1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanTransforms.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DenseMapInfo.h"
66 #include "llvm/ADT/Hashing.h"
67 #include "llvm/ADT/MapVector.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
90 #include "llvm/Analysis/ProfileSummaryInfo.h"
91 #include "llvm/Analysis/ScalarEvolution.h"
92 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
93 #include "llvm/Analysis/TargetLibraryInfo.h"
94 #include "llvm/Analysis/TargetTransformInfo.h"
95 #include "llvm/Analysis/VectorUtils.h"
96 #include "llvm/IR/Attributes.h"
97 #include "llvm/IR/BasicBlock.h"
98 #include "llvm/IR/CFG.h"
99 #include "llvm/IR/Constant.h"
100 #include "llvm/IR/Constants.h"
101 #include "llvm/IR/DataLayout.h"
102 #include "llvm/IR/DebugInfoMetadata.h"
103 #include "llvm/IR/DebugLoc.h"
104 #include "llvm/IR/DerivedTypes.h"
105 #include "llvm/IR/DiagnosticInfo.h"
106 #include "llvm/IR/Dominators.h"
107 #include "llvm/IR/Function.h"
108 #include "llvm/IR/IRBuilder.h"
109 #include "llvm/IR/InstrTypes.h"
110 #include "llvm/IR/Instruction.h"
111 #include "llvm/IR/Instructions.h"
112 #include "llvm/IR/IntrinsicInst.h"
113 #include "llvm/IR/Intrinsics.h"
114 #include "llvm/IR/Metadata.h"
115 #include "llvm/IR/Module.h"
116 #include "llvm/IR/Operator.h"
117 #include "llvm/IR/PatternMatch.h"
118 #include "llvm/IR/Type.h"
119 #include "llvm/IR/Use.h"
120 #include "llvm/IR/User.h"
121 #include "llvm/IR/Value.h"
122 #include "llvm/IR/ValueHandle.h"
123 #include "llvm/IR/Verifier.h"
124 #include "llvm/InitializePasses.h"
125 #include "llvm/Pass.h"
126 #include "llvm/Support/Casting.h"
127 #include "llvm/Support/CommandLine.h"
128 #include "llvm/Support/Compiler.h"
129 #include "llvm/Support/Debug.h"
130 #include "llvm/Support/ErrorHandling.h"
131 #include "llvm/Support/InstructionCost.h"
132 #include "llvm/Support/MathExtras.h"
133 #include "llvm/Support/raw_ostream.h"
134 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
135 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
136 #include "llvm/Transforms/Utils/LoopSimplify.h"
137 #include "llvm/Transforms/Utils/LoopUtils.h"
138 #include "llvm/Transforms/Utils/LoopVersioning.h"
139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
140 #include "llvm/Transforms/Utils/SizeOpts.h"
141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
142 #include <algorithm>
143 #include <cassert>
144 #include <cstdint>
145 #include <functional>
146 #include <iterator>
147 #include <limits>
148 #include <map>
149 #include <memory>
150 #include <string>
151 #include <tuple>
152 #include <utility>
153 
154 using namespace llvm;
155 
156 #define LV_NAME "loop-vectorize"
157 #define DEBUG_TYPE LV_NAME
158 
159 #ifndef NDEBUG
160 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
161 #endif
162 
163 /// @{
164 /// Metadata attribute names
165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
166 const char LLVMLoopVectorizeFollowupVectorized[] =
167     "llvm.loop.vectorize.followup_vectorized";
168 const char LLVMLoopVectorizeFollowupEpilogue[] =
169     "llvm.loop.vectorize.followup_epilogue";
170 /// @}
171 
172 STATISTIC(LoopsVectorized, "Number of loops vectorized");
173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
175 
176 static cl::opt<bool> EnableEpilogueVectorization(
177     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
178     cl::desc("Enable vectorization of epilogue loops."));
179 
180 static cl::opt<unsigned> EpilogueVectorizationForceVF(
181     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
182     cl::desc("When epilogue vectorization is enabled, and a value greater than "
183              "1 is specified, forces the given VF for all applicable epilogue "
184              "loops."));
185 
186 static cl::opt<unsigned> EpilogueVectorizationMinVF(
187     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
188     cl::desc("Only loops with vectorization factor equal to or larger than "
189              "the specified value are considered for epilogue vectorization."));
190 
191 /// Loops with a known constant trip count below this number are vectorized only
192 /// if no scalar iteration overheads are incurred.
193 static cl::opt<unsigned> TinyTripCountVectorThreshold(
194     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
195     cl::desc("Loops with a constant trip count that is smaller than this "
196              "value are vectorized only if no scalar iteration overheads "
197              "are incurred."));
198 
199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
200     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
201     cl::desc("The maximum allowed number of runtime memory checks with a "
202              "vectorize(enable) pragma."));
203 
204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
205 // that predication is preferred, and this lists all options. I.e., the
206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
207 // and predicate the instructions accordingly. If tail-folding fails, there are
208 // different fallback strategies depending on these values:
209 namespace PreferPredicateTy {
210   enum Option {
211     ScalarEpilogue = 0,
212     PredicateElseScalarEpilogue,
213     PredicateOrDontVectorize
214   };
215 } // namespace PreferPredicateTy
216 
217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
218     "prefer-predicate-over-epilogue",
219     cl::init(PreferPredicateTy::ScalarEpilogue),
220     cl::Hidden,
221     cl::desc("Tail-folding and predication preferences over creating a scalar "
222              "epilogue loop."),
223     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
224                          "scalar-epilogue",
225                          "Don't tail-predicate loops, create scalar epilogue"),
226               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
227                          "predicate-else-scalar-epilogue",
228                          "prefer tail-folding, create scalar epilogue if tail "
229                          "folding fails."),
230               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
231                          "predicate-dont-vectorize",
232                          "prefers tail-folding, don't attempt vectorization if "
233                          "tail-folding fails.")));
234 
235 static cl::opt<bool> MaximizeBandwidth(
236     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
237     cl::desc("Maximize bandwidth when selecting vectorization factor which "
238              "will be determined by the smallest type in loop."));
239 
240 static cl::opt<bool> EnableInterleavedMemAccesses(
241     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
242     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
243 
244 /// An interleave-group may need masking if it resides in a block that needs
245 /// predication, or in order to mask away gaps.
246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
247     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
248     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
249 
250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
251     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
252     cl::desc("We don't interleave loops with a estimated constant trip count "
253              "below this number"));
254 
255 static cl::opt<unsigned> ForceTargetNumScalarRegs(
256     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
257     cl::desc("A flag that overrides the target's number of scalar registers."));
258 
259 static cl::opt<unsigned> ForceTargetNumVectorRegs(
260     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
261     cl::desc("A flag that overrides the target's number of vector registers."));
262 
263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
264     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
265     cl::desc("A flag that overrides the target's max interleave factor for "
266              "scalar loops."));
267 
268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
269     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
270     cl::desc("A flag that overrides the target's max interleave factor for "
271              "vectorized loops."));
272 
273 static cl::opt<unsigned> ForceTargetInstructionCost(
274     "force-target-instruction-cost", cl::init(0), cl::Hidden,
275     cl::desc("A flag that overrides the target's expected cost for "
276              "an instruction to a single constant value. Mostly "
277              "useful for getting consistent testing."));
278 
279 static cl::opt<bool> ForceTargetSupportsScalableVectors(
280     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
281     cl::desc(
282         "Pretend that scalable vectors are supported, even if the target does "
283         "not support them. This flag should only be used for testing."));
284 
285 static cl::opt<unsigned> SmallLoopCost(
286     "small-loop-cost", cl::init(20), cl::Hidden,
287     cl::desc(
288         "The cost of a loop that is considered 'small' by the interleaver."));
289 
290 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
291     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
292     cl::desc("Enable the use of the block frequency analysis to access PGO "
293              "heuristics minimizing code growth in cold regions and being more "
294              "aggressive in hot regions."));
295 
296 // Runtime interleave loops for load/store throughput.
297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
298     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
299     cl::desc(
300         "Enable runtime interleaving until load/store ports are saturated"));
301 
302 /// Interleave small loops with scalar reductions.
303 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
304     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
305     cl::desc("Enable interleaving for loops with small iteration counts that "
306              "contain scalar reductions to expose ILP."));
307 
308 /// The number of stores in a loop that are allowed to need predication.
309 static cl::opt<unsigned> NumberOfStoresToPredicate(
310     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
311     cl::desc("Max number of stores to be predicated behind an if."));
312 
313 static cl::opt<bool> EnableIndVarRegisterHeur(
314     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
315     cl::desc("Count the induction variable only once when interleaving"));
316 
317 static cl::opt<bool> EnableCondStoresVectorization(
318     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
319     cl::desc("Enable if predication of stores during vectorization."));
320 
321 static cl::opt<unsigned> MaxNestedScalarReductionIC(
322     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
323     cl::desc("The maximum interleave count to use when interleaving a scalar "
324              "reduction in a nested loop."));
325 
326 static cl::opt<bool>
327     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
328                            cl::Hidden,
329                            cl::desc("Prefer in-loop vector reductions, "
330                                     "overriding the targets preference."));
331 
332 static cl::opt<bool> ForceOrderedReductions(
333     "force-ordered-reductions", cl::init(false), cl::Hidden,
334     cl::desc("Enable the vectorisation of loops with in-order (strict) "
335              "FP reductions"));
336 
337 static cl::opt<bool> PreferPredicatedReductionSelect(
338     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
339     cl::desc(
340         "Prefer predicating a reduction operation over an after loop select."));
341 
342 cl::opt<bool> EnableVPlanNativePath(
343     "enable-vplan-native-path", cl::init(false), cl::Hidden,
344     cl::desc("Enable VPlan-native vectorization path with "
345              "support for outer loop vectorization."));
346 
347 // This flag enables the stress testing of the VPlan H-CFG construction in the
348 // VPlan-native vectorization path. It must be used in conjuction with
349 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
350 // verification of the H-CFGs built.
351 static cl::opt<bool> VPlanBuildStressTest(
352     "vplan-build-stress-test", cl::init(false), cl::Hidden,
353     cl::desc(
354         "Build VPlan for every supported loop nest in the function and bail "
355         "out right after the build (stress test the VPlan H-CFG construction "
356         "in the VPlan-native vectorization path)."));
357 
358 cl::opt<bool> llvm::EnableLoopInterleaving(
359     "interleave-loops", cl::init(true), cl::Hidden,
360     cl::desc("Enable loop interleaving in Loop vectorization passes"));
361 cl::opt<bool> llvm::EnableLoopVectorization(
362     "vectorize-loops", cl::init(true), cl::Hidden,
363     cl::desc("Run the Loop vectorization passes"));
364 
365 cl::opt<bool> PrintVPlansInDotFormat(
366     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
367     cl::desc("Use dot format instead of plain text when dumping VPlans"));
368 
369 /// A helper function that returns true if the given type is irregular. The
370 /// type is irregular if its allocated size doesn't equal the store size of an
371 /// element of the corresponding vector type.
372 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
373   // Determine if an array of N elements of type Ty is "bitcast compatible"
374   // with a <N x Ty> vector.
375   // This is only true if there is no padding between the array elements.
376   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
377 }
378 
379 /// A helper function that returns the reciprocal of the block probability of
380 /// predicated blocks. If we return X, we are assuming the predicated block
381 /// will execute once for every X iterations of the loop header.
382 ///
383 /// TODO: We should use actual block probability here, if available. Currently,
384 ///       we always assume predicated blocks have a 50% chance of executing.
385 static unsigned getReciprocalPredBlockProb() { return 2; }
386 
387 /// A helper function that returns an integer or floating-point constant with
388 /// value C.
389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
390   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
391                            : ConstantFP::get(Ty, C);
392 }
393 
394 /// Returns "best known" trip count for the specified loop \p L as defined by
395 /// the following procedure:
396 ///   1) Returns exact trip count if it is known.
397 ///   2) Returns expected trip count according to profile data if any.
398 ///   3) Returns upper bound estimate if it is known.
399 ///   4) Returns None if all of the above failed.
400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
401   // Check if exact trip count is known.
402   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
403     return ExpectedTC;
404 
405   // Check if there is an expected trip count available from profile data.
406   if (LoopVectorizeWithBlockFrequency)
407     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
408       return EstimatedTC;
409 
410   // Check if upper bound estimate is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
412     return ExpectedTC;
413 
414   return None;
415 }
416 
417 // Forward declare GeneratedRTChecks.
418 class GeneratedRTChecks;
419 
420 namespace llvm {
421 
422 AnalysisKey ShouldRunExtraVectorPasses::Key;
423 
424 /// InnerLoopVectorizer vectorizes loops which contain only one basic
425 /// block to a specified vectorization factor (VF).
426 /// This class performs the widening of scalars into vectors, or multiple
427 /// scalars. This class also implements the following features:
428 /// * It inserts an epilogue loop for handling loops that don't have iteration
429 ///   counts that are known to be a multiple of the vectorization factor.
430 /// * It handles the code generation for reduction variables.
431 /// * Scalarization (implementation using scalars) of un-vectorizable
432 ///   instructions.
433 /// InnerLoopVectorizer does not perform any vectorization-legality
434 /// checks, and relies on the caller to check for the different legality
435 /// aspects. The InnerLoopVectorizer relies on the
436 /// LoopVectorizationLegality class to provide information about the induction
437 /// and reduction variables that were found to a given vectorization factor.
438 class InnerLoopVectorizer {
439 public:
440   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
441                       LoopInfo *LI, DominatorTree *DT,
442                       const TargetLibraryInfo *TLI,
443                       const TargetTransformInfo *TTI, AssumptionCache *AC,
444                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
445                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
446                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
447                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
448       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
449         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
450         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
451         PSI(PSI), RTChecks(RTChecks) {
452     // Query this against the original loop and save it here because the profile
453     // of the original loop header may change as the transformation happens.
454     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
455         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
456   }
457 
458   virtual ~InnerLoopVectorizer() = default;
459 
460   /// Create a new empty loop that will contain vectorized instructions later
461   /// on, while the old loop will be used as the scalar remainder. Control flow
462   /// is generated around the vectorized (and scalar epilogue) loops consisting
463   /// of various checks and bypasses. Return the pre-header block of the new
464   /// loop and the start value for the canonical induction, if it is != 0. The
465   /// latter is the case when vectorizing the epilogue loop. In the case of
466   /// epilogue vectorization, this function is overriden to handle the more
467   /// complex control flow around the loops.
468   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
469 
470   /// Widen a single call instruction within the innermost loop.
471   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
472                             VPTransformState &State);
473 
474   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
475   void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
476 
477   // Return true if any runtime check is added.
478   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
479 
480   /// A type for vectorized values in the new loop. Each value from the
481   /// original loop, when vectorized, is represented by UF vector values in the
482   /// new unrolled loop, where UF is the unroll factor.
483   using VectorParts = SmallVector<Value *, 2>;
484 
485   /// A helper function to scalarize a single Instruction in the innermost loop.
486   /// Generates a sequence of scalar instances for each lane between \p MinLane
487   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
488   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
489   /// Instr's operands.
490   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
491                             const VPIteration &Instance, bool IfPredicateInstr,
492                             VPTransformState &State);
493 
494   /// Construct the vector value of a scalarized value \p V one lane at a time.
495   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
496                                  VPTransformState &State);
497 
498   /// Try to vectorize interleaved access group \p Group with the base address
499   /// given in \p Addr, optionally masking the vector operations if \p
500   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
501   /// values in the vectorized loop.
502   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
503                                 ArrayRef<VPValue *> VPDefs,
504                                 VPTransformState &State, VPValue *Addr,
505                                 ArrayRef<VPValue *> StoredValues,
506                                 VPValue *BlockInMask = nullptr);
507 
508   /// Set the debug location in the builder \p Ptr using the debug location in
509   /// \p V. If \p Ptr is None then it uses the class member's Builder.
510   void setDebugLocFromInst(const Value *V);
511 
512   /// Fix the non-induction PHIs in \p Plan.
513   void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);
514 
515   /// Returns true if the reordering of FP operations is not allowed, but we are
516   /// able to vectorize with strict in-order reductions for the given RdxDesc.
517   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
518 
519   /// Create a broadcast instruction. This method generates a broadcast
520   /// instruction (shuffle) for loop invariant values and for the induction
521   /// value. If this is the induction variable then we extend it to N, N+1, ...
522   /// this is needed because each iteration in the loop corresponds to a SIMD
523   /// element.
524   virtual Value *getBroadcastInstrs(Value *V);
525 
526   /// Add metadata from one instruction to another.
527   ///
528   /// This includes both the original MDs from \p From and additional ones (\see
529   /// addNewMetadata).  Use this for *newly created* instructions in the vector
530   /// loop.
531   void addMetadata(Instruction *To, Instruction *From);
532 
533   /// Similar to the previous function but it adds the metadata to a
534   /// vector of instructions.
535   void addMetadata(ArrayRef<Value *> To, Instruction *From);
536 
537   // Returns the resume value (bc.merge.rdx) for a reduction as
538   // generated by fixReduction.
539   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
540 
541 protected:
542   friend class LoopVectorizationPlanner;
543 
544   /// A small list of PHINodes.
545   using PhiVector = SmallVector<PHINode *, 4>;
546 
547   /// A type for scalarized values in the new loop. Each value from the
548   /// original loop, when scalarized, is represented by UF x VF scalar values
549   /// in the new unrolled loop, where UF is the unroll factor and VF is the
550   /// vectorization factor.
551   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
552 
553   /// Set up the values of the IVs correctly when exiting the vector loop.
554   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
555                     Value *VectorTripCount, Value *EndValue,
556                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
557                     VPlan &Plan);
558 
559   /// Handle all cross-iteration phis in the header.
560   void fixCrossIterationPHIs(VPTransformState &State);
561 
562   /// Create the exit value of first order recurrences in the middle block and
563   /// update their users.
564   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
565                                VPTransformState &State);
566 
567   /// Create code for the loop exit value of the reduction.
568   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
569 
570   /// Clear NSW/NUW flags from reduction instructions if necessary.
571   void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
572                                VPTransformState &State);
573 
574   /// Iteratively sink the scalarized operands of a predicated instruction into
575   /// the block that was created for it.
576   void sinkScalarOperands(Instruction *PredInst);
577 
578   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
579   /// represented as.
580   void truncateToMinimalBitwidths(VPTransformState &State);
581 
582   /// Returns (and creates if needed) the original loop trip count.
583   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
584 
585   /// Returns (and creates if needed) the trip count of the widened loop.
586   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
587 
588   /// Returns a bitcasted value to the requested vector type.
589   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
590   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
591                                 const DataLayout &DL);
592 
593   /// Emit a bypass check to see if the vector trip count is zero, including if
594   /// it overflows.
595   void emitIterationCountCheck(BasicBlock *Bypass);
596 
597   /// Emit a bypass check to see if all of the SCEV assumptions we've
598   /// had to make are correct. Returns the block containing the checks or
599   /// nullptr if no checks have been added.
600   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
601 
602   /// Emit bypass checks to check any memory assumptions we may have made.
603   /// Returns the block containing the checks or nullptr if no checks have been
604   /// added.
605   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
606 
607   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
608   /// vector loop preheader, middle block and scalar preheader.
609   void createVectorLoopSkeleton(StringRef Prefix);
610 
611   /// Create new phi nodes for the induction variables to resume iteration count
612   /// in the scalar epilogue, from where the vectorized loop left off.
613   /// In cases where the loop skeleton is more complicated (eg. epilogue
614   /// vectorization) and the resume values can come from an additional bypass
615   /// block, the \p AdditionalBypass pair provides information about the bypass
616   /// block and the end value on the edge from bypass to this loop.
617   void createInductionResumeValues(
618       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
619 
620   /// Complete the loop skeleton by adding debug MDs, creating appropriate
621   /// conditional branches in the middle block, preparing the builder and
622   /// running the verifier. Return the preheader of the completed vector loop.
623   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
624 
625   /// Add additional metadata to \p To that was not present on \p Orig.
626   ///
627   /// Currently this is used to add the noalias annotations based on the
628   /// inserted memchecks.  Use this for instructions that are *cloned* into the
629   /// vector loop.
630   void addNewMetadata(Instruction *To, const Instruction *Orig);
631 
632   /// Collect poison-generating recipes that may generate a poison value that is
633   /// used after vectorization, even when their operands are not poison. Those
634   /// recipes meet the following conditions:
635   ///  * Contribute to the address computation of a recipe generating a widen
636   ///    memory load/store (VPWidenMemoryInstructionRecipe or
637   ///    VPInterleaveRecipe).
638   ///  * Such a widen memory load/store has at least one underlying Instruction
639   ///    that is in a basic block that needs predication and after vectorization
640   ///    the generated instruction won't be predicated.
641   void collectPoisonGeneratingRecipes(VPTransformState &State);
642 
643   /// Allow subclasses to override and print debug traces before/after vplan
644   /// execution, when trace information is requested.
645   virtual void printDebugTracesAtStart(){};
646   virtual void printDebugTracesAtEnd(){};
647 
648   /// The original loop.
649   Loop *OrigLoop;
650 
651   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
652   /// dynamic knowledge to simplify SCEV expressions and converts them to a
653   /// more usable form.
654   PredicatedScalarEvolution &PSE;
655 
656   /// Loop Info.
657   LoopInfo *LI;
658 
659   /// Dominator Tree.
660   DominatorTree *DT;
661 
662   /// Alias Analysis.
663   AAResults *AA;
664 
665   /// Target Library Info.
666   const TargetLibraryInfo *TLI;
667 
668   /// Target Transform Info.
669   const TargetTransformInfo *TTI;
670 
671   /// Assumption Cache.
672   AssumptionCache *AC;
673 
674   /// Interface to emit optimization remarks.
675   OptimizationRemarkEmitter *ORE;
676 
677   /// LoopVersioning.  It's only set up (non-null) if memchecks were
678   /// used.
679   ///
680   /// This is currently only used to add no-alias metadata based on the
681   /// memchecks.  The actually versioning is performed manually.
682   std::unique_ptr<LoopVersioning> LVer;
683 
684   /// The vectorization SIMD factor to use. Each vector will have this many
685   /// vector elements.
686   ElementCount VF;
687 
688   /// The vectorization unroll factor to use. Each scalar is vectorized to this
689   /// many different vector instructions.
690   unsigned UF;
691 
692   /// The builder that we use
693   IRBuilder<> Builder;
694 
695   // --- Vectorization state ---
696 
697   /// The vector-loop preheader.
698   BasicBlock *LoopVectorPreHeader;
699 
700   /// The scalar-loop preheader.
701   BasicBlock *LoopScalarPreHeader;
702 
703   /// Middle Block between the vector and the scalar.
704   BasicBlock *LoopMiddleBlock;
705 
706   /// The unique ExitBlock of the scalar loop if one exists.  Note that
707   /// there can be multiple exiting edges reaching this block.
708   BasicBlock *LoopExitBlock;
709 
710   /// The scalar loop body.
711   BasicBlock *LoopScalarBody;
712 
713   /// A list of all bypass blocks. The first block is the entry of the loop.
714   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
715 
716   /// Store instructions that were predicated.
717   SmallVector<Instruction *, 4> PredicatedInstructions;
718 
719   /// Trip count of the original loop.
720   Value *TripCount = nullptr;
721 
722   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
723   Value *VectorTripCount = nullptr;
724 
725   /// The legality analysis.
726   LoopVectorizationLegality *Legal;
727 
728   /// The profitablity analysis.
729   LoopVectorizationCostModel *Cost;
730 
731   // Record whether runtime checks are added.
732   bool AddedSafetyChecks = false;
733 
734   // Holds the end values for each induction variable. We save the end values
735   // so we can later fix-up the external users of the induction variables.
736   DenseMap<PHINode *, Value *> IVEndValues;
737 
738   /// BFI and PSI are used to check for profile guided size optimizations.
739   BlockFrequencyInfo *BFI;
740   ProfileSummaryInfo *PSI;
741 
742   // Whether this loop should be optimized for size based on profile guided size
743   // optimizatios.
744   bool OptForSizeBasedOnProfile;
745 
746   /// Structure to hold information about generated runtime checks, responsible
747   /// for cleaning the checks, if vectorization turns out unprofitable.
748   GeneratedRTChecks &RTChecks;
749 
750   // Holds the resume values for reductions in the loops, used to set the
751   // correct start value of reduction PHIs when vectorizing the epilogue.
752   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
753       ReductionResumeValues;
754 };
755 
756 class InnerLoopUnroller : public InnerLoopVectorizer {
757 public:
758   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
759                     LoopInfo *LI, DominatorTree *DT,
760                     const TargetLibraryInfo *TLI,
761                     const TargetTransformInfo *TTI, AssumptionCache *AC,
762                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
763                     LoopVectorizationLegality *LVL,
764                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
765                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
766       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
767                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
768                             BFI, PSI, Check) {}
769 
770 private:
771   Value *getBroadcastInstrs(Value *V) override;
772 };
773 
774 /// Encapsulate information regarding vectorization of a loop and its epilogue.
775 /// This information is meant to be updated and used across two stages of
776 /// epilogue vectorization.
777 struct EpilogueLoopVectorizationInfo {
778   ElementCount MainLoopVF = ElementCount::getFixed(0);
779   unsigned MainLoopUF = 0;
780   ElementCount EpilogueVF = ElementCount::getFixed(0);
781   unsigned EpilogueUF = 0;
782   BasicBlock *MainLoopIterationCountCheck = nullptr;
783   BasicBlock *EpilogueIterationCountCheck = nullptr;
784   BasicBlock *SCEVSafetyCheck = nullptr;
785   BasicBlock *MemSafetyCheck = nullptr;
786   Value *TripCount = nullptr;
787   Value *VectorTripCount = nullptr;
788 
789   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
790                                 ElementCount EVF, unsigned EUF)
791       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
792     assert(EUF == 1 &&
793            "A high UF for the epilogue loop is likely not beneficial.");
794   }
795 };
796 
797 /// An extension of the inner loop vectorizer that creates a skeleton for a
798 /// vectorized loop that has its epilogue (residual) also vectorized.
799 /// The idea is to run the vplan on a given loop twice, firstly to setup the
800 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
801 /// from the first step and vectorize the epilogue.  This is achieved by
802 /// deriving two concrete strategy classes from this base class and invoking
803 /// them in succession from the loop vectorizer planner.
804 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
805 public:
806   InnerLoopAndEpilogueVectorizer(
807       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
808       DominatorTree *DT, const TargetLibraryInfo *TLI,
809       const TargetTransformInfo *TTI, AssumptionCache *AC,
810       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
811       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
812       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
813       GeneratedRTChecks &Checks)
814       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
815                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
816                             Checks),
817         EPI(EPI) {}
818 
819   // Override this function to handle the more complex control flow around the
820   // three loops.
821   std::pair<BasicBlock *, Value *>
822   createVectorizedLoopSkeleton() final override {
823     return createEpilogueVectorizedLoopSkeleton();
824   }
825 
826   /// The interface for creating a vectorized skeleton using one of two
827   /// different strategies, each corresponding to one execution of the vplan
828   /// as described above.
829   virtual std::pair<BasicBlock *, Value *>
830   createEpilogueVectorizedLoopSkeleton() = 0;
831 
832   /// Holds and updates state information required to vectorize the main loop
833   /// and its epilogue in two separate passes. This setup helps us avoid
834   /// regenerating and recomputing runtime safety checks. It also helps us to
835   /// shorten the iteration-count-check path length for the cases where the
836   /// iteration count of the loop is so small that the main vector loop is
837   /// completely skipped.
838   EpilogueLoopVectorizationInfo &EPI;
839 };
840 
841 /// A specialized derived class of inner loop vectorizer that performs
842 /// vectorization of *main* loops in the process of vectorizing loops and their
843 /// epilogues.
844 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
845 public:
846   EpilogueVectorizerMainLoop(
847       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
848       DominatorTree *DT, const TargetLibraryInfo *TLI,
849       const TargetTransformInfo *TTI, AssumptionCache *AC,
850       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
851       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
852       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
853       GeneratedRTChecks &Check)
854       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
855                                        EPI, LVL, CM, BFI, PSI, Check) {}
856   /// Implements the interface for creating a vectorized skeleton using the
857   /// *main loop* strategy (ie the first pass of vplan execution).
858   std::pair<BasicBlock *, Value *>
859   createEpilogueVectorizedLoopSkeleton() final override;
860 
861 protected:
862   /// Emits an iteration count bypass check once for the main loop (when \p
863   /// ForEpilogue is false) and once for the epilogue loop (when \p
864   /// ForEpilogue is true).
865   BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
866   void printDebugTracesAtStart() override;
867   void printDebugTracesAtEnd() override;
868 };
869 
870 // A specialized derived class of inner loop vectorizer that performs
871 // vectorization of *epilogue* loops in the process of vectorizing loops and
872 // their epilogues.
873 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
874 public:
875   EpilogueVectorizerEpilogueLoop(
876       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
877       DominatorTree *DT, const TargetLibraryInfo *TLI,
878       const TargetTransformInfo *TTI, AssumptionCache *AC,
879       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
880       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
881       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
882       GeneratedRTChecks &Checks)
883       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
884                                        EPI, LVL, CM, BFI, PSI, Checks) {
885     TripCount = EPI.TripCount;
886   }
887   /// Implements the interface for creating a vectorized skeleton using the
888   /// *epilogue loop* strategy (ie the second pass of vplan execution).
889   std::pair<BasicBlock *, Value *>
890   createEpilogueVectorizedLoopSkeleton() final override;
891 
892 protected:
893   /// Emits an iteration count bypass check after the main vector loop has
894   /// finished to see if there are any iterations left to execute by either
895   /// the vector epilogue or the scalar epilogue.
896   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
897                                                       BasicBlock *Bypass,
898                                                       BasicBlock *Insert);
899   void printDebugTracesAtStart() override;
900   void printDebugTracesAtEnd() override;
901 };
902 } // end namespace llvm
903 
904 /// Look for a meaningful debug location on the instruction or it's
905 /// operands.
906 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
907   if (!I)
908     return I;
909 
910   DebugLoc Empty;
911   if (I->getDebugLoc() != Empty)
912     return I;
913 
914   for (Use &Op : I->operands()) {
915     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
916       if (OpInst->getDebugLoc() != Empty)
917         return OpInst;
918   }
919 
920   return I;
921 }
922 
923 void InnerLoopVectorizer::setDebugLocFromInst(
924     const Value *V) {
925   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
926     const DILocation *DIL = Inst->getDebugLoc();
927 
928     // When a FSDiscriminator is enabled, we don't need to add the multiply
929     // factors to the discriminators.
930     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
931         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
932       // FIXME: For scalable vectors, assume vscale=1.
933       auto NewDIL =
934           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
935       if (NewDIL)
936         Builder.SetCurrentDebugLocation(*NewDIL);
937       else
938         LLVM_DEBUG(dbgs()
939                    << "Failed to create new discriminator: "
940                    << DIL->getFilename() << " Line: " << DIL->getLine());
941     } else
942       Builder.SetCurrentDebugLocation(DIL);
943   } else
944     Builder.SetCurrentDebugLocation(DebugLoc());
945 }
946 
947 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
948 /// is passed, the message relates to that particular instruction.
949 #ifndef NDEBUG
950 static void debugVectorizationMessage(const StringRef Prefix,
951                                       const StringRef DebugMsg,
952                                       Instruction *I) {
953   dbgs() << "LV: " << Prefix << DebugMsg;
954   if (I != nullptr)
955     dbgs() << " " << *I;
956   else
957     dbgs() << '.';
958   dbgs() << '\n';
959 }
960 #endif
961 
962 /// Create an analysis remark that explains why vectorization failed
963 ///
964 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
965 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
966 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
967 /// the location of the remark.  \return the remark object that can be
968 /// streamed to.
969 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
970     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
971   Value *CodeRegion = TheLoop->getHeader();
972   DebugLoc DL = TheLoop->getStartLoc();
973 
974   if (I) {
975     CodeRegion = I->getParent();
976     // If there is no debug location attached to the instruction, revert back to
977     // using the loop's.
978     if (I->getDebugLoc())
979       DL = I->getDebugLoc();
980   }
981 
982   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
983 }
984 
985 namespace llvm {
986 
987 /// Return a value for Step multiplied by VF.
988 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
989                        int64_t Step) {
990   assert(Ty->isIntegerTy() && "Expected an integer step");
991   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
992   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
993 }
994 
995 /// Return the runtime value for VF.
996 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
997   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
998   return VF.isScalable() ? B.CreateVScale(EC) : EC;
999 }
1000 
1001 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1002                                   ElementCount VF) {
1003   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1004   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1005   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1006   return B.CreateUIToFP(RuntimeVF, FTy);
1007 }
1008 
1009 void reportVectorizationFailure(const StringRef DebugMsg,
1010                                 const StringRef OREMsg, const StringRef ORETag,
1011                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1012                                 Instruction *I) {
1013   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1014   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1015   ORE->emit(
1016       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1017       << "loop not vectorized: " << OREMsg);
1018 }
1019 
1020 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1021                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1022                              Instruction *I) {
1023   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1024   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1025   ORE->emit(
1026       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1027       << Msg);
1028 }
1029 
1030 } // end namespace llvm
1031 
1032 #ifndef NDEBUG
1033 /// \return string containing a file name and a line # for the given loop.
1034 static std::string getDebugLocString(const Loop *L) {
1035   std::string Result;
1036   if (L) {
1037     raw_string_ostream OS(Result);
1038     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1039       LoopDbgLoc.print(OS);
1040     else
1041       // Just print the module name.
1042       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1043     OS.flush();
1044   }
1045   return Result;
1046 }
1047 #endif
1048 
1049 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1050                                          const Instruction *Orig) {
1051   // If the loop was versioned with memchecks, add the corresponding no-alias
1052   // metadata.
1053   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1054     LVer->annotateInstWithNoAlias(To, Orig);
1055 }
1056 
1057 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1058     VPTransformState &State) {
1059 
1060   // Collect recipes in the backward slice of `Root` that may generate a poison
1061   // value that is used after vectorization.
1062   SmallPtrSet<VPRecipeBase *, 16> Visited;
1063   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1064     SmallVector<VPRecipeBase *, 16> Worklist;
1065     Worklist.push_back(Root);
1066 
1067     // Traverse the backward slice of Root through its use-def chain.
1068     while (!Worklist.empty()) {
1069       VPRecipeBase *CurRec = Worklist.back();
1070       Worklist.pop_back();
1071 
1072       if (!Visited.insert(CurRec).second)
1073         continue;
1074 
1075       // Prune search if we find another recipe generating a widen memory
1076       // instruction. Widen memory instructions involved in address computation
1077       // will lead to gather/scatter instructions, which don't need to be
1078       // handled.
1079       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1080           isa<VPInterleaveRecipe>(CurRec) ||
1081           isa<VPScalarIVStepsRecipe>(CurRec) ||
1082           isa<VPCanonicalIVPHIRecipe>(CurRec))
1083         continue;
1084 
1085       // This recipe contributes to the address computation of a widen
1086       // load/store. Collect recipe if its underlying instruction has
1087       // poison-generating flags.
1088       Instruction *Instr = CurRec->getUnderlyingInstr();
1089       if (Instr && Instr->hasPoisonGeneratingFlags())
1090         State.MayGeneratePoisonRecipes.insert(CurRec);
1091 
1092       // Add new definitions to the worklist.
1093       for (VPValue *operand : CurRec->operands())
1094         if (VPDef *OpDef = operand->getDef())
1095           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1096     }
1097   });
1098 
1099   // Traverse all the recipes in the VPlan and collect the poison-generating
1100   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1101   // VPInterleaveRecipe.
1102   auto Iter = depth_first(
1103       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1104   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1105     for (VPRecipeBase &Recipe : *VPBB) {
1106       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1107         Instruction &UnderlyingInstr = WidenRec->getIngredient();
1108         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1109         if (AddrDef && WidenRec->isConsecutive() &&
1110             Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
1111           collectPoisonGeneratingInstrsInBackwardSlice(
1112               cast<VPRecipeBase>(AddrDef));
1113       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1114         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1115         if (AddrDef) {
1116           // Check if any member of the interleave group needs predication.
1117           const InterleaveGroup<Instruction> *InterGroup =
1118               InterleaveRec->getInterleaveGroup();
1119           bool NeedPredication = false;
1120           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1121                I < NumMembers; ++I) {
1122             Instruction *Member = InterGroup->getMember(I);
1123             if (Member)
1124               NeedPredication |=
1125                   Legal->blockNeedsPredication(Member->getParent());
1126           }
1127 
1128           if (NeedPredication)
1129             collectPoisonGeneratingInstrsInBackwardSlice(
1130                 cast<VPRecipeBase>(AddrDef));
1131         }
1132       }
1133     }
1134   }
1135 }
1136 
1137 void InnerLoopVectorizer::addMetadata(Instruction *To,
1138                                       Instruction *From) {
1139   propagateMetadata(To, From);
1140   addNewMetadata(To, From);
1141 }
1142 
1143 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1144                                       Instruction *From) {
1145   for (Value *V : To) {
1146     if (Instruction *I = dyn_cast<Instruction>(V))
1147       addMetadata(I, From);
1148   }
1149 }
1150 
1151 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1152     const RecurrenceDescriptor &RdxDesc) {
1153   auto It = ReductionResumeValues.find(&RdxDesc);
1154   assert(It != ReductionResumeValues.end() &&
1155          "Expected to find a resume value for the reduction.");
1156   return It->second;
1157 }
1158 
1159 namespace llvm {
1160 
1161 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1162 // lowered.
1163 enum ScalarEpilogueLowering {
1164 
1165   // The default: allowing scalar epilogues.
1166   CM_ScalarEpilogueAllowed,
1167 
1168   // Vectorization with OptForSize: don't allow epilogues.
1169   CM_ScalarEpilogueNotAllowedOptSize,
1170 
1171   // A special case of vectorisation with OptForSize: loops with a very small
1172   // trip count are considered for vectorization under OptForSize, thereby
1173   // making sure the cost of their loop body is dominant, free of runtime
1174   // guards and scalar iteration overheads.
1175   CM_ScalarEpilogueNotAllowedLowTripLoop,
1176 
1177   // Loop hint predicate indicating an epilogue is undesired.
1178   CM_ScalarEpilogueNotNeededUsePredicate,
1179 
1180   // Directive indicating we must either tail fold or not vectorize
1181   CM_ScalarEpilogueNotAllowedUsePredicate
1182 };
1183 
1184 /// ElementCountComparator creates a total ordering for ElementCount
1185 /// for the purposes of using it in a set structure.
1186 struct ElementCountComparator {
1187   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1188     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1189            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1190   }
1191 };
1192 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1193 
1194 /// LoopVectorizationCostModel - estimates the expected speedups due to
1195 /// vectorization.
1196 /// In many cases vectorization is not profitable. This can happen because of
1197 /// a number of reasons. In this class we mainly attempt to predict the
1198 /// expected speedup/slowdowns due to the supported instruction set. We use the
1199 /// TargetTransformInfo to query the different backends for the cost of
1200 /// different operations.
1201 class LoopVectorizationCostModel {
1202 public:
1203   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1204                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1205                              LoopVectorizationLegality *Legal,
1206                              const TargetTransformInfo &TTI,
1207                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1208                              AssumptionCache *AC,
1209                              OptimizationRemarkEmitter *ORE, const Function *F,
1210                              const LoopVectorizeHints *Hints,
1211                              InterleavedAccessInfo &IAI)
1212       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1213         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1214         Hints(Hints), InterleaveInfo(IAI) {}
1215 
1216   /// \return An upper bound for the vectorization factors (both fixed and
1217   /// scalable). If the factors are 0, vectorization and interleaving should be
1218   /// avoided up front.
1219   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1220 
1221   /// \return True if runtime checks are required for vectorization, and false
1222   /// otherwise.
1223   bool runtimeChecksRequired();
1224 
1225   /// \return The most profitable vectorization factor and the cost of that VF.
1226   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1227   /// then this vectorization factor will be selected if vectorization is
1228   /// possible.
1229   VectorizationFactor
1230   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1231 
1232   VectorizationFactor
1233   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1234                                     const LoopVectorizationPlanner &LVP);
1235 
1236   /// Setup cost-based decisions for user vectorization factor.
1237   /// \return true if the UserVF is a feasible VF to be chosen.
1238   bool selectUserVectorizationFactor(ElementCount UserVF) {
1239     collectUniformsAndScalars(UserVF);
1240     collectInstsToScalarize(UserVF);
1241     return expectedCost(UserVF).first.isValid();
1242   }
1243 
1244   /// \return The size (in bits) of the smallest and widest types in the code
1245   /// that needs to be vectorized. We ignore values that remain scalar such as
1246   /// 64 bit loop indices.
1247   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1248 
1249   /// \return The desired interleave count.
1250   /// If interleave count has been specified by metadata it will be returned.
1251   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1252   /// are the selected vectorization factor and the cost of the selected VF.
1253   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1254 
1255   /// Memory access instruction may be vectorized in more than one way.
1256   /// Form of instruction after vectorization depends on cost.
1257   /// This function takes cost-based decisions for Load/Store instructions
1258   /// and collects them in a map. This decisions map is used for building
1259   /// the lists of loop-uniform and loop-scalar instructions.
1260   /// The calculated cost is saved with widening decision in order to
1261   /// avoid redundant calculations.
1262   void setCostBasedWideningDecision(ElementCount VF);
1263 
1264   /// A struct that represents some properties of the register usage
1265   /// of a loop.
1266   struct RegisterUsage {
1267     /// Holds the number of loop invariant values that are used in the loop.
1268     /// The key is ClassID of target-provided register class.
1269     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1270     /// Holds the maximum number of concurrent live intervals in the loop.
1271     /// The key is ClassID of target-provided register class.
1272     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1273   };
1274 
1275   /// \return Returns information about the register usages of the loop for the
1276   /// given vectorization factors.
1277   SmallVector<RegisterUsage, 8>
1278   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1279 
1280   /// Collect values we want to ignore in the cost model.
1281   void collectValuesToIgnore();
1282 
1283   /// Collect all element types in the loop for which widening is needed.
1284   void collectElementTypesForWidening();
1285 
1286   /// Split reductions into those that happen in the loop, and those that happen
1287   /// outside. In loop reductions are collected into InLoopReductionChains.
1288   void collectInLoopReductions();
1289 
1290   /// Returns true if we should use strict in-order reductions for the given
1291   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1292   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1293   /// of FP operations.
1294   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
1295     return !Hints->allowReordering() && RdxDesc.isOrdered();
1296   }
1297 
1298   /// \returns The smallest bitwidth each instruction can be represented with.
1299   /// The vector equivalents of these instructions should be truncated to this
1300   /// type.
1301   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1302     return MinBWs;
1303   }
1304 
1305   /// \returns True if it is more profitable to scalarize instruction \p I for
1306   /// vectorization factor \p VF.
1307   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1308     assert(VF.isVector() &&
1309            "Profitable to scalarize relevant only for VF > 1.");
1310 
1311     // Cost model is not run in the VPlan-native path - return conservative
1312     // result until this changes.
