1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/Analysis/AliasAnalysis.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/DemandedBits.h" 66 #include "llvm/Analysis/GlobalsModRef.h" 67 #include "llvm/Analysis/LoopAccessAnalysis.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/LoopIterator.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/TargetTransformInfo.h" 75 #include "llvm/Analysis/ValueTracking.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfo.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/DiagnosticInfo.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Module.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/IR/Verifier.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/Scalar.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include "llvm/Transforms/Utils/LoopVersioning.h" 102 #include "llvm/Analysis/VectorUtils.h" 103 #include "llvm/Transforms/Utils/LoopUtils.h" 104 #include <algorithm> 105 #include <functional> 106 #include <map> 107 #include <tuple> 108 109 using namespace llvm; 110 using namespace llvm::PatternMatch; 111 112 #define LV_NAME "loop-vectorize" 113 #define DEBUG_TYPE LV_NAME 114 115 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 116 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 117 118 static cl::opt<bool> 119 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 120 cl::desc("Enable if-conversion during vectorization.")); 121 122 /// We don't vectorize loops with a known constant trip count below this number. 123 static cl::opt<unsigned> 124 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 125 cl::Hidden, 126 cl::desc("Don't vectorize loops with a constant " 127 "trip count that is smaller than this " 128 "value.")); 129 130 static cl::opt<bool> MaximizeBandwidth( 131 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 132 cl::desc("Maximize bandwidth when selecting vectorization factor which " 133 "will be determined by the smallest type in loop.")); 134 135 /// This enables versioning on the strides of symbolically striding memory 136 /// accesses in code like the following. 137 /// for (i = 0; i < N; ++i) 138 /// A[i * Stride1] += B[i * Stride2] ... 139 /// 140 /// Will be roughly translated to 141 /// if (Stride1 == 1 && Stride2 == 1) { 142 /// for (i = 0; i < N; i+=4) 143 /// A[i:i+3] += ... 144 /// } else 145 /// ... 146 static cl::opt<bool> EnableMemAccessVersioning( 147 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 148 cl::desc("Enable symbolic stride memory access versioning")); 149 150 static cl::opt<bool> EnableInterleavedMemAccesses( 151 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 152 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 153 154 /// Maximum factor for an interleaved memory access. 155 static cl::opt<unsigned> MaxInterleaveGroupFactor( 156 "max-interleave-group-factor", cl::Hidden, 157 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 158 cl::init(8)); 159 160 /// We don't interleave loops with a known constant trip count below this 161 /// number. 162 static const unsigned TinyTripCountInterleaveThreshold = 128; 163 164 static cl::opt<unsigned> ForceTargetNumScalarRegs( 165 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's number of scalar registers.")); 167 168 static cl::opt<unsigned> ForceTargetNumVectorRegs( 169 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 170 cl::desc("A flag that overrides the target's number of vector registers.")); 171 172 /// Maximum vectorization interleave count. 173 static const unsigned MaxInterleaveFactor = 16; 174 175 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 176 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's max interleave factor for " 178 "scalar loops.")); 179 180 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 181 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 182 cl::desc("A flag that overrides the target's max interleave factor for " 183 "vectorized loops.")); 184 185 static cl::opt<unsigned> ForceTargetInstructionCost( 186 "force-target-instruction-cost", cl::init(0), cl::Hidden, 187 cl::desc("A flag that overrides the target's expected cost for " 188 "an instruction to a single constant value. Mostly " 189 "useful for getting consistent testing.")); 190 191 static cl::opt<unsigned> SmallLoopCost( 192 "small-loop-cost", cl::init(20), cl::Hidden, 193 cl::desc( 194 "The cost of a loop that is considered 'small' by the interleaver.")); 195 196 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 197 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 198 cl::desc("Enable the use of the block frequency analysis to access PGO " 199 "heuristics minimizing code growth in cold regions and being more " 200 "aggressive in hot regions.")); 201 202 // Runtime interleave loops for load/store throughput. 203 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 204 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 205 cl::desc( 206 "Enable runtime interleaving until load/store ports are saturated")); 207 208 /// The number of stores in a loop that are allowed to need predication. 209 static cl::opt<unsigned> NumberOfStoresToPredicate( 210 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 211 cl::desc("Max number of stores to be predicated behind an if.")); 212 213 static cl::opt<bool> EnableIndVarRegisterHeur( 214 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 215 cl::desc("Count the induction variable only once when interleaving")); 216 217 static cl::opt<bool> EnableCondStoresVectorization( 218 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 219 cl::desc("Enable if predication of stores during vectorization.")); 220 221 static cl::opt<unsigned> MaxNestedScalarReductionIC( 222 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 223 cl::desc("The maximum interleave count to use when interleaving a scalar " 224 "reduction in a nested loop.")); 225 226 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 227 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 228 cl::desc("The maximum allowed number of runtime memory checks with a " 229 "vectorize(enable) pragma.")); 230 231 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 232 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 233 cl::desc("The maximum number of SCEV checks allowed.")); 234 235 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 236 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 237 cl::desc("The maximum number of SCEV checks allowed with a " 238 "vectorize(enable) pragma")); 239 240 namespace { 241 242 // Forward declarations. 243 class LoopVectorizeHints; 244 class LoopVectorizationLegality; 245 class LoopVectorizationCostModel; 246 class LoopVectorizationRequirements; 247 248 /// \brief This modifies LoopAccessReport to initialize message with 249 /// loop-vectorizer-specific part. 250 class VectorizationReport : public LoopAccessReport { 251 public: 252 VectorizationReport(Instruction *I = nullptr) 253 : LoopAccessReport("loop not vectorized: ", I) {} 254 255 /// \brief This allows promotion of the loop-access analysis report into the 256 /// loop-vectorizer report. It modifies the message to add the 257 /// loop-vectorizer-specific part of the message. 258 explicit VectorizationReport(const LoopAccessReport &R) 259 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 260 R.getInstr()) {} 261 }; 262 263 /// A helper function for converting Scalar types to vector types. 264 /// If the incoming type is void, we return void. If the VF is 1, we return 265 /// the scalar type. 266 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 267 if (Scalar->isVoidTy() || VF == 1) 268 return Scalar; 269 return VectorType::get(Scalar, VF); 270 } 271 272 /// A helper function that returns GEP instruction and knows to skip a 273 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 274 /// pointee types of the 'bitcast' have the same size. 275 /// For example: 276 /// bitcast double** %var to i64* - can be skipped 277 /// bitcast double** %var to i8* - can not 278 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 279 280 if (isa<GetElementPtrInst>(Ptr)) 281 return cast<GetElementPtrInst>(Ptr); 282 283 if (isa<BitCastInst>(Ptr) && 284 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 285 Type *BitcastTy = Ptr->getType(); 286 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 287 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 288 return nullptr; 289 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 290 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 291 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 292 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 293 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 294 } 295 return nullptr; 296 } 297 298 /// InnerLoopVectorizer vectorizes loops which contain only one basic 299 /// block to a specified vectorization factor (VF). 300 /// This class performs the widening of scalars into vectors, or multiple 301 /// scalars. This class also implements the following features: 302 /// * It inserts an epilogue loop for handling loops that don't have iteration 303 /// counts that are known to be a multiple of the vectorization factor. 304 /// * It handles the code generation for reduction variables. 305 /// * Scalarization (implementation using scalars) of un-vectorizable 306 /// instructions. 307 /// InnerLoopVectorizer does not perform any vectorization-legality 308 /// checks, and relies on the caller to check for the different legality 309 /// aspects. The InnerLoopVectorizer relies on the 310 /// LoopVectorizationLegality class to provide information about the induction 311 /// and reduction variables that were found to a given vectorization factor. 312 class InnerLoopVectorizer { 313 public: 314 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 315 LoopInfo *LI, DominatorTree *DT, 316 const TargetLibraryInfo *TLI, 317 const TargetTransformInfo *TTI, AssumptionCache *AC, 318 unsigned VecWidth, unsigned UnrollFactor) 319 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 320 AC(AC), VF(VecWidth), UF(UnrollFactor), 321 Builder(PSE.getSE()->getContext()), Induction(nullptr), 322 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 323 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 324 325 // Perform the actual loop widening (vectorization). 326 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 327 // can be validly truncated to. The cost model has assumed this truncation 328 // will happen when vectorizing. 329 void vectorize(LoopVectorizationLegality *L, 330 MapVector<Instruction*,uint64_t> MinimumBitWidths) { 331 MinBWs = MinimumBitWidths; 332 Legal = L; 333 // Create a new empty loop. Unlink the old loop and connect the new one. 334 createEmptyLoop(); 335 // Widen each instruction in the old loop to a new one in the new loop. 336 // Use the Legality module to find the induction and reduction variables. 337 vectorizeLoop(); 338 } 339 340 // Return true if any runtime check is added. 341 bool IsSafetyChecksAdded() { 342 return AddedSafetyChecks; 343 } 344 345 virtual ~InnerLoopVectorizer() {} 346 347 protected: 348 /// A small list of PHINodes. 349 typedef SmallVector<PHINode*, 4> PhiVector; 350 /// When we unroll loops we have multiple vector values for each scalar. 351 /// This data structure holds the unrolled and vectorized values that 352 /// originated from one scalar instruction. 353 typedef SmallVector<Value*, 2> VectorParts; 354 355 // When we if-convert we need to create edge masks. We have to cache values 356 // so that we don't end up with exponential recursion/IR. 357 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 358 VectorParts> EdgeMaskCache; 359 360 /// Create an empty loop, based on the loop ranges of the old loop. 361 void createEmptyLoop(); 362 /// Create a new induction variable inside L. 363 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 364 Value *Step, Instruction *DL); 365 /// Copy and widen the instructions from the old loop. 366 virtual void vectorizeLoop(); 367 368 /// Fix a first-order recurrence. This is the second phase of vectorizing 369 /// this phi node. 370 void fixFirstOrderRecurrence(PHINode *Phi); 371 372 /// \brief The Loop exit block may have single value PHI nodes where the 373 /// incoming value is 'Undef'. While vectorizing we only handled real values 374 /// that were defined inside the loop. Here we fix the 'undef case'. 375 /// See PR14725. 376 void fixLCSSAPHIs(); 377 378 /// Shrinks vector element sizes based on information in "MinBWs". 379 void truncateToMinimalBitwidths(); 380 381 /// A helper function that computes the predicate of the block BB, assuming 382 /// that the header block of the loop is set to True. It returns the *entry* 383 /// mask for the block BB. 384 VectorParts createBlockInMask(BasicBlock *BB); 385 /// A helper function that computes the predicate of the edge between SRC 386 /// and DST. 387 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 388 389 /// A helper function to vectorize a single BB within the innermost loop. 390 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 391 392 /// Vectorize a single PHINode in a block. This method handles the induction 393 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 394 /// arbitrary length vectors. 395 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 396 unsigned UF, unsigned VF, PhiVector *PV); 397 398 /// Insert the new loop to the loop hierarchy and pass manager 399 /// and update the analysis passes. 400 void updateAnalysis(); 401 402 /// This instruction is un-vectorizable. Implement it as a sequence 403 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 404 /// scalarized instruction behind an if block predicated on the control 405 /// dependence of the instruction. 406 virtual void scalarizeInstruction(Instruction *Instr, 407 bool IfPredicateStore=false); 408 409 /// Vectorize Load and Store instructions, 410 virtual void vectorizeMemoryInstruction(Instruction *Instr); 411 412 /// Create a broadcast instruction. This method generates a broadcast 413 /// instruction (shuffle) for loop invariant values and for the induction 414 /// value. If this is the induction variable then we extend it to N, N+1, ... 415 /// this is needed because each iteration in the loop corresponds to a SIMD 416 /// element. 417 virtual Value *getBroadcastInstrs(Value *V); 418 419 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 420 /// to each vector element of Val. The sequence starts at StartIndex. 421 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 422 423 /// When we go over instructions in the basic block we rely on previous 424 /// values within the current basic block or on loop invariant values. 425 /// When we widen (vectorize) values we place them in the map. If the values 426 /// are not within the map, they have to be loop invariant, so we simply 427 /// broadcast them into a vector. 428 VectorParts &getVectorValue(Value *V); 429 430 /// Try to vectorize the interleaved access group that \p Instr belongs to. 431 void vectorizeInterleaveGroup(Instruction *Instr); 432 433 /// Generate a shuffle sequence that will reverse the vector Vec. 434 virtual Value *reverseVector(Value *Vec); 435 436 /// Returns (and creates if needed) the original loop trip count. 437 Value *getOrCreateTripCount(Loop *NewLoop); 438 439 /// Returns (and creates if needed) the trip count of the widened loop. 440 Value *getOrCreateVectorTripCount(Loop *NewLoop); 441 442 /// Emit a bypass check to see if the trip count would overflow, or we 443 /// wouldn't have enough iterations to execute one vector loop. 444 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 445 /// Emit a bypass check to see if the vector trip count is nonzero. 446 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 447 /// Emit a bypass check to see if all of the SCEV assumptions we've 448 /// had to make are correct. 449 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 450 /// Emit bypass checks to check any memory assumptions we may have made. 451 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 452 453 /// Add additional metadata to \p To that was not present on \p Orig. 454 /// 455 /// Currently this is used to add the noalias annotations based on the 456 /// inserted memchecks. Use this for instructions that are *cloned* into the 457 /// vector loop. 458 void addNewMetadata(Instruction *To, const Instruction *Orig); 459 460 /// Add metadata from one instruction to another. 461 /// 462 /// This includes both the original MDs from \p From and additional ones (\see 463 /// addNewMetadata). Use this for *newly created* instructions in the vector 464 /// loop. 465 void addMetadata(Instruction *To, const Instruction *From); 466 467 /// \brief Similar to the previous function but it adds the metadata to a 468 /// vector of instructions. 469 void addMetadata(SmallVectorImpl<Value *> &To, const Instruction *From); 470 471 /// This is a helper class that holds the vectorizer state. It maps scalar 472 /// instructions to vector instructions. When the code is 'unrolled' then 473 /// then a single scalar value is mapped to multiple vector parts. The parts 474 /// are stored in the VectorPart type. 475 struct ValueMap { 476 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 477 /// are mapped. 478 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 479 480 /// \return True if 'Key' is saved in the Value Map. 481 bool has(Value *Key) const { return MapStorage.count(Key); } 482 483 /// Initializes a new entry in the map. Sets all of the vector parts to the 484 /// save value in 'Val'. 485 /// \return A reference to a vector with splat values. 486 VectorParts &splat(Value *Key, Value *Val) { 487 VectorParts &Entry = MapStorage[Key]; 488 Entry.assign(UF, Val); 489 return Entry; 490 } 491 492 ///\return A reference to the value that is stored at 'Key'. 493 VectorParts &get(Value *Key) { 494 VectorParts &Entry = MapStorage[Key]; 495 if (Entry.empty()) 496 Entry.resize(UF); 497 assert(Entry.size() == UF); 498 return Entry; 499 } 500 501 private: 502 /// The unroll factor. Each entry in the map stores this number of vector 503 /// elements. 504 unsigned UF; 505 506 /// Map storage. We use std::map and not DenseMap because insertions to a 507 /// dense map invalidates its iterators. 508 std::map<Value *, VectorParts> MapStorage; 509 }; 510 511 /// The original loop. 512 Loop *OrigLoop; 513 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 514 /// dynamic knowledge to simplify SCEV expressions and converts them to a 515 /// more usable form. 516 PredicatedScalarEvolution &PSE; 517 /// Loop Info. 518 LoopInfo *LI; 519 /// Dominator Tree. 520 DominatorTree *DT; 521 /// Alias Analysis. 522 AliasAnalysis *AA; 523 /// Target Library Info. 524 const TargetLibraryInfo *TLI; 525 /// Target Transform Info. 526 const TargetTransformInfo *TTI; 527 /// Assumption Cache. 528 AssumptionCache *AC; 529 530 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 531 /// used. 532 /// 533 /// This is currently only used to add no-alias metadata based on the 534 /// memchecks. The actually versioning is performed manually. 535 std::unique_ptr<LoopVersioning> LVer; 536 537 /// The vectorization SIMD factor to use. Each vector will have this many 538 /// vector elements. 539 unsigned VF; 540 541 protected: 542 /// The vectorization unroll factor to use. Each scalar is vectorized to this 543 /// many different vector instructions. 544 unsigned UF; 545 546 /// The builder that we use 547 IRBuilder<> Builder; 548 549 // --- Vectorization state --- 550 551 /// The vector-loop preheader. 552 BasicBlock *LoopVectorPreHeader; 553 /// The scalar-loop preheader. 554 BasicBlock *LoopScalarPreHeader; 555 /// Middle Block between the vector and the scalar. 556 BasicBlock *LoopMiddleBlock; 557 ///The ExitBlock of the scalar loop. 558 BasicBlock *LoopExitBlock; 559 ///The vector loop body. 560 SmallVector<BasicBlock *, 4> LoopVectorBody; 561 ///The scalar loop body. 562 BasicBlock *LoopScalarBody; 563 /// A list of all bypass blocks. The first block is the entry of the loop. 564 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 565 566 /// The new Induction variable which was added to the new block. 567 PHINode *Induction; 568 /// The induction variable of the old basic block. 569 PHINode *OldInduction; 570 /// Maps scalars to widened vectors. 571 ValueMap WidenMap; 572 /// Store instructions that should be predicated, as a pair 573 /// <StoreInst, Predicate> 574 SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores; 575 EdgeMaskCache MaskCache; 576 /// Trip count of the original loop. 577 Value *TripCount; 578 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 579 Value *VectorTripCount; 580 581 /// Map of scalar integer values to the smallest bitwidth they can be legally 582 /// represented as. The vector equivalents of these values should be truncated 583 /// to this type. 584 MapVector<Instruction*,uint64_t> MinBWs; 585 LoopVectorizationLegality *Legal; 586 587 // Record whether runtime check is added. 588 bool AddedSafetyChecks; 589 }; 590 591 class InnerLoopUnroller : public InnerLoopVectorizer { 592 public: 593 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 594 LoopInfo *LI, DominatorTree *DT, 595 const TargetLibraryInfo *TLI, 596 const TargetTransformInfo *TTI, AssumptionCache *AC, 597 unsigned UnrollFactor) 598 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 599 UnrollFactor) {} 600 601 private: 602 void scalarizeInstruction(Instruction *Instr, 603 bool IfPredicateStore = false) override; 604 void vectorizeMemoryInstruction(Instruction *Instr) override; 605 Value *getBroadcastInstrs(Value *V) override; 606 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 607 Value *reverseVector(Value *Vec) override; 608 }; 609 610 /// \brief Look for a meaningful debug location on the instruction or it's 611 /// operands. 612 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 613 if (!I) 614 return I; 615 616 DebugLoc Empty; 617 if (I->getDebugLoc() != Empty) 618 return I; 619 620 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 621 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 622 if (OpInst->getDebugLoc() != Empty) 623 return OpInst; 624 } 625 626 return I; 627 } 628 629 /// \brief Set the debug location in the builder using the debug location in the 630 /// instruction. 631 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 632 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 633 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 634 else 635 B.SetCurrentDebugLocation(DebugLoc()); 636 } 637 638 #ifndef NDEBUG 639 /// \return string containing a file name and a line # for the given loop. 640 static std::string getDebugLocString(const Loop *L) { 641 std::string Result; 642 if (L) { 643 raw_string_ostream OS(Result); 644 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 645 LoopDbgLoc.print(OS); 646 else 647 // Just print the module name. 648 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 649 OS.flush(); 650 } 651 return Result; 652 } 653 #endif 654 655 /// \brief Propagate known metadata from one instruction to another. 656 static void propagateMetadata(Instruction *To, const Instruction *From) { 657 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 658 From->getAllMetadataOtherThanDebugLoc(Metadata); 659 660 for (auto M : Metadata) { 661 unsigned Kind = M.first; 662 663 // These are safe to transfer (this is safe for TBAA, even when we 664 // if-convert, because should that metadata have had a control dependency 665 // on the condition, and thus actually aliased with some other 666 // non-speculated memory access when the condition was false, this would be 667 // caught by the runtime overlap checks). 668 if (Kind != LLVMContext::MD_tbaa && 669 Kind != LLVMContext::MD_alias_scope && 670 Kind != LLVMContext::MD_noalias && 671 Kind != LLVMContext::MD_fpmath && 672 Kind != LLVMContext::MD_nontemporal) 673 continue; 674 675 To->setMetadata(Kind, M.second); 676 } 677 } 678 679 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 680 const Instruction *Orig) { 681 // If the loop was versioned with memchecks, add the corresponding no-alias 682 // metadata. 683 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 684 LVer->annotateInstWithNoAlias(To, Orig); 685 } 686 687 void InnerLoopVectorizer::addMetadata(Instruction *To, 688 const Instruction *From) { 689 propagateMetadata(To, From); 690 addNewMetadata(To, From); 691 } 692 693 void InnerLoopVectorizer::addMetadata(SmallVectorImpl<Value *> &To, 694 const Instruction *From) { 695 for (Value *V : To) 696 if (Instruction *I = dyn_cast<Instruction>(V)) 697 addMetadata(I, From); 698 } 699 700 /// \brief The group of interleaved loads/stores sharing the same stride and 701 /// close to each other. 702 /// 703 /// Each member in this group has an index starting from 0, and the largest 704 /// index should be less than interleaved factor, which is equal to the absolute 705 /// value of the access's stride. 706 /// 707 /// E.g. An interleaved load group of factor 4: 708 /// for (unsigned i = 0; i < 1024; i+=4) { 709 /// a = A[i]; // Member of index 0 710 /// b = A[i+1]; // Member of index 1 711 /// d = A[i+3]; // Member of index 3 712 /// ... 713 /// } 714 /// 715 /// An interleaved store group of factor 4: 716 /// for (unsigned i = 0; i < 1024; i+=4) { 717 /// ... 718 /// A[i] = a; // Member of index 0 719 /// A[i+1] = b; // Member of index 1 720 /// A[i+2] = c; // Member of index 2 721 /// A[i+3] = d; // Member of index 3 722 /// } 723 /// 724 /// Note: the interleaved load group could have gaps (missing members), but 725 /// the interleaved store group doesn't allow gaps. 726 class InterleaveGroup { 727 public: 728 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 729 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 730 assert(Align && "The alignment should be non-zero"); 731 732 Factor = std::abs(Stride); 733 assert(Factor > 1 && "Invalid interleave factor"); 734 735 Reverse = Stride < 0; 736 Members[0] = Instr; 737 } 738 739 bool isReverse() const { return Reverse; } 740 unsigned getFactor() const { return Factor; } 741 unsigned getAlignment() const { return Align; } 742 unsigned getNumMembers() const { return Members.size(); } 743 744 /// \brief Try to insert a new member \p Instr with index \p Index and 745 /// alignment \p NewAlign. The index is related to the leader and it could be 746 /// negative if it is the new leader. 747 /// 748 /// \returns false if the instruction doesn't belong to the group. 749 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 750 assert(NewAlign && "The new member's alignment should be non-zero"); 751 752 int Key = Index + SmallestKey; 753 754 // Skip if there is already a member with the same index. 755 if (Members.count(Key)) 756 return false; 757 758 if (Key > LargestKey) { 759 // The largest index is always less than the interleave factor. 760 if (Index >= static_cast<int>(Factor)) 761 return false; 762 763 LargestKey = Key; 764 } else if (Key < SmallestKey) { 765 // The largest index is always less than the interleave factor. 766 if (LargestKey - Key >= static_cast<int>(Factor)) 767 return false; 768 769 SmallestKey = Key; 770 } 771 772 // It's always safe to select the minimum alignment. 773 Align = std::min(Align, NewAlign); 774 Members[Key] = Instr; 775 return true; 776 } 777 778 /// \brief Get the member with the given index \p Index 779 /// 780 /// \returns nullptr if contains no such member. 781 Instruction *getMember(unsigned Index) const { 782 int Key = SmallestKey + Index; 783 if (!Members.count(Key)) 784 return nullptr; 785 786 return Members.find(Key)->second; 787 } 788 789 /// \brief Get the index for the given member. Unlike the key in the member 790 /// map, the index starts from 0. 791 unsigned getIndex(Instruction *Instr) const { 792 for (auto I : Members) 793 if (I.second == Instr) 794 return I.first - SmallestKey; 795 796 llvm_unreachable("InterleaveGroup contains no such member"); 797 } 798 799 Instruction *getInsertPos() const { return InsertPos; } 800 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 801 802 private: 803 unsigned Factor; // Interleave Factor. 804 bool Reverse; 805 unsigned Align; 806 DenseMap<int, Instruction *> Members; 807 int SmallestKey; 808 int LargestKey; 809 810 // To avoid breaking dependences, vectorized instructions of an interleave 811 // group should be inserted at either the first load or the last store in 812 // program order. 813 // 814 // E.g. %even = load i32 // Insert Position 815 // %add = add i32 %even // Use of %even 816 // %odd = load i32 817 // 818 // store i32 %even 819 // %odd = add i32 // Def of %odd 820 // store i32 %odd // Insert Position 821 Instruction *InsertPos; 822 }; 823 824 /// \brief Drive the analysis of interleaved memory accesses in the loop. 825 /// 826 /// Use this class to analyze interleaved accesses only when we can vectorize 827 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 828 /// on interleaved accesses is unsafe. 