314 // We have the canonical induction variable. 2315 if (OrigPhi == OldInduction) { 2316 // Create a truncated version of the resume value for the scalar loop, 2317 // we might have promoted the type to a larger width. 2318 EndValue = 2319 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2320 // The new PHI merges the original incoming value, in case of a bypass, 2321 // or the value at the end of the vectorized loop. 2322 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2323 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2324 TruncResumeVal->addIncoming(EndValue, VecBody); 2325 2326 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2327 2328 // We know what the end value is. 2329 EndValue = IdxEndRoundDown; 2330 // We also know which PHI node holds it. 2331 ResumeIndex = ResumeVal; 2332 break; 2333 } 2334 2335 // Not the canonical induction variable - add the vector loop count to the 2336 // start value. 2337 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2338 II.StartValue->getType(), 2339 "cast.crd"); 2340 EndValue = II.transform(BypassBuilder, CRD); 2341 EndValue->setName("ind.end"); 2342 break; 2343 } 2344 case LoopVectorizationLegality::IK_PtrInduction: { 2345 EndValue = II.transform(BypassBuilder, CountRoundDown); 2346 EndValue->setName("ptr.ind.end"); 2347 break; 2348 } 2349 }// end of case 2350 2351 // The new PHI merges the original incoming value, in case of a bypass, 2352 // or the value at the end of the vectorized loop. 2353 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2354 if (OrigPhi == OldInduction) 2355 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2356 else 2357 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2358 } 2359 ResumeVal->addIncoming(EndValue, VecBody); 2360 2361 // Fix the scalar body counter (PHI node). 2362 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2363 2364 // The old induction's phi node in the scalar body needs the truncated 2365 // value. 2366 if (OrigPhi == OldInduction) { 2367 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2368 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2369 } else { 2370 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2371 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2372 } 2373 } 2374 2375 // If we are generating a new induction variable then we also need to 2376 // generate the code that calculates the exit value. This value is not 2377 // simply the end of the counter because we may skip the vectorized body 2378 // in case of a runtime check. 2379 if (!OldInduction){ 2380 assert(!ResumeIndex && "Unexpected resume value found"); 2381 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2382 MiddleBlock->getTerminator()); 2383 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2384 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2385 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2386 } 2387 2388 // Make sure that we found the index where scalar loop needs to continue. 2389 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2390 "Invalid resume Index"); 2391 2392 // Add a check in the middle block to see if we have completed 2393 // all of the iterations in the first vector loop. 2394 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2395 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2396 ResumeIndex, "cmp.n", 2397 MiddleBlock->getTerminator()); 2398 2399 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2400 // Remove the old terminator. 2401 MiddleBlock->getTerminator()->eraseFromParent(); 2402 2403 // Create i+1 and fill the PHINode. 2404 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2405 Induction->addIncoming(StartIdx, VectorPH); 2406 Induction->addIncoming(NextIdx, VecBody); 2407 // Create the compare. 2408 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2409 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2410 2411 // Now we have two terminators. Remove the old one from the block. 2412 VecBody->getTerminator()->eraseFromParent(); 2413 2414 // Get ready to start creating new instructions into the vectorized body. 2415 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2416 2417 // Save the state. 2418 LoopVectorPreHeader = VectorPH; 2419 LoopScalarPreHeader = ScalarPH; 2420 LoopMiddleBlock = MiddleBlock; 2421 LoopExitBlock = ExitBlock; 2422 LoopVectorBody.push_back(VecBody); 2423 LoopScalarBody = OldBasicBlock; 2424 2425 LoopVectorizeHints Hints(Lp, true); 2426 Hints.setAlreadyVectorized(); 2427 } 2428 2429 /// This function returns the identity element (or neutral element) for 2430 /// the operation K. 2431 Constant* 2432 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2433 switch (K) { 2434 case RK_IntegerXor: 2435 case RK_IntegerAdd: 2436 case RK_IntegerOr: 2437 // Adding, Xoring, Oring zero to a number does not change it. 2438 return ConstantInt::get(Tp, 0); 2439 case RK_IntegerMult: 2440 // Multiplying a number by 1 does not change it. 2441 return ConstantInt::get(Tp, 1); 2442 case RK_IntegerAnd: 2443 // AND-ing a number with an all-1 value does not change it. 2444 return ConstantInt::get(Tp, -1, true); 2445 case RK_FloatMult: 2446 // Multiplying a number by 1 does not change it. 2447 return ConstantFP::get(Tp, 1.0L); 2448 case RK_FloatAdd: 2449 // Adding zero to a number does not change it. 2450 return ConstantFP::get(Tp, 0.0L); 2451 default: 2452 llvm_unreachable("Unknown reduction kind"); 2453 } 2454 } 2455 2456 /// This function translates the reduction kind to an LLVM binary operator. 2457 static unsigned 2458 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2459 switch (Kind) { 2460 case LoopVectorizationLegality::RK_IntegerAdd: 2461 return Instruction::Add; 2462 case LoopVectorizationLegality::RK_IntegerMult: 2463 return Instruction::Mul; 2464 case LoopVectorizationLegality::RK_IntegerOr: 2465 return Instruction::Or; 2466 case LoopVectorizationLegality::RK_IntegerAnd: 2467 return Instruction::And; 2468 case LoopVectorizationLegality::RK_IntegerXor: 2469 return Instruction::Xor; 2470 case LoopVectorizationLegality::RK_FloatMult: 2471 return Instruction::FMul; 2472 case LoopVectorizationLegality::RK_FloatAdd: 2473 return Instruction::FAdd; 2474 case LoopVectorizationLegality::RK_IntegerMinMax: 2475 return Instruction::ICmp; 2476 case LoopVectorizationLegality::RK_FloatMinMax: 2477 return Instruction::FCmp; 2478 default: 2479 llvm_unreachable("Unknown reduction operation"); 2480 } 2481 } 2482 2483 Value *createMinMaxOp(IRBuilder<> &Builder, 2484 LoopVectorizationLegality::MinMaxReductionKind RK, 2485 Value *Left, 2486 Value *Right) { 2487 CmpInst::Predicate P = CmpInst::ICMP_NE; 2488 switch (RK) { 2489 default: 2490 llvm_unreachable("Unknown min/max reduction kind"); 2491 case LoopVectorizationLegality::MRK_UIntMin: 2492 P = CmpInst::ICMP_ULT; 2493 break; 2494 case LoopVectorizationLegality::MRK_UIntMax: 2495 P = CmpInst::ICMP_UGT; 2496 break; 2497 case LoopVectorizationLegality::MRK_SIntMin: 2498 P = CmpInst::ICMP_SLT; 2499 break; 2500 case LoopVectorizationLegality::MRK_SIntMax: 2501 P = CmpInst::ICMP_SGT; 2502 break; 2503 case LoopVectorizationLegality::MRK_FloatMin: 2504 P = CmpInst::FCMP_OLT; 2505 break; 2506 case LoopVectorizationLegality::MRK_FloatMax: 2507 P = CmpInst::FCMP_OGT; 2508 break; 2509 } 2510 2511 Value *Cmp; 2512 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2513 RK == LoopVectorizationLegality::MRK_FloatMax) 2514 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2515 else 2516 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2517 2518 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2519 return Select; 2520 } 2521 2522 namespace { 2523 struct CSEDenseMapInfo { 2524 static bool canHandle(Instruction *I) { 2525 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2526 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2527 } 2528 static inline Instruction *getEmptyKey() { 2529 return DenseMapInfo<Instruction *>::getEmptyKey(); 2530 } 2531 static inline Instruction *getTombstoneKey() { 2532 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2533 } 2534 static unsigned getHashValue(Instruction *I) { 2535 assert(canHandle(I) && "Unknown instruction!"); 2536 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2537 I->value_op_end())); 2538 } 2539 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2540 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2541 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2542 return LHS == RHS; 2543 return LHS->isIdenticalTo(RHS); 2544 } 2545 }; 2546 } 2547 2548 /// \brief Check whether this block is a predicated block. 2549 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2550 /// = ...; " blocks. We start with one vectorized basic block. For every 2551 /// conditional block we split this vectorized block. Therefore, every second 2552 /// block will be a predicated one. 2553 static bool isPredicatedBlock(unsigned BlockNum) { 2554 return BlockNum % 2; 2555 } 2556 2557 ///\brief Perform cse of induction variable instructions. 2558 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2559 // Perform simple cse. 2560 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2561 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2562 BasicBlock *BB = BBs[i]; 2563 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2564 Instruction *In = I++; 2565 2566 if (!CSEDenseMapInfo::canHandle(In)) 2567 continue; 2568 2569 // Check if we can replace this instruction with any of the 2570 // visited instructions. 2571 if (Instruction *V = CSEMap.lookup(In)) { 2572 In->replaceAllUsesWith(V); 2573 In->eraseFromParent(); 2574 continue; 2575 } 2576 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2577 // ...;" blocks for predicated stores. Every second block is a predicated 2578 // block. 2579 if (isPredicatedBlock(i)) 2580 continue; 2581 2582 CSEMap[In] = In; 2583 } 2584 } 2585 } 2586 2587 /// \brief Adds a 'fast' flag to floating point operations. 2588 static Value *addFastMathFlag(Value *V) { 2589 if (isa<FPMathOperator>(V)){ 2590 FastMathFlags Flags; 2591 Flags.setUnsafeAlgebra(); 2592 cast<Instruction>(V)->setFastMathFlags(Flags); 2593 } 2594 return V; 2595 } 2596 2597 void InnerLoopVectorizer::vectorizeLoop() { 2598 //===------------------------------------------------===// 2599 // 2600 // Notice: any optimization or new instruction that go 2601 // into the code below should be also be implemented in 2602 // the cost-model. 2603 // 2604 //===------------------------------------------------===// 2605 Constant *Zero = Builder.getInt32(0); 2606 2607 // In order to support reduction variables we need to be able to vectorize 2608 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2609 // stages. First, we create a new vector PHI node with no incoming edges. 2610 // We use this value when we vectorize all of the instructions that use the 2611 // PHI. Next, after all of the instructions in the block are complete we 2612 // add the new incoming edges to the PHI. At this point all of the 2613 // instructions in the basic block are vectorized, so we can use them to 2614 // construct the PHI. 2615 PhiVector RdxPHIsToFix; 2616 2617 // Scan the loop in a topological order to ensure that defs are vectorized 2618 // before users. 2619 LoopBlocksDFS DFS(OrigLoop); 2620 DFS.perform(LI); 2621 2622 // Vectorize all of the blocks in the original loop. 2623 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2624 be = DFS.endRPO(); bb != be; ++bb) 2625 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2626 2627 // At this point every instruction in the original loop is widened to 2628 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2629 // that we vectorized. The PHI nodes are currently empty because we did 2630 // not want to introduce cycles. Notice that the remaining PHI nodes 2631 // that we need to fix are reduction variables. 2632 2633 // Create the 'reduced' values for each of the induction vars. 2634 // The reduced values are the vector values that we scalarize and combine 2635 // after the loop is finished. 2636 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2637 it != e; ++it) { 2638 PHINode *RdxPhi = *it; 2639 assert(RdxPhi && "Unable to recover vectorized PHI"); 2640 2641 // Find the reduction variable descriptor. 2642 assert(Legal->getReductionVars()->count(RdxPhi) && 2643 "Unable to find the reduction variable"); 2644 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2645 (*Legal->getReductionVars())[RdxPhi]; 2646 2647 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2648 2649 // We need to generate a reduction vector from the incoming scalar. 2650 // To do so, we need to generate the 'identity' vector and override 2651 // one of the elements with the incoming scalar reduction. We need 2652 // to do it in the vector-loop preheader. 