1313     if (EnableVPlanNativePath)
1314       return false;
1315 
1316     auto Scalars = InstsToScalarize.find(VF);
1317     assert(Scalars != InstsToScalarize.end() &&
1318            "VF not yet analyzed for scalarization profitability");
1319     return Scalars->second.find(I) != Scalars->second.end();
1320   }
1321 
1322   /// Returns true if \p I is known to be uniform after vectorization.
1323   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1324     if (VF.isScalar())
1325       return true;
1326 
1327     // Cost model is not run in the VPlan-native path - return conservative
1328     // result until this changes.
1329     if (EnableVPlanNativePath)
1330       return false;
1331 
1332     auto UniformsPerVF = Uniforms.find(VF);
1333     assert(UniformsPerVF != Uniforms.end() &&
1334            "VF not yet analyzed for uniformity");
1335     return UniformsPerVF->second.count(I);
1336   }
1337 
1338   /// Returns true if \p I is known to be scalar after vectorization.
1339   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1340     if (VF.isScalar())
1341       return true;
1342 
1343     // Cost model is not run in the VPlan-native path - return conservative
1344     // result until this changes.
1345     if (EnableVPlanNativePath)
1346       return false;
1347 
1348     auto ScalarsPerVF = Scalars.find(VF);
1349     assert(ScalarsPerVF != Scalars.end() &&
1350            "Scalar values are not calculated for VF");
1351     return ScalarsPerVF->second.count(I);
1352   }
1353 
1354   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1355   /// for vectorization factor \p VF.
1356   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1357     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1358            !isProfitableToScalarize(I, VF) &&
1359            !isScalarAfterVectorization(I, VF);
1360   }
1361 
1362   /// Decision that was taken during cost calculation for memory instruction.
1363   enum InstWidening {
1364     CM_Unknown,
1365     CM_Widen,         // For consecutive accesses with stride +1.
1366     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1367     CM_Interleave,
1368     CM_GatherScatter,
1369     CM_Scalarize
1370   };
1371 
1372   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1373   /// instruction \p I and vector width \p VF.
1374   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1375                            InstructionCost Cost) {
1376     assert(VF.isVector() && "Expected VF >=2");
1377     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1378   }
1379 
1380   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1381   /// interleaving group \p Grp and vector width \p VF.
1382   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1383                            ElementCount VF, InstWidening W,
1384                            InstructionCost Cost) {
1385     assert(VF.isVector() && "Expected VF >=2");
1386     /// Broadcast this decicion to all instructions inside the group.
1387     /// But the cost will be assigned to one instruction only.
1388     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1389       if (auto *I = Grp->getMember(i)) {
1390         if (Grp->getInsertPos() == I)
1391           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1392         else
1393           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1394       }
1395     }
1396   }
1397 
1398   /// Return the cost model decision for the given instruction \p I and vector
1399   /// width \p VF. Return CM_Unknown if this instruction did not pass
1400   /// through the cost modeling.
1401   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1402     assert(VF.isVector() && "Expected VF to be a vector VF");
1403     // Cost model is not run in the VPlan-native path - return conservative
1404     // result until this changes.
1405     if (EnableVPlanNativePath)
1406       return CM_GatherScatter;
1407 
1408     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1409     auto Itr = WideningDecisions.find(InstOnVF);
1410     if (Itr == WideningDecisions.end())
1411       return CM_Unknown;
1412     return Itr->second.first;
1413   }
1414 
1415   /// Return the vectorization cost for the given instruction \p I and vector
1416   /// width \p VF.
1417   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1418     assert(VF.isVector() && "Expected VF >=2");
1419     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1420     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1421            "The cost is not calculated");
1422     return WideningDecisions[InstOnVF].second;
1423   }
1424 
1425   /// Return True if instruction \p I is an optimizable truncate whose operand
1426   /// is an induction variable. Such a truncate will be removed by adding a new
1427   /// induction variable with the destination type.
1428   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1429     // If the instruction is not a truncate, return false.
1430     auto *Trunc = dyn_cast<TruncInst>(I);
1431     if (!Trunc)
1432       return false;
1433 
1434     // Get the source and destination types of the truncate.
1435     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1436     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1437 
1438     // If the truncate is free for the given types, return false. Replacing a
1439     // free truncate with an induction variable would add an induction variable
1440     // update instruction to each iteration of the loop. We exclude from this
1441     // check the primary induction variable since it will need an update
1442     // instruction regardless.
1443     Value *Op = Trunc->getOperand(0);
1444     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1445       return false;
1446 
1447     // If the truncated value is not an induction variable, return false.
1448     return Legal->isInductionPhi(Op);
1449   }
1450 
1451   /// Collects the instructions to scalarize for each predicated instruction in
1452   /// the loop.
1453   void collectInstsToScalarize(ElementCount VF);
1454 
1455   /// Collect Uniform and Scalar values for the given \p VF.
1456   /// The sets depend on CM decision for Load/Store instructions
1457   /// that may be vectorized as interleave, gather-scatter or scalarized.
1458   void collectUniformsAndScalars(ElementCount VF) {
1459     // Do the analysis once.
1460     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1461       return;
1462     setCostBasedWideningDecision(VF);
1463     collectLoopUniforms(VF);
1464     collectLoopScalars(VF);
1465   }
1466 
1467   /// Returns true if the target machine supports masked store operation
1468   /// for the given \p DataType and kind of access to \p Ptr.
1469   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1470     return Legal->isConsecutivePtr(DataType, Ptr) &&
1471            TTI.isLegalMaskedStore(DataType, Alignment);
1472   }
1473 
1474   /// Returns true if the target machine supports masked load operation
1475   /// for the given \p DataType and kind of access to \p Ptr.
1476   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1477     return Legal->isConsecutivePtr(DataType, Ptr) &&
1478            TTI.isLegalMaskedLoad(DataType, Alignment);
1479   }
1480 
1481   /// Returns true if the target machine can represent \p V as a masked gather
1482   /// or scatter operation.
1483   bool isLegalGatherOrScatter(Value *V,
1484                               ElementCount VF = ElementCount::getFixed(1)) {
1485     bool LI = isa<LoadInst>(V);
1486     bool SI = isa<StoreInst>(V);
1487     if (!LI && !SI)
1488       return false;
1489     auto *Ty = getLoadStoreType(V);
1490     Align Align = getLoadStoreAlignment(V);
1491     if (VF.isVector())
1492       Ty = VectorType::get(Ty, VF);
1493     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1494            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1495   }
1496 
1497   /// Returns true if the target machine supports all of the reduction
1498   /// variables found for the given VF.
1499   bool canVectorizeReductions(ElementCount VF) const {
1500     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1501       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1502       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1503     }));
1504   }
1505 
1506   /// Returns true if \p I is an instruction that will be scalarized with
1507   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1508   /// instructions include conditional stores and instructions that may divide
1509   /// by zero.
1510   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1511 
1512   // Returns true if \p I is an instruction that will be predicated either
1513   // through scalar predication or masked load/store or masked gather/scatter.
1514   // \p VF is the vectorization factor that will be used to vectorize \p I.
1515   // Superset of instructions that return true for isScalarWithPredication.
1516   bool isPredicatedInst(Instruction *I, ElementCount VF,
1517                         bool IsKnownUniform = false) {
1518     // When we know the load is uniform and the original scalar loop was not
1519     // predicated we don't need to mark it as a predicated instruction. Any
1520     // vectorised blocks created when tail-folding are something artificial we
1521     // have introduced and we know there is always at least one active lane.
1522     // That's why we call Legal->blockNeedsPredication here because it doesn't
1523     // query tail-folding.
1524     if (IsKnownUniform && isa<LoadInst>(I) &&
1525         !Legal->blockNeedsPredication(I->getParent()))
1526       return false;
1527     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1528       return false;
1529     // Loads and stores that need some form of masked operation are predicated
1530     // instructions.
1531     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1532       return Legal->isMaskRequired(I);
1533     return isScalarWithPredication(I, VF);
1534   }
1535 
1536   /// Returns true if \p I is a memory instruction with consecutive memory
1537   /// access that can be widened.
1538   bool
1539   memoryInstructionCanBeWidened(Instruction *I,
1540                                 ElementCount VF = ElementCount::getFixed(1));
1541 
1542   /// Returns true if \p I is a memory instruction in an interleaved-group
1543   /// of memory accesses that can be vectorized with wide vector loads/stores
1544   /// and shuffles.
1545   bool
1546   interleavedAccessCanBeWidened(Instruction *I,
1547                                 ElementCount VF = ElementCount::getFixed(1));
1548 
1549   /// Check if \p Instr belongs to any interleaved access group.
1550   bool isAccessInterleaved(Instruction *Instr) {
1551     return InterleaveInfo.isInterleaved(Instr);
1552   }
1553 
1554   /// Get the interleaved access group that \p Instr belongs to.
1555   const InterleaveGroup<Instruction> *
1556   getInterleavedAccessGroup(Instruction *Instr) {
1557     return InterleaveInfo.getInterleaveGroup(Instr);
1558   }
1559 
1560   /// Returns true if we're required to use a scalar epilogue for at least
1561   /// the final iteration of the original loop.
1562   bool requiresScalarEpilogue(ElementCount VF) const {
1563     if (!isScalarEpilogueAllowed())
1564       return false;
1565     // If we might exit from anywhere but the latch, must run the exiting
1566     // iteration in scalar form.
1567     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1568       return true;
1569     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1570   }
1571 
1572   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1573   /// loop hint annotation.
1574   bool isScalarEpilogueAllowed() const {
1575     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1576   }
1577 
1578   /// Returns true if all loop blocks should be masked to fold tail loop.
1579   bool foldTailByMasking() const { return FoldTailByMasking; }
1580 
1581   /// Returns true if the instructions in this block requires predication
1582   /// for any reason, e.g. because tail folding now requires a predicate
1583   /// or because the block in the original loop was predicated.
1584   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1585     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1586   }
1587 
1588   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1589   /// nodes to the chain of instructions representing the reductions. Uses a
1590   /// MapVector to ensure deterministic iteration order.
1591   using ReductionChainMap =
1592       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1593 
1594   /// Return the chain of instructions representing an inloop reduction.
1595   const ReductionChainMap &getInLoopReductionChains() const {
1596     return InLoopReductionChains;
1597   }
1598 
1599   /// Returns true if the Phi is part of an inloop reduction.
1600   bool isInLoopReduction(PHINode *Phi) const {
1601     return InLoopReductionChains.count(Phi);
1602   }
1603 
1604   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1605   /// with factor VF.  Return the cost of the instruction, including
1606   /// scalarization overhead if it's needed.
1607   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1608 
1609   /// Estimate cost of a call instruction CI if it were vectorized with factor
1610   /// VF. Return the cost of the instruction, including scalarization overhead
1611   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1612   /// scalarized -
1613   /// i.e. either vector version isn't available, or is too expensive.
1614   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1615                                     bool &NeedToScalarize) const;
1616 
1617   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1618   /// that of B.
1619   bool isMoreProfitable(const VectorizationFactor &A,
1620                         const VectorizationFactor &B) const;
1621 
1622   /// Invalidates decisions already taken by the cost model.
1623   void invalidateCostModelingDecisions() {
1624     WideningDecisions.clear();
1625     Uniforms.clear();
1626     Scalars.clear();
1627   }
1628 
1629 private:
1630   unsigned NumPredStores = 0;
1631 
1632   /// Convenience function that returns the value of vscale_range iff
1633   /// vscale_range.min == vscale_range.max or otherwise returns the value
1634   /// returned by the corresponding TLI method.
1635   Optional<unsigned> getVScaleForTuning() const;
1636 
1637   /// \return An upper bound for the vectorization factors for both
1638   /// fixed and scalable vectorization, where the minimum-known number of
1639   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1640   /// disabled or unsupported, then the scalable part will be equal to
1641   /// ElementCount::getScalable(0).
1642   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1643                                            ElementCount UserVF,
1644                                            bool FoldTailByMasking);
1645 
1646   /// \return the maximized element count based on the targets vector
1647   /// registers and the loop trip-count, but limited to a maximum safe VF.
1648   /// This is a helper function of computeFeasibleMaxVF.
1649   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1650                                        unsigned SmallestType,
1651                                        unsigned WidestType,
1652                                        ElementCount MaxSafeVF,
1653                                        bool FoldTailByMasking);
1654 
1655   /// \return the maximum legal scalable VF, based on the safe max number
1656   /// of elements.
1657   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1658 
1659   /// The vectorization cost is a combination of the cost itself and a boolean
1660   /// indicating whether any of the contributing operations will actually
1661   /// operate on vector values after type legalization in the backend. If this
1662   /// latter value is false, then all operations will be scalarized (i.e. no
1663   /// vectorization has actually taken place).
1664   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1665 
1666   /// Returns the expected execution cost. The unit of the cost does
1667   /// not matter because we use the 'cost' units to compare different
1668   /// vector widths. The cost that is returned is *not* normalized by
1669   /// the factor width. If \p Invalid is not nullptr, this function
1670   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1671   /// each instruction that has an Invalid cost for the given VF.
1672   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1673   VectorizationCostTy
1674   expectedCost(ElementCount VF,
1675                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1676 
1677   /// Returns the execution time cost of an instruction for a given vector
1678   /// width. Vector width of one means scalar.
1679   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1680 
1681   /// The cost-computation logic from getInstructionCost which provides
1682   /// the vector type as an output parameter.
1683   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1684                                      Type *&VectorTy);
1685 
1686   /// Return the cost of instructions in an inloop reduction pattern, if I is
1687   /// part of that pattern.
1688   Optional<InstructionCost>
1689   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1690                           TTI::TargetCostKind CostKind);
1691 
1692   /// Calculate vectorization cost of memory instruction \p I.
1693   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost computation for scalarized memory instruction.
1696   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1697 
1698   /// The cost computation for interleaving group of memory instructions.
1699   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1700 
1701   /// The cost computation for Gather/Scatter instruction.
1702   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1703 
1704   /// The cost computation for widening instruction \p I with consecutive
1705   /// memory access.
1706   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1709   /// Load: scalar load + broadcast.
1710   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1711   /// element)
1712   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1713 
1714   /// Estimate the overhead of scalarizing an instruction. This is a
1715   /// convenience wrapper for the type-based getScalarizationOverhead API.
1716   InstructionCost getScalarizationOverhead(Instruction *I,
1717                                            ElementCount VF) const;
1718 
1719   /// Returns whether the instruction is a load or store and will be a emitted
1720   /// as a vector operation.
1721   bool isConsecutiveLoadOrStore(Instruction *I);
1722 
1723   /// Returns true if an artificially high cost for emulated masked memrefs
1724   /// should be used.
1725   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1726 
1727   /// Map of scalar integer values to the smallest bitwidth they can be legally
1728   /// represented as. The vector equivalents of these values should be truncated
1729   /// to this type.
1730   MapVector<Instruction *, uint64_t> MinBWs;
1731 
1732   /// A type representing the costs for instructions if they were to be
1733   /// scalarized rather than vectorized. The entries are Instruction-Cost
1734   /// pairs.
1735   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1736 
1737   /// A set containing all BasicBlocks that are known to present after
1738   /// vectorization as a predicated block.
1739   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1740 
1741   /// Records whether it is allowed to have the original scalar loop execute at
1742   /// least once. This may be needed as a fallback loop in case runtime
1743   /// aliasing/dependence checks fail, or to handle the tail/remainder
1744   /// iterations when the trip count is unknown or doesn't divide by the VF,
1745   /// or as a peel-loop to handle gaps in interleave-groups.
1746   /// Under optsize and when the trip count is very small we don't allow any
1747   /// iterations to execute in the scalar loop.
1748   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1749 
1750   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1751   bool FoldTailByMasking = false;
1752 
1753   /// A map holding scalar costs for different vectorization factors. The
1754   /// presence of a cost for an instruction in the mapping indicates that the
1755   /// instruction will be scalarized when vectorizing with the associated
1756   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1757   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1758 
1759   /// Holds the instructions known to be uniform after vectorization.
1760   /// The data is collected per VF.
1761   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1762 
1763   /// Holds the instructions known to be scalar after vectorization.
1764   /// The data is collected per VF.
1765   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1766 
1767   /// Holds the instructions (address computations) that are forced to be
1768   /// scalarized.
1769   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1770 
1771   /// PHINodes of the reductions that should be expanded in-loop along with
1772   /// their associated chains of reduction operations, in program order from top
1773   /// (PHI) to bottom
1774   ReductionChainMap InLoopReductionChains;
1775 
1776   /// A Map of inloop reduction operations and their immediate chain operand.
1777   /// FIXME: This can be removed once reductions can be costed correctly in
1778   /// vplan. This was added to allow quick lookup to the inloop operations,
1779   /// without having to loop through InLoopReductionChains.
1780   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1781 
1782   /// Returns the expected difference in cost from scalarizing the expression
1783   /// feeding a predicated instruction \p PredInst. The instructions to
1784   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1785   /// non-negative return value implies the expression will be scalarized.
1786   /// Currently, only single-use chains are considered for scalarization.
1787   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1788                               ElementCount VF);
1789 
1790   /// Collect the instructions that are uniform after vectorization. An
1791   /// instruction is uniform if we represent it with a single scalar value in
1792   /// the vectorized loop corresponding to each vector iteration. Examples of
1793   /// uniform instructions include pointer operands of consecutive or
1794   /// interleaved memory accesses. Note that although uniformity implies an
1795   /// instruction will be scalar, the reverse is not true. In general, a
1796   /// scalarized instruction will be represented by VF scalar values in the
1797   /// vectorized loop, each corresponding to an iteration of the original
1798   /// scalar loop.
1799   void collectLoopUniforms(ElementCount VF);
1800 
1801   /// Collect the instructions that are scalar after vectorization. An
1802   /// instruction is scalar if it is known to be uniform or will be scalarized
1803   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1804   /// to the list if they are used by a load/store instruction that is marked as
1805   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1806   /// VF values in the vectorized loop, each corresponding to an iteration of
1807   /// the original scalar loop.
1808   void collectLoopScalars(ElementCount VF);
1809 
1810   /// Keeps cost model vectorization decision and cost for instructions.
1811   /// Right now it is used for memory instructions only.
1812   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1813                                 std::pair<InstWidening, InstructionCost>>;
1814 
1815   DecisionList WideningDecisions;
1816 
1817   /// Returns true if \p V is expected to be vectorized and it needs to be
1818   /// extracted.
1819   bool needsExtract(Value *V, ElementCount VF) const {
1820     Instruction *I = dyn_cast<Instruction>(V);
1821     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1822         TheLoop->isLoopInvariant(I))
1823       return false;
1824 
1825     // Assume we can vectorize V (and hence we need extraction) if the
1826     // scalars are not computed yet. This can happen, because it is called
1827     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1828     // the scalars are collected. That should be a safe assumption in most
1829     // cases, because we check if the operands have vectorizable types
1830     // beforehand in LoopVectorizationLegality.
1831     return Scalars.find(VF) == Scalars.end() ||
1832            !isScalarAfterVectorization(I, VF);
1833   };
1834 
1835   /// Returns a range containing only operands needing to be extracted.
1836   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1837                                                    ElementCount VF) const {
1838     return SmallVector<Value *, 4>(make_filter_range(
1839         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1840   }
1841 
1842   /// Determines if we have the infrastructure to vectorize loop \p L and its
1843   /// epilogue, assuming the main loop is vectorized by \p VF.
1844   bool isCandidateForEpilogueVectorization(const Loop &L,
1845                                            const ElementCount VF) const;
1846 
1847   /// Returns true if epilogue vectorization is considered profitable, and
1848   /// false otherwise.
1849   /// \p VF is the vectorization factor chosen for the original loop.
1850   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1851 
1852 public:
1853   /// The loop that we evaluate.
1854   Loop *TheLoop;
1855 
1856   /// Predicated scalar evolution analysis.
1857   PredicatedScalarEvolution &PSE;
1858 
1859   /// Loop Info analysis.
1860   LoopInfo *LI;
1861 
1862   /// Vectorization legality.
1863   LoopVectorizationLegality *Legal;
1864 
1865   /// Vector target information.
1866   const TargetTransformInfo &TTI;
1867 
1868   /// Target Library Info.
1869   const TargetLibraryInfo *TLI;
1870 
1871   /// Demanded bits analysis.
1872   DemandedBits *DB;
1873 
1874   /// Assumption cache.
1875   AssumptionCache *AC;
1876 
1877   /// Interface to emit optimization remarks.
1878   OptimizationRemarkEmitter *ORE;
1879 
1880   const Function *TheFunction;
1881 
1882   /// Loop Vectorize Hint.
1883   const LoopVectorizeHints *Hints;
1884 
1885   /// The interleave access information contains groups of interleaved accesses
1886   /// with the same stride and close to each other.
1887   InterleavedAccessInfo &InterleaveInfo;
1888 
1889   /// Values to ignore in the cost model.
1890   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1891 
1892   /// Values to ignore in the cost model when VF > 1.
1893   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1894 
1895   /// All element types found in the loop.
1896   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1897 
1898   /// Profitable vector factors.
1899   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1900 };
1901 } // end namespace llvm
1902 
1903 /// Helper struct to manage generating runtime checks for vectorization.
1904 ///
1905 /// The runtime checks are created up-front in temporary blocks to allow better
1906 /// estimating the cost and un-linked from the existing IR. After deciding to
1907 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1908 /// temporary blocks are completely removed.
1909 class GeneratedRTChecks {
1910   /// Basic block which contains the generated SCEV checks, if any.
1911   BasicBlock *SCEVCheckBlock = nullptr;
1912 
1913   /// The value representing the result of the generated SCEV checks. If it is
1914   /// nullptr, either no SCEV checks have been generated or they have been used.
1915   Value *SCEVCheckCond = nullptr;
1916 
1917   /// Basic block which contains the generated memory runtime checks, if any.
1918   BasicBlock *MemCheckBlock = nullptr;
1919 
1920   /// The value representing the result of the generated memory runtime checks.
1921   /// If it is nullptr, either no memory runtime checks have been generated or
1922   /// they have been used.
1923   Value *MemRuntimeCheckCond = nullptr;
1924 
1925   DominatorTree *DT;
1926   LoopInfo *LI;
1927 
1928   SCEVExpander SCEVExp;
1929   SCEVExpander MemCheckExp;
1930 
1931 public:
1932   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1933                     const DataLayout &DL)
1934       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1935         MemCheckExp(SE, DL, "scev.check") {}
1936 
1937   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1938   /// accurately estimate the cost of the runtime checks. The blocks are
1939   /// un-linked from the IR and is added back during vector code generation. If
1940   /// there is no vector code generation, the check blocks are removed
1941   /// completely.
1942   void Create(Loop *L, const LoopAccessInfo &LAI,
1943               const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1944 
1945     BasicBlock *LoopHeader = L->getHeader();
1946     BasicBlock *Preheader = L->getLoopPreheader();
1947 
1948     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1949     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1950     // may be used by SCEVExpander. The blocks will be un-linked from their
1951     // predecessors and removed from LI & DT at the end of the function.
1952     if (!UnionPred.isAlwaysTrue()) {
1953       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1954                                   nullptr, "vector.scevcheck");
1955 
1956       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1957           &UnionPred, SCEVCheckBlock->getTerminator());
1958     }
1959 
1960     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1961     if (RtPtrChecking.Need) {
1962       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1963       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1964                                  "vector.memcheck");
1965 
1966       auto DiffChecks = RtPtrChecking.getDiffChecks();
1967       if (DiffChecks) {
1968         MemRuntimeCheckCond = addDiffRuntimeChecks(
1969             MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp,
1970             [VF](IRBuilderBase &B, unsigned Bits) {
1971               return getRuntimeVF(B, B.getIntNTy(Bits), VF);
1972             },
1973             IC);
1974       } else {
1975         MemRuntimeCheckCond =
1976             addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1977                              RtPtrChecking.getChecks(), MemCheckExp);
1978       }
1979       assert(MemRuntimeCheckCond &&
1980              "no RT checks generated although RtPtrChecking "
1981              "claimed checks are required");
1982     }
1983 
1984     if (!MemCheckBlock && !SCEVCheckBlock)
1985       return;
1986 
1987     // Unhook the temporary block with the checks, update various places
1988     // accordingly.
1989     if (SCEVCheckBlock)
1990       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1991     if (MemCheckBlock)
1992       MemCheckBlock->replaceAllUsesWith(Preheader);
1993 
1994     if (SCEVCheckBlock) {
1995       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1996       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1997       Preheader->getTerminator()->eraseFromParent();
1998     }
1999     if (MemCheckBlock) {
2000       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2001       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2002       Preheader->getTerminator()->eraseFromParent();
2003     }
2004 
2005     DT->changeImmediateDominator(LoopHeader, Preheader);
2006     if (MemCheckBlock) {
2007       DT->eraseNode(MemCheckBlock);
2008       LI->removeBlock(MemCheckBlock);
2009     }
2010     if (SCEVCheckBlock) {
2011       DT->eraseNode(SCEVCheckBlock);
2012       LI->removeBlock(SCEVCheckBlock);
2013     }
2014   }
2015 
2016   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2017   /// unused.
2018   ~GeneratedRTChecks() {
2019     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2020     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2021     if (!SCEVCheckCond)
2022       SCEVCleaner.markResultUsed();
2023 
2024     if (!MemRuntimeCheckCond)
2025       MemCheckCleaner.markResultUsed();
2026 
2027     if (MemRuntimeCheckCond) {
2028       auto &SE = *MemCheckExp.getSE();
2029       // Memory runtime check generation creates compares that use expanded
2030       // values. Remove them before running the SCEVExpanderCleaners.
2031       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2032         if (MemCheckExp.isInsertedInstruction(&I))
2033           continue;
2034         SE.forgetValue(&I);
2035         I.eraseFromParent();
2036       }
2037     }
2038     MemCheckCleaner.cleanup();
2039     SCEVCleaner.cleanup();
2040 
2041     if (SCEVCheckCond)
2042       SCEVCheckBlock->eraseFromParent();
2043     if (MemRuntimeCheckCond)
2044       MemCheckBlock->eraseFromParent();
2045   }
2046 
2047   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2048   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2049   /// depending on the generated condition.
2050   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2051                              BasicBlock *LoopVectorPreHeader,
2052                              BasicBlock *LoopExitBlock) {
2053     if (!SCEVCheckCond)
2054       return nullptr;
2055 
2056     Value *Cond = SCEVCheckCond;
2057     // Mark the check as used, to prevent it from being removed during cleanup.
2058     SCEVCheckCond = nullptr;
2059     if (auto *C = dyn_cast<ConstantInt>(Cond))
2060       if (C->isZero())
2061         return nullptr;
2062 
2063     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2064 
2065     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2066     // Create new preheader for vector loop.
2067     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2068       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2069 
2070     SCEVCheckBlock->getTerminator()->eraseFromParent();
2071     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2072     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2073                                                 SCEVCheckBlock);
2074 
2075     DT->addNewBlock(SCEVCheckBlock, Pred);
2076     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2077 
2078     ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
2079                         BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
2080     return SCEVCheckBlock;
2081   }
2082 
2083   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2084   /// the branches to branch to the vector preheader or \p Bypass, depending on
2085   /// the generated condition.
2086   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2087                                    BasicBlock *LoopVectorPreHeader) {
2088     // Check if we generated code that checks in runtime if arrays overlap.
2089     if (!MemRuntimeCheckCond)
2090       return nullptr;
2091 
2092     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2093     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2094                                                 MemCheckBlock);
2095 
2096     DT->addNewBlock(MemCheckBlock, Pred);
2097     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2098     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2099 
2100     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2101       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2102 
2103     ReplaceInstWithInst(
2104         MemCheckBlock->getTerminator(),
2105         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2106     MemCheckBlock->getTerminator()->setDebugLoc(
2107         Pred->getTerminator()->getDebugLoc());
2108 
2109     // Mark the check as used, to prevent it from being removed during cleanup.
2110     MemRuntimeCheckCond = nullptr;
2111     return MemCheckBlock;
2112   }
2113 };
2114 
2115 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2116 // vectorization. The loop needs to be annotated with #pragma omp simd
2117 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2118 // vector length information is not provided, vectorization is not considered
2119 // explicit. Interleave hints are not allowed either. These limitations will be
2120 // relaxed in the future.
2121 // Please, note that we are currently forced to abuse the pragma 'clang
2122 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2123 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2124 // provides *explicit vectorization hints* (LV can bypass legal checks and
2125 // assume that vectorization is legal). However, both hints are implemented
2126 // using the same metadata (llvm.loop.vectorize, processed by
2127 // LoopVectorizeHints). This will be fixed in the future when the native IR
2128 // representation for pragma 'omp simd' is introduced.
2129 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2130                                    OptimizationRemarkEmitter *ORE) {
2131   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2132   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2133 
2134   // Only outer loops with an explicit vectorization hint are supported.
2135   // Unannotated outer loops are ignored.
2136   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2137     return false;
2138 
2139   Function *Fn = OuterLp->getHeader()->getParent();
2140   if (!Hints.allowVectorization(Fn, OuterLp,
2141                                 true /*VectorizeOnlyWhenForced*/)) {
2142     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2143     return false;
2144   }
2145 
2146   if (Hints.getInterleave() > 1) {
2147     // TODO: Interleave support is future work.
2148     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2149                          "outer loops.\n");
2150     Hints.emitRemarkWithHints();
2151     return false;
2152   }
2153 
2154   return true;
2155 }
2156 
2157 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2158                                   OptimizationRemarkEmitter *ORE,
2159                                   SmallVectorImpl<Loop *> &V) {
2160   // Collect inner loops and outer loops without irreducible control flow. For
2161   // now, only collect outer loops that have explicit vectorization hints. If we
2162   // are stress testing the VPlan H-CFG construction, we collect the outermost
2163   // loop of every loop nest.
2164   if (L.isInnermost() || VPlanBuildStressTest ||
2165       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2166     LoopBlocksRPO RPOT(&L);
2167     RPOT.perform(LI);
2168     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2169       V.push_back(&L);
2170       // TODO: Collect inner loops inside marked outer loops in case
2171       // vectorization fails for the outer loop. Do not invoke
2172       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2173       // already known to be reducible. We can use an inherited attribute for
2174       // that.
2175       return;
2176     }
2177   }
2178   for (Loop *InnerL : L)
2179     collectSupportedLoops(*InnerL, LI, ORE, V);
2180 }
2181 
2182 namespace {
2183 
2184 /// The LoopVectorize Pass.
2185 struct LoopVectorize : public FunctionPass {
2186   /// Pass identification, replacement for typeid
2187   static char ID;
2188 
2189   LoopVectorizePass Impl;
2190 
2191   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2192                          bool VectorizeOnlyWhenForced = false)
2193       : FunctionPass(ID),
2194         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2195     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2196   }
2197 
2198   bool runOnFunction(Function &F) override {
2199     if (skipFunction(F))
2200       return false;
2201 
2202     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2203     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2204     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2205     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2206     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2207     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2208     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2209     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2210     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2211     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2212     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2213     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2214     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2215 
2216     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2217         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2218 
2219     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2220                         GetLAA, *ORE, PSI).MadeAnyChange;
2221   }
2222 
2223   void getAnalysisUsage(AnalysisUsage &AU) const override {
2224     AU.addRequired<AssumptionCacheTracker>();
2225     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2226     AU.addRequired<DominatorTreeWrapperPass>();
2227     AU.addRequired<LoopInfoWrapperPass>();
2228     AU.addRequired<ScalarEvolutionWrapperPass>();
2229     AU.addRequired<TargetTransformInfoWrapperPass>();
2230     AU.addRequired<AAResultsWrapperPass>();
2231     AU.addRequired<LoopAccessLegacyAnalysis>();
2232     AU.addRequired<DemandedBitsWrapperPass>();
2233     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2234     AU.addRequired<InjectTLIMappingsLegacy>();
2235 
2236     // We currently do not preserve loopinfo/dominator analyses with outer loop
2237     // vectorization. Until this is addressed, mark these analyses as preserved
2238     // only for non-VPlan-native path.
2239     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2240     if (!EnableVPlanNativePath) {
2241       AU.addPreserved<LoopInfoWrapperPass>();
2242       AU.addPreserved<DominatorTreeWrapperPass>();
2243     }
2244 
2245     AU.addPreserved<BasicAAWrapperPass>();
2246     AU.addPreserved<GlobalsAAWrapperPass>();
2247     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2248   }
2249 };
2250 
2251 } // end anonymous namespace
2252 
2253 //===----------------------------------------------------------------------===//
2254 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2255 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2256 //===----------------------------------------------------------------------===//
2257 
2258 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2259   // We need to place the broadcast of invariant variables outside the loop,
2260   // but only if it's proven safe to do so. Else, broadcast will be inside
2261   // vector loop body.
2262   Instruction *Instr = dyn_cast<Instruction>(V);
2263   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2264                      (!Instr ||
2265                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2266   // Place the code for broadcasting invariant variables in the new preheader.
2267   IRBuilder<>::InsertPointGuard Guard(Builder);
2268   if (SafeToHoist)
2269     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2270 
2271   // Broadcast the scalar into all locations in the vector.
2272   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2273 
2274   return Shuf;
2275 }
2276 
2277 /// This function adds
2278 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2279 /// to each vector element of Val. The sequence starts at StartIndex.
2280 /// \p Opcode is relevant for FP induction variable.
2281 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2282                             Instruction::BinaryOps BinOp, ElementCount VF,
2283                             IRBuilderBase &Builder) {
2284   assert(VF.isVector() && "only vector VFs are supported");
2285 
2286   // Create and check the types.
2287   auto *ValVTy = cast<VectorType>(Val->getType());
2288   ElementCount VLen = ValVTy->getElementCount();
2289 
2290   Type *STy = Val->getType()->getScalarType();
2291   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2292          "Induction Step must be an integer or FP");
2293   assert(Step->getType() == STy && "Step has wrong type");
2294 
2295   SmallVector<Constant *, 8> Indices;
2296 
2297   // Create a vector of consecutive numbers from zero to VF.
2298   VectorType *InitVecValVTy = ValVTy;
2299   if (STy->isFloatingPointTy()) {
2300     Type *InitVecValSTy =
2301         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2302     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2303   }
2304   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2305 
2306   // Splat the StartIdx
2307   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2308 
2309   if (STy->isIntegerTy()) {
2310     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2311     Step = Builder.CreateVectorSplat(VLen, Step);
2312     assert(Step->getType() == Val->getType() && "Invalid step vec");
2313     // FIXME: The newly created binary instructions should contain nsw/nuw
2314     // flags, which can be found from the original scalar operations.
2315     Step = Builder.CreateMul(InitVec, Step);
2316     return Builder.CreateAdd(Val, Step, "induction");
2317   }
2318 
2319   // Floating point induction.
2320   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2321          "Binary Opcode should be specified for FP induction");
2322   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2323   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2324 
2325   Step = Builder.CreateVectorSplat(VLen, Step);
2326   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2327   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2328 }
2329 
2330 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2331 /// variable on which to base the steps, \p Step is the size of the step.
2332 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2333                              const InductionDescriptor &ID, VPValue *Def,
2334                              VPTransformState &State) {
2335   IRBuilderBase &Builder = State.Builder;
2336   // We shouldn't have to build scalar steps if we aren't vectorizing.
2337   assert(State.VF.isVector() && "VF should be greater than one");
2338   // Get the value type and ensure it and the step have the same integer type.
2339   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2340   assert(ScalarIVTy == Step->getType() &&
2341          "Val and Step should have the same type");
2342 
2343   // We build scalar steps for both integer and floating-point induction
2344   // variables. Here, we determine the kind of arithmetic we will perform.
2345   Instruction::BinaryOps AddOp;
2346   Instruction::BinaryOps MulOp;
2347   if (ScalarIVTy->isIntegerTy()) {
2348     AddOp = Instruction::Add;
2349     MulOp = Instruction::Mul;
2350   } else {
2351     AddOp = ID.getInductionOpcode();
2352     MulOp = Instruction::FMul;
2353   }
2354 
2355   // Determine the number of scalars we need to generate for each unroll
2356   // iteration.
2357   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2358   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2359   // Compute the scalar steps and save the results in State.
2360   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2361                                      ScalarIVTy->getScalarSizeInBits());
2362   Type *VecIVTy = nullptr;
2363   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2364   if (!FirstLaneOnly && State.VF.isScalable()) {
2365     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2366     UnitStepVec =
2367         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2368     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2369     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2370   }
2371 
2372   for (unsigned Part = 0; Part < State.UF; ++Part) {
2373     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2374 
2375     if (!FirstLaneOnly && State.VF.isScalable()) {
2376       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2377       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2378       if (ScalarIVTy->isFloatingPointTy())
2379         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2380       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2381       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2382       State.set(Def, Add, Part);
2383       // It's useful to record the lane values too for the known minimum number
2384       // of elements so we do those below. This improves the code quality when
2385       // trying to extract the first element, for example.
2386     }
2387 
2388     if (ScalarIVTy->isFloatingPointTy())
2389       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2390 
2391     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2392       Value *StartIdx = Builder.CreateBinOp(
2393           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2394       // The step returned by `createStepForVF` is a runtime-evaluated value
2395       // when VF is scalable. Otherwise, it should be folded into a Constant.
2396       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2397              "Expected StartIdx to be folded to a constant when VF is not "
2398              "scalable");
2399       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2400       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2401       State.set(Def, Add, VPIteration(Part, Lane));
2402     }
2403   }
2404 }
2405 
2406 // Generate code for the induction step. Note that induction steps are
2407 // required to be loop-invariant
2408 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2409                               Instruction *InsertBefore,
2410                               Loop *OrigLoop = nullptr) {
2411   const DataLayout &DL = SE.getDataLayout();
2412   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2413          "Induction step should be loop invariant");
2414   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2415     return E->getValue();
2416 
2417   SCEVExpander Exp(SE, DL, "induction");
2418   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2419 }
2420 
2421 /// Compute the transformed value of Index at offset StartValue using step
2422 /// StepValue.
2423 /// For integer induction, returns StartValue + Index * StepValue.
2424 /// For pointer induction, returns StartValue[Index * StepValue].
2425 /// FIXME: The newly created binary instructions should contain nsw/nuw
2426 /// flags, which can be found from the original scalar operations.
2427 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2428                                    Value *StartValue, Value *Step,
2429                                    const InductionDescriptor &ID) {
2430   assert(Index->getType()->getScalarType() == Step->getType() &&
2431          "Index scalar type does not match StepValue type");
2432 
2433   // Note: the IR at this point is broken. We cannot use SE to create any new
2434   // SCEV and then expand it, hoping that SCEV's simplification will give us
2435   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2436   // lead to various SCEV crashes. So all we can do is to use builder and rely
2437   // on InstCombine for future simplifications. Here we handle some trivial
2438   // cases only.
2439   auto CreateAdd = [&B](Value *X, Value *Y) {
2440     assert(X->getType() == Y->getType() && "Types don't match!");
2441     if (auto *CX = dyn_cast<ConstantInt>(X))
2442       if (CX->isZero())
2443         return Y;
2444     if (auto *CY = dyn_cast<ConstantInt>(Y))
2445       if (CY->isZero())
2446         return X;
2447     return B.CreateAdd(X, Y);
2448   };
2449 
2450   // We allow X to be a vector type, in which case Y will potentially be
2451   // splatted into a vector with the same element count.
2452   auto CreateMul = [&B](Value *X, Value *Y) {
2453     assert(X->getType()->getScalarType() == Y->getType() &&
2454            "Types don't match!");
2455     if (auto *CX = dyn_cast<ConstantInt>(X))
2456       if (CX->isOne())
2457         return Y;
2458     if (auto *CY = dyn_cast<ConstantInt>(Y))
2459       if (CY->isOne())
2460         return X;
2461     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2462     if (XVTy && !isa<VectorType>(Y->getType()))
2463       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2464     return B.CreateMul(X, Y);
2465   };
2466 
2467   switch (ID.getKind()) {
2468   case InductionDescriptor::IK_IntInduction: {
2469     assert(!isa<VectorType>(Index->getType()) &&
2470            "Vector indices not supported for integer inductions yet");
2471     assert(Index->getType() == StartValue->getType() &&
2472            "Index type does not match StartValue type");
2473     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2474       return B.CreateSub(StartValue, Index);
2475     auto *Offset = CreateMul(Index, Step);
2476     return CreateAdd(StartValue, Offset);
2477   }
2478   case InductionDescriptor::IK_PtrInduction: {
2479     assert(isa<Constant>(Step) &&
2480            "Expected constant step for pointer induction");
2481     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2482   }
2483   case InductionDescriptor::IK_FpInduction: {
2484     assert(!isa<VectorType>(Index->getType()) &&
2485            "Vector indices not supported for FP inductions yet");
2486     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2487     auto InductionBinOp = ID.getInductionBinOp();
2488     assert(InductionBinOp &&
2489            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2490             InductionBinOp->getOpcode() == Instruction::FSub) &&
2491            "Original bin op should be defined for FP induction");
2492 
2493     Value *MulExp = B.CreateFMul(Step, Index);
2494     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2495                          "induction");
2496   }
2497   case InductionDescriptor::IK_NoInduction:
2498     return nullptr;
2499   }
2500   llvm_unreachable("invalid enum");
2501 }
2502 
2503 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2504                                                     const VPIteration &Instance,
2505                                                     VPTransformState &State) {
2506   Value *ScalarInst = State.get(Def, Instance);
2507   Value *VectorValue = State.get(Def, Instance.Part);
2508   VectorValue = Builder.CreateInsertElement(
2509       VectorValue, ScalarInst,
2510       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2511   State.set(Def, VectorValue, Instance.Part);
2512 }
2513 
2514 // Return whether we allow using masked interleave-groups (for dealing with
2515 // strided loads/stores that reside in predicated blocks, or for dealing
2516 // with gaps).
2517 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2518   // If an override option has been passed in for interleaved accesses, use it.
2519   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2520     return EnableMaskedInterleavedMemAccesses;
2521 
2522   return TTI.enableMaskedInterleavedAccessVectorization();
2523 }
2524 
2525 // Try to vectorize the interleave group that \p Instr belongs to.
2526 //
2527 // E.g. Translate following interleaved load group (factor = 3):
2528 //   for (i = 0; i < N; i+=3) {
2529 //     R = Pic[i];             // Member of index 0
2530 //     G = Pic[i+1];           // Member of index 1
2531 //     B = Pic[i+2];           // Member of index 2
2532 //     ... // do something to R, G, B
2533 //   }
2534 // To:
2535 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2536 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2537 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2538 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2539 //
2540 // Or translate following interleaved store group (factor = 3):
2541 //   for (i = 0; i < N; i+=3) {
2542 //     ... do something to R, G, B
2543 //     Pic[i]   = R;           // Member of index 0
2544 //     Pic[i+1] = G;           // Member of index 1
2545 //     Pic[i+2] = B;           // Member of index 2
2546 //   }
2547 // To:
2548 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2549 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2550 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2551 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2552 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2553 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2554     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2555     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2556     VPValue *BlockInMask) {
2557   Instruction *Instr = Group->getInsertPos();
2558   const DataLayout &DL = Instr->getModule()->getDataLayout();
2559 
2560   // Prepare for the vector type of the interleaved load/store.