829 /// 830 /// The analysis collects interleave groups and records the relationships 831 /// between the member and the group in a map. 832 class InterleavedAccessInfo { 833 public: 834 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 835 DominatorTree *DT) 836 : PSE(PSE), TheLoop(L), DT(DT), RequiresScalarEpilogue(false) {} 837 838 ~InterleavedAccessInfo() { 839 SmallSet<InterleaveGroup *, 4> DelSet; 840 // Avoid releasing a pointer twice. 841 for (auto &I : InterleaveGroupMap) 842 DelSet.insert(I.second); 843 for (auto *Ptr : DelSet) 844 delete Ptr; 845 } 846 847 /// \brief Analyze the interleaved accesses and collect them in interleave 848 /// groups. Substitute symbolic strides using \p Strides. 849 void analyzeInterleaving(const ValueToValueMap &Strides); 850 851 /// \brief Check if \p Instr belongs to any interleave group. 852 bool isInterleaved(Instruction *Instr) const { 853 return InterleaveGroupMap.count(Instr); 854 } 855 856 /// \brief Get the interleave group that \p Instr belongs to. 857 /// 858 /// \returns nullptr if doesn't have such group. 859 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 860 if (InterleaveGroupMap.count(Instr)) 861 return InterleaveGroupMap.find(Instr)->second; 862 return nullptr; 863 } 864 865 /// \brief Returns true if an interleaved group that may access memory 866 /// out-of-bounds requires a scalar epilogue iteration for correctness. 867 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 868 869 private: 870 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 871 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 872 /// The interleaved access analysis can also add new predicates (for example 873 /// by versioning strides of pointers). 874 PredicatedScalarEvolution &PSE; 875 Loop *TheLoop; 876 DominatorTree *DT; 877 878 /// True if the loop may contain non-reversed interleaved groups with 879 /// out-of-bounds accesses. We ensure we don't speculatively access memory 880 /// out-of-bounds by executing at least one scalar epilogue iteration. 881 bool RequiresScalarEpilogue; 882 883 /// Holds the relationships between the members and the interleave group. 884 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 885 886 /// \brief The descriptor for a strided memory access. 887 struct StrideDescriptor { 888 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 889 unsigned Align) 890 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 891 892 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 893 894 int Stride; // The access's stride. It is negative for a reverse access. 895 const SCEV *Scev; // The scalar expression of this access 896 unsigned Size; // The size of the memory object. 897 unsigned Align; // The alignment of this access. 898 }; 899 900 /// \brief Create a new interleave group with the given instruction \p Instr, 901 /// stride \p Stride and alignment \p Align. 902 /// 903 /// \returns the newly created interleave group. 904 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 905 unsigned Align) { 906 assert(!InterleaveGroupMap.count(Instr) && 907 "Already in an interleaved access group"); 908 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 909 return InterleaveGroupMap[Instr]; 910 } 911 912 /// \brief Release the group and remove all the relationships. 913 void releaseGroup(InterleaveGroup *Group) { 914 for (unsigned i = 0; i < Group->getFactor(); i++) 915 if (Instruction *Member = Group->getMember(i)) 916 InterleaveGroupMap.erase(Member); 917 918 delete Group; 919 } 920 921 /// \brief Collect all the accesses with a constant stride in program order. 922 void collectConstStridedAccesses( 923 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 924 const ValueToValueMap &Strides); 925 }; 926 927 /// Utility class for getting and setting loop vectorizer hints in the form 928 /// of loop metadata. 929 /// This class keeps a number of loop annotations locally (as member variables) 930 /// and can, upon request, write them back as metadata on the loop. It will 931 /// initially scan the loop for existing metadata, and will update the local 932 /// values based on information in the loop. 933 /// We cannot write all values to metadata, as the mere presence of some info, 934 /// for example 'force', means a decision has been made. So, we need to be 935 /// careful NOT to add them if the user hasn't specifically asked so. 936 class LoopVectorizeHints { 937 enum HintKind { 938 HK_WIDTH, 939 HK_UNROLL, 940 HK_FORCE 941 }; 942 943 /// Hint - associates name and validation with the hint value. 944 struct Hint { 945 const char * Name; 946 unsigned Value; // This may have to change for non-numeric values. 947 HintKind Kind; 948 949 Hint(const char * Name, unsigned Value, HintKind Kind) 950 : Name(Name), Value(Value), Kind(Kind) { } 951 952 bool validate(unsigned Val) { 953 switch (Kind) { 954 case HK_WIDTH: 955 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 956 case HK_UNROLL: 957 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 958 case HK_FORCE: 959 return (Val <= 1); 960 } 961 return false; 962 } 963 }; 964 965 /// Vectorization width. 966 Hint Width; 967 /// Vectorization interleave factor. 968 Hint Interleave; 969 /// Vectorization forced 970 Hint Force; 971 972 /// Return the loop metadata prefix. 973 static StringRef Prefix() { return "llvm.loop."; } 974 975 /// True if there is any unsafe math in the loop. 976 bool PotentiallyUnsafe; 977 978 public: 979 enum ForceKind { 980 FK_Undefined = -1, ///< Not selected. 981 FK_Disabled = 0, ///< Forcing disabled. 982 FK_Enabled = 1, ///< Forcing enabled. 983 }; 984 985 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 986 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 987 HK_WIDTH), 988 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 989 Force("vectorize.enable", FK_Undefined, HK_FORCE), 990 PotentiallyUnsafe(false), TheLoop(L) { 991 // Populate values with existing loop metadata. 992 getHintsFromMetadata(); 993 994 // force-vector-interleave overrides DisableInterleaving. 995 if (VectorizerParams::isInterleaveForced()) 996 Interleave.Value = VectorizerParams::VectorizationInterleave; 997 998 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 999 << "LV: Interleaving disabled by the pass manager\n"); 1000 } 1001 1002 /// Mark the loop L as already vectorized by setting the width to 1. 1003 void setAlreadyVectorized() { 1004 Width.Value = Interleave.Value = 1; 1005 Hint Hints[] = {Width, Interleave}; 1006 writeHintsToMetadata(Hints); 1007 } 1008 1009 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1010 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1011 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1012 emitOptimizationRemarkAnalysis(F->getContext(), 1013 vectorizeAnalysisPassName(), *F, 1014 L->getStartLoc(), emitRemark()); 1015 return false; 1016 } 1017 1018 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1019 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1020 emitOptimizationRemarkAnalysis(F->getContext(), 1021 vectorizeAnalysisPassName(), *F, 1022 L->getStartLoc(), emitRemark()); 1023 return false; 1024 } 1025 1026 if (getWidth() == 1 && getInterleave() == 1) { 1027 // FIXME: Add a separate metadata to indicate when the loop has already 1028 // been vectorized instead of setting width and count to 1. 1029 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1030 // FIXME: Add interleave.disable metadata. This will allow 1031 // vectorize.disable to be used without disabling the pass and errors 1032 // to differentiate between disabled vectorization and a width of 1. 1033 emitOptimizationRemarkAnalysis( 1034 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1035 "loop not vectorized: vectorization and interleaving are explicitly " 1036 "disabled, or vectorize width and interleave count are both set to " 1037 "1"); 1038 return false; 1039 } 1040 1041 return true; 1042 } 1043 1044 /// Dumps all the hint information. 1045 std::string emitRemark() const { 1046 VectorizationReport R; 1047 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1048 R << "vectorization is explicitly disabled"; 1049 else { 1050 R << "use -Rpass-analysis=loop-vectorize for more info"; 1051 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1052 R << " (Force=true"; 1053 if (Width.Value != 0) 1054 R << ", Vector Width=" << Width.Value; 1055 if (Interleave.Value != 0) 1056 R << ", Interleave Count=" << Interleave.Value; 1057 R << ")"; 1058 } 1059 } 1060 1061 return R.str(); 1062 } 1063 1064 unsigned getWidth() const { return Width.Value; } 1065 unsigned getInterleave() const { return Interleave.Value; } 1066 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1067 const char *vectorizeAnalysisPassName() const { 1068 // If hints are provided that don't disable vectorization use the 1069 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1070 if (getWidth() == 1) 1071 return LV_NAME; 1072 if (getForce() == LoopVectorizeHints::FK_Disabled) 1073 return LV_NAME; 1074 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1075 return LV_NAME; 1076 return DiagnosticInfo::AlwaysPrint; 1077 } 1078 1079 bool allowReordering() const { 1080 // When enabling loop hints are provided we allow the vectorizer to change 1081 // the order of operations that is given by the scalar loop. This is not 1082 // enabled by default because can be unsafe or inefficient. For example, 1083 // reordering floating-point operations will change the way round-off 1084 // error accumulates in the loop. 1085 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1086 } 1087 1088 bool isPotentiallyUnsafe() const { 1089 // Avoid FP vectorization if the target is unsure about proper support. 1090 // This may be related to the SIMD unit in the target not handling 1091 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1092 // Otherwise, a sequence of vectorized loops, even without reduction, 1093 // could lead to different end results on the destination vectors. 1094 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1095 } 1096 1097 void setPotentiallyUnsafe() { 1098 PotentiallyUnsafe = true; 1099 } 1100 1101 private: 1102 /// Find hints specified in the loop metadata and update local values. 1103 void getHintsFromMetadata() { 1104 MDNode *LoopID = TheLoop->getLoopID(); 1105 if (!LoopID) 1106 return; 1107 1108 // First operand should refer to the loop id itself. 1109 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1110 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1111 1112 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1113 const MDString *S = nullptr; 1114 SmallVector<Metadata *, 4> Args; 1115 1116 // The expected hint is either a MDString or a MDNode with the first 1117 // operand a MDString. 1118 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1119 if (!MD || MD->getNumOperands() == 0) 1120 continue; 1121 S = dyn_cast<MDString>(MD->getOperand(0)); 1122 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1123 Args.push_back(MD->getOperand(i)); 1124 } else { 1125 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1126 assert(Args.size() == 0 && "too many arguments for MDString"); 1127 } 1128 1129 if (!S) 1130 continue; 1131 1132 // Check if the hint starts with the loop metadata prefix. 1133 StringRef Name = S->getString(); 1134 if (Args.size() == 1) 1135 setHint(Name, Args[0]); 1136 } 1137 } 1138 1139 /// Checks string hint with one operand and set value if valid. 1140 void setHint(StringRef Name, Metadata *Arg) { 1141 if (!Name.startswith(Prefix())) 1142 return; 1143 Name = Name.substr(Prefix().size(), StringRef::npos); 1144 1145 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1146 if (!C) return; 1147 unsigned Val = C->getZExtValue(); 1148 1149 Hint *Hints[] = {&Width, &Interleave, &Force}; 1150 for (auto H : Hints) { 1151 if (Name == H->Name) { 1152 if (H->validate(Val)) 1153 H->Value = Val; 1154 else 1155 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1156 break; 1157 } 1158 } 1159 } 1160 1161 /// Create a new hint from name / value pair. 1162 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1163 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1164 Metadata *MDs[] = {MDString::get(Context, Name), 1165 ConstantAsMetadata::get( 1166 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1167 return MDNode::get(Context, MDs); 1168 } 1169 1170 /// Matches metadata with hint name. 1171 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1172 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1173 if (!Name) 1174 return false; 1175 1176 for (auto H : HintTypes) 1177 if (Name->getString().endswith(H.Name)) 1178 return true; 1179 return false; 1180 } 1181 1182 /// Sets current hints into loop metadata, keeping other values intact. 1183 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1184 if (HintTypes.size() == 0) 1185 return; 1186 1187 // Reserve the first element to LoopID (see below). 1188 SmallVector<Metadata *, 4> MDs(1); 1189 // If the loop already has metadata, then ignore the existing operands. 1190 MDNode *LoopID = TheLoop->getLoopID(); 1191 if (LoopID) { 1192 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1193 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1194 // If node in update list, ignore old value. 1195 if (!matchesHintMetadataName(Node, HintTypes)) 1196 MDs.push_back(Node); 1197 } 1198 } 1199 1200 // Now, add the missing hints. 1201 for (auto H : HintTypes) 1202 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1203 1204 // Replace current metadata node with new one. 1205 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1206 MDNode *NewLoopID = MDNode::get(Context, MDs); 1207 // Set operand 0 to refer to the loop id itself. 1208 NewLoopID->replaceOperandWith(0, NewLoopID); 1209 1210 TheLoop->setLoopID(NewLoopID); 1211 } 1212 1213 /// The loop these hints belong to. 1214 const Loop *TheLoop; 1215 }; 1216 1217 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1218 const LoopVectorizeHints &Hints, 1219 const LoopAccessReport &Message) { 1220 const char *Name = Hints.vectorizeAnalysisPassName(); 1221 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1222 } 1223 1224 static void emitMissedWarning(Function *F, Loop *L, 1225 const LoopVectorizeHints &LH) { 1226 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1227 LH.emitRemark()); 1228 1229 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1230 if (LH.getWidth() != 1) 1231 emitLoopVectorizeWarning( 1232 F->getContext(), *F, L->getStartLoc(), 1233 "failed explicitly specified loop vectorization"); 1234 else if (LH.getInterleave() != 1) 1235 emitLoopInterleaveWarning( 1236 F->getContext(), *F, L->getStartLoc(), 1237 "failed explicitly specified loop interleaving"); 1238 } 1239 } 1240 1241 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1242 /// to what vectorization factor. 1243 /// This class does not look at the profitability of vectorization, only the 1244 /// legality. This class has two main kinds of checks: 1245 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1246 /// will change the order of memory accesses in a way that will change the 1247 /// correctness of the program. 1248 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1249 /// checks for a number of different conditions, such as the availability of a 1250 /// single induction variable, that all types are supported and vectorize-able, 1251 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1252 /// This class is also used by InnerLoopVectorizer for identifying 1253 /// induction variable and the different reduction variables. 1254 class LoopVectorizationLegality { 1255 public: 1256 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1257 DominatorTree *DT, TargetLibraryInfo *TLI, 1258 AliasAnalysis *AA, Function *F, 1259 const TargetTransformInfo *TTI, 1260 LoopAccessAnalysis *LAA, 1261 LoopVectorizationRequirements *R, 1262 LoopVectorizeHints *H) 1263 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1264 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), 1265 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1266 Requirements(R), Hints(H) {} 1267 1268 /// ReductionList contains the reduction descriptors for all 1269 /// of the reductions that were found in the loop. 1270 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1271 1272 /// InductionList saves induction variables and maps them to the 1273 /// induction descriptor. 1274 typedef MapVector<PHINode*, InductionDescriptor> InductionList; 1275 1276 /// RecurrenceSet contains the phi nodes that are recurrences other than 1277 /// inductions and reductions. 1278 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1279 1280 /// Returns true if it is legal to vectorize this loop. 1281 /// This does not mean that it is profitable to vectorize this 1282 /// loop, only that it is legal to do so. 1283 bool canVectorize(); 1284 1285 /// Returns the Induction variable. 1286 PHINode *getInduction() { return Induction; } 1287 1288 /// Returns the reduction variables found in the loop. 1289 ReductionList *getReductionVars() { return &Reductions; } 1290 1291 /// Returns the induction variables found in the loop. 1292 InductionList *getInductionVars() { return &Inductions; } 1293 1294 /// Return the first-order recurrences found in the loop. 1295 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1296 1297 /// Returns the widest induction type. 1298 Type *getWidestInductionType() { return WidestIndTy; } 1299 1300 /// Returns True if V is an induction variable in this loop. 1301 bool isInductionVariable(const Value *V); 1302 1303 /// Returns True if PN is a reduction variable in this loop. 1304 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1305 1306 /// Returns True if Phi is a first-order recurrence in this loop. 1307 bool isFirstOrderRecurrence(const PHINode *Phi); 1308 1309 /// Return true if the block BB needs to be predicated in order for the loop 1310 /// to be vectorized. 1311 bool blockNeedsPredication(BasicBlock *BB); 1312 1313 /// Check if this pointer is consecutive when vectorizing. This happens 1314 /// when the last index of the GEP is the induction variable, or that the 1315 /// pointer itself is an induction variable. 1316 /// This check allows us to vectorize A[idx] into a wide load/store. 1317 /// Returns: 1318 /// 0 - Stride is unknown or non-consecutive. 1319 /// 1 - Address is consecutive. 1320 /// -1 - Address is consecutive, and decreasing. 1321 int isConsecutivePtr(Value *Ptr); 1322 1323 /// Returns true if the value V is uniform within the loop. 1324 bool isUniform(Value *V); 1325 1326 /// Returns true if this instruction will remain scalar after vectorization. 1327 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 1328 1329 /// Returns the information that we collected about runtime memory check. 1330 const RuntimePointerChecking *getRuntimePointerChecking() const { 1331 return LAI->getRuntimePointerChecking(); 1332 } 1333 1334 const LoopAccessInfo *getLAI() const { 1335 return LAI; 1336 } 1337 1338 /// \brief Check if \p Instr belongs to any interleaved access group. 1339 bool isAccessInterleaved(Instruction *Instr) { 1340 return InterleaveInfo.isInterleaved(Instr); 1341 } 1342 1343 /// \brief Get the interleaved access group that \p Instr belongs to. 1344 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1345 return InterleaveInfo.getInterleaveGroup(Instr); 1346 } 1347 1348 /// \brief Returns true if an interleaved group requires a scalar iteration 1349 /// to handle accesses with gaps. 1350 bool requiresScalarEpilogue() const { 1351 return InterleaveInfo.requiresScalarEpilogue(); 1352 } 1353 1354 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1355 1356 bool hasStride(Value *V) { return StrideSet.count(V); } 1357 bool mustCheckStrides() { return !StrideSet.empty(); } 1358 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1359 return StrideSet.begin(); 1360 } 1361 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1362 1363 /// Returns true if the target machine supports masked store operation 1364 /// for the given \p DataType and kind of access to \p Ptr. 1365 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1366 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1367 } 1368 /// Returns true if the target machine supports masked load operation 1369 /// for the given \p DataType and kind of access to \p Ptr. 1370 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1371 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1372 } 1373 /// Returns true if the target machine supports masked scatter operation 1374 /// for the given \p DataType. 1375 bool isLegalMaskedScatter(Type *DataType) { 1376 return TTI->isLegalMaskedScatter(DataType); 1377 } 1378 /// Returns true if the target machine supports masked gather operation 1379 /// for the given \p DataType. 1380 bool isLegalMaskedGather(Type *DataType) { 1381 return TTI->isLegalMaskedGather(DataType); 1382 } 1383 1384 /// Returns true if vector representation of the instruction \p I 1385 /// requires mask. 1386 bool isMaskRequired(const Instruction* I) { 1387 return (MaskedOp.count(I) != 0); 1388 } 1389 unsigned getNumStores() const { 1390 return LAI->getNumStores(); 1391 } 1392 unsigned getNumLoads() const { 1393 return LAI->getNumLoads(); 1394 } 1395 unsigned getNumPredStores() const { 1396 return NumPredStores; 1397 } 1398 private: 1399 /// Check if a single basic block loop is vectorizable. 1400 /// At this point we know that this is a loop with a constant trip count 1401 /// and we only need to check individual instructions. 1402 bool canVectorizeInstrs(); 1403 1404 /// When we vectorize loops we may change the order in which 1405 /// we read and write from memory. This method checks if it is 1406 /// legal to vectorize the code, considering only memory constrains. 1407 /// Returns true if the loop is vectorizable 1408 bool canVectorizeMemory(); 1409 1410 /// Return true if we can vectorize this loop using the IF-conversion 1411 /// transformation. 1412 bool canVectorizeWithIfConvert(); 1413 1414 /// Collect the variables that need to stay uniform after vectorization. 1415 void collectLoopUniforms(); 1416 1417 /// Return true if all of the instructions in the block can be speculatively 1418 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1419 /// and we know that we can read from them without segfault. 1420 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1421 1422 /// \brief Collect memory access with loop invariant strides. 1423 /// 1424 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1425 /// invariant. 1426 void collectStridedAccess(Value *LoadOrStoreInst); 1427 1428 /// Report an analysis message to assist the user in diagnosing loops that are 1429 /// not vectorized. These are handled as LoopAccessReport rather than 1430 /// VectorizationReport because the << operator of VectorizationReport returns 1431 /// LoopAccessReport. 1432 void emitAnalysis(const LoopAccessReport &Message) const { 1433 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1434 } 1435 1436 unsigned NumPredStores; 1437 1438 /// The loop that we evaluate. 1439 Loop *TheLoop; 1440 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1441 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1442 /// of existing SCEV assumptions. The analysis will also add a minimal set 1443 /// of new predicates if this is required to enable vectorization and 1444 /// unrolling. 1445 PredicatedScalarEvolution &PSE; 1446 /// Target Library Info. 1447 TargetLibraryInfo *TLI; 1448 /// Parent function 1449 Function *TheFunction; 1450 /// Target Transform Info 1451 const TargetTransformInfo *TTI; 1452 /// Dominator Tree. 1453 DominatorTree *DT; 1454 // LoopAccess analysis. 1455 LoopAccessAnalysis *LAA; 1456 // And the loop-accesses info corresponding to this loop. This pointer is 1457 // null until canVectorizeMemory sets it up. 1458 const LoopAccessInfo *LAI; 1459 1460 /// The interleave access information contains groups of interleaved accesses 1461 /// with the same stride and close to each other. 1462 InterleavedAccessInfo InterleaveInfo; 1463 1464 // --- vectorization state --- // 1465 1466 /// Holds the integer induction variable. This is the counter of the 1467 /// loop. 1468 PHINode *Induction; 1469 /// Holds the reduction variables. 1470 ReductionList Reductions; 1471 /// Holds all of the induction variables that we found in the loop. 1472 /// Notice that inductions don't need to start at zero and that induction 1473 /// variables can be pointers. 1474 InductionList Inductions; 1475 /// Holds the phi nodes that are first-order recurrences. 1476 RecurrenceSet FirstOrderRecurrences; 1477 /// Holds the widest induction type encountered. 1478 Type *WidestIndTy; 1479 1480 /// Allowed outside users. This holds the reduction 1481 /// vars which can be accessed from outside the loop. 1482 SmallPtrSet<Value*, 4> AllowedExit; 1483 /// This set holds the variables which are known to be uniform after 1484 /// vectorization. 1485 SmallPtrSet<Instruction*, 4> Uniforms; 1486 1487 /// Can we assume the absence of NaNs. 1488 bool HasFunNoNaNAttr; 1489 1490 /// Vectorization requirements that will go through late-evaluation. 1491 LoopVectorizationRequirements *Requirements; 1492 1493 /// Used to emit an analysis of any legality issues. 1494 LoopVectorizeHints *Hints; 1495 1496 ValueToValueMap Strides; 1497 SmallPtrSet<Value *, 8> StrideSet; 1498 1499 /// While vectorizing these instructions we have to generate a 1500 /// call to the appropriate masked intrinsic 1501 SmallPtrSet<const Instruction *, 8> MaskedOp; 1502 }; 1503 1504 /// LoopVectorizationCostModel - estimates the expected speedups due to 1505 /// vectorization. 1506 /// In many cases vectorization is not profitable. This can happen because of 1507 /// a number of reasons. In this class we mainly attempt to predict the 1508 /// expected speedup/slowdowns due to the supported instruction set. We use the 1509 /// TargetTransformInfo to query the different backends for the cost of 1510 /// different operations. 1511 class LoopVectorizationCostModel { 1512 public: 1513 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1514 LoopVectorizationLegality *Legal, 1515 const TargetTransformInfo &TTI, 1516 const TargetLibraryInfo *TLI, 1517 DemandedBits *DB, AssumptionCache *AC, 1518 const Function *F, const LoopVectorizeHints *Hints, 1519 SmallPtrSetImpl<const Value *> &ValuesToIgnore) 1520 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1521 TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {} 1522 1523 /// Information about vectorization costs 1524 struct VectorizationFactor { 1525 unsigned Width; // Vector width with best cost 1526 unsigned Cost; // Cost of the loop with that width 1527 }; 1528 /// \return The most profitable vectorization factor and the cost of that VF. 1529 /// This method checks every power of two up to VF. If UserVF is not ZERO 1530 /// then this vectorization factor will be selected if vectorization is 1531 /// possible. 1532 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1533 1534 /// \return The size (in bits) of the smallest and widest types in the code 1535 /// that needs to be vectorized. We ignore values that remain scalar such as 1536 /// 64 bit loop indices. 1537 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1538 1539 /// \return The desired interleave count. 1540 /// If interleave count has been specified by metadata it will be returned. 1541 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1542 /// are the selected vectorization factor and the cost of the selected VF. 1543 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1544 unsigned LoopCost); 1545 1546 /// \return The most profitable unroll factor. 1547 /// This method finds the best unroll-factor based on register pressure and 1548 /// other parameters. VF and LoopCost are the selected vectorization factor 1549 /// and the cost of the selected VF. 1550 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1551 unsigned LoopCost); 1552 1553 /// \brief A struct that represents some properties of the register usage 1554 /// of a loop. 1555 struct RegisterUsage { 1556 /// Holds the number of loop invariant values that are used in the loop. 1557 unsigned LoopInvariantRegs; 1558 /// Holds the maximum number of concurrent live intervals in the loop. 1559 unsigned MaxLocalUsers; 1560 /// Holds the number of instructions in the loop. 1561 unsigned NumInstructions; 1562 }; 1563 1564 /// \return Returns information about the register usages of the loop for the 1565 /// given vectorization factors. 1566 SmallVector<RegisterUsage, 8> 1567 calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs); 1568 1569 private: 1570 /// The vectorization cost is a combination of the cost itself and a boolean 1571 /// indicating whether any of the contributing operations will actually operate on 1572 /// vector values after type legalization in the backend. If this latter value is 1573 /// false, then all operations will be scalarized (i.e. no vectorization has 1574 /// actually taken place). 1575 typedef std::pair<unsigned, bool> VectorizationCostTy; 1576 1577 /// Returns the expected execution cost. The unit of the cost does 1578 /// not matter because we use the 'cost' units to compare different 1579 /// vector widths. The cost that is returned is *not* normalized by 1580 /// the factor width. 