2653 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2654 2655 // This is the vector-clone of the value that leaves the loop. 2656 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2657 Type *VecTy = VectorExit[0]->getType(); 2658 2659 // Find the reduction identity variable. Zero for addition, or, xor, 2660 // one for multiplication, -1 for And. 2661 Value *Identity; 2662 Value *VectorStart; 2663 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2664 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2665 // MinMax reduction have the start value as their identify. 2666 if (VF == 1) { 2667 VectorStart = Identity = RdxDesc.StartValue; 2668 } else { 2669 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2670 RdxDesc.StartValue, 2671 "minmax.ident"); 2672 } 2673 } else { 2674 // Handle other reduction kinds: 2675 Constant *Iden = 2676 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2677 VecTy->getScalarType()); 2678 if (VF == 1) { 2679 Identity = Iden; 2680 // This vector is the Identity vector where the first element is the 2681 // incoming scalar reduction. 2682 VectorStart = RdxDesc.StartValue; 2683 } else { 2684 Identity = ConstantVector::getSplat(VF, Iden); 2685 2686 // This vector is the Identity vector where the first element is the 2687 // incoming scalar reduction. 2688 VectorStart = Builder.CreateInsertElement(Identity, 2689 RdxDesc.StartValue, Zero); 2690 } 2691 } 2692 2693 // Fix the vector-loop phi. 2694 2695 // Reductions do not have to start at zero. They can start with 2696 // any loop invariant values. 2697 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2698 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2699 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2700 VectorParts &Val = getVectorValue(LoopVal); 2701 for (unsigned part = 0; part < UF; ++part) { 2702 // Make sure to add the reduction stat value only to the 2703 // first unroll part. 2704 Value *StartVal = (part == 0) ? VectorStart : Identity; 2705 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 2706 LoopVectorPreHeader); 2707 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2708 LoopVectorBody.back()); 2709 } 2710 2711 // Before each round, move the insertion point right between 2712 // the PHIs and the values we are going to write. 2713 // This allows us to write both PHINodes and the extractelement 2714 // instructions. 2715 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2716 2717 VectorParts RdxParts; 2718 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2719 for (unsigned part = 0; part < UF; ++part) { 2720 // This PHINode contains the vectorized reduction variable, or 2721 // the initial value vector, if we bypass the vector loop. 2722 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2723 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2724 Value *StartVal = (part == 0) ? VectorStart : Identity; 2725 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2726 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2727 NewPhi->addIncoming(RdxExitVal[part], 2728 LoopVectorBody.back()); 2729 RdxParts.push_back(NewPhi); 2730 } 2731 2732 // Reduce all of the unrolled parts into a single vector. 2733 Value *ReducedPartRdx = RdxParts[0]; 2734 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2735 setDebugLocFromInst(Builder, ReducedPartRdx); 2736 for (unsigned part = 1; part < UF; ++part) { 2737 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2738 // Floating point operations had to be 'fast' to enable the reduction. 2739 ReducedPartRdx = addFastMathFlag( 2740 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2741 ReducedPartRdx, "bin.rdx")); 2742 else 2743 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2744 ReducedPartRdx, RdxParts[part]); 2745 } 2746 2747 if (VF > 1) { 2748 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2749 // and vector ops, reducing the set of values being computed by half each 2750 // round. 2751 assert(isPowerOf2_32(VF) && 2752 "Reduction emission only supported for pow2 vectors!"); 2753 Value *TmpVec = ReducedPartRdx; 2754 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2755 for (unsigned i = VF; i != 1; i >>= 1) { 2756 // Move the upper half of the vector to the lower half. 2757 for (unsigned j = 0; j != i/2; ++j) 2758 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2759 2760 // Fill the rest of the mask with undef. 2761 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2762 UndefValue::get(Builder.getInt32Ty())); 2763 2764 Value *Shuf = 2765 Builder.CreateShuffleVector(TmpVec, 2766 UndefValue::get(TmpVec->getType()), 2767 ConstantVector::get(ShuffleMask), 2768 "rdx.shuf"); 2769 2770 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2771 // Floating point operations had to be 'fast' to enable the reduction. 2772 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2773 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2774 else 2775 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2776 } 2777 2778 // The result is in the first element of the vector. 2779 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2780 Builder.getInt32(0)); 2781 } 2782 2783 // Create a phi node that merges control-flow from the backedge-taken check 2784 // block and the middle block. 2785 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2786 LoopScalarPreHeader->getTerminator()); 2787 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2788 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2789 2790 // Now, we need to fix the users of the reduction variable 2791 // inside and outside of the scalar remainder loop. 2792 // We know that the loop is in LCSSA form. We need to update the 2793 // PHI nodes in the exit blocks. 2794 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2795 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2796 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2797 if (!LCSSAPhi) break; 2798 2799 // All PHINodes need to have a single entry edge, or two if 2800 // we already fixed them. 2801 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2802 2803 // We found our reduction value exit-PHI. Update it with the 2804 // incoming bypass edge. 2805 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2806 // Add an edge coming from the bypass. 2807 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2808 break; 2809 } 2810 }// end of the LCSSA phi scan. 2811 2812 // Fix the scalar loop reduction variable with the incoming reduction sum 2813 // from the vector body and from the backedge value. 2814 int IncomingEdgeBlockIdx = 2815 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2816 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2817 // Pick the other block. 2818 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2819 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2820 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2821 }// end of for each redux variable. 2822 2823 fixLCSSAPHIs(); 2824 2825 // Remove redundant induction instructions. 2826 cse(LoopVectorBody); 2827 } 2828 2829 void InnerLoopVectorizer::fixLCSSAPHIs() { 2830 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2831 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2832 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2833 if (!LCSSAPhi) break; 2834 if (LCSSAPhi->getNumIncomingValues() == 1) 2835 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2836 LoopMiddleBlock); 2837 } 2838 } 2839 2840 InnerLoopVectorizer::VectorParts 2841 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2842 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2843 "Invalid edge"); 2844 2845 // Look for cached value. 2846 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2847 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2848 if (ECEntryIt != MaskCache.end()) 2849 return ECEntryIt->second; 2850 2851 VectorParts SrcMask = createBlockInMask(Src); 2852 2853 // The terminator has to be a branch inst! 2854 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2855 assert(BI && "Unexpected terminator found"); 2856 2857 if (BI->isConditional()) { 2858 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2859 2860 if (BI->getSuccessor(0) != Dst) 2861 for (unsigned part = 0; part < UF; ++part) 2862 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2863 2864 for (unsigned part = 0; part < UF; ++part) 2865 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2866 2867 MaskCache[Edge] = EdgeMask; 2868 return EdgeMask; 2869 } 2870 2871 MaskCache[Edge] = SrcMask; 2872 return SrcMask; 2873 } 2874 2875 InnerLoopVectorizer::VectorParts 2876 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2877 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2878 2879 // Loop incoming mask is all-one. 2880 if (OrigLoop->getHeader() == BB) { 2881 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2882 return getVectorValue(C); 2883 } 2884 2885 // This is the block mask. We OR all incoming edges, and with zero. 2886 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2887 VectorParts BlockMask = getVectorValue(Zero); 2888 2889 // For each pred: 2890 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2891 VectorParts EM = createEdgeMask(*it, BB); 2892 for (unsigned part = 0; part < UF; ++part) 2893 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2894 } 2895 2896 return BlockMask; 2897 } 2898 2899 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2900 InnerLoopVectorizer::VectorParts &Entry, 2901 unsigned UF, unsigned VF, PhiVector *PV) { 2902 PHINode* P = cast<PHINode>(PN); 2903 // Handle reduction variables: 2904 if (Legal->getReductionVars()->count(P)) { 2905 for (unsigned part = 0; part < UF; ++part) { 2906 // This is phase one of vectorizing PHIs. 2907 Type *VecTy = (VF == 1) ? PN->getType() : 2908 VectorType::get(PN->getType(), VF); 2909 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2910 LoopVectorBody.back()-> getFirstInsertionPt()); 2911 } 2912 PV->push_back(P); 2913 return; 2914 } 2915 2916 setDebugLocFromInst(Builder, P); 2917 // Check for PHI nodes that are lowered to vector selects. 2918 if (P->getParent() != OrigLoop->getHeader()) { 2919 // We know that all PHIs in non-header blocks are converted into 2920 // selects, so we don't have to worry about the insertion order and we 2921 // can just use the builder. 2922 // At this point we generate the predication tree. There may be 2923 // duplications since this is a simple recursive scan, but future 2924 // optimizations will clean it up. 2925 2926 unsigned NumIncoming = P->getNumIncomingValues(); 2927 2928 // Generate a sequence of selects of the form: 2929 // SELECT(Mask3, In3, 2930 // SELECT(Mask2, In2, 2931 // ( ...))) 2932 for (unsigned In = 0; In < NumIncoming; In++) { 2933 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2934 P->getParent()); 2935 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2936 2937 for (unsigned part = 0; part < UF; ++part) { 2938 // We might have single edge PHIs (blocks) - use an identity 2939 // 'select' for the first PHI operand. 2940 if (In == 0) 2941 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2942 In0[part]); 2943 else 2944 // Select between the current value and the previous incoming edge 2945 // based on the incoming mask. 2946 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2947 Entry[part], "predphi"); 2948 } 2949 } 2950 return; 2951 } 2952 2953 // This PHINode must be an induction variable. 2954 // Make sure that we know about it. 2955 assert(Legal->getInductionVars()->count(P) && 2956 "Not an induction variable"); 2957 2958 LoopVectorizationLegality::InductionInfo II = 2959 Legal->getInductionVars()->lookup(P); 2960 2961 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2962 // which can be found from the original scalar operations. 2963 switch (II.IK) { 2964 case LoopVectorizationLegality::IK_NoInduction: 2965 llvm_unreachable("Unknown induction"); 2966 case LoopVectorizationLegality::IK_IntInduction: { 2967 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2968 Type *PhiTy = P->getType(); 2969 Value *Broadcasted; 2970 if (P == OldInduction) { 2971 // Handle the canonical induction variable. We might have had to 2972 // extend the type. 2973 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2974 } else { 2975 // Handle other induction variables that are now based on the 2976 // canonical one. 2977 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2978 "normalized.idx"); 2979 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2980 Broadcasted = II.transform(Builder, NormalizedIdx); 2981 Broadcasted->setName("offset.idx"); 2982 } 2983 Broadcasted = getBroadcastInstrs(Broadcasted); 2984 // After broadcasting the induction variable we need to make the vector 2985 // consecutive by adding 0, 1, 2, etc. 2986 for (unsigned part = 0; part < UF; ++part) 2987 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); 2988 return; 2989 } 2990 case LoopVectorizationLegality::IK_PtrInduction: 2991 // Handle the pointer induction variable case. 2992 assert(P->getType()->isPointerTy() && "Unexpected type."); 2993 // This is the normalized GEP that starts counting at zero. 2994 Value *NormalizedIdx = 2995 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); 2996 // This is the vector of results. Notice that we don't generate 2997 // vector geps because scalar geps result in better code. 2998 for (unsigned part = 0; part < UF; ++part) { 2999 if (VF == 1) { 3000 int EltIndex = part; 3001 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3002 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3003 Value *SclrGep = II.transform(Builder, GlobalIdx); 3004 SclrGep->setName("next.gep"); 3005 Entry[part] = SclrGep; 3006 continue; 3007 } 3008 3009 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3010 for (unsigned int i = 0; i < VF; ++i) { 3011 int EltIndex = i + part * VF; 3012 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3013 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3014 Value *SclrGep = II.transform(Builder, GlobalIdx); 3015 SclrGep->setName("next.gep"); 3016 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3017 Builder.getInt32(i), 3018 "insert.gep"); 3019 } 3020 Entry[part] = VecVal; 3021 } 3022 return; 3023 } 3024 } 3025 3026 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3027 // For each instruction in the old loop. 3028 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3029 VectorParts &Entry = WidenMap.get(it); 3030 switch (it->getOpcode()) { 3031 case Instruction::Br: 3032 // Nothing to do for PHIs and BR, since we already took care of the 3033 // loop control flow instructions. 