2561   Type *ScalarTy = getLoadStoreType(Instr);
2562   unsigned InterleaveFactor = Group->getFactor();
2563   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2564   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2565 
2566   // Prepare for the new pointers.
2567   SmallVector<Value *, 2> AddrParts;
2568   unsigned Index = Group->getIndex(Instr);
2569 
2570   // TODO: extend the masked interleaved-group support to reversed access.
2571   assert((!BlockInMask || !Group->isReverse()) &&
2572          "Reversed masked interleave-group not supported.");
2573 
2574   // If the group is reverse, adjust the index to refer to the last vector lane
2575   // instead of the first. We adjust the index from the first vector lane,
2576   // rather than directly getting the pointer for lane VF - 1, because the
2577   // pointer operand of the interleaved access is supposed to be uniform. For
2578   // uniform instructions, we're only required to generate a value for the
2579   // first vector lane in each unroll iteration.
2580   if (Group->isReverse())
2581     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2582 
2583   for (unsigned Part = 0; Part < UF; Part++) {
2584     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2585     setDebugLocFromInst(AddrPart);
2586 
2587     // Notice current instruction could be any index. Need to adjust the address
2588     // to the member of index 0.
2589     //
2590     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2591     //       b = A[i];       // Member of index 0
2592     // Current pointer is pointed to A[i+1], adjust it to A[i].
2593     //
2594     // E.g.  A[i+1] = a;     // Member of index 1
2595     //       A[i]   = b;     // Member of index 0
2596     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2597     // Current pointer is pointed to A[i+2], adjust it to A[i].
2598 
2599     bool InBounds = false;
2600     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2601       InBounds = gep->isInBounds();
2602     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2603     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2604 
2605     // Cast to the vector pointer type.
2606     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2607     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2608     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2609   }
2610 
2611   setDebugLocFromInst(Instr);
2612   Value *PoisonVec = PoisonValue::get(VecTy);
2613 
2614   Value *MaskForGaps = nullptr;
2615   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2616     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2617     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2618   }
2619 
2620   // Vectorize the interleaved load group.
2621   if (isa<LoadInst>(Instr)) {
2622     // For each unroll part, create a wide load for the group.
2623     SmallVector<Value *, 2> NewLoads;
2624     for (unsigned Part = 0; Part < UF; Part++) {
2625       Instruction *NewLoad;
2626       if (BlockInMask || MaskForGaps) {
2627         assert(useMaskedInterleavedAccesses(*TTI) &&
2628                "masked interleaved groups are not allowed.");
2629         Value *GroupMask = MaskForGaps;
2630         if (BlockInMask) {
2631           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2632           Value *ShuffledMask = Builder.CreateShuffleVector(
2633               BlockInMaskPart,
2634               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2635               "interleaved.mask");
2636           GroupMask = MaskForGaps
2637                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2638                                                 MaskForGaps)
2639                           : ShuffledMask;
2640         }
2641         NewLoad =
2642             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2643                                      GroupMask, PoisonVec, "wide.masked.vec");
2644       }
2645       else
2646         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2647                                             Group->getAlign(), "wide.vec");
2648       Group->addMetadata(NewLoad);
2649       NewLoads.push_back(NewLoad);
2650     }
2651 
2652     // For each member in the group, shuffle out the appropriate data from the
2653     // wide loads.
2654     unsigned J = 0;
2655     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2656       Instruction *Member = Group->getMember(I);
2657 
2658       // Skip the gaps in the group.
2659       if (!Member)
2660         continue;
2661 
2662       auto StrideMask =
2663           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2664       for (unsigned Part = 0; Part < UF; Part++) {
2665         Value *StridedVec = Builder.CreateShuffleVector(
2666             NewLoads[Part], StrideMask, "strided.vec");
2667 
2668         // If this member has different type, cast the result type.
2669         if (Member->getType() != ScalarTy) {
2670           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2671           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2672           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2673         }
2674 
2675         if (Group->isReverse())
2676           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2677 
2678         State.set(VPDefs[J], StridedVec, Part);
2679       }
2680       ++J;
2681     }
2682     return;
2683   }
2684 
2685   // The sub vector type for current instruction.
2686   auto *SubVT = VectorType::get(ScalarTy, VF);
2687 
2688   // Vectorize the interleaved store group.
2689   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2690   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2691          "masked interleaved groups are not allowed.");
2692   assert((!MaskForGaps || !VF.isScalable()) &&
2693          "masking gaps for scalable vectors is not yet supported.");
2694   for (unsigned Part = 0; Part < UF; Part++) {
2695     // Collect the stored vector from each member.
2696     SmallVector<Value *, 4> StoredVecs;
2697     for (unsigned i = 0; i < InterleaveFactor; i++) {
2698       assert((Group->getMember(i) || MaskForGaps) &&
2699              "Fail to get a member from an interleaved store group");
2700       Instruction *Member = Group->getMember(i);
2701 
2702       // Skip the gaps in the group.
2703       if (!Member) {
2704         Value *Undef = PoisonValue::get(SubVT);
2705         StoredVecs.push_back(Undef);
2706         continue;
2707       }
2708 
2709       Value *StoredVec = State.get(StoredValues[i], Part);
2710 
2711       if (Group->isReverse())
2712         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2713 
2714       // If this member has different type, cast it to a unified type.
2715 
2716       if (StoredVec->getType() != SubVT)
2717         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2718 
2719       StoredVecs.push_back(StoredVec);
2720     }
2721 
2722     // Concatenate all vectors into a wide vector.
2723     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2724 
2725     // Interleave the elements in the wide vector.
2726     Value *IVec = Builder.CreateShuffleVector(
2727         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2728         "interleaved.vec");
2729 
2730     Instruction *NewStoreInstr;
2731     if (BlockInMask || MaskForGaps) {
2732       Value *GroupMask = MaskForGaps;
2733       if (BlockInMask) {
2734         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2735         Value *ShuffledMask = Builder.CreateShuffleVector(
2736             BlockInMaskPart,
2737             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2738             "interleaved.mask");
2739         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2740                                                       ShuffledMask, MaskForGaps)
2741                                 : ShuffledMask;
2742       }
2743       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2744                                                 Group->getAlign(), GroupMask);
2745     } else
2746       NewStoreInstr =
2747           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2748 
2749     Group->addMetadata(NewStoreInstr);
2750   }
2751 }
2752 
2753 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2754                                                VPReplicateRecipe *RepRecipe,
2755                                                const VPIteration &Instance,
2756                                                bool IfPredicateInstr,
2757                                                VPTransformState &State) {
2758   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2759 
2760   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2761   // the first lane and part.
2762   if (isa<NoAliasScopeDeclInst>(Instr))
2763     if (!Instance.isFirstIteration())
2764       return;
2765 
2766   // Does this instruction return a value ?
2767   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2768 
2769   Instruction *Cloned = Instr->clone();
2770   if (!IsVoidRetTy)
2771     Cloned->setName(Instr->getName() + ".cloned");
2772 
2773   // If the scalarized instruction contributes to the address computation of a
2774   // widen masked load/store which was in a basic block that needed predication
2775   // and is not predicated after vectorization, we can't propagate
2776   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2777   // instruction could feed a poison value to the base address of the widen
2778   // load/store.
2779   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2780     Cloned->dropPoisonGeneratingFlags();
2781 
2782   if (Instr->getDebugLoc())
2783     setDebugLocFromInst(Instr);
2784 
2785   // Replace the operands of the cloned instructions with their scalar
2786   // equivalents in the new loop.
2787   for (auto &I : enumerate(RepRecipe->operands())) {
2788     auto InputInstance = Instance;
2789     VPValue *Operand = I.value();
2790     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2791     if (OperandR && OperandR->isUniform())
2792       InputInstance.Lane = VPLane::getFirstLane();
2793     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2794   }
2795   addNewMetadata(Cloned, Instr);
2796 
2797   // Place the cloned scalar in the new loop.
2798   State.Builder.Insert(Cloned);
2799 
2800   State.set(RepRecipe, Cloned, Instance);
2801 
2802   // If we just cloned a new assumption, add it the assumption cache.
2803   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2804     AC->registerAssumption(II);
2805 
2806   // End if-block.
2807   if (IfPredicateInstr)
2808     PredicatedInstructions.push_back(Cloned);
2809 }
2810 
2811 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2812   if (TripCount)
2813     return TripCount;
2814 
2815   assert(InsertBlock);
2816   IRBuilder<> Builder(InsertBlock->getTerminator());
2817   // Find the loop boundaries.
2818   ScalarEvolution *SE = PSE.getSE();
2819   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2820   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2821          "Invalid loop count");
2822 
2823   Type *IdxTy = Legal->getWidestInductionType();
2824   assert(IdxTy && "No type for induction");
2825 
2826   // The exit count might have the type of i64 while the phi is i32. This can
2827   // happen if we have an induction variable that is sign extended before the
2828   // compare. The only way that we get a backedge taken count is that the
2829   // induction variable was signed and as such will not overflow. In such a case
2830   // truncation is legal.
2831   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2832       IdxTy->getPrimitiveSizeInBits())
2833     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2834   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2835 
2836   // Get the total trip count from the count by adding 1.
2837   const SCEV *ExitCount = SE->getAddExpr(
2838       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2839 
2840   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2841 
2842   // Expand the trip count and place the new instructions in the preheader.
2843   // Notice that the pre-header does not change, only the loop body.
2844   SCEVExpander Exp(*SE, DL, "induction");
2845 
2846   // Count holds the overall loop count (N).
2847   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2848                                 InsertBlock->getTerminator());
2849 
2850   if (TripCount->getType()->isPointerTy())
2851     TripCount =
2852         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2853                                     InsertBlock->getTerminator());
2854 
2855   return TripCount;
2856 }
2857 
2858 Value *
2859 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2860   if (VectorTripCount)
2861     return VectorTripCount;
2862 
2863   Value *TC = getOrCreateTripCount(InsertBlock);
2864   IRBuilder<> Builder(InsertBlock->getTerminator());
2865 
2866   Type *Ty = TC->getType();
2867   // This is where we can make the step a runtime constant.
2868   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2869 
2870   // If the tail is to be folded by masking, round the number of iterations N
2871   // up to a multiple of Step instead of rounding down. This is done by first
2872   // adding Step-1 and then rounding down. Note that it's ok if this addition
2873   // overflows: the vector induction variable will eventually wrap to zero given
2874   // that it starts at zero and its Step is a power of two; the loop will then
2875   // exit, with the last early-exit vector comparison also producing all-true.
2876   // For scalable vectors the VF is not guaranteed to be a power of 2, but this
2877   // is accounted for in emitIterationCountCheck that adds an overflow check.
2878   if (Cost->foldTailByMasking()) {
2879     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2880            "VF*UF must be a power of 2 when folding tail by masking");
2881     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2882     TC = Builder.CreateAdd(
2883         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2884   }
2885 
2886   // Now we need to generate the expression for the part of the loop that the
2887   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2888   // iterations are not required for correctness, or N - Step, otherwise. Step
2889   // is equal to the vectorization factor (number of SIMD elements) times the
2890   // unroll factor (number of SIMD instructions).
2891   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2892 
2893   // There are cases where we *must* run at least one iteration in the remainder
2894   // loop.  See the cost model for when this can happen.  If the step evenly
2895   // divides the trip count, we set the remainder to be equal to the step. If
2896   // the step does not evenly divide the trip count, no adjustment is necessary
2897   // since there will already be scalar iterations. Note that the minimum
2898   // iterations check ensures that N >= Step.
2899   if (Cost->requiresScalarEpilogue(VF)) {
2900     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2901     R = Builder.CreateSelect(IsZero, Step, R);
2902   }
2903 
2904   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2905 
2906   return VectorTripCount;
2907 }
2908 
2909 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2910                                                    const DataLayout &DL) {
2911   // Verify that V is a vector type with same number of elements as DstVTy.
2912   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2913   unsigned VF = DstFVTy->getNumElements();
2914   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2915   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2916   Type *SrcElemTy = SrcVecTy->getElementType();
2917   Type *DstElemTy = DstFVTy->getElementType();
2918   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2919          "Vector elements must have same size");
2920 
2921   // Do a direct cast if element types are castable.
2922   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2923     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2924   }
2925   // V cannot be directly casted to desired vector type.
2926   // May happen when V is a floating point vector but DstVTy is a vector of
2927   // pointers or vice-versa. Handle this using a two-step bitcast using an
2928   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2929   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2930          "Only one type should be a pointer type");
2931   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2932          "Only one type should be a floating point type");
2933   Type *IntTy =
2934       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2935   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2936   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2937   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2938 }
2939 
2940 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
2941   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2942   // Reuse existing vector loop preheader for TC checks.
2943   // Note that new preheader block is generated for vector loop.
2944   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2945   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2946 
2947   // Generate code to check if the loop's trip count is less than VF * UF, or
2948   // equal to it in case a scalar epilogue is required; this implies that the
2949   // vector trip count is zero. This check also covers the case where adding one
2950   // to the backedge-taken count overflowed leading to an incorrect trip count
2951   // of zero. In this case we will also jump to the scalar loop.
2952   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2953                                             : ICmpInst::ICMP_ULT;
2954 
2955   // If tail is to be folded, vector loop takes care of all iterations.
2956   Type *CountTy = Count->getType();
2957   Value *CheckMinIters = Builder.getFalse();
2958   Value *Step = createStepForVF(Builder, CountTy, VF, UF);
2959   if (!Cost->foldTailByMasking())
2960     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2961   else if (VF.isScalable()) {
2962     // vscale is not necessarily a power-of-2, which means we cannot guarantee
2963     // an overflow to zero when updating induction variables and so an
2964     // additional overflow check is required before entering the vector loop.
2965 
2966     // Get the maximum unsigned value for the type.
2967     Value *MaxUIntTripCount =
2968         ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2969     Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2970 
2971     // Don't execute the vector loop if (UMax - n) < (VF * UF).
2972     CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step);
2973   }
2974   // Create new preheader for vector loop.
2975   LoopVectorPreHeader =
2976       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2977                  "vector.ph");
2978 
2979   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2980                                DT->getNode(Bypass)->getIDom()) &&
2981          "TC check is expected to dominate Bypass");
2982 
2983   // Update dominator for Bypass & LoopExit (if needed).
2984   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2985   if (!Cost->requiresScalarEpilogue(VF))
2986     // If there is an epilogue which must run, there's no edge from the
2987     // middle block to exit blocks  and thus no need to update the immediate
2988     // dominator of the exit blocks.
2989     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2990 
2991   ReplaceInstWithInst(
2992       TCCheckBlock->getTerminator(),
2993       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2994   LoopBypassBlocks.push_back(TCCheckBlock);
2995 }
2996 
2997 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
2998 
2999   BasicBlock *const SCEVCheckBlock =
3000       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3001   if (!SCEVCheckBlock)
3002     return nullptr;
3003 
3004   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3005            (OptForSizeBasedOnProfile &&
3006             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3007          "Cannot SCEV check stride or overflow when optimizing for size");
3008 
3009 
3010   // Update dominator only if this is first RT check.
3011   if (LoopBypassBlocks.empty()) {
3012     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3013     if (!Cost->requiresScalarEpilogue(VF))
3014       // If there is an epilogue which must run, there's no edge from the
3015       // middle block to exit blocks  and thus no need to update the immediate
3016       // dominator of the exit blocks.
3017       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3018   }
3019 
3020   LoopBypassBlocks.push_back(SCEVCheckBlock);
3021   AddedSafetyChecks = true;
3022   return SCEVCheckBlock;
3023 }
3024 
3025 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3026   // VPlan-native path does not do any analysis for runtime checks currently.
3027   if (EnableVPlanNativePath)
3028     return nullptr;
3029 
3030   BasicBlock *const MemCheckBlock =
3031       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3032 
3033   // Check if we generated code that checks in runtime if arrays overlap. We put
3034   // the checks into a separate block to make the more common case of few
3035   // elements faster.
3036   if (!MemCheckBlock)
3037     return nullptr;
3038 
3039   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3040     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3041            "Cannot emit memory checks when optimizing for size, unless forced "
3042            "to vectorize.");
3043     ORE->emit([&]() {
3044       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3045                                         OrigLoop->getStartLoc(),
3046                                         OrigLoop->getHeader())
3047              << "Code-size may be reduced by not forcing "
3048                 "vectorization, or by source-code modifications "
3049                 "eliminating the need for runtime checks "
3050                 "(e.g., adding 'restrict').";
3051     });
3052   }
3053 
3054   LoopBypassBlocks.push_back(MemCheckBlock);
3055 
3056   AddedSafetyChecks = true;
3057 
3058   // Only use noalias metadata when using memory checks guaranteeing no overlap
3059   // across all iterations.
3060   if (!Legal->getLAI()->getRuntimePointerChecking()->getDiffChecks()) {
3061     //  We currently don't use LoopVersioning for the actual loop cloning but we
3062     //  still use it to add the noalias metadata.
3063     LVer = std::make_unique<LoopVersioning>(
3064         *Legal->getLAI(),
3065         Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3066         DT, PSE.getSE());
3067     LVer->prepareNoAliasMetadata();
3068   }
3069   return MemCheckBlock;
3070 }
3071 
3072 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3073   LoopScalarBody = OrigLoop->getHeader();
3074   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3075   assert(LoopVectorPreHeader && "Invalid loop structure");
3076   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3077   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3078          "multiple exit loop without required epilogue?");
3079 
3080   LoopMiddleBlock =
3081       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3082                  LI, nullptr, Twine(Prefix) + "middle.block");
3083   LoopScalarPreHeader =
3084       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3085                  nullptr, Twine(Prefix) + "scalar.ph");
3086 
3087   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3088 
3089   // Set up the middle block terminator.  Two cases:
3090   // 1) If we know that we must execute the scalar epilogue, emit an
3091   //    unconditional branch.
3092   // 2) Otherwise, we must have a single unique exit block (due to how we
3093   //    implement the multiple exit case).  In this case, set up a conditonal
3094   //    branch from the middle block to the loop scalar preheader, and the
3095   //    exit block.  completeLoopSkeleton will update the condition to use an
3096   //    iteration check, if required to decide whether to execute the remainder.
3097   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3098     BranchInst::Create(LoopScalarPreHeader) :
3099     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3100                        Builder.getTrue());
3101   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3102   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3103 
3104   // Update dominator for loop exit. During skeleton creation, only the vector
3105   // pre-header and the middle block are created. The vector loop is entirely
3106   // created during VPlan exection.
3107   if (!Cost->requiresScalarEpilogue(VF))
3108     // If there is an epilogue which must run, there's no edge from the
3109     // middle block to exit blocks  and thus no need to update the immediate
3110     // dominator of the exit blocks.
3111     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3112 }
3113 
3114 void InnerLoopVectorizer::createInductionResumeValues(
3115     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3116   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3117           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3118          "Inconsistent information about additional bypass.");
3119 
3120   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3121   assert(VectorTripCount && "Expected valid arguments");
3122   // We are going to resume the execution of the scalar loop.
3123   // Go over all of the induction variables that we found and fix the
3124   // PHIs that are left in the scalar version of the loop.
3125   // The starting values of PHI nodes depend on the counter of the last
3126   // iteration in the vectorized loop.
3127   // If we come from a bypass edge then we need to start from the original
3128   // start value.
3129   Instruction *OldInduction = Legal->getPrimaryInduction();
3130   for (auto &InductionEntry : Legal->getInductionVars()) {
3131     PHINode *OrigPhi = InductionEntry.first;
3132     InductionDescriptor II = InductionEntry.second;
3133 
3134     Value *&EndValue = IVEndValues[OrigPhi];
3135     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3136     if (OrigPhi == OldInduction) {
3137       // We know what the end value is.
3138       EndValue = VectorTripCount;
3139     } else {
3140       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3141 
3142       // Fast-math-flags propagate from the original induction instruction.
3143       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3144         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3145 
3146       Type *StepType = II.getStep()->getType();
3147       Instruction::CastOps CastOp =
3148           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3149       Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc");
3150       Value *Step =
3151           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3152       EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3153       EndValue->setName("ind.end");
3154 
3155       // Compute the end value for the additional bypass (if applicable).
3156       if (AdditionalBypass.first) {
3157         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3158         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3159                                          StepType, true);
3160         Value *Step =
3161             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3162         VTC =
3163             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc");
3164         EndValueFromAdditionalBypass =
3165             emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3166         EndValueFromAdditionalBypass->setName("ind.end");
3167       }
3168     }
3169 
3170     // Create phi nodes to merge from the  backedge-taken check block.
3171     PHINode *BCResumeVal =
3172         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3173                         LoopScalarPreHeader->getTerminator());
3174     // Copy original phi DL over to the new one.
3175     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3176 
3177     // The new PHI merges the original incoming value, in case of a bypass,
3178     // or the value at the end of the vectorized loop.
3179     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3180 
3181     // Fix the scalar body counter (PHI node).
3182     // The old induction's phi node in the scalar body needs the truncated
3183     // value.
3184     for (BasicBlock *BB : LoopBypassBlocks)
3185       BCResumeVal->addIncoming(II.getStartValue(), BB);
3186 
3187     if (AdditionalBypass.first)
3188       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3189                                             EndValueFromAdditionalBypass);
3190 
3191     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3192   }
3193 }
3194 
3195 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3196   // The trip counts should be cached by now.
3197   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3198   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3199 
3200   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3201 
3202   // Add a check in the middle block to see if we have completed
3203   // all of the iterations in the first vector loop.  Three cases:
3204   // 1) If we require a scalar epilogue, there is no conditional branch as
3205   //    we unconditionally branch to the scalar preheader.  Do nothing.
3206   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3207   //    Thus if tail is to be folded, we know we don't need to run the
3208   //    remainder and we can use the previous value for the condition (true).
3209   // 3) Otherwise, construct a runtime check.
3210   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3211     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3212                                         Count, VectorTripCount, "cmp.n",
3213                                         LoopMiddleBlock->getTerminator());
3214 
3215     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3216     // of the corresponding compare because they may have ended up with
3217     // different line numbers and we want to avoid awkward line stepping while
3218     // debugging. Eg. if the compare has got a line number inside the loop.
3219     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3220     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3221   }
3222 
3223 #ifdef EXPENSIVE_CHECKS
3224   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3225 #endif
3226 
3227   return LoopVectorPreHeader;
3228 }
3229 
3230 std::pair<BasicBlock *, Value *>
3231 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3232   /*
3233    In this function we generate a new loop. The new loop will contain
3234    the vectorized instructions while the old loop will continue to run the
3235    scalar remainder.
3236 
3237        [ ] <-- loop iteration number check.
3238     /   |
3239    /    v
3240   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3241   |  /  |
3242   | /   v
3243   ||   [ ]     <-- vector pre header.
3244   |/    |
3245   |     v
3246   |    [  ] \
3247   |    [  ]_|   <-- vector loop (created during VPlan execution).
3248   |     |
3249   |     v
3250   \   -[ ]   <--- middle-block.
3251    \/   |
3252    /\   v
3253    | ->[ ]     <--- new preheader.
3254    |    |
3255  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3256    |   [ ] \
3257    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3258     \   |
3259      \  v
3260       >[ ]     <-- exit block(s).
3261    ...
3262    */
3263 
3264   // Get the metadata of the original loop before it gets modified.
3265   MDNode *OrigLoopID = OrigLoop->getLoopID();
3266 
3267   // Workaround!  Compute the trip count of the original loop and cache it
3268   // before we start modifying the CFG.  This code has a systemic problem
3269   // wherein it tries to run analysis over partially constructed IR; this is
3270   // wrong, and not simply for SCEV.  The trip count of the original loop
3271   // simply happens to be prone to hitting this in practice.  In theory, we
3272   // can hit the same issue for any SCEV, or ValueTracking query done during
3273   // mutation.  See PR49900.
3274   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3275 
3276   // Create an empty vector loop, and prepare basic blocks for the runtime
3277   // checks.
3278   createVectorLoopSkeleton("");
3279 
3280   // Now, compare the new count to zero. If it is zero skip the vector loop and
3281   // jump to the scalar loop. This check also covers the case where the
3282   // backedge-taken count is uint##_max: adding one to it will overflow leading
3283   // to an incorrect trip count of zero. In this (rare) case we will also jump
3284   // to the scalar loop.
3285   emitIterationCountCheck(LoopScalarPreHeader);
3286 
3287   // Generate the code to check any assumptions that we've made for SCEV
3288   // expressions.
3289   emitSCEVChecks(LoopScalarPreHeader);
3290 
3291   // Generate the code that checks in runtime if arrays overlap. We put the
3292   // checks into a separate block to make the more common case of few elements
3293   // faster.
3294   emitMemRuntimeChecks(LoopScalarPreHeader);
3295 
3296   // Emit phis for the new starting index of the scalar loop.
3297   createInductionResumeValues();
3298 
3299   return {completeLoopSkeleton(OrigLoopID), nullptr};
3300 }
3301 
3302 // Fix up external users of the induction variable. At this point, we are
3303 // in LCSSA form, with all external PHIs that use the IV having one input value,
3304 // coming from the remainder loop. We need those PHIs to also have a correct
3305 // value for the IV when arriving directly from the middle block.
3306 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3307                                        const InductionDescriptor &II,
3308                                        Value *VectorTripCount, Value *EndValue,
3309                                        BasicBlock *MiddleBlock,
3310                                        BasicBlock *VectorHeader, VPlan &Plan) {
3311   // There are two kinds of external IV usages - those that use the value
3312   // computed in the last iteration (the PHI) and those that use the penultimate
3313   // value (the value that feeds into the phi from the loop latch).
3314   // We allow both, but they, obviously, have different values.
3315 
3316   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3317 
3318   DenseMap<Value *, Value *> MissingVals;
3319 
3320   // An external user of the last iteration's value should see the value that
3321   // the remainder loop uses to initialize its own IV.
3322   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3323   for (User *U : PostInc->users()) {
3324     Instruction *UI = cast<Instruction>(U);
3325     if (!OrigLoop->contains(UI)) {
3326       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3327       MissingVals[UI] = EndValue;
3328     }
3329   }
3330 
3331   // An external user of the penultimate value need to see EndValue - Step.
3332   // The simplest way to get this is to recompute it from the constituent SCEVs,
3333   // that is Start + (Step * (CRD - 1)).
3334   for (User *U : OrigPhi->users()) {
3335     auto *UI = cast<Instruction>(U);
3336     if (!OrigLoop->contains(UI)) {
3337       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3338 
3339       IRBuilder<> B(MiddleBlock->getTerminator());
3340 
3341       // Fast-math-flags propagate from the original induction instruction.
3342       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3343         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3344 
3345       Value *CountMinusOne = B.CreateSub(
3346           VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
3347       Value *CMO =
3348           !II.getStep()->getType()->isIntegerTy()
3349               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3350                              II.getStep()->getType())
3351               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3352       CMO->setName("cast.cmo");
3353 
3354       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3355                                     VectorHeader->getTerminator());
3356       Value *Escape =
3357           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3358       Escape->setName("ind.escape");
3359       MissingVals[UI] = Escape;
3360     }
3361   }
3362 
3363   for (auto &I : MissingVals) {
3364     PHINode *PHI = cast<PHINode>(I.first);
3365     // One corner case we have to handle is two IVs "chasing" each-other,
3366     // that is %IV2 = phi [...], [ %IV1, %latch ]
3367     // In this case, if IV1 has an external use, we need to avoid adding both
3368     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3369     // don't already have an incoming value for the middle block.
3370     if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
3371       PHI->addIncoming(I.second, MiddleBlock);
3372       Plan.removeLiveOut(PHI);
3373     }
3374   }
3375 }
3376 
3377 namespace {
3378 
3379 struct CSEDenseMapInfo {
3380   static bool canHandle(const Instruction *I) {
3381     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3382            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3383   }
3384 
3385   static inline Instruction *getEmptyKey() {
3386     return DenseMapInfo<Instruction *>::getEmptyKey();
3387   }
3388 
3389   static inline Instruction *getTombstoneKey() {
3390     return DenseMapInfo<Instruction *>::getTombstoneKey();
3391   }
3392 
3393   static unsigned getHashValue(const Instruction *I) {
3394     assert(canHandle(I) && "Unknown instruction!");
3395     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3396                                                            I->value_op_end()));
3397   }
3398 
3399   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3400     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3401         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3402       return LHS == RHS;
3403     return LHS->isIdenticalTo(RHS);
3404   }
3405 };
3406 
3407 } // end anonymous namespace
3408 
3409 ///Perform cse of induction variable instructions.
3410 static void cse(BasicBlock *BB) {
3411   // Perform simple cse.
3412   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3413   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3414     if (!CSEDenseMapInfo::canHandle(&In))
3415       continue;
3416 
3417     // Check if we can replace this instruction with any of the
3418     // visited instructions.
3419     if (Instruction *V = CSEMap.lookup(&In)) {
3420       In.replaceAllUsesWith(V);
3421       In.eraseFromParent();
3422       continue;
3423     }
3424 
3425     CSEMap[&In] = &In;
3426   }
3427 }
3428 
3429 InstructionCost
3430 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3431                                               bool &NeedToScalarize) const {
3432   Function *F = CI->getCalledFunction();
3433   Type *ScalarRetTy = CI->getType();
3434   SmallVector<Type *, 4> Tys, ScalarTys;
3435   for (auto &ArgOp : CI->args())
3436     ScalarTys.push_back(ArgOp->getType());
3437 
3438   // Estimate cost of scalarized vector call. The source operands are assumed
3439   // to be vectors, so we need to extract individual elements from there,
3440   // execute VF scalar calls, and then gather the result into the vector return
3441   // value.
3442   InstructionCost ScalarCallCost =
3443       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3444   if (VF.isScalar())
3445     return ScalarCallCost;
3446 
3447   // Compute corresponding vector type for return value and arguments.
3448   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3449   for (Type *ScalarTy : ScalarTys)
3450     Tys.push_back(ToVectorTy(ScalarTy, VF));
3451 
3452   // Compute costs of unpacking argument values for the scalar calls and
3453   // packing the return values to a vector.
3454   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3455 
3456   InstructionCost Cost =
3457       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3458 
3459   // If we can't emit a vector call for this function, then the currently found
3460   // cost is the cost we need to return.
3461   NeedToScalarize = true;
3462   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3463   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3464 
3465   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3466     return Cost;
3467 
3468   // If the corresponding vector cost is cheaper, return its cost.
3469   InstructionCost VectorCallCost =
3470       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3471   if (VectorCallCost < Cost) {
3472     NeedToScalarize = false;
3473     Cost = VectorCallCost;
3474   }
3475   return Cost;
3476 }
3477 
3478 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3479   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3480     return Elt;
3481   return VectorType::get(Elt, VF);
3482 }
3483 
3484 InstructionCost
3485 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3486                                                    ElementCount VF) const {
3487   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3488   assert(ID && "Expected intrinsic call!");
3489   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3490   FastMathFlags FMF;
3491   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3492     FMF = FPMO->getFastMathFlags();
3493 
3494   SmallVector<const Value *> Arguments(CI->args());
3495   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3496   SmallVector<Type *> ParamTys;
3497   std::transform(FTy->param_begin(), FTy->param_end(),
3498                  std::back_inserter(ParamTys),
3499                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3500 
3501   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3502                                     dyn_cast<IntrinsicInst>(CI));
3503   return TTI.getIntrinsicInstrCost(CostAttrs,
3504                                    TargetTransformInfo::TCK_RecipThroughput);
3505 }
3506 
3507 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3508   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3509   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3510   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3511 }
3512 
3513 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3514   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3515   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3516   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3517 }
3518 
3519 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3520   // For every instruction `I` in MinBWs, truncate the operands, create a
3521   // truncated version of `I` and reextend its result. InstCombine runs
3522   // later and will remove any ext/trunc pairs.
3523   SmallPtrSet<Value *, 4> Erased;
3524   for (const auto &KV : Cost->getMinimalBitwidths()) {
3525     // If the value wasn't vectorized, we must maintain the original scalar
3526     // type. The absence of the value from State indicates that it
3527     // wasn't vectorized.
3528     // FIXME: Should not rely on getVPValue at this point.
3529     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3530     if (!State.hasAnyVectorValue(Def))
3531       continue;
3532     for (unsigned Part = 0; Part < UF; ++Part) {
3533       Value *I = State.get(Def, Part);
3534       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3535         continue;
3536       Type *OriginalTy = I->getType();
3537       Type *ScalarTruncatedTy =
3538           IntegerType::get(OriginalTy->getContext(), KV.second);
3539       auto *TruncatedTy = VectorType::get(
3540           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3541       if (TruncatedTy == OriginalTy)
3542         continue;
3543 
3544       IRBuilder<> B(cast<Instruction>(I));
3545       auto ShrinkOperand = [&](Value *V) -> Value * {
3546         if (auto *ZI = dyn_cast<ZExtInst>(V))
3547           if (ZI->getSrcTy() == TruncatedTy)
3548             return ZI->getOperand(0);
3549         return B.CreateZExtOrTrunc(V, TruncatedTy);
3550       };
3551 
3552       // The actual instruction modification depends on the instruction type,
3553       // unfortunately.
3554       Value *NewI = nullptr;
3555       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3556         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3557                              ShrinkOperand(BO->getOperand(1)));
3558 
3559         // Any wrapping introduced by shrinking this operation shouldn't be
3560         // considered undefined behavior. So, we can't unconditionally copy
3561         // arithmetic wrapping flags to NewI.
3562         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3563       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3564         NewI =
3565             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3566                          ShrinkOperand(CI->getOperand(1)));
3567       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3568         NewI = B.CreateSelect(SI->getCondition(),
3569                               ShrinkOperand(SI->getTrueValue()),
3570                               ShrinkOperand(SI->getFalseValue()));
3571       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3572         switch (CI->getOpcode()) {
3573         default:
3574           llvm_unreachable("Unhandled cast!");
3575         case Instruction::Trunc:
3576           NewI = ShrinkOperand(CI->getOperand(0));
3577           break;
3578         case Instruction::SExt:
3579           NewI = B.CreateSExtOrTrunc(
3580               CI->getOperand(0),
3581               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3582           break;
3583         case Instruction::ZExt:
3584           NewI = B.CreateZExtOrTrunc(
3585               CI->getOperand(0),
3586               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3587           break;
3588         }
3589       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3590         auto Elements0 =
3591             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3592         auto *O0 = B.CreateZExtOrTrunc(
3593             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3594         auto Elements1 =
3595             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3596         auto *O1 = B.CreateZExtOrTrunc(
3597             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3598 
3599         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3600       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3601         // Don't do anything with the operands, just extend the result.
3602         continue;
3603       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3604         auto Elements =
3605             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3606         auto *O0 = B.CreateZExtOrTrunc(
3607             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3608         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3609         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3610       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3611         auto Elements =
3612             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3613         auto *O0 = B.CreateZExtOrTrunc(
3614             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3615         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3616       } else {
3617         // If we don't know what to do, be conservative and don't do anything.
3618         continue;
3619       }
3620 
3621       // Lastly, extend the result.
3622       NewI->takeName(cast<Instruction>(I));
3623       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3624       I->replaceAllUsesWith(Res);
3625       cast<Instruction>(I)->eraseFromParent();
3626       Erased.insert(I);
3627       State.reset(Def, Res, Part);
3628     }
3629   }
3630 
3631   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3632   for (const auto &KV : Cost->getMinimalBitwidths()) {
3633     // If the value wasn't vectorized, we must maintain the original scalar
3634     // type. The absence of the value from State indicates that it
3635     // wasn't vectorized.
3636     // FIXME: Should not rely on getVPValue at this point.
3637     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3638     if (!State.hasAnyVectorValue(Def))
3639       continue;
3640     for (unsigned Part = 0; Part < UF; ++Part) {
3641       Value *I = State.get(Def, Part);
3642       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3643       if (Inst && Inst->use_empty()) {
3644         Value *NewI = Inst->getOperand(0);
3645         Inst->eraseFromParent();
3646         State.reset(Def, NewI, Part);
3647       }
3648     }
3649   }
3650 }
3651 
3652 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
3653                                             VPlan &Plan) {
3654   // Insert truncates and extends for any truncated instructions as hints to
3655   // InstCombine.
3656   if (VF.isVector())
3657     truncateToMinimalBitwidths(State);
3658 
3659   // Fix widened non-induction PHIs by setting up the PHI operands.
3660   if (EnableVPlanNativePath)
3661     fixNonInductionPHIs(Plan, State);
3662 
3663   // At this point every instruction in the original loop is widened to a
3664   // vector form. Now we need to fix the recurrences in the loop. These PHI
3665   // nodes are currently empty because we did not want to introduce cycles.
3666   // This is the second stage of vectorizing recurrences.
3667   fixCrossIterationPHIs(State);
3668 
3669   // Forget the original basic block.
3670   PSE.getSE()->forgetLoop(OrigLoop);
3671 
3672   VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
3673   Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
3674   if (Cost->requiresScalarEpilogue(VF)) {
3675     // No edge from the middle block to the unique exit block has been inserted
3676     // and there is nothing to fix from vector loop; phis should have incoming
3677     // from scalar loop only.
3678     Plan.clearLiveOuts();
3679   } else {
3680     // If we inserted an edge from the middle block to the unique exit block,
3681     // update uses outside the loop (phis) to account for the newly inserted
3682     // edge.
3683 
3684     // Fix-up external users of the induction variables.
3685     for (auto &Entry : Legal->getInductionVars())
3686       fixupIVUsers(Entry.first, Entry.second,
3687                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3688                    IVEndValues[Entry.first], LoopMiddleBlock,
3689                    VectorLoop->getHeader(), Plan);
3690   }
3691 
3692   // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
3693   // in the exit block, so update the builder.
3694   State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
3695   for (auto &KV : Plan.getLiveOuts())
3696     KV.second->fixPhi(Plan, State);
3697 
3698   for (Instruction *PI : PredicatedInstructions)
3699     sinkScalarOperands(&*PI);
3700 
3701   // Remove redundant induction instructions.
3702   cse(VectorLoop->getHeader());
3703 
3704   // Set/update profile weights for the vector and remainder loops as original
3705   // loop iterations are now distributed among them. Note that original loop
3706   // represented by LoopScalarBody becomes remainder loop after vectorization.
3707   //
3708   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3709   // end up getting slightly roughened result but that should be OK since
3710   // profile is not inherently precise anyway. Note also possible bypass of
3711   // vector code caused by legality checks is ignored, assigning all the weight
3712   // to the vector loop, optimistically.
3713   //
3714   // For scalable vectorization we can't know at compile time how many iterations
3715   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3716   // vscale of '1'.
3717   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3718                                LI->getLoopFor(LoopScalarBody),
3719                                VF.getKnownMinValue() * UF);
3720 }
3721 
3722 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3723   // In order to support recurrences we need to be able to vectorize Phi nodes.
3724   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3725   // stage #2: We now need to fix the recurrences by adding incoming edges to
3726   // the currently empty PHI nodes. At this point every instruction in the
3727   // original loop is widened to a vector form so we can use them to construct
3728   // the incoming edges.
3729   VPBasicBlock *Header =
3730       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3731   for (VPRecipeBase &R : Header->phis()) {
3732     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3733       fixReduction(ReductionPhi, State);
3734     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3735       fixFirstOrderRecurrence(FOR, State);
3736   }
3737 }
3738 
3739 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3740     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3741   // This is the second phase of vectorizing first-order recurrences. An
3742   // overview of the transformation is described below. Suppose we have the
3743   // following loop.
3744   //
3745   //   for (int i = 0; i < n; ++i)
3746   //     b[i] = a[i] - a[i - 1];
3747   //
3748   // There is a first-order recurrence on "a". For this loop, the shorthand
3749   // scalar IR looks like:
3750   //
3751   //   scalar.ph:
3752   //     s_init = a[-1]
3753   //     br scalar.body
3754   //
3755   //   scalar.body:
3756   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3757   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3758   //     s2 = a[i]
3759   //     b[i] = s2 - s1
3760   //     br cond, scalar.body, ...
3761   //
3762   // In this example, s1 is a recurrence because it's value depends on the
3763   // previous iteration. In the first phase of vectorization, we created a
3764   // vector phi v1 for s1. We now complete the vectorization and produce the
3765   // shorthand vector IR shown below (for VF = 4, UF = 1).
3766   //
3767   //   vector.ph:
3768   //     v_init = vector(..., ..., ..., a[-1])
3769   //     br vector.body
3770   //
3771   //   vector.body
3772   //     i = phi [0, vector.ph], [i+4, vector.body]
3773   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3774   //     v2 = a[i, i+1, i+2, i+3];
3775   //     v3 = vector(v1(3), v2(0, 1, 2))
3776   //     b[i, i+1, i+2, i+3] = v2 - v3
3777   //     br cond, vector.body, middle.block
3778   //
3779   //   middle.block:
3780   //     x = v2(3)
3781   //     br scalar.ph
3782   //
3783   //   scalar.ph:
3784   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3785   //     br scalar.body
3786   //
3787   // After execution completes the vector loop, we extract the next value of
3788   // the recurrence (x) to use as the initial value in the scalar loop.
3789 
3790   // Extract the last vector element in the middle block. This will be the
3791   // initial value for the recurrence when jumping to the scalar loop.
3792   VPValue *PreviousDef = PhiR->getBackedgeValue();
3793   Value *Incoming = State.get(PreviousDef, UF - 1);
3794   auto *ExtractForScalar = Incoming;
3795   auto *IdxTy = Builder.getInt32Ty();
3796   if (VF.isVector()) {
3797     auto *One = ConstantInt::get(IdxTy, 1);
3798     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3799     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3800     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3801     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3802                                                     "vector.recur.extract");
3803   }
3804   // Extract the second last element in the middle block if the
3805   // Phi is used outside the loop. We need to extract the phi itself
3806   // and not the last element (the phi update in the current iteration). This
3807   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3808   // when the scalar loop is not run at all.
3809   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3810   if (VF.isVector()) {
3811     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3812     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3813     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3814         Incoming, Idx, "vector.recur.extract.for.phi");
3815   } else if (UF > 1)
3816     // When loop is unrolled without vectorizing, initialize
3817     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3818     // of `Incoming`. This is analogous to the vectorized case above: extracting
3819     // the second last element when VF > 1.
3820     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3821 
3822   // Fix the initial value of the original recurrence in the scalar loop.
3823   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3824   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3825   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3826   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3827   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3828     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3829     Start->addIncoming(Incoming, BB);
3830   }
3831 
3832   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3833   Phi->setName("scalar.recur");
3834 
3835   // Finally, fix users of the recurrence outside the loop. The users will need
3836   // either the last value of the scalar recurrence or the last value of the
3837   // vector recurrence we extracted in the middle block. Since the loop is in
3838   // LCSSA form, we just need to find all the phi nodes for the original scalar
3839   // recurrence in the exit block, and then add an edge for the middle block.