1581 VectorizationCostTy expectedCost(unsigned VF); 1582 1583 /// Returns the execution time cost of an instruction for a given vector 1584 /// width. Vector width of one means scalar. 1585 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1586 1587 /// The cost-computation logic from getInstructionCost which provides 1588 /// the vector type as an output parameter. 1589 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1590 1591 /// Returns whether the instruction is a load or store and will be a emitted 1592 /// as a vector operation. 1593 bool isConsecutiveLoadOrStore(Instruction *I); 1594 1595 /// Report an analysis message to assist the user in diagnosing loops that are 1596 /// not vectorized. These are handled as LoopAccessReport rather than 1597 /// VectorizationReport because the << operator of VectorizationReport returns 1598 /// LoopAccessReport. 1599 void emitAnalysis(const LoopAccessReport &Message) const { 1600 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1601 } 1602 1603 public: 1604 /// Map of scalar integer values to the smallest bitwidth they can be legally 1605 /// represented as. The vector equivalents of these values should be truncated 1606 /// to this type. 1607 MapVector<Instruction*,uint64_t> MinBWs; 1608 1609 /// The loop that we evaluate. 1610 Loop *TheLoop; 1611 /// Scev analysis. 1612 ScalarEvolution *SE; 1613 /// Loop Info analysis. 1614 LoopInfo *LI; 1615 /// Vectorization legality. 1616 LoopVectorizationLegality *Legal; 1617 /// Vector target information. 1618 const TargetTransformInfo &TTI; 1619 /// Target Library Info. 1620 const TargetLibraryInfo *TLI; 1621 /// Demanded bits analysis 1622 DemandedBits *DB; 1623 const Function *TheFunction; 1624 // Loop Vectorize Hint. 1625 const LoopVectorizeHints *Hints; 1626 // Values to ignore in the cost model. 1627 const SmallPtrSetImpl<const Value *> &ValuesToIgnore; 1628 }; 1629 1630 /// \brief This holds vectorization requirements that must be verified late in 1631 /// the process. The requirements are set by legalize and costmodel. Once 1632 /// vectorization has been determined to be possible and profitable the 1633 /// requirements can be verified by looking for metadata or compiler options. 1634 /// For example, some loops require FP commutativity which is only allowed if 1635 /// vectorization is explicitly specified or if the fast-math compiler option 1636 /// has been provided. 1637 /// Late evaluation of these requirements allows helpful diagnostics to be 1638 /// composed that tells the user what need to be done to vectorize the loop. For 1639 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1640 /// evaluation should be used only when diagnostics can generated that can be 1641 /// followed by a non-expert user. 1642 class LoopVectorizationRequirements { 1643 public: 1644 LoopVectorizationRequirements() 1645 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1646 1647 void addUnsafeAlgebraInst(Instruction *I) { 1648 // First unsafe algebra instruction. 1649 if (!UnsafeAlgebraInst) 1650 UnsafeAlgebraInst = I; 1651 } 1652 1653 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1654 1655 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1656 const char *Name = Hints.vectorizeAnalysisPassName(); 1657 bool Failed = false; 1658 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1659 emitOptimizationRemarkAnalysisFPCommute( 1660 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1661 VectorizationReport() << "cannot prove it is safe to reorder " 1662 "floating-point operations"); 1663 Failed = true; 1664 } 1665 1666 // Test if runtime memcheck thresholds are exceeded. 1667 bool PragmaThresholdReached = 1668 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1669 bool ThresholdReached = 1670 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1671 if ((ThresholdReached && !Hints.allowReordering()) || 1672 PragmaThresholdReached) { 1673 emitOptimizationRemarkAnalysisAliasing( 1674 F->getContext(), Name, *F, L->getStartLoc(), 1675 VectorizationReport() 1676 << "cannot prove it is safe to reorder memory operations"); 1677 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1678 Failed = true; 1679 } 1680 1681 return Failed; 1682 } 1683 1684 private: 1685 unsigned NumRuntimePointerChecks; 1686 Instruction *UnsafeAlgebraInst; 1687 }; 1688 1689 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1690 if (L.empty()) 1691 return V.push_back(&L); 1692 1693 for (Loop *InnerL : L) 1694 addInnerLoop(*InnerL, V); 1695 } 1696 1697 /// The LoopVectorize Pass. 1698 struct LoopVectorize : public FunctionPass { 1699 /// Pass identification, replacement for typeid 1700 static char ID; 1701 1702 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1703 : FunctionPass(ID), 1704 DisableUnrolling(NoUnrolling), 1705 AlwaysVectorize(AlwaysVectorize) { 1706 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1707 } 1708 1709 ScalarEvolution *SE; 1710 LoopInfo *LI; 1711 TargetTransformInfo *TTI; 1712 DominatorTree *DT; 1713 BlockFrequencyInfo *BFI; 1714 TargetLibraryInfo *TLI; 1715 DemandedBits *DB; 1716 AliasAnalysis *AA; 1717 AssumptionCache *AC; 1718 LoopAccessAnalysis *LAA; 1719 bool DisableUnrolling; 1720 bool AlwaysVectorize; 1721 1722 BlockFrequency ColdEntryFreq; 1723 1724 bool runOnFunction(Function &F) override { 1725 if (skipFunction(F)) 1726 return false; 1727 1728 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1729 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1730 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1731 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1732 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1733 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1734 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1735 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1736 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1737 LAA = &getAnalysis<LoopAccessAnalysis>(); 1738 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1739 1740 // Compute some weights outside of the loop over the loops. Compute this 1741 // using a BranchProbability to re-use its scaling math. 1742 const BranchProbability ColdProb(1, 5); // 20% 1743 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1744 1745 // Don't attempt if 1746 // 1. the target claims to have no vector registers, and 1747 // 2. interleaving won't help ILP. 1748 // 1749 // The second condition is necessary because, even if the target has no 1750 // vector registers, loop vectorization may still enable scalar 1751 // interleaving. 1752 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1753 return false; 1754 1755 // Build up a worklist of inner-loops to vectorize. This is necessary as 1756 // the act of vectorizing or partially unrolling a loop creates new loops 1757 // and can invalidate iterators across the loops. 1758 SmallVector<Loop *, 8> Worklist; 1759 1760 for (Loop *L : *LI) 1761 addInnerLoop(*L, Worklist); 1762 1763 LoopsAnalyzed += Worklist.size(); 1764 1765 // Now walk the identified inner loops. 1766 bool Changed = false; 1767 while (!Worklist.empty()) 1768 Changed |= processLoop(Worklist.pop_back_val()); 1769 1770 // Process each loop nest in the function. 1771 return Changed; 1772 } 1773 1774 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1775 SmallVector<Metadata *, 4> MDs; 1776 // Reserve first location for self reference to the LoopID metadata node. 1777 MDs.push_back(nullptr); 1778 bool IsUnrollMetadata = false; 1779 MDNode *LoopID = L->getLoopID(); 1780 if (LoopID) { 1781 // First find existing loop unrolling disable metadata. 1782 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1783 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1784 if (MD) { 1785 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1786 IsUnrollMetadata = 1787 S && S->getString().startswith("llvm.loop.unroll.disable"); 1788 } 1789 MDs.push_back(LoopID->getOperand(i)); 1790 } 1791 } 1792 1793 if (!IsUnrollMetadata) { 1794 // Add runtime unroll disable metadata. 1795 LLVMContext &Context = L->getHeader()->getContext(); 1796 SmallVector<Metadata *, 1> DisableOperands; 1797 DisableOperands.push_back( 1798 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1799 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1800 MDs.push_back(DisableNode); 1801 MDNode *NewLoopID = MDNode::get(Context, MDs); 1802 // Set operand 0 to refer to the loop id itself. 1803 NewLoopID->replaceOperandWith(0, NewLoopID); 1804 L->setLoopID(NewLoopID); 1805 } 1806 } 1807 1808 bool processLoop(Loop *L) { 1809 assert(L->empty() && "Only process inner loops."); 1810 1811 #ifndef NDEBUG 1812 const std::string DebugLocStr = getDebugLocString(L); 1813 #endif /* NDEBUG */ 1814 1815 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1816 << L->getHeader()->getParent()->getName() << "\" from " 1817 << DebugLocStr << "\n"); 1818 1819 LoopVectorizeHints Hints(L, DisableUnrolling); 1820 1821 DEBUG(dbgs() << "LV: Loop hints:" 1822 << " force=" 1823 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1824 ? "disabled" 1825 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1826 ? "enabled" 1827 : "?")) << " width=" << Hints.getWidth() 1828 << " unroll=" << Hints.getInterleave() << "\n"); 1829 1830 // Function containing loop 1831 Function *F = L->getHeader()->getParent(); 1832 1833 // Looking at the diagnostic output is the only way to determine if a loop 1834 // was vectorized (other than looking at the IR or machine code), so it 1835 // is important to generate an optimization remark for each loop. Most of 1836 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1837 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1838 // less verbose reporting vectorized loops and unvectorized loops that may 1839 // benefit from vectorization, respectively. 1840 1841 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1842 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1843 return false; 1844 } 1845 1846 // Check the loop for a trip count threshold: 1847 // do not vectorize loops with a tiny trip count. 1848 const unsigned TC = SE->getSmallConstantTripCount(L); 1849 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1850 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1851 << "This loop is not worth vectorizing."); 1852 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1853 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1854 else { 1855 DEBUG(dbgs() << "\n"); 1856 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1857 << "vectorization is not beneficial " 1858 "and is not explicitly forced"); 1859 return false; 1860 } 1861 } 1862 1863 PredicatedScalarEvolution PSE(*SE, *L); 1864 1865 // Check if it is legal to vectorize the loop. 1866 LoopVectorizationRequirements Requirements; 1867 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, 1868 &Requirements, &Hints); 1869 if (!LVL.canVectorize()) { 1870 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1871 emitMissedWarning(F, L, Hints); 1872 return false; 1873 } 1874 1875 // Collect values we want to ignore in the cost model. This includes 1876 // type-promoting instructions we identified during reduction detection. 1877 SmallPtrSet<const Value *, 32> ValuesToIgnore; 1878 CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore); 1879 for (auto &Reduction : *LVL.getReductionVars()) { 1880 RecurrenceDescriptor &RedDes = Reduction.second; 1881 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 1882 ValuesToIgnore.insert(Casts.begin(), Casts.end()); 1883 } 1884 1885 // Use the cost model. 1886 LoopVectorizationCostModel CM(L, PSE.getSE(), LI, &LVL, *TTI, TLI, DB, AC, 1887 F, &Hints, ValuesToIgnore); 1888 1889 // Check the function attributes to find out if this function should be 1890 // optimized for size. 1891 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1892 F->optForSize(); 1893 1894 // Compute the weighted frequency of this loop being executed and see if it 1895 // is less than 20% of the function entry baseline frequency. Note that we 1896 // always have a canonical loop here because we think we *can* vectorize. 1897 // FIXME: This is hidden behind a flag due to pervasive problems with 1898 // exactly what block frequency models. 1899 if (LoopVectorizeWithBlockFrequency) { 1900 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1901 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1902 LoopEntryFreq < ColdEntryFreq) 1903 OptForSize = true; 1904 } 1905 1906 // Check the function attributes to see if implicit floats are allowed. 1907 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1908 // an integer loop and the vector instructions selected are purely integer 1909 // vector instructions? 1910 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1911 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1912 "attribute is used.\n"); 1913 emitAnalysisDiag( 1914 F, L, Hints, 1915 VectorizationReport() 1916 << "loop not vectorized due to NoImplicitFloat attribute"); 1917 emitMissedWarning(F, L, Hints); 1918 return false; 1919 } 1920 1921 // Check if the target supports potentially unsafe FP vectorization. 1922 // FIXME: Add a check for the type of safety issue (denormal, signaling) 1923 // for the target we're vectorizing for, to make sure none of the 1924 // additional fp-math flags can help. 1925 if (Hints.isPotentiallyUnsafe() && 1926 TTI->isFPVectorizationPotentiallyUnsafe()) { 1927 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 1928 emitAnalysisDiag( 1929 F, L, Hints, 1930 VectorizationReport() 1931 << "loop not vectorized due to unsafe FP support."); 1932 emitMissedWarning(F, L, Hints); 1933 return false; 1934 } 1935 1936 // Select the optimal vectorization factor. 1937 const LoopVectorizationCostModel::VectorizationFactor VF = 1938 CM.selectVectorizationFactor(OptForSize); 1939 1940 // Select the interleave count. 1941 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1942 1943 // Get user interleave count. 1944 unsigned UserIC = Hints.getInterleave(); 1945 1946 // Identify the diagnostic messages that should be produced. 1947 std::string VecDiagMsg, IntDiagMsg; 1948 bool VectorizeLoop = true, InterleaveLoop = true; 1949 1950 if (Requirements.doesNotMeet(F, L, Hints)) { 1951 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1952 "requirements.\n"); 1953 emitMissedWarning(F, L, Hints); 1954 return false; 1955 } 1956 1957 if (VF.Width == 1) { 1958 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1959 VecDiagMsg = 1960 "the cost-model indicates that vectorization is not beneficial"; 1961 VectorizeLoop = false; 1962 } 1963 1964 if (IC == 1 && UserIC <= 1) { 1965 // Tell the user interleaving is not beneficial. 1966 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1967 IntDiagMsg = 1968 "the cost-model indicates that interleaving is not beneficial"; 1969 InterleaveLoop = false; 1970 if (UserIC == 1) 1971 IntDiagMsg += 1972 " and is explicitly disabled or interleave count is set to 1"; 1973 } else if (IC > 1 && UserIC == 1) { 1974 // Tell the user interleaving is beneficial, but it explicitly disabled. 1975 DEBUG(dbgs() 1976 << "LV: Interleaving is beneficial but is explicitly disabled."); 1977 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1978 "but is explicitly disabled or interleave count is set to 1"; 1979 InterleaveLoop = false; 1980 } 1981 1982 // Override IC if user provided an interleave count. 1983 IC = UserIC > 0 ? UserIC : IC; 1984 1985 // Emit diagnostic messages, if any. 1986 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 1987 if (!VectorizeLoop && !InterleaveLoop) { 1988 // Do not vectorize or interleaving the loop. 1989 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1990 L->getStartLoc(), VecDiagMsg); 1991 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1992 L->getStartLoc(), IntDiagMsg); 1993 return false; 1994 } else if (!VectorizeLoop && InterleaveLoop) { 1995 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1996 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1997 L->getStartLoc(), VecDiagMsg); 1998 } else if (VectorizeLoop && !InterleaveLoop) { 1999 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2000 << DebugLocStr << '\n'); 2001 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2002 L->getStartLoc(), IntDiagMsg); 2003 } else if (VectorizeLoop && InterleaveLoop) { 2004 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2005 << DebugLocStr << '\n'); 2006 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2007 } 2008 2009 if (!VectorizeLoop) { 2010 assert(IC > 1 && "interleave count should not be 1 or 0"); 2011 // If we decided that it is not legal to vectorize the loop then 2012 // interleave it. 2013 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 2014 Unroller.vectorize(&LVL, CM.MinBWs); 2015 2016 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2017 Twine("interleaved loop (interleaved count: ") + 2018 Twine(IC) + ")"); 2019 } else { 2020 // If we decided that it is *legal* to vectorize the loop then do it. 2021 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 2022 LB.vectorize(&LVL, CM.MinBWs); 2023 ++LoopsVectorized; 2024 2025 // Add metadata to disable runtime unrolling scalar loop when there's no 2026 // runtime check about strides and memory. Because at this situation, 2027 // scalar loop is rarely used not worthy to be unrolled. 2028 if (!LB.IsSafetyChecksAdded()) 2029 AddRuntimeUnrollDisableMetaData(L); 2030 2031 // Report the vectorization decision. 2032 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2033 Twine("vectorized loop (vectorization width: ") + 2034 Twine(VF.Width) + ", interleaved count: " + 2035 Twine(IC) + ")"); 2036 } 2037 2038 // Mark the loop as already vectorized to avoid vectorizing again. 2039 Hints.setAlreadyVectorized(); 2040 2041 DEBUG(verifyFunction(*L->getHeader()->getParent())); 2042 return true; 2043 } 2044 2045 void getAnalysisUsage(AnalysisUsage &AU) const override { 2046 AU.addRequired<AssumptionCacheTracker>(); 2047 AU.addRequiredID(LoopSimplifyID); 2048 AU.addRequiredID(LCSSAID); 2049 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2050 AU.addRequired<DominatorTreeWrapperPass>(); 2051 AU.addRequired<LoopInfoWrapperPass>(); 2052 AU.addRequired<ScalarEvolutionWrapperPass>(); 2053 AU.addRequired<TargetTransformInfoWrapperPass>(); 2054 AU.addRequired<AAResultsWrapperPass>(); 2055 AU.addRequired<LoopAccessAnalysis>(); 2056 AU.addRequired<DemandedBitsWrapperPass>(); 2057 AU.addPreserved<LoopInfoWrapperPass>(); 2058 AU.addPreserved<DominatorTreeWrapperPass>(); 2059 AU.addPreserved<BasicAAWrapperPass>(); 2060 AU.addPreserved<AAResultsWrapperPass>(); 2061 AU.addPreserved<GlobalsAAWrapperPass>(); 2062 } 2063 2064 }; 2065 2066 } // end anonymous namespace 2067 2068 //===----------------------------------------------------------------------===// 2069 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2070 // LoopVectorizationCostModel. 2071 //===----------------------------------------------------------------------===// 2072 2073 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2074 // We need to place the broadcast of invariant variables outside the loop. 2075 Instruction *Instr = dyn_cast<Instruction>(V); 2076 bool NewInstr = 2077 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 2078 Instr->getParent()) != LoopVectorBody.end()); 2079 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2080 2081 // Place the code for broadcasting invariant variables in the new preheader. 2082 IRBuilder<>::InsertPointGuard Guard(Builder); 2083 if (Invariant) 2084 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2085 2086 // Broadcast the scalar into all locations in the vector. 2087 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2088 2089 return Shuf; 2090 } 2091 2092 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2093 Value *Step) { 2094 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2095 assert(Val->getType()->getScalarType()->isIntegerTy() && 2096 "Elem must be an integer"); 2097 assert(Step->getType() == Val->getType()->getScalarType() && 2098 "Step has wrong type"); 2099 // Create the types. 2100 Type *ITy = Val->getType()->getScalarType(); 2101 VectorType *Ty = cast<VectorType>(Val->getType()); 2102 int VLen = Ty->getNumElements(); 2103 SmallVector<Constant*, 8> Indices; 2104 2105 // Create a vector of consecutive numbers from zero to VF. 2106 for (int i = 0; i < VLen; ++i) 2107 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2108 2109 // Add the consecutive indices to the vector value. 2110 Constant *Cv = ConstantVector::get(Indices); 2111 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2112 Step = Builder.CreateVectorSplat(VLen, Step); 2113 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2114 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2115 // which can be found from the original scalar operations. 2116 Step = Builder.CreateMul(Cv, Step); 2117 return Builder.CreateAdd(Val, Step, "induction"); 2118 } 2119 2120 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2121 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2122 auto *SE = PSE.getSE(); 2123 // Make sure that the pointer does not point to structs. 2124 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2125 return 0; 2126 2127 // If this value is a pointer induction variable we know it is consecutive. 2128 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2129 if (Phi && Inductions.count(Phi)) { 2130 InductionDescriptor II = Inductions[Phi]; 2131 return II.getConsecutiveDirection(); 2132 } 2133 2134 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2135 if (!Gep) 2136 return 0; 2137 2138 unsigned NumOperands = Gep->getNumOperands(); 2139 Value *GpPtr = Gep->getPointerOperand(); 2140 // If this GEP value is a consecutive pointer induction variable and all of 2141 // the indices are constant then we know it is consecutive. We can 2142 Phi = dyn_cast<PHINode>(GpPtr); 2143 if (Phi && Inductions.count(Phi)) { 2144 2145 // Make sure that the pointer does not point to structs. 2146 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2147 if (GepPtrType->getElementType()->isAggregateType()) 2148 return 0; 2149 2150 // Make sure that all of the index operands are loop invariant. 2151 for (unsigned i = 1; i < NumOperands; ++i) 2152 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2153 return 0; 2154 2155 InductionDescriptor II = Inductions[Phi]; 2156 return II.getConsecutiveDirection(); 2157 } 2158 2159 unsigned InductionOperand = getGEPInductionOperand(Gep); 2160 2161 // Check that all of the gep indices are uniform except for our induction 2162 // operand. 2163 for (unsigned i = 0; i != NumOperands; ++i) 2164 if (i != InductionOperand && 2165 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2166 return 0; 2167 2168 // We can emit wide load/stores only if the last non-zero index is the 2169 // induction variable. 2170 const SCEV *Last = nullptr; 2171 if (!Strides.count(Gep)) 2172 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2173 else { 2174 // Because of the multiplication by a stride we can have a s/zext cast. 2175 // We are going to replace this stride by 1 so the cast is safe to ignore. 2176 // 2177 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2178 // %0 = trunc i64 %indvars.iv to i32 2179 // %mul = mul i32 %0, %Stride1 2180 // %idxprom = zext i32 %mul to i64 << Safe cast. 2181 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2182 // 2183 Last = replaceSymbolicStrideSCEV(PSE, Strides, 2184 Gep->getOperand(InductionOperand), Gep); 2185 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2186 Last = 2187 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2188 ? C->getOperand() 2189 : Last; 2190 } 2191 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2192 const SCEV *Step = AR->getStepRecurrence(*SE); 2193 2194 // The memory is consecutive because the last index is consecutive 2195 // and all other indices are loop invariant. 2196 if (Step->isOne()) 2197 return 1; 2198 if (Step->isAllOnesValue()) 2199 return -1; 2200 } 2201 2202 return 0; 2203 } 2204 2205 bool LoopVectorizationLegality::isUniform(Value *V) { 2206 return LAI->isUniform(V); 2207 } 2208 2209 InnerLoopVectorizer::VectorParts& 2210 InnerLoopVectorizer::getVectorValue(Value *V) { 2211 assert(V != Induction && "The new induction variable should not be used."); 2212 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2213 2214 // If we have a stride that is replaced by one, do it here. 2215 if (Legal->hasStride(V)) 2216 V = ConstantInt::get(V->getType(), 1); 2217 2218 // If we have this scalar in the map, return it. 2219 if (WidenMap.has(V)) 2220 return WidenMap.get(V); 2221 2222 // If this scalar is unknown, assume that it is a constant or that it is 2223 // loop invariant. Broadcast V and save the value for future uses. 2224 Value *B = getBroadcastInstrs(V); 2225 return WidenMap.splat(V, B); 2226 } 2227 2228 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2229 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2230 SmallVector<Constant*, 8> ShuffleMask; 2231 for (unsigned i = 0; i < VF; ++i) 2232 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2233 2234 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2235 ConstantVector::get(ShuffleMask), 2236 "reverse"); 2237 } 2238 2239 // Get a mask to interleave \p NumVec vectors into a wide vector. 2240 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2241 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2242 // <0, 4, 1, 5, 2, 6, 3, 7> 2243 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2244 unsigned NumVec) { 2245 SmallVector<Constant *, 16> Mask; 2246 for (unsigned i = 0; i < VF; i++) 2247 for (unsigned j = 0; j < NumVec; j++) 2248 Mask.push_back(Builder.getInt32(j * VF + i)); 2249 2250 return ConstantVector::get(Mask); 2251 } 2252 2253 // Get the strided mask starting from index \p Start. 2254 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2255 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2256 unsigned Stride, unsigned VF) { 2257 SmallVector<Constant *, 16> Mask; 2258 for (unsigned i = 0; i < VF; i++) 2259 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2260 2261 return ConstantVector::get(Mask); 2262 } 2263 2264 // Get a mask of two parts: The first part consists of sequential integers 2265 // starting from 0, The second part consists of UNDEFs. 2266 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2267 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2268 unsigned NumUndef) { 2269 SmallVector<Constant *, 16> Mask; 2270 for (unsigned i = 0; i < NumInt; i++) 2271 Mask.push_back(Builder.getInt32(i)); 2272 2273 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2274 for (unsigned i = 0; i < NumUndef; i++) 2275 Mask.push_back(Undef); 2276 2277 return ConstantVector::get(Mask); 2278 } 2279 2280 // Concatenate two vectors with the same element type. The 2nd vector should 2281 // not have more elements than the 1st vector. If the 2nd vector has less 2282 // elements, extend it with UNDEFs. 2283 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2284 Value *V2) { 2285 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2286 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2287 assert(VecTy1 && VecTy2 && 2288 VecTy1->getScalarType() == VecTy2->getScalarType() && 2289 "Expect two vectors with the same element type"); 2290 2291 unsigned NumElts1 = VecTy1->getNumElements(); 2292 unsigned NumElts2 = VecTy2->getNumElements(); 2293 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2294 2295 if (NumElts1 > NumElts2) { 2296 // Extend with UNDEFs. 2297 Constant *ExtMask = 2298 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2299 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2300 } 2301 2302 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2303 return Builder.CreateShuffleVector(V1, V2, Mask); 2304 } 2305 2306 // Concatenate vectors in the given list. All vectors have the same type. 2307 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2308 ArrayRef<Value *> InputList) { 2309 unsigned NumVec = InputList.size(); 2310 assert(NumVec > 1 && "Should be at least two vectors"); 2311 2312 SmallVector<Value *, 8> ResList; 2313 ResList.append(InputList.begin(), InputList.end()); 2314 do { 2315 SmallVector<Value *, 8> TmpList; 2316 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2317 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2318 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2319 "Only the last vector may have a different type"); 2320 2321 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2322 } 2323 2324 // Push the last vector if the total number of vectors is odd. 2325 if (NumVec % 2 != 0) 2326 TmpList.push_back(ResList[NumVec - 1]); 2327 2328 ResList = TmpList; 2329 NumVec = ResList.size(); 2330 } while (NumVec > 1); 2331 2332 return ResList[0]; 2333 } 2334 2335 // Try to vectorize the interleave group that \p Instr belongs to. 2336 // 2337 // E.g. Translate following interleaved load group (factor = 3): 2338 // for (i = 0; i < N; i+=3) { 2339 // R = Pic[i]; // Member of index 0 2340 // G = Pic[i+1]; // Member of index 1 2341 // B = Pic[i+2]; // Member of index 2 2342 // ... // do something to R, G, B 2343 // } 2344 // To: 2345 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2346 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2347 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2348 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2349 // 2350 // Or translate following interleaved store group (factor = 3): 2351 // for (i = 0; i < N; i+=3) { 2352 // ... do something to R, G, B 2353 // Pic[i] = R; // Member of index 0 2354 // Pic[i+1] = G; // Member of index 1 2355 // Pic[i+2] = B; // Member of index 2 2356 // } 2357 // To: 2358 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2359 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2360 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2361 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2362 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2363 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2364 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2365 assert(Group && "Fail to get an interleaved access group."); 2366 2367 // Skip if current instruction is not the insert position. 