3034 continue; 3035 case Instruction::PHI: { 3036 // Vectorize PHINodes. 3037 widenPHIInstruction(it, Entry, UF, VF, PV); 3038 continue; 3039 }// End of PHI. 3040 3041 case Instruction::Add: 3042 case Instruction::FAdd: 3043 case Instruction::Sub: 3044 case Instruction::FSub: 3045 case Instruction::Mul: 3046 case Instruction::FMul: 3047 case Instruction::UDiv: 3048 case Instruction::SDiv: 3049 case Instruction::FDiv: 3050 case Instruction::URem: 3051 case Instruction::SRem: 3052 case Instruction::FRem: 3053 case Instruction::Shl: 3054 case Instruction::LShr: 3055 case Instruction::AShr: 3056 case Instruction::And: 3057 case Instruction::Or: 3058 case Instruction::Xor: { 3059 // Just widen binops. 3060 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3061 setDebugLocFromInst(Builder, BinOp); 3062 VectorParts &A = getVectorValue(it->getOperand(0)); 3063 VectorParts &B = getVectorValue(it->getOperand(1)); 3064 3065 // Use this vector value for all users of the original instruction. 3066 for (unsigned Part = 0; Part < UF; ++Part) { 3067 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3068 3069 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3070 VecOp->copyIRFlags(BinOp); 3071 3072 Entry[Part] = V; 3073 } 3074 3075 propagateMetadata(Entry, it); 3076 break; 3077 } 3078 case Instruction::Select: { 3079 // Widen selects. 3080 // If the selector is loop invariant we can create a select 3081 // instruction with a scalar condition. Otherwise, use vector-select. 3082 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3083 OrigLoop); 3084 setDebugLocFromInst(Builder, it); 3085 3086 // The condition can be loop invariant but still defined inside the 3087 // loop. This means that we can't just use the original 'cond' value. 3088 // We have to take the 'vectorized' value and pick the first lane. 3089 // Instcombine will make this a no-op. 3090 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3091 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3092 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3093 3094 Value *ScalarCond = (VF == 1) ? Cond[0] : 3095 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3096 3097 for (unsigned Part = 0; Part < UF; ++Part) { 3098 Entry[Part] = Builder.CreateSelect( 3099 InvariantCond ? ScalarCond : Cond[Part], 3100 Op0[Part], 3101 Op1[Part]); 3102 } 3103 3104 propagateMetadata(Entry, it); 3105 break; 3106 } 3107 3108 case Instruction::ICmp: 3109 case Instruction::FCmp: { 3110 // Widen compares. Generate vector compares. 3111 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3112 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3113 setDebugLocFromInst(Builder, it); 3114 VectorParts &A = getVectorValue(it->getOperand(0)); 3115 VectorParts &B = getVectorValue(it->getOperand(1)); 3116 for (unsigned Part = 0; Part < UF; ++Part) { 3117 Value *C = nullptr; 3118 if (FCmp) 3119 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3120 else 3121 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3122 Entry[Part] = C; 3123 } 3124 3125 propagateMetadata(Entry, it); 3126 break; 3127 } 3128 3129 case Instruction::Store: 3130 case Instruction::Load: 3131 vectorizeMemoryInstruction(it); 3132 break; 3133 case Instruction::ZExt: 3134 case Instruction::SExt: 3135 case Instruction::FPToUI: 3136 case Instruction::FPToSI: 3137 case Instruction::FPExt: 3138 case Instruction::PtrToInt: 3139 case Instruction::IntToPtr: 3140 case Instruction::SIToFP: 3141 case Instruction::UIToFP: 3142 case Instruction::Trunc: 3143 case Instruction::FPTrunc: 3144 case Instruction::BitCast: { 3145 CastInst *CI = dyn_cast<CastInst>(it); 3146 setDebugLocFromInst(Builder, it); 3147 /// Optimize the special case where the source is the induction 3148 /// variable. Notice that we can only optimize the 'trunc' case 3149 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3150 /// c. other casts depend on pointer size. 3151 if (CI->getOperand(0) == OldInduction && 3152 it->getOpcode() == Instruction::Trunc) { 3153 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3154 CI->getType()); 3155 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3156 LoopVectorizationLegality::InductionInfo II = 3157 Legal->getInductionVars()->lookup(OldInduction); 3158 Constant *Step = 3159 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); 3160 for (unsigned Part = 0; Part < UF; ++Part) 3161 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3162 propagateMetadata(Entry, it); 3163 break; 3164 } 3165 /// Vectorize casts. 3166 Type *DestTy = (VF == 1) ? CI->getType() : 3167 VectorType::get(CI->getType(), VF); 3168 3169 VectorParts &A = getVectorValue(it->getOperand(0)); 3170 for (unsigned Part = 0; Part < UF; ++Part) 3171 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3172 propagateMetadata(Entry, it); 3173 break; 3174 } 3175 3176 case Instruction::Call: { 3177 // Ignore dbg intrinsics. 3178 if (isa<DbgInfoIntrinsic>(it)) 3179 break; 3180 setDebugLocFromInst(Builder, it); 3181 3182 Module *M = BB->getParent()->getParent(); 3183 CallInst *CI = cast<CallInst>(it); 3184 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3185 assert(ID && "Not an intrinsic call!"); 3186 switch (ID) { 3187 case Intrinsic::assume: 3188 case Intrinsic::lifetime_end: 3189 case Intrinsic::lifetime_start: 3190 scalarizeInstruction(it); 3191 break; 3192 default: 3193 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3194 for (unsigned Part = 0; Part < UF; ++Part) { 3195 SmallVector<Value *, 4> Args; 3196 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3197 if (HasScalarOpd && i == 1) { 3198 Args.push_back(CI->getArgOperand(i)); 3199 continue; 3200 } 3201 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3202 Args.push_back(Arg[Part]); 3203 } 3204 Type *Tys[] = {CI->getType()}; 3205 if (VF > 1) 3206 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3207 3208 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3209 Entry[Part] = Builder.CreateCall(F, Args); 3210 } 3211 3212 propagateMetadata(Entry, it); 3213 break; 3214 } 3215 break; 3216 } 3217 3218 default: 3219 // All other instructions are unsupported. Scalarize them. 3220 scalarizeInstruction(it); 3221 break; 3222 }// end of switch. 3223 }// end of for_each instr. 3224 } 3225 3226 void InnerLoopVectorizer::updateAnalysis() { 3227 // Forget the original basic block. 3228 SE->forgetLoop(OrigLoop); 3229 3230 // Update the dominator tree information. 3231 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3232 "Entry does not dominate exit."); 3233 3234 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3235 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3236 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3237 3238 // Due to if predication of stores we might create a sequence of "if(pred) 3239 // a[i] = ...; " blocks. 3240 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3241 if (i == 0) 3242 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3243 else if (isPredicatedBlock(i)) { 3244 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3245 } else { 3246 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3247 } 3248 } 3249 3250 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3251 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3252 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3253 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3254 3255 DEBUG(DT->verifyDomTree()); 3256 } 3257 3258 /// \brief Check whether it is safe to if-convert this phi node. 3259 /// 3260 /// Phi nodes with constant expressions that can trap are not safe to if 3261 /// convert. 3262 static bool canIfConvertPHINodes(BasicBlock *BB) { 3263 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3264 PHINode *Phi = dyn_cast<PHINode>(I); 3265 if (!Phi) 3266 return true; 3267 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3268 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3269 if (C->canTrap()) 3270 return false; 3271 } 3272 return true; 3273 } 3274 3275 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3276 if (!EnableIfConversion) { 3277 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3278 return false; 3279 } 3280 3281 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3282 3283 // A list of pointers that we can safely read and write to. 3284 SmallPtrSet<Value *, 8> SafePointes; 3285 3286 // Collect safe addresses. 3287 for (Loop::block_iterator BI = TheLoop->block_begin(), 3288 BE = TheLoop->block_end(); BI != BE; ++BI) { 3289 BasicBlock *BB = *BI; 3290 3291 if (blockNeedsPredication(BB)) 3292 continue; 3293 3294 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3295 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3296 SafePointes.insert(LI->getPointerOperand()); 3297 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3298 SafePointes.insert(SI->getPointerOperand()); 3299 } 3300 } 3301 3302 // Collect the blocks that need predication. 3303 BasicBlock *Header = TheLoop->getHeader(); 3304 for (Loop::block_iterator BI = TheLoop->block_begin(), 3305 BE = TheLoop->block_end(); BI != BE; ++BI) { 3306 BasicBlock *BB = *BI; 3307 3308 // We don't support switch statements inside loops. 3309 if (!isa<BranchInst>(BB->getTerminator())) { 3310 emitAnalysis(VectorizationReport(BB->getTerminator()) 3311 << "loop contains a switch statement"); 3312 return false; 3313 } 3314 3315 // We must be able to predicate all blocks that need to be predicated. 3316 if (blockNeedsPredication(BB)) { 3317 if (!blockCanBePredicated(BB, SafePointes)) { 3318 emitAnalysis(VectorizationReport(BB->getTerminator()) 3319 << "control flow cannot be substituted for a select"); 3320 return false; 3321 } 3322 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3323 emitAnalysis(VectorizationReport(BB->getTerminator()) 3324 << "control flow cannot be substituted for a select"); 3325 return false; 3326 } 3327 } 3328 3329 // We can if-convert this loop. 3330 return true; 3331 } 3332 3333 bool LoopVectorizationLegality::canVectorize() { 3334 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3335 // be canonicalized. 3336 if (!TheLoop->getLoopPreheader()) { 3337 emitAnalysis( 3338 VectorizationReport() << 3339 "loop control flow is not understood by vectorizer"); 3340 return false; 3341 } 3342 3343 // We can only vectorize innermost loops. 3344 if (!TheLoop->getSubLoopsVector().empty()) { 3345 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 3346 return false; 3347 } 3348 3349 // We must have a single backedge. 3350 if (TheLoop->getNumBackEdges() != 1) { 3351 emitAnalysis( 3352 VectorizationReport() << 3353 "loop control flow is not understood by vectorizer"); 3354 return false; 3355 } 3356 3357 // We must have a single exiting block. 3358 if (!TheLoop->getExitingBlock()) { 3359 emitAnalysis( 3360 VectorizationReport() << 3361 "loop control flow is not understood by vectorizer"); 3362 return false; 3363 } 3364 3365 // We only handle bottom-tested loops, i.e. loop in which the condition is 3366 // checked at the end of each iteration. With that we can assume that all 3367 // instructions in the loop are executed the same number of times. 3368 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3369 emitAnalysis( 3370 VectorizationReport() << 3371 "loop control flow is not understood by vectorizer"); 3372 return false; 3373 } 3374 3375 // We need to have a loop header. 3376 DEBUG(dbgs() << "LV: Found a loop: " << 3377 TheLoop->getHeader()->getName() << '\n'); 3378 3379 // Check if we can if-convert non-single-bb loops. 3380 unsigned NumBlocks = TheLoop->getNumBlocks(); 3381 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3382 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3383 return false; 3384 } 3385 3386 // ScalarEvolution needs to be able to find the exit count. 