3840   // Note that LCSSA does not imply single entry when the original scalar loop
3841   // had multiple exiting edges (as we always run the last iteration in the
3842   // scalar epilogue); in that case, there is no edge from middle to exit and
3843   // and thus no phis which needed updated.
3844   if (!Cost->requiresScalarEpilogue(VF))
3845     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3846       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) {
3847         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3848         State.Plan->removeLiveOut(&LCSSAPhi);
3849       }
3850 }
3851 
3852 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3853                                        VPTransformState &State) {
3854   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3855   // Get it's reduction variable descriptor.
3856   assert(Legal->isReductionVariable(OrigPhi) &&
3857          "Unable to find the reduction variable");
3858   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3859 
3860   RecurKind RK = RdxDesc.getRecurrenceKind();
3861   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3862   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3863   setDebugLocFromInst(ReductionStartValue);
3864 
3865   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3866   // This is the vector-clone of the value that leaves the loop.
3867   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3868 
3869   // Wrap flags are in general invalid after vectorization, clear them.
3870   clearReductionWrapFlags(PhiR, State);
3871 
3872   // Before each round, move the insertion point right between
3873   // the PHIs and the values we are going to write.
3874   // This allows us to write both PHINodes and the extractelement
3875   // instructions.
3876   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3877 
3878   setDebugLocFromInst(LoopExitInst);
3879 
3880   Type *PhiTy = OrigPhi->getType();
3881 
3882   VPBasicBlock *LatchVPBB =
3883       PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
3884   BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
3885   // If tail is folded by masking, the vector value to leave the loop should be
3886   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3887   // instead of the former. For an inloop reduction the reduction will already
3888   // be predicated, and does not need to be handled here.
3889   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3890     for (unsigned Part = 0; Part < UF; ++Part) {
3891       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3892       SelectInst *Sel = nullptr;
3893       for (User *U : VecLoopExitInst->users()) {
3894         if (isa<SelectInst>(U)) {
3895           assert(!Sel && "Reduction exit feeding two selects");
3896           Sel = cast<SelectInst>(U);
3897         } else
3898           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3899       }
3900       assert(Sel && "Reduction exit feeds no select");
3901       State.reset(LoopExitInstDef, Sel, Part);
3902 
3903       if (isa<FPMathOperator>(Sel))
3904         Sel->setFastMathFlags(RdxDesc.getFastMathFlags());
3905 
3906       // If the target can create a predicated operator for the reduction at no
3907       // extra cost in the loop (for example a predicated vadd), it can be
3908       // cheaper for the select to remain in the loop than be sunk out of it,
3909       // and so use the select value for the phi instead of the old
3910       // LoopExitValue.
3911       if (PreferPredicatedReductionSelect ||
3912           TTI->preferPredicatedReductionSelect(
3913               RdxDesc.getOpcode(), PhiTy,
3914               TargetTransformInfo::ReductionFlags())) {
3915         auto *VecRdxPhi =
3916             cast<PHINode>(State.get(PhiR, Part));
3917         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3918       }
3919     }
3920   }
3921 
3922   // If the vector reduction can be performed in a smaller type, we truncate
3923   // then extend the loop exit value to enable InstCombine to evaluate the
3924   // entire expression in the smaller type.
3925   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3926     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3927     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3928     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3929     VectorParts RdxParts(UF);
3930     for (unsigned Part = 0; Part < UF; ++Part) {
3931       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3932       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3933       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3934                                         : Builder.CreateZExt(Trunc, VecTy);
3935       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3936         if (U != Trunc) {
3937           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3938           RdxParts[Part] = Extnd;
3939         }
3940     }
3941     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3942     for (unsigned Part = 0; Part < UF; ++Part) {
3943       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3944       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3945     }
3946   }
3947 
3948   // Reduce all of the unrolled parts into a single vector.
3949   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3950   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3951 
3952   // The middle block terminator has already been assigned a DebugLoc here (the
3953   // OrigLoop's single latch terminator). We want the whole middle block to
3954   // appear to execute on this line because: (a) it is all compiler generated,
3955   // (b) these instructions are always executed after evaluating the latch
3956   // conditional branch, and (c) other passes may add new predecessors which
3957   // terminate on this line. This is the easiest way to ensure we don't
3958   // accidentally cause an extra step back into the loop while debugging.
3959   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3960   if (PhiR->isOrdered())
3961     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3962   else {
3963     // Floating-point operations should have some FMF to enable the reduction.
3964     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3965     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3966     for (unsigned Part = 1; Part < UF; ++Part) {
3967       Value *RdxPart = State.get(LoopExitInstDef, Part);
3968       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3969         ReducedPartRdx = Builder.CreateBinOp(
3970             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3971       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3972         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3973                                            ReducedPartRdx, RdxPart);
3974       else
3975         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3976     }
3977   }
3978 
3979   // Create the reduction after the loop. Note that inloop reductions create the
3980   // target reduction in the loop using a Reduction recipe.
3981   if (VF.isVector() && !PhiR->isInLoop()) {
3982     ReducedPartRdx =
3983         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3984     // If the reduction can be performed in a smaller type, we need to extend
3985     // the reduction to the wider type before we branch to the original loop.
3986     if (PhiTy != RdxDesc.getRecurrenceType())
3987       ReducedPartRdx = RdxDesc.isSigned()
3988                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3989                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3990   }
3991 
3992   PHINode *ResumePhi =
3993       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3994 
3995   // Create a phi node that merges control-flow from the backedge-taken check
3996   // block and the middle block.
3997   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3998                                         LoopScalarPreHeader->getTerminator());
3999 
4000   // If we are fixing reductions in the epilogue loop then we should already
4001   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4002   // we carry over the incoming values correctly.
4003   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4004     if (Incoming == LoopMiddleBlock)
4005       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4006     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4007       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4008                               Incoming);
4009     else
4010       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4011   }
4012 
4013   // Set the resume value for this reduction
4014   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4015 
4016   // If there were stores of the reduction value to a uniform memory address
4017   // inside the loop, create the final store here.
4018   if (StoreInst *SI = RdxDesc.IntermediateStore) {
4019     StoreInst *NewSI =
4020         Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
4021     propagateMetadata(NewSI, SI);
4022 
4023     // If the reduction value is used in other places,
4024     // then let the code below create PHI's for that.
4025   }
4026 
4027   // Now, we need to fix the users of the reduction variable
4028   // inside and outside of the scalar remainder loop.
4029 
4030   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4031   // in the exit blocks.  See comment on analogous loop in
4032   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4033   if (!Cost->requiresScalarEpilogue(VF))
4034     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4035       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
4036         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4037         State.Plan->removeLiveOut(&LCSSAPhi);
4038       }
4039 
4040   // Fix the scalar loop reduction variable with the incoming reduction sum
4041   // from the vector body and from the backedge value.
4042   int IncomingEdgeBlockIdx =
4043       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4044   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4045   // Pick the other block.
4046   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4047   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4048   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4049 }
4050 
4051 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
4052                                                   VPTransformState &State) {
4053   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4054   RecurKind RK = RdxDesc.getRecurrenceKind();
4055   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4056     return;
4057 
4058   SmallVector<VPValue *, 8> Worklist;
4059   SmallPtrSet<VPValue *, 8> Visited;
4060   Worklist.push_back(PhiR);
4061   Visited.insert(PhiR);
4062 
4063   while (!Worklist.empty()) {
4064     VPValue *Cur = Worklist.pop_back_val();
4065     for (unsigned Part = 0; Part < UF; ++Part) {
4066       Value *V = State.get(Cur, Part);
4067       if (!isa<OverflowingBinaryOperator>(V))
4068         break;
4069       cast<Instruction>(V)->dropPoisonGeneratingFlags();
4070       }
4071 
4072       for (VPUser *U : Cur->users()) {
4073         auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
4074         if (!UserRecipe)
4075           continue;
4076         for (VPValue *V : UserRecipe->definedValues())
4077           if (Visited.insert(V).second)
4078             Worklist.push_back(V);
4079       }
4080   }
4081 }
4082 
4083 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4084   // The basic block and loop containing the predicated instruction.
4085   auto *PredBB = PredInst->getParent();
4086   auto *VectorLoop = LI->getLoopFor(PredBB);
4087 
4088   // Initialize a worklist with the operands of the predicated instruction.
4089   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4090 
4091   // Holds instructions that we need to analyze again. An instruction may be
4092   // reanalyzed if we don't yet know if we can sink it or not.
4093   SmallVector<Instruction *, 8> InstsToReanalyze;
4094 
4095   // Returns true if a given use occurs in the predicated block. Phi nodes use
4096   // their operands in their corresponding predecessor blocks.
4097   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4098     auto *I = cast<Instruction>(U.getUser());
4099     BasicBlock *BB = I->getParent();
4100     if (auto *Phi = dyn_cast<PHINode>(I))
4101       BB = Phi->getIncomingBlock(
4102           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4103     return BB == PredBB;
4104   };
4105 
4106   // Iteratively sink the scalarized operands of the predicated instruction
4107   // into the block we created for it. When an instruction is sunk, it's
4108   // operands are then added to the worklist. The algorithm ends after one pass
4109   // through the worklist doesn't sink a single instruction.
4110   bool Changed;
4111   do {
4112     // Add the instructions that need to be reanalyzed to the worklist, and
4113     // reset the changed indicator.
4114     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4115     InstsToReanalyze.clear();
4116     Changed = false;
4117 
4118     while (!Worklist.empty()) {
4119       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4120 
4121       // We can't sink an instruction if it is a phi node, is not in the loop,
4122       // or may have side effects.
4123       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4124           I->mayHaveSideEffects())
4125         continue;
4126 
4127       // If the instruction is already in PredBB, check if we can sink its
4128       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4129       // sinking the scalar instruction I, hence it appears in PredBB; but it
4130       // may have failed to sink I's operands (recursively), which we try
4131       // (again) here.
4132       if (I->getParent() == PredBB) {
4133         Worklist.insert(I->op_begin(), I->op_end());
4134         continue;
4135       }
4136 
4137       // It's legal to sink the instruction if all its uses occur in the
4138       // predicated block. Otherwise, there's nothing to do yet, and we may
4139       // need to reanalyze the instruction.
4140       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4141         InstsToReanalyze.push_back(I);
4142         continue;
4143       }
4144 
4145       // Move the instruction to the beginning of the predicated block, and add
4146       // it's operands to the worklist.
4147       I->moveBefore(&*PredBB->getFirstInsertionPt());
4148       Worklist.insert(I->op_begin(), I->op_end());
4149 
4150       // The sinking may have enabled other instructions to be sunk, so we will
4151       // need to iterate.
4152       Changed = true;
4153     }
4154   } while (Changed);
4155 }
4156 
4157 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
4158                                               VPTransformState &State) {
4159   auto Iter = depth_first(
4160       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry()));
4161   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4162     for (VPRecipeBase &P : VPBB->phis()) {
4163       VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
4164       if (!VPPhi)
4165         continue;
4166       PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4167       // Make sure the builder has a valid insert point.
4168       Builder.SetInsertPoint(NewPhi);
4169       for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4170         VPValue *Inc = VPPhi->getIncomingValue(i);
4171         VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4172         NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4173       }
4174     }
4175   }
4176 }
4177 
4178 bool InnerLoopVectorizer::useOrderedReductions(
4179     const RecurrenceDescriptor &RdxDesc) {
4180   return Cost->useOrderedReductions(RdxDesc);
4181 }
4182 
4183 /// A helper function for checking whether an integer division-related
4184 /// instruction may divide by zero (in which case it must be predicated if
4185 /// executed conditionally in the scalar code).
4186 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4187 /// Non-zero divisors that are non compile-time constants will not be
4188 /// converted into multiplication, so we will still end up scalarizing
4189 /// the division, but can do so w/o predication.
4190 static bool mayDivideByZero(Instruction &I) {
4191   assert((I.getOpcode() == Instruction::UDiv ||
4192           I.getOpcode() == Instruction::SDiv ||
4193           I.getOpcode() == Instruction::URem ||
4194           I.getOpcode() == Instruction::SRem) &&
4195          "Unexpected instruction");
4196   Value *Divisor = I.getOperand(1);
4197   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4198   return !CInt || CInt->isZero();
4199 }
4200 
4201 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4202                                                VPUser &ArgOperands,
4203                                                VPTransformState &State) {
4204   assert(!isa<DbgInfoIntrinsic>(I) &&
4205          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4206   setDebugLocFromInst(&I);
4207 
4208   Module *M = I.getParent()->getParent()->getParent();
4209   auto *CI = cast<CallInst>(&I);
4210 
4211   SmallVector<Type *, 4> Tys;
4212   for (Value *ArgOperand : CI->args())
4213     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4214 
4215   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4216 
4217   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4218   // version of the instruction.
4219   // Is it beneficial to perform intrinsic call compared to lib call?
4220   bool NeedToScalarize = false;
4221   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4222   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4223   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4224   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4225          "Instruction should be scalarized elsewhere.");
4226   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4227          "Either the intrinsic cost or vector call cost must be valid");
4228 
4229   for (unsigned Part = 0; Part < UF; ++Part) {
4230     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4231     SmallVector<Value *, 4> Args;
4232     for (auto &I : enumerate(ArgOperands.operands())) {
4233       // Some intrinsics have a scalar argument - don't replace it with a
4234       // vector.
4235       Value *Arg;
4236       if (!UseVectorIntrinsic ||
4237           !isVectorIntrinsicWithScalarOpAtArg(ID, I.index()))
4238         Arg = State.get(I.value(), Part);
4239       else
4240         Arg = State.get(I.value(), VPIteration(0, 0));
4241       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index()))
4242         TysForDecl.push_back(Arg->getType());
4243       Args.push_back(Arg);
4244     }
4245 
4246     Function *VectorF;
4247     if (UseVectorIntrinsic) {
4248       // Use vector version of the intrinsic.
4249       if (VF.isVector())
4250         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4251       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4252       assert(VectorF && "Can't retrieve vector intrinsic.");
4253     } else {
4254       // Use vector version of the function call.
4255       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4256 #ifndef NDEBUG
4257       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4258              "Can't create vector function.");
4259 #endif
4260         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4261     }
4262       SmallVector<OperandBundleDef, 1> OpBundles;
4263       CI->getOperandBundlesAsDefs(OpBundles);
4264       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4265 
4266       if (isa<FPMathOperator>(V))
4267         V->copyFastMathFlags(CI);
4268 
4269       State.set(Def, V, Part);
4270       addMetadata(V, &I);
4271   }
4272 }
4273 
4274 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4275   // We should not collect Scalars more than once per VF. Right now, this
4276   // function is called from collectUniformsAndScalars(), which already does
4277   // this check. Collecting Scalars for VF=1 does not make any sense.
4278   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4279          "This function should not be visited twice for the same VF");
4280 
4281   // This avoids any chances of creating a REPLICATE recipe during planning
4282   // since that would result in generation of scalarized code during execution,
4283   // which is not supported for scalable vectors.
4284   if (VF.isScalable()) {
4285     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4286     return;
4287   }
4288 
4289   SmallSetVector<Instruction *, 8> Worklist;
4290 
4291   // These sets are used to seed the analysis with pointers used by memory
4292   // accesses that will remain scalar.
4293   SmallSetVector<Instruction *, 8> ScalarPtrs;
4294   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4295   auto *Latch = TheLoop->getLoopLatch();
4296 
4297   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4298   // The pointer operands of loads and stores will be scalar as long as the
4299   // memory access is not a gather or scatter operation. The value operand of a
4300   // store will remain scalar if the store is scalarized.
4301   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4302     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4303     assert(WideningDecision != CM_Unknown &&
4304            "Widening decision should be ready at this moment");
4305     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4306       if (Ptr == Store->getValueOperand())
4307         return WideningDecision == CM_Scalarize;
4308     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4309            "Ptr is neither a value or pointer operand");
4310     return WideningDecision != CM_GatherScatter;
4311   };
4312 
4313   // A helper that returns true if the given value is a bitcast or
4314   // getelementptr instruction contained in the loop.
4315   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4316     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4317             isa<GetElementPtrInst>(V)) &&
4318            !TheLoop->isLoopInvariant(V);
4319   };
4320 
4321   // A helper that evaluates a memory access's use of a pointer. If the use will
4322   // be a scalar use and the pointer is only used by memory accesses, we place
4323   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4324   // PossibleNonScalarPtrs.
4325   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4326     // We only care about bitcast and getelementptr instructions contained in
4327     // the loop.
4328     if (!isLoopVaryingBitCastOrGEP(Ptr))
4329       return;
4330 
4331     // If the pointer has already been identified as scalar (e.g., if it was
4332     // also identified as uniform), there's nothing to do.
4333     auto *I = cast<Instruction>(Ptr);
4334     if (Worklist.count(I))
4335       return;
4336 
4337     // If the use of the pointer will be a scalar use, and all users of the
4338     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4339     // place the pointer in PossibleNonScalarPtrs.
4340     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4341           return isa<LoadInst>(U) || isa<StoreInst>(U);
4342         }))
4343       ScalarPtrs.insert(I);
4344     else
4345       PossibleNonScalarPtrs.insert(I);
4346   };
4347 
4348   // We seed the scalars analysis with three classes of instructions: (1)
4349   // instructions marked uniform-after-vectorization and (2) bitcast,
4350   // getelementptr and (pointer) phi instructions used by memory accesses
4351   // requiring a scalar use.
4352   //
4353   // (1) Add to the worklist all instructions that have been identified as
4354   // uniform-after-vectorization.
4355   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4356 
4357   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4358   // memory accesses requiring a scalar use. The pointer operands of loads and
4359   // stores will be scalar as long as the memory accesses is not a gather or
4360   // scatter operation. The value operand of a store will remain scalar if the
4361   // store is scalarized.
4362   for (auto *BB : TheLoop->blocks())
4363     for (auto &I : *BB) {
4364       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4365         evaluatePtrUse(Load, Load->getPointerOperand());
4366       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4367         evaluatePtrUse(Store, Store->getPointerOperand());
4368         evaluatePtrUse(Store, Store->getValueOperand());
4369       }
4370     }
4371   for (auto *I : ScalarPtrs)
4372     if (!PossibleNonScalarPtrs.count(I)) {
4373       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4374       Worklist.insert(I);
4375     }
4376 
4377   // Insert the forced scalars.
4378   // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
4379   // induction variable when the PHI user is scalarized.
4380   auto ForcedScalar = ForcedScalars.find(VF);
4381   if (ForcedScalar != ForcedScalars.end())
4382     for (auto *I : ForcedScalar->second)
4383       Worklist.insert(I);
4384 
4385   // Expand the worklist by looking through any bitcasts and getelementptr
4386   // instructions we've already identified as scalar. This is similar to the
4387   // expansion step in collectLoopUniforms(); however, here we're only
4388   // expanding to include additional bitcasts and getelementptr instructions.
4389   unsigned Idx = 0;
4390   while (Idx != Worklist.size()) {
4391     Instruction *Dst = Worklist[Idx++];
4392     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4393       continue;
4394     auto *Src = cast<Instruction>(Dst->getOperand(0));
4395     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4396           auto *J = cast<Instruction>(U);
4397           return !TheLoop->contains(J) || Worklist.count(J) ||
4398                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4399                   isScalarUse(J, Src));
4400         })) {
4401       Worklist.insert(Src);
4402       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4403     }
4404   }
4405 
4406   // An induction variable will remain scalar if all users of the induction
4407   // variable and induction variable update remain scalar.
4408   for (auto &Induction : Legal->getInductionVars()) {
4409     auto *Ind = Induction.first;
4410     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4411 
4412     // If tail-folding is applied, the primary induction variable will be used
4413     // to feed a vector compare.
4414     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4415       continue;
4416 
4417     // Returns true if \p Indvar is a pointer induction that is used directly by
4418     // load/store instruction \p I.
4419     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4420                                               Instruction *I) {
4421       return Induction.second.getKind() ==
4422                  InductionDescriptor::IK_PtrInduction &&
4423              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4424              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4425     };
4426 
4427     // Determine if all users of the induction variable are scalar after
4428     // vectorization.
4429     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4430       auto *I = cast<Instruction>(U);
4431       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4432              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4433     });
4434     if (!ScalarInd)
4435       continue;
4436 
4437     // Determine if all users of the induction variable update instruction are
4438     // scalar after vectorization.
4439     auto ScalarIndUpdate =
4440         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4441           auto *I = cast<Instruction>(U);
4442           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4443                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4444         });
4445     if (!ScalarIndUpdate)
4446       continue;
4447 
4448     // The induction variable and its update instruction will remain scalar.
4449     Worklist.insert(Ind);
4450     Worklist.insert(IndUpdate);
4451     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4452     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4453                       << "\n");
4454   }
4455 
4456   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4457 }
4458 
4459 bool LoopVectorizationCostModel::isScalarWithPredication(
4460     Instruction *I, ElementCount VF) const {
4461   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4462     return false;
4463   switch(I->getOpcode()) {
4464   default:
4465     break;
4466   case Instruction::Load:
4467   case Instruction::Store: {
4468     if (!Legal->isMaskRequired(I))
4469       return false;
4470     auto *Ptr = getLoadStorePointerOperand(I);
4471     auto *Ty = getLoadStoreType(I);
4472     Type *VTy = Ty;
4473     if (VF.isVector())
4474       VTy = VectorType::get(Ty, VF);
4475     const Align Alignment = getLoadStoreAlignment(I);
4476     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4477                                 TTI.isLegalMaskedGather(VTy, Alignment))
4478                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4479                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4480   }
4481   case Instruction::UDiv:
4482   case Instruction::SDiv:
4483   case Instruction::SRem:
4484   case Instruction::URem:
4485     return mayDivideByZero(*I);
4486   }
4487   return false;
4488 }
4489 
4490 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4491     Instruction *I, ElementCount VF) {
4492   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4493   assert(getWideningDecision(I, VF) == CM_Unknown &&
4494          "Decision should not be set yet.");
4495   auto *Group = getInterleavedAccessGroup(I);
4496   assert(Group && "Must have a group.");
4497 
4498   // If the instruction's allocated size doesn't equal it's type size, it
4499   // requires padding and will be scalarized.
4500   auto &DL = I->getModule()->getDataLayout();
4501   auto *ScalarTy = getLoadStoreType(I);
4502   if (hasIrregularType(ScalarTy, DL))
4503     return false;
4504 
4505   // If the group involves a non-integral pointer, we may not be able to
4506   // losslessly cast all values to a common type.
4507   unsigned InterleaveFactor = Group->getFactor();
4508   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4509   for (unsigned i = 0; i < InterleaveFactor; i++) {
4510     Instruction *Member = Group->getMember(i);
4511     if (!Member)
4512       continue;
4513     auto *MemberTy = getLoadStoreType(Member);
4514     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4515     // Don't coerce non-integral pointers to integers or vice versa.
4516     if (MemberNI != ScalarNI) {
4517       // TODO: Consider adding special nullptr value case here
4518       return false;
4519     } else if (MemberNI && ScalarNI &&
4520                ScalarTy->getPointerAddressSpace() !=
4521                MemberTy->getPointerAddressSpace()) {
4522       return false;
4523     }
4524   }
4525 
4526   // Check if masking is required.
4527   // A Group may need masking for one of two reasons: it resides in a block that
4528   // needs predication, or it was decided to use masking to deal with gaps
4529   // (either a gap at the end of a load-access that may result in a speculative
4530   // load, or any gaps in a store-access).
4531   bool PredicatedAccessRequiresMasking =
4532       blockNeedsPredicationForAnyReason(I->getParent()) &&
4533       Legal->isMaskRequired(I);
4534   bool LoadAccessWithGapsRequiresEpilogMasking =
4535       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4536       !isScalarEpilogueAllowed();
4537   bool StoreAccessWithGapsRequiresMasking =
4538       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4539   if (!PredicatedAccessRequiresMasking &&
4540       !LoadAccessWithGapsRequiresEpilogMasking &&
4541       !StoreAccessWithGapsRequiresMasking)
4542     return true;
4543 
4544   // If masked interleaving is required, we expect that the user/target had
4545   // enabled it, because otherwise it either wouldn't have been created or
4546   // it should have been invalidated by the CostModel.
4547   assert(useMaskedInterleavedAccesses(TTI) &&
4548          "Masked interleave-groups for predicated accesses are not enabled.");
4549 
4550   if (Group->isReverse())
4551     return false;
4552 
4553   auto *Ty = getLoadStoreType(I);
4554   const Align Alignment = getLoadStoreAlignment(I);
4555   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4556                           : TTI.isLegalMaskedStore(Ty, Alignment);
4557 }
4558 
4559 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4560     Instruction *I, ElementCount VF) {
4561   // Get and ensure we have a valid memory instruction.
4562   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4563 
4564   auto *Ptr = getLoadStorePointerOperand(I);
4565   auto *ScalarTy = getLoadStoreType(I);
4566 
4567   // In order to be widened, the pointer should be consecutive, first of all.
4568   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4569     return false;
4570 
4571   // If the instruction is a store located in a predicated block, it will be
4572   // scalarized.
4573   if (isScalarWithPredication(I, VF))
4574     return false;
4575 
4576   // If the instruction's allocated size doesn't equal it's type size, it
4577   // requires padding and will be scalarized.
4578   auto &DL = I->getModule()->getDataLayout();
4579   if (hasIrregularType(ScalarTy, DL))
4580     return false;
4581 
4582   return true;
4583 }
4584 
4585 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4586   // We should not collect Uniforms more than once per VF. Right now,
4587   // this function is called from collectUniformsAndScalars(), which
4588   // already does this check. Collecting Uniforms for VF=1 does not make any
4589   // sense.
4590 
4591   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4592          "This function should not be visited twice for the same VF");
4593 
4594   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4595   // not analyze again.  Uniforms.count(VF) will return 1.
4596   Uniforms[VF].clear();
4597 
4598   // We now know that the loop is vectorizable!
4599   // Collect instructions inside the loop that will remain uniform after
4600   // vectorization.
4601 
4602   // Global values, params and instructions outside of current loop are out of
4603   // scope.
4604   auto isOutOfScope = [&](Value *V) -> bool {
4605     Instruction *I = dyn_cast<Instruction>(V);
4606     return (!I || !TheLoop->contains(I));
4607   };
4608 
4609   // Worklist containing uniform instructions demanding lane 0.
4610   SetVector<Instruction *> Worklist;
4611   BasicBlock *Latch = TheLoop->getLoopLatch();
4612 
4613   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4614   // that are scalar with predication must not be considered uniform after
4615   // vectorization, because that would create an erroneous replicating region
4616   // where only a single instance out of VF should be formed.
4617   // TODO: optimize such seldom cases if found important, see PR40816.
4618   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4619     if (isOutOfScope(I)) {
4620       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4621                         << *I << "\n");
4622       return;
4623     }
4624     if (isScalarWithPredication(I, VF)) {
4625       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4626                         << *I << "\n");
4627       return;
4628     }
4629     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4630     Worklist.insert(I);
4631   };
4632 
4633   // Start with the conditional branch. If the branch condition is an
4634   // instruction contained in the loop that is only used by the branch, it is
4635   // uniform.
4636   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4637   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4638     addToWorklistIfAllowed(Cmp);
4639 
4640   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4641     InstWidening WideningDecision = getWideningDecision(I, VF);
4642     assert(WideningDecision != CM_Unknown &&
4643            "Widening decision should be ready at this moment");
4644 
4645     // A uniform memory op is itself uniform.  We exclude uniform stores
4646     // here as they demand the last lane, not the first one.
4647     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4648       assert(WideningDecision == CM_Scalarize);
4649       return true;
4650     }
4651 
4652     return (WideningDecision == CM_Widen ||
4653             WideningDecision == CM_Widen_Reverse ||
4654             WideningDecision == CM_Interleave);
4655   };
4656 
4657 
4658   // Returns true if Ptr is the pointer operand of a memory access instruction
4659   // I, and I is known to not require scalarization.
4660   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4661     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4662   };
4663 
4664   // Holds a list of values which are known to have at least one uniform use.
4665   // Note that there may be other uses which aren't uniform.  A "uniform use"
4666   // here is something which only demands lane 0 of the unrolled iterations;
4667   // it does not imply that all lanes produce the same value (e.g. this is not
4668   // the usual meaning of uniform)
4669   SetVector<Value *> HasUniformUse;
4670 
4671   // Scan the loop for instructions which are either a) known to have only
4672   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4673   for (auto *BB : TheLoop->blocks())
4674     for (auto &I : *BB) {
4675       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4676         switch (II->getIntrinsicID()) {
4677         case Intrinsic::sideeffect:
4678         case Intrinsic::experimental_noalias_scope_decl:
4679         case Intrinsic::assume:
4680         case Intrinsic::lifetime_start:
4681         case Intrinsic::lifetime_end:
4682           if (TheLoop->hasLoopInvariantOperands(&I))
4683             addToWorklistIfAllowed(&I);
4684           break;
4685         default:
4686           break;
4687         }
4688       }
4689 
4690       // ExtractValue instructions must be uniform, because the operands are
4691       // known to be loop-invariant.
4692       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4693         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4694                "Expected aggregate value to be loop invariant");
4695         addToWorklistIfAllowed(EVI);
4696         continue;
4697       }
4698 
4699       // If there's no pointer operand, there's nothing to do.
4700       auto *Ptr = getLoadStorePointerOperand(&I);
4701       if (!Ptr)
4702         continue;
4703 
4704       // A uniform memory op is itself uniform.  We exclude uniform stores
4705       // here as they demand the last lane, not the first one.
4706       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4707         addToWorklistIfAllowed(&I);
4708 
4709       if (isUniformDecision(&I, VF)) {
4710         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4711         HasUniformUse.insert(Ptr);
4712       }
4713     }
4714 
4715   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4716   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4717   // disallows uses outside the loop as well.
4718   for (auto *V : HasUniformUse) {
4719     if (isOutOfScope(V))
4720       continue;
4721     auto *I = cast<Instruction>(V);
4722     auto UsersAreMemAccesses =
4723       llvm::all_of(I->users(), [&](User *U) -> bool {
4724         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4725       });
4726     if (UsersAreMemAccesses)
4727       addToWorklistIfAllowed(I);
4728   }
4729 
4730   // Expand Worklist in topological order: whenever a new instruction
4731   // is added , its users should be already inside Worklist.  It ensures
4732   // a uniform instruction will only be used by uniform instructions.
4733   unsigned idx = 0;
4734   while (idx != Worklist.size()) {
4735     Instruction *I = Worklist[idx++];
4736 
4737     for (auto OV : I->operand_values()) {
4738       // isOutOfScope operands cannot be uniform instructions.
4739       if (isOutOfScope(OV))
4740         continue;
4741       // First order recurrence Phi's should typically be considered
4742       // non-uniform.
4743       auto *OP = dyn_cast<PHINode>(OV);
4744       if (OP && Legal->isFirstOrderRecurrence(OP))
4745         continue;
4746       // If all the users of the operand are uniform, then add the
4747       // operand into the uniform worklist.
4748       auto *OI = cast<Instruction>(OV);
4749       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4750             auto *J = cast<Instruction>(U);
4751             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4752           }))
4753         addToWorklistIfAllowed(OI);
4754     }
4755   }
4756 
4757   // For an instruction to be added into Worklist above, all its users inside
4758   // the loop should also be in Worklist. However, this condition cannot be
4759   // true for phi nodes that form a cyclic dependence. We must process phi
4760   // nodes separately. An induction variable will remain uniform if all users
4761   // of the induction variable and induction variable update remain uniform.
4762   // The code below handles both pointer and non-pointer induction variables.
4763   for (auto &Induction : Legal->getInductionVars()) {
4764     auto *Ind = Induction.first;
4765     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4766 
4767     // Determine if all users of the induction variable are uniform after
4768     // vectorization.
4769     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4770       auto *I = cast<Instruction>(U);
4771       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4772              isVectorizedMemAccessUse(I, Ind);
4773     });
4774     if (!UniformInd)
4775       continue;
4776 
4777     // Determine if all users of the induction variable update instruction are
4778     // uniform after vectorization.
4779     auto UniformIndUpdate =
4780         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4781           auto *I = cast<Instruction>(U);
4782           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4783                  isVectorizedMemAccessUse(I, IndUpdate);
4784         });
4785     if (!UniformIndUpdate)
4786       continue;
4787 
4788     // The induction variable and its update instruction will remain uniform.
4789     addToWorklistIfAllowed(Ind);
4790     addToWorklistIfAllowed(IndUpdate);
4791   }
4792 
4793   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4794 }
4795 
4796 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4797   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4798 
4799   if (Legal->getRuntimePointerChecking()->Need) {
4800     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4801         "runtime pointer checks needed. Enable vectorization of this "
4802         "loop with '#pragma clang loop vectorize(enable)' when "
4803         "compiling with -Os/-Oz",
4804         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4805     return true;
4806   }
4807 
4808   if (!PSE.getPredicate().isAlwaysTrue()) {
4809     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4810         "runtime SCEV checks needed. Enable vectorization of this "
4811         "loop with '#pragma clang loop vectorize(enable)' when "
4812         "compiling with -Os/-Oz",
4813         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4814     return true;
4815   }
4816 
4817   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4818   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4819     reportVectorizationFailure("Runtime stride check for small trip count",
4820         "runtime stride == 1 checks needed. Enable vectorization of "
4821         "this loop without such check by compiling with -Os/-Oz",
4822         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4823     return true;
4824   }
4825 
4826   return false;
4827 }
4828 
4829 ElementCount
4830 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4831   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4832     return ElementCount::getScalable(0);
4833 
4834   if (Hints->isScalableVectorizationDisabled()) {
4835     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4836                             "ScalableVectorizationDisabled", ORE, TheLoop);
4837     return ElementCount::getScalable(0);
4838   }
4839 
4840   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4841 
4842   auto MaxScalableVF = ElementCount::getScalable(
4843       std::numeric_limits<ElementCount::ScalarTy>::max());
4844 
4845   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4846   // FIXME: While for scalable vectors this is currently sufficient, this should
4847   // be replaced by a more detailed mechanism that filters out specific VFs,
4848   // instead of invalidating vectorization for a whole set of VFs based on the
4849   // MaxVF.
4850 
4851   // Disable scalable vectorization if the loop contains unsupported reductions.
4852   if (!canVectorizeReductions(MaxScalableVF)) {
4853     reportVectorizationInfo(
4854         "Scalable vectorization not supported for the reduction "
4855         "operations found in this loop.",
4856         "ScalableVFUnfeasible", ORE, TheLoop);
4857     return ElementCount::getScalable(0);
4858   }
4859 
4860   // Disable scalable vectorization if the loop contains any instructions
4861   // with element types not supported for scalable vectors.
4862   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4863         return !Ty->isVoidTy() &&
4864                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4865       })) {
4866     reportVectorizationInfo("Scalable vectorization is not supported "
4867                             "for all element types found in this loop.",
4868                             "ScalableVFUnfeasible", ORE, TheLoop);
4869     return ElementCount::getScalable(0);
4870   }
4871 
4872   if (Legal->isSafeForAnyVectorWidth())
4873     return MaxScalableVF;
4874 
4875   // Limit MaxScalableVF by the maximum safe dependence distance.
4876   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4877   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4878     MaxVScale =
4879         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4880   MaxScalableVF = ElementCount::getScalable(
4881       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4882   if (!MaxScalableVF)
4883     reportVectorizationInfo(
4884         "Max legal vector width too small, scalable vectorization "
4885         "unfeasible.",
4886         "ScalableVFUnfeasible", ORE, TheLoop);
4887 
4888   return MaxScalableVF;
4889 }
4890 
4891 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4892     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4893   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4894   unsigned SmallestType, WidestType;
4895   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4896 
4897   // Get the maximum safe dependence distance in bits computed by LAA.
4898   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4899   // the memory accesses that is most restrictive (involved in the smallest
4900   // dependence distance).
4901   unsigned MaxSafeElements =
4902       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4903 
4904   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4905   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4906 
4907   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4908                     << ".\n");
4909   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4910                     << ".\n");
4911 
4912   // First analyze the UserVF, fall back if the UserVF should be ignored.
4913   if (UserVF) {
4914     auto MaxSafeUserVF =
4915         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4916 
4917     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4918       // If `VF=vscale x N` is safe, then so is `VF=N`
4919       if (UserVF.isScalable())
4920         return FixedScalableVFPair(
4921             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4922       else
4923         return UserVF;
4924     }
4925 
4926     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4927 
4928     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4929     // is better to ignore the hint and let the compiler choose a suitable VF.
4930     if (!UserVF.isScalable()) {
4931       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4932                         << " is unsafe, clamping to max safe VF="
4933                         << MaxSafeFixedVF << ".\n");
4934       ORE->emit([&]() {
4935         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4936                                           TheLoop->getStartLoc(),
4937                                           TheLoop->getHeader())
4938                << "User-specified vectorization factor "
4939                << ore::NV("UserVectorizationFactor", UserVF)
4940                << " is unsafe, clamping to maximum safe vectorization factor "
4941                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4942       });
4943       return MaxSafeFixedVF;
4944     }
4945 
4946     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4947       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4948                         << " is ignored because scalable vectors are not "
4949                            "available.\n");
4950       ORE->emit([&]() {
4951         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4952                                           TheLoop->getStartLoc(),
4953                                           TheLoop->getHeader())
4954                << "User-specified vectorization factor "
4955                << ore::NV("UserVectorizationFactor", UserVF)
4956                << " is ignored because the target does not support scalable "
4957                   "vectors. The compiler will pick a more suitable value.";
4958       });
4959     } else {
4960       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4961                         << " is unsafe. Ignoring scalable UserVF.\n");
4962       ORE->emit([&]() {
4963         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4964                                           TheLoop->getStartLoc(),
4965                                           TheLoop->getHeader())
4966                << "User-specified vectorization factor "
4967                << ore::NV("UserVectorizationFactor", UserVF)
4968                << " is unsafe. Ignoring the hint to let the compiler pick a "
4969                   "more suitable value.";
4970       });
4971     }
4972   }
4973 
4974   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4975                     << " / " << WidestType << " bits.\n");
4976 
4977   FixedScalableVFPair Result(ElementCount::getFixed(1),
4978                              ElementCount::getScalable(0));
4979   if (auto MaxVF =
4980           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4981                                   MaxSafeFixedVF, FoldTailByMasking))
4982     Result.FixedVF = MaxVF;
4983 
4984   if (auto MaxVF =
4985           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4986                                   MaxSafeScalableVF, FoldTailByMasking))
4987     if (MaxVF.isScalable()) {
4988       Result.ScalableVF = MaxVF;
4989       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4990                         << "\n");
4991     }
4992 
4993   return Result;
4994 }
4995 
4996 FixedScalableVFPair
4997 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
4998   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4999     // TODO: It may by useful to do since it's still likely to be dynamically
5000     // uniform if the target can skip.
5001     reportVectorizationFailure(
5002         "Not inserting runtime ptr check for divergent target",
5003         "runtime pointer checks needed. Not enabled for divergent target",
5004         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5005     return FixedScalableVFPair::getNone();
5006   }
5007 
5008   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5009   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5010   if (TC == 1) {
5011     reportVectorizationFailure("Single iteration (non) loop",
5012         "loop trip count is one, irrelevant for vectorization",
5013         "SingleIterationLoop", ORE, TheLoop);
5014     return FixedScalableVFPair::getNone();
5015   }
5016 
5017   switch (ScalarEpilogueStatus) {
5018   case CM_ScalarEpilogueAllowed:
5019     return computeFeasibleMaxVF(TC, UserVF, false);
5020   case CM_ScalarEpilogueNotAllowedUsePredicate:
5021     LLVM_FALLTHROUGH;
5022   case CM_ScalarEpilogueNotNeededUsePredicate:
5023     LLVM_DEBUG(
5024         dbgs() << "LV: vector predicate hint/switch found.\n"
5025                << "LV: Not allowing scalar epilogue, creating predicated "
5026                << "vector loop.\n");
5027     break;
5028   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5029     // fallthrough as a special case of OptForSize
5030   case CM_ScalarEpilogueNotAllowedOptSize:
5031     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5032       LLVM_DEBUG(
5033           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5034     else
5035       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5036                         << "count.\n");
5037 
5038     // Bail if runtime checks are required, which are not good when optimising
5039     // for size.
5040     if (runtimeChecksRequired())
5041       return FixedScalableVFPair::getNone();
5042 
5043     break;
5044   }
5045 
5046   // The only loops we can vectorize without a scalar epilogue, are loops with
5047   // a bottom-test and a single exiting block. We'd have to handle the fact
5048   // that not every instruction executes on the last iteration.  This will
5049   // require a lane mask which varies through the vector loop body.  (TODO)
5050   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5051     // If there was a tail-folding hint/switch, but we can't fold the tail by
5052     // masking, fallback to a vectorization with a scalar epilogue.
5053     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5054       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5055                            "scalar epilogue instead.\n");
5056       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5057       return computeFeasibleMaxVF(TC, UserVF, false);
5058     }
5059     return FixedScalableVFPair::getNone();
5060   }
5061 
5062   // Now try the tail folding
5063 
5064   // Invalidate interleave groups that require an epilogue if we can't mask
5065   // the interleave-group.
5066   if (!useMaskedInterleavedAccesses(TTI)) {
5067     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5068            "No decisions should have been taken at this point");
5069     // Note: There is no need to invalidate any cost modeling decisions here, as
5070     // non where taken so far.
5071     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5072   }
5073 
5074   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5075   // Avoid tail folding if the trip count is known to be a multiple of any VF
5076   // we chose.
5077   // FIXME: The condition below pessimises the case for fixed-width vectors,
5078   // when scalable VFs are also candidates for vectorization.
5079   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5080     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5081     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5082            "MaxFixedVF must be a power of 2");
5083     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5084                                    : MaxFixedVF.getFixedValue();
5085     ScalarEvolution *SE = PSE.getSE();
5086     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5087     const SCEV *ExitCount = SE->getAddExpr(
5088         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5089     const SCEV *Rem = SE->getURemExpr(
5090         SE->applyLoopGuards(ExitCount, TheLoop),
5091         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5092     if (Rem->isZero()) {
5093       // Accept MaxFixedVF if we do not have a tail.
5094       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5095       return MaxFactors;
5096     }
5097   }
5098 
5099   // If we don't know the precise trip count, or if the trip count that we
5100   // found modulo the vectorization factor is not zero, try to fold the tail
5101   // by masking.
5102   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5103   if (Legal->prepareToFoldTailByMasking()) {
5104     FoldTailByMasking = true;
5105     return MaxFactors;
5106   }
5107 
5108   // If there was a tail-folding hint/switch, but we can't fold the tail by
5109   // masking, fallback to a vectorization with a scalar epilogue.