2368 if (Instr != Group->getInsertPos()) 2369 return; 2370 2371 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2372 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2373 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2374 2375 // Prepare for the vector type of the interleaved load/store. 2376 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2377 unsigned InterleaveFactor = Group->getFactor(); 2378 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2379 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2380 2381 // Prepare for the new pointers. 2382 setDebugLocFromInst(Builder, Ptr); 2383 VectorParts &PtrParts = getVectorValue(Ptr); 2384 SmallVector<Value *, 2> NewPtrs; 2385 unsigned Index = Group->getIndex(Instr); 2386 for (unsigned Part = 0; Part < UF; Part++) { 2387 // Extract the pointer for current instruction from the pointer vector. A 2388 // reverse access uses the pointer in the last lane. 2389 Value *NewPtr = Builder.CreateExtractElement( 2390 PtrParts[Part], 2391 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2392 2393 // Notice current instruction could be any index. Need to adjust the address 2394 // to the member of index 0. 2395 // 2396 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2397 // b = A[i]; // Member of index 0 2398 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2399 // 2400 // E.g. A[i+1] = a; // Member of index 1 2401 // A[i] = b; // Member of index 0 2402 // A[i+2] = c; // Member of index 2 (Current instruction) 2403 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2404 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2405 2406 // Cast to the vector pointer type. 2407 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2408 } 2409 2410 setDebugLocFromInst(Builder, Instr); 2411 Value *UndefVec = UndefValue::get(VecTy); 2412 2413 // Vectorize the interleaved load group. 2414 if (LI) { 2415 for (unsigned Part = 0; Part < UF; Part++) { 2416 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2417 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2418 2419 for (unsigned i = 0; i < InterleaveFactor; i++) { 2420 Instruction *Member = Group->getMember(i); 2421 2422 // Skip the gaps in the group. 2423 if (!Member) 2424 continue; 2425 2426 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2427 Value *StridedVec = Builder.CreateShuffleVector( 2428 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2429 2430 // If this member has different type, cast the result type. 2431 if (Member->getType() != ScalarTy) { 2432 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2433 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2434 } 2435 2436 VectorParts &Entry = WidenMap.get(Member); 2437 Entry[Part] = 2438 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2439 } 2440 2441 addMetadata(NewLoadInstr, Instr); 2442 } 2443 return; 2444 } 2445 2446 // The sub vector type for current instruction. 2447 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2448 2449 // Vectorize the interleaved store group. 2450 for (unsigned Part = 0; Part < UF; Part++) { 2451 // Collect the stored vector from each member. 2452 SmallVector<Value *, 4> StoredVecs; 2453 for (unsigned i = 0; i < InterleaveFactor; i++) { 2454 // Interleaved store group doesn't allow a gap, so each index has a member 2455 Instruction *Member = Group->getMember(i); 2456 assert(Member && "Fail to get a member from an interleaved store group"); 2457 2458 Value *StoredVec = 2459 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2460 if (Group->isReverse()) 2461 StoredVec = reverseVector(StoredVec); 2462 2463 // If this member has different type, cast it to an unified type. 2464 if (StoredVec->getType() != SubVT) 2465 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2466 2467 StoredVecs.push_back(StoredVec); 2468 } 2469 2470 // Concatenate all vectors into a wide vector. 2471 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2472 2473 // Interleave the elements in the wide vector. 2474 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2475 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2476 "interleaved.vec"); 2477 2478 Instruction *NewStoreInstr = 2479 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2480 addMetadata(NewStoreInstr, Instr); 2481 } 2482 } 2483 2484 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2485 // Attempt to issue a wide load. 2486 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2487 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2488 2489 assert((LI || SI) && "Invalid Load/Store instruction"); 2490 2491 // Try to vectorize the interleave group if this access is interleaved. 2492 if (Legal->isAccessInterleaved(Instr)) 2493 return vectorizeInterleaveGroup(Instr); 2494 2495 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2496 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2497 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2498 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2499 // An alignment of 0 means target abi alignment. We need to use the scalar's 2500 // target abi alignment in such a case. 2501 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2502 if (!Alignment) 2503 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2504 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2505 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2506 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2507 2508 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2509 !Legal->isMaskRequired(SI)) 2510 return scalarizeInstruction(Instr, true); 2511 2512 if (ScalarAllocatedSize != VectorElementSize) 2513 return scalarizeInstruction(Instr); 2514 2515 // If the pointer is loop invariant scalarize the load. 2516 if (LI && Legal->isUniform(Ptr)) 2517 return scalarizeInstruction(Instr); 2518 2519 // If the pointer is non-consecutive and gather/scatter is not supported 2520 // scalarize the instruction. 2521 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2522 bool Reverse = ConsecutiveStride < 0; 2523 bool CreateGatherScatter = !ConsecutiveStride && 2524 ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2525 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2526 2527 if (!ConsecutiveStride && !CreateGatherScatter) 2528 return scalarizeInstruction(Instr); 2529 2530 Constant *Zero = Builder.getInt32(0); 2531 VectorParts &Entry = WidenMap.get(Instr); 2532 VectorParts VectorGep; 2533 2534 // Handle consecutive loads/stores. 2535 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2536 if (ConsecutiveStride) { 2537 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2538 setDebugLocFromInst(Builder, Gep); 2539 Value *PtrOperand = Gep->getPointerOperand(); 2540 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2541 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2542 2543 // Create the new GEP with the new induction variable. 2544 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2545 Gep2->setOperand(0, FirstBasePtr); 2546 Gep2->setName("gep.indvar.base"); 2547 Ptr = Builder.Insert(Gep2); 2548 } else if (Gep) { 2549 setDebugLocFromInst(Builder, Gep); 2550 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2551 OrigLoop) && 2552 "Base ptr must be invariant"); 2553 // The last index does not have to be the induction. It can be 2554 // consecutive and be a function of the index. For example A[I+1]; 2555 unsigned NumOperands = Gep->getNumOperands(); 2556 unsigned InductionOperand = getGEPInductionOperand(Gep); 2557 // Create the new GEP with the new induction variable. 2558 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2559 2560 for (unsigned i = 0; i < NumOperands; ++i) { 2561 Value *GepOperand = Gep->getOperand(i); 2562 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2563 2564 // Update last index or loop invariant instruction anchored in loop. 2565 if (i == InductionOperand || 2566 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2567 assert((i == InductionOperand || 2568 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2569 OrigLoop)) && 2570 "Must be last index or loop invariant"); 2571 2572 VectorParts &GEPParts = getVectorValue(GepOperand); 2573 Value *Index = GEPParts[0]; 2574 Index = Builder.CreateExtractElement(Index, Zero); 2575 Gep2->setOperand(i, Index); 2576 Gep2->setName("gep.indvar.idx"); 2577 } 2578 } 2579 Ptr = Builder.Insert(Gep2); 2580 } else { // No GEP 2581 // Use the induction element ptr. 2582 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2583 setDebugLocFromInst(Builder, Ptr); 2584 VectorParts &PtrVal = getVectorValue(Ptr); 2585 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2586 } 2587 } else { 2588 // At this point we should vector version of GEP for Gather or Scatter 2589 assert(CreateGatherScatter && "The instruction should be scalarized"); 2590 if (Gep) { 2591 SmallVector<VectorParts, 4> OpsV; 2592 // Vectorizing GEP, across UF parts, we want to keep each loop-invariant 2593 // base or index of GEP scalar 2594 for (Value *Op : Gep->operands()) { 2595 if (PSE.getSE()->isLoopInvariant(PSE.getSCEV(Op), OrigLoop)) 2596 OpsV.push_back(VectorParts(UF, Op)); 2597 else 2598 OpsV.push_back(getVectorValue(Op)); 2599 } 2600 2601 for (unsigned Part = 0; Part < UF; ++Part) { 2602 SmallVector<Value*, 4> Ops; 2603 Value *GEPBasePtr = OpsV[0][Part]; 2604 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2605 Ops.push_back(OpsV[i][Part]); 2606 Value *NewGep = Builder.CreateGEP(nullptr, GEPBasePtr, Ops, 2607 "VectorGep"); 2608 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2609 NewGep = Builder.CreateBitCast(NewGep, 2610 VectorType::get(Ptr->getType(), VF)); 2611 VectorGep.push_back(NewGep); 2612 } 2613 } else 2614 VectorGep = getVectorValue(Ptr); 2615 } 2616 2617 VectorParts Mask = createBlockInMask(Instr->getParent()); 2618 // Handle Stores: 2619 if (SI) { 2620 assert(!Legal->isUniform(SI->getPointerOperand()) && 2621 "We do not allow storing to uniform addresses"); 2622 setDebugLocFromInst(Builder, SI); 2623 // We don't want to update the value in the map as it might be used in 2624 // another expression. So don't use a reference type for "StoredVal". 2625 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2626 2627 for (unsigned Part = 0; Part < UF; ++Part) { 2628 Instruction *NewSI = nullptr; 2629 if (CreateGatherScatter) { 2630 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2631 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2632 Alignment, MaskPart); 2633 } else { 2634 // Calculate the pointer for the specific unroll-part. 2635 Value *PartPtr = 2636 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2637 2638 if (Reverse) { 2639 // If we store to reverse consecutive memory locations, then we need 2640 // to reverse the order of elements in the stored value. 2641 StoredVal[Part] = reverseVector(StoredVal[Part]); 2642 // If the address is consecutive but reversed, then the 2643 // wide store needs to start at the last vector element. 2644 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2645 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2646 Mask[Part] = reverseVector(Mask[Part]); 2647 } 2648 2649 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2650 DataTy->getPointerTo(AddressSpace)); 2651 2652 if (Legal->isMaskRequired(SI)) 2653 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2654 Mask[Part]); 2655 else 2656 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, 2657 Alignment); 2658 } 2659 addMetadata(NewSI, SI); 2660 } 2661 return; 2662 } 2663 2664 // Handle loads. 2665 assert(LI && "Must have a load instruction"); 2666 setDebugLocFromInst(Builder, LI); 2667 for (unsigned Part = 0; Part < UF; ++Part) { 2668 Instruction* NewLI; 2669 if (CreateGatherScatter) { 2670 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2671 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, 2672 MaskPart, 0, "wide.masked.gather"); 2673 Entry[Part] = NewLI; 2674 } else { 2675 // Calculate the pointer for the specific unroll-part. 2676 Value *PartPtr = 2677 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2678 2679 if (Reverse) { 2680 // If the address is consecutive but reversed, then the 2681 // wide load needs to start at the last vector element. 2682 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2683 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2684 Mask[Part] = reverseVector(Mask[Part]); 2685 } 2686 2687 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2688 DataTy->getPointerTo(AddressSpace)); 2689 if (Legal->isMaskRequired(LI)) 2690 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2691 UndefValue::get(DataTy), 2692 "wide.masked.load"); 2693 else 2694 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2695 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2696 } 2697 addMetadata(NewLI, LI); 2698 } 2699 } 2700 2701 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2702 bool IfPredicateStore) { 2703 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2704 // Holds vector parameters or scalars, in case of uniform vals. 2705 SmallVector<VectorParts, 4> Params; 2706 2707 setDebugLocFromInst(Builder, Instr); 2708 2709 // Find all of the vectorized parameters. 2710 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2711 Value *SrcOp = Instr->getOperand(op); 2712 2713 // If we are accessing the old induction variable, use the new one. 2714 if (SrcOp == OldInduction) { 2715 Params.push_back(getVectorValue(SrcOp)); 2716 continue; 2717 } 2718 2719 // Try using previously calculated values. 2720 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2721 2722 // If the src is an instruction that appeared earlier in the basic block, 2723 // then it should already be vectorized. 2724 if (SrcInst && OrigLoop->contains(SrcInst)) { 2725 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2726 // The parameter is a vector value from earlier. 2727 Params.push_back(WidenMap.get(SrcInst)); 2728 } else { 2729 // The parameter is a scalar from outside the loop. Maybe even a constant. 2730 VectorParts Scalars; 2731 Scalars.append(UF, SrcOp); 2732 Params.push_back(Scalars); 2733 } 2734 } 2735 2736 assert(Params.size() == Instr->getNumOperands() && 2737 "Invalid number of operands"); 2738 2739 // Does this instruction return a value ? 2740 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2741 2742 Value *UndefVec = IsVoidRetTy ? nullptr : 2743 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2744 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2745 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2746 2747 VectorParts Cond; 2748 if (IfPredicateStore) { 2749 assert(Instr->getParent()->getSinglePredecessor() && 2750 "Only support single predecessor blocks"); 2751 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2752 Instr->getParent()); 2753 } 2754 2755 // For each vector unroll 'part': 2756 for (unsigned Part = 0; Part < UF; ++Part) { 2757 // For each scalar that we create: 2758 for (unsigned Width = 0; Width < VF; ++Width) { 2759 2760 // Start if-block. 2761 Value *Cmp = nullptr; 2762 if (IfPredicateStore) { 2763 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2764 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2765 ConstantInt::get(Cmp->getType(), 1)); 2766 } 2767 2768 Instruction *Cloned = Instr->clone(); 2769 if (!IsVoidRetTy) 2770 Cloned->setName(Instr->getName() + ".cloned"); 2771 // Replace the operands of the cloned instructions with extracted scalars. 2772 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2773 Value *Op = Params[op][Part]; 2774 // Param is a vector. Need to extract the right lane. 2775 if (Op->getType()->isVectorTy()) 2776 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2777 Cloned->setOperand(op, Op); 2778 } 2779 addNewMetadata(Cloned, Instr); 2780 2781 // Place the cloned scalar in the new loop. 2782 Builder.Insert(Cloned); 2783 2784 // If we just cloned a new assumption, add it the assumption cache. 2785 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2786 if (II->getIntrinsicID() == Intrinsic::assume) 2787 AC->registerAssumption(II); 2788 2789 // If the original scalar returns a value we need to place it in a vector 2790 // so that future users will be able to use it. 2791 if (!IsVoidRetTy) 2792 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2793 Builder.getInt32(Width)); 2794 // End if-block. 2795 if (IfPredicateStore) 2796 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 2797 Cmp)); 2798 } 2799 } 2800 } 2801 2802 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2803 Value *End, Value *Step, 2804 Instruction *DL) { 2805 BasicBlock *Header = L->getHeader(); 2806 BasicBlock *Latch = L->getLoopLatch(); 2807 // As we're just creating this loop, it's possible no latch exists 2808 // yet. If so, use the header as this will be a single block loop. 2809 if (!Latch) 2810 Latch = Header; 2811 2812 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2813 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2814 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2815 2816 Builder.SetInsertPoint(Latch->getTerminator()); 2817 2818 // Create i+1 and fill the PHINode. 2819 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2820 Induction->addIncoming(Start, L->getLoopPreheader()); 2821 Induction->addIncoming(Next, Latch); 2822 // Create the compare. 2823 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2824 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2825 2826 // Now we have two terminators. Remove the old one from the block. 2827 Latch->getTerminator()->eraseFromParent(); 2828 2829 return Induction; 2830 } 2831 2832 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2833 if (TripCount) 2834 return TripCount; 2835 2836 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2837 // Find the loop boundaries. 2838 ScalarEvolution *SE = PSE.getSE(); 2839 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2840 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2841 "Invalid loop count"); 2842 2843 Type *IdxTy = Legal->getWidestInductionType(); 2844 2845 // The exit count might have the type of i64 while the phi is i32. This can 2846 // happen if we have an induction variable that is sign extended before the 2847 // compare. The only way that we get a backedge taken count is that the 2848 // induction variable was signed and as such will not overflow. In such a case 2849 // truncation is legal. 2850 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2851 IdxTy->getPrimitiveSizeInBits()) 2852 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2853 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2854 2855 // Get the total trip count from the count by adding 1. 2856 const SCEV *ExitCount = SE->getAddExpr( 2857 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2858 2859 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2860 2861 // Expand the trip count and place the new instructions in the preheader. 2862 // Notice that the pre-header does not change, only the loop body. 2863 SCEVExpander Exp(*SE, DL, "induction"); 2864 2865 // Count holds the overall loop count (N). 2866 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2867 L->getLoopPreheader()->getTerminator()); 2868 2869 if (TripCount->getType()->isPointerTy()) 2870 TripCount = 2871 CastInst::CreatePointerCast(TripCount, IdxTy, 2872 "exitcount.ptrcnt.to.int", 2873 L->getLoopPreheader()->getTerminator()); 2874 2875 return TripCount; 2876 } 2877 2878 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2879 if (VectorTripCount) 2880 return VectorTripCount; 2881 2882 Value *TC = getOrCreateTripCount(L); 2883 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2884 2885 // Now we need to generate the expression for the part of the loop that the 2886 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2887 // iterations are not required for correctness, or N - Step, otherwise. Step 2888 // is equal to the vectorization factor (number of SIMD elements) times the 2889 // unroll factor (number of SIMD instructions). 2890 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2891 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2892 2893 // If there is a non-reversed interleaved group that may speculatively access 2894 // memory out-of-bounds, we need to ensure that there will be at least one 2895 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2896 // the trip count, we set the remainder to be equal to the step. If the step 2897 // does not evenly divide the trip count, no adjustment is necessary since 2898 // there will already be scalar iterations. Note that the minimum iterations 2899 // check ensures that N >= Step. 2900 if (VF > 1 && Legal->requiresScalarEpilogue()) { 2901 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2902 R = Builder.CreateSelect(IsZero, Step, R); 2903 } 2904 2905 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2906 2907 return VectorTripCount; 2908 } 2909 2910 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2911 BasicBlock *Bypass) { 2912 Value *Count = getOrCreateTripCount(L); 2913 BasicBlock *BB = L->getLoopPreheader(); 2914 IRBuilder<> Builder(BB->getTerminator()); 2915 2916 // Generate code to check that the loop's trip count that we computed by 2917 // adding one to the backedge-taken count will not overflow. 2918 Value *CheckMinIters = 2919 Builder.CreateICmpULT(Count, 2920 ConstantInt::get(Count->getType(), VF * UF), 2921 "min.iters.check"); 2922 2923 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2924 "min.iters.checked"); 2925 // Update dominator tree immediately if the generated block is a 2926 // LoopBypassBlock because SCEV expansions to generate loop bypass 2927 // checks may query it before the current function is finished. 2928 DT->addNewBlock(NewBB, BB); 2929 if (L->getParentLoop()) 2930 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2931 ReplaceInstWithInst(BB->getTerminator(), 2932 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2933 LoopBypassBlocks.push_back(BB); 2934 } 2935 2936 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2937 BasicBlock *Bypass) { 2938 Value *TC = getOrCreateVectorTripCount(L); 2939 BasicBlock *BB = L->getLoopPreheader(); 2940 IRBuilder<> Builder(BB->getTerminator()); 2941 2942 // Now, compare the new count to zero. If it is zero skip the vector loop and 2943 // jump to the scalar loop. 2944 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2945 "cmp.zero"); 2946 2947 // Generate code to check that the loop's trip count that we computed by 2948 // adding one to the backedge-taken count will not overflow. 2949 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2950 "vector.ph"); 2951 // Update dominator tree immediately if the generated block is a 2952 // LoopBypassBlock because SCEV expansions to generate loop bypass 2953 // checks may query it before the current function is finished. 2954 DT->addNewBlock(NewBB, BB); 2955 if (L->getParentLoop()) 2956 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2957 ReplaceInstWithInst(BB->getTerminator(), 2958 BranchInst::Create(Bypass, NewBB, Cmp)); 2959 LoopBypassBlocks.push_back(BB); 2960 } 2961 2962 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2963 BasicBlock *BB = L->getLoopPreheader(); 2964 2965 // Generate the code to check that the SCEV assumptions that we made. 2966 // We want the new basic block to start at the first instruction in a 2967 // sequence of instructions that form a check. 2968 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2969 "scev.check"); 2970 Value *SCEVCheck = 2971 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2972 2973 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2974 if (C->isZero()) 2975 return; 2976 2977 // Create a new block containing the stride check. 2978 BB->setName("vector.scevcheck"); 2979 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2980 // Update dominator tree immediately if the generated block is a 2981 // LoopBypassBlock because SCEV expansions to generate loop bypass 2982 // checks may query it before the current function is finished. 2983 DT->addNewBlock(NewBB, BB); 2984 if (L->getParentLoop()) 2985 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2986 ReplaceInstWithInst(BB->getTerminator(), 2987 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2988 LoopBypassBlocks.push_back(BB); 2989 AddedSafetyChecks = true; 2990 } 2991 2992 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 2993 BasicBlock *Bypass) { 2994 BasicBlock *BB = L->getLoopPreheader(); 2995 2996 // Generate the code that checks in runtime if arrays overlap. We put the 2997 // checks into a separate block to make the more common case of few elements 2998 // faster. 2999 Instruction *FirstCheckInst; 3000 Instruction *MemRuntimeCheck; 3001 std::tie(FirstCheckInst, MemRuntimeCheck) = 3002 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3003 if (!MemRuntimeCheck) 3004 return; 3005 3006 // Create a new block containing the memory check. 3007 BB->setName("vector.memcheck"); 3008 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3009 // Update dominator tree immediately if the generated block is a 3010 // LoopBypassBlock because SCEV expansions to generate loop bypass 3011 // checks may query it before the current function is finished. 3012 DT->addNewBlock(NewBB, BB); 3013 if (L->getParentLoop()) 3014 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3015 ReplaceInstWithInst(BB->getTerminator(), 3016 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3017 LoopBypassBlocks.push_back(BB); 3018 AddedSafetyChecks = true; 3019 3020 // We currently don't use LoopVersioning for the actual loop cloning but we 3021 // still use it to add the noalias metadata. 3022 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3023 PSE.getSE()); 3024 LVer->prepareNoAliasMetadata(); 3025 } 3026 3027 3028 void InnerLoopVectorizer::createEmptyLoop() { 3029 /* 3030 In this function we generate a new loop. The new loop will contain 3031 the vectorized instructions while the old loop will continue to run the 3032 scalar remainder. 3033 3034 [ ] <-- loop iteration number check. 3035 / | 3036 / v 3037 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3038 | / | 3039 | / v 3040 || [ ] <-- vector pre header. 3041 |/ | 3042 | v 3043 | [ ] \ 3044 | [ ]_| <-- vector loop. 3045 | | 3046 | v 3047 | -[ ] <--- middle-block. 3048 | / | 3049 | / v 3050 -|- >[ ] <--- new preheader. 3051 | | 3052 | v 3053 | [ ] \ 3054 | [ ]_| <-- old scalar loop to handle remainder. 3055 \ | 3056 \ v 3057 >[ ] <-- exit block. 3058 ... 3059 */ 3060 3061 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3062 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3063 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3064 assert(VectorPH && "Invalid loop structure"); 3065 assert(ExitBlock && "Must have an exit block"); 3066 3067 // Some loops have a single integer induction variable, while other loops 3068 // don't. One example is c++ iterators that often have multiple pointer 3069 // induction variables. In the code below we also support a case where we 3070 // don't have a single induction variable. 3071 // 3072 // We try to obtain an induction variable from the original loop as hard 3073 // as possible. However if we don't find one that: 3074 // - is an integer 3075 // - counts from zero, stepping by one 3076 // - is the size of the widest induction variable type 3077 // then we create a new one. 3078 OldInduction = Legal->getInduction(); 3079 Type *IdxTy = Legal->getWidestInductionType(); 3080 3081 // Split the single block loop into the two loop structure described above. 3082 BasicBlock *VecBody = 3083 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3084 BasicBlock *MiddleBlock = 3085 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3086 BasicBlock *ScalarPH = 3087 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3088 3089 // Create and register the new vector loop. 3090 Loop* Lp = new Loop(); 3091 Loop *ParentLoop = OrigLoop->getParentLoop(); 3092 3093 // Insert the new loop into the loop nest and register the new basic blocks 3094 // before calling any utilities such as SCEV that require valid LoopInfo. 3095 if (ParentLoop) { 3096 ParentLoop->addChildLoop(Lp); 3097 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3098 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3099 } else { 3100 LI->addTopLevelLoop(Lp); 3101 } 3102 Lp->addBasicBlockToLoop(VecBody, *LI); 3103 3104 // Find the loop boundaries. 