3387 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3388 if (ExitCount == SE->getCouldNotCompute()) { 3389 emitAnalysis(VectorizationReport() << 3390 "could not determine number of loop iterations"); 3391 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3392 return false; 3393 } 3394 3395 // Check if we can vectorize the instructions and CFG in this loop. 3396 if (!canVectorizeInstrs()) { 3397 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3398 return false; 3399 } 3400 3401 // Go over each instruction and look at memory deps. 3402 if (!canVectorizeMemory()) { 3403 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3404 return false; 3405 } 3406 3407 // Collect all of the variables that remain uniform after vectorization. 3408 collectLoopUniforms(); 3409 3410 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3411 (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" : 3412 "") 3413 <<"!\n"); 3414 3415 // Okay! We can vectorize. At this point we don't have any other mem analysis 3416 // which may limit our maximum vectorization factor, so just return true with 3417 // no restrictions. 3418 return true; 3419 } 3420 3421 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3422 if (Ty->isPointerTy()) 3423 return DL.getIntPtrType(Ty); 3424 3425 // It is possible that char's or short's overflow when we ask for the loop's 3426 // trip count, work around this by changing the type size. 3427 if (Ty->getScalarSizeInBits() < 32) 3428 return Type::getInt32Ty(Ty->getContext()); 3429 3430 return Ty; 3431 } 3432 3433 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3434 Ty0 = convertPointerToIntegerType(DL, Ty0); 3435 Ty1 = convertPointerToIntegerType(DL, Ty1); 3436 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3437 return Ty0; 3438 return Ty1; 3439 } 3440 3441 /// \brief Check that the instruction has outside loop users and is not an 3442 /// identified reduction variable. 3443 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3444 SmallPtrSetImpl<Value *> &Reductions) { 3445 // Reduction instructions are allowed to have exit users. All other 3446 // instructions must not have external users. 3447 if (!Reductions.count(Inst)) 3448 //Check that all of the users of the loop are inside the BB. 3449 for (User *U : Inst->users()) { 3450 Instruction *UI = cast<Instruction>(U); 3451 // This user may be a reduction exit value. 3452 if (!TheLoop->contains(UI)) { 3453 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3454 return true; 3455 } 3456 } 3457 return false; 3458 } 3459 3460 bool LoopVectorizationLegality::canVectorizeInstrs() { 3461 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3462 BasicBlock *Header = TheLoop->getHeader(); 3463 3464 // Look for the attribute signaling the absence of NaNs. 3465 Function &F = *Header->getParent(); 3466 if (F.hasFnAttribute("no-nans-fp-math")) 3467 HasFunNoNaNAttr = 3468 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 3469 3470 // For each block in the loop. 3471 for (Loop::block_iterator bb = TheLoop->block_begin(), 3472 be = TheLoop->block_end(); bb != be; ++bb) { 3473 3474 // Scan the instructions in the block and look for hazards. 3475 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3476 ++it) { 3477 3478 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3479 Type *PhiTy = Phi->getType(); 3480 // Check that this PHI type is allowed. 3481 if (!PhiTy->isIntegerTy() && 3482 !PhiTy->isFloatingPointTy() && 3483 !PhiTy->isPointerTy()) { 3484 emitAnalysis(VectorizationReport(it) 3485 << "loop control flow is not understood by vectorizer"); 3486 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3487 return false; 3488 } 3489 3490 // If this PHINode is not in the header block, then we know that we 3491 // can convert it to select during if-conversion. No need to check if 3492 // the PHIs in this block are induction or reduction variables. 3493 if (*bb != Header) { 3494 // Check that this instruction has no outside users or is an 3495 // identified reduction value with an outside user. 3496 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3497 continue; 3498 emitAnalysis(VectorizationReport(it) << 3499 "value could not be identified as " 3500 "an induction or reduction variable"); 3501 return false; 3502 } 3503 3504 // We only allow if-converted PHIs with exactly two incoming values. 3505 if (Phi->getNumIncomingValues() != 2) { 3506 emitAnalysis(VectorizationReport(it) 3507 << "control flow not understood by vectorizer"); 3508 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3509 return false; 3510 } 3511 3512 // This is the value coming from the preheader. 3513 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3514 ConstantInt *StepValue = nullptr; 3515 // Check if this is an induction variable. 3516 InductionKind IK = isInductionVariable(Phi, StepValue); 3517 3518 if (IK_NoInduction != IK) { 3519 // Get the widest type. 3520 if (!WidestIndTy) 3521 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3522 else 3523 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3524 3525 // Int inductions are special because we only allow one IV. 3526 if (IK == IK_IntInduction && StepValue->isOne()) { 3527 // Use the phi node with the widest type as induction. Use the last 3528 // one if there are multiple (no good reason for doing this other 3529 // than it is expedient). 3530 if (!Induction || PhiTy == WidestIndTy) 3531 Induction = Phi; 3532 } 3533 3534 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3535 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); 3536 3537 // Until we explicitly handle the case of an induction variable with 3538 // an outside loop user we have to give up vectorizing this loop. 3539 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3540 emitAnalysis(VectorizationReport(it) << 3541 "use of induction value outside of the " 3542 "loop is not handled by vectorizer"); 3543 return false; 3544 } 3545 3546 continue; 3547 } 3548 3549 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3550 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3551 continue; 3552 } 3553 if (AddReductionVar(Phi, RK_IntegerMult)) { 3554 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3555 continue; 3556 } 3557 if (AddReductionVar(Phi, RK_IntegerOr)) { 3558 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3559 continue; 3560 } 3561 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3562 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3563 continue; 3564 } 3565 if (AddReductionVar(Phi, RK_IntegerXor)) { 3566 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3567 continue; 3568 } 3569 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3570 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3571 continue; 3572 } 3573 if (AddReductionVar(Phi, RK_FloatMult)) { 3574 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3575 continue; 3576 } 3577 if (AddReductionVar(Phi, RK_FloatAdd)) { 3578 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3579 continue; 3580 } 3581 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3582 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3583 "\n"); 3584 continue; 3585 } 3586 3587 emitAnalysis(VectorizationReport(it) << 3588 "value that could not be identified as " 3589 "reduction is used outside the loop"); 3590 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3591 return false; 3592 }// end of PHI handling 3593 3594 // We still don't handle functions. However, we can ignore dbg intrinsic 3595 // calls and we do handle certain intrinsic and libm functions. 3596 CallInst *CI = dyn_cast<CallInst>(it); 3597 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3598 emitAnalysis(VectorizationReport(it) << 3599 "call instruction cannot be vectorized"); 3600 DEBUG(dbgs() << "LV: Found a call site.\n"); 3601 return false; 3602 } 3603 3604 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3605 // second argument is the same (i.e. loop invariant) 3606 if (CI && 3607 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3608 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3609 emitAnalysis(VectorizationReport(it) 3610 << "intrinsic instruction cannot be vectorized"); 3611 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3612 return false; 3613 } 3614 } 3615 3616 // Check that the instruction return type is vectorizable. 3617 // Also, we can't vectorize extractelement instructions. 3618 if ((!VectorType::isValidElementType(it->getType()) && 3619 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3620 emitAnalysis(VectorizationReport(it) 3621 << "instruction return type cannot be vectorized"); 3622 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3623 return false; 3624 } 3625 3626 // Check that the stored type is vectorizable. 3627 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3628 Type *T = ST->getValueOperand()->getType(); 3629 if (!VectorType::isValidElementType(T)) { 3630 emitAnalysis(VectorizationReport(ST) << 3631 "store instruction cannot be vectorized"); 3632 return false; 3633 } 3634 if (EnableMemAccessVersioning) 3635 collectStridedAccess(ST); 3636 } 3637 3638 if (EnableMemAccessVersioning) 3639 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3640 collectStridedAccess(LI); 3641 3642 // Reduction instructions are allowed to have exit users. 3643 // All other instructions must not have external users. 3644 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3645 emitAnalysis(VectorizationReport(it) << 3646 "value cannot be used outside the loop"); 3647 return false; 3648 } 3649 3650 } // next instr. 3651 3652 } 3653 3654 if (!Induction) { 3655 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3656 if (Inductions.empty()) { 3657 emitAnalysis(VectorizationReport() 3658 << "loop induction variable could not be identified"); 3659 return false; 3660 } 3661 } 3662 3663 return true; 3664 } 3665 3666 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3667 /// return the induction operand of the gep pointer. 3668 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3669 const DataLayout *DL, Loop *Lp) { 3670 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3671 if (!GEP) 3672 return Ptr; 3673 3674 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3675 3676 // Check that all of the gep indices are uniform except for our induction 3677 // operand. 3678 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3679 if (i != InductionOperand && 3680 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3681 return Ptr; 3682 return GEP->getOperand(InductionOperand); 3683 } 3684 3685 ///\brief Look for a cast use of the passed value. 3686 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3687 Value *UniqueCast = nullptr; 3688 for (User *U : Ptr->users()) { 3689 CastInst *CI = dyn_cast<CastInst>(U); 3690 if (CI && CI->getType() == Ty) { 3691 if (!UniqueCast) 3692 UniqueCast = CI; 3693 else 3694 return nullptr; 3695 } 3696 } 3697 return UniqueCast; 3698 } 3699 3700 ///\brief Get the stride of a pointer access in a loop. 3701 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3702 /// pointer to the Value, or null otherwise. 3703 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3704 const DataLayout *DL, Loop *Lp) { 3705 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3706 if (!PtrTy || PtrTy->isAggregateType()) 3707 return nullptr; 3708 3709 // Try to remove a gep instruction to make the pointer (actually index at this 3710 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3711 // pointer, otherwise, we are analyzing the index. 3712 Value *OrigPtr = Ptr; 3713 3714 // The size of the pointer access. 3715 int64_t PtrAccessSize = 1; 3716 3717 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3718 const SCEV *V = SE->getSCEV(Ptr); 3719 3720 if (Ptr != OrigPtr) 3721 // Strip off casts. 3722 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3723 V = C->getOperand(); 3724 3725 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3726 if (!S) 3727 return nullptr; 3728 3729 V = S->getStepRecurrence(*SE); 3730 if (!V) 3731 return nullptr; 3732 3733 // Strip off the size of access multiplication if we are still analyzing the 3734 // pointer. 3735 if (OrigPtr == Ptr) { 3736 DL->getTypeAllocSize(PtrTy->getElementType()); 3737 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3738 if (M->getOperand(0)->getSCEVType() != scConstant) 3739 return nullptr; 3740 3741 const APInt &APStepVal = 3742 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3743 3744 // Huge step value - give up. 3745 if (APStepVal.getBitWidth() > 64) 3746 return nullptr; 3747 3748 int64_t StepVal = APStepVal.getSExtValue(); 3749 if (PtrAccessSize != StepVal) 3750 return nullptr; 3751 V = M->getOperand(1); 3752 } 3753 } 3754 3755 // Strip off casts. 3756 Type *StripedOffRecurrenceCast = nullptr; 3757 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3758 StripedOffRecurrenceCast = C->getType(); 3759 V = C->getOperand(); 3760 } 3761 3762 // Look for the loop invariant symbolic value. 