5110   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5111     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5112                          "scalar epilogue instead.\n");
5113     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5114     return MaxFactors;
5115   }
5116 
5117   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5118     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5119     return FixedScalableVFPair::getNone();
5120   }
5121 
5122   if (TC == 0) {
5123     reportVectorizationFailure(
5124         "Unable to calculate the loop count due to complex control flow",
5125         "unable to calculate the loop count due to complex control flow",
5126         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5127     return FixedScalableVFPair::getNone();
5128   }
5129 
5130   reportVectorizationFailure(
5131       "Cannot optimize for size and vectorize at the same time.",
5132       "cannot optimize for size and vectorize at the same time. "
5133       "Enable vectorization of this loop with '#pragma clang loop "
5134       "vectorize(enable)' when compiling with -Os/-Oz",
5135       "NoTailLoopWithOptForSize", ORE, TheLoop);
5136   return FixedScalableVFPair::getNone();
5137 }
5138 
5139 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5140     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5141     ElementCount MaxSafeVF, bool FoldTailByMasking) {
5142   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5143   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5144       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5145                            : TargetTransformInfo::RGK_FixedWidthVector);
5146 
5147   // Convenience function to return the minimum of two ElementCounts.
5148   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5149     assert((LHS.isScalable() == RHS.isScalable()) &&
5150            "Scalable flags must match");
5151     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5152   };
5153 
5154   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5155   // Note that both WidestRegister and WidestType may not be a powers of 2.
5156   auto MaxVectorElementCount = ElementCount::get(
5157       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5158       ComputeScalableMaxVF);
5159   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5160   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5161                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5162 
5163   if (!MaxVectorElementCount) {
5164     LLVM_DEBUG(dbgs() << "LV: The target has no "
5165                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5166                       << " vector registers.\n");
5167     return ElementCount::getFixed(1);
5168   }
5169 
5170   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5171   if (ConstTripCount &&
5172       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5173       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5174     // If loop trip count (TC) is known at compile time there is no point in
5175     // choosing VF greater than TC (as done in the loop below). Select maximum
5176     // power of two which doesn't exceed TC.
5177     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5178     // when the TC is less than or equal to the known number of lanes.
5179     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5180     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5181                          "exceeding the constant trip count: "
5182                       << ClampedConstTripCount << "\n");
5183     return ElementCount::getFixed(ClampedConstTripCount);
5184   }
5185 
5186   TargetTransformInfo::RegisterKind RegKind =
5187       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5188                            : TargetTransformInfo::RGK_FixedWidthVector;
5189   ElementCount MaxVF = MaxVectorElementCount;
5190   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5191                             TTI.shouldMaximizeVectorBandwidth(RegKind))) {
5192     auto MaxVectorElementCountMaxBW = ElementCount::get(
5193         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5194         ComputeScalableMaxVF);
5195     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5196 
5197     // Collect all viable vectorization factors larger than the default MaxVF
5198     // (i.e. MaxVectorElementCount).
5199     SmallVector<ElementCount, 8> VFs;
5200     for (ElementCount VS = MaxVectorElementCount * 2;
5201          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5202       VFs.push_back(VS);
5203 
5204     // For each VF calculate its register usage.
5205     auto RUs = calculateRegisterUsage(VFs);
5206 
5207     // Select the largest VF which doesn't require more registers than existing
5208     // ones.
5209     for (int i = RUs.size() - 1; i >= 0; --i) {
5210       bool Selected = true;
5211       for (auto &pair : RUs[i].MaxLocalUsers) {
5212         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5213         if (pair.second > TargetNumRegisters)
5214           Selected = false;
5215       }
5216       if (Selected) {
5217         MaxVF = VFs[i];
5218         break;
5219       }
5220     }
5221     if (ElementCount MinVF =
5222             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5223       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5224         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5225                           << ") with target's minimum: " << MinVF << '\n');
5226         MaxVF = MinVF;
5227       }
5228     }
5229 
5230     // Invalidate any widening decisions we might have made, in case the loop
5231     // requires prediction (decided later), but we have already made some
5232     // load/store widening decisions.
5233     invalidateCostModelingDecisions();
5234   }
5235   return MaxVF;
5236 }
5237 
5238 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5239   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5240     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5241     auto Min = Attr.getVScaleRangeMin();
5242     auto Max = Attr.getVScaleRangeMax();
5243     if (Max && Min == Max)
5244       return Max;
5245   }
5246 
5247   return TTI.getVScaleForTuning();
5248 }
5249 
5250 bool LoopVectorizationCostModel::isMoreProfitable(
5251     const VectorizationFactor &A, const VectorizationFactor &B) const {
5252   InstructionCost CostA = A.Cost;
5253   InstructionCost CostB = B.Cost;
5254 
5255   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5256 
5257   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5258       MaxTripCount) {
5259     // If we are folding the tail and the trip count is a known (possibly small)
5260     // constant, the trip count will be rounded up to an integer number of
5261     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5262     // which we compare directly. When not folding the tail, the total cost will
5263     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5264     // approximated with the per-lane cost below instead of using the tripcount
5265     // as here.
5266     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5267     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5268     return RTCostA < RTCostB;
5269   }
5270 
5271   // Improve estimate for the vector width if it is scalable.
5272   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5273   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5274   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5275     if (A.Width.isScalable())
5276       EstimatedWidthA *= VScale.getValue();
5277     if (B.Width.isScalable())
5278       EstimatedWidthB *= VScale.getValue();
5279   }
5280 
5281   // Assume vscale may be larger than 1 (or the value being tuned for),
5282   // so that scalable vectorization is slightly favorable over fixed-width
5283   // vectorization.
5284   if (A.Width.isScalable() && !B.Width.isScalable())
5285     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5286 
5287   // To avoid the need for FP division:
5288   //      (CostA / A.Width) < (CostB / B.Width)
5289   // <=>  (CostA * B.Width) < (CostB * A.Width)
5290   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5291 }
5292 
5293 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5294     const ElementCountSet &VFCandidates) {
5295   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5296   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5297   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5298   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5299          "Expected Scalar VF to be a candidate");
5300 
5301   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
5302                                        ExpectedCost);
5303   VectorizationFactor ChosenFactor = ScalarCost;
5304 
5305   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5306   if (ForceVectorization && VFCandidates.size() > 1) {
5307     // Ignore scalar width, because the user explicitly wants vectorization.
5308     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5309     // evaluation.
5310     ChosenFactor.Cost = InstructionCost::getMax();
5311   }
5312 
5313   SmallVector<InstructionVFPair> InvalidCosts;
5314   for (const auto &i : VFCandidates) {
5315     // The cost for scalar VF=1 is already calculated, so ignore it.
5316     if (i.isScalar())
5317       continue;
5318 
5319     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5320     VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost);
5321 
5322 #ifndef NDEBUG
5323     unsigned AssumedMinimumVscale = 1;
5324     if (Optional<unsigned> VScale = getVScaleForTuning())
5325       AssumedMinimumVscale = *VScale;
5326     unsigned Width =
5327         Candidate.Width.isScalable()
5328             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5329             : Candidate.Width.getFixedValue();
5330     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5331                       << " costs: " << (Candidate.Cost / Width));
5332     if (i.isScalable())
5333       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5334                         << AssumedMinimumVscale << ")");
5335     LLVM_DEBUG(dbgs() << ".\n");
5336 #endif
5337 
5338     if (!C.second && !ForceVectorization) {
5339       LLVM_DEBUG(
5340           dbgs() << "LV: Not considering vector loop of width " << i
5341                  << " because it will not generate any vector instructions.\n");
5342       continue;
5343     }
5344 
5345     // If profitable add it to ProfitableVF list.
5346     if (isMoreProfitable(Candidate, ScalarCost))
5347       ProfitableVFs.push_back(Candidate);
5348 
5349     if (isMoreProfitable(Candidate, ChosenFactor))
5350       ChosenFactor = Candidate;
5351   }
5352 
5353   // Emit a report of VFs with invalid costs in the loop.
5354   if (!InvalidCosts.empty()) {
5355     // Group the remarks per instruction, keeping the instruction order from
5356     // InvalidCosts.
5357     std::map<Instruction *, unsigned> Numbering;
5358     unsigned I = 0;
5359     for (auto &Pair : InvalidCosts)
5360       if (!Numbering.count(Pair.first))
5361         Numbering[Pair.first] = I++;
5362 
5363     // Sort the list, first on instruction(number) then on VF.
5364     llvm::sort(InvalidCosts,
5365                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5366                  if (Numbering[A.first] != Numbering[B.first])
5367                    return Numbering[A.first] < Numbering[B.first];
5368                  ElementCountComparator ECC;
5369                  return ECC(A.second, B.second);
5370                });
5371 
5372     // For a list of ordered instruction-vf pairs:
5373     //   [(load, vf1), (load, vf2), (store, vf1)]
5374     // Group the instructions together to emit separate remarks for:
5375     //   load  (vf1, vf2)
5376     //   store (vf1)
5377     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5378     auto Subset = ArrayRef<InstructionVFPair>();
5379     do {
5380       if (Subset.empty())
5381         Subset = Tail.take_front(1);
5382 
5383       Instruction *I = Subset.front().first;
5384 
5385       // If the next instruction is different, or if there are no other pairs,
5386       // emit a remark for the collated subset. e.g.
5387       //   [(load, vf1), (load, vf2))]
5388       // to emit:
5389       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5390       if (Subset == Tail || Tail[Subset.size()].first != I) {
5391         std::string OutString;
5392         raw_string_ostream OS(OutString);
5393         assert(!Subset.empty() && "Unexpected empty range");
5394         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5395         for (auto &Pair : Subset)
5396           OS << (Pair.second == Subset.front().second ? "" : ", ")
5397              << Pair.second;
5398         OS << "):";
5399         if (auto *CI = dyn_cast<CallInst>(I))
5400           OS << " call to " << CI->getCalledFunction()->getName();
5401         else
5402           OS << " " << I->getOpcodeName();
5403         OS.flush();
5404         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5405         Tail = Tail.drop_front(Subset.size());
5406         Subset = {};
5407       } else
5408         // Grow the subset by one element
5409         Subset = Tail.take_front(Subset.size() + 1);
5410     } while (!Tail.empty());
5411   }
5412 
5413   if (!EnableCondStoresVectorization && NumPredStores) {
5414     reportVectorizationFailure("There are conditional stores.",
5415         "store that is conditionally executed prevents vectorization",
5416         "ConditionalStore", ORE, TheLoop);
5417     ChosenFactor = ScalarCost;
5418   }
5419 
5420   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5421                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5422              << "LV: Vectorization seems to be not beneficial, "
5423              << "but was forced by a user.\n");
5424   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5425   return ChosenFactor;
5426 }
5427 
5428 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5429     const Loop &L, ElementCount VF) const {
5430   // Cross iteration phis such as reductions need special handling and are
5431   // currently unsupported.
5432   if (any_of(L.getHeader()->phis(),
5433              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5434     return false;
5435 
5436   // Phis with uses outside of the loop require special handling and are
5437   // currently unsupported.
5438   for (auto &Entry : Legal->getInductionVars()) {
5439     // Look for uses of the value of the induction at the last iteration.
5440     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5441     for (User *U : PostInc->users())
5442       if (!L.contains(cast<Instruction>(U)))
5443         return false;
5444     // Look for uses of penultimate value of the induction.
5445     for (User *U : Entry.first->users())
5446       if (!L.contains(cast<Instruction>(U)))
5447         return false;
5448   }
5449 
5450   // Induction variables that are widened require special handling that is
5451   // currently not supported.
5452   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5453         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5454                  this->isProfitableToScalarize(Entry.first, VF));
5455       }))
5456     return false;
5457 
5458   // Epilogue vectorization code has not been auditted to ensure it handles
5459   // non-latch exits properly.  It may be fine, but it needs auditted and
5460   // tested.
5461   if (L.getExitingBlock() != L.getLoopLatch())
5462     return false;
5463 
5464   return true;
5465 }
5466 
5467 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5468     const ElementCount VF) const {
5469   // FIXME: We need a much better cost-model to take different parameters such
5470   // as register pressure, code size increase and cost of extra branches into
5471   // account. For now we apply a very crude heuristic and only consider loops
5472   // with vectorization factors larger than a certain value.
5473   // We also consider epilogue vectorization unprofitable for targets that don't
5474   // consider interleaving beneficial (eg. MVE).
5475   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5476     return false;
5477   // FIXME: We should consider changing the threshold for scalable
5478   // vectors to take VScaleForTuning into account.
5479   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5480     return true;
5481   return false;
5482 }
5483 
5484 VectorizationFactor
5485 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5486     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5487   VectorizationFactor Result = VectorizationFactor::Disabled();
5488   if (!EnableEpilogueVectorization) {
5489     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5490     return Result;
5491   }
5492 
5493   if (!isScalarEpilogueAllowed()) {
5494     LLVM_DEBUG(
5495         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5496                   "allowed.\n";);
5497     return Result;
5498   }
5499 
5500   // Not really a cost consideration, but check for unsupported cases here to
5501   // simplify the logic.
5502   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5503     LLVM_DEBUG(
5504         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5505                   "not a supported candidate.\n";);
5506     return Result;
5507   }
5508 
5509   if (EpilogueVectorizationForceVF > 1) {
5510     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5511     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5512     if (LVP.hasPlanWithVF(ForcedEC))
5513       return {ForcedEC, 0, 0};
5514     else {
5515       LLVM_DEBUG(
5516           dbgs()
5517               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5518       return Result;
5519     }
5520   }
5521 
5522   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5523       TheLoop->getHeader()->getParent()->hasMinSize()) {
5524     LLVM_DEBUG(
5525         dbgs()
5526             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5527     return Result;
5528   }
5529 
5530   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5531     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5532                          "this loop\n");
5533     return Result;
5534   }
5535 
5536   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5537   // the main loop handles 8 lanes per iteration. We could still benefit from
5538   // vectorizing the epilogue loop with VF=4.
5539   ElementCount EstimatedRuntimeVF = MainLoopVF;
5540   if (MainLoopVF.isScalable()) {
5541     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5542     if (Optional<unsigned> VScale = getVScaleForTuning())
5543       EstimatedRuntimeVF *= *VScale;
5544   }
5545 
5546   for (auto &NextVF : ProfitableVFs)
5547     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5548           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5549          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5550         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5551         LVP.hasPlanWithVF(NextVF.Width))
5552       Result = NextVF;
5553 
5554   if (Result != VectorizationFactor::Disabled())
5555     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5556                       << Result.Width << "\n";);
5557   return Result;
5558 }
5559 
5560 std::pair<unsigned, unsigned>
5561 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5562   unsigned MinWidth = -1U;
5563   unsigned MaxWidth = 8;
5564   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5565   // For in-loop reductions, no element types are added to ElementTypesInLoop
5566   // if there are no loads/stores in the loop. In this case, check through the
5567   // reduction variables to determine the maximum width.
5568   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5569     // Reset MaxWidth so that we can find the smallest type used by recurrences
5570     // in the loop.
5571     MaxWidth = -1U;
5572     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5573       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5574       // When finding the min width used by the recurrence we need to account
5575       // for casts on the input operands of the recurrence.
5576       MaxWidth = std::min<unsigned>(
5577           MaxWidth, std::min<unsigned>(
5578                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5579                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5580     }
5581   } else {
5582     for (Type *T : ElementTypesInLoop) {
5583       MinWidth = std::min<unsigned>(
5584           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5585       MaxWidth = std::max<unsigned>(
5586           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5587     }
5588   }
5589   return {MinWidth, MaxWidth};
5590 }
5591 
5592 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5593   ElementTypesInLoop.clear();
5594   // For each block.
5595   for (BasicBlock *BB : TheLoop->blocks()) {
5596     // For each instruction in the loop.
5597     for (Instruction &I : BB->instructionsWithoutDebug()) {
5598       Type *T = I.getType();
5599 
5600       // Skip ignored values.
5601       if (ValuesToIgnore.count(&I))
5602         continue;
5603 
5604       // Only examine Loads, Stores and PHINodes.
5605       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5606         continue;
5607 
5608       // Examine PHI nodes that are reduction variables. Update the type to
5609       // account for the recurrence type.
5610       if (auto *PN = dyn_cast<PHINode>(&I)) {
5611         if (!Legal->isReductionVariable(PN))
5612           continue;
5613         const RecurrenceDescriptor &RdxDesc =
5614             Legal->getReductionVars().find(PN)->second;
5615         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5616             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5617                                       RdxDesc.getRecurrenceType(),
5618                                       TargetTransformInfo::ReductionFlags()))
5619           continue;
5620         T = RdxDesc.getRecurrenceType();
5621       }
5622 
5623       // Examine the stored values.
5624       if (auto *ST = dyn_cast<StoreInst>(&I))
5625         T = ST->getValueOperand()->getType();
5626 
5627       assert(T->isSized() &&
5628              "Expected the load/store/recurrence type to be sized");
5629 
5630       ElementTypesInLoop.insert(T);
5631     }
5632   }
5633 }
5634 
5635 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5636                                                            unsigned LoopCost) {
5637   // -- The interleave heuristics --
5638   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5639   // There are many micro-architectural considerations that we can't predict
5640   // at this level. For example, frontend pressure (on decode or fetch) due to
5641   // code size, or the number and capabilities of the execution ports.
5642   //
5643   // We use the following heuristics to select the interleave count:
5644   // 1. If the code has reductions, then we interleave to break the cross
5645   // iteration dependency.
5646   // 2. If the loop is really small, then we interleave to reduce the loop
5647   // overhead.
5648   // 3. We don't interleave if we think that we will spill registers to memory
5649   // due to the increased register pressure.
5650 
5651   if (!isScalarEpilogueAllowed())
5652     return 1;
5653 
5654   // We used the distance for the interleave count.
5655   if (Legal->getMaxSafeDepDistBytes() != -1U)
5656     return 1;
5657 
5658   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5659   const bool HasReductions = !Legal->getReductionVars().empty();
5660   // Do not interleave loops with a relatively small known or estimated trip
5661   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5662   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5663   // because with the above conditions interleaving can expose ILP and break
5664   // cross iteration dependences for reductions.
5665   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5666       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5667     return 1;
5668 
5669   // If we did not calculate the cost for VF (because the user selected the VF)
5670   // then we calculate the cost of VF here.
5671   if (LoopCost == 0) {
5672     InstructionCost C = expectedCost(VF).first;
5673     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5674     LoopCost = *C.getValue();
5675 
5676     // Loop body is free and there is no need for interleaving.
5677     if (LoopCost == 0)
5678       return 1;
5679   }
5680 
5681   RegisterUsage R = calculateRegisterUsage({VF})[0];
5682   // We divide by these constants so assume that we have at least one
5683   // instruction that uses at least one register.
5684   for (auto& pair : R.MaxLocalUsers) {
5685     pair.second = std::max(pair.second, 1U);
5686   }
5687 
5688   // We calculate the interleave count using the following formula.
5689   // Subtract the number of loop invariants from the number of available
5690   // registers. These registers are used by all of the interleaved instances.
5691   // Next, divide the remaining registers by the number of registers that is
5692   // required by the loop, in order to estimate how many parallel instances
5693   // fit without causing spills. All of this is rounded down if necessary to be
5694   // a power of two. We want power of two interleave count to simplify any
5695   // addressing operations or alignment considerations.
5696   // We also want power of two interleave counts to ensure that the induction
5697   // variable of the vector loop wraps to zero, when tail is folded by masking;
5698   // this currently happens when OptForSize, in which case IC is set to 1 above.
5699   unsigned IC = UINT_MAX;
5700 
5701   for (auto& pair : R.MaxLocalUsers) {
5702     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5703     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5704                       << " registers of "
5705                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5706     if (VF.isScalar()) {
5707       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5708         TargetNumRegisters = ForceTargetNumScalarRegs;
5709     } else {
5710       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5711         TargetNumRegisters = ForceTargetNumVectorRegs;
5712     }
5713     unsigned MaxLocalUsers = pair.second;
5714     unsigned LoopInvariantRegs = 0;
5715     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5716       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5717 
5718     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5719     // Don't count the induction variable as interleaved.
5720     if (EnableIndVarRegisterHeur) {
5721       TmpIC =
5722           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5723                         std::max(1U, (MaxLocalUsers - 1)));
5724     }
5725 
5726     IC = std::min(IC, TmpIC);
5727   }
5728 
5729   // Clamp the interleave ranges to reasonable counts.
5730   unsigned MaxInterleaveCount =
5731       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5732 
5733   // Check if the user has overridden the max.
5734   if (VF.isScalar()) {
5735     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5736       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5737   } else {
5738     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5739       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5740   }
5741 
5742   // If trip count is known or estimated compile time constant, limit the
5743   // interleave count to be less than the trip count divided by VF, provided it
5744   // is at least 1.
5745   //
5746   // For scalable vectors we can't know if interleaving is beneficial. It may
5747   // not be beneficial for small loops if none of the lanes in the second vector
5748   // iterations is enabled. However, for larger loops, there is likely to be a
5749   // similar benefit as for fixed-width vectors. For now, we choose to leave
5750   // the InterleaveCount as if vscale is '1', although if some information about
5751   // the vector is known (e.g. min vector size), we can make a better decision.
5752   if (BestKnownTC) {
5753     MaxInterleaveCount =
5754         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5755     // Make sure MaxInterleaveCount is greater than 0.
5756     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5757   }
5758 
5759   assert(MaxInterleaveCount > 0 &&
5760          "Maximum interleave count must be greater than 0");
5761 
5762   // Clamp the calculated IC to be between the 1 and the max interleave count
5763   // that the target and trip count allows.
5764   if (IC > MaxInterleaveCount)
5765     IC = MaxInterleaveCount;
5766   else
5767     // Make sure IC is greater than 0.
5768     IC = std::max(1u, IC);
5769 
5770   assert(IC > 0 && "Interleave count must be greater than 0.");
5771 
5772   // Interleave if we vectorized this loop and there is a reduction that could
5773   // benefit from interleaving.
5774   if (VF.isVector() && HasReductions) {
5775     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5776     return IC;
5777   }
5778 
5779   // For any scalar loop that either requires runtime checks or predication we
5780   // are better off leaving this to the unroller. Note that if we've already
5781   // vectorized the loop we will have done the runtime check and so interleaving
5782   // won't require further checks.
5783   bool ScalarInterleavingRequiresPredication =
5784       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5785          return Legal->blockNeedsPredication(BB);
5786        }));
5787   bool ScalarInterleavingRequiresRuntimePointerCheck =
5788       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5789 
5790   // We want to interleave small loops in order to reduce the loop overhead and
5791   // potentially expose ILP opportunities.
5792   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5793                     << "LV: IC is " << IC << '\n'
5794                     << "LV: VF is " << VF << '\n');
5795   const bool AggressivelyInterleaveReductions =
5796       TTI.enableAggressiveInterleaving(HasReductions);
5797   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5798       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5799     // We assume that the cost overhead is 1 and we use the cost model
5800     // to estimate the cost of the loop and interleave until the cost of the
5801     // loop overhead is about 5% of the cost of the loop.
5802     unsigned SmallIC =
5803         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5804 
5805     // Interleave until store/load ports (estimated by max interleave count) are
5806     // saturated.
5807     unsigned NumStores = Legal->getNumStores();
5808     unsigned NumLoads = Legal->getNumLoads();
5809     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5810     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5811 
5812     // There is little point in interleaving for reductions containing selects
5813     // and compares when VF=1 since it may just create more overhead than it's
5814     // worth for loops with small trip counts. This is because we still have to
5815     // do the final reduction after the loop.
5816     bool HasSelectCmpReductions =
5817         HasReductions &&
5818         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5819           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5820           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5821               RdxDesc.getRecurrenceKind());
5822         });
5823     if (HasSelectCmpReductions) {
5824       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5825       return 1;
5826     }
5827 
5828     // If we have a scalar reduction (vector reductions are already dealt with
5829     // by this point), we can increase the critical path length if the loop
5830     // we're interleaving is inside another loop. For tree-wise reductions
5831     // set the limit to 2, and for ordered reductions it's best to disable
5832     // interleaving entirely.
5833     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5834       bool HasOrderedReductions =
5835           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5836             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5837             return RdxDesc.isOrdered();
5838           });
5839       if (HasOrderedReductions) {
5840         LLVM_DEBUG(
5841             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5842         return 1;
5843       }
5844 
5845       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5846       SmallIC = std::min(SmallIC, F);
5847       StoresIC = std::min(StoresIC, F);
5848       LoadsIC = std::min(LoadsIC, F);
5849     }
5850 
5851     if (EnableLoadStoreRuntimeInterleave &&
5852         std::max(StoresIC, LoadsIC) > SmallIC) {
5853       LLVM_DEBUG(
5854           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5855       return std::max(StoresIC, LoadsIC);
5856     }
5857 
5858     // If there are scalar reductions and TTI has enabled aggressive
5859     // interleaving for reductions, we will interleave to expose ILP.
5860     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5861         AggressivelyInterleaveReductions) {
5862       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5863       // Interleave no less than SmallIC but not as aggressive as the normal IC
5864       // to satisfy the rare situation when resources are too limited.
5865       return std::max(IC / 2, SmallIC);
5866     } else {
5867       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5868       return SmallIC;
5869     }
5870   }
5871 
5872   // Interleave if this is a large loop (small loops are already dealt with by
5873   // this point) that could benefit from interleaving.
5874   if (AggressivelyInterleaveReductions) {
5875     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5876     return IC;
5877   }
5878 
5879   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5880   return 1;
5881 }
5882 
5883 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5884 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5885   // This function calculates the register usage by measuring the highest number
5886   // of values that are alive at a single location. Obviously, this is a very
5887   // rough estimation. We scan the loop in a topological order in order and
5888   // assign a number to each instruction. We use RPO to ensure that defs are
5889   // met before their users. We assume that each instruction that has in-loop
5890   // users starts an interval. We record every time that an in-loop value is
5891   // used, so we have a list of the first and last occurrences of each
5892   // instruction. Next, we transpose this data structure into a multi map that
5893   // holds the list of intervals that *end* at a specific location. This multi
5894   // map allows us to perform a linear search. We scan the instructions linearly
5895   // and record each time that a new interval starts, by placing it in a set.
5896   // If we find this value in the multi-map then we remove it from the set.
5897   // The max register usage is the maximum size of the set.
5898   // We also search for instructions that are defined outside the loop, but are
5899   // used inside the loop. We need this number separately from the max-interval
5900   // usage number because when we unroll, loop-invariant values do not take
5901   // more register.
5902   LoopBlocksDFS DFS(TheLoop);
5903   DFS.perform(LI);
5904 
5905   RegisterUsage RU;
5906 
5907   // Each 'key' in the map opens a new interval. The values
5908   // of the map are the index of the 'last seen' usage of the
5909   // instruction that is the key.
5910   using IntervalMap = DenseMap<Instruction *, unsigned>;
5911 
5912   // Maps instruction to its index.
5913   SmallVector<Instruction *, 64> IdxToInstr;
5914   // Marks the end of each interval.
5915   IntervalMap EndPoint;
5916   // Saves the list of instruction indices that are used in the loop.
5917   SmallPtrSet<Instruction *, 8> Ends;
5918   // Saves the list of values that are used in the loop but are
5919   // defined outside the loop, such as arguments and constants.
5920   SmallPtrSet<Value *, 8> LoopInvariants;
5921 
5922   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5923     for (Instruction &I : BB->instructionsWithoutDebug()) {
5924       IdxToInstr.push_back(&I);
5925 
5926       // Save the end location of each USE.
5927       for (Value *U : I.operands()) {
5928         auto *Instr = dyn_cast<Instruction>(U);
5929 
5930         // Ignore non-instruction values such as arguments, constants, etc.
5931         if (!Instr)
5932           continue;
5933 
5934         // If this instruction is outside the loop then record it and continue.
5935         if (!TheLoop->contains(Instr)) {
5936           LoopInvariants.insert(Instr);
5937           continue;
5938         }
5939 
5940         // Overwrite previous end points.
5941         EndPoint[Instr] = IdxToInstr.size();
5942         Ends.insert(Instr);
5943       }
5944     }
5945   }
5946 
5947   // Saves the list of intervals that end with the index in 'key'.
5948   using InstrList = SmallVector<Instruction *, 2>;
5949   DenseMap<unsigned, InstrList> TransposeEnds;
5950 
5951   // Transpose the EndPoints to a list of values that end at each index.
5952   for (auto &Interval : EndPoint)
5953     TransposeEnds[Interval.second].push_back(Interval.first);
5954 
5955   SmallPtrSet<Instruction *, 8> OpenIntervals;
5956   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5957   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5958 
5959   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5960 
5961   auto GetRegUsage = [&TTI = TTI](Type *Ty, ElementCount VF) -> unsigned {
5962     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5963       return 0;
5964     return TTI.getRegUsageForType(VectorType::get(Ty, VF));
5965   };
5966 
5967   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5968     Instruction *I = IdxToInstr[i];
5969 
5970     // Remove all of the instructions that end at this location.
5971     InstrList &List = TransposeEnds[i];
5972     for (Instruction *ToRemove : List)
5973       OpenIntervals.erase(ToRemove);
5974 
5975     // Ignore instructions that are never used within the loop.
5976     if (!Ends.count(I))
5977       continue;
5978 
5979     // Skip ignored values.
5980     if (ValuesToIgnore.count(I))
5981       continue;
5982 
5983     // For each VF find the maximum usage of registers.
5984     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5985       // Count the number of live intervals.
5986       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5987 
5988       if (VFs[j].isScalar()) {
5989         for (auto Inst : OpenIntervals) {
5990           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5991           if (RegUsage.find(ClassID) == RegUsage.end())
5992             RegUsage[ClassID] = 1;
5993           else
5994             RegUsage[ClassID] += 1;
5995         }
5996       } else {
5997         collectUniformsAndScalars(VFs[j]);
5998         for (auto Inst : OpenIntervals) {
5999           // Skip ignored values for VF > 1.
6000           if (VecValuesToIgnore.count(Inst))
6001             continue;
6002           if (isScalarAfterVectorization(Inst, VFs[j])) {
6003             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6004             if (RegUsage.find(ClassID) == RegUsage.end())
6005               RegUsage[ClassID] = 1;
6006             else
6007               RegUsage[ClassID] += 1;
6008           } else {
6009             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6010             if (RegUsage.find(ClassID) == RegUsage.end())
6011               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6012             else
6013               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6014           }
6015         }
6016       }
6017 
6018       for (auto& pair : RegUsage) {
6019         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6020           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6021         else
6022           MaxUsages[j][pair.first] = pair.second;
6023       }
6024     }
6025 
6026     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6027                       << OpenIntervals.size() << '\n');
6028 
6029     // Add the current instruction to the list of open intervals.
6030     OpenIntervals.insert(I);
6031   }
6032 
6033   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6034     SmallMapVector<unsigned, unsigned, 4> Invariant;
6035 
6036     for (auto Inst : LoopInvariants) {
6037       unsigned Usage =
6038           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6039       unsigned ClassID =
6040           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6041       if (Invariant.find(ClassID) == Invariant.end())
6042         Invariant[ClassID] = Usage;
6043       else
6044         Invariant[ClassID] += Usage;
6045     }
6046 
6047     LLVM_DEBUG({
6048       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6049       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6050              << " item\n";
6051       for (const auto &pair : MaxUsages[i]) {
6052         dbgs() << "LV(REG): RegisterClass: "
6053                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6054                << " registers\n";
6055       }
6056       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6057              << " item\n";
6058       for (const auto &pair : Invariant) {
6059         dbgs() << "LV(REG): RegisterClass: "
6060                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6061                << " registers\n";
6062       }
6063     });
6064 
6065     RU.LoopInvariantRegs = Invariant;
6066     RU.MaxLocalUsers = MaxUsages[i];
6067     RUs[i] = RU;
6068   }
6069 
6070   return RUs;
6071 }
6072 
6073 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6074                                                            ElementCount VF) {
6075   // TODO: Cost model for emulated masked load/store is completely
6076   // broken. This hack guides the cost model to use an artificially
6077   // high enough value to practically disable vectorization with such
6078   // operations, except where previously deployed legality hack allowed
6079   // using very low cost values. This is to avoid regressions coming simply
6080   // from moving "masked load/store" check from legality to cost model.
6081   // Masked Load/Gather emulation was previously never allowed.
6082   // Limited number of Masked Store/Scatter emulation was allowed.
6083   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6084   return isa<LoadInst>(I) ||
6085          (isa<StoreInst>(I) &&
6086           NumPredStores > NumberOfStoresToPredicate);
6087 }
6088 
6089 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6090   // If we aren't vectorizing the loop, or if we've already collected the
6091   // instructions to scalarize, there's nothing to do. Collection may already
6092   // have occurred if we have a user-selected VF and are now computing the
6093   // expected cost for interleaving.
6094   if (VF.isScalar() || VF.isZero() ||
6095       InstsToScalarize.find(VF) != InstsToScalarize.end())
6096     return;
6097 
6098   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6099   // not profitable to scalarize any instructions, the presence of VF in the
6100   // map will indicate that we've analyzed it already.
6101   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6102 
6103   // Find all the instructions that are scalar with predication in the loop and
6104   // determine if it would be better to not if-convert the blocks they are in.
6105   // If so, we also record the instructions to scalarize.
6106   for (BasicBlock *BB : TheLoop->blocks()) {
6107     if (!blockNeedsPredicationForAnyReason(BB))
6108       continue;
6109     for (Instruction &I : *BB)
6110       if (isScalarWithPredication(&I, VF)) {
6111         ScalarCostsTy ScalarCosts;
6112         // Do not apply discount if scalable, because that would lead to
6113         // invalid scalarization costs.
6114         // Do not apply discount logic if hacked cost is needed
6115         // for emulated masked memrefs.
6116         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6117             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6118           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6119         // Remember that BB will remain after vectorization.
6120         PredicatedBBsAfterVectorization.insert(BB);
6121       }
6122   }
6123 }
6124 
6125 int LoopVectorizationCostModel::computePredInstDiscount(
6126     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6127   assert(!isUniformAfterVectorization(PredInst, VF) &&
6128          "Instruction marked uniform-after-vectorization will be predicated");
6129 
6130   // Initialize the discount to zero, meaning that the scalar version and the
6131   // vector version cost the same.
6132   InstructionCost Discount = 0;
6133 
6134   // Holds instructions to analyze. The instructions we visit are mapped in
6135   // ScalarCosts. Those instructions are the ones that would be scalarized if
6136   // we find that the scalar version costs less.
6137   SmallVector<Instruction *, 8> Worklist;
6138 
6139   // Returns true if the given instruction can be scalarized.
6140   auto canBeScalarized = [&](Instruction *I) -> bool {
6141     // We only attempt to scalarize instructions forming a single-use chain
6142     // from the original predicated block that would otherwise be vectorized.
6143     // Although not strictly necessary, we give up on instructions we know will
6144     // already be scalar to avoid traversing chains that are unlikely to be
6145     // beneficial.
6146     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6147         isScalarAfterVectorization(I, VF))
6148       return false;
6149 
6150     // If the instruction is scalar with predication, it will be analyzed
6151     // separately. We ignore it within the context of PredInst.
6152     if (isScalarWithPredication(I, VF))
6153       return false;
6154 
6155     // If any of the instruction's operands are uniform after vectorization,
6156     // the instruction cannot be scalarized. This prevents, for example, a
6157     // masked load from being scalarized.
6158     //
6159     // We assume we will only emit a value for lane zero of an instruction
6160     // marked uniform after vectorization, rather than VF identical values.
6161     // Thus, if we scalarize an instruction that uses a uniform, we would
6162     // create uses of values corresponding to the lanes we aren't emitting code
6163     // for. This behavior can be changed by allowing getScalarValue to clone
6164     // the lane zero values for uniforms rather than asserting.
6165     for (Use &U : I->operands())
6166       if (auto *J = dyn_cast<Instruction>(U.get()))
6167         if (isUniformAfterVectorization(J, VF))
6168           return false;
6169 
6170     // Otherwise, we can scalarize the instruction.
6171     return true;
6172   };
6173 
6174   // Compute the expected cost discount from scalarizing the entire expression
6175   // feeding the predicated instruction. We currently only consider expressions
6176   // that are single-use instruction chains.
6177   Worklist.push_back(PredInst);
6178   while (!Worklist.empty()) {
6179     Instruction *I = Worklist.pop_back_val();
6180 
6181     // If we've already analyzed the instruction, there's nothing to do.
6182     if (ScalarCosts.find(I) != ScalarCosts.end())
6183       continue;
6184 
6185     // Compute the cost of the vector instruction. Note that this cost already
6186     // includes the scalarization overhead of the predicated instruction.
6187     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6188 
6189     // Compute the cost of the scalarized instruction. This cost is the cost of
6190     // the instruction as if it wasn't if-converted and instead remained in the
6191     // predicated block. We will scale this cost by block probability after
6192     // computing the scalarization overhead.
6193     InstructionCost ScalarCost =
6194         VF.getFixedValue() *
6195         getInstructionCost(I, ElementCount::getFixed(1)).first;
6196 
6197     // Compute the scalarization overhead of needed insertelement instructions
6198     // and phi nodes.
6199     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6200       ScalarCost += TTI.getScalarizationOverhead(
6201           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6202           APInt::getAllOnes(VF.getFixedValue()), true, false);
6203       ScalarCost +=
6204           VF.getFixedValue() *
6205           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6206     }
6207 
6208     // Compute the scalarization overhead of needed extractelement
6209     // instructions. For each of the instruction's operands, if the operand can
6210     // be scalarized, add it to the worklist; otherwise, account for the
6211     // overhead.
6212     for (Use &U : I->operands())
6213       if (auto *J = dyn_cast<Instruction>(U.get())) {
6214         assert(VectorType::isValidElementType(J->getType()) &&
6215                "Instruction has non-scalar type");
6216         if (canBeScalarized(J))
6217           Worklist.push_back(J);
6218         else if (needsExtract(J, VF)) {
6219           ScalarCost += TTI.getScalarizationOverhead(
6220               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6221               APInt::getAllOnes(VF.getFixedValue()), false, true);
6222         }
6223       }
6224 
6225     // Scale the total scalar cost by block probability.
6226     ScalarCost /= getReciprocalPredBlockProb();
6227 
6228     // Compute the discount. A non-negative discount means the vector version
6229     // of the instruction costs more, and scalarizing would be beneficial.
6230     Discount += VectorCost - ScalarCost;
6231     ScalarCosts[I] = ScalarCost;
6232   }
6233 
6234   return *Discount.getValue();
6235 }
6236 
6237 LoopVectorizationCostModel::VectorizationCostTy
6238 LoopVectorizationCostModel::expectedCost(
6239     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6240   VectorizationCostTy Cost;
6241 
6242   // For each block.
6243   for (BasicBlock *BB : TheLoop->blocks()) {
6244     VectorizationCostTy BlockCost;
6245 
6246     // For each instruction in the old loop.
6247     for (Instruction &I : BB->instructionsWithoutDebug()) {
6248       // Skip ignored values.
6249       if (ValuesToIgnore.count(&I) ||
6250           (VF.isVector() && VecValuesToIgnore.count(&I)))
6251         continue;
6252 
6253       VectorizationCostTy C = getInstructionCost(&I, VF);
6254 
6255       // Check if we should override the cost.
6256       if (C.first.isValid() &&
6257           ForceTargetInstructionCost.getNumOccurrences() > 0)
6258         C.first = InstructionCost(ForceTargetInstructionCost);
6259 
6260       // Keep a list of instructions with invalid costs.
6261       if (Invalid && !C.first.isValid())
6262         Invalid->emplace_back(&I, VF);
6263 
6264       BlockCost.first += C.first;
6265       BlockCost.second |= C.second;
6266       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6267                         << " for VF " << VF << " For instruction: " << I
6268                         << '\n');
6269     }
6270 
6271     // If we are vectorizing a predicated block, it will have been
6272     // if-converted. This means that the block's instructions (aside from
6273     // stores and instructions that may divide by zero) will now be
6274     // unconditionally executed. For the scalar case, we may not always execute
6275     // the predicated block, if it is an if-else block. Thus, scale the block's
6276     // cost by the probability of executing it. blockNeedsPredication from
6277     // Legal is used so as to not include all blocks in tail folded loops.
6278     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6279       BlockCost.first /= getReciprocalPredBlockProb();
6280 
6281     Cost.first += BlockCost.first;
6282     Cost.second |= BlockCost.second;
6283   }
6284 
6285   return Cost;
6286 }
6287 
6288 /// Gets Address Access SCEV after verifying that the access pattern
6289 /// is loop invariant except the induction variable dependence.
6290 ///
6291 /// This SCEV can be sent to the Target in order to estimate the address
6292 /// calculation cost.
6293 static const SCEV *getAddressAccessSCEV(
6294               Value *Ptr,
6295               LoopVectorizationLegality *Legal,
6296               PredicatedScalarEvolution &PSE,
6297               const Loop *TheLoop) {
6298 
6299   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6300   if (!Gep)
6301     return nullptr;
6302 
6303   // We are looking for a gep with all loop invariant indices except for one
6304   // which should be an induction variable.
6305   auto SE = PSE.getSE();
6306   unsigned NumOperands = Gep->getNumOperands();
6307   for (unsigned i = 1; i < NumOperands; ++i) {
6308     Value *Opd = Gep->getOperand(i);
6309     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6310         !Legal->isInductionVariable(Opd))
6311       return nullptr;
6312   }
6313 
6314   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6315   return PSE.getSCEV(Ptr);
6316 }
6317 
6318 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6319   return Legal->hasStride(I->getOperand(0)) ||
6320          Legal->hasStride(I->getOperand(1));
6321 }
6322 
6323 InstructionCost
6324 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6325                                                         ElementCount VF) {
6326   assert(VF.isVector() &&
6327          "Scalarization cost of instruction implies vectorization.");
6328   if (VF.isScalable())
6329     return InstructionCost::getInvalid();
6330 
6331   Type *ValTy = getLoadStoreType(I);
6332   auto SE = PSE.getSE();
6333 
6334   unsigned AS = getLoadStoreAddressSpace(I);
6335   Value *Ptr = getLoadStorePointerOperand(I);
6336   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6337   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6338   //       that it is being called from this specific place.
6339 
6340   // Figure out whether the access is strided and get the stride value
6341   // if it's known in compile time
6342   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6343 
6344   // Get the cost of the scalar memory instruction and address computation.
6345   InstructionCost Cost =
6346       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6347 
6348   // Don't pass *I here, since it is scalar but will actually be part of a
6349   // vectorized loop where the user of it is a vectorized instruction.
6350   const Align Alignment = getLoadStoreAlignment(I);
6351   Cost += VF.getKnownMinValue() *
6352           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6353                               AS, TTI::TCK_RecipThroughput);
6354 
6355   // Get the overhead of the extractelement and insertelement instructions
6356   // we might create due to scalarization.
6357   Cost += getScalarizationOverhead(I, VF);
6358 
6359   // If we have a predicated load/store, it will need extra i1 extracts and
6360   // conditional branches, but may not be executed for each vector lane. Scale
6361   // the cost by the probability of executing the predicated block.