3105 Value *Count = getOrCreateTripCount(Lp); 3106 3107 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3108 3109 // We need to test whether the backedge-taken count is uint##_max. Adding one 3110 // to it will cause overflow and an incorrect loop trip count in the vector 3111 // body. In case of overflow we want to directly jump to the scalar remainder 3112 // loop. 3113 emitMinimumIterationCountCheck(Lp, ScalarPH); 3114 // Now, compare the new count to zero. If it is zero skip the vector loop and 3115 // jump to the scalar loop. 3116 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3117 // Generate the code to check any assumptions that we've made for SCEV 3118 // expressions. 3119 emitSCEVChecks(Lp, ScalarPH); 3120 3121 // Generate the code that checks in runtime if arrays overlap. We put the 3122 // checks into a separate block to make the more common case of few elements 3123 // faster. 3124 emitMemRuntimeChecks(Lp, ScalarPH); 3125 3126 // Generate the induction variable. 3127 // The loop step is equal to the vectorization factor (num of SIMD elements) 3128 // times the unroll factor (num of SIMD instructions). 3129 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3130 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3131 Induction = 3132 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3133 getDebugLocFromInstOrOperands(OldInduction)); 3134 3135 // We are going to resume the execution of the scalar loop. 3136 // Go over all of the induction variables that we found and fix the 3137 // PHIs that are left in the scalar version of the loop. 3138 // The starting values of PHI nodes depend on the counter of the last 3139 // iteration in the vectorized loop. 3140 // If we come from a bypass edge then we need to start from the original 3141 // start value. 3142 3143 // This variable saves the new starting index for the scalar loop. It is used 3144 // to test if there are any tail iterations left once the vector loop has 3145 // completed. 3146 LoopVectorizationLegality::InductionList::iterator I, E; 3147 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3148 for (I = List->begin(), E = List->end(); I != E; ++I) { 3149 PHINode *OrigPhi = I->first; 3150 InductionDescriptor II = I->second; 3151 3152 // Create phi nodes to merge from the backedge-taken check block. 3153 PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, 3154 "bc.resume.val", 3155 ScalarPH->getTerminator()); 3156 Value *EndValue; 3157 if (OrigPhi == OldInduction) { 3158 // We know what the end value is. 3159 EndValue = CountRoundDown; 3160 } else { 3161 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3162 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3163 II.getStepValue()->getType(), 3164 "cast.crd"); 3165 EndValue = II.transform(B, CRD); 3166 EndValue->setName("ind.end"); 3167 } 3168 3169 // The new PHI merges the original incoming value, in case of a bypass, 3170 // or the value at the end of the vectorized loop. 3171 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3172 3173 // Fix the scalar body counter (PHI node). 3174 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3175 3176 // The old induction's phi node in the scalar body needs the truncated 3177 // value. 3178 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3179 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 3180 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3181 } 3182 3183 // Add a check in the middle block to see if we have completed 3184 // all of the iterations in the first vector loop. 3185 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3186 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3187 CountRoundDown, "cmp.n", 3188 MiddleBlock->getTerminator()); 3189 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3190 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3191 3192 // Get ready to start creating new instructions into the vectorized body. 3193 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3194 3195 // Save the state. 3196 LoopVectorPreHeader = Lp->getLoopPreheader(); 3197 LoopScalarPreHeader = ScalarPH; 3198 LoopMiddleBlock = MiddleBlock; 3199 LoopExitBlock = ExitBlock; 3200 LoopVectorBody.push_back(VecBody); 3201 LoopScalarBody = OldBasicBlock; 3202 3203 LoopVectorizeHints Hints(Lp, true); 3204 Hints.setAlreadyVectorized(); 3205 } 3206 3207 namespace { 3208 struct CSEDenseMapInfo { 3209 static bool canHandle(Instruction *I) { 3210 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3211 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3212 } 3213 static inline Instruction *getEmptyKey() { 3214 return DenseMapInfo<Instruction *>::getEmptyKey(); 3215 } 3216 static inline Instruction *getTombstoneKey() { 3217 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3218 } 3219 static unsigned getHashValue(Instruction *I) { 3220 assert(canHandle(I) && "Unknown instruction!"); 3221 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3222 I->value_op_end())); 3223 } 3224 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3225 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3226 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3227 return LHS == RHS; 3228 return LHS->isIdenticalTo(RHS); 3229 } 3230 }; 3231 } 3232 3233 /// \brief Check whether this block is a predicated block. 3234 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 3235 /// = ...; " blocks. We start with one vectorized basic block. For every 3236 /// conditional block we split this vectorized block. Therefore, every second 3237 /// block will be a predicated one. 3238 static bool isPredicatedBlock(unsigned BlockNum) { 3239 return BlockNum % 2; 3240 } 3241 3242 ///\brief Perform cse of induction variable instructions. 3243 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 3244 // Perform simple cse. 3245 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3246 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 3247 BasicBlock *BB = BBs[i]; 3248 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3249 Instruction *In = &*I++; 3250 3251 if (!CSEDenseMapInfo::canHandle(In)) 3252 continue; 3253 3254 // Check if we can replace this instruction with any of the 3255 // visited instructions. 3256 if (Instruction *V = CSEMap.lookup(In)) { 3257 In->replaceAllUsesWith(V); 3258 In->eraseFromParent(); 3259 continue; 3260 } 3261 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 3262 // ...;" blocks for predicated stores. Every second block is a predicated 3263 // block. 3264 if (isPredicatedBlock(i)) 3265 continue; 3266 3267 CSEMap[In] = In; 3268 } 3269 } 3270 } 3271 3272 /// \brief Adds a 'fast' flag to floating point operations. 3273 static Value *addFastMathFlag(Value *V) { 3274 if (isa<FPMathOperator>(V)){ 3275 FastMathFlags Flags; 3276 Flags.setUnsafeAlgebra(); 3277 cast<Instruction>(V)->setFastMathFlags(Flags); 3278 } 3279 return V; 3280 } 3281 3282 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3283 /// the result needs to be inserted and/or extracted from vectors. 3284 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3285 const TargetTransformInfo &TTI) { 3286 if (Ty->isVoidTy()) 3287 return 0; 3288 3289 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3290 unsigned Cost = 0; 3291 3292 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3293 if (Insert) 3294 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3295 if (Extract) 3296 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3297 } 3298 3299 return Cost; 3300 } 3301 3302 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3303 // Return the cost of the instruction, including scalarization overhead if it's 3304 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3305 // i.e. either vector version isn't available, or is too expensive. 3306 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3307 const TargetTransformInfo &TTI, 3308 const TargetLibraryInfo *TLI, 3309 bool &NeedToScalarize) { 3310 Function *F = CI->getCalledFunction(); 3311 StringRef FnName = CI->getCalledFunction()->getName(); 3312 Type *ScalarRetTy = CI->getType(); 3313 SmallVector<Type *, 4> Tys, ScalarTys; 3314 for (auto &ArgOp : CI->arg_operands()) 3315 ScalarTys.push_back(ArgOp->getType()); 3316 3317 // Estimate cost of scalarized vector call. The source operands are assumed 3318 // to be vectors, so we need to extract individual elements from there, 3319 // execute VF scalar calls, and then gather the result into the vector return 3320 // value. 3321 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3322 if (VF == 1) 3323 return ScalarCallCost; 3324 3325 // Compute corresponding vector type for return value and arguments. 3326 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3327 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3328 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3329 3330 // Compute costs of unpacking argument values for the scalar calls and 3331 // packing the return values to a vector. 3332 unsigned ScalarizationCost = 3333 getScalarizationOverhead(RetTy, true, false, TTI); 3334 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3335 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3336 3337 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3338 3339 // If we can't emit a vector call for this function, then the currently found 3340 // cost is the cost we need to return. 3341 NeedToScalarize = true; 3342 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3343 return Cost; 3344 3345 // If the corresponding vector cost is cheaper, return its cost. 3346 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3347 if (VectorCallCost < Cost) { 3348 NeedToScalarize = false; 3349 return VectorCallCost; 3350 } 3351 return Cost; 3352 } 3353 3354 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3355 // factor VF. Return the cost of the instruction, including scalarization 3356 // overhead if it's needed. 3357 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3358 const TargetTransformInfo &TTI, 3359 const TargetLibraryInfo *TLI) { 3360 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3361 assert(ID && "Expected intrinsic call!"); 3362 3363 Type *RetTy = ToVectorTy(CI->getType(), VF); 3364 SmallVector<Type *, 4> Tys; 3365 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3366 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3367 3368 FastMathFlags FMF; 3369 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3370 FMF = FPMO->getFastMathFlags(); 3371 3372 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3373 } 3374 3375 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3376 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3377 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3378 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3379 } 3380 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3381 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3382 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3383 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3384 } 3385 3386 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3387 // For every instruction `I` in MinBWs, truncate the operands, create a 3388 // truncated version of `I` and reextend its result. InstCombine runs 3389 // later and will remove any ext/trunc pairs. 3390 // 3391 for (auto &KV : MinBWs) { 3392 VectorParts &Parts = WidenMap.get(KV.first); 3393 for (Value *&I : Parts) { 3394 if (I->use_empty()) 3395 continue; 3396 Type *OriginalTy = I->getType(); 3397 Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(), 3398 KV.second); 3399 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3400 OriginalTy->getVectorNumElements()); 3401 if (TruncatedTy == OriginalTy) 3402 continue; 3403 3404 if (!isa<Instruction>(I)) 3405 continue; 3406 3407 IRBuilder<> B(cast<Instruction>(I)); 3408 auto ShrinkOperand = [&](Value *V) -> Value* { 3409 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3410 if (ZI->getSrcTy() == TruncatedTy) 3411 return ZI->getOperand(0); 3412 return B.CreateZExtOrTrunc(V, TruncatedTy); 3413 }; 3414 3415 // The actual instruction modification depends on the instruction type, 3416 // unfortunately. 3417 Value *NewI = nullptr; 3418 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3419 NewI = B.CreateBinOp(BO->getOpcode(), 3420 ShrinkOperand(BO->getOperand(0)), 3421 ShrinkOperand(BO->getOperand(1))); 3422 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3423 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3424 NewI = B.CreateICmp(CI->getPredicate(), 3425 ShrinkOperand(CI->getOperand(0)), 3426 ShrinkOperand(CI->getOperand(1))); 3427 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3428 NewI = B.CreateSelect(SI->getCondition(), 3429 ShrinkOperand(SI->getTrueValue()), 3430 ShrinkOperand(SI->getFalseValue())); 3431 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3432 switch (CI->getOpcode()) { 3433 default: llvm_unreachable("Unhandled cast!"); 3434 case Instruction::Trunc: 3435 NewI = ShrinkOperand(CI->getOperand(0)); 3436 break; 3437 case Instruction::SExt: 3438 NewI = B.CreateSExtOrTrunc(CI->getOperand(0), 3439 smallestIntegerVectorType(OriginalTy, 3440 TruncatedTy)); 3441 break; 3442 case Instruction::ZExt: 3443 NewI = B.CreateZExtOrTrunc(CI->getOperand(0), 3444 smallestIntegerVectorType(OriginalTy, 3445 TruncatedTy)); 3446 break; 3447 } 3448 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3449 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3450 auto *O0 = 3451 B.CreateZExtOrTrunc(SI->getOperand(0), 3452 VectorType::get(ScalarTruncatedTy, Elements0)); 3453 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3454 auto *O1 = 3455 B.CreateZExtOrTrunc(SI->getOperand(1), 3456 VectorType::get(ScalarTruncatedTy, Elements1)); 3457 3458 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3459 } else if (isa<LoadInst>(I)) { 3460 // Don't do anything with the operands, just extend the result. 3461 continue; 3462 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3463 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3464 auto *O0 = B.CreateZExtOrTrunc( 3465 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3466 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3467 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3468 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3469 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3470 auto *O0 = B.CreateZExtOrTrunc( 3471 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3472 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3473 } else { 3474 llvm_unreachable("Unhandled instruction type!"); 3475 } 3476 3477 // Lastly, extend the result. 3478 NewI->takeName(cast<Instruction>(I)); 3479 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3480 I->replaceAllUsesWith(Res); 3481 cast<Instruction>(I)->eraseFromParent(); 3482 I = Res; 3483 } 3484 } 3485 3486 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3487 for (auto &KV : MinBWs) { 3488 VectorParts &Parts = WidenMap.get(KV.first); 3489 for (Value *&I : Parts) { 3490 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3491 if (Inst && Inst->use_empty()) { 3492 Value *NewI = Inst->getOperand(0); 3493 Inst->eraseFromParent(); 3494 I = NewI; 3495 } 3496 } 3497 } 3498 } 3499 3500 void InnerLoopVectorizer::vectorizeLoop() { 3501 //===------------------------------------------------===// 3502 // 3503 // Notice: any optimization or new instruction that go 3504 // into the code below should be also be implemented in 3505 // the cost-model. 3506 // 3507 //===------------------------------------------------===// 3508 Constant *Zero = Builder.getInt32(0); 3509 3510 // In order to support recurrences we need to be able to vectorize Phi nodes. 3511 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3512 // we create a new vector PHI node with no incoming edges. We use this value 3513 // when we vectorize all of the instructions that use the PHI. Next, after 3514 // all of the instructions in the block are complete we add the new incoming 3515 // edges to the PHI. At this point all of the instructions in the basic block 3516 // are vectorized, so we can use them to construct the PHI. 3517 PhiVector PHIsToFix; 3518 3519 // Scan the loop in a topological order to ensure that defs are vectorized 3520 // before users. 3521 LoopBlocksDFS DFS(OrigLoop); 3522 DFS.perform(LI); 3523 3524 // Vectorize all of the blocks in the original loop. 3525 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3526 be = DFS.endRPO(); bb != be; ++bb) 3527 vectorizeBlockInLoop(*bb, &PHIsToFix); 3528 3529 // Insert truncates and extends for any truncated instructions as hints to 3530 // InstCombine. 3531 if (VF > 1) 3532 truncateToMinimalBitwidths(); 3533 3534 // At this point every instruction in the original loop is widened to a 3535 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3536 // nodes are currently empty because we did not want to introduce cycles. 3537 // This is the second stage of vectorizing recurrences. 3538 for (PHINode *Phi : PHIsToFix) { 3539 assert(Phi && "Unable to recover vectorized PHI"); 3540 3541 // Handle first-order recurrences that need to be fixed. 3542 if (Legal->isFirstOrderRecurrence(Phi)) { 3543 fixFirstOrderRecurrence(Phi); 3544 continue; 3545 } 3546 3547 // If the phi node is not a first-order recurrence, it must be a reduction. 3548 // Get it's reduction variable descriptor. 3549 assert(Legal->isReductionVariable(Phi) && 3550 "Unable to find the reduction variable"); 3551 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3552 3553 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3554 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3555 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3556 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3557 RdxDesc.getMinMaxRecurrenceKind(); 3558 setDebugLocFromInst(Builder, ReductionStartValue); 3559 3560 // We need to generate a reduction vector from the incoming scalar. 3561 // To do so, we need to generate the 'identity' vector and override 3562 // one of the elements with the incoming scalar reduction. We need 3563 // to do it in the vector-loop preheader. 3564 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3565 3566 // This is the vector-clone of the value that leaves the loop. 3567 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3568 Type *VecTy = VectorExit[0]->getType(); 3569 3570 // Find the reduction identity variable. Zero for addition, or, xor, 3571 // one for multiplication, -1 for And. 3572 Value *Identity; 3573 Value *VectorStart; 3574 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3575 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3576 // MinMax reduction have the start value as their identify. 3577 if (VF == 1) { 3578 VectorStart = Identity = ReductionStartValue; 3579 } else { 3580 VectorStart = Identity = 3581 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3582 } 3583 } else { 3584 // Handle other reduction kinds: 3585 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3586 RK, VecTy->getScalarType()); 3587 if (VF == 1) { 3588 Identity = Iden; 3589 // This vector is the Identity vector where the first element is the 3590 // incoming scalar reduction. 3591 VectorStart = ReductionStartValue; 3592 } else { 3593 Identity = ConstantVector::getSplat(VF, Iden); 3594 3595 // This vector is the Identity vector where the first element is the 3596 // incoming scalar reduction. 3597 VectorStart = 3598 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3599 } 3600 } 3601 3602 // Fix the vector-loop phi. 3603 3604 // Reductions do not have to start at zero. They can start with 3605 // any loop invariant values. 3606 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3607 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3608 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3609 VectorParts &Val = getVectorValue(LoopVal); 3610 for (unsigned part = 0; part < UF; ++part) { 3611 // Make sure to add the reduction stat value only to the 3612 // first unroll part. 3613 Value *StartVal = (part == 0) ? VectorStart : Identity; 3614 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3615 LoopVectorPreHeader); 3616 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3617 LoopVectorBody.back()); 3618 } 3619 3620 // Before each round, move the insertion point right between 3621 // the PHIs and the values we are going to write. 3622 // This allows us to write both PHINodes and the extractelement 3623 // instructions. 3624 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3625 3626 VectorParts RdxParts = getVectorValue(LoopExitInst); 3627 setDebugLocFromInst(Builder, LoopExitInst); 3628 3629 // If the vector reduction can be performed in a smaller type, we truncate 3630 // then extend the loop exit value to enable InstCombine to evaluate the 3631 // entire expression in the smaller type. 3632 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3633 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3634 Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator()); 3635 for (unsigned part = 0; part < UF; ++part) { 3636 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3637 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3638 : Builder.CreateZExt(Trunc, VecTy); 3639 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3640 UI != RdxParts[part]->user_end();) 3641 if (*UI != Trunc) { 3642 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3643 RdxParts[part] = Extnd; 3644 } else { 3645 ++UI; 3646 } 3647 } 3648 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3649 for (unsigned part = 0; part < UF; ++part) 3650 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3651 } 3652 3653 // Reduce all of the unrolled parts into a single vector. 3654 Value *ReducedPartRdx = RdxParts[0]; 3655 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3656 setDebugLocFromInst(Builder, ReducedPartRdx); 3657 for (unsigned part = 1; part < UF; ++part) { 3658 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3659 // Floating point operations had to be 'fast' to enable the reduction. 3660 ReducedPartRdx = addFastMathFlag( 3661 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3662 ReducedPartRdx, "bin.rdx")); 3663 else 3664 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3665 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3666 } 3667 3668 if (VF > 1) { 3669 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3670 // and vector ops, reducing the set of values being computed by half each 3671 // round. 3672 assert(isPowerOf2_32(VF) && 3673 "Reduction emission only supported for pow2 vectors!"); 3674 Value *TmpVec = ReducedPartRdx; 3675 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3676 for (unsigned i = VF; i != 1; i >>= 1) { 3677 // Move the upper half of the vector to the lower half. 3678 for (unsigned j = 0; j != i/2; ++j) 3679 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3680 3681 // Fill the rest of the mask with undef. 3682 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3683 UndefValue::get(Builder.getInt32Ty())); 3684 3685 Value *Shuf = 3686 Builder.CreateShuffleVector(TmpVec, 3687 UndefValue::get(TmpVec->getType()), 3688 ConstantVector::get(ShuffleMask), 3689 "rdx.shuf"); 3690 3691 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3692 // Floating point operations had to be 'fast' to enable the reduction. 3693 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3694 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3695 else 3696 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3697 TmpVec, Shuf); 3698 } 3699 3700 // The result is in the first element of the vector. 3701 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3702 Builder.getInt32(0)); 3703 3704 // If the reduction can be performed in a smaller type, we need to extend 3705 // the reduction to the wider type before we branch to the original loop. 3706 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3707 ReducedPartRdx = 3708 RdxDesc.isSigned() 3709 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3710 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3711 } 3712 3713 // Create a phi node that merges control-flow from the backedge-taken check 3714 // block and the middle block. 3715 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3716 LoopScalarPreHeader->getTerminator()); 3717 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3718 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3719 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3720 3721 // Now, we need to fix the users of the reduction variable 3722 // inside and outside of the scalar remainder loop. 3723 // We know that the loop is in LCSSA form. We need to update the 3724 // PHI nodes in the exit blocks. 3725 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3726 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3727 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3728 if (!LCSSAPhi) break; 3729 3730 // All PHINodes need to have a single entry edge, or two if 3731 // we already fixed them. 3732 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3733 3734 // We found our reduction value exit-PHI. Update it with the 3735 // incoming bypass edge. 3736 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3737 // Add an edge coming from the bypass. 3738 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3739 break; 3740 } 3741 }// end of the LCSSA phi scan. 3742 3743 // Fix the scalar loop reduction variable with the incoming reduction sum 3744 // from the vector body and from the backedge value. 3745 int IncomingEdgeBlockIdx = 3746 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3747 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3748 // Pick the other block. 3749 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3750 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3751 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3752 } // end of for each Phi in PHIsToFix. 3753 3754 fixLCSSAPHIs(); 3755 3756 // Make sure DomTree is updated. 3757 updateAnalysis(); 3758 3759 // Predicate any stores. 3760 for (auto KV : PredicatedStores) { 3761 BasicBlock::iterator I(KV.first); 3762 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3763 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3764 /*BranchWeights=*/nullptr, DT, LI); 3765 I->moveBefore(T); 3766 I->getParent()->setName("pred.store.if"); 3767 BB->setName("pred.store.continue"); 3768 } 3769 DEBUG(DT->verifyDomTree()); 3770 // Remove redundant induction instructions. 3771 cse(LoopVectorBody); 3772 } 3773 3774 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3775 3776 // This is the second phase of vectorizing first-order rececurrences. An 3777 // overview of the transformation is described below. Suppose we have the 3778 // following loop. 3779 // 3780 // for (int i = 0; i < n; ++i) 3781 // b[i] = a[i] - a[i - 1]; 3782 // 3783 // There is a first-order recurrence on "a". For this loop, the shorthand 3784 // scalar IR looks like: 3785 // 3786 // scalar.ph: 3787 // s_init = a[-1] 3788 // br scalar.body 3789 // 3790 // scalar.body: 3791 // i = phi [0, scalar.ph], [i+1, scalar.body] 3792 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3793 // s2 = a[i] 3794 // b[i] = s2 - s1 3795 // br cond, scalar.body, ... 3796 // 3797 // In this example, s1 is a recurrence because it's value depends on the 3798 // previous iteration. In the first phase of vectorization, we created a 3799 // temporary value for s1. We now complete the vectorization and produce the 3800 // shorthand vector IR shown below (for VF = 4, UF = 1). 3801 // 3802 // vector.ph: 3803 // v_init = vector(..., ..., ..., a[-1]) 3804 // br vector.body 3805 // 3806 // vector.body 3807 // i = phi [0, vector.ph], [i+4, vector.body] 3808 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3809 // v2 = a[i, i+1, i+2, i+3]; 3810 // v3 = vector(v1(3), v2(0, 1, 2)) 3811 // b[i, i+1, i+2, i+3] = v2 - v3 3812 // br cond, vector.body, middle.block 3813 // 3814 // middle.block: 3815 // x = v2(3) 3816 // br scalar.ph 3817 // 3818 // scalar.ph: 3819 // s_init = phi [x, middle.block], [a[-1], otherwise] 3820 // br scalar.body 3821 // 3822 // After execution completes the vector loop, we extract the next value of 3823 // the recurrence (x) to use as the initial value in the scalar loop. 3824 3825 // Get the original loop preheader and single loop latch. 3826 auto *Preheader = OrigLoop->getLoopPreheader(); 3827 auto *Latch = OrigLoop->getLoopLatch(); 3828 3829 // Get the initial and previous values of the scalar recurrence. 3830 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3831 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3832 3833 // Create a vector from the initial value. 3834 auto *VectorInit = ScalarInit; 3835 if (VF > 1) { 3836 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3837 VectorInit = Builder.CreateInsertElement( 3838 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3839 Builder.getInt32(VF - 1), "vector.recur.init"); 3840 } 3841 3842 // We constructed a temporary phi node in the first phase of vectorization. 3843 // This phi node will eventually be deleted. 3844 auto &PhiParts = getVectorValue(Phi); 3845 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3846 3847 // Create a phi node for the new recurrence. The current value will either be 3848 // the initial value inserted into a vector or loop-varying vector value. 