3763 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3764 if (!U) 3765 return nullptr; 3766 3767 Value *Stride = U->getValue(); 3768 if (!Lp->isLoopInvariant(Stride)) 3769 return nullptr; 3770 3771 // If we have stripped off the recurrence cast we have to make sure that we 3772 // return the value that is used in this loop so that we can replace it later. 3773 if (StripedOffRecurrenceCast) 3774 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3775 3776 return Stride; 3777 } 3778 3779 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 3780 Value *Ptr = nullptr; 3781 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3782 Ptr = LI->getPointerOperand(); 3783 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3784 Ptr = SI->getPointerOperand(); 3785 else 3786 return; 3787 3788 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3789 if (!Stride) 3790 return; 3791 3792 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3793 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3794 Strides[Ptr] = Stride; 3795 StrideSet.insert(Stride); 3796 } 3797 3798 void LoopVectorizationLegality::collectLoopUniforms() { 3799 // We now know that the loop is vectorizable! 3800 // Collect variables that will remain uniform after vectorization. 3801 std::vector<Value*> Worklist; 3802 BasicBlock *Latch = TheLoop->getLoopLatch(); 3803 3804 // Start with the conditional branch and walk up the block. 3805 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3806 3807 // Also add all consecutive pointer values; these values will be uniform 3808 // after vectorization (and subsequent cleanup) and, until revectorization is 3809 // supported, all dependencies must also be uniform. 3810 for (Loop::block_iterator B = TheLoop->block_begin(), 3811 BE = TheLoop->block_end(); B != BE; ++B) 3812 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3813 I != IE; ++I) 3814 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3815 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3816 3817 while (!Worklist.empty()) { 3818 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3819 Worklist.pop_back(); 3820 3821 // Look at instructions inside this loop. 3822 // Stop when reaching PHI nodes. 3823 // TODO: we need to follow values all over the loop, not only in this block. 3824 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3825 continue; 3826 3827 // This is a known uniform. 3828 Uniforms.insert(I); 3829 3830 // Insert all operands. 3831 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3832 } 3833 } 3834 3835 bool LoopVectorizationLegality::canVectorizeMemory() { 3836 LAI = &LAA->getInfo(TheLoop, Strides); 3837 auto &OptionalReport = LAI->getReport(); 3838 if (OptionalReport) 3839 emitAnalysis(VectorizationReport(*OptionalReport)); 3840 return LAI->canVectorizeMemory(); 3841 } 3842 3843 static bool hasMultipleUsesOf(Instruction *I, 3844 SmallPtrSetImpl<Instruction *> &Insts) { 3845 unsigned NumUses = 0; 3846 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 3847 if (Insts.count(dyn_cast<Instruction>(*Use))) 3848 ++NumUses; 3849 if (NumUses > 1) 3850 return true; 3851 } 3852 3853 return false; 3854 } 3855 3856 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 3857 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 3858 if (!Set.count(dyn_cast<Instruction>(*Use))) 3859 return false; 3860 return true; 3861 } 3862 3863 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 3864 ReductionKind Kind) { 3865 if (Phi->getNumIncomingValues() != 2) 3866 return false; 3867 3868 // Reduction variables are only found in the loop header block. 3869 if (Phi->getParent() != TheLoop->getHeader()) 3870 return false; 3871 3872 // Obtain the reduction start value from the value that comes from the loop 3873 // preheader. 3874 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 3875 3876 // ExitInstruction is the single value which is used outside the loop. 3877 // We only allow for a single reduction value to be used outside the loop. 3878 // This includes users of the reduction, variables (which form a cycle 3879 // which ends in the phi node). 3880 Instruction *ExitInstruction = nullptr; 3881 // Indicates that we found a reduction operation in our scan. 3882 bool FoundReduxOp = false; 3883 3884 // We start with the PHI node and scan for all of the users of this 3885 // instruction. All users must be instructions that can be used as reduction 3886 // variables (such as ADD). We must have a single out-of-block user. The cycle 3887 // must include the original PHI. 3888 bool FoundStartPHI = false; 3889 3890 // To recognize min/max patterns formed by a icmp select sequence, we store 3891 // the number of instruction we saw from the recognized min/max pattern, 3892 // to make sure we only see exactly the two instructions. 3893 unsigned NumCmpSelectPatternInst = 0; 3894 ReductionInstDesc ReduxDesc(false, nullptr); 3895 3896 SmallPtrSet<Instruction *, 8> VisitedInsts; 3897 SmallVector<Instruction *, 8> Worklist; 3898 Worklist.push_back(Phi); 3899 VisitedInsts.insert(Phi); 3900 3901 // A value in the reduction can be used: 3902 // - By the reduction: 3903 // - Reduction operation: 3904 // - One use of reduction value (safe). 3905 // - Multiple use of reduction value (not safe). 3906 // - PHI: 3907 // - All uses of the PHI must be the reduction (safe). 3908 // - Otherwise, not safe. 3909 // - By one instruction outside of the loop (safe). 3910 // - By further instructions outside of the loop (not safe). 3911 // - By an instruction that is not part of the reduction (not safe). 3912 // This is either: 3913 // * An instruction type other than PHI or the reduction operation. 3914 // * A PHI in the header other than the initial PHI. 3915 while (!Worklist.empty()) { 3916 Instruction *Cur = Worklist.back(); 3917 Worklist.pop_back(); 3918 3919 // No Users. 3920 // If the instruction has no users then this is a broken chain and can't be 3921 // a reduction variable. 3922 if (Cur->use_empty()) 3923 return false; 3924 3925 bool IsAPhi = isa<PHINode>(Cur); 3926 3927 // A header PHI use other than the original PHI. 3928 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 3929 return false; 3930 3931 // Reductions of instructions such as Div, and Sub is only possible if the 3932 // LHS is the reduction variable. 3933 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 3934 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 3935 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 3936 return false; 3937 3938 // Any reduction instruction must be of one of the allowed kinds. 3939 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 3940 if (!ReduxDesc.IsReduction) 3941 return false; 3942 3943 // A reduction operation must only have one use of the reduction value. 3944 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 3945 hasMultipleUsesOf(Cur, VisitedInsts)) 3946 return false; 3947 3948 // All inputs to a PHI node must be a reduction value. 3949 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 3950 return false; 3951 3952 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 3953 isa<SelectInst>(Cur))) 3954 ++NumCmpSelectPatternInst; 3955 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 3956 isa<SelectInst>(Cur))) 3957 ++NumCmpSelectPatternInst; 3958 3959 // Check whether we found a reduction operator. 3960 FoundReduxOp |= !IsAPhi; 3961 3962 // Process users of current instruction. Push non-PHI nodes after PHI nodes 3963 // onto the stack. This way we are going to have seen all inputs to PHI 3964 // nodes once we get to them. 3965 SmallVector<Instruction *, 8> NonPHIs; 3966 SmallVector<Instruction *, 8> PHIs; 3967 for (User *U : Cur->users()) { 3968 Instruction *UI = cast<Instruction>(U); 3969 3970 // Check if we found the exit user. 3971 BasicBlock *Parent = UI->getParent(); 3972 if (!TheLoop->contains(Parent)) { 3973 // Exit if you find multiple outside users or if the header phi node is 3974 // being used. In this case the user uses the value of the previous 3975 // iteration, in which case we would loose "VF-1" iterations of the 3976 // reduction operation if we vectorize. 3977 if (ExitInstruction != nullptr || Cur == Phi) 3978 return false; 3979 3980 // The instruction used by an outside user must be the last instruction 3981 // before we feed back to the reduction phi. Otherwise, we loose VF-1 3982 // operations on the value. 3983 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 3984 return false; 3985 3986 ExitInstruction = Cur; 3987 continue; 3988 } 3989 3990 // Process instructions only once (termination). Each reduction cycle 3991 // value must only be used once, except by phi nodes and min/max 3992 // reductions which are represented as a cmp followed by a select. 3993 ReductionInstDesc IgnoredVal(false, nullptr); 3994 if (VisitedInsts.insert(UI).second) { 3995 if (isa<PHINode>(UI)) 3996 PHIs.push_back(UI); 3997 else 3998 NonPHIs.push_back(UI); 3999 } else if (!isa<PHINode>(UI) && 4000 ((!isa<FCmpInst>(UI) && 4001 !isa<ICmpInst>(UI) && 4002 !isa<SelectInst>(UI)) || 4003 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 4004 return false; 4005 4006 // Remember that we completed the cycle. 4007 if (UI == Phi) 4008 FoundStartPHI = true; 4009 } 4010 Worklist.append(PHIs.begin(), PHIs.end()); 4011 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4012 } 4013 4014 // This means we have seen one but not the other instruction of the 4015 // pattern or more than just a select and cmp. 4016 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4017 NumCmpSelectPatternInst != 2) 4018 return false; 4019 4020 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4021 return false; 4022 4023 // We found a reduction var if we have reached the original phi node and we 4024 // only have a single instruction with out-of-loop users. 4025 4026 // This instruction is allowed to have out-of-loop users. 4027 AllowedExit.insert(ExitInstruction); 4028 4029 // Save the description of this reduction variable. 4030 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4031 ReduxDesc.MinMaxKind); 4032 Reductions[Phi] = RD; 4033 // We've ended the cycle. This is a reduction variable if we have an 4034 // outside user and it has a binary op. 4035 4036 return true; 4037 } 4038 4039 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4040 /// pattern corresponding to a min(X, Y) or max(X, Y). 4041 LoopVectorizationLegality::ReductionInstDesc 4042 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4043 ReductionInstDesc &Prev) { 4044 4045 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4046 "Expect a select instruction"); 4047 Instruction *Cmp = nullptr; 4048 SelectInst *Select = nullptr; 4049 4050 // We must handle the select(cmp()) as a single instruction. Advance to the 4051 // select. 4052 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4053 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 4054 return ReductionInstDesc(false, I); 4055 return ReductionInstDesc(Select, Prev.MinMaxKind); 4056 } 4057 4058 // Only handle single use cases for now. 4059 if (!(Select = dyn_cast<SelectInst>(I))) 4060 return ReductionInstDesc(false, I); 4061 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4062 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4063 return ReductionInstDesc(false, I); 4064 if (!Cmp->hasOneUse()) 4065 return ReductionInstDesc(false, I); 4066 4067 Value *CmpLeft; 4068 Value *CmpRight; 4069 4070 // Look for a min/max pattern. 4071 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4072 return ReductionInstDesc(Select, MRK_UIntMin); 4073 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4074 return ReductionInstDesc(Select, MRK_UIntMax); 4075 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4076 return ReductionInstDesc(Select, MRK_SIntMax); 4077 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4078 return ReductionInstDesc(Select, MRK_SIntMin); 4079 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4080 return ReductionInstDesc(Select, MRK_FloatMin); 4081 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4082 return ReductionInstDesc(Select, MRK_FloatMax); 4083 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4084 return ReductionInstDesc(Select, MRK_FloatMin); 4085 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4086 return ReductionInstDesc(Select, MRK_FloatMax); 4087 4088 return ReductionInstDesc(false, I); 4089 } 4090 4091 LoopVectorizationLegality::ReductionInstDesc 4092 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4093 ReductionKind Kind, 4094 ReductionInstDesc &Prev) { 4095 bool FP = I->getType()->isFloatingPointTy(); 4096 bool FastMath = FP && I->hasUnsafeAlgebra(); 4097 switch (I->getOpcode()) { 4098 default: 4099 return ReductionInstDesc(false, I); 4100 case Instruction::PHI: 4101 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4102 Kind != RK_FloatMinMax)) 4103 return ReductionInstDesc(false, I); 4104 return ReductionInstDesc(I, Prev.MinMaxKind); 4105 case Instruction::Sub: 4106 case Instruction::Add: 4107 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4108 case Instruction::Mul: 4109 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4110 case Instruction::And: 4111 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4112 case Instruction::Or: 4113 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4114 case Instruction::Xor: 4115 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4116 case Instruction::FMul: 4117 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4118 case Instruction::FSub: 4119 case Instruction::FAdd: 4120 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4121 case Instruction::FCmp: 4122 case Instruction::ICmp: 4123 case Instruction::Select: 4124 if (Kind != RK_IntegerMinMax && 4125 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4126 return ReductionInstDesc(false, I); 4127 return isMinMaxSelectCmpPattern(I, Prev); 4128 } 4129 } 4130 4131 LoopVectorizationLegality::InductionKind 4132 LoopVectorizationLegality::isInductionVariable(PHINode *Phi, 4133 ConstantInt *&StepValue) { 4134 Type *PhiTy = Phi->getType(); 4135 // We only handle integer and pointer inductions variables. 