6362   if (isPredicatedInst(I, VF)) {
6363     Cost /= getReciprocalPredBlockProb();
6364 
6365     // Add the cost of an i1 extract and a branch
6366     auto *Vec_i1Ty =
6367         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6368     Cost += TTI.getScalarizationOverhead(
6369         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6370         /*Insert=*/false, /*Extract=*/true);
6371     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6372 
6373     if (useEmulatedMaskMemRefHack(I, VF))
6374       // Artificially setting to a high enough value to practically disable
6375       // vectorization with such operations.
6376       Cost = 3000000;
6377   }
6378 
6379   return Cost;
6380 }
6381 
6382 InstructionCost
6383 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6384                                                     ElementCount VF) {
6385   Type *ValTy = getLoadStoreType(I);
6386   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6387   Value *Ptr = getLoadStorePointerOperand(I);
6388   unsigned AS = getLoadStoreAddressSpace(I);
6389   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6390   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6391 
6392   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6393          "Stride should be 1 or -1 for consecutive memory access");
6394   const Align Alignment = getLoadStoreAlignment(I);
6395   InstructionCost Cost = 0;
6396   if (Legal->isMaskRequired(I))
6397     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6398                                       CostKind);
6399   else
6400     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6401                                 CostKind, I);
6402 
6403   bool Reverse = ConsecutiveStride < 0;
6404   if (Reverse)
6405     Cost +=
6406         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6407   return Cost;
6408 }
6409 
6410 InstructionCost
6411 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6412                                                 ElementCount VF) {
6413   assert(Legal->isUniformMemOp(*I));
6414 
6415   Type *ValTy = getLoadStoreType(I);
6416   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6417   const Align Alignment = getLoadStoreAlignment(I);
6418   unsigned AS = getLoadStoreAddressSpace(I);
6419   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6420   if (isa<LoadInst>(I)) {
6421     return TTI.getAddressComputationCost(ValTy) +
6422            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6423                                CostKind) +
6424            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6425   }
6426   StoreInst *SI = cast<StoreInst>(I);
6427 
6428   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6429   return TTI.getAddressComputationCost(ValTy) +
6430          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6431                              CostKind) +
6432          (isLoopInvariantStoreValue
6433               ? 0
6434               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6435                                        VF.getKnownMinValue() - 1));
6436 }
6437 
6438 InstructionCost
6439 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6440                                                  ElementCount VF) {
6441   Type *ValTy = getLoadStoreType(I);
6442   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6443   const Align Alignment = getLoadStoreAlignment(I);
6444   const Value *Ptr = getLoadStorePointerOperand(I);
6445 
6446   return TTI.getAddressComputationCost(VectorTy) +
6447          TTI.getGatherScatterOpCost(
6448              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6449              TargetTransformInfo::TCK_RecipThroughput, I);
6450 }
6451 
6452 InstructionCost
6453 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6454                                                    ElementCount VF) {
6455   // TODO: Once we have support for interleaving with scalable vectors
6456   // we can calculate the cost properly here.
6457   if (VF.isScalable())
6458     return InstructionCost::getInvalid();
6459 
6460   Type *ValTy = getLoadStoreType(I);
6461   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6462   unsigned AS = getLoadStoreAddressSpace(I);
6463 
6464   auto Group = getInterleavedAccessGroup(I);
6465   assert(Group && "Fail to get an interleaved access group.");
6466 
6467   unsigned InterleaveFactor = Group->getFactor();
6468   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6469 
6470   // Holds the indices of existing members in the interleaved group.
6471   SmallVector<unsigned, 4> Indices;
6472   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6473     if (Group->getMember(IF))
6474       Indices.push_back(IF);
6475 
6476   // Calculate the cost of the whole interleaved group.
6477   bool UseMaskForGaps =
6478       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6479       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6480   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6481       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6482       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6483 
6484   if (Group->isReverse()) {
6485     // TODO: Add support for reversed masked interleaved access.
6486     assert(!Legal->isMaskRequired(I) &&
6487            "Reverse masked interleaved access not supported.");
6488     Cost +=
6489         Group->getNumMembers() *
6490         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6491   }
6492   return Cost;
6493 }
6494 
6495 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6496     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6497   using namespace llvm::PatternMatch;
6498   // Early exit for no inloop reductions
6499   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6500     return None;
6501   auto *VectorTy = cast<VectorType>(Ty);
6502 
6503   // We are looking for a pattern of, and finding the minimal acceptable cost:
6504   //  reduce(mul(ext(A), ext(B))) or
6505   //  reduce(mul(A, B)) or
6506   //  reduce(ext(A)) or
6507   //  reduce(A).
6508   // The basic idea is that we walk down the tree to do that, finding the root
6509   // reduction instruction in InLoopReductionImmediateChains. From there we find
6510   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6511   // of the components. If the reduction cost is lower then we return it for the
6512   // reduction instruction and 0 for the other instructions in the pattern. If
6513   // it is not we return an invalid cost specifying the orignal cost method
6514   // should be used.
6515   Instruction *RetI = I;
6516   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6517     if (!RetI->hasOneUser())
6518       return None;
6519     RetI = RetI->user_back();
6520   }
6521   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6522       RetI->user_back()->getOpcode() == Instruction::Add) {
6523     if (!RetI->hasOneUser())
6524       return None;
6525     RetI = RetI->user_back();
6526   }
6527 
6528   // Test if the found instruction is a reduction, and if not return an invalid
6529   // cost specifying the parent to use the original cost modelling.
6530   if (!InLoopReductionImmediateChains.count(RetI))
6531     return None;
6532 
6533   // Find the reduction this chain is a part of and calculate the basic cost of
6534   // the reduction on its own.
6535   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6536   Instruction *ReductionPhi = LastChain;
6537   while (!isa<PHINode>(ReductionPhi))
6538     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6539 
6540   const RecurrenceDescriptor &RdxDesc =
6541       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6542 
6543   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6544       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6545 
6546   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6547   // normal fmul instruction to the cost of the fadd reduction.
6548   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6549     BaseCost +=
6550         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6551 
6552   // If we're using ordered reductions then we can just return the base cost
6553   // here, since getArithmeticReductionCost calculates the full ordered
6554   // reduction cost when FP reassociation is not allowed.
6555   if (useOrderedReductions(RdxDesc))
6556     return BaseCost;
6557 
6558   // Get the operand that was not the reduction chain and match it to one of the
6559   // patterns, returning the better cost if it is found.
6560   Instruction *RedOp = RetI->getOperand(1) == LastChain
6561                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6562                            : dyn_cast<Instruction>(RetI->getOperand(1));
6563 
6564   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6565 
6566   Instruction *Op0, *Op1;
6567   if (RedOp &&
6568       match(RedOp,
6569             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6570       match(Op0, m_ZExtOrSExt(m_Value())) &&
6571       Op0->getOpcode() == Op1->getOpcode() &&
6572       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6573       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6574       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6575 
6576     // Matched reduce(ext(mul(ext(A), ext(B)))
6577     // Note that the extend opcodes need to all match, or if A==B they will have
6578     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6579     // which is equally fine.
6580     bool IsUnsigned = isa<ZExtInst>(Op0);
6581     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6582     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6583 
6584     InstructionCost ExtCost =
6585         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6586                              TTI::CastContextHint::None, CostKind, Op0);
6587     InstructionCost MulCost =
6588         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6589     InstructionCost Ext2Cost =
6590         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6591                              TTI::CastContextHint::None, CostKind, RedOp);
6592 
6593     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6594         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6595         CostKind);
6596 
6597     if (RedCost.isValid() &&
6598         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6599       return I == RetI ? RedCost : 0;
6600   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6601              !TheLoop->isLoopInvariant(RedOp)) {
6602     // Matched reduce(ext(A))
6603     bool IsUnsigned = isa<ZExtInst>(RedOp);
6604     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6605     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6606         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6607         CostKind);
6608 
6609     InstructionCost ExtCost =
6610         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6611                              TTI::CastContextHint::None, CostKind, RedOp);
6612     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6613       return I == RetI ? RedCost : 0;
6614   } else if (RedOp &&
6615              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6616     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6617         Op0->getOpcode() == Op1->getOpcode() &&
6618         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6619       bool IsUnsigned = isa<ZExtInst>(Op0);
6620       Type *Op0Ty = Op0->getOperand(0)->getType();
6621       Type *Op1Ty = Op1->getOperand(0)->getType();
6622       Type *LargestOpTy =
6623           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6624                                                                     : Op0Ty;
6625       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6626 
6627       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6628       // different sizes. We take the largest type as the ext to reduce, and add
6629       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6630       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6631           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6632           TTI::CastContextHint::None, CostKind, Op0);
6633       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6634           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6635           TTI::CastContextHint::None, CostKind, Op1);
6636       InstructionCost MulCost =
6637           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6638 
6639       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6640           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6641           CostKind);
6642       InstructionCost ExtraExtCost = 0;
6643       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6644         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6645         ExtraExtCost = TTI.getCastInstrCost(
6646             ExtraExtOp->getOpcode(), ExtType,
6647             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6648             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6649       }
6650 
6651       if (RedCost.isValid() &&
6652           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6653         return I == RetI ? RedCost : 0;
6654     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6655       // Matched reduce(mul())
6656       InstructionCost MulCost =
6657           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6658 
6659       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6660           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6661           CostKind);
6662 
6663       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6664         return I == RetI ? RedCost : 0;
6665     }
6666   }
6667 
6668   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6669 }
6670 
6671 InstructionCost
6672 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6673                                                      ElementCount VF) {
6674   // Calculate scalar cost only. Vectorization cost should be ready at this
6675   // moment.
6676   if (VF.isScalar()) {
6677     Type *ValTy = getLoadStoreType(I);
6678     const Align Alignment = getLoadStoreAlignment(I);
6679     unsigned AS = getLoadStoreAddressSpace(I);
6680 
6681     return TTI.getAddressComputationCost(ValTy) +
6682            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6683                                TTI::TCK_RecipThroughput, I);
6684   }
6685   return getWideningCost(I, VF);
6686 }
6687 
6688 LoopVectorizationCostModel::VectorizationCostTy
6689 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6690                                                ElementCount VF) {
6691   // If we know that this instruction will remain uniform, check the cost of
6692   // the scalar version.
6693   if (isUniformAfterVectorization(I, VF))
6694     VF = ElementCount::getFixed(1);
6695 
6696   if (VF.isVector() && isProfitableToScalarize(I, VF))
6697     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6698 
6699   // Forced scalars do not have any scalarization overhead.
6700   auto ForcedScalar = ForcedScalars.find(VF);
6701   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6702     auto InstSet = ForcedScalar->second;
6703     if (InstSet.count(I))
6704       return VectorizationCostTy(
6705           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6706            VF.getKnownMinValue()),
6707           false);
6708   }
6709 
6710   Type *VectorTy;
6711   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6712 
6713   bool TypeNotScalarized = false;
6714   if (VF.isVector() && VectorTy->isVectorTy()) {
6715     if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) {
6716       if (VF.isScalable())
6717         // <vscale x 1 x iN> is assumed to be profitable over iN because
6718         // scalable registers are a distinct register class from scalar ones.
6719         // If we ever find a target which wants to lower scalable vectors
6720         // back to scalars, we'll need to update this code to explicitly
6721         // ask TTI about the register class uses for each part.
6722         TypeNotScalarized = NumParts <= VF.getKnownMinValue();
6723       else
6724         TypeNotScalarized = NumParts < VF.getKnownMinValue();
6725     } else
6726       C = InstructionCost::getInvalid();
6727   }
6728   return VectorizationCostTy(C, TypeNotScalarized);
6729 }
6730 
6731 InstructionCost
6732 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6733                                                      ElementCount VF) const {
6734 
6735   // There is no mechanism yet to create a scalable scalarization loop,
6736   // so this is currently Invalid.
6737   if (VF.isScalable())
6738     return InstructionCost::getInvalid();
6739 
6740   if (VF.isScalar())
6741     return 0;
6742 
6743   InstructionCost Cost = 0;
6744   Type *RetTy = ToVectorTy(I->getType(), VF);
6745   if (!RetTy->isVoidTy() &&
6746       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6747     Cost += TTI.getScalarizationOverhead(
6748         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6749         false);
6750 
6751   // Some targets keep addresses scalar.
6752   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6753     return Cost;
6754 
6755   // Some targets support efficient element stores.
6756   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6757     return Cost;
6758 
6759   // Collect operands to consider.
6760   CallInst *CI = dyn_cast<CallInst>(I);
6761   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6762 
6763   // Skip operands that do not require extraction/scalarization and do not incur
6764   // any overhead.
6765   SmallVector<Type *> Tys;
6766   for (auto *V : filterExtractingOperands(Ops, VF))
6767     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6768   return Cost + TTI.getOperandsScalarizationOverhead(
6769                     filterExtractingOperands(Ops, VF), Tys);
6770 }
6771 
6772 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6773   if (VF.isScalar())
6774     return;
6775   NumPredStores = 0;
6776   for (BasicBlock *BB : TheLoop->blocks()) {
6777     // For each instruction in the old loop.
6778     for (Instruction &I : *BB) {
6779       Value *Ptr =  getLoadStorePointerOperand(&I);
6780       if (!Ptr)
6781         continue;
6782 
6783       // TODO: We should generate better code and update the cost model for
6784       // predicated uniform stores. Today they are treated as any other
6785       // predicated store (see added test cases in
6786       // invariant-store-vectorization.ll).
6787       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6788         NumPredStores++;
6789 
6790       if (Legal->isUniformMemOp(I)) {
6791         // TODO: Avoid replicating loads and stores instead of
6792         // relying on instcombine to remove them.
6793         // Load: Scalar load + broadcast
6794         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6795         InstructionCost Cost;
6796         if (isa<StoreInst>(&I) && VF.isScalable() &&
6797             isLegalGatherOrScatter(&I, VF)) {
6798           Cost = getGatherScatterCost(&I, VF);
6799           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6800         } else {
6801           Cost = getUniformMemOpCost(&I, VF);
6802           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6803         }
6804         continue;
6805       }
6806 
6807       // We assume that widening is the best solution when possible.
6808       if (memoryInstructionCanBeWidened(&I, VF)) {
6809         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6810         int ConsecutiveStride = Legal->isConsecutivePtr(
6811             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6812         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6813                "Expected consecutive stride.");
6814         InstWidening Decision =
6815             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6816         setWideningDecision(&I, VF, Decision, Cost);
6817         continue;
6818       }
6819 
6820       // Choose between Interleaving, Gather/Scatter or Scalarization.
6821       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6822       unsigned NumAccesses = 1;
6823       if (isAccessInterleaved(&I)) {
6824         auto Group = getInterleavedAccessGroup(&I);
6825         assert(Group && "Fail to get an interleaved access group.");
6826 
6827         // Make one decision for the whole group.
6828         if (getWideningDecision(&I, VF) != CM_Unknown)
6829           continue;
6830 
6831         NumAccesses = Group->getNumMembers();
6832         if (interleavedAccessCanBeWidened(&I, VF))
6833           InterleaveCost = getInterleaveGroupCost(&I, VF);
6834       }
6835 
6836       InstructionCost GatherScatterCost =
6837           isLegalGatherOrScatter(&I, VF)
6838               ? getGatherScatterCost(&I, VF) * NumAccesses
6839               : InstructionCost::getInvalid();
6840 
6841       InstructionCost ScalarizationCost =
6842           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6843 
6844       // Choose better solution for the current VF,
6845       // write down this decision and use it during vectorization.
6846       InstructionCost Cost;
6847       InstWidening Decision;
6848       if (InterleaveCost <= GatherScatterCost &&
6849           InterleaveCost < ScalarizationCost) {
6850         Decision = CM_Interleave;
6851         Cost = InterleaveCost;
6852       } else if (GatherScatterCost < ScalarizationCost) {
6853         Decision = CM_GatherScatter;
6854         Cost = GatherScatterCost;
6855       } else {
6856         Decision = CM_Scalarize;
6857         Cost = ScalarizationCost;
6858       }
6859       // If the instructions belongs to an interleave group, the whole group
6860       // receives the same decision. The whole group receives the cost, but
6861       // the cost will actually be assigned to one instruction.
6862       if (auto Group = getInterleavedAccessGroup(&I))
6863         setWideningDecision(Group, VF, Decision, Cost);
6864       else
6865         setWideningDecision(&I, VF, Decision, Cost);
6866     }
6867   }
6868 
6869   // Make sure that any load of address and any other address computation
6870   // remains scalar unless there is gather/scatter support. This avoids
6871   // inevitable extracts into address registers, and also has the benefit of
6872   // activating LSR more, since that pass can't optimize vectorized
6873   // addresses.
6874   if (TTI.prefersVectorizedAddressing())
6875     return;
6876 
6877   // Start with all scalar pointer uses.
6878   SmallPtrSet<Instruction *, 8> AddrDefs;
6879   for (BasicBlock *BB : TheLoop->blocks())
6880     for (Instruction &I : *BB) {
6881       Instruction *PtrDef =
6882         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6883       if (PtrDef && TheLoop->contains(PtrDef) &&
6884           getWideningDecision(&I, VF) != CM_GatherScatter)
6885         AddrDefs.insert(PtrDef);
6886     }
6887 
6888   // Add all instructions used to generate the addresses.
6889   SmallVector<Instruction *, 4> Worklist;
6890   append_range(Worklist, AddrDefs);
6891   while (!Worklist.empty()) {
6892     Instruction *I = Worklist.pop_back_val();
6893     for (auto &Op : I->operands())
6894       if (auto *InstOp = dyn_cast<Instruction>(Op))
6895         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6896             AddrDefs.insert(InstOp).second)
6897           Worklist.push_back(InstOp);
6898   }
6899 
6900   for (auto *I : AddrDefs) {
6901     if (isa<LoadInst>(I)) {
6902       // Setting the desired widening decision should ideally be handled in
6903       // by cost functions, but since this involves the task of finding out
6904       // if the loaded register is involved in an address computation, it is
6905       // instead changed here when we know this is the case.
6906       InstWidening Decision = getWideningDecision(I, VF);
6907       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6908         // Scalarize a widened load of address.
6909         setWideningDecision(
6910             I, VF, CM_Scalarize,
6911             (VF.getKnownMinValue() *
6912              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6913       else if (auto Group = getInterleavedAccessGroup(I)) {
6914         // Scalarize an interleave group of address loads.
6915         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6916           if (Instruction *Member = Group->getMember(I))
6917             setWideningDecision(
6918                 Member, VF, CM_Scalarize,
6919                 (VF.getKnownMinValue() *
6920                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6921         }
6922       }
6923     } else
6924       // Make sure I gets scalarized and a cost estimate without
6925       // scalarization overhead.
6926       ForcedScalars[VF].insert(I);
6927   }
6928 }
6929 
6930 InstructionCost
6931 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6932                                                Type *&VectorTy) {
6933   Type *RetTy = I->getType();
6934   if (canTruncateToMinimalBitwidth(I, VF))
6935     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6936   auto SE = PSE.getSE();
6937   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6938 
6939   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6940                                                 ElementCount VF) -> bool {
6941     if (VF.isScalar())
6942       return true;
6943 
6944     auto Scalarized = InstsToScalarize.find(VF);
6945     assert(Scalarized != InstsToScalarize.end() &&
6946            "VF not yet analyzed for scalarization profitability");
6947     return !Scalarized->second.count(I) &&
6948            llvm::all_of(I->users(), [&](User *U) {
6949              auto *UI = cast<Instruction>(U);
6950              return !Scalarized->second.count(UI);
6951            });
6952   };
6953   (void) hasSingleCopyAfterVectorization;
6954 
6955   if (isScalarAfterVectorization(I, VF)) {
6956     // With the exception of GEPs and PHIs, after scalarization there should
6957     // only be one copy of the instruction generated in the loop. This is
6958     // because the VF is either 1, or any instructions that need scalarizing
6959     // have already been dealt with by the the time we get here. As a result,
6960     // it means we don't have to multiply the instruction cost by VF.
6961     assert(I->getOpcode() == Instruction::GetElementPtr ||
6962            I->getOpcode() == Instruction::PHI ||
6963            (I->getOpcode() == Instruction::BitCast &&
6964             I->getType()->isPointerTy()) ||
6965            hasSingleCopyAfterVectorization(I, VF));
6966     VectorTy = RetTy;
6967   } else
6968     VectorTy = ToVectorTy(RetTy, VF);
6969 
6970   // TODO: We need to estimate the cost of intrinsic calls.
6971   switch (I->getOpcode()) {
6972   case Instruction::GetElementPtr:
6973     // We mark this instruction as zero-cost because the cost of GEPs in
6974     // vectorized code depends on whether the corresponding memory instruction
6975     // is scalarized or not. Therefore, we handle GEPs with the memory
6976     // instruction cost.
6977     return 0;
6978   case Instruction::Br: {
6979     // In cases of scalarized and predicated instructions, there will be VF
6980     // predicated blocks in the vectorized loop. Each branch around these
6981     // blocks requires also an extract of its vector compare i1 element.
6982     bool ScalarPredicatedBB = false;
6983     BranchInst *BI = cast<BranchInst>(I);
6984     if (VF.isVector() && BI->isConditional() &&
6985         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6986          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6987       ScalarPredicatedBB = true;
6988 
6989     if (ScalarPredicatedBB) {
6990       // Not possible to scalarize scalable vector with predicated instructions.
6991       if (VF.isScalable())
6992         return InstructionCost::getInvalid();
6993       // Return cost for branches around scalarized and predicated blocks.
6994       auto *Vec_i1Ty =
6995           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6996       return (
6997           TTI.getScalarizationOverhead(
6998               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
6999           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7000     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7001       // The back-edge branch will remain, as will all scalar branches.
7002       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7003     else
7004       // This branch will be eliminated by if-conversion.
7005       return 0;
7006     // Note: We currently assume zero cost for an unconditional branch inside
7007     // a predicated block since it will become a fall-through, although we
7008     // may decide in the future to call TTI for all branches.
7009   }
7010   case Instruction::PHI: {
7011     auto *Phi = cast<PHINode>(I);
7012 
7013     // First-order recurrences are replaced by vector shuffles inside the loop.
7014     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7015     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7016       return TTI.getShuffleCost(
7017           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7018           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7019 
7020     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7021     // converted into select instructions. We require N - 1 selects per phi
7022     // node, where N is the number of incoming values.
7023     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7024       return (Phi->getNumIncomingValues() - 1) *
7025              TTI.getCmpSelInstrCost(
7026                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7027                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7028                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7029 
7030     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7031   }
7032   case Instruction::UDiv:
7033   case Instruction::SDiv:
7034   case Instruction::URem:
7035   case Instruction::SRem:
7036     // If we have a predicated instruction, it may not be executed for each
7037     // vector lane. Get the scalarization cost and scale this amount by the
7038     // probability of executing the predicated block. If the instruction is not
7039     // predicated, we fall through to the next case.
7040     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7041       InstructionCost Cost = 0;
7042 
7043       // These instructions have a non-void type, so account for the phi nodes
7044       // that we will create. This cost is likely to be zero. The phi node
7045       // cost, if any, should be scaled by the block probability because it
7046       // models a copy at the end of each predicated block.
7047       Cost += VF.getKnownMinValue() *
7048               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7049 
7050       // The cost of the non-predicated instruction.
7051       Cost += VF.getKnownMinValue() *
7052               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7053 
7054       // The cost of insertelement and extractelement instructions needed for
7055       // scalarization.
7056       Cost += getScalarizationOverhead(I, VF);
7057 
7058       // Scale the cost by the probability of executing the predicated blocks.
7059       // This assumes the predicated block for each vector lane is equally
7060       // likely.
7061       return Cost / getReciprocalPredBlockProb();
7062     }
7063     LLVM_FALLTHROUGH;
7064   case Instruction::Add:
7065   case Instruction::FAdd:
7066   case Instruction::Sub:
7067   case Instruction::FSub:
7068   case Instruction::Mul:
7069   case Instruction::FMul:
7070   case Instruction::FDiv:
7071   case Instruction::FRem:
7072   case Instruction::Shl:
7073   case Instruction::LShr:
7074   case Instruction::AShr:
7075   case Instruction::And:
7076   case Instruction::Or:
7077   case Instruction::Xor: {
7078     // Since we will replace the stride by 1 the multiplication should go away.
7079     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7080       return 0;
7081 
7082     // Detect reduction patterns
7083     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7084       return *RedCost;
7085 
7086     // Certain instructions can be cheaper to vectorize if they have a constant
7087     // second vector operand. One example of this are shifts on x86.
7088     Value *Op2 = I->getOperand(1);
7089     TargetTransformInfo::OperandValueProperties Op2VP;
7090     TargetTransformInfo::OperandValueKind Op2VK =
7091         TTI.getOperandInfo(Op2, Op2VP);
7092     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7093       Op2VK = TargetTransformInfo::OK_UniformValue;
7094 
7095     SmallVector<const Value *, 4> Operands(I->operand_values());
7096     return TTI.getArithmeticInstrCost(
7097         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7098         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7099   }
7100   case Instruction::FNeg: {
7101     return TTI.getArithmeticInstrCost(
7102         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7103         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7104         TargetTransformInfo::OP_None, I->getOperand(0), I);
7105   }
7106   case Instruction::Select: {
7107     SelectInst *SI = cast<SelectInst>(I);
7108     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7109     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7110 
7111     const Value *Op0, *Op1;
7112     using namespace llvm::PatternMatch;
7113     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7114                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7115       // select x, y, false --> x & y
7116       // select x, true, y --> x | y
7117       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7118       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7119       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7120       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7121       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7122               Op1->getType()->getScalarSizeInBits() == 1);
7123 
7124       SmallVector<const Value *, 2> Operands{Op0, Op1};
7125       return TTI.getArithmeticInstrCost(
7126           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7127           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7128     }
7129 
7130     Type *CondTy = SI->getCondition()->getType();
7131     if (!ScalarCond)
7132       CondTy = VectorType::get(CondTy, VF);
7133 
7134     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7135     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7136       Pred = Cmp->getPredicate();
7137     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7138                                   CostKind, I);
7139   }
7140   case Instruction::ICmp:
7141   case Instruction::FCmp: {
7142     Type *ValTy = I->getOperand(0)->getType();
7143     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7144     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7145       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7146     VectorTy = ToVectorTy(ValTy, VF);
7147     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7148                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7149                                   I);
7150   }
7151   case Instruction::Store:
7152   case Instruction::Load: {
7153     ElementCount Width = VF;
7154     if (Width.isVector()) {
7155       InstWidening Decision = getWideningDecision(I, Width);
7156       assert(Decision != CM_Unknown &&
7157              "CM decision should be taken at this point");
7158       if (Decision == CM_Scalarize) {
7159         if (VF.isScalable() && isa<StoreInst>(I))
7160           // We can't scalarize a scalable vector store (even a uniform one
7161           // currently), return an invalid cost so as to prevent vectorization.
7162           return InstructionCost::getInvalid();
7163         Width = ElementCount::getFixed(1);
7164       }
7165     }
7166     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7167     return getMemoryInstructionCost(I, VF);
7168   }
7169   case Instruction::BitCast:
7170     if (I->getType()->isPointerTy())
7171       return 0;
7172     LLVM_FALLTHROUGH;
7173   case Instruction::ZExt:
7174   case Instruction::SExt:
7175   case Instruction::FPToUI:
7176   case Instruction::FPToSI:
7177   case Instruction::FPExt:
7178   case Instruction::PtrToInt:
7179   case Instruction::IntToPtr:
7180   case Instruction::SIToFP:
7181   case Instruction::UIToFP:
7182   case Instruction::Trunc:
7183   case Instruction::FPTrunc: {
7184     // Computes the CastContextHint from a Load/Store instruction.
7185     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7186       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7187              "Expected a load or a store!");
7188 
7189       if (VF.isScalar() || !TheLoop->contains(I))
7190         return TTI::CastContextHint::Normal;
7191 
7192       switch (getWideningDecision(I, VF)) {
7193       case LoopVectorizationCostModel::CM_GatherScatter:
7194         return TTI::CastContextHint::GatherScatter;
7195       case LoopVectorizationCostModel::CM_Interleave:
7196         return TTI::CastContextHint::Interleave;
7197       case LoopVectorizationCostModel::CM_Scalarize:
7198       case LoopVectorizationCostModel::CM_Widen:
7199         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7200                                         : TTI::CastContextHint::Normal;
7201       case LoopVectorizationCostModel::CM_Widen_Reverse:
7202         return TTI::CastContextHint::Reversed;
7203       case LoopVectorizationCostModel::CM_Unknown:
7204         llvm_unreachable("Instr did not go through cost modelling?");
7205       }
7206 
7207       llvm_unreachable("Unhandled case!");
7208     };
7209 
7210     unsigned Opcode = I->getOpcode();
7211     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7212     // For Trunc, the context is the only user, which must be a StoreInst.
7213     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7214       if (I->hasOneUse())
7215         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7216           CCH = ComputeCCH(Store);
7217     }
7218     // For Z/Sext, the context is the operand, which must be a LoadInst.
7219     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7220              Opcode == Instruction::FPExt) {
7221       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7222         CCH = ComputeCCH(Load);
7223     }
7224 
7225     // We optimize the truncation of induction variables having constant
7226     // integer steps. The cost of these truncations is the same as the scalar
7227     // operation.
7228     if (isOptimizableIVTruncate(I, VF)) {
7229       auto *Trunc = cast<TruncInst>(I);
7230       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7231                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7232     }
7233 
7234     // Detect reduction patterns
7235     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7236       return *RedCost;
7237 
7238     Type *SrcScalarTy = I->getOperand(0)->getType();
7239     Type *SrcVecTy =
7240         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7241     if (canTruncateToMinimalBitwidth(I, VF)) {
7242       // This cast is going to be shrunk. This may remove the cast or it might
7243       // turn it into slightly different cast. For example, if MinBW == 16,
7244       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7245       //
7246       // Calculate the modified src and dest types.
7247       Type *MinVecTy = VectorTy;
7248       if (Opcode == Instruction::Trunc) {
7249         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7250         VectorTy =
7251             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7252       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7253         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7254         VectorTy =
7255             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7256       }
7257     }
7258 
7259     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7260   }
7261   case Instruction::Call: {
7262     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7263       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7264         return *RedCost;
7265     bool NeedToScalarize;
7266     CallInst *CI = cast<CallInst>(I);
7267     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7268     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7269       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7270       return std::min(CallCost, IntrinsicCost);
7271     }
7272     return CallCost;
7273   }
7274   case Instruction::ExtractValue:
7275     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7276   case Instruction::Alloca:
7277     // We cannot easily widen alloca to a scalable alloca, as
7278     // the result would need to be a vector of pointers.
7279     if (VF.isScalable())
7280       return InstructionCost::getInvalid();
7281     LLVM_FALLTHROUGH;
7282   default:
7283     // This opcode is unknown. Assume that it is the same as 'mul'.
7284     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7285   } // end of switch.
7286 }
7287 
7288 char LoopVectorize::ID = 0;
7289 
7290 static const char lv_name[] = "Loop Vectorization";
7291 
7292 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7293 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7294 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7295 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7296 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7297 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7298 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7299 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7300 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7301 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7302 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7303 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7304 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7305 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7306 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7307 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7308 
7309 namespace llvm {
7310 
7311 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7312 
7313 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7314                               bool VectorizeOnlyWhenForced) {
7315   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7316 }
7317 
7318 } // end namespace llvm
7319 
7320 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7321   // Check if the pointer operand of a load or store instruction is
7322   // consecutive.
7323   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7324     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7325   return false;
7326 }
7327 
7328 void LoopVectorizationCostModel::collectValuesToIgnore() {
7329   // Ignore ephemeral values.
7330   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7331 
7332   // Find all stores to invariant variables. Since they are going to sink
7333   // outside the loop we do not need calculate cost for them.
7334   for (BasicBlock *BB : TheLoop->blocks())
7335     for (Instruction &I : *BB) {
7336       StoreInst *SI;
7337       if ((SI = dyn_cast<StoreInst>(&I)) &&
7338           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
7339         ValuesToIgnore.insert(&I);
7340     }
7341 
7342   // Ignore type-promoting instructions we identified during reduction
7343   // detection.
7344   for (auto &Reduction : Legal->getReductionVars()) {
7345     const RecurrenceDescriptor &RedDes = Reduction.second;
7346     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7347     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7348   }
7349   // Ignore type-casting instructions we identified during induction
7350   // detection.
7351   for (auto &Induction : Legal->getInductionVars()) {
7352     const InductionDescriptor &IndDes = Induction.second;
7353     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7354     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7355   }
7356 }
7357 
7358 void LoopVectorizationCostModel::collectInLoopReductions() {
7359   for (auto &Reduction : Legal->getReductionVars()) {
7360     PHINode *Phi = Reduction.first;
7361     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7362 
7363     // We don't collect reductions that are type promoted (yet).
7364     if (RdxDesc.getRecurrenceType() != Phi->getType())
7365       continue;
7366 
7367     // If the target would prefer this reduction to happen "in-loop", then we
7368     // want to record it as such.
7369     unsigned Opcode = RdxDesc.getOpcode();
7370     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7371         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7372                                    TargetTransformInfo::ReductionFlags()))
7373       continue;
7374 
7375     // Check that we can correctly put the reductions into the loop, by
7376     // finding the chain of operations that leads from the phi to the loop
7377     // exit value.
7378     SmallVector<Instruction *, 4> ReductionOperations =
7379         RdxDesc.getReductionOpChain(Phi, TheLoop);
7380     bool InLoop = !ReductionOperations.empty();
7381     if (InLoop) {
7382       InLoopReductionChains[Phi] = ReductionOperations;
7383       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7384       Instruction *LastChain = Phi;
7385       for (auto *I : ReductionOperations) {
7386         InLoopReductionImmediateChains[I] = LastChain;
7387         LastChain = I;
7388       }
7389     }
7390     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7391                       << " reduction for phi: " << *Phi << "\n");
7392   }
7393 }
7394 
7395 // TODO: we could return a pair of values that specify the max VF and
7396 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7397 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7398 // doesn't have a cost model that can choose which plan to execute if
7399 // more than one is generated.
7400 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7401                                  LoopVectorizationCostModel &CM) {
7402   unsigned WidestType;
7403   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7404   return WidestVectorRegBits / WidestType;
7405 }
7406 
7407 VectorizationFactor
7408 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7409   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7410   ElementCount VF = UserVF;
7411   // Outer loop handling: They may require CFG and instruction level
7412   // transformations before even evaluating whether vectorization is profitable.
7413   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7414   // the vectorization pipeline.
7415   if (!OrigLoop->isInnermost()) {
7416     // If the user doesn't provide a vectorization factor, determine a
7417     // reasonable one.
7418     if (UserVF.isZero()) {
7419       VF = ElementCount::getFixed(determineVPlanVF(
7420           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7421               .getFixedSize(),
7422           CM));
7423       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7424 
7425       // Make sure we have a VF > 1 for stress testing.
7426       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7427         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7428                           << "overriding computed VF.\n");
7429         VF = ElementCount::getFixed(4);
7430       }
7431     }
7432     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7433     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7434            "VF needs to be a power of two");
7435     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7436                       << "VF " << VF << " to build VPlans.\n");
7437     buildVPlans(VF, VF);
7438 
7439     // For VPlan build stress testing, we bail out after VPlan construction.
7440     if (VPlanBuildStressTest)
7441       return VectorizationFactor::Disabled();
7442 
7443     return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
7444   }
7445 
7446   LLVM_DEBUG(
7447       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7448                 "VPlan-native path.\n");
7449   return VectorizationFactor::Disabled();
7450 }
7451 
7452 bool LoopVectorizationPlanner::requiresTooManyRuntimeChecks() const {
7453   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7454   return (NumRuntimePointerChecks >
7455               VectorizerParams::RuntimeMemoryCheckThreshold &&
7456           !Hints.allowReordering()) ||
7457          NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7458 }
7459 
7460 Optional<VectorizationFactor>
7461 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7462   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7463   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7464   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7465     return None;
7466 
7467   // Invalidate interleave groups if all blocks of loop will be predicated.
7468   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7469       !useMaskedInterleavedAccesses(*TTI)) {
7470     LLVM_DEBUG(
7471         dbgs()
7472         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7473            "which requires masked-interleaved support.\n");
7474     if (CM.InterleaveInfo.invalidateGroups())
7475       // Invalidating interleave groups also requires invalidating all decisions
7476       // based on them, which includes widening decisions and uniform and scalar
7477       // values.
7478       CM.invalidateCostModelingDecisions();
7479   }
7480 
7481   ElementCount MaxUserVF =
7482       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7483   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7484   if (!UserVF.isZero() && UserVFIsLegal) {
7485     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7486            "VF needs to be a power of two");
7487     // Collect the instructions (and their associated costs) that will be more
7488     // profitable to scalarize.
7489     if (CM.selectUserVectorizationFactor(UserVF)) {
7490       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7491       CM.collectInLoopReductions();
7492       buildVPlansWithVPRecipes(UserVF, UserVF);
7493       LLVM_DEBUG(printPlans(dbgs()));
7494       return {{UserVF, 0, 0}};
7495     } else
7496       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7497                               "InvalidCost", ORE, OrigLoop);
7498   }
7499 
7500   // Populate the set of Vectorization Factor Candidates.
7501   ElementCountSet VFCandidates;
7502   for (auto VF = ElementCount::getFixed(1);
7503        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7504     VFCandidates.insert(VF);
7505   for (auto VF = ElementCount::getScalable(1);
7506        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7507     VFCandidates.insert(VF);
7508 
7509   for (const auto &VF : VFCandidates) {
7510     // Collect Uniform and Scalar instructions after vectorization with VF.
7511     CM.collectUniformsAndScalars(VF);
7512 
7513     // Collect the instructions (and their associated costs) that will be more
7514     // profitable to scalarize.
7515     if (VF.isVector())
7516       CM.collectInstsToScalarize(VF);
7517   }
7518 
7519   CM.collectInLoopReductions();
7520   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7521   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7522 
7523   LLVM_DEBUG(printPlans(dbgs()));
7524   if (!MaxFactors.hasVector())
7525     return VectorizationFactor::Disabled();
7526 
7527   // Select the optimal vectorization factor.
7528   return CM.selectVectorizationFactor(VFCandidates);
7529 }
7530 
7531 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7532   assert(count_if(VPlans,
7533                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7534              1 &&
7535          "Best VF has not a single VPlan.");
7536 
7537   for (const VPlanPtr &Plan : VPlans) {
7538     if (Plan->hasVF(VF))
7539       return *Plan.get();
7540   }
7541   llvm_unreachable("No plan found!");
7542 }
7543 
7544 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7545   SmallVector<Metadata *, 4> MDs;
7546   // Reserve first location for self reference to the LoopID metadata node.
7547   MDs.push_back(nullptr);
7548   bool IsUnrollMetadata = false;
7549   MDNode *LoopID = L->getLoopID();
7550   if (LoopID) {
7551     // First find existing loop unrolling disable metadata.
7552     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7553       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7554       if (MD) {
7555         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7556         IsUnrollMetadata =
7557             S && S->getString().startswith("llvm.loop.unroll.disable");
7558       }
7559       MDs.push_back(LoopID->getOperand(i));
7560     }
7561   }
7562 
7563   if (!IsUnrollMetadata) {
7564     // Add runtime unroll disable metadata.
7565     LLVMContext &Context = L->getHeader()->getContext();
7566     SmallVector<Metadata *, 1> DisableOperands;
7567     DisableOperands.push_back(
7568         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7569     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7570     MDs.push_back(DisableNode);
7571     MDNode *NewLoopID = MDNode::get(Context, MDs);
7572     // Set operand 0 to refer to the loop id itself.
7573     NewLoopID->replaceOperandWith(0, NewLoopID);
7574     L->setLoopID(NewLoopID);
7575   }
7576 }
7577 
7578 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7579                                            VPlan &BestVPlan,
7580                                            InnerLoopVectorizer &ILV,
7581                                            DominatorTree *DT) {
7582   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7583                     << '\n');
7584 
7585   // Perform the actual loop transformation.
7586 
7587   // 1. Set up the skeleton for vectorization, including vector pre-header and
7588   // middle block. The vector loop is created during VPlan execution.
7589   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7590   Value *CanonicalIVStartValue;
7591   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7592       ILV.createVectorizedLoopSkeleton();
7593   ILV.collectPoisonGeneratingRecipes(State);
7594 
7595   ILV.printDebugTracesAtStart();
7596 
7597   //===------------------------------------------------===//
7598   //
7599   // Notice: any optimization or new instruction that go
7600   // into the code below should also be implemented in
7601   // the cost-model.
7602   //
7603   //===------------------------------------------------===//
7604 
7605   // 2. Copy and widen instructions from the old loop into the new loop.
7606   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7607                              ILV.getOrCreateVectorTripCount(nullptr),
7608                              CanonicalIVStartValue, State);
7609   BestVPlan.execute(&State);
7610 
7611   // Keep all loop hints from the original loop on the vector loop (we'll
7612   // replace the vectorizer-specific hints below).
7613   MDNode *OrigLoopID = OrigLoop->getLoopID();
7614 
7615   Optional<MDNode *> VectorizedLoopID =
7616       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7617                                       LLVMLoopVectorizeFollowupVectorized});
7618 
7619   VPBasicBlock *HeaderVPBB =
7620       BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
7621   Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
7622   if (VectorizedLoopID)
7623     L->setLoopID(VectorizedLoopID.getValue());
7624   else {
7625     // Keep all loop hints from the original loop on the vector loop (we'll
7626     // replace the vectorizer-specific hints below).
7627     if (MDNode *LID = OrigLoop->getLoopID())
7628       L->setLoopID(LID);
7629 
7630     LoopVectorizeHints Hints(L, true, *ORE);
7631     Hints.setAlreadyVectorized();
7632   }
7633   // Disable runtime unrolling when vectorizing the epilogue loop.
7634   if (CanonicalIVStartValue)
7635     AddRuntimeUnrollDisableMetaData(L);
7636 
7637   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7638   //    predication, updating analyses.
7639   ILV.fixVectorizedLoop(State, BestVPlan);
7640 
7641   ILV.printDebugTracesAtEnd();
7642 }
7643 
7644 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7645 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7646   for (const auto &Plan : VPlans)
7647     if (PrintVPlansInDotFormat)
7648       Plan->printDOT(O);
7649     else
7650       Plan->print(O);
7651 }
7652 #endif
7653 
7654 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7655     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7656 
7657   // We create new control-flow for the vectorized loop, so the original exit
7658   // conditions will be dead after vectorization if it's only used by the
7659   // terminator
7660   SmallVector<BasicBlock*> ExitingBlocks;
7661   OrigLoop->getExitingBlocks(ExitingBlocks);
7662   for (auto *BB : ExitingBlocks) {
7663     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7664     if (!Cmp || !Cmp->hasOneUse())
7665       continue;
7666 
7667     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7668     if (!DeadInstructions.insert(Cmp).second)
7669       continue;
7670 
7671     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7672     // TODO: can recurse through operands in general
7673     for (Value *Op : Cmp->operands()) {
7674       if (isa<TruncInst>(Op) && Op->hasOneUse())
7675           DeadInstructions.insert(cast<Instruction>(Op));
7676     }
7677   }
7678 
7679   // We create new "steps" for induction variable updates to which the original
7680   // induction variables map. An original update instruction will be dead if
7681   // all its users except the induction variable are dead.