3849 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3850 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3851 3852 // Get the vectorized previous value. We ensured the previous values was an 3853 // instruction when detecting the recurrence. 3854 auto &PreviousParts = getVectorValue(Previous); 3855 3856 // Set the insertion point to be after this instruction. We ensured the 3857 // previous value dominated all uses of the phi when detecting the 3858 // recurrence. 3859 Builder.SetInsertPoint( 3860 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3861 3862 // We will construct a vector for the recurrence by combining the values for 3863 // the current and previous iterations. This is the required shuffle mask. 3864 SmallVector<Constant *, 8> ShuffleMask(VF); 3865 ShuffleMask[0] = Builder.getInt32(VF - 1); 3866 for (unsigned I = 1; I < VF; ++I) 3867 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3868 3869 // The vector from which to take the initial value for the current iteration 3870 // (actual or unrolled). Initially, this is the vector phi node. 3871 Value *Incoming = VecPhi; 3872 3873 // Shuffle the current and previous vector and update the vector parts. 3874 for (unsigned Part = 0; Part < UF; ++Part) { 3875 auto *Shuffle = 3876 VF > 1 3877 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3878 ConstantVector::get(ShuffleMask)) 3879 : Incoming; 3880 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3881 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3882 PhiParts[Part] = Shuffle; 3883 Incoming = PreviousParts[Part]; 3884 } 3885 3886 // Fix the latch value of the new recurrence in the vector loop. 3887 VecPhi->addIncoming(Incoming, 3888 LI->getLoopFor(LoopVectorBody[0])->getLoopLatch()); 3889 3890 // Extract the last vector element in the middle block. This will be the 3891 // initial value for the recurrence when jumping to the scalar loop. 3892 auto *Extract = Incoming; 3893 if (VF > 1) { 3894 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3895 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 3896 "vector.recur.extract"); 3897 } 3898 3899 // Fix the initial value of the original recurrence in the scalar loop. 3900 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3901 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3902 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3903 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 3904 Start->addIncoming(Incoming, BB); 3905 } 3906 3907 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3908 Phi->setName("scalar.recur"); 3909 3910 // Finally, fix users of the recurrence outside the loop. The users will need 3911 // either the last value of the scalar recurrence or the last value of the 3912 // vector recurrence we extracted in the middle block. Since the loop is in 3913 // LCSSA form, we just need to find the phi node for the original scalar 3914 // recurrence in the exit block, and then add an edge for the middle block. 3915 for (auto &I : *LoopExitBlock) { 3916 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 3917 if (!LCSSAPhi) 3918 break; 3919 if (LCSSAPhi->getIncomingValue(0) == Phi) { 3920 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 3921 break; 3922 } 3923 } 3924 } 3925 3926 void InnerLoopVectorizer::fixLCSSAPHIs() { 3927 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3928 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3929 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3930 if (!LCSSAPhi) break; 3931 if (LCSSAPhi->getNumIncomingValues() == 1) 3932 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3933 LoopMiddleBlock); 3934 } 3935 } 3936 3937 InnerLoopVectorizer::VectorParts 3938 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3939 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3940 "Invalid edge"); 3941 3942 // Look for cached value. 3943 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3944 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3945 if (ECEntryIt != MaskCache.end()) 3946 return ECEntryIt->second; 3947 3948 VectorParts SrcMask = createBlockInMask(Src); 3949 3950 // The terminator has to be a branch inst! 3951 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3952 assert(BI && "Unexpected terminator found"); 3953 3954 if (BI->isConditional()) { 3955 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3956 3957 if (BI->getSuccessor(0) != Dst) 3958 for (unsigned part = 0; part < UF; ++part) 3959 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3960 3961 for (unsigned part = 0; part < UF; ++part) 3962 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3963 3964 MaskCache[Edge] = EdgeMask; 3965 return EdgeMask; 3966 } 3967 3968 MaskCache[Edge] = SrcMask; 3969 return SrcMask; 3970 } 3971 3972 InnerLoopVectorizer::VectorParts 3973 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3974 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3975 3976 // Loop incoming mask is all-one. 3977 if (OrigLoop->getHeader() == BB) { 3978 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3979 return getVectorValue(C); 3980 } 3981 3982 // This is the block mask. We OR all incoming edges, and with zero. 3983 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3984 VectorParts BlockMask = getVectorValue(Zero); 3985 3986 // For each pred: 3987 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3988 VectorParts EM = createEdgeMask(*it, BB); 3989 for (unsigned part = 0; part < UF; ++part) 3990 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3991 } 3992 3993 return BlockMask; 3994 } 3995 3996 void InnerLoopVectorizer::widenPHIInstruction( 3997 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 3998 unsigned VF, PhiVector *PV) { 3999 PHINode* P = cast<PHINode>(PN); 4000 // Handle recurrences. 4001 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4002 for (unsigned part = 0; part < UF; ++part) { 4003 // This is phase one of vectorizing PHIs. 4004 Type *VecTy = (VF == 1) ? PN->getType() : 4005 VectorType::get(PN->getType(), VF); 4006 Entry[part] = PHINode::Create( 4007 VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt()); 4008 } 4009 PV->push_back(P); 4010 return; 4011 } 4012 4013 setDebugLocFromInst(Builder, P); 4014 // Check for PHI nodes that are lowered to vector selects. 4015 if (P->getParent() != OrigLoop->getHeader()) { 4016 // We know that all PHIs in non-header blocks are converted into 4017 // selects, so we don't have to worry about the insertion order and we 4018 // can just use the builder. 4019 // At this point we generate the predication tree. There may be 4020 // duplications since this is a simple recursive scan, but future 4021 // optimizations will clean it up. 4022 4023 unsigned NumIncoming = P->getNumIncomingValues(); 4024 4025 // Generate a sequence of selects of the form: 4026 // SELECT(Mask3, In3, 4027 // SELECT(Mask2, In2, 4028 // ( ...))) 4029 for (unsigned In = 0; In < NumIncoming; In++) { 4030 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 4031 P->getParent()); 4032 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4033 4034 for (unsigned part = 0; part < UF; ++part) { 4035 // We might have single edge PHIs (blocks) - use an identity 4036 // 'select' for the first PHI operand. 4037 if (In == 0) 4038 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 4039 In0[part]); 4040 else 4041 // Select between the current value and the previous incoming edge 4042 // based on the incoming mask. 4043 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 4044 Entry[part], "predphi"); 4045 } 4046 } 4047 return; 4048 } 4049 4050 // This PHINode must be an induction variable. 4051 // Make sure that we know about it. 4052 assert(Legal->getInductionVars()->count(P) && 4053 "Not an induction variable"); 4054 4055 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4056 4057 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4058 // which can be found from the original scalar operations. 4059 switch (II.getKind()) { 4060 case InductionDescriptor::IK_NoInduction: 4061 llvm_unreachable("Unknown induction"); 4062 case InductionDescriptor::IK_IntInduction: { 4063 assert(P->getType() == II.getStartValue()->getType() && 4064 "Types must match"); 4065 // Handle other induction variables that are now based on the 4066 // canonical one. 4067 Value *V = Induction; 4068 if (P != OldInduction) { 4069 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 4070 V = II.transform(Builder, V); 4071 V->setName("offset.idx"); 4072 } 4073 Value *Broadcasted = getBroadcastInstrs(V); 4074 // After broadcasting the induction variable we need to make the vector 4075 // consecutive by adding 0, 1, 2, etc. 4076 for (unsigned part = 0; part < UF; ++part) 4077 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue()); 4078 return; 4079 } 4080 case InductionDescriptor::IK_PtrInduction: 4081 // Handle the pointer induction variable case. 4082 assert(P->getType()->isPointerTy() && "Unexpected type."); 4083 // This is the normalized GEP that starts counting at zero. 4084 Value *PtrInd = Induction; 4085 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType()); 4086 // This is the vector of results. Notice that we don't generate 4087 // vector geps because scalar geps result in better code. 4088 for (unsigned part = 0; part < UF; ++part) { 4089 if (VF == 1) { 4090 int EltIndex = part; 4091 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4092 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4093 Value *SclrGep = II.transform(Builder, GlobalIdx); 4094 SclrGep->setName("next.gep"); 4095 Entry[part] = SclrGep; 4096 continue; 4097 } 4098 4099 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4100 for (unsigned int i = 0; i < VF; ++i) { 4101 int EltIndex = i + part * VF; 4102 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4103 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4104 Value *SclrGep = II.transform(Builder, GlobalIdx); 4105 SclrGep->setName("next.gep"); 4106 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4107 Builder.getInt32(i), 4108 "insert.gep"); 4109 } 4110 Entry[part] = VecVal; 4111 } 4112 return; 4113 } 4114 } 4115 4116 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4117 // For each instruction in the old loop. 4118 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4119 VectorParts &Entry = WidenMap.get(&*it); 4120 4121 switch (it->getOpcode()) { 4122 case Instruction::Br: 4123 // Nothing to do for PHIs and BR, since we already took care of the 4124 // loop control flow instructions. 4125 continue; 4126 case Instruction::PHI: { 4127 // Vectorize PHINodes. 4128 widenPHIInstruction(&*it, Entry, UF, VF, PV); 4129 continue; 4130 }// End of PHI. 4131 4132 case Instruction::Add: 4133 case Instruction::FAdd: 4134 case Instruction::Sub: 4135 case Instruction::FSub: 4136 case Instruction::Mul: 4137 case Instruction::FMul: 4138 case Instruction::UDiv: 4139 case Instruction::SDiv: 4140 case Instruction::FDiv: 4141 case Instruction::URem: 4142 case Instruction::SRem: 4143 case Instruction::FRem: 4144 case Instruction::Shl: 4145 case Instruction::LShr: 4146 case Instruction::AShr: 4147 case Instruction::And: 4148 case Instruction::Or: 4149 case Instruction::Xor: { 4150 // Just widen binops. 4151 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 4152 setDebugLocFromInst(Builder, BinOp); 4153 VectorParts &A = getVectorValue(it->getOperand(0)); 4154 VectorParts &B = getVectorValue(it->getOperand(1)); 4155 4156 // Use this vector value for all users of the original instruction. 4157 for (unsigned Part = 0; Part < UF; ++Part) { 4158 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4159 4160 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4161 VecOp->copyIRFlags(BinOp); 4162 4163 Entry[Part] = V; 4164 } 4165 4166 addMetadata(Entry, &*it); 4167 break; 4168 } 4169 case Instruction::Select: { 4170 // Widen selects. 4171 // If the selector is loop invariant we can create a select 4172 // instruction with a scalar condition. Otherwise, use vector-select. 4173 auto *SE = PSE.getSE(); 4174 bool InvariantCond = 4175 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 4176 setDebugLocFromInst(Builder, &*it); 4177 4178 // The condition can be loop invariant but still defined inside the 4179 // loop. This means that we can't just use the original 'cond' value. 4180 // We have to take the 'vectorized' value and pick the first lane. 4181 // Instcombine will make this a no-op. 4182 VectorParts &Cond = getVectorValue(it->getOperand(0)); 4183 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 4184 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 4185 4186 Value *ScalarCond = (VF == 1) ? Cond[0] : 4187 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4188 4189 for (unsigned Part = 0; Part < UF; ++Part) { 4190 Entry[Part] = Builder.CreateSelect( 4191 InvariantCond ? ScalarCond : Cond[Part], 4192 Op0[Part], 4193 Op1[Part]); 4194 } 4195 4196 addMetadata(Entry, &*it); 4197 break; 4198 } 4199 4200 case Instruction::ICmp: 4201 case Instruction::FCmp: { 4202 // Widen compares. Generate vector compares. 4203 bool FCmp = (it->getOpcode() == Instruction::FCmp); 4204 CmpInst *Cmp = dyn_cast<CmpInst>(it); 4205 setDebugLocFromInst(Builder, &*it); 4206 VectorParts &A = getVectorValue(it->getOperand(0)); 4207 VectorParts &B = getVectorValue(it->getOperand(1)); 4208 for (unsigned Part = 0; Part < UF; ++Part) { 4209 Value *C = nullptr; 4210 if (FCmp) { 4211 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4212 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 4213 } else { 4214 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4215 } 4216 Entry[Part] = C; 4217 } 4218 4219 addMetadata(Entry, &*it); 4220 break; 4221 } 4222 4223 case Instruction::Store: 4224 case Instruction::Load: 4225 vectorizeMemoryInstruction(&*it); 4226 break; 4227 case Instruction::ZExt: 4228 case Instruction::SExt: 4229 case Instruction::FPToUI: 4230 case Instruction::FPToSI: 4231 case Instruction::FPExt: 4232 case Instruction::PtrToInt: 4233 case Instruction::IntToPtr: 4234 case Instruction::SIToFP: 4235 case Instruction::UIToFP: 4236 case Instruction::Trunc: 4237 case Instruction::FPTrunc: 4238 case Instruction::BitCast: { 4239 CastInst *CI = dyn_cast<CastInst>(it); 4240 setDebugLocFromInst(Builder, &*it); 4241 /// Optimize the special case where the source is the induction 4242 /// variable. Notice that we can only optimize the 'trunc' case 4243 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 4244 /// c. other casts depend on pointer size. 4245 if (CI->getOperand(0) == OldInduction && 4246 it->getOpcode() == Instruction::Trunc) { 4247 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 4248 CI->getType()); 4249 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 4250 InductionDescriptor II = 4251 Legal->getInductionVars()->lookup(OldInduction); 4252 Constant *Step = ConstantInt::getSigned( 4253 CI->getType(), II.getStepValue()->getSExtValue()); 4254 for (unsigned Part = 0; Part < UF; ++Part) 4255 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 4256 addMetadata(Entry, &*it); 4257 break; 4258 } 4259 /// Vectorize casts. 4260 Type *DestTy = (VF == 1) ? CI->getType() : 4261 VectorType::get(CI->getType(), VF); 4262 4263 VectorParts &A = getVectorValue(it->getOperand(0)); 4264 for (unsigned Part = 0; Part < UF; ++Part) 4265 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4266 addMetadata(Entry, &*it); 4267 break; 4268 } 4269 4270 case Instruction::Call: { 4271 // Ignore dbg intrinsics. 4272 if (isa<DbgInfoIntrinsic>(it)) 4273 break; 4274 setDebugLocFromInst(Builder, &*it); 4275 4276 Module *M = BB->getParent()->getParent(); 4277 CallInst *CI = cast<CallInst>(it); 4278 4279 StringRef FnName = CI->getCalledFunction()->getName(); 4280 Function *F = CI->getCalledFunction(); 4281 Type *RetTy = ToVectorTy(CI->getType(), VF); 4282 SmallVector<Type *, 4> Tys; 4283 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4284 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4285 4286 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4287 if (ID && 4288 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4289 ID == Intrinsic::lifetime_start)) { 4290 scalarizeInstruction(&*it); 4291 break; 4292 } 4293 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4294 // version of the instruction. 4295 // Is it beneficial to perform intrinsic call compared to lib call? 4296 bool NeedToScalarize; 4297 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4298 bool UseVectorIntrinsic = 4299 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4300 if (!UseVectorIntrinsic && NeedToScalarize) { 4301 scalarizeInstruction(&*it); 4302 break; 4303 } 4304 4305 for (unsigned Part = 0; Part < UF; ++Part) { 4306 SmallVector<Value *, 4> Args; 4307 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4308 Value *Arg = CI->getArgOperand(i); 4309 // Some intrinsics have a scalar argument - don't replace it with a 4310 // vector. 4311 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4312 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4313 Arg = VectorArg[Part]; 4314 } 4315 Args.push_back(Arg); 4316 } 4317 4318 Function *VectorF; 4319 if (UseVectorIntrinsic) { 4320 // Use vector version of the intrinsic. 4321 Type *TysForDecl[] = {CI->getType()}; 4322 if (VF > 1) 4323 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4324 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4325 } else { 4326 // Use vector version of the library call. 4327 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4328 assert(!VFnName.empty() && "Vector function name is empty."); 4329 VectorF = M->getFunction(VFnName); 4330 if (!VectorF) { 4331 // Generate a declaration 4332 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4333 VectorF = 4334 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4335 VectorF->copyAttributesFrom(F); 4336 } 4337 } 4338 assert(VectorF && "Can't create vector function."); 4339 4340 CallInst *V = Builder.CreateCall(VectorF, Args); 4341 4342 if (isa<FPMathOperator>(V)) 4343 V->copyFastMathFlags(CI); 4344 4345 Entry[Part] = V; 4346 } 4347 4348 addMetadata(Entry, &*it); 4349 break; 4350 } 4351 4352 default: 4353 // All other instructions are unsupported. Scalarize them. 4354 scalarizeInstruction(&*it); 4355 break; 4356 }// end of switch. 4357 }// end of for_each instr. 4358 } 4359 4360 void InnerLoopVectorizer::updateAnalysis() { 4361 // Forget the original basic block. 4362 PSE.getSE()->forgetLoop(OrigLoop); 4363 4364 // Update the dominator tree information. 4365 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4366 "Entry does not dominate exit."); 4367 4368 // We don't predicate stores by this point, so the vector body should be a 4369 // single loop. 4370 assert(LoopVectorBody.size() == 1 && "Expected single block loop!"); 4371 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 4372 4373 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back()); 4374 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4375 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4376 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4377 4378 DEBUG(DT->verifyDomTree()); 4379 } 4380 4381 /// \brief Check whether it is safe to if-convert this phi node. 4382 /// 4383 /// Phi nodes with constant expressions that can trap are not safe to if 4384 /// convert. 4385 static bool canIfConvertPHINodes(BasicBlock *BB) { 4386 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4387 PHINode *Phi = dyn_cast<PHINode>(I); 4388 if (!Phi) 4389 return true; 4390 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 4391 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4392 if (C->canTrap()) 4393 return false; 4394 } 4395 return true; 4396 } 4397 4398 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4399 if (!EnableIfConversion) { 4400 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4401 return false; 4402 } 4403 4404 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4405 4406 // A list of pointers that we can safely read and write to. 4407 SmallPtrSet<Value *, 8> SafePointes; 4408 4409 // Collect safe addresses. 4410 for (Loop::block_iterator BI = TheLoop->block_begin(), 4411 BE = TheLoop->block_end(); BI != BE; ++BI) { 4412 BasicBlock *BB = *BI; 4413 4414 if (blockNeedsPredication(BB)) 4415 continue; 4416 4417 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4418 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4419 SafePointes.insert(LI->getPointerOperand()); 4420 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4421 SafePointes.insert(SI->getPointerOperand()); 4422 } 4423 } 4424 4425 // Collect the blocks that need predication. 4426 BasicBlock *Header = TheLoop->getHeader(); 4427 for (Loop::block_iterator BI = TheLoop->block_begin(), 4428 BE = TheLoop->block_end(); BI != BE; ++BI) { 4429 BasicBlock *BB = *BI; 4430 4431 // We don't support switch statements inside loops. 4432 if (!isa<BranchInst>(BB->getTerminator())) { 4433 emitAnalysis(VectorizationReport(BB->getTerminator()) 4434 << "loop contains a switch statement"); 4435 return false; 4436 } 4437 4438 // We must be able to predicate all blocks that need to be predicated. 4439 if (blockNeedsPredication(BB)) { 4440 if (!blockCanBePredicated(BB, SafePointes)) { 4441 emitAnalysis(VectorizationReport(BB->getTerminator()) 4442 << "control flow cannot be substituted for a select"); 4443 return false; 4444 } 4445 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4446 emitAnalysis(VectorizationReport(BB->getTerminator()) 4447 << "control flow cannot be substituted for a select"); 4448 return false; 4449 } 4450 } 4451 4452 // We can if-convert this loop. 4453 return true; 4454 } 4455 4456 bool LoopVectorizationLegality::canVectorize() { 4457 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4458 // be canonicalized. 4459 if (!TheLoop->getLoopPreheader()) { 4460 emitAnalysis( 4461 VectorizationReport() << 4462 "loop control flow is not understood by vectorizer"); 4463 return false; 4464 } 4465 4466 // We can only vectorize innermost loops. 4467 if (!TheLoop->empty()) { 4468 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4469 return false; 4470 } 4471 4472 // We must have a single backedge. 4473 if (TheLoop->getNumBackEdges() != 1) { 4474 emitAnalysis( 4475 VectorizationReport() << 4476 "loop control flow is not understood by vectorizer"); 4477 return false; 4478 } 4479 4480 // We must have a single exiting block. 4481 if (!TheLoop->getExitingBlock()) { 4482 emitAnalysis( 4483 VectorizationReport() << 4484 "loop control flow is not understood by vectorizer"); 4485 return false; 4486 } 4487 4488 // We only handle bottom-tested loops, i.e. loop in which the condition is 4489 // checked at the end of each iteration. With that we can assume that all 4490 // instructions in the loop are executed the same number of times. 4491 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4492 emitAnalysis( 4493 VectorizationReport() << 4494 "loop control flow is not understood by vectorizer"); 4495 return false; 4496 } 4497 4498 // We need to have a loop header. 4499 DEBUG(dbgs() << "LV: Found a loop: " << 4500 TheLoop->getHeader()->getName() << '\n'); 4501 4502 // Check if we can if-convert non-single-bb loops. 4503 unsigned NumBlocks = TheLoop->getNumBlocks(); 4504 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4505 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4506 return false; 4507 } 4508 4509 // ScalarEvolution needs to be able to find the exit count. 4510 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4511 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4512 emitAnalysis(VectorizationReport() 4513 << "could not determine number of loop iterations"); 4514 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4515 return false; 4516 } 4517 4518 // Check if we can vectorize the instructions and CFG in this loop. 4519 if (!canVectorizeInstrs()) { 4520 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4521 return false; 4522 } 4523 4524 // Go over each instruction and look at memory deps. 4525 if (!canVectorizeMemory()) { 4526 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4527 return false; 4528 } 4529 4530 // Collect all of the variables that remain uniform after vectorization. 4531 collectLoopUniforms(); 4532 4533 DEBUG(dbgs() << "LV: We can vectorize this loop" 4534 << (LAI->getRuntimePointerChecking()->Need 4535 ? " (with a runtime bound check)" 4536 : "") 4537 << "!\n"); 4538 4539 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4540 4541 // If an override option has been passed in for interleaved accesses, use it. 4542 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4543 UseInterleaved = EnableInterleavedMemAccesses; 4544 4545 // Analyze interleaved memory accesses. 4546 if (UseInterleaved) 4547 InterleaveInfo.analyzeInterleaving(Strides); 4548 4549 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4550 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4551 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4552 4553 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4554 emitAnalysis(VectorizationReport() 4555 << "Too many SCEV assumptions need to be made and checked " 4556 << "at runtime"); 4557 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4558 return false; 4559 } 4560 4561 // Okay! We can vectorize. At this point we don't have any other mem analysis 4562 // which may limit our maximum vectorization factor, so just return true with 4563 // no restrictions. 4564 return true; 4565 } 4566 4567 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4568 if (Ty->isPointerTy()) 4569 return DL.getIntPtrType(Ty); 4570 4571 // It is possible that char's or short's overflow when we ask for the loop's 4572 // trip count, work around this by changing the type size. 4573 if (Ty->getScalarSizeInBits() < 32) 4574 return Type::getInt32Ty(Ty->getContext()); 4575 4576 return Ty; 4577 } 4578 4579 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4580 Ty0 = convertPointerToIntegerType(DL, Ty0); 4581 Ty1 = convertPointerToIntegerType(DL, Ty1); 4582 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4583 return Ty0; 4584 return Ty1; 4585 } 4586 4587 /// \brief Check that the instruction has outside loop users and is not an 4588 /// identified reduction variable. 4589 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4590 SmallPtrSetImpl<Value *> &Reductions) { 4591 // Reduction instructions are allowed to have exit users. All other 4592 // instructions must not have external users. 4593 if (!Reductions.count(Inst)) 4594 //Check that all of the users of the loop are inside the BB. 4595 for (User *U : Inst->users()) { 4596 Instruction *UI = cast<Instruction>(U); 4597 // This user may be a reduction exit value. 4598 if (!TheLoop->contains(UI)) { 4599 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4600 return true; 4601 } 4602 } 4603 return false; 4604 } 4605 4606 bool LoopVectorizationLegality::canVectorizeInstrs() { 4607 BasicBlock *Header = TheLoop->getHeader(); 4608 4609 // Look for the attribute signaling the absence of NaNs. 4610 Function &F = *Header->getParent(); 4611 const DataLayout &DL = F.getParent()->getDataLayout(); 4612 HasFunNoNaNAttr = 4613 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4614 4615 // For each block in the loop. 4616 for (Loop::block_iterator bb = TheLoop->block_begin(), 4617 be = TheLoop->block_end(); bb != be; ++bb) { 4618 4619 // Scan the instructions in the block and look for hazards. 4620 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4621 ++it) { 4622 4623 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4624 Type *PhiTy = Phi->getType(); 4625 // Check that this PHI type is allowed. 4626 if (!PhiTy->isIntegerTy() && 4627 !PhiTy->isFloatingPointTy() && 4628 !PhiTy->isPointerTy()) { 4629 emitAnalysis(VectorizationReport(&*it) 4630 << "loop control flow is not understood by vectorizer"); 4631 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4632 return false; 4633 } 4634 4635 // If this PHINode is not in the header block, then we know that we 4636 // can convert it to select during if-conversion. No need to check if 4637 // the PHIs in this block are induction or reduction variables. 4638 if (*bb != Header) { 4639 // Check that this instruction has no outside users or is an 4640 // identified reduction value with an outside user. 4641 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4642 continue; 4643 emitAnalysis(VectorizationReport(&*it) << 4644 "value could not be identified as " 4645 "an induction or reduction variable"); 4646 return false; 4647 } 4648 4649 // We only allow if-converted PHIs with exactly two incoming values. 