4136 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4137 return IK_NoInduction; 4138 4139 // Check that the PHI is consecutive. 4140 const SCEV *PhiScev = SE->getSCEV(Phi); 4141 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4142 if (!AR) { 4143 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4144 return IK_NoInduction; 4145 } 4146 4147 const SCEV *Step = AR->getStepRecurrence(*SE); 4148 // Calculate the pointer stride and check if it is consecutive. 4149 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4150 if (!C) 4151 return IK_NoInduction; 4152 4153 ConstantInt *CV = C->getValue(); 4154 if (PhiTy->isIntegerTy()) { 4155 StepValue = CV; 4156 return IK_IntInduction; 4157 } 4158 4159 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4160 Type *PointerElementType = PhiTy->getPointerElementType(); 4161 // The pointer stride cannot be determined if the pointer element type is not 4162 // sized. 4163 if (!PointerElementType->isSized()) 4164 return IK_NoInduction; 4165 4166 int64_t Size = static_cast<int64_t>(DL->getTypeAllocSize(PointerElementType)); 4167 int64_t CVSize = CV->getSExtValue(); 4168 if (CVSize % Size) 4169 return IK_NoInduction; 4170 StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); 4171 return IK_PtrInduction; 4172 } 4173 4174 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4175 Value *In0 = const_cast<Value*>(V); 4176 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4177 if (!PN) 4178 return false; 4179 4180 return Inductions.count(PN); 4181 } 4182 4183 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4184 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4185 } 4186 4187 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4188 SmallPtrSetImpl<Value *> &SafePtrs) { 4189 4190 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4191 // Check that we don't have a constant expression that can trap as operand. 4192 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4193 OI != OE; ++OI) { 4194 if (Constant *C = dyn_cast<Constant>(*OI)) 4195 if (C->canTrap()) 4196 return false; 4197 } 4198 // We might be able to hoist the load. 4199 if (it->mayReadFromMemory()) { 4200 LoadInst *LI = dyn_cast<LoadInst>(it); 4201 if (!LI) 4202 return false; 4203 if (!SafePtrs.count(LI->getPointerOperand())) { 4204 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4205 MaskedOp.insert(LI); 4206 continue; 4207 } 4208 return false; 4209 } 4210 } 4211 4212 // We don't predicate stores at the moment. 4213 if (it->mayWriteToMemory()) { 4214 StoreInst *SI = dyn_cast<StoreInst>(it); 4215 // We only support predication of stores in basic blocks with one 4216 // predecessor. 4217 if (!SI) 4218 return false; 4219 4220 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4221 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4222 4223 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4224 !isSinglePredecessor) { 4225 // Build a masked store if it is legal for the target, otherwise scalarize 4226 // the block. 4227 bool isLegalMaskedOp = 4228 isLegalMaskedStore(SI->getValueOperand()->getType(), 4229 SI->getPointerOperand()); 4230 if (isLegalMaskedOp) { 4231 --NumPredStores; 4232 MaskedOp.insert(SI); 4233 continue; 4234 } 4235 return false; 4236 } 4237 } 4238 if (it->mayThrow()) 4239 return false; 4240 4241 // The instructions below can trap. 4242 switch (it->getOpcode()) { 4243 default: continue; 4244 case Instruction::UDiv: 4245 case Instruction::SDiv: 4246 case Instruction::URem: 4247 case Instruction::SRem: 4248 return false; 4249 } 4250 } 4251 4252 return true; 4253 } 4254 4255 LoopVectorizationCostModel::VectorizationFactor 4256 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4257 // Width 1 means no vectorize 4258 VectorizationFactor Factor = { 1U, 0U }; 4259 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4260 emitAnalysis(VectorizationReport() << 4261 "runtime pointer checks needed. Enable vectorization of this " 4262 "loop with '#pragma clang loop vectorize(enable)' when " 4263 "compiling with -Os"); 4264 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4265 return Factor; 4266 } 4267 4268 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4269 emitAnalysis(VectorizationReport() << 4270 "store that is conditionally executed prevents vectorization"); 4271 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4272 return Factor; 4273 } 4274 4275 // Find the trip count. 4276 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4277 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4278 4279 unsigned WidestType = getWidestType(); 4280 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4281 unsigned MaxSafeDepDist = -1U; 4282 if (Legal->getMaxSafeDepDistBytes() != -1U) 4283 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4284 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4285 WidestRegister : MaxSafeDepDist); 4286 unsigned MaxVectorSize = WidestRegister / WidestType; 4287 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4288 DEBUG(dbgs() << "LV: The Widest register is: " 4289 << WidestRegister << " bits.\n"); 4290 4291 if (MaxVectorSize == 0) { 4292 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4293 MaxVectorSize = 1; 4294 } 4295 4296 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4297 " into one vector!"); 4298 4299 unsigned VF = MaxVectorSize; 4300 4301 // If we optimize the program for size, avoid creating the tail loop. 4302 if (OptForSize) { 4303 // If we are unable to calculate the trip count then don't try to vectorize. 4304 if (TC < 2) { 4305 emitAnalysis 4306 (VectorizationReport() << 4307 "unable to calculate the loop count due to complex control flow"); 4308 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4309 return Factor; 4310 } 4311 4312 // Find the maximum SIMD width that can fit within the trip count. 4313 VF = TC % MaxVectorSize; 4314 4315 if (VF == 0) 4316 VF = MaxVectorSize; 4317 4318 // If the trip count that we found modulo the vectorization factor is not 4319 // zero then we require a tail. 4320 if (VF < 2) { 4321 emitAnalysis(VectorizationReport() << 4322 "cannot optimize for size and vectorize at the " 4323 "same time. Enable vectorization of this loop " 4324 "with '#pragma clang loop vectorize(enable)' " 4325 "when compiling with -Os"); 4326 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4327 return Factor; 4328 } 4329 } 4330 4331 int UserVF = Hints->getWidth(); 4332 if (UserVF != 0) { 4333 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4334 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4335 4336 Factor.Width = UserVF; 4337 return Factor; 4338 } 4339 4340 float Cost = expectedCost(1); 4341 #ifndef NDEBUG 4342 const float ScalarCost = Cost; 4343 #endif /* NDEBUG */ 4344 unsigned Width = 1; 4345 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4346 4347 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4348 // Ignore scalar width, because the user explicitly wants vectorization. 4349 if (ForceVectorization && VF > 1) { 4350 Width = 2; 4351 Cost = expectedCost(Width) / (float)Width; 4352 } 4353 4354 for (unsigned i=2; i <= VF; i*=2) { 4355 // Notice that the vector loop needs to be executed less times, so 4356 // we need to divide the cost of the vector loops by the width of 4357 // the vector elements. 4358 float VectorCost = expectedCost(i) / (float)i; 4359 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4360 (int)VectorCost << ".\n"); 4361 if (VectorCost < Cost) { 4362 Cost = VectorCost; 4363 Width = i; 4364 } 4365 } 4366 4367 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4368 << "LV: Vectorization seems to be not beneficial, " 4369 << "but was forced by a user.\n"); 4370 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4371 Factor.Width = Width; 4372 Factor.Cost = Width * Cost; 4373 return Factor; 4374 } 4375 4376 unsigned LoopVectorizationCostModel::getWidestType() { 4377 unsigned MaxWidth = 8; 4378 4379 // For each block. 4380 for (Loop::block_iterator bb = TheLoop->block_begin(), 4381 be = TheLoop->block_end(); bb != be; ++bb) { 4382 BasicBlock *BB = *bb; 4383 4384 // For each instruction in the loop. 4385 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4386 Type *T = it->getType(); 4387 4388 // Ignore ephemeral values. 4389 if (EphValues.count(it)) 4390 continue; 4391 4392 // Only examine Loads, Stores and PHINodes. 4393 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4394 continue; 4395 4396 // Examine PHI nodes that are reduction variables. 4397 if (PHINode *PN = dyn_cast<PHINode>(it)) 4398 if (!Legal->getReductionVars()->count(PN)) 4399 continue; 4400 4401 // Examine the stored values. 4402 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4403 T = ST->getValueOperand()->getType(); 4404 4405 // Ignore loaded pointer types and stored pointer types that are not 4406 // consecutive. However, we do want to take consecutive stores/loads of 4407 // pointer vectors into account. 4408 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4409 continue; 4410 4411 MaxWidth = std::max(MaxWidth, 4412 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 4413 } 4414 } 4415 4416 return MaxWidth; 4417 } 4418 4419 unsigned 4420 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4421 unsigned VF, 4422 unsigned LoopCost) { 4423 4424 // -- The unroll heuristics -- 4425 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4426 // There are many micro-architectural considerations that we can't predict 4427 // at this level. For example, frontend pressure (on decode or fetch) due to 4428 // code size, or the number and capabilities of the execution ports. 4429 // 4430 // We use the following heuristics to select the unroll factor: 4431 // 1. If the code has reductions, then we unroll in order to break the cross 4432 // iteration dependency. 4433 // 2. If the loop is really small, then we unroll in order to reduce the loop 4434 // overhead. 4435 // 3. We don't unroll if we think that we will spill registers to memory due 4436 // to the increased register pressure. 4437 4438 // Use the user preference, unless 'auto' is selected. 4439 int UserUF = Hints->getInterleave(); 4440 if (UserUF != 0) 4441 return UserUF; 4442 4443 // When we optimize for size, we don't unroll. 4444 if (OptForSize) 4445 return 1; 4446 4447 // We used the distance for the unroll factor. 4448 if (Legal->getMaxSafeDepDistBytes() != -1U) 4449 return 1; 4450 4451 // Do not unroll loops with a relatively small trip count. 4452 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4453 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4454 return 1; 4455 4456 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4457 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4458 " registers\n"); 4459 4460 if (VF == 1) { 4461 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4462 TargetNumRegisters = ForceTargetNumScalarRegs; 4463 } else { 4464 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4465 TargetNumRegisters = ForceTargetNumVectorRegs; 4466 } 4467 4468 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4469 // We divide by these constants so assume that we have at least one 4470 // instruction that uses at least one register. 4471 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4472 R.NumInstructions = std::max(R.NumInstructions, 1U); 4473 4474 // We calculate the unroll factor using the following formula. 4475 // Subtract the number of loop invariants from the number of available 4476 // registers. These registers are used by all of the unrolled instances. 4477 // Next, divide the remaining registers by the number of registers that is 4478 // required by the loop, in order to estimate how many parallel instances 4479 // fit without causing spills. All of this is rounded down if necessary to be 4480 // a power of two. We want power of two unroll factors to simplify any 4481 // addressing operations or alignment considerations. 