7682   auto *Latch = OrigLoop->getLoopLatch();
7683   for (auto &Induction : Legal->getInductionVars()) {
7684     PHINode *Ind = Induction.first;
7685     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7686 
7687     // If the tail is to be folded by masking, the primary induction variable,
7688     // if exists, isn't dead: it will be used for masking. Don't kill it.
7689     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7690       continue;
7691 
7692     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7693           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7694         }))
7695       DeadInstructions.insert(IndUpdate);
7696   }
7697 }
7698 
7699 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7700 
7701 //===--------------------------------------------------------------------===//
7702 // EpilogueVectorizerMainLoop
7703 //===--------------------------------------------------------------------===//
7704 
7705 /// This function is partially responsible for generating the control flow
7706 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7707 std::pair<BasicBlock *, Value *>
7708 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7709   MDNode *OrigLoopID = OrigLoop->getLoopID();
7710 
7711   // Workaround!  Compute the trip count of the original loop and cache it
7712   // before we start modifying the CFG.  This code has a systemic problem
7713   // wherein it tries to run analysis over partially constructed IR; this is
7714   // wrong, and not simply for SCEV.  The trip count of the original loop
7715   // simply happens to be prone to hitting this in practice.  In theory, we
7716   // can hit the same issue for any SCEV, or ValueTracking query done during
7717   // mutation.  See PR49900.
7718   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7719   createVectorLoopSkeleton("");
7720 
7721   // Generate the code to check the minimum iteration count of the vector
7722   // epilogue (see below).
7723   EPI.EpilogueIterationCountCheck =
7724       emitIterationCountCheck(LoopScalarPreHeader, true);
7725   EPI.EpilogueIterationCountCheck->setName("iter.check");
7726 
7727   // Generate the code to check any assumptions that we've made for SCEV
7728   // expressions.
7729   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7730 
7731   // Generate the code that checks at runtime if arrays overlap. We put the
7732   // checks into a separate block to make the more common case of few elements
7733   // faster.
7734   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7735 
7736   // Generate the iteration count check for the main loop, *after* the check
7737   // for the epilogue loop, so that the path-length is shorter for the case
7738   // that goes directly through the vector epilogue. The longer-path length for
7739   // the main loop is compensated for, by the gain from vectorizing the larger
7740   // trip count. Note: the branch will get updated later on when we vectorize
7741   // the epilogue.
7742   EPI.MainLoopIterationCountCheck =
7743       emitIterationCountCheck(LoopScalarPreHeader, false);
7744 
7745   // Generate the induction variable.
7746   EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
7747 
7748   // Skip induction resume value creation here because they will be created in
7749   // the second pass. If we created them here, they wouldn't be used anyway,
7750   // because the vplan in the second pass still contains the inductions from the
7751   // original loop.
7752 
7753   return {completeLoopSkeleton(OrigLoopID), nullptr};
7754 }
7755 
7756 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7757   LLVM_DEBUG({
7758     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7759            << "Main Loop VF:" << EPI.MainLoopVF
7760            << ", Main Loop UF:" << EPI.MainLoopUF
7761            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7762            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7763   });
7764 }
7765 
7766 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7767   DEBUG_WITH_TYPE(VerboseDebug, {
7768     dbgs() << "intermediate fn:\n"
7769            << *OrigLoop->getHeader()->getParent() << "\n";
7770   });
7771 }
7772 
7773 BasicBlock *
7774 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
7775                                                     bool ForEpilogue) {
7776   assert(Bypass && "Expected valid bypass basic block.");
7777   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7778   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7779   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7780   // Reuse existing vector loop preheader for TC checks.
7781   // Note that new preheader block is generated for vector loop.
7782   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7783   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7784 
7785   // Generate code to check if the loop's trip count is less than VF * UF of the
7786   // main vector loop.
7787   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7788       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7789 
7790   Value *CheckMinIters = Builder.CreateICmp(
7791       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7792       "min.iters.check");
7793 
7794   if (!ForEpilogue)
7795     TCCheckBlock->setName("vector.main.loop.iter.check");
7796 
7797   // Create new preheader for vector loop.
7798   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7799                                    DT, LI, nullptr, "vector.ph");
7800 
7801   if (ForEpilogue) {
7802     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7803                                  DT->getNode(Bypass)->getIDom()) &&
7804            "TC check is expected to dominate Bypass");
7805 
7806     // Update dominator for Bypass & LoopExit.
7807     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7808     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7809       // For loops with multiple exits, there's no edge from the middle block
7810       // to exit blocks (as the epilogue must run) and thus no need to update
7811       // the immediate dominator of the exit blocks.
7812       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7813 
7814     LoopBypassBlocks.push_back(TCCheckBlock);
7815 
7816     // Save the trip count so we don't have to regenerate it in the
7817     // vec.epilog.iter.check. This is safe to do because the trip count
7818     // generated here dominates the vector epilog iter check.
7819     EPI.TripCount = Count;
7820   }
7821 
7822   ReplaceInstWithInst(
7823       TCCheckBlock->getTerminator(),
7824       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7825 
7826   return TCCheckBlock;
7827 }
7828 
7829 //===--------------------------------------------------------------------===//
7830 // EpilogueVectorizerEpilogueLoop
7831 //===--------------------------------------------------------------------===//
7832 
7833 /// This function is partially responsible for generating the control flow
7834 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7835 std::pair<BasicBlock *, Value *>
7836 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7837   MDNode *OrigLoopID = OrigLoop->getLoopID();
7838   createVectorLoopSkeleton("vec.epilog.");
7839 
7840   // Now, compare the remaining count and if there aren't enough iterations to
7841   // execute the vectorized epilogue skip to the scalar part.
7842   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7843   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7844   LoopVectorPreHeader =
7845       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7846                  LI, nullptr, "vec.epilog.ph");
7847   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7848                                           VecEpilogueIterationCountCheck);
7849 
7850   // Adjust the control flow taking the state info from the main loop
7851   // vectorization into account.
7852   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7853          "expected this to be saved from the previous pass.");
7854   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7855       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7856 
7857   DT->changeImmediateDominator(LoopVectorPreHeader,
7858                                EPI.MainLoopIterationCountCheck);
7859 
7860   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7861       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7862 
7863   if (EPI.SCEVSafetyCheck)
7864     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7865         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7866   if (EPI.MemSafetyCheck)
7867     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7868         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7869 
7870   DT->changeImmediateDominator(
7871       VecEpilogueIterationCountCheck,
7872       VecEpilogueIterationCountCheck->getSinglePredecessor());
7873 
7874   DT->changeImmediateDominator(LoopScalarPreHeader,
7875                                EPI.EpilogueIterationCountCheck);
7876   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7877     // If there is an epilogue which must run, there's no edge from the
7878     // middle block to exit blocks  and thus no need to update the immediate
7879     // dominator of the exit blocks.
7880     DT->changeImmediateDominator(LoopExitBlock,
7881                                  EPI.EpilogueIterationCountCheck);
7882 
7883   // Keep track of bypass blocks, as they feed start values to the induction
7884   // phis in the scalar loop preheader.
7885   if (EPI.SCEVSafetyCheck)
7886     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7887   if (EPI.MemSafetyCheck)
7888     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7889   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7890 
7891   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7892   // merge control-flow from the latch block and the middle block. Update the
7893   // incoming values here and move the Phi into the preheader.
7894   SmallVector<PHINode *, 4> PhisInBlock;
7895   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7896     PhisInBlock.push_back(&Phi);
7897 
7898   for (PHINode *Phi : PhisInBlock) {
7899     Phi->replaceIncomingBlockWith(
7900         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7901         VecEpilogueIterationCountCheck);
7902     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7903     if (EPI.SCEVSafetyCheck)
7904       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7905     if (EPI.MemSafetyCheck)
7906       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7907     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7908   }
7909 
7910   // Generate a resume induction for the vector epilogue and put it in the
7911   // vector epilogue preheader
7912   Type *IdxTy = Legal->getWidestInductionType();
7913   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7914                                          LoopVectorPreHeader->getFirstNonPHI());
7915   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7916   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7917                            EPI.MainLoopIterationCountCheck);
7918 
7919   // Generate induction resume values. These variables save the new starting
7920   // indexes for the scalar loop. They are used to test if there are any tail
7921   // iterations left once the vector loop has completed.
7922   // Note that when the vectorized epilogue is skipped due to iteration count
7923   // check, then the resume value for the induction variable comes from
7924   // the trip count of the main vector loop, hence passing the AdditionalBypass
7925   // argument.
7926   createInductionResumeValues({VecEpilogueIterationCountCheck,
7927                                EPI.VectorTripCount} /* AdditionalBypass */);
7928 
7929   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7930 }
7931 
7932 BasicBlock *
7933 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7934     BasicBlock *Bypass, BasicBlock *Insert) {
7935 
7936   assert(EPI.TripCount &&
7937          "Expected trip count to have been safed in the first pass.");
7938   assert(
7939       (!isa<Instruction>(EPI.TripCount) ||
7940        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7941       "saved trip count does not dominate insertion point.");
7942   Value *TC = EPI.TripCount;
7943   IRBuilder<> Builder(Insert->getTerminator());
7944   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7945 
7946   // Generate code to check if the loop's trip count is less than VF * UF of the
7947   // vector epilogue loop.
7948   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7949       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7950 
7951   Value *CheckMinIters =
7952       Builder.CreateICmp(P, Count,
7953                          createStepForVF(Builder, Count->getType(),
7954                                          EPI.EpilogueVF, EPI.EpilogueUF),
7955                          "min.epilog.iters.check");
7956 
7957   ReplaceInstWithInst(
7958       Insert->getTerminator(),
7959       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7960 
7961   LoopBypassBlocks.push_back(Insert);
7962   return Insert;
7963 }
7964 
7965 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7966   LLVM_DEBUG({
7967     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7968            << "Epilogue Loop VF:" << EPI.EpilogueVF
7969            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7970   });
7971 }
7972 
7973 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7974   DEBUG_WITH_TYPE(VerboseDebug, {
7975     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7976   });
7977 }
7978 
7979 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7980     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7981   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7982   bool PredicateAtRangeStart = Predicate(Range.Start);
7983 
7984   for (ElementCount TmpVF = Range.Start * 2;
7985        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7986     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7987       Range.End = TmpVF;
7988       break;
7989     }
7990 
7991   return PredicateAtRangeStart;
7992 }
7993 
7994 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7995 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7996 /// of VF's starting at a given VF and extending it as much as possible. Each
7997 /// vectorization decision can potentially shorten this sub-range during
7998 /// buildVPlan().
7999 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8000                                            ElementCount MaxVF) {
8001   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8002   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8003     VFRange SubRange = {VF, MaxVFPlusOne};
8004     VPlans.push_back(buildVPlan(SubRange));
8005     VF = SubRange.End;
8006   }
8007 }
8008 
8009 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8010                                          VPlanPtr &Plan) {
8011   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8012 
8013   // Look for cached value.
8014   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8015   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8016   if (ECEntryIt != EdgeMaskCache.end())
8017     return ECEntryIt->second;
8018 
8019   VPValue *SrcMask = createBlockInMask(Src, Plan);
8020 
8021   // The terminator has to be a branch inst!
8022   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8023   assert(BI && "Unexpected terminator found");
8024 
8025   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8026     return EdgeMaskCache[Edge] = SrcMask;
8027 
8028   // If source is an exiting block, we know the exit edge is dynamically dead
8029   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8030   // adding uses of an otherwise potentially dead instruction.
8031   if (OrigLoop->isLoopExiting(Src))
8032     return EdgeMaskCache[Edge] = SrcMask;
8033 
8034   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8035   assert(EdgeMask && "No Edge Mask found for condition");
8036 
8037   if (BI->getSuccessor(0) != Dst)
8038     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8039 
8040   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8041     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8042     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8043     // The select version does not introduce new UB if SrcMask is false and
8044     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8045     VPValue *False = Plan->getOrAddVPValue(
8046         ConstantInt::getFalse(BI->getCondition()->getType()));
8047     EdgeMask =
8048         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8049   }
8050 
8051   return EdgeMaskCache[Edge] = EdgeMask;
8052 }
8053 
8054 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8055   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8056 
8057   // Look for cached value.
8058   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8059   if (BCEntryIt != BlockMaskCache.end())
8060     return BCEntryIt->second;
8061 
8062   // All-one mask is modelled as no-mask following the convention for masked
8063   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8064   VPValue *BlockMask = nullptr;
8065 
8066   if (OrigLoop->getHeader() == BB) {
8067     if (!CM.blockNeedsPredicationForAnyReason(BB))
8068       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8069 
8070     // Introduce the early-exit compare IV <= BTC to form header block mask.
8071     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8072     // constructing the desired canonical IV in the header block as its first
8073     // non-phi instructions.
8074     assert(CM.foldTailByMasking() && "must fold the tail");
8075     VPBasicBlock *HeaderVPBB =
8076         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8077     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8078     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8079     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8080 
8081     VPBuilder::InsertPointGuard Guard(Builder);
8082     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8083     if (CM.TTI.emitGetActiveLaneMask()) {
8084       VPValue *TC = Plan->getOrCreateTripCount();
8085       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8086     } else {
8087       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8088       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8089     }
8090     return BlockMaskCache[BB] = BlockMask;
8091   }
8092 
8093   // This is the block mask. We OR all incoming edges.
8094   for (auto *Predecessor : predecessors(BB)) {
8095     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8096     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8097       return BlockMaskCache[BB] = EdgeMask;
8098 
8099     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8100       BlockMask = EdgeMask;
8101       continue;
8102     }
8103 
8104     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8105   }
8106 
8107   return BlockMaskCache[BB] = BlockMask;
8108 }
8109 
8110 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8111                                                 ArrayRef<VPValue *> Operands,
8112                                                 VFRange &Range,
8113                                                 VPlanPtr &Plan) {
8114   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8115          "Must be called with either a load or store");
8116 
8117   auto willWiden = [&](ElementCount VF) -> bool {
8118     LoopVectorizationCostModel::InstWidening Decision =
8119         CM.getWideningDecision(I, VF);
8120     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8121            "CM decision should be taken at this point.");
8122     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8123       return true;
8124     if (CM.isScalarAfterVectorization(I, VF) ||
8125         CM.isProfitableToScalarize(I, VF))
8126       return false;
8127     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8128   };
8129 
8130   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8131     return nullptr;
8132 
8133   VPValue *Mask = nullptr;
8134   if (Legal->isMaskRequired(I))
8135     Mask = createBlockInMask(I->getParent(), Plan);
8136 
8137   // Determine if the pointer operand of the access is either consecutive or
8138   // reverse consecutive.
8139   LoopVectorizationCostModel::InstWidening Decision =
8140       CM.getWideningDecision(I, Range.Start);
8141   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8142   bool Consecutive =
8143       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8144 
8145   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8146     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8147                                               Consecutive, Reverse);
8148 
8149   StoreInst *Store = cast<StoreInst>(I);
8150   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8151                                             Mask, Consecutive, Reverse);
8152 }
8153 
8154 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
8155 /// insert a recipe to expand the step for the induction recipe.
8156 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes(
8157     PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start,
8158     const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM,
8159     VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) {
8160   // Returns true if an instruction \p I should be scalarized instead of
8161   // vectorized for the chosen vectorization factor.
8162   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8163     return CM.isScalarAfterVectorization(I, VF) ||
8164            CM.isProfitableToScalarize(I, VF);
8165   };
8166 
8167   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8168       [&](ElementCount VF) {
8169         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8170       },
8171       Range);
8172   assert(IndDesc.getStartValue() ==
8173          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8174   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8175          "step must be loop invariant");
8176 
8177   VPValue *Step =
8178       vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
8179   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8180     return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI,
8181                                              !NeedsScalarIVOnly);
8182   }
8183   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8184   return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc,
8185                                            !NeedsScalarIVOnly);
8186 }
8187 
8188 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8189     PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
8190 
8191   // Check if this is an integer or fp induction. If so, build the recipe that
8192   // produces its scalar and vector values.
8193   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8194     return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan,
8195                                        *PSE.getSE(), *OrigLoop, Range);
8196 
8197   // Check if this is pointer induction. If so, build the recipe for it.
8198   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8199     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8200                                              *PSE.getSE());
8201   return nullptr;
8202 }
8203 
8204 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8205     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
8206   // Optimize the special case where the source is a constant integer
8207   // induction variable. Notice that we can only optimize the 'trunc' case
8208   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8209   // (c) other casts depend on pointer size.
8210 
8211   // Determine whether \p K is a truncation based on an induction variable that
8212   // can be optimized.
8213   auto isOptimizableIVTruncate =
8214       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8215     return [=](ElementCount VF) -> bool {
8216       return CM.isOptimizableIVTruncate(K, VF);
8217     };
8218   };
8219 
8220   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8221           isOptimizableIVTruncate(I), Range)) {
8222 
8223     auto *Phi = cast<PHINode>(I->getOperand(0));
8224     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8225     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8226     return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan,
8227                                        *PSE.getSE(), *OrigLoop, Range);
8228   }
8229   return nullptr;
8230 }
8231 
8232 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8233                                                 ArrayRef<VPValue *> Operands,
8234                                                 VPlanPtr &Plan) {
8235   // If all incoming values are equal, the incoming VPValue can be used directly
8236   // instead of creating a new VPBlendRecipe.
8237   VPValue *FirstIncoming = Operands[0];
8238   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8239         return FirstIncoming == Inc;
8240       })) {
8241     return Operands[0];
8242   }
8243 
8244   unsigned NumIncoming = Phi->getNumIncomingValues();
8245   // For in-loop reductions, we do not need to create an additional select.
8246   VPValue *InLoopVal = nullptr;
8247   for (unsigned In = 0; In < NumIncoming; In++) {
8248     PHINode *PhiOp =
8249         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8250     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8251       assert(!InLoopVal && "Found more than one in-loop reduction!");
8252       InLoopVal = Operands[In];
8253     }
8254   }
8255 
8256   assert((!InLoopVal || NumIncoming == 2) &&
8257          "Found an in-loop reduction for PHI with unexpected number of "
8258          "incoming values");
8259   if (InLoopVal)
8260     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8261 
8262   // We know that all PHIs in non-header blocks are converted into selects, so
8263   // we don't have to worry about the insertion order and we can just use the
8264   // builder. At this point we generate the predication tree. There may be
8265   // duplications since this is a simple recursive scan, but future
8266   // optimizations will clean it up.
8267   SmallVector<VPValue *, 2> OperandsWithMask;
8268 
8269   for (unsigned In = 0; In < NumIncoming; In++) {
8270     VPValue *EdgeMask =
8271       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8272     assert((EdgeMask || NumIncoming == 1) &&
8273            "Multiple predecessors with one having a full mask");
8274     OperandsWithMask.push_back(Operands[In]);
8275     if (EdgeMask)
8276       OperandsWithMask.push_back(EdgeMask);
8277   }
8278   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8279 }
8280 
8281 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8282                                                    ArrayRef<VPValue *> Operands,
8283                                                    VFRange &Range) const {
8284 
8285   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8286       [this, CI](ElementCount VF) {
8287         return CM.isScalarWithPredication(CI, VF);
8288       },
8289       Range);
8290 
8291   if (IsPredicated)
8292     return nullptr;
8293 
8294   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8295   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8296              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8297              ID == Intrinsic::pseudoprobe ||
8298              ID == Intrinsic::experimental_noalias_scope_decl))
8299     return nullptr;
8300 
8301   auto willWiden = [&](ElementCount VF) -> bool {
8302     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8303     // The following case may be scalarized depending on the VF.
8304     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8305     // version of the instruction.
8306     // Is it beneficial to perform intrinsic call compared to lib call?
8307     bool NeedToScalarize = false;
8308     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8309     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8310     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8311     return UseVectorIntrinsic || !NeedToScalarize;
8312   };
8313 
8314   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8315     return nullptr;
8316 
8317   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8318   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8319 }
8320 
8321 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8322   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8323          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8324   // Instruction should be widened, unless it is scalar after vectorization,
8325   // scalarization is profitable or it is predicated.
8326   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8327     return CM.isScalarAfterVectorization(I, VF) ||
8328            CM.isProfitableToScalarize(I, VF) ||
8329            CM.isScalarWithPredication(I, VF);
8330   };
8331   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8332                                                              Range);
8333 }
8334 
8335 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8336                                            ArrayRef<VPValue *> Operands) const {
8337   auto IsVectorizableOpcode = [](unsigned Opcode) {
8338     switch (Opcode) {
8339     case Instruction::Add:
8340     case Instruction::And:
8341     case Instruction::AShr:
8342     case Instruction::BitCast:
8343     case Instruction::FAdd:
8344     case Instruction::FCmp:
8345     case Instruction::FDiv:
8346     case Instruction::FMul:
8347     case Instruction::FNeg:
8348     case Instruction::FPExt:
8349     case Instruction::FPToSI:
8350     case Instruction::FPToUI:
8351     case Instruction::FPTrunc:
8352     case Instruction::FRem:
8353     case Instruction::FSub:
8354     case Instruction::ICmp:
8355     case Instruction::IntToPtr:
8356     case Instruction::LShr:
8357     case Instruction::Mul:
8358     case Instruction::Or:
8359     case Instruction::PtrToInt:
8360     case Instruction::SDiv:
8361     case Instruction::Select:
8362     case Instruction::SExt:
8363     case Instruction::Shl:
8364     case Instruction::SIToFP:
8365     case Instruction::SRem:
8366     case Instruction::Sub:
8367     case Instruction::Trunc:
8368     case Instruction::UDiv:
8369     case Instruction::UIToFP:
8370     case Instruction::URem:
8371     case Instruction::Xor:
8372     case Instruction::ZExt:
8373     case Instruction::Freeze:
8374       return true;
8375     }
8376     return false;
8377   };
8378 
8379   if (!IsVectorizableOpcode(I->getOpcode()))
8380     return nullptr;
8381 
8382   // Success: widen this instruction.
8383   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8384 }
8385 
8386 void VPRecipeBuilder::fixHeaderPhis() {
8387   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8388   for (VPHeaderPHIRecipe *R : PhisToFix) {
8389     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8390     VPRecipeBase *IncR =
8391         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8392     R->addOperand(IncR->getVPSingleValue());
8393   }
8394 }
8395 
8396 VPBasicBlock *VPRecipeBuilder::handleReplication(
8397     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8398     VPlanPtr &Plan) {
8399   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8400       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8401       Range);
8402 
8403   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8404       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8405       Range);
8406 
8407   // Even if the instruction is not marked as uniform, there are certain
8408   // intrinsic calls that can be effectively treated as such, so we check for
8409   // them here. Conservatively, we only do this for scalable vectors, since
8410   // for fixed-width VFs we can always fall back on full scalarization.
8411   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8412     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8413     case Intrinsic::assume:
8414     case Intrinsic::lifetime_start:
8415     case Intrinsic::lifetime_end:
8416       // For scalable vectors if one of the operands is variant then we still
8417       // want to mark as uniform, which will generate one instruction for just
8418       // the first lane of the vector. We can't scalarize the call in the same
8419       // way as for fixed-width vectors because we don't know how many lanes
8420       // there are.
8421       //
8422       // The reasons for doing it this way for scalable vectors are:
8423       //   1. For the assume intrinsic generating the instruction for the first
8424       //      lane is still be better than not generating any at all. For
8425       //      example, the input may be a splat across all lanes.
8426       //   2. For the lifetime start/end intrinsics the pointer operand only
8427       //      does anything useful when the input comes from a stack object,
8428       //      which suggests it should always be uniform. For non-stack objects
8429       //      the effect is to poison the object, which still allows us to
8430       //      remove the call.
8431       IsUniform = true;
8432       break;
8433     default:
8434       break;
8435     }
8436   }
8437 
8438   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8439                                        IsUniform, IsPredicated);
8440   setRecipe(I, Recipe);
8441   Plan->addVPValue(I, Recipe);
8442 
8443   // Find if I uses a predicated instruction. If so, it will use its scalar
8444   // value. Avoid hoisting the insert-element which packs the scalar value into
8445   // a vector value, as that happens iff all users use the vector value.
8446   for (VPValue *Op : Recipe->operands()) {
8447     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8448     if (!PredR)
8449       continue;
8450     auto *RepR =
8451         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8452     assert(RepR->isPredicated() &&
8453            "expected Replicate recipe to be predicated");
8454     RepR->setAlsoPack(false);
8455   }
8456 
8457   // Finalize the recipe for Instr, first if it is not predicated.
8458   if (!IsPredicated) {
8459     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8460     VPBB->appendRecipe(Recipe);
8461     return VPBB;
8462   }
8463   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8464 
8465   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8466   assert(SingleSucc && "VPBB must have a single successor when handling "
8467                        "predicated replication.");
8468   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8469   // Record predicated instructions for above packing optimizations.
8470   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8471   VPBlockUtils::insertBlockAfter(Region, VPBB);
8472   auto *RegSucc = new VPBasicBlock();
8473   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8474   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8475   return RegSucc;
8476 }
8477 
8478 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8479                                                       VPRecipeBase *PredRecipe,
8480                                                       VPlanPtr &Plan) {
8481   // Instructions marked for predication are replicated and placed under an
8482   // if-then construct to prevent side-effects.
8483 
8484   // Generate recipes to compute the block mask for this region.
8485   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8486 
8487   // Build the triangular if-then region.
8488   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8489   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8490   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8491   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8492   auto *PHIRecipe = Instr->getType()->isVoidTy()
8493                         ? nullptr
8494                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8495   if (PHIRecipe) {
8496     Plan->removeVPValueFor(Instr);
8497     Plan->addVPValue(Instr, PHIRecipe);
8498   }
8499   auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8500   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8501   VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
8502 
8503   // Note: first set Entry as region entry and then connect successors starting
8504   // from it in order, to propagate the "parent" of each VPBasicBlock.
8505   VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
8506   VPBlockUtils::connectBlocks(Pred, Exiting);
8507 
8508   return Region;
8509 }
8510 
8511 VPRecipeOrVPValueTy
8512 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8513                                         ArrayRef<VPValue *> Operands,
8514                                         VFRange &Range, VPlanPtr &Plan) {
8515   // First, check for specific widening recipes that deal with inductions, Phi
8516   // nodes, calls and memory operations.
8517   VPRecipeBase *Recipe;
8518   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8519     if (Phi->getParent() != OrigLoop->getHeader())
8520       return tryToBlend(Phi, Operands, Plan);
8521     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
8522       return toVPRecipeResult(Recipe);
8523 
8524     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8525     assert((Legal->isReductionVariable(Phi) ||
8526             Legal->isFirstOrderRecurrence(Phi)) &&
8527            "can only widen reductions and first-order recurrences here");
8528     VPValue *StartV = Operands[0];
8529     if (Legal->isReductionVariable(Phi)) {
8530       const RecurrenceDescriptor &RdxDesc =
8531           Legal->getReductionVars().find(Phi)->second;
8532       assert(RdxDesc.getRecurrenceStartValue() ==
8533              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8534       PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8535                                            CM.isInLoopReduction(Phi),
8536                                            CM.useOrderedReductions(RdxDesc));
8537     } else {
8538       PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8539     }
8540 
8541     // Record the incoming value from the backedge, so we can add the incoming
8542     // value from the backedge after all recipes have been created.
8543     recordRecipeOf(cast<Instruction>(
8544         Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8545     PhisToFix.push_back(PhiRecipe);
8546     return toVPRecipeResult(PhiRecipe);
8547   }
8548 
8549   if (isa<TruncInst>(Instr) &&
8550       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8551                                                Range, *Plan)))
8552     return toVPRecipeResult(Recipe);
8553 
8554   // All widen recipes below deal only with VF > 1.
8555   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8556           [&](ElementCount VF) { return VF.isScalar(); }, Range))
8557     return nullptr;
8558 
8559   if (auto *CI = dyn_cast<CallInst>(Instr))
8560     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8561 
8562   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8563     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8564 
8565   if (!shouldWiden(Instr, Range))
8566     return nullptr;
8567 
8568   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8569     return toVPRecipeResult(new VPWidenGEPRecipe(
8570         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8571 
8572   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8573     bool InvariantCond =
8574         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8575     return toVPRecipeResult(new VPWidenSelectRecipe(
8576         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8577   }
8578 
8579   return toVPRecipeResult(tryToWiden(Instr, Operands));
8580 }
8581 
8582 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8583                                                         ElementCount MaxVF) {
8584   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8585 
8586   // Collect instructions from the original loop that will become trivially dead
8587   // in the vectorized loop. We don't need to vectorize these instructions. For
8588   // example, original induction update instructions can become dead because we
8589   // separately emit induction "steps" when generating code for the new loop.
8590   // Similarly, we create a new latch condition when setting up the structure
8591   // of the new loop, so the old one can become dead.
8592   SmallPtrSet<Instruction *, 4> DeadInstructions;
8593   collectTriviallyDeadInstructions(DeadInstructions);
8594 
8595   // Add assume instructions we need to drop to DeadInstructions, to prevent
8596   // them from being added to the VPlan.
8597   // TODO: We only need to drop assumes in blocks that get flattend. If the
8598   // control flow is preserved, we should keep them.
8599   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8600   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8601 
8602   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8603   // Dead instructions do not need sinking. Remove them from SinkAfter.
8604   for (Instruction *I : DeadInstructions)
8605     SinkAfter.erase(I);
8606 
8607   // Cannot sink instructions after dead instructions (there won't be any
8608   // recipes for them). Instead, find the first non-dead previous instruction.
8609   for (auto &P : Legal->getSinkAfter()) {
8610     Instruction *SinkTarget = P.second;
8611     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8612     (void)FirstInst;
8613     while (DeadInstructions.contains(SinkTarget)) {
8614       assert(
8615           SinkTarget != FirstInst &&
8616           "Must find a live instruction (at least the one feeding the "
8617           "first-order recurrence PHI) before reaching beginning of the block");
8618       SinkTarget = SinkTarget->getPrevNode();
8619       assert(SinkTarget != P.first &&
8620              "sink source equals target, no sinking required");
8621     }
8622     P.second = SinkTarget;
8623   }
8624 
8625   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8626   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8627     VFRange SubRange = {VF, MaxVFPlusOne};
8628     VPlans.push_back(
8629         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8630     VF = SubRange.End;
8631   }
8632 }
8633 
8634 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8635 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8636 // BranchOnCount VPInstruction to the latch.
8637 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8638                                   bool HasNUW) {
8639   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8640   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8641 
8642   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8643   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8644   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8645   Header->insert(CanonicalIVPHI, Header->begin());
8646 
8647   auto *CanonicalIVIncrement =
8648       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8649                                : VPInstruction::CanonicalIVIncrement,
8650                         {CanonicalIVPHI}, DL);
8651   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8652 
8653   VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
8654   EB->appendRecipe(CanonicalIVIncrement);
8655 
8656   auto *BranchOnCount =
8657       new VPInstruction(VPInstruction::BranchOnCount,
8658                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8659   EB->appendRecipe(BranchOnCount);
8660 }
8661 
8662 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
8663 // original exit block.
8664 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
8665                                 VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
8666                                 VPlan &Plan) {
8667   BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
8668   BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
8669   // Only handle single-exit loops with unique exit blocks for now.
8670   if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
8671     return;
8672 
8673   // Introduce VPUsers modeling the exit values.
8674   for (PHINode &ExitPhi : ExitBB->phis()) {
8675     Value *IncomingValue =
8676         ExitPhi.getIncomingValueForBlock(ExitingBB);
8677     VPValue *V = Plan.getOrAddVPValue(IncomingValue, true);
8678     Plan.addLiveOut(&ExitPhi, V);
8679   }
8680 }
8681 
8682 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8683     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8684     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8685 
8686   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8687 
8688   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8689 
8690   // ---------------------------------------------------------------------------
8691   // Pre-construction: record ingredients whose recipes we'll need to further
8692   // process after constructing the initial VPlan.
8693   // ---------------------------------------------------------------------------
8694 
8695   // Mark instructions we'll need to sink later and their targets as
8696   // ingredients whose recipe we'll need to record.
8697   for (auto &Entry : SinkAfter) {
8698     RecipeBuilder.recordRecipeOf(Entry.first);
8699     RecipeBuilder.recordRecipeOf(Entry.second);
8700   }
8701   for (auto &Reduction : CM.getInLoopReductionChains()) {
8702     PHINode *Phi = Reduction.first;
8703     RecurKind Kind =
8704         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8705     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8706 
8707     RecipeBuilder.recordRecipeOf(Phi);
8708     for (auto &R : ReductionOperations) {
8709       RecipeBuilder.recordRecipeOf(R);
8710       // For min/max reductions, where we have a pair of icmp/select, we also
8711       // need to record the ICmp recipe, so it can be removed later.
8712       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8713              "Only min/max recurrences allowed for inloop reductions");
8714       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8715         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8716     }
8717   }
8718 
8719   // For each interleave group which is relevant for this (possibly trimmed)
8720   // Range, add it to the set of groups to be later applied to the VPlan and add
8721   // placeholders for its members' Recipes which we'll be replacing with a
8722   // single VPInterleaveRecipe.
8723   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8724     auto applyIG = [IG, this](ElementCount VF) -> bool {
8725       return (VF.isVector() && // Query is illegal for VF == 1
8726               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8727                   LoopVectorizationCostModel::CM_Interleave);
8728     };
8729     if (!getDecisionAndClampRange(applyIG, Range))
8730       continue;
8731     InterleaveGroups.insert(IG);
8732     for (unsigned i = 0; i < IG->getFactor(); i++)
8733       if (Instruction *Member = IG->getMember(i))
8734         RecipeBuilder.recordRecipeOf(Member);
8735   };
8736 
8737   // ---------------------------------------------------------------------------
8738   // Build initial VPlan: Scan the body of the loop in a topological order to
8739   // visit each basic block after having visited its predecessor basic blocks.
8740   // ---------------------------------------------------------------------------
8741 
8742   // Create initial VPlan skeleton, starting with a block for the pre-header,
8743   // followed by a region for the vector loop, followed by the middle block. The
8744   // skeleton vector loop region contains a header and latch block.
8745   VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
8746   auto Plan = std::make_unique<VPlan>(Preheader);
8747 
8748   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
8749   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8750   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8751   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8752   VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
8753   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
8754   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
8755 
8756   Instruction *DLInst =
8757       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8758   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8759                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8760                         !CM.foldTailByMasking());
8761 
8762   // Scan the body of the loop in a topological order to visit each basic block
8763   // after having visited its predecessor basic blocks.
8764   LoopBlocksDFS DFS(OrigLoop);
8765   DFS.perform(LI);
8766 
8767   VPBasicBlock *VPBB = HeaderVPBB;
8768   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8769   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8770     // Relevant instructions from basic block BB will be grouped into VPRecipe
8771     // ingredients and fill a new VPBasicBlock.
8772     unsigned VPBBsForBB = 0;
8773     if (VPBB != HeaderVPBB)
8774       VPBB->setName(BB->getName());
8775     Builder.setInsertPoint(VPBB);
8776 
8777     // Introduce each ingredient into VPlan.
8778     // TODO: Model and preserve debug intrinsics in VPlan.
8779     for (Instruction &I : BB->instructionsWithoutDebug()) {
8780       Instruction *Instr = &I;
8781 
8782       // First filter out irrelevant instructions, to ensure no recipes are
8783       // built for them.
8784       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8785         continue;
8786 
8787       SmallVector<VPValue *, 4> Operands;
8788       auto *Phi = dyn_cast<PHINode>(Instr);
8789       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8790         Operands.push_back(Plan->getOrAddVPValue(
8791             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8792       } else {
8793         auto OpRange = Plan->mapToVPValues(Instr->operands());
8794         Operands = {OpRange.begin(), OpRange.end()};
8795       }
8796 
8797       // Invariant stores inside loop will be deleted and a single store
8798       // with the final reduction value will be added to the exit block
8799       StoreInst *SI;
8800       if ((SI = dyn_cast<StoreInst>(&I)) &&
8801           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
8802         continue;
8803 
8804       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8805               Instr, Operands, Range, Plan)) {
8806         // If Instr can be simplified to an existing VPValue, use it.
8807         if (RecipeOrValue.is<VPValue *>()) {
8808           auto *VPV = RecipeOrValue.get<VPValue *>();
8809           Plan->addVPValue(Instr, VPV);
8810           // If the re-used value is a recipe, register the recipe for the
8811           // instruction, in case the recipe for Instr needs to be recorded.
8812           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8813             RecipeBuilder.setRecipe(Instr, R);
8814           continue;
8815         }
8816         // Otherwise, add the new recipe.
8817         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8818         for (auto *Def : Recipe->definedValues()) {
8819           auto *UV = Def->getUnderlyingValue();
8820           Plan->addVPValue(UV, Def);
8821         }
8822 
8823         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8824             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8825           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8826           // of the header block. That can happen for truncates of induction
8827           // variables. Those recipes are moved to the phi section of the header
8828           // block after applying SinkAfter, which relies on the original
8829           // position of the trunc.
8830           assert(isa<TruncInst>(Instr));
8831           InductionsToMove.push_back(
8832               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8833         }
8834         RecipeBuilder.setRecipe(Instr, Recipe);
8835         VPBB->appendRecipe(Recipe);
8836         continue;
8837       }
8838 
8839       // Otherwise, if all widening options failed, Instruction is to be
8840       // replicated. This may create a successor for VPBB.
8841       VPBasicBlock *NextVPBB =
8842           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8843       if (NextVPBB != VPBB) {
8844         VPBB = NextVPBB;
8845         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8846                                     : "");
8847       }
8848     }
8849 
8850     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8851     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8852   }
8853 
8854   HeaderVPBB->setName("vector.body");
8855 
8856   // Fold the last, empty block into its predecessor.
8857   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8858   assert(VPBB && "expected to fold last (empty) block");
8859   // After here, VPBB should not be used.
8860   VPBB = nullptr;
8861 
8862   addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);
8863 
8864   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8865          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8866          "entry block must be set to a VPRegionBlock having a non-empty entry "
8867          "VPBasicBlock");
8868   RecipeBuilder.fixHeaderPhis();
8869 
8870   // ---------------------------------------------------------------------------
8871   // Transform initial VPlan: Apply previously taken decisions, in order, to
8872   // bring the VPlan to its final state.
8873   // ---------------------------------------------------------------------------
8874 
8875   // Apply Sink-After legal constraints.
8876   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8877     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8878     if (Region && Region->isReplicator()) {
8879       assert(Region->getNumSuccessors() == 1 &&
8880              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8881       assert(R->getParent()->size() == 1 &&
8882              "A recipe in an original replicator region must be the only "
8883              "recipe in its block");
8884       return Region;
8885     }
8886     return nullptr;
8887   };
8888   for (auto &Entry : SinkAfter) {
8889     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8890     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8891 
8892     auto *TargetRegion = GetReplicateRegion(Target);
8893     auto *SinkRegion = GetReplicateRegion(Sink);
8894     if (!SinkRegion) {
8895       // If the sink source is not a replicate region, sink the recipe directly.
8896       if (TargetRegion) {
8897         // The target is in a replication region, make sure to move Sink to
8898         // the block after it, not into the replication region itself.
8899         VPBasicBlock *NextBlock =
8900             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8901         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8902       } else
8903         Sink->moveAfter(Target);
8904       continue;
8905     }
8906 
8907     // The sink source is in a replicate region. Unhook the region from the CFG.
8908     auto *SinkPred = SinkRegion->getSinglePredecessor();
8909     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8910     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8911     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8912     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8913 
8914     if (TargetRegion) {
8915       // The target recipe is also in a replicate region, move the sink region
8916       // after the target region.
8917       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8918       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8919       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8920       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8921     } else {
8922       // The sink source is in a replicate region, we need to move the whole
8923       // replicate region, which should only contain a single recipe in the
8924       // main block.
8925       auto *SplitBlock =
8926           Target->getParent()->splitAt(std::next(Target->getIterator()));
8927 
8928       auto *SplitPred = SplitBlock->getSinglePredecessor();
8929 
8930       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8931       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8932       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8933     }
8934   }
8935 
8936   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8937   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8938 
8939   // Now that sink-after is done, move induction recipes for optimized truncates
8940   // to the phi section of the header block.
8941   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8942     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8943 
8944   // Adjust the recipes for any inloop reductions.
8945   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
8946                              RecipeBuilder, Range.Start);
8947 
8948   // Introduce a recipe to combine the incoming and previous values of a
8949   // first-order recurrence.
8950   for (VPRecipeBase &R :
8951        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8952     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8953     if (!RecurPhi)
8954       continue;
8955 
8956     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8957     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8958     auto *Region = GetReplicateRegion(PrevRecipe);
8959     if (Region)
8960       InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor());
8961     if (!InsertBlock) {
8962       InsertBlock = new VPBasicBlock(Region->getName() + ".succ");
8963       VPBlockUtils::insertBlockAfter(InsertBlock, Region);
8964     }
8965     if (Region || PrevRecipe->isPhi())
8966       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8967     else
8968       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8969 
8970     auto *RecurSplice = cast<VPInstruction>(
8971         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8972                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8973 
8974     RecurPhi->replaceAllUsesWith(RecurSplice);
8975     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8976     // all users.
8977     RecurSplice->setOperand(0, RecurPhi);
8978   }
8979 
8980   // Interleave memory: for each Interleave Group we marked earlier as relevant
8981   // for this VPlan, replace the Recipes widening its memory instructions with a
8982   // single VPInterleaveRecipe at its insertion point.
8983   for (auto IG : InterleaveGroups) {
8984     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8985         RecipeBuilder.getRecipe(IG->getInsertPos()));
8986     SmallVector<VPValue *, 4> StoredValues;
8987     for (unsigned i = 0; i < IG->getFactor(); ++i)
8988       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8989         auto *StoreR =
8990             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
8991         StoredValues.push_back(StoreR->getStoredValue());
8992       }
8993 
8994     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8995                                         Recipe->getMask());
8996     VPIG->insertBefore(Recipe);
8997     unsigned J = 0;
8998     for (unsigned i = 0; i < IG->getFactor(); ++i)
8999       if (Instruction *Member = IG->getMember(i)) {
9000         if (!Member->getType()->isVoidTy()) {
9001           VPValue *OriginalV = Plan->getVPValue(Member);
9002           Plan->removeVPValueFor(Member);
9003           Plan->addVPValue(Member, VPIG->getVPValue(J));
9004           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9005           J++;
9006         }
9007         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9008       }
9009   }
9010 
9011   std::string PlanName;
9012   raw_string_ostream RSO(PlanName);
9013   ElementCount VF = Range.Start;
9014   Plan->addVF(VF);
9015   RSO << "Initial VPlan for VF={" << VF;
9016   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9017     Plan->addVF(VF);
9018     RSO << "," << VF;
9019   }
9020   RSO << "},UF>=1";
9021   RSO.flush();
9022   Plan->setName(PlanName);
9023 
9024   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9025   // in ways that accessing values using original IR values is incorrect.