4650 if (Phi->getNumIncomingValues() != 2) { 4651 emitAnalysis(VectorizationReport(&*it) 4652 << "control flow not understood by vectorizer"); 4653 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4654 return false; 4655 } 4656 4657 InductionDescriptor ID; 4658 if (InductionDescriptor::isInductionPHI(Phi, PSE.getSE(), ID)) { 4659 Inductions[Phi] = ID; 4660 // Get the widest type. 4661 if (!WidestIndTy) 4662 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4663 else 4664 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4665 4666 // Int inductions are special because we only allow one IV. 4667 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4668 ID.getStepValue()->isOne() && 4669 isa<Constant>(ID.getStartValue()) && 4670 cast<Constant>(ID.getStartValue())->isNullValue()) { 4671 // Use the phi node with the widest type as induction. Use the last 4672 // one if there are multiple (no good reason for doing this other 4673 // than it is expedient). We've checked that it begins at zero and 4674 // steps by one, so this is a canonical induction variable. 4675 if (!Induction || PhiTy == WidestIndTy) 4676 Induction = Phi; 4677 } 4678 4679 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4680 4681 // Until we explicitly handle the case of an induction variable with 4682 // an outside loop user we have to give up vectorizing this loop. 4683 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4684 emitAnalysis(VectorizationReport(&*it) << 4685 "use of induction value outside of the " 4686 "loop is not handled by vectorizer"); 4687 return false; 4688 } 4689 4690 continue; 4691 } 4692 4693 RecurrenceDescriptor RedDes; 4694 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4695 if (RedDes.hasUnsafeAlgebra()) 4696 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4697 AllowedExit.insert(RedDes.getLoopExitInstr()); 4698 Reductions[Phi] = RedDes; 4699 continue; 4700 } 4701 4702 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4703 FirstOrderRecurrences.insert(Phi); 4704 continue; 4705 } 4706 4707 emitAnalysis(VectorizationReport(&*it) << 4708 "value that could not be identified as " 4709 "reduction is used outside the loop"); 4710 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4711 return false; 4712 }// end of PHI handling 4713 4714 // We handle calls that: 4715 // * Are debug info intrinsics. 4716 // * Have a mapping to an IR intrinsic. 4717 // * Have a vector version available. 4718 CallInst *CI = dyn_cast<CallInst>(it); 4719 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4720 !(CI->getCalledFunction() && TLI && 4721 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4722 emitAnalysis(VectorizationReport(&*it) 4723 << "call instruction cannot be vectorized"); 4724 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4725 return false; 4726 } 4727 4728 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4729 // second argument is the same (i.e. loop invariant) 4730 if (CI && 4731 hasVectorInstrinsicScalarOpd(getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4732 auto *SE = PSE.getSE(); 4733 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4734 emitAnalysis(VectorizationReport(&*it) 4735 << "intrinsic instruction cannot be vectorized"); 4736 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4737 return false; 4738 } 4739 } 4740 4741 // Check that the instruction return type is vectorizable. 4742 // Also, we can't vectorize extractelement instructions. 4743 if ((!VectorType::isValidElementType(it->getType()) && 4744 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4745 emitAnalysis(VectorizationReport(&*it) 4746 << "instruction return type cannot be vectorized"); 4747 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4748 return false; 4749 } 4750 4751 // Check that the stored type is vectorizable. 4752 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4753 Type *T = ST->getValueOperand()->getType(); 4754 if (!VectorType::isValidElementType(T)) { 4755 emitAnalysis(VectorizationReport(ST) << 4756 "store instruction cannot be vectorized"); 4757 return false; 4758 } 4759 if (EnableMemAccessVersioning) 4760 collectStridedAccess(ST); 4761 4762 } else if (LoadInst *LI = dyn_cast<LoadInst>(it)) { 4763 if (EnableMemAccessVersioning) 4764 collectStridedAccess(LI); 4765 4766 // FP instructions can allow unsafe algebra, thus vectorizable by 4767 // non-IEEE-754 compliant SIMD units. 4768 // This applies to floating-point math operations and calls, not memory 4769 // operations, shuffles, or casts, as they don't change precision or 4770 // semantics. 4771 } else if (it->getType()->isFloatingPointTy() && 4772 (CI || it->isBinaryOp()) && 4773 !it->hasUnsafeAlgebra()) { 4774 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4775 Hints->setPotentiallyUnsafe(); 4776 } 4777 4778 // Reduction instructions are allowed to have exit users. 4779 // All other instructions must not have external users. 4780 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4781 emitAnalysis(VectorizationReport(&*it) << 4782 "value cannot be used outside the loop"); 4783 return false; 4784 } 4785 4786 } // next instr. 4787 4788 } 4789 4790 if (!Induction) { 4791 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4792 if (Inductions.empty()) { 4793 emitAnalysis(VectorizationReport() 4794 << "loop induction variable could not be identified"); 4795 return false; 4796 } 4797 } 4798 4799 // Now we know the widest induction type, check if our found induction 4800 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4801 // will create another. 4802 if (Induction && WidestIndTy != Induction->getType()) 4803 Induction = nullptr; 4804 4805 return true; 4806 } 4807 4808 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4809 Value *Ptr = nullptr; 4810 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4811 Ptr = LI->getPointerOperand(); 4812 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4813 Ptr = SI->getPointerOperand(); 4814 else 4815 return; 4816 4817 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); 4818 if (!Stride) 4819 return; 4820 4821 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4822 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4823 Strides[Ptr] = Stride; 4824 StrideSet.insert(Stride); 4825 } 4826 4827 void LoopVectorizationLegality::collectLoopUniforms() { 4828 // We now know that the loop is vectorizable! 4829 // Collect variables that will remain uniform after vectorization. 4830 std::vector<Value*> Worklist; 4831 BasicBlock *Latch = TheLoop->getLoopLatch(); 4832 4833 // Start with the conditional branch and walk up the block. 4834 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4835 4836 // Also add all consecutive pointer values; these values will be uniform 4837 // after vectorization (and subsequent cleanup) and, until revectorization is 4838 // supported, all dependencies must also be uniform. 4839 for (Loop::block_iterator B = TheLoop->block_begin(), 4840 BE = TheLoop->block_end(); B != BE; ++B) 4841 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4842 I != IE; ++I) 4843 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4844 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4845 4846 while (!Worklist.empty()) { 4847 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4848 Worklist.pop_back(); 4849 4850 // Look at instructions inside this loop. 4851 // Stop when reaching PHI nodes. 4852 // TODO: we need to follow values all over the loop, not only in this block. 4853 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4854 continue; 4855 4856 // This is a known uniform. 4857 Uniforms.insert(I); 4858 4859 // Insert all operands. 4860 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4861 } 4862 } 4863 4864 bool LoopVectorizationLegality::canVectorizeMemory() { 4865 LAI = &LAA->getInfo(TheLoop, Strides); 4866 auto &OptionalReport = LAI->getReport(); 4867 if (OptionalReport) 4868 emitAnalysis(VectorizationReport(*OptionalReport)); 4869 if (!LAI->canVectorizeMemory()) 4870 return false; 4871 4872 if (LAI->hasStoreToLoopInvariantAddress()) { 4873 emitAnalysis( 4874 VectorizationReport() 4875 << "write to a loop invariant address could not be vectorized"); 4876 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4877 return false; 4878 } 4879 4880 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4881 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 4882 4883 return true; 4884 } 4885 4886 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4887 Value *In0 = const_cast<Value*>(V); 4888 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4889 if (!PN) 4890 return false; 4891 4892 return Inductions.count(PN); 4893 } 4894 4895 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 4896 return FirstOrderRecurrences.count(Phi); 4897 } 4898 4899 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4900 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4901 } 4902 4903 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4904 SmallPtrSetImpl<Value *> &SafePtrs) { 4905 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4906 4907 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4908 // Check that we don't have a constant expression that can trap as operand. 4909 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4910 OI != OE; ++OI) { 4911 if (Constant *C = dyn_cast<Constant>(*OI)) 4912 if (C->canTrap()) 4913 return false; 4914 } 4915 // We might be able to hoist the load. 4916 if (it->mayReadFromMemory()) { 4917 LoadInst *LI = dyn_cast<LoadInst>(it); 4918 if (!LI) 4919 return false; 4920 if (!SafePtrs.count(LI->getPointerOperand())) { 4921 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 4922 isLegalMaskedGather(LI->getType())) { 4923 MaskedOp.insert(LI); 4924 continue; 4925 } 4926 // !llvm.mem.parallel_loop_access implies if-conversion safety. 4927 if (IsAnnotatedParallel) 4928 continue; 4929 return false; 4930 } 4931 } 4932 4933 // We don't predicate stores at the moment. 4934 if (it->mayWriteToMemory()) { 4935 StoreInst *SI = dyn_cast<StoreInst>(it); 4936 // We only support predication of stores in basic blocks with one 4937 // predecessor. 4938 if (!SI) 4939 return false; 4940 4941 // Build a masked store if it is legal for the target. 4942 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 4943 SI->getPointerOperand()) || 4944 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 4945 MaskedOp.insert(SI); 4946 continue; 4947 } 4948 4949 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4950 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4951 4952 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4953 !isSinglePredecessor) 4954 return false; 4955 } 4956 if (it->mayThrow()) 4957 return false; 4958 4959 // The instructions below can trap. 4960 switch (it->getOpcode()) { 4961 default: continue; 4962 case Instruction::UDiv: 4963 case Instruction::SDiv: 4964 case Instruction::URem: 4965 case Instruction::SRem: 4966 return false; 4967 } 4968 } 4969 4970 return true; 4971 } 4972 4973 void InterleavedAccessInfo::collectConstStridedAccesses( 4974 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4975 const ValueToValueMap &Strides) { 4976 // Holds load/store instructions in program order. 4977 SmallVector<Instruction *, 16> AccessList; 4978 4979 for (auto *BB : TheLoop->getBlocks()) { 4980 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4981 4982 for (auto &I : *BB) { 4983 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4984 continue; 4985 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4986 if (IsPred) 4987 return; 4988 4989 AccessList.push_back(&I); 4990 } 4991 } 4992 4993 if (AccessList.empty()) 4994 return; 4995 4996 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4997 for (auto I : AccessList) { 4998 LoadInst *LI = dyn_cast<LoadInst>(I); 4999 StoreInst *SI = dyn_cast<StoreInst>(I); 5000 5001 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 5002 int Stride = isStridedPtr(PSE, Ptr, TheLoop, Strides); 5003 5004 // The factor of the corresponding interleave group. 5005 unsigned Factor = std::abs(Stride); 5006 5007 // Ignore the access if the factor is too small or too large. 5008 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 5009 continue; 5010 5011 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5012 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5013 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5014 5015 // An alignment of 0 means target ABI alignment. 5016 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5017 if (!Align) 5018 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5019 5020 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 5021 } 5022 } 5023 5024 // Analyze interleaved accesses and collect them into interleave groups. 5025 // 5026 // Notice that the vectorization on interleaved groups will change instruction 5027 // orders and may break dependences. But the memory dependence check guarantees 5028 // that there is no overlap between two pointers of different strides, element 5029 // sizes or underlying bases. 5030 // 5031 // For pointers sharing the same stride, element size and underlying base, no 5032 // need to worry about Read-After-Write dependences and Write-After-Read 5033 // dependences. 5034 // 5035 // E.g. The RAW dependence: A[i] = a; 5036 // b = A[i]; 5037 // This won't exist as it is a store-load forwarding conflict, which has 5038 // already been checked and forbidden in the dependence check. 5039 // 5040 // E.g. The WAR dependence: a = A[i]; // (1) 5041 // A[i] = b; // (2) 5042 // The store group of (2) is always inserted at or below (2), and the load group 5043 // of (1) is always inserted at or above (1). The dependence is safe. 5044 void InterleavedAccessInfo::analyzeInterleaving( 5045 const ValueToValueMap &Strides) { 5046 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5047 5048 // Holds all the stride accesses. 5049 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 5050 collectConstStridedAccesses(StrideAccesses, Strides); 5051 5052 if (StrideAccesses.empty()) 5053 return; 5054 5055 // Holds all interleaved store groups temporarily. 5056 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5057 // Holds all interleaved load groups temporarily. 5058 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5059 5060 // Search the load-load/write-write pair B-A in bottom-up order and try to 5061 // insert B into the interleave group of A according to 3 rules: 5062 // 1. A and B have the same stride. 5063 // 2. A and B have the same memory object size. 5064 // 3. B belongs to the group according to the distance. 5065 // 5066 // The bottom-up order can avoid breaking the Write-After-Write dependences 5067 // between two pointers of the same base. 5068 // E.g. A[i] = a; (1) 5069 // A[i] = b; (2) 5070 // A[i+1] = c (3) 5071 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 5072 // above (1), which guarantees that (1) is always above (2). 5073 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 5074 ++I) { 5075 Instruction *A = I->first; 5076 StrideDescriptor DesA = I->second; 5077 5078 InterleaveGroup *Group = getInterleaveGroup(A); 5079 if (!Group) { 5080 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5081 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5082 } 5083 5084 if (A->mayWriteToMemory()) 5085 StoreGroups.insert(Group); 5086 else 5087 LoadGroups.insert(Group); 5088 5089 for (auto II = std::next(I); II != E; ++II) { 5090 Instruction *B = II->first; 5091 StrideDescriptor DesB = II->second; 5092 5093 // Ignore if B is already in a group or B is a different memory operation. 5094 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5095 continue; 5096 5097 // Check the rule 1 and 2. 5098 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5099 continue; 5100 5101 // Calculate the distance and prepare for the rule 3. 5102 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5103 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5104 if (!DistToA) 5105 continue; 5106 5107 int DistanceToA = DistToA->getAPInt().getSExtValue(); 5108 5109 // Skip if the distance is not multiple of size as they are not in the 5110 // same group. 5111 if (DistanceToA % static_cast<int>(DesA.Size)) 5112 continue; 5113 5114 // The index of B is the index of A plus the related index to A. 5115 int IndexB = 5116 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 5117 5118 // Try to insert B into the group. 5119 if (Group->insertMember(B, IndexB, DesB.Align)) { 5120 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5121 << " into the interleave group with" << *A << '\n'); 5122 InterleaveGroupMap[B] = Group; 5123 5124 // Set the first load in program order as the insert position. 5125 if (B->mayReadFromMemory()) 5126 Group->setInsertPos(B); 5127 } 5128 } // Iteration on instruction B 5129 } // Iteration on instruction A 5130 5131 // Remove interleaved store groups with gaps. 5132 for (InterleaveGroup *Group : StoreGroups) 5133 if (Group->getNumMembers() != Group->getFactor()) 5134 releaseGroup(Group); 5135 5136 // If there is a non-reversed interleaved load group with gaps, we will need 5137 // to execute at least one scalar epilogue iteration. This will ensure that 5138 // we don't speculatively access memory out-of-bounds. Note that we only need 5139 // to look for a member at index factor - 1, since every group must have a 5140 // member at index zero. 5141 for (InterleaveGroup *Group : LoadGroups) 5142 if (!Group->getMember(Group->getFactor() - 1)) { 5143 if (Group->isReverse()) { 5144 releaseGroup(Group); 5145 } else { 5146 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5147 RequiresScalarEpilogue = true; 5148 } 5149 } 5150 } 5151 5152 LoopVectorizationCostModel::VectorizationFactor 5153 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5154 // Width 1 means no vectorize 5155 VectorizationFactor Factor = { 1U, 0U }; 5156 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5157 emitAnalysis(VectorizationReport() << 5158 "runtime pointer checks needed. Enable vectorization of this " 5159 "loop with '#pragma clang loop vectorize(enable)' when " 5160 "compiling with -Os/-Oz"); 5161 DEBUG(dbgs() << 5162 "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5163 return Factor; 5164 } 5165 5166 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5167 emitAnalysis(VectorizationReport() << 5168 "store that is conditionally executed prevents vectorization"); 5169 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5170 return Factor; 5171 } 5172 5173 // Find the trip count. 5174 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5175 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5176 5177 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5178 unsigned SmallestType, WidestType; 5179 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5180 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5181 unsigned MaxSafeDepDist = -1U; 5182 if (Legal->getMaxSafeDepDistBytes() != -1U) 5183 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5184 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5185 WidestRegister : MaxSafeDepDist); 5186 unsigned MaxVectorSize = WidestRegister / WidestType; 5187 5188 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5189 << WidestType << " bits.\n"); 5190 DEBUG(dbgs() << "LV: The Widest register is: " 5191 << WidestRegister << " bits.\n"); 5192 5193 if (MaxVectorSize == 0) { 5194 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5195 MaxVectorSize = 1; 5196 } 5197 5198 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5199 " into one vector!"); 5200 5201 unsigned VF = MaxVectorSize; 5202 if (MaximizeBandwidth && !OptForSize) { 5203 // Collect all viable vectorization factors. 5204 SmallVector<unsigned, 8> VFs; 5205 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5206 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5207 VFs.push_back(VS); 5208 5209 // For each VF calculate its register usage. 5210 auto RUs = calculateRegisterUsage(VFs); 5211 5212 // Select the largest VF which doesn't require more registers than existing 5213 // ones. 5214 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5215 for (int i = RUs.size() - 1; i >= 0; --i) { 5216 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5217 VF = VFs[i]; 5218 break; 5219 } 5220 } 5221 } 5222 5223 // If we optimize the program for size, avoid creating the tail loop. 5224 if (OptForSize) { 5225 // If we are unable to calculate the trip count then don't try to vectorize. 5226 if (TC < 2) { 5227 emitAnalysis 5228 (VectorizationReport() << 5229 "unable to calculate the loop count due to complex control flow"); 5230 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5231 return Factor; 5232 } 5233 5234 // Find the maximum SIMD width that can fit within the trip count. 5235 VF = TC % MaxVectorSize; 5236 5237 if (VF == 0) 5238 VF = MaxVectorSize; 5239 else { 5240 // If the trip count that we found modulo the vectorization factor is not 5241 // zero then we require a tail. 5242 emitAnalysis(VectorizationReport() << 5243 "cannot optimize for size and vectorize at the " 5244 "same time. Enable vectorization of this loop " 5245 "with '#pragma clang loop vectorize(enable)' " 5246 "when compiling with -Os/-Oz"); 5247 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5248 return Factor; 5249 } 5250 } 5251 5252 int UserVF = Hints->getWidth(); 5253 if (UserVF != 0) { 5254 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5255 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5256 5257 Factor.Width = UserVF; 5258 return Factor; 5259 } 5260 5261 float Cost = expectedCost(1).first; 5262 #ifndef NDEBUG 5263 const float ScalarCost = Cost; 5264 #endif /* NDEBUG */ 5265 unsigned Width = 1; 5266 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5267 5268 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5269 // Ignore scalar width, because the user explicitly wants vectorization. 5270 if (ForceVectorization && VF > 1) { 5271 Width = 2; 5272 Cost = expectedCost(Width).first / (float)Width; 5273 } 5274 5275 for (unsigned i=2; i <= VF; i*=2) { 5276 // Notice that the vector loop needs to be executed less times, so 5277 // we need to divide the cost of the vector loops by the width of 5278 // the vector elements. 5279 VectorizationCostTy C = expectedCost(i); 5280 float VectorCost = C.first / (float)i; 5281 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5282 (int)VectorCost << ".\n"); 5283 if (!C.second && !ForceVectorization) { 5284 DEBUG(dbgs() << "LV: Not considering vector loop of width " << i << 5285 " because it will not generate any vector instructions.\n"); 5286 continue; 5287 } 5288 if (VectorCost < Cost) { 5289 Cost = VectorCost; 5290 Width = i; 5291 } 5292 } 5293 5294 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5295 << "LV: Vectorization seems to be not beneficial, " 5296 << "but was forced by a user.\n"); 5297 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5298 Factor.Width = Width; 5299 Factor.Cost = Width * Cost; 5300 return Factor; 5301 } 5302 5303 std::pair<unsigned, unsigned> 5304 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5305 unsigned MinWidth = -1U; 5306 unsigned MaxWidth = 8; 5307 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5308 5309 // For each block. 5310 for (Loop::block_iterator bb = TheLoop->block_begin(), 5311 be = TheLoop->block_end(); bb != be; ++bb) { 5312 BasicBlock *BB = *bb; 5313 5314 // For each instruction in the loop. 5315 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5316 Type *T = it->getType(); 5317 5318 // Skip ignored values. 5319 if (ValuesToIgnore.count(&*it)) 5320 continue; 5321 5322 // Only examine Loads, Stores and PHINodes. 5323 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5324 continue; 5325 5326 // Examine PHI nodes that are reduction variables. Update the type to 5327 // account for the recurrence type. 5328 if (PHINode *PN = dyn_cast<PHINode>(it)) { 5329 if (!Legal->isReductionVariable(PN)) 5330 continue; 5331 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5332 T = RdxDesc.getRecurrenceType(); 5333 } 5334 5335 // Examine the stored values. 5336 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5337 T = ST->getValueOperand()->getType(); 5338 5339 // Ignore loaded pointer types and stored pointer types that are not 5340 // consecutive. However, we do want to take consecutive stores/loads of 5341 // pointer vectors into account. 5342 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 5343 continue; 5344 5345 MinWidth = std::min(MinWidth, 5346 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5347 MaxWidth = std::max(MaxWidth, 5348 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5349 } 5350 } 5351 5352 return {MinWidth, MaxWidth}; 5353 } 5354 5355 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5356 unsigned VF, 5357 unsigned LoopCost) { 5358 5359 // -- The interleave heuristics -- 5360 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5361 // There are many micro-architectural considerations that we can't predict 5362 // at this level. For example, frontend pressure (on decode or fetch) due to 5363 // code size, or the number and capabilities of the execution ports. 5364 // 5365 // We use the following heuristics to select the interleave count: 5366 // 1. If the code has reductions, then we interleave to break the cross 5367 // iteration dependency. 5368 // 2. If the loop is really small, then we interleave to reduce the loop 5369 // overhead. 5370 // 3. We don't interleave if we think that we will spill registers to memory 5371 // due to the increased register pressure. 5372 5373 // When we optimize for size, we don't interleave. 5374 if (OptForSize) 5375 return 1; 5376 5377 // We used the distance for the interleave count. 5378 if (Legal->getMaxSafeDepDistBytes() != -1U) 5379 return 1; 5380 5381 // Do not interleave loops with a relatively small trip count. 5382 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5383 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5384 return 1; 5385 5386 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5387 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5388 " registers\n"); 5389 5390 if (VF == 1) { 5391 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5392 TargetNumRegisters = ForceTargetNumScalarRegs; 5393 } else { 5394 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5395 TargetNumRegisters = ForceTargetNumVectorRegs; 5396 } 5397 5398 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5399 // We divide by these constants so assume that we have at least one 5400 // instruction that uses at least one register. 5401 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5402 R.NumInstructions = std::max(R.NumInstructions, 1U); 5403 5404 // We calculate the interleave count using the following formula. 5405 // Subtract the number of loop invariants from the number of available 5406 // registers. These registers are used by all of the interleaved instances. 5407 // Next, divide the remaining registers by the number of registers that is 5408 // required by the loop, in order to estimate how many parallel instances 5409 // fit without causing spills. All of this is rounded down if necessary to be 5410 // a power of two. We want power of two interleave count to simplify any 5411 // addressing operations or alignment considerations. 5412 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5413 R.MaxLocalUsers); 5414 5415 // Don't count the induction variable as interleaved. 5416 if (EnableIndVarRegisterHeur) 5417 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5418 std::max(1U, (R.MaxLocalUsers - 1))); 5419 5420 // Clamp the interleave ranges to reasonable counts. 5421 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5422 5423 // Check if the user has overridden the max. 5424 if (VF == 1) { 5425 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5426 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5427 } else { 5428 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5429 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5430 } 5431 5432 // If we did not calculate the cost for VF (because the user selected the VF) 5433 // then we calculate the cost of VF here. 5434 if (LoopCost == 0) 5435 LoopCost = expectedCost(VF).first; 5436 5437 // Clamp the calculated IC to be between the 1 and the max interleave count 5438 // that the target allows. 5439 if (IC > MaxInterleaveCount) 5440 IC = MaxInterleaveCount; 5441 else if (IC < 1) 5442 IC = 1; 5443 5444 // Interleave if we vectorized this loop and there is a reduction that could 5445 // benefit from interleaving. 5446 if (VF > 1 && Legal->getReductionVars()->size()) { 5447 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5448 return IC; 5449 } 5450 5451 // Note that if we've already vectorized the loop we will have done the 5452 // runtime check and so interleaving won't require further checks. 5453 bool InterleavingRequiresRuntimePointerCheck = 5454 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5455 5456 // We want to interleave small loops in order to reduce the loop overhead and 5457 // potentially expose ILP opportunities. 5458 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5459 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5460 // We assume that the cost overhead is 1 and we use the cost model 5461 // to estimate the cost of the loop and interleave until the cost of the 5462 // loop overhead is about 5% of the cost of the loop. 5463 unsigned SmallIC = 5464 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5465 5466 // Interleave until store/load ports (estimated by max interleave count) are 5467 // saturated. 