4482 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4483 R.MaxLocalUsers); 4484 4485 // Don't count the induction variable as unrolled. 4486 if (EnableIndVarRegisterHeur) 4487 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4488 std::max(1U, (R.MaxLocalUsers - 1))); 4489 4490 // Clamp the unroll factor ranges to reasonable factors. 4491 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 4492 4493 // Check if the user has overridden the unroll max. 4494 if (VF == 1) { 4495 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4496 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 4497 } else { 4498 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4499 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 4500 } 4501 4502 // If we did not calculate the cost for VF (because the user selected the VF) 4503 // then we calculate the cost of VF here. 4504 if (LoopCost == 0) 4505 LoopCost = expectedCost(VF); 4506 4507 // Clamp the calculated UF to be between the 1 and the max unroll factor 4508 // that the target allows. 4509 if (UF > MaxInterleaveSize) 4510 UF = MaxInterleaveSize; 4511 else if (UF < 1) 4512 UF = 1; 4513 4514 // Unroll if we vectorized this loop and there is a reduction that could 4515 // benefit from unrolling. 4516 if (VF > 1 && Legal->getReductionVars()->size()) { 4517 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4518 return UF; 4519 } 4520 4521 // Note that if we've already vectorized the loop we will have done the 4522 // runtime check and so unrolling won't require further checks. 4523 bool UnrollingRequiresRuntimePointerCheck = 4524 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 4525 4526 // We want to unroll small loops in order to reduce the loop overhead and 4527 // potentially expose ILP opportunities. 4528 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4529 if (!UnrollingRequiresRuntimePointerCheck && 4530 LoopCost < SmallLoopCost) { 4531 // We assume that the cost overhead is 1 and we use the cost model 4532 // to estimate the cost of the loop and unroll until the cost of the 4533 // loop overhead is about 5% of the cost of the loop. 4534 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4535 4536 // Unroll until store/load ports (estimated by max unroll factor) are 4537 // saturated. 4538 unsigned NumStores = Legal->getNumStores(); 4539 unsigned NumLoads = Legal->getNumLoads(); 4540 unsigned StoresUF = UF / (NumStores ? NumStores : 1); 4541 unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1); 4542 4543 // If we have a scalar reduction (vector reductions are already dealt with 4544 // by this point), we can increase the critical path length if the loop 4545 // we're unrolling is inside another loop. Limit, by default to 2, so the 4546 // critical path only gets increased by one reduction operation. 4547 if (Legal->getReductionVars()->size() && 4548 TheLoop->getLoopDepth() > 1) { 4549 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 4550 SmallUF = std::min(SmallUF, F); 4551 StoresUF = std::min(StoresUF, F); 4552 LoadsUF = std::min(LoadsUF, F); 4553 } 4554 4555 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 4556 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 4557 return std::max(StoresUF, LoadsUF); 4558 } 4559 4560 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4561 return SmallUF; 4562 } 4563 4564 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4565 return 1; 4566 } 4567 4568 LoopVectorizationCostModel::RegisterUsage 4569 LoopVectorizationCostModel::calculateRegisterUsage() { 4570 // This function calculates the register usage by measuring the highest number 4571 // of values that are alive at a single location. Obviously, this is a very 4572 // rough estimation. We scan the loop in a topological order in order and 4573 // assign a number to each instruction. We use RPO to ensure that defs are 4574 // met before their users. We assume that each instruction that has in-loop 4575 // users starts an interval. We record every time that an in-loop value is 4576 // used, so we have a list of the first and last occurrences of each 4577 // instruction. Next, we transpose this data structure into a multi map that 4578 // holds the list of intervals that *end* at a specific location. This multi 4579 // map allows us to perform a linear search. We scan the instructions linearly 4580 // and record each time that a new interval starts, by placing it in a set. 4581 // If we find this value in the multi-map then we remove it from the set. 4582 // The max register usage is the maximum size of the set. 4583 // We also search for instructions that are defined outside the loop, but are 4584 // used inside the loop. We need this number separately from the max-interval 4585 // usage number because when we unroll, loop-invariant values do not take 4586 // more register. 4587 LoopBlocksDFS DFS(TheLoop); 4588 DFS.perform(LI); 4589 4590 RegisterUsage R; 4591 R.NumInstructions = 0; 4592 4593 // Each 'key' in the map opens a new interval. The values 4594 // of the map are the index of the 'last seen' usage of the 4595 // instruction that is the key. 4596 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4597 // Maps instruction to its index. 4598 DenseMap<unsigned, Instruction*> IdxToInstr; 4599 // Marks the end of each interval. 4600 IntervalMap EndPoint; 4601 // Saves the list of instruction indices that are used in the loop. 4602 SmallSet<Instruction*, 8> Ends; 4603 // Saves the list of values that are used in the loop but are 4604 // defined outside the loop, such as arguments and constants. 4605 SmallPtrSet<Value*, 8> LoopInvariants; 4606 4607 unsigned Index = 0; 4608 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4609 be = DFS.endRPO(); bb != be; ++bb) { 4610 R.NumInstructions += (*bb)->size(); 4611 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4612 ++it) { 4613 Instruction *I = it; 4614 IdxToInstr[Index++] = I; 4615 4616 // Save the end location of each USE. 4617 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4618 Value *U = I->getOperand(i); 4619 Instruction *Instr = dyn_cast<Instruction>(U); 4620 4621 // Ignore non-instruction values such as arguments, constants, etc. 4622 if (!Instr) continue; 4623 4624 // If this instruction is outside the loop then record it and continue. 4625 if (!TheLoop->contains(Instr)) { 4626 LoopInvariants.insert(Instr); 4627 continue; 4628 } 4629 4630 // Overwrite previous end points. 4631 EndPoint[Instr] = Index; 4632 Ends.insert(Instr); 4633 } 4634 } 4635 } 4636 4637 // Saves the list of intervals that end with the index in 'key'. 4638 typedef SmallVector<Instruction*, 2> InstrList; 4639 DenseMap<unsigned, InstrList> TransposeEnds; 4640 4641 // Transpose the EndPoints to a list of values that end at each index. 4642 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4643 it != e; ++it) 4644 TransposeEnds[it->second].push_back(it->first); 4645 4646 SmallSet<Instruction*, 8> OpenIntervals; 4647 unsigned MaxUsage = 0; 4648 4649 4650 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4651 for (unsigned int i = 0; i < Index; ++i) { 4652 Instruction *I = IdxToInstr[i]; 4653 // Ignore instructions that are never used within the loop. 4654 if (!Ends.count(I)) continue; 4655 4656 // Ignore ephemeral values. 4657 if (EphValues.count(I)) 4658 continue; 4659 4660 // Remove all of the instructions that end at this location. 4661 InstrList &List = TransposeEnds[i]; 4662 for (unsigned int j=0, e = List.size(); j < e; ++j) 4663 OpenIntervals.erase(List[j]); 4664 4665 // Count the number of live interals. 4666 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4667 4668 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4669 OpenIntervals.size() << '\n'); 4670 4671 // Add the current instruction to the list of open intervals. 4672 OpenIntervals.insert(I); 4673 } 4674 4675 unsigned Invariant = LoopInvariants.size(); 4676 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 4677 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 4678 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 4679 4680 R.LoopInvariantRegs = Invariant; 4681 R.MaxLocalUsers = MaxUsage; 4682 return R; 4683 } 4684 4685 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 4686 unsigned Cost = 0; 4687 4688 // For each block. 4689 for (Loop::block_iterator bb = TheLoop->block_begin(), 4690 be = TheLoop->block_end(); bb != be; ++bb) { 4691 unsigned BlockCost = 0; 4692 BasicBlock *BB = *bb; 4693 4694 // For each instruction in the old loop. 4695 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4696 // Skip dbg intrinsics. 4697 if (isa<DbgInfoIntrinsic>(it)) 4698 continue; 4699 4700 // Ignore ephemeral values. 4701 if (EphValues.count(it)) 4702 continue; 4703 4704 unsigned C = getInstructionCost(it, VF); 4705 4706 // Check if we should override the cost. 4707 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 4708 C = ForceTargetInstructionCost; 4709 4710 BlockCost += C; 4711 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 4712 VF << " For instruction: " << *it << '\n'); 4713 } 4714 4715 // We assume that if-converted blocks have a 50% chance of being executed. 4716 // When the code is scalar then some of the blocks are avoided due to CF. 4717 // When the code is vectorized we execute all code paths. 4718 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 4719 BlockCost /= 2; 4720 4721 Cost += BlockCost; 4722 } 4723 4724 return Cost; 4725 } 4726 4727 /// \brief Check whether the address computation for a non-consecutive memory 4728 /// access looks like an unlikely candidate for being merged into the indexing 4729 /// mode. 4730 /// 4731 /// We look for a GEP which has one index that is an induction variable and all 4732 /// other indices are loop invariant. If the stride of this access is also 4733 /// within a small bound we decide that this address computation can likely be 4734 /// merged into the addressing mode. 4735 /// In all other cases, we identify the address computation as complex. 4736 static bool isLikelyComplexAddressComputation(Value *Ptr, 4737 LoopVectorizationLegality *Legal, 4738 ScalarEvolution *SE, 4739 const Loop *TheLoop) { 4740 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 4741 if (!Gep) 4742 return true; 4743 4744 // We are looking for a gep with all loop invariant indices except for one 4745 // which should be an induction variable. 4746 unsigned NumOperands = Gep->getNumOperands(); 4747 for (unsigned i = 1; i < NumOperands; ++i) { 4748 Value *Opd = Gep->getOperand(i); 4749 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 4750 !Legal->isInductionVariable(Opd)) 4751 return true; 4752 } 4753 4754 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 4755 // can likely be merged into the address computation. 4756 unsigned MaxMergeDistance = 64; 4757 4758 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 4759 if (!AddRec) 4760 return true; 4761 4762 // Check the step is constant. 4763 const SCEV *Step = AddRec->getStepRecurrence(*SE); 4764 // Calculate the pointer stride and check if it is consecutive. 4765 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4766 if (!C) 4767 return true; 4768 4769 const APInt &APStepVal = C->getValue()->getValue(); 4770 4771 // Huge step value - give up. 4772 if (APStepVal.getBitWidth() > 64) 4773 return true; 4774 4775 int64_t StepVal = APStepVal.getSExtValue(); 4776 4777 return StepVal > MaxMergeDistance; 4778 } 4779 4780 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 4781 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 4782 return true; 4783 return false; 4784 } 4785 4786 unsigned 4787 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 4788 // If we know that this instruction will remain uniform, check the cost of 4789 // the scalar version. 4790 if (Legal->isUniformAfterVectorization(I)) 4791 VF = 1; 4792 4793 Type *RetTy = I->getType(); 4794 Type *VectorTy = ToVectorTy(RetTy, VF); 4795 4796 // TODO: We need to estimate the cost of intrinsic calls. 4797 switch (I->getOpcode()) { 4798 case Instruction::GetElementPtr: 4799 // We mark this instruction as zero-cost because the cost of GEPs in 4800 // vectorized code depends on whether the corresponding memory instruction 4801 // is scalarized or not. Therefore, we handle GEPs with the memory 4802 // instruction cost. 4803 return 0; 4804 case Instruction::Br: { 4805 return TTI.getCFInstrCost(I->getOpcode()); 4806 } 4807 case Instruction::PHI: 4808 //TODO: IF-converted IFs become selects. 4809 return 0; 4810 case Instruction::Add: 4811 case Instruction::FAdd: 4812 case Instruction::Sub: 4813 case Instruction::FSub: 4814 case Instruction::Mul: 4815 case Instruction::FMul: 4816 case Instruction::UDiv: 4817 case Instruction::SDiv: 4818 case Instruction::FDiv: 4819 case Instruction::URem: 4820 case Instruction::SRem: 4821 case Instruction::FRem: 4822 case Instruction::Shl: 4823 case Instruction::LShr: 4824 case Instruction::AShr: 4825 case Instruction::And: 4826 case Instruction::Or: 4827 case Instruction::Xor: { 4828 // Since we will replace the stride by 1 the multiplication should go away. 4829 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 4830 return 0; 4831 // Certain instructions can be cheaper to vectorize if they have a constant 4832 // second vector operand. One example of this are shifts on x86. 