5468 unsigned NumStores = Legal->getNumStores(); 5469 unsigned NumLoads = Legal->getNumLoads(); 5470 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5471 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5472 5473 // If we have a scalar reduction (vector reductions are already dealt with 5474 // by this point), we can increase the critical path length if the loop 5475 // we're interleaving is inside another loop. Limit, by default to 2, so the 5476 // critical path only gets increased by one reduction operation. 5477 if (Legal->getReductionVars()->size() && 5478 TheLoop->getLoopDepth() > 1) { 5479 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5480 SmallIC = std::min(SmallIC, F); 5481 StoresIC = std::min(StoresIC, F); 5482 LoadsIC = std::min(LoadsIC, F); 5483 } 5484 5485 if (EnableLoadStoreRuntimeInterleave && 5486 std::max(StoresIC, LoadsIC) > SmallIC) { 5487 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5488 return std::max(StoresIC, LoadsIC); 5489 } 5490 5491 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5492 return SmallIC; 5493 } 5494 5495 // Interleave if this is a large loop (small loops are already dealt with by 5496 // this point) that could benefit from interleaving. 5497 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5498 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5499 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5500 return IC; 5501 } 5502 5503 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5504 return 1; 5505 } 5506 5507 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5508 LoopVectorizationCostModel::calculateRegisterUsage( 5509 const SmallVector<unsigned, 8> &VFs) { 5510 // This function calculates the register usage by measuring the highest number 5511 // of values that are alive at a single location. Obviously, this is a very 5512 // rough estimation. We scan the loop in a topological order in order and 5513 // assign a number to each instruction. We use RPO to ensure that defs are 5514 // met before their users. We assume that each instruction that has in-loop 5515 // users starts an interval. We record every time that an in-loop value is 5516 // used, so we have a list of the first and last occurrences of each 5517 // instruction. Next, we transpose this data structure into a multi map that 5518 // holds the list of intervals that *end* at a specific location. This multi 5519 // map allows us to perform a linear search. We scan the instructions linearly 5520 // and record each time that a new interval starts, by placing it in a set. 5521 // If we find this value in the multi-map then we remove it from the set. 5522 // The max register usage is the maximum size of the set. 5523 // We also search for instructions that are defined outside the loop, but are 5524 // used inside the loop. We need this number separately from the max-interval 5525 // usage number because when we unroll, loop-invariant values do not take 5526 // more register. 5527 LoopBlocksDFS DFS(TheLoop); 5528 DFS.perform(LI); 5529 5530 RegisterUsage RU; 5531 RU.NumInstructions = 0; 5532 5533 // Each 'key' in the map opens a new interval. The values 5534 // of the map are the index of the 'last seen' usage of the 5535 // instruction that is the key. 5536 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5537 // Maps instruction to its index. 5538 DenseMap<unsigned, Instruction*> IdxToInstr; 5539 // Marks the end of each interval. 5540 IntervalMap EndPoint; 5541 // Saves the list of instruction indices that are used in the loop. 5542 SmallSet<Instruction*, 8> Ends; 5543 // Saves the list of values that are used in the loop but are 5544 // defined outside the loop, such as arguments and constants. 5545 SmallPtrSet<Value*, 8> LoopInvariants; 5546 5547 unsigned Index = 0; 5548 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5549 be = DFS.endRPO(); bb != be; ++bb) { 5550 RU.NumInstructions += (*bb)->size(); 5551 for (Instruction &I : **bb) { 5552 IdxToInstr[Index++] = &I; 5553 5554 // Save the end location of each USE. 5555 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5556 Value *U = I.getOperand(i); 5557 Instruction *Instr = dyn_cast<Instruction>(U); 5558 5559 // Ignore non-instruction values such as arguments, constants, etc. 5560 if (!Instr) continue; 5561 5562 // If this instruction is outside the loop then record it and continue. 5563 if (!TheLoop->contains(Instr)) { 5564 LoopInvariants.insert(Instr); 5565 continue; 5566 } 5567 5568 // Overwrite previous end points. 5569 EndPoint[Instr] = Index; 5570 Ends.insert(Instr); 5571 } 5572 } 5573 } 5574 5575 // Saves the list of intervals that end with the index in 'key'. 5576 typedef SmallVector<Instruction*, 2> InstrList; 5577 DenseMap<unsigned, InstrList> TransposeEnds; 5578 5579 // Transpose the EndPoints to a list of values that end at each index. 5580 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5581 it != e; ++it) 5582 TransposeEnds[it->second].push_back(it->first); 5583 5584 SmallSet<Instruction*, 8> OpenIntervals; 5585 5586 // Get the size of the widest register. 5587 unsigned MaxSafeDepDist = -1U; 5588 if (Legal->getMaxSafeDepDistBytes() != -1U) 5589 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5590 unsigned WidestRegister = 5591 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5592 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5593 5594 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5595 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5596 5597 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5598 5599 // A lambda that gets the register usage for the given type and VF. 5600 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5601 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5602 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5603 }; 5604 5605 for (unsigned int i = 0; i < Index; ++i) { 5606 Instruction *I = IdxToInstr[i]; 5607 // Ignore instructions that are never used within the loop. 5608 if (!Ends.count(I)) continue; 5609 5610 // Skip ignored values. 5611 if (ValuesToIgnore.count(I)) 5612 continue; 5613 5614 // Remove all of the instructions that end at this location. 5615 InstrList &List = TransposeEnds[i]; 5616 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5617 OpenIntervals.erase(List[j]); 5618 5619 // For each VF find the maximum usage of registers. 5620 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5621 if (VFs[j] == 1) { 5622 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5623 continue; 5624 } 5625 5626 // Count the number of live intervals. 5627 unsigned RegUsage = 0; 5628 for (auto Inst : OpenIntervals) 5629 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5630 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5631 } 5632 5633 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5634 << OpenIntervals.size() << '\n'); 5635 5636 // Add the current instruction to the list of open intervals. 5637 OpenIntervals.insert(I); 5638 } 5639 5640 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5641 unsigned Invariant = 0; 5642 if (VFs[i] == 1) 5643 Invariant = LoopInvariants.size(); 5644 else { 5645 for (auto Inst : LoopInvariants) 5646 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5647 } 5648 5649 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5650 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5651 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5652 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5653 5654 RU.LoopInvariantRegs = Invariant; 5655 RU.MaxLocalUsers = MaxUsages[i]; 5656 RUs[i] = RU; 5657 } 5658 5659 return RUs; 5660 } 5661 5662 LoopVectorizationCostModel::VectorizationCostTy 5663 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5664 VectorizationCostTy Cost; 5665 5666 // For each block. 5667 for (Loop::block_iterator bb = TheLoop->block_begin(), 5668 be = TheLoop->block_end(); bb != be; ++bb) { 5669 VectorizationCostTy BlockCost; 5670 BasicBlock *BB = *bb; 5671 5672 // For each instruction in the old loop. 5673 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5674 // Skip dbg intrinsics. 5675 if (isa<DbgInfoIntrinsic>(it)) 5676 continue; 5677 5678 // Skip ignored values. 5679 if (ValuesToIgnore.count(&*it)) 5680 continue; 5681 5682 VectorizationCostTy C = getInstructionCost(&*it, VF); 5683 5684 // Check if we should override the cost. 5685 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5686 C.first = ForceTargetInstructionCost; 5687 5688 BlockCost.first += C.first; 5689 BlockCost.second |= C.second; 5690 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << 5691 " for VF " << VF << " For instruction: " << *it << '\n'); 5692 } 5693 5694 // We assume that if-converted blocks have a 50% chance of being executed. 5695 // When the code is scalar then some of the blocks are avoided due to CF. 5696 // When the code is vectorized we execute all code paths. 5697 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5698 BlockCost.first /= 2; 5699 5700 Cost.first += BlockCost.first; 5701 Cost.second |= BlockCost.second; 5702 } 5703 5704 return Cost; 5705 } 5706 5707 /// \brief Check if the load/store instruction \p I may be translated into 5708 /// gather/scatter during vectorization. 5709 /// 5710 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5711 /// instruction. We need it to retrieve data type. 5712 /// Using gather/scatter is possible when it is supported by target. 5713 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5714 LoopVectorizationLegality *Legal) { 5715 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5716 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5717 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5718 } 5719 5720 /// \brief Check whether the address computation for a non-consecutive memory 5721 /// access looks like an unlikely candidate for being merged into the indexing 5722 /// mode. 5723 /// 5724 /// We look for a GEP which has one index that is an induction variable and all 5725 /// other indices are loop invariant. If the stride of this access is also 5726 /// within a small bound we decide that this address computation can likely be 5727 /// merged into the addressing mode. 5728 /// In all other cases, we identify the address computation as complex. 5729 static bool isLikelyComplexAddressComputation(Value *Ptr, 5730 LoopVectorizationLegality *Legal, 5731 ScalarEvolution *SE, 5732 const Loop *TheLoop) { 5733 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5734 if (!Gep) 5735 return true; 5736 5737 // We are looking for a gep with all loop invariant indices except for one 5738 // which should be an induction variable. 5739 unsigned NumOperands = Gep->getNumOperands(); 5740 for (unsigned i = 1; i < NumOperands; ++i) { 5741 Value *Opd = Gep->getOperand(i); 5742 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5743 !Legal->isInductionVariable(Opd)) 5744 return true; 5745 } 5746 5747 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5748 // can likely be merged into the address computation. 5749 unsigned MaxMergeDistance = 64; 5750 5751 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5752 if (!AddRec) 5753 return true; 5754 5755 // Check the step is constant. 5756 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5757 // Calculate the pointer stride and check if it is consecutive. 5758 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5759 if (!C) 5760 return true; 5761 5762 const APInt &APStepVal = C->getAPInt(); 5763 5764 // Huge step value - give up. 5765 if (APStepVal.getBitWidth() > 64) 5766 return true; 5767 5768 int64_t StepVal = APStepVal.getSExtValue(); 5769 5770 return StepVal > MaxMergeDistance; 5771 } 5772 5773 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5774 return Legal->hasStride(I->getOperand(0)) || 5775 Legal->hasStride(I->getOperand(1)); 5776 } 5777 5778 LoopVectorizationCostModel::VectorizationCostTy 5779 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5780 // If we know that this instruction will remain uniform, check the cost of 5781 // the scalar version. 5782 if (Legal->isUniformAfterVectorization(I)) 5783 VF = 1; 5784 5785 Type *VectorTy; 5786 unsigned C = getInstructionCost(I, VF, VectorTy); 5787 5788 bool TypeNotScalarized = VF > 1 && !VectorTy->isVoidTy() && 5789 TTI.getNumberOfParts(VectorTy) < VF; 5790 return VectorizationCostTy(C, TypeNotScalarized); 5791 } 5792 5793 unsigned 5794 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF, 5795 Type *&VectorTy) { 5796 Type *RetTy = I->getType(); 5797 if (VF > 1 && MinBWs.count(I)) 5798 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5799 VectorTy = ToVectorTy(RetTy, VF); 5800 5801 // TODO: We need to estimate the cost of intrinsic calls. 5802 switch (I->getOpcode()) { 5803 case Instruction::GetElementPtr: 5804 // We mark this instruction as zero-cost because the cost of GEPs in 5805 // vectorized code depends on whether the corresponding memory instruction 5806 // is scalarized or not. Therefore, we handle GEPs with the memory 5807 // instruction cost. 5808 return 0; 5809 case Instruction::Br: { 5810 return TTI.getCFInstrCost(I->getOpcode()); 5811 } 5812 case Instruction::PHI: { 5813 auto *Phi = cast<PHINode>(I); 5814 5815 // First-order recurrences are replaced by vector shuffles inside the loop. 5816 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5817 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5818 VectorTy, VF - 1, VectorTy); 5819 5820 // TODO: IF-converted IFs become selects. 5821 return 0; 5822 } 5823 case Instruction::Add: 5824 case Instruction::FAdd: 5825 case Instruction::Sub: 5826 case Instruction::FSub: 5827 case Instruction::Mul: 5828 case Instruction::FMul: 5829 case Instruction::UDiv: 5830 case Instruction::SDiv: 5831 case Instruction::FDiv: 5832 case Instruction::URem: 5833 case Instruction::SRem: 5834 case Instruction::FRem: 5835 case Instruction::Shl: 5836 case Instruction::LShr: 5837 case Instruction::AShr: 5838 case Instruction::And: 5839 case Instruction::Or: 5840 case Instruction::Xor: { 5841 // Since we will replace the stride by 1 the multiplication should go away. 5842 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5843 return 0; 5844 // Certain instructions can be cheaper to vectorize if they have a constant 5845 // second vector operand. One example of this are shifts on x86. 5846 TargetTransformInfo::OperandValueKind Op1VK = 5847 TargetTransformInfo::OK_AnyValue; 5848 TargetTransformInfo::OperandValueKind Op2VK = 5849 TargetTransformInfo::OK_AnyValue; 5850 TargetTransformInfo::OperandValueProperties Op1VP = 5851 TargetTransformInfo::OP_None; 5852 TargetTransformInfo::OperandValueProperties Op2VP = 5853 TargetTransformInfo::OP_None; 5854 Value *Op2 = I->getOperand(1); 5855 5856 // Check for a splat of a constant or for a non uniform vector of constants. 5857 if (isa<ConstantInt>(Op2)) { 5858 ConstantInt *CInt = cast<ConstantInt>(Op2); 5859 if (CInt && CInt->getValue().isPowerOf2()) 5860 Op2VP = TargetTransformInfo::OP_PowerOf2; 5861 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5862 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5863 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5864 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5865 if (SplatValue) { 5866 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5867 if (CInt && CInt->getValue().isPowerOf2()) 5868 Op2VP = TargetTransformInfo::OP_PowerOf2; 5869 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5870 } 5871 } 5872 5873 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5874 Op1VP, Op2VP); 5875 } 5876 case Instruction::Select: { 5877 SelectInst *SI = cast<SelectInst>(I); 5878 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5879 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5880 Type *CondTy = SI->getCondition()->getType(); 5881 if (!ScalarCond) 5882 CondTy = VectorType::get(CondTy, VF); 5883 5884 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5885 } 5886 case Instruction::ICmp: 5887 case Instruction::FCmp: { 5888 Type *ValTy = I->getOperand(0)->getType(); 5889 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5890 auto It = MinBWs.find(Op0AsInstruction); 5891 if (VF > 1 && It != MinBWs.end()) 5892 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5893 VectorTy = ToVectorTy(ValTy, VF); 5894 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5895 } 5896 case Instruction::Store: 5897 case Instruction::Load: { 5898 StoreInst *SI = dyn_cast<StoreInst>(I); 5899 LoadInst *LI = dyn_cast<LoadInst>(I); 5900 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5901 LI->getType()); 5902 VectorTy = ToVectorTy(ValTy, VF); 5903 5904 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5905 unsigned AS = SI ? SI->getPointerAddressSpace() : 5906 LI->getPointerAddressSpace(); 5907 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5908 // We add the cost of address computation here instead of with the gep 5909 // instruction because only here we know whether the operation is 5910 // scalarized. 5911 if (VF == 1) 5912 return TTI.getAddressComputationCost(VectorTy) + 5913 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5914 5915 if (LI && Legal->isUniform(Ptr)) { 5916 // Scalar load + broadcast 5917 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 5918 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5919 Alignment, AS); 5920 return Cost + TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, 5921 ValTy); 5922 } 5923 5924 // For an interleaved access, calculate the total cost of the whole 5925 // interleave group. 5926 if (Legal->isAccessInterleaved(I)) { 5927 auto Group = Legal->getInterleavedAccessGroup(I); 5928 assert(Group && "Fail to get an interleaved access group."); 5929 5930 // Only calculate the cost once at the insert position. 5931 if (Group->getInsertPos() != I) 5932 return 0; 5933 5934 unsigned InterleaveFactor = Group->getFactor(); 5935 Type *WideVecTy = 5936 VectorType::get(VectorTy->getVectorElementType(), 5937 VectorTy->getVectorNumElements() * InterleaveFactor); 5938 5939 // Holds the indices of existing members in an interleaved load group. 5940 // An interleaved store group doesn't need this as it dones't allow gaps. 5941 SmallVector<unsigned, 4> Indices; 5942 if (LI) { 5943 for (unsigned i = 0; i < InterleaveFactor; i++) 5944 if (Group->getMember(i)) 5945 Indices.push_back(i); 5946 } 5947 5948 // Calculate the cost of the whole interleaved group. 5949 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5950 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5951 Group->getAlignment(), AS); 5952 5953 if (Group->isReverse()) 5954 Cost += 5955 Group->getNumMembers() * 5956 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5957 5958 // FIXME: The interleaved load group with a huge gap could be even more 5959 // expensive than scalar operations. Then we could ignore such group and 5960 // use scalar operations instead. 5961 return Cost; 5962 } 5963 5964 // Scalarized loads/stores. 5965 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5966 bool UseGatherOrScatter = (ConsecutiveStride == 0) && 5967 isGatherOrScatterLegal(I, Ptr, Legal); 5968 5969 bool Reverse = ConsecutiveStride < 0; 5970 const DataLayout &DL = I->getModule()->getDataLayout(); 5971 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5972 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5973 if ((!ConsecutiveStride && !UseGatherOrScatter) || 5974 ScalarAllocatedSize != VectorElementSize) { 5975 bool IsComplexComputation = 5976 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5977 unsigned Cost = 0; 5978 // The cost of extracting from the value vector and pointer vector. 5979 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5980 for (unsigned i = 0; i < VF; ++i) { 5981 // The cost of extracting the pointer operand. 5982 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5983 // In case of STORE, the cost of ExtractElement from the vector. 5984 // In case of LOAD, the cost of InsertElement into the returned 5985 // vector. 5986 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5987 Instruction::InsertElement, 5988 VectorTy, i); 5989 } 5990 5991 // The cost of the scalar loads/stores. 5992 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5993 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5994 Alignment, AS); 5995 return Cost; 5996 } 5997 5998 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5999 if (UseGatherOrScatter) { 6000 assert(ConsecutiveStride == 0 && 6001 "Gather/Scatter are not used for consecutive stride"); 6002 return Cost + 6003 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6004 Legal->isMaskRequired(I), Alignment); 6005 } 6006 // Wide load/stores. 6007 if (Legal->isMaskRequired(I)) 6008 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 6009 AS); 6010 else 6011 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6012 6013 if (Reverse) 6014 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 6015 VectorTy, 0); 6016 return Cost; 6017 } 6018 case Instruction::ZExt: 6019 case Instruction::SExt: 6020 case Instruction::FPToUI: 6021 case Instruction::FPToSI: 6022 case Instruction::FPExt: 6023 case Instruction::PtrToInt: 6024 case Instruction::IntToPtr: 6025 case Instruction::SIToFP: 6026 case Instruction::UIToFP: 6027 case Instruction::Trunc: 6028 case Instruction::FPTrunc: 6029 case Instruction::BitCast: { 6030 // We optimize the truncation of induction variable. 6031 // The cost of these is the same as the scalar operation. 6032 if (I->getOpcode() == Instruction::Trunc && 6033 Legal->isInductionVariable(I->getOperand(0))) 6034 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6035 I->getOperand(0)->getType()); 6036 6037 Type *SrcScalarTy = I->getOperand(0)->getType(); 6038 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6039 if (VF > 1 && MinBWs.count(I)) { 6040 // This cast is going to be shrunk. This may remove the cast or it might 6041 // turn it into slightly different cast. For example, if MinBW == 16, 6042 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6043 // 6044 // Calculate the modified src and dest types. 6045 Type *MinVecTy = VectorTy; 6046 if (I->getOpcode() == Instruction::Trunc) { 6047 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6048 VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF), 6049 MinVecTy); 6050 } else if (I->getOpcode() == Instruction::ZExt || 6051 I->getOpcode() == Instruction::SExt) { 6052 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6053 VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF), 6054 MinVecTy); 6055 } 6056 } 6057 6058 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6059 } 6060 case Instruction::Call: { 6061 bool NeedToScalarize; 6062 CallInst *CI = cast<CallInst>(I); 6063 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6064 if (getVectorIntrinsicIDForCall(CI, TLI)) 6065 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6066 return CallCost; 6067 } 6068 default: { 6069 // We are scalarizing the instruction. Return the cost of the scalar 6070 // instruction, plus the cost of insert and extract into vector 6071 // elements, times the vector width. 6072 unsigned Cost = 0; 6073 6074 if (!RetTy->isVoidTy() && VF != 1) { 6075 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 6076 VectorTy); 6077 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 6078 VectorTy); 6079 6080 // The cost of inserting the results plus extracting each one of the 6081 // operands. 6082 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6083 } 6084 6085 // The cost of executing VF copies of the scalar instruction. This opcode 6086 // is unknown. Assume that it is the same as 'mul'. 6087 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6088 return Cost; 6089 } 6090 }// end of switch. 6091 } 6092 6093 char LoopVectorize::ID = 0; 6094 static const char lv_name[] = "Loop Vectorization"; 6095 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6096 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6097 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6098 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6099 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6100 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6101 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6102 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6103 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6104 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6105 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6106 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6107 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 6108 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6109 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6110 6111 namespace llvm { 6112 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6113 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6114 } 6115 } 6116 6117 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6118 // Check for a store. 6119 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6120 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6121 6122 // Check for a load. 6123 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6124 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6125 6126 return false; 6127 } 6128 6129 6130 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6131 bool IfPredicateStore) { 6132 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6133 // Holds vector parameters or scalars, in case of uniform vals. 6134 SmallVector<VectorParts, 4> Params; 6135 6136 setDebugLocFromInst(Builder, Instr); 6137 6138 // Find all of the vectorized parameters. 6139 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6140 Value *SrcOp = Instr->getOperand(op); 6141 6142 // If we are accessing the old induction variable, use the new one. 6143 if (SrcOp == OldInduction) { 6144 Params.push_back(getVectorValue(SrcOp)); 6145 continue; 6146 } 6147 6148 // Try using previously calculated values. 6149 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6150 6151 // If the src is an instruction that appeared earlier in the basic block 6152 // then it should already be vectorized. 6153 if (SrcInst && OrigLoop->contains(SrcInst)) { 6154 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6155 // The parameter is a vector value from earlier. 6156 Params.push_back(WidenMap.get(SrcInst)); 6157 } else { 6158 // The parameter is a scalar from outside the loop. Maybe even a constant. 6159 VectorParts Scalars; 6160 Scalars.append(UF, SrcOp); 6161 Params.push_back(Scalars); 6162 } 6163 } 6164 6165 assert(Params.size() == Instr->getNumOperands() && 6166 "Invalid number of operands"); 6167 6168 // Does this instruction return a value ? 6169 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6170 6171 Value *UndefVec = IsVoidRetTy ? nullptr : 6172 UndefValue::get(Instr->getType()); 6173 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6174 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6175 6176 VectorParts Cond; 6177 if (IfPredicateStore) { 6178 assert(Instr->getParent()->getSinglePredecessor() && 6179 "Only support single predecessor blocks"); 6180 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6181 Instr->getParent()); 6182 } 6183 6184 // For each vector unroll 'part': 6185 for (unsigned Part = 0; Part < UF; ++Part) { 6186 // For each scalar that we create: 6187 6188 // Start an "if (pred) a[i] = ..." block. 6189 Value *Cmp = nullptr; 6190 if (IfPredicateStore) { 6191 if (Cond[Part]->getType()->isVectorTy()) 6192 Cond[Part] = 6193 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6194 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6195 ConstantInt::get(Cond[Part]->getType(), 1)); 6196 } 6197 6198 Instruction *Cloned = Instr->clone(); 6199 if (!IsVoidRetTy) 6200 Cloned->setName(Instr->getName() + ".cloned"); 6201 // Replace the operands of the cloned instructions with extracted scalars. 6202 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6203 Value *Op = Params[op][Part]; 6204 Cloned->setOperand(op, Op); 6205 } 6206 6207 // Place the cloned scalar in the new loop. 6208 Builder.Insert(Cloned); 6209 6210 // If we just cloned a new assumption, add it the assumption cache. 6211 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6212 if (II->getIntrinsicID() == Intrinsic::assume) 6213 AC->registerAssumption(II); 6214 6215 // If the original scalar returns a value we need to place it in a vector 6216 // so that future users will be able to use it. 6217 if (!IsVoidRetTy) 6218 VecResults[Part] = Cloned; 6219 6220 // End if-block. 6221 if (IfPredicateStore) 6222 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 6223 Cmp)); 6224 } 6225 } 6226 6227 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6228 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6229 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6230 6231 return scalarizeInstruction(Instr, IfPredicateStore); 6232 } 6233 6234 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6235 return Vec; 6236 } 6237 6238 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6239 return V; 6240 } 6241 6242 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6243 // When unrolling and the VF is 1, we only need to add a simple scalar. 6244 Type *ITy = Val->getType(); 6245 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6246 Constant *C = ConstantInt::get(ITy, StartIdx); 6247 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6248 } 6249