4833 TargetTransformInfo::OperandValueKind Op1VK = 4834 TargetTransformInfo::OK_AnyValue; 4835 TargetTransformInfo::OperandValueKind Op2VK = 4836 TargetTransformInfo::OK_AnyValue; 4837 TargetTransformInfo::OperandValueProperties Op1VP = 4838 TargetTransformInfo::OP_None; 4839 TargetTransformInfo::OperandValueProperties Op2VP = 4840 TargetTransformInfo::OP_None; 4841 Value *Op2 = I->getOperand(1); 4842 4843 // Check for a splat of a constant or for a non uniform vector of constants. 4844 if (isa<ConstantInt>(Op2)) { 4845 ConstantInt *CInt = cast<ConstantInt>(Op2); 4846 if (CInt && CInt->getValue().isPowerOf2()) 4847 Op2VP = TargetTransformInfo::OP_PowerOf2; 4848 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4849 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 4850 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4851 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 4852 if (SplatValue) { 4853 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 4854 if (CInt && CInt->getValue().isPowerOf2()) 4855 Op2VP = TargetTransformInfo::OP_PowerOf2; 4856 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4857 } 4858 } 4859 4860 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 4861 Op1VP, Op2VP); 4862 } 4863 case Instruction::Select: { 4864 SelectInst *SI = cast<SelectInst>(I); 4865 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 4866 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 4867 Type *CondTy = SI->getCondition()->getType(); 4868 if (!ScalarCond) 4869 CondTy = VectorType::get(CondTy, VF); 4870 4871 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 4872 } 4873 case Instruction::ICmp: 4874 case Instruction::FCmp: { 4875 Type *ValTy = I->getOperand(0)->getType(); 4876 VectorTy = ToVectorTy(ValTy, VF); 4877 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 4878 } 4879 case Instruction::Store: 4880 case Instruction::Load: { 4881 StoreInst *SI = dyn_cast<StoreInst>(I); 4882 LoadInst *LI = dyn_cast<LoadInst>(I); 4883 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 4884 LI->getType()); 4885 VectorTy = ToVectorTy(ValTy, VF); 4886 4887 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 4888 unsigned AS = SI ? SI->getPointerAddressSpace() : 4889 LI->getPointerAddressSpace(); 4890 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 4891 // We add the cost of address computation here instead of with the gep 4892 // instruction because only here we know whether the operation is 4893 // scalarized. 4894 if (VF == 1) 4895 return TTI.getAddressComputationCost(VectorTy) + 4896 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4897 4898 // Scalarized loads/stores. 4899 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 4900 bool Reverse = ConsecutiveStride < 0; 4901 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 4902 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 4903 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 4904 bool IsComplexComputation = 4905 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 4906 unsigned Cost = 0; 4907 // The cost of extracting from the value vector and pointer vector. 4908 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 4909 for (unsigned i = 0; i < VF; ++i) { 4910 // The cost of extracting the pointer operand. 4911 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 4912 // In case of STORE, the cost of ExtractElement from the vector. 4913 // In case of LOAD, the cost of InsertElement into the returned 4914 // vector. 4915 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 4916 Instruction::InsertElement, 4917 VectorTy, i); 4918 } 4919 4920 // The cost of the scalar loads/stores. 4921 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 4922 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 4923 Alignment, AS); 4924 return Cost; 4925 } 4926 4927 // Wide load/stores. 4928 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 4929 if (Legal->isMaskRequired(I)) 4930 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 4931 AS); 4932 else 4933 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4934 4935 if (Reverse) 4936 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 4937 VectorTy, 0); 4938 return Cost; 4939 } 4940 case Instruction::ZExt: 4941 case Instruction::SExt: 4942 case Instruction::FPToUI: 4943 case Instruction::FPToSI: 4944 case Instruction::FPExt: 4945 case Instruction::PtrToInt: 4946 case Instruction::IntToPtr: 4947 case Instruction::SIToFP: 4948 case Instruction::UIToFP: 4949 case Instruction::Trunc: 4950 case Instruction::FPTrunc: 4951 case Instruction::BitCast: { 4952 // We optimize the truncation of induction variable. 4953 // The cost of these is the same as the scalar operation. 4954 if (I->getOpcode() == Instruction::Trunc && 4955 Legal->isInductionVariable(I->getOperand(0))) 4956 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 4957 I->getOperand(0)->getType()); 4958 4959 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 4960 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 4961 } 4962 case Instruction::Call: { 4963 CallInst *CI = cast<CallInst>(I); 4964 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 4965 assert(ID && "Not an intrinsic call!"); 4966 Type *RetTy = ToVectorTy(CI->getType(), VF); 4967 SmallVector<Type*, 4> Tys; 4968 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4969 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4970 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 4971 } 4972 default: { 4973 // We are scalarizing the instruction. Return the cost of the scalar 4974 // instruction, plus the cost of insert and extract into vector 4975 // elements, times the vector width. 4976 unsigned Cost = 0; 4977 4978 if (!RetTy->isVoidTy() && VF != 1) { 4979 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 4980 VectorTy); 4981 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 4982 VectorTy); 4983 4984 // The cost of inserting the results plus extracting each one of the 4985 // operands. 4986 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 4987 } 4988 4989 // The cost of executing VF copies of the scalar instruction. This opcode 4990 // is unknown. Assume that it is the same as 'mul'. 4991 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 4992 return Cost; 4993 } 4994 }// end of switch. 4995 } 4996 4997 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 4998 if (Scalar->isVoidTy() || VF == 1) 4999 return Scalar; 5000 return VectorType::get(Scalar, VF); 5001 } 5002 5003 char LoopVectorize::ID = 0; 5004 static const char lv_name[] = "Loop Vectorization"; 5005 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5006 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5007 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5008 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5009 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5010 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5011 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5012 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5013 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5014 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5015 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5016 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5017 5018 namespace llvm { 5019 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5020 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5021 } 5022 } 5023 5024 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5025 // Check for a store. 5026 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5027 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5028 5029 // Check for a load. 5030 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5031 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5032 5033 return false; 5034 } 5035 5036 5037 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5038 bool IfPredicateStore) { 5039 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5040 // Holds vector parameters or scalars, in case of uniform vals. 5041 SmallVector<VectorParts, 4> Params; 5042 5043 setDebugLocFromInst(Builder, Instr); 5044 5045 // Find all of the vectorized parameters. 5046 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5047 Value *SrcOp = Instr->getOperand(op); 5048 5049 // If we are accessing the old induction variable, use the new one. 5050 if (SrcOp == OldInduction) { 5051 Params.push_back(getVectorValue(SrcOp)); 5052 continue; 5053 } 5054 5055 // Try using previously calculated values. 5056 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5057 5058 // If the src is an instruction that appeared earlier in the basic block 5059 // then it should already be vectorized. 5060 if (SrcInst && OrigLoop->contains(SrcInst)) { 5061 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5062 // The parameter is a vector value from earlier. 5063 Params.push_back(WidenMap.get(SrcInst)); 5064 } else { 5065 // The parameter is a scalar from outside the loop. Maybe even a constant. 5066 VectorParts Scalars; 5067 Scalars.append(UF, SrcOp); 5068 Params.push_back(Scalars); 5069 } 5070 } 5071 5072 assert(Params.size() == Instr->getNumOperands() && 5073 "Invalid number of operands"); 5074 5075 // Does this instruction return a value ? 5076 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5077 5078 Value *UndefVec = IsVoidRetTy ? nullptr : 5079 UndefValue::get(Instr->getType()); 5080 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5081 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5082 5083 Instruction *InsertPt = Builder.GetInsertPoint(); 5084 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5085 BasicBlock *CondBlock = nullptr; 5086 5087 VectorParts Cond; 5088 Loop *VectorLp = nullptr; 5089 if (IfPredicateStore) { 5090 assert(Instr->getParent()->getSinglePredecessor() && 5091 "Only support single predecessor blocks"); 5092 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5093 Instr->getParent()); 5094 VectorLp = LI->getLoopFor(IfBlock); 5095 assert(VectorLp && "Must have a loop for this block"); 5096 } 5097 5098 // For each vector unroll 'part': 5099 for (unsigned Part = 0; Part < UF; ++Part) { 5100 // For each scalar that we create: 5101 5102 // Start an "if (pred) a[i] = ..." block. 5103 Value *Cmp = nullptr; 5104 if (IfPredicateStore) { 5105 if (Cond[Part]->getType()->isVectorTy()) 5106 Cond[Part] = 5107 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5108 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5109 ConstantInt::get(Cond[Part]->getType(), 1)); 5110 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5111 LoopVectorBody.push_back(CondBlock); 5112 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 5113 // Update Builder with newly created basic block. 5114 Builder.SetInsertPoint(InsertPt); 5115 } 5116 5117 Instruction *Cloned = Instr->clone(); 5118 if (!IsVoidRetTy) 5119 Cloned->setName(Instr->getName() + ".cloned"); 5120 // Replace the operands of the cloned instructions with extracted scalars. 5121 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5122 Value *Op = Params[op][Part]; 5123 Cloned->setOperand(op, Op); 5124 } 5125 5126 // Place the cloned scalar in the new loop. 5127 Builder.Insert(Cloned); 5128 5129 // If the original scalar returns a value we need to place it in a vector 5130 // so that future users will be able to use it. 5131 if (!IsVoidRetTy) 5132 VecResults[Part] = Cloned; 5133 5134 // End if-block. 5135 if (IfPredicateStore) { 5136 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5137 LoopVectorBody.push_back(NewIfBlock); 5138 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 5139 Builder.SetInsertPoint(InsertPt); 5140 Instruction *OldBr = IfBlock->getTerminator(); 5141 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5142 OldBr->eraseFromParent(); 5143 IfBlock = NewIfBlock; 5144 } 5145 } 5146 } 5147 5148 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5149 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5150 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5151 5152 return scalarizeInstruction(Instr, IfPredicateStore); 5153 } 5154 5155 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5156 return Vec; 5157 } 5158 5159 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5160 return V; 5161 } 5162 5163 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5164 // When unrolling and the VF is 1, we only need to add a simple scalar. 5165 Type *ITy = Val->getType(); 5166 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5167 Constant *C = ConstantInt::get(ITy, StartIdx); 5168 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5169 } 5170