9026   Plan->disableValue2VPValue();
9027 
9028   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9029   VPlanTransforms::sinkScalarOperands(*Plan);
9030   VPlanTransforms::mergeReplicateRegions(*Plan);
9031   VPlanTransforms::removeDeadRecipes(*Plan);
9032   VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
9033 
9034   // Fold Exit block into its predecessor if possible.
9035   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9036   // VPBasicBlock as exit.
9037   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting());
9038 
9039   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9040   return Plan;
9041 }
9042 
9043 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9044   // Outer loop handling: They may require CFG and instruction level
9045   // transformations before even evaluating whether vectorization is profitable.
9046   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9047   // the vectorization pipeline.
9048   assert(!OrigLoop->isInnermost());
9049   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9050 
9051   // Create new empty VPlan
9052   auto Plan = std::make_unique<VPlan>();
9053 
9054   // Build hierarchical CFG
9055   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9056   HCFGBuilder.buildHierarchicalCFG();
9057 
9058   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9059        VF *= 2)
9060     Plan->addVF(VF);
9061 
9062   SmallPtrSet<Instruction *, 1> DeadInstructions;
9063   VPlanTransforms::VPInstructionsToVPRecipes(
9064       OrigLoop, Plan,
9065       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9066       DeadInstructions, *PSE.getSE());
9067 
9068   // Remove the existing terminator of the exiting block of the top-most region.
9069   // A BranchOnCount will be added instead when adding the canonical IV recipes.
9070   auto *Term =
9071       Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9072   Term->eraseFromParent();
9073 
9074   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9075                         true);
9076   return Plan;
9077 }
9078 
9079 // Adjust the recipes for reductions. For in-loop reductions the chain of
9080 // instructions leading from the loop exit instr to the phi need to be converted
9081 // to reductions, with one operand being vector and the other being the scalar
9082 // reduction chain. For other reductions, a select is introduced between the phi
9083 // and live-out recipes when folding the tail.
9084 void LoopVectorizationPlanner::adjustRecipesForReductions(
9085     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9086     ElementCount MinVF) {
9087   for (auto &Reduction : CM.getInLoopReductionChains()) {
9088     PHINode *Phi = Reduction.first;
9089     const RecurrenceDescriptor &RdxDesc =
9090         Legal->getReductionVars().find(Phi)->second;
9091     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9092 
9093     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9094       continue;
9095 
9096     // ReductionOperations are orders top-down from the phi's use to the
9097     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9098     // which of the two operands will remain scalar and which will be reduced.
9099     // For minmax the chain will be the select instructions.
9100     Instruction *Chain = Phi;
9101     for (Instruction *R : ReductionOperations) {
9102       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9103       RecurKind Kind = RdxDesc.getRecurrenceKind();
9104 
9105       VPValue *ChainOp = Plan->getVPValue(Chain);
9106       unsigned FirstOpId;
9107       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9108              "Only min/max recurrences allowed for inloop reductions");
9109       // Recognize a call to the llvm.fmuladd intrinsic.
9110       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9111       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9112              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9113       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9114         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9115                "Expected to replace a VPWidenSelectSC");
9116         FirstOpId = 1;
9117       } else {
9118         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9119                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9120                "Expected to replace a VPWidenSC");
9121         FirstOpId = 0;
9122       }
9123       unsigned VecOpId =
9124           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9125       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9126 
9127       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9128                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9129                          : nullptr;
9130 
9131       if (IsFMulAdd) {
9132         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9133         // need to create an fmul recipe to use as the vector operand for the
9134         // fadd reduction.
9135         VPInstruction *FMulRecipe = new VPInstruction(
9136             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9137         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9138         WidenRecipe->getParent()->insert(FMulRecipe,
9139                                          WidenRecipe->getIterator());
9140         VecOp = FMulRecipe;
9141       }
9142       VPReductionRecipe *RedRecipe =
9143           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9144       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9145       Plan->removeVPValueFor(R);
9146       Plan->addVPValue(R, RedRecipe);
9147       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9148       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9149       WidenRecipe->eraseFromParent();
9150 
9151       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9152         VPRecipeBase *CompareRecipe =
9153             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9154         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9155                "Expected to replace a VPWidenSC");
9156         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9157                "Expected no remaining users");
9158         CompareRecipe->eraseFromParent();
9159       }
9160       Chain = R;
9161     }
9162   }
9163 
9164   // If tail is folded by masking, introduce selects between the phi
9165   // and the live-out instruction of each reduction, at the beginning of the
9166   // dedicated latch block.
9167   if (CM.foldTailByMasking()) {
9168     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9169     for (VPRecipeBase &R :
9170          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9171       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9172       if (!PhiR || PhiR->isInLoop())
9173         continue;
9174       VPValue *Cond =
9175           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9176       VPValue *Red = PhiR->getBackedgeValue();
9177       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9178              "reduction recipe must be defined before latch");
9179       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9180     }
9181   }
9182 }
9183 
9184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9185 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9186                                VPSlotTracker &SlotTracker) const {
9187   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9188   IG->getInsertPos()->printAsOperand(O, false);
9189   O << ", ";
9190   getAddr()->printAsOperand(O, SlotTracker);
9191   VPValue *Mask = getMask();
9192   if (Mask) {
9193     O << ", ";
9194     Mask->printAsOperand(O, SlotTracker);
9195   }
9196 
9197   unsigned OpIdx = 0;
9198   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9199     if (!IG->getMember(i))
9200       continue;
9201     if (getNumStoreOperands() > 0) {
9202       O << "\n" << Indent << "  store ";
9203       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9204       O << " to index " << i;
9205     } else {
9206       O << "\n" << Indent << "  ";
9207       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9208       O << " = load from index " << i;
9209     }
9210     ++OpIdx;
9211   }
9212 }
9213 #endif
9214 
9215 void VPWidenCallRecipe::execute(VPTransformState &State) {
9216   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9217                                   *this, State);
9218 }
9219 
9220 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9221   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9222   State.ILV->setDebugLocFromInst(&I);
9223 
9224   // The condition can be loop invariant  but still defined inside the
9225   // loop. This means that we can't just use the original 'cond' value.
9226   // We have to take the 'vectorized' value and pick the first lane.
9227   // Instcombine will make this a no-op.
9228   auto *InvarCond =
9229       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9230 
9231   for (unsigned Part = 0; Part < State.UF; ++Part) {
9232     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9233     Value *Op0 = State.get(getOperand(1), Part);
9234     Value *Op1 = State.get(getOperand(2), Part);
9235     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9236     State.set(this, Sel, Part);
9237     State.ILV->addMetadata(Sel, &I);
9238   }
9239 }
9240 
9241 void VPWidenRecipe::execute(VPTransformState &State) {
9242   auto &I = *cast<Instruction>(getUnderlyingValue());
9243   auto &Builder = State.Builder;
9244   switch (I.getOpcode()) {
9245   case Instruction::Call:
9246   case Instruction::Br:
9247   case Instruction::PHI:
9248   case Instruction::GetElementPtr:
9249   case Instruction::Select:
9250     llvm_unreachable("This instruction is handled by a different recipe.");
9251   case Instruction::UDiv:
9252   case Instruction::SDiv:
9253   case Instruction::SRem:
9254   case Instruction::URem:
9255   case Instruction::Add:
9256   case Instruction::FAdd:
9257   case Instruction::Sub:
9258   case Instruction::FSub:
9259   case Instruction::FNeg:
9260   case Instruction::Mul:
9261   case Instruction::FMul:
9262   case Instruction::FDiv:
9263   case Instruction::FRem:
9264   case Instruction::Shl:
9265   case Instruction::LShr:
9266   case Instruction::AShr:
9267   case Instruction::And:
9268   case Instruction::Or:
9269   case Instruction::Xor: {
9270     // Just widen unops and binops.
9271     State.ILV->setDebugLocFromInst(&I);
9272 
9273     for (unsigned Part = 0; Part < State.UF; ++Part) {
9274       SmallVector<Value *, 2> Ops;
9275       for (VPValue *VPOp : operands())
9276         Ops.push_back(State.get(VPOp, Part));
9277 
9278       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9279 
9280       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9281         VecOp->copyIRFlags(&I);
9282 
9283         // If the instruction is vectorized and was in a basic block that needed
9284         // predication, we can't propagate poison-generating flags (nuw/nsw,
9285         // exact, etc.). The control flow has been linearized and the
9286         // instruction is no longer guarded by the predicate, which could make
9287         // the flag properties to no longer hold.
9288         if (State.MayGeneratePoisonRecipes.contains(this))
9289           VecOp->dropPoisonGeneratingFlags();
9290       }
9291 
9292       // Use this vector value for all users of the original instruction.
9293       State.set(this, V, Part);
9294       State.ILV->addMetadata(V, &I);
9295     }
9296 
9297     break;
9298   }
9299   case Instruction::Freeze: {
9300     State.ILV->setDebugLocFromInst(&I);
9301 
9302     for (unsigned Part = 0; Part < State.UF; ++Part) {
9303       Value *Op = State.get(getOperand(0), Part);
9304 
9305       Value *Freeze = Builder.CreateFreeze(Op);
9306       State.set(this, Freeze, Part);
9307     }
9308     break;
9309   }
9310   case Instruction::ICmp:
9311   case Instruction::FCmp: {
9312     // Widen compares. Generate vector compares.
9313     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9314     auto *Cmp = cast<CmpInst>(&I);
9315     State.ILV->setDebugLocFromInst(Cmp);
9316     for (unsigned Part = 0; Part < State.UF; ++Part) {
9317       Value *A = State.get(getOperand(0), Part);
9318       Value *B = State.get(getOperand(1), Part);
9319       Value *C = nullptr;
9320       if (FCmp) {
9321         // Propagate fast math flags.
9322         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9323         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9324         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9325       } else {
9326         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9327       }
9328       State.set(this, C, Part);
9329       State.ILV->addMetadata(C, &I);
9330     }
9331 
9332     break;
9333   }
9334 
9335   case Instruction::ZExt:
9336   case Instruction::SExt:
9337   case Instruction::FPToUI:
9338   case Instruction::FPToSI:
9339   case Instruction::FPExt:
9340   case Instruction::PtrToInt:
9341   case Instruction::IntToPtr:
9342   case Instruction::SIToFP:
9343   case Instruction::UIToFP:
9344   case Instruction::Trunc:
9345   case Instruction::FPTrunc:
9346   case Instruction::BitCast: {
9347     auto *CI = cast<CastInst>(&I);
9348     State.ILV->setDebugLocFromInst(CI);
9349 
9350     /// Vectorize casts.
9351     Type *DestTy = (State.VF.isScalar())
9352                        ? CI->getType()
9353                        : VectorType::get(CI->getType(), State.VF);
9354 
9355     for (unsigned Part = 0; Part < State.UF; ++Part) {
9356       Value *A = State.get(getOperand(0), Part);
9357       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9358       State.set(this, Cast, Part);
9359       State.ILV->addMetadata(Cast, &I);
9360     }
9361     break;
9362   }
9363   default:
9364     // This instruction is not vectorized by simple widening.
9365     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9366     llvm_unreachable("Unhandled instruction!");
9367   } // end of switch.
9368 }
9369 
9370 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9371   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9372   // Construct a vector GEP by widening the operands of the scalar GEP as
9373   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9374   // results in a vector of pointers when at least one operand of the GEP
9375   // is vector-typed. Thus, to keep the representation compact, we only use
9376   // vector-typed operands for loop-varying values.
9377 
9378   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9379     // If we are vectorizing, but the GEP has only loop-invariant operands,
9380     // the GEP we build (by only using vector-typed operands for
9381     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9382     // produce a vector of pointers, we need to either arbitrarily pick an
9383     // operand to broadcast, or broadcast a clone of the original GEP.
9384     // Here, we broadcast a clone of the original.
9385     //
9386     // TODO: If at some point we decide to scalarize instructions having
9387     //       loop-invariant operands, this special case will no longer be
9388     //       required. We would add the scalarization decision to
9389     //       collectLoopScalars() and teach getVectorValue() to broadcast
9390     //       the lane-zero scalar value.
9391     auto *Clone = State.Builder.Insert(GEP->clone());
9392     for (unsigned Part = 0; Part < State.UF; ++Part) {
9393       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9394       State.set(this, EntryPart, Part);
9395       State.ILV->addMetadata(EntryPart, GEP);
9396     }
9397   } else {
9398     // If the GEP has at least one loop-varying operand, we are sure to
9399     // produce a vector of pointers. But if we are only unrolling, we want
9400     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9401     // produce with the code below will be scalar (if VF == 1) or vector
9402     // (otherwise). Note that for the unroll-only case, we still maintain
9403     // values in the vector mapping with initVector, as we do for other
9404     // instructions.
9405     for (unsigned Part = 0; Part < State.UF; ++Part) {
9406       // The pointer operand of the new GEP. If it's loop-invariant, we
9407       // won't broadcast it.
9408       auto *Ptr = IsPtrLoopInvariant
9409                       ? State.get(getOperand(0), VPIteration(0, 0))
9410                       : State.get(getOperand(0), Part);
9411 
9412       // Collect all the indices for the new GEP. If any index is
9413       // loop-invariant, we won't broadcast it.
9414       SmallVector<Value *, 4> Indices;
9415       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9416         VPValue *Operand = getOperand(I);
9417         if (IsIndexLoopInvariant[I - 1])
9418           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9419         else
9420           Indices.push_back(State.get(Operand, Part));
9421       }
9422 
9423       // If the GEP instruction is vectorized and was in a basic block that
9424       // needed predication, we can't propagate the poison-generating 'inbounds'
9425       // flag. The control flow has been linearized and the GEP is no longer
9426       // guarded by the predicate, which could make the 'inbounds' properties to
9427       // no longer hold.
9428       bool IsInBounds =
9429           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9430 
9431       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9432       // but it should be a vector, otherwise.
9433       auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr,
9434                                              Indices, "", IsInBounds);
9435       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9436              "NewGEP is not a pointer vector");
9437       State.set(this, NewGEP, Part);
9438       State.ILV->addMetadata(NewGEP, GEP);
9439     }
9440   }
9441 }
9442 
9443 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9444   assert(!State.Instance && "Int or FP induction being replicated.");
9445 
9446   Value *Start = getStartValue()->getLiveInIRValue();
9447   const InductionDescriptor &ID = getInductionDescriptor();
9448   TruncInst *Trunc = getTruncInst();
9449   IRBuilderBase &Builder = State.Builder;
9450   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9451   assert(State.VF.isVector() && "must have vector VF");
9452 
9453   // The value from the original loop to which we are mapping the new induction
9454   // variable.
9455   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9456 
9457   // Fast-math-flags propagate from the original induction instruction.
9458   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9459   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9460     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9461 
9462   // Now do the actual transformations, and start with fetching the step value.
9463   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9464 
9465   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9466          "Expected either an induction phi-node or a truncate of it!");
9467 
9468   // Construct the initial value of the vector IV in the vector loop preheader
9469   auto CurrIP = Builder.saveIP();
9470   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9471   Builder.SetInsertPoint(VectorPH->getTerminator());
9472   if (isa<TruncInst>(EntryVal)) {
9473     assert(Start->getType()->isIntegerTy() &&
9474            "Truncation requires an integer type");
9475     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9476     Step = Builder.CreateTrunc(Step, TruncType);
9477     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9478   }
9479 
9480   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9481   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9482   Value *SteppedStart = getStepVector(
9483       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9484 
9485   // We create vector phi nodes for both integer and floating-point induction
9486   // variables. Here, we determine the kind of arithmetic we will perform.
9487   Instruction::BinaryOps AddOp;
9488   Instruction::BinaryOps MulOp;
9489   if (Step->getType()->isIntegerTy()) {
9490     AddOp = Instruction::Add;
9491     MulOp = Instruction::Mul;
9492   } else {
9493     AddOp = ID.getInductionOpcode();
9494     MulOp = Instruction::FMul;
9495   }
9496 
9497   // Multiply the vectorization factor by the step using integer or
9498   // floating-point arithmetic as appropriate.
9499   Type *StepType = Step->getType();
9500   Value *RuntimeVF;
9501   if (Step->getType()->isFloatingPointTy())
9502     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9503   else
9504     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9505   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9506 
9507   // Create a vector splat to use in the induction update.
9508   //
9509   // FIXME: If the step is non-constant, we create the vector splat with
9510   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9511   //        handle a constant vector splat.
9512   Value *SplatVF = isa<Constant>(Mul)
9513                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9514                        : Builder.CreateVectorSplat(State.VF, Mul);
9515   Builder.restoreIP(CurrIP);
9516 
9517   // We may need to add the step a number of times, depending on the unroll
9518   // factor. The last of those goes into the PHI.
9519   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9520                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9521   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9522   Instruction *LastInduction = VecInd;
9523   for (unsigned Part = 0; Part < State.UF; ++Part) {
9524     State.set(this, LastInduction, Part);
9525 
9526     if (isa<TruncInst>(EntryVal))
9527       State.ILV->addMetadata(LastInduction, EntryVal);
9528 
9529     LastInduction = cast<Instruction>(
9530         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9531     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9532   }
9533 
9534   LastInduction->setName("vec.ind.next");
9535   VecInd->addIncoming(SteppedStart, VectorPH);
9536   // Add induction update using an incorrect block temporarily. The phi node
9537   // will be fixed after VPlan execution. Note that at this point the latch
9538   // block cannot be used, as it does not exist yet.
9539   // TODO: Model increment value in VPlan, by turning the recipe into a
9540   // multi-def and a subclass of VPHeaderPHIRecipe.
9541   VecInd->addIncoming(LastInduction, VectorPH);
9542 }
9543 
9544 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9545   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9546          "Not a pointer induction according to InductionDescriptor!");
9547   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9548          "Unexpected type.");
9549 
9550   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9551   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9552 
9553   if (onlyScalarsGenerated(State.VF)) {
9554     // This is the normalized GEP that starts counting at zero.
9555     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9556         CanonicalIV, IndDesc.getStep()->getType());
9557     // Determine the number of scalars we need to generate for each unroll
9558     // iteration. If the instruction is uniform, we only need to generate the
9559     // first lane. Otherwise, we generate all VF values.
9560     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9561     assert((IsUniform || !State.VF.isScalable()) &&
9562            "Cannot scalarize a scalable VF");
9563     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9564 
9565     for (unsigned Part = 0; Part < State.UF; ++Part) {
9566       Value *PartStart =
9567           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9568 
9569       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9570         Value *Idx = State.Builder.CreateAdd(
9571             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9572         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9573 
9574         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9575                                       State.CFG.PrevBB->getTerminator());
9576         Value *SclrGep = emitTransformedIndex(
9577             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9578         SclrGep->setName("next.gep");
9579         State.set(this, SclrGep, VPIteration(Part, Lane));
9580       }
9581     }
9582     return;
9583   }
9584 
9585   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9586          "Induction step not a SCEV constant!");
9587   Type *PhiType = IndDesc.getStep()->getType();
9588 
9589   // Build a pointer phi
9590   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9591   Type *ScStValueType = ScalarStartValue->getType();
9592   PHINode *NewPointerPhi =
9593       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9594 
9595   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9596   NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
9597 
9598   // A pointer induction, performed by using a gep
9599   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9600   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9601 
9602   const SCEV *ScalarStep = IndDesc.getStep();
9603   SCEVExpander Exp(SE, DL, "induction");
9604   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9605   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9606   Value *NumUnrolledElems =
9607       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9608   Value *InductionGEP = GetElementPtrInst::Create(
9609       IndDesc.getElementType(), NewPointerPhi,
9610       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9611       InductionLoc);
9612   // Add induction update using an incorrect block temporarily. The phi node
9613   // will be fixed after VPlan execution. Note that at this point the latch
9614   // block cannot be used, as it does not exist yet.
9615   // TODO: Model increment value in VPlan, by turning the recipe into a
9616   // multi-def and a subclass of VPHeaderPHIRecipe.
9617   NewPointerPhi->addIncoming(InductionGEP, VectorPH);
9618 
9619   // Create UF many actual address geps that use the pointer
9620   // phi as base and a vectorized version of the step value
9621   // (<step*0, ..., step*N>) as offset.
9622   for (unsigned Part = 0; Part < State.UF; ++Part) {
9623     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9624     Value *StartOffsetScalar =
9625         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9626     Value *StartOffset =
9627         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9628     // Create a vector of consecutive numbers from zero to VF.
9629     StartOffset = State.Builder.CreateAdd(
9630         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9631 
9632     Value *GEP = State.Builder.CreateGEP(
9633         IndDesc.getElementType(), NewPointerPhi,
9634         State.Builder.CreateMul(
9635             StartOffset,
9636             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9637             "vector.gep"));
9638     State.set(this, GEP, Part);
9639   }
9640 }
9641 
9642 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9643   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9644 
9645   // Fast-math-flags propagate from the original induction instruction.
9646   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9647   if (IndDesc.getInductionBinOp() &&
9648       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9649     State.Builder.setFastMathFlags(
9650         IndDesc.getInductionBinOp()->getFastMathFlags());
9651 
9652   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9653   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9654     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9655     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9656     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9657       ScalarIV =
9658           Ty->isIntegerTy()
9659               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9660               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9661       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9662                                       getStartValue()->getLiveInIRValue(), Step,
9663                                       IndDesc);
9664       ScalarIV->setName("offset.idx");
9665     }
9666     if (TruncToTy) {
9667       assert(Step->getType()->isIntegerTy() &&
9668              "Truncation requires an integer step");
9669       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9670       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9671     }
9672     return ScalarIV;
9673   };
9674 
9675   Value *ScalarIV = CreateScalarIV(Step);
9676   if (State.VF.isVector()) {
9677     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9678     return;
9679   }
9680 
9681   for (unsigned Part = 0; Part < State.UF; ++Part) {
9682     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9683     Value *EntryPart;
9684     if (Step->getType()->isFloatingPointTy()) {
9685       Value *StartIdx =
9686           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9687       // Floating-point operations inherit FMF via the builder's flags.
9688       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9689       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9690                                             ScalarIV, MulOp);
9691     } else {
9692       Value *StartIdx =
9693           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9694       EntryPart = State.Builder.CreateAdd(
9695           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9696     }
9697     State.set(this, EntryPart, Part);
9698   }
9699 }
9700 
9701 void VPBlendRecipe::execute(VPTransformState &State) {
9702   State.ILV->setDebugLocFromInst(Phi);
9703   // We know that all PHIs in non-header blocks are converted into
9704   // selects, so we don't have to worry about the insertion order and we
9705   // can just use the builder.
9706   // At this point we generate the predication tree. There may be
9707   // duplications since this is a simple recursive scan, but future
9708   // optimizations will clean it up.
9709 
9710   unsigned NumIncoming = getNumIncomingValues();
9711 
9712   // Generate a sequence of selects of the form:
9713   // SELECT(Mask3, In3,
9714   //        SELECT(Mask2, In2,
9715   //               SELECT(Mask1, In1,
9716   //                      In0)))
9717   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9718   // are essentially undef are taken from In0.
9719   InnerLoopVectorizer::VectorParts Entry(State.UF);
9720   for (unsigned In = 0; In < NumIncoming; ++In) {
9721     for (unsigned Part = 0; Part < State.UF; ++Part) {
9722       // We might have single edge PHIs (blocks) - use an identity
9723       // 'select' for the first PHI operand.
9724       Value *In0 = State.get(getIncomingValue(In), Part);
9725       if (In == 0)
9726         Entry[Part] = In0; // Initialize with the first incoming value.
9727       else {
9728         // Select between the current value and the previous incoming edge
9729         // based on the incoming mask.
9730         Value *Cond = State.get(getMask(In), Part);
9731         Entry[Part] =
9732             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9733       }
9734     }
9735   }
9736   for (unsigned Part = 0; Part < State.UF; ++Part)
9737     State.set(this, Entry[Part], Part);
9738 }
9739 
9740 void VPInterleaveRecipe::execute(VPTransformState &State) {
9741   assert(!State.Instance && "Interleave group being replicated.");
9742   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9743                                       getStoredValues(), getMask());
9744 }
9745 
9746 void VPReductionRecipe::execute(VPTransformState &State) {
9747   assert(!State.Instance && "Reduction being replicated.");
9748   Value *PrevInChain = State.get(getChainOp(), 0);
9749   RecurKind Kind = RdxDesc->getRecurrenceKind();
9750   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9751   // Propagate the fast-math flags carried by the underlying instruction.
9752   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9753   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9754   for (unsigned Part = 0; Part < State.UF; ++Part) {
9755     Value *NewVecOp = State.get(getVecOp(), Part);
9756     if (VPValue *Cond = getCondOp()) {
9757       Value *NewCond = State.get(Cond, Part);
9758       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9759       Value *Iden = RdxDesc->getRecurrenceIdentity(
9760           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9761       Value *IdenVec =
9762           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9763       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9764       NewVecOp = Select;
9765     }
9766     Value *NewRed;
9767     Value *NextInChain;
9768     if (IsOrdered) {
9769       if (State.VF.isVector())
9770         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9771                                         PrevInChain);
9772       else
9773         NewRed = State.Builder.CreateBinOp(
9774             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9775             NewVecOp);
9776       PrevInChain = NewRed;
9777     } else {
9778       PrevInChain = State.get(getChainOp(), Part);
9779       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9780     }
9781     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9782       NextInChain =
9783           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9784                          NewRed, PrevInChain);
9785     } else if (IsOrdered)
9786       NextInChain = NewRed;
9787     else
9788       NextInChain = State.Builder.CreateBinOp(
9789           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9790           PrevInChain);
9791     State.set(this, NextInChain, Part);
9792   }
9793 }
9794 
9795 void VPReplicateRecipe::execute(VPTransformState &State) {
9796   if (State.Instance) { // Generate a single instance.
9797     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9798     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9799                                     IsPredicated, State);
9800     // Insert scalar instance packing it into a vector.
9801     if (AlsoPack && State.VF.isVector()) {
9802       // If we're constructing lane 0, initialize to start from poison.
9803       if (State.Instance->Lane.isFirstLane()) {
9804         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9805         Value *Poison = PoisonValue::get(
9806             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9807         State.set(this, Poison, State.Instance->Part);
9808       }
9809       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9810     }
9811     return;
9812   }
9813 
9814   // Generate scalar instances for all VF lanes of all UF parts, unless the
9815   // instruction is uniform inwhich case generate only the first lane for each
9816   // of the UF parts.
9817   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9818   assert((!State.VF.isScalable() || IsUniform) &&
9819          "Can't scalarize a scalable vector");
9820   for (unsigned Part = 0; Part < State.UF; ++Part)
9821     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9822       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9823                                       VPIteration(Part, Lane), IsPredicated,
9824                                       State);
9825 }
9826 
9827 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9828   assert(State.Instance && "Branch on Mask works only on single instance.");
9829 
9830   unsigned Part = State.Instance->Part;
9831   unsigned Lane = State.Instance->Lane.getKnownLane();
9832 
9833   Value *ConditionBit = nullptr;
9834   VPValue *BlockInMask = getMask();
9835   if (BlockInMask) {
9836     ConditionBit = State.get(BlockInMask, Part);
9837     if (ConditionBit->getType()->isVectorTy())
9838       ConditionBit = State.Builder.CreateExtractElement(
9839           ConditionBit, State.Builder.getInt32(Lane));
9840   } else // Block in mask is all-one.
9841     ConditionBit = State.Builder.getTrue();
9842 
9843   // Replace the temporary unreachable terminator with a new conditional branch,
9844   // whose two destinations will be set later when they are created.
9845   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9846   assert(isa<UnreachableInst>(CurrentTerminator) &&
9847          "Expected to replace unreachable terminator with conditional branch.");
9848   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9849   CondBr->setSuccessor(0, nullptr);
9850   ReplaceInstWithInst(CurrentTerminator, CondBr);
9851 }
9852 
9853 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9854   assert(State.Instance && "Predicated instruction PHI works per instance.");
9855   Instruction *ScalarPredInst =
9856       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9857   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9858   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9859   assert(PredicatingBB && "Predicated block has no single predecessor.");
9860   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9861          "operand must be VPReplicateRecipe");
9862 
9863   // By current pack/unpack logic we need to generate only a single phi node: if
9864   // a vector value for the predicated instruction exists at this point it means
9865   // the instruction has vector users only, and a phi for the vector value is
9866   // needed. In this case the recipe of the predicated instruction is marked to
9867   // also do that packing, thereby "hoisting" the insert-element sequence.
9868   // Otherwise, a phi node for the scalar value is needed.
9869   unsigned Part = State.Instance->Part;
9870   if (State.hasVectorValue(getOperand(0), Part)) {
9871     Value *VectorValue = State.get(getOperand(0), Part);
9872     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9873     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9874     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9875     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9876     if (State.hasVectorValue(this, Part))
9877       State.reset(this, VPhi, Part);
9878     else
9879       State.set(this, VPhi, Part);
9880     // NOTE: Currently we need to update the value of the operand, so the next
9881     // predicated iteration inserts its generated value in the correct vector.
9882     State.reset(getOperand(0), VPhi, Part);
9883   } else {
9884     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9885     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9886     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9887                      PredicatingBB);
9888     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9889     if (State.hasScalarValue(this, *State.Instance))
9890       State.reset(this, Phi, *State.Instance);
9891     else
9892       State.set(this, Phi, *State.Instance);
9893     // NOTE: Currently we need to update the value of the operand, so the next
9894     // predicated iteration inserts its generated value in the correct vector.
9895     State.reset(getOperand(0), Phi, *State.Instance);
9896   }
9897 }
9898 
9899 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9900   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9901 
9902   // Attempt to issue a wide load.
9903   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9904   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9905 
9906   assert((LI || SI) && "Invalid Load/Store instruction");
9907   assert((!SI || StoredValue) && "No stored value provided for widened store");
9908   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9909 
9910   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9911 
9912   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9913   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9914   bool CreateGatherScatter = !Consecutive;
9915 
9916   auto &Builder = State.Builder;
9917   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9918   bool isMaskRequired = getMask();
9919   if (isMaskRequired)
9920     for (unsigned Part = 0; Part < State.UF; ++Part)
9921       BlockInMaskParts[Part] = State.get(getMask(), Part);
9922 
9923   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9924     // Calculate the pointer for the specific unroll-part.
9925     GetElementPtrInst *PartPtr = nullptr;
9926 
9927     bool InBounds = false;
9928     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9929       InBounds = gep->isInBounds();
9930     if (Reverse) {
9931       // If the address is consecutive but reversed, then the
9932       // wide store needs to start at the last vector element.
9933       // RunTimeVF =  VScale * VF.getKnownMinValue()
9934       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9935       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9936       // NumElt = -Part * RunTimeVF
9937       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9938       // LastLane = 1 - RunTimeVF
9939       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9940       PartPtr =
9941           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9942       PartPtr->setIsInBounds(InBounds);
9943       PartPtr = cast<GetElementPtrInst>(
9944           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9945       PartPtr->setIsInBounds(InBounds);
9946       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9947         BlockInMaskParts[Part] =
9948             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9949     } else {
9950       Value *Increment =
9951           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9952       PartPtr = cast<GetElementPtrInst>(
9953           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9954       PartPtr->setIsInBounds(InBounds);
9955     }
9956 
9957     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9958     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9959   };
9960 
9961   // Handle Stores:
9962   if (SI) {
9963     State.ILV->setDebugLocFromInst(SI);
9964 
9965     for (unsigned Part = 0; Part < State.UF; ++Part) {
9966       Instruction *NewSI = nullptr;
9967       Value *StoredVal = State.get(StoredValue, Part);
9968       if (CreateGatherScatter) {
9969         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9970         Value *VectorGep = State.get(getAddr(), Part);
9971         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9972                                             MaskPart);
9973       } else {
9974         if (Reverse) {
9975           // If we store to reverse consecutive memory locations, then we need
9976           // to reverse the order of elements in the stored value.
9977           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9978           // We don't want to update the value in the map as it might be used in
9979           // another expression. So don't call resetVectorValue(StoredVal).
9980         }
9981         auto *VecPtr =
9982             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9983         if (isMaskRequired)
9984           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9985                                             BlockInMaskParts[Part]);
9986         else
9987           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9988       }
9989       State.ILV->addMetadata(NewSI, SI);
9990     }
9991     return;
9992   }
9993 
9994   // Handle loads.
9995   assert(LI && "Must have a load instruction");
9996   State.ILV->setDebugLocFromInst(LI);
9997   for (unsigned Part = 0; Part < State.UF; ++Part) {
9998     Value *NewLI;
9999     if (CreateGatherScatter) {
10000       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10001       Value *VectorGep = State.get(getAddr(), Part);
10002       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10003                                          nullptr, "wide.masked.gather");
10004       State.ILV->addMetadata(NewLI, LI);
10005     } else {
10006       auto *VecPtr =
10007           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10008       if (isMaskRequired)
10009         NewLI = Builder.CreateMaskedLoad(
10010             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10011             PoisonValue::get(DataTy), "wide.masked.load");
10012       else
10013         NewLI =
10014             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10015 
10016       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10017       State.ILV->addMetadata(NewLI, LI);
10018       if (Reverse)
10019         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10020     }
10021 
10022     State.set(getVPSingleValue(), NewLI, Part);
10023   }
10024 }
10025 
10026 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10027 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10028 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10029 // for predication.
10030 static ScalarEpilogueLowering getScalarEpilogueLowering(
10031     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10032     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10033     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10034     LoopVectorizationLegality &LVL) {
10035   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10036   // don't look at hints or options, and don't request a scalar epilogue.
10037   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10038   // LoopAccessInfo (due to code dependency and not being able to reliably get
10039   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10040   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10041   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10042   // back to the old way and vectorize with versioning when forced. See D81345.)
10043   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10044                                                       PGSOQueryType::IRPass) &&
10045                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10046     return CM_ScalarEpilogueNotAllowedOptSize;
10047 
10048   // 2) If set, obey the directives
10049   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10050     switch (PreferPredicateOverEpilogue) {
10051     case PreferPredicateTy::ScalarEpilogue:
10052       return CM_ScalarEpilogueAllowed;
10053     case PreferPredicateTy::PredicateElseScalarEpilogue:
10054       return CM_ScalarEpilogueNotNeededUsePredicate;
10055     case PreferPredicateTy::PredicateOrDontVectorize:
10056       return CM_ScalarEpilogueNotAllowedUsePredicate;
10057     };
10058   }
10059 
10060   // 3) If set, obey the hints
10061   switch (Hints.getPredicate()) {
10062   case LoopVectorizeHints::FK_Enabled:
10063     return CM_ScalarEpilogueNotNeededUsePredicate;
10064   case LoopVectorizeHints::FK_Disabled:
10065     return CM_ScalarEpilogueAllowed;
10066   };
10067 
10068   // 4) if the TTI hook indicates this is profitable, request predication.
10069   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10070                                        LVL.getLAI()))
10071     return CM_ScalarEpilogueNotNeededUsePredicate;
10072 
10073   return CM_ScalarEpilogueAllowed;
10074 }
10075 
10076 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10077   // If Values have been set for this Def return the one relevant for \p Part.
10078   if (hasVectorValue(Def, Part))
10079     return Data.PerPartOutput[Def][Part];
10080 
10081   if (!hasScalarValue(Def, {Part, 0})) {
10082     Value *IRV = Def->getLiveInIRValue();
10083     Value *B = ILV->getBroadcastInstrs(IRV);
10084     set(Def, B, Part);
10085     return B;
10086   }
10087 
10088   Value *ScalarValue = get(Def, {Part, 0});
10089   // If we aren't vectorizing, we can just copy the scalar map values over
10090   // to the vector map.
10091   if (VF.isScalar()) {
10092     set(Def, ScalarValue, Part);
10093     return ScalarValue;
10094   }
10095 
10096   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10097   bool IsUniform = RepR && RepR->isUniform();
10098 
10099   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10100   // Check if there is a scalar value for the selected lane.
10101   if (!hasScalarValue(Def, {Part, LastLane})) {
10102     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10103     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10104             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10105            "unexpected recipe found to be invariant");
10106     IsUniform = true;
10107     LastLane = 0;
10108   }
10109 
10110   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10111   // Set the insert point after the last scalarized instruction or after the
10112   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10113   // will directly follow the scalar definitions.
10114   auto OldIP = Builder.saveIP();
10115   auto NewIP =
10116       isa<PHINode>(LastInst)
10117           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10118           : std::next(BasicBlock::iterator(LastInst));
10119   Builder.SetInsertPoint(&*NewIP);
10120 
10121   // However, if we are vectorizing, we need to construct the vector values.
10122   // If the value is known to be uniform after vectorization, we can just
10123   // broadcast the scalar value corresponding to lane zero for each unroll
10124   // iteration. Otherwise, we construct the vector values using
10125   // insertelement instructions. Since the resulting vectors are stored in
10126   // State, we will only generate the insertelements once.
10127   Value *VectorValue = nullptr;
10128   if (IsUniform) {
10129     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10130     set(Def, VectorValue, Part);
10131   } else {
10132     // Initialize packing with insertelements to start from undef.
10133     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10134     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10135     set(Def, Undef, Part);
10136     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10137       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10138     VectorValue = get(Def, Part);
10139   }
10140   Builder.restoreIP(OldIP);
10141   return VectorValue;
10142 }
10143 
10144 // Process the loop in the VPlan-native vectorization path. This path builds
10145 // VPlan upfront in the vectorization pipeline, which allows to apply
10146 // VPlan-to-VPlan transformations from the very beginning without modifying the
10147 // input LLVM IR.
10148 static bool processLoopInVPlanNativePath(
10149     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10150     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10151     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10152     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10153     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10154     LoopVectorizationRequirements &Requirements) {
10155 
10156   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10157     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10158     return false;
10159   }
10160   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10161   Function *F = L->getHeader()->getParent();
10162   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10163 
10164   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10165       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10166 
10167   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10168                                 &Hints, IAI);
10169   // Use the planner for outer loop vectorization.
10170   // TODO: CM is not used at this point inside the planner. Turn CM into an
10171   // optional argument if we don't need it in the future.
10172   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10173                                Requirements, ORE);
10174 
10175   // Get user vectorization factor.
10176   ElementCount UserVF = Hints.getWidth();
10177 
10178   CM.collectElementTypesForWidening();
10179 
10180   // Plan how to best vectorize, return the best VF and its cost.
10181   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10182 
10183   // If we are stress testing VPlan builds, do not attempt to generate vector
10184   // code. Masked vector code generation support will follow soon.
10185   // Also, do not attempt to vectorize if no vector code will be produced.
10186   if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
10187     return false;
10188 
10189   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10190 
10191   {
10192     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10193                              F->getParent()->getDataLayout());
10194     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10195                            &CM, BFI, PSI, Checks);
10196     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10197                       << L->getHeader()->getParent()->getName() << "\"\n");
10198     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10199   }
10200 
10201   // Mark the loop as already vectorized to avoid vectorizing again.
10202   Hints.setAlreadyVectorized();
10203   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10204   return true;
10205 }
10206 
10207 // Emit a remark if there are stores to floats that required a floating point
10208 // extension. If the vectorized loop was generated with floating point there
10209 // will be a performance penalty from the conversion overhead and the change in
10210 // the vector width.
10211 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10212   SmallVector<Instruction *, 4> Worklist;
10213   for (BasicBlock *BB : L->getBlocks()) {
10214     for (Instruction &Inst : *BB) {
10215       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10216         if (S->getValueOperand()->getType()->isFloatTy())
10217           Worklist.push_back(S);
10218       }
10219     }
10220   }
10221 
10222   // Traverse the floating point stores upwards searching, for floating point
10223   // conversions.
10224   SmallPtrSet<const Instruction *, 4> Visited;
10225   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10226   while (!Worklist.empty()) {
10227     auto *I = Worklist.pop_back_val();
10228     if (!L->contains(I))
10229       continue;
10230     if (!Visited.insert(I).second)
10231       continue;
10232 
10233     // Emit a remark if the floating point store required a floating
10234     // point conversion.
10235     // TODO: More work could be done to identify the root cause such as a
10236     // constant or a function return type and point the user to it.
10237     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10238       ORE->emit([&]() {
10239         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10240                                           I->getDebugLoc(), L->getHeader())
10241                << "floating point conversion changes vector width. "
10242                << "Mixed floating point precision requires an up/down "
10243                << "cast that will negatively impact performance.";
10244       });
10245 
10246     for (Use &Op : I->operands())
10247       if (auto *OpI = dyn_cast<Instruction>(Op))
10248         Worklist.push_back(OpI);
10249   }
10250 }
10251 
10252 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10253     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10254                                !EnableLoopInterleaving),
10255       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10256                               !EnableLoopVectorization) {}
10257 
10258 bool LoopVectorizePass::processLoop(Loop *L) {
10259   assert((EnableVPlanNativePath || L->isInnermost()) &&
10260          "VPlan-native path is not enabled. Only process inner loops.");
10261 
10262 #ifndef NDEBUG
10263   const std::string DebugLocStr = getDebugLocString(L);
10264 #endif /* NDEBUG */
10265 
10266   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10267                     << L->getHeader()->getParent()->getName() << "' from "
10268                     << DebugLocStr << "\n");
10269 
10270   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10271 
10272   LLVM_DEBUG(
10273       dbgs() << "LV: Loop hints:"
10274              << " force="
10275              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10276                      ? "disabled"
10277                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10278                             ? "enabled"
10279                             : "?"))
10280              << " width=" << Hints.getWidth()
10281              << " interleave=" << Hints.getInterleave() << "\n");
10282 
10283   // Function containing loop
10284   Function *F = L->getHeader()->getParent();
10285 
10286   // Looking at the diagnostic output is the only way to determine if a loop
10287   // was vectorized (other than looking at the IR or machine code), so it
10288   // is important to generate an optimization remark for each loop. Most of
10289   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10290   // generated as OptimizationRemark and OptimizationRemarkMissed are
10291   // less verbose reporting vectorized loops and unvectorized loops that may
10292   // benefit from vectorization, respectively.
10293 
10294   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10295     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10296     return false;
10297   }
10298 
10299   PredicatedScalarEvolution PSE(*SE, *L);
10300 
10301   // Check if it is legal to vectorize the loop.
10302   LoopVectorizationRequirements Requirements;
10303   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10304                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10305   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10306     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10307     Hints.emitRemarkWithHints();
10308     return false;
10309   }
10310 
10311   // Check the function attributes and profiles to find out if this function
10312   // should be optimized for size.
10313   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10314       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10315 
10316   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10317   // here. They may require CFG and instruction level transformations before
10318   // even evaluating whether vectorization is profitable. Since we cannot modify
10319   // the incoming IR, we need to build VPlan upfront in the vectorization
10320   // pipeline.
10321   if (!L->isInnermost())
10322     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10323                                         ORE, BFI, PSI, Hints, Requirements);
10324 
10325   assert(L->isInnermost() && "Inner loop expected.");
10326 
10327   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10328   // count by optimizing for size, to minimize overheads.
10329   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10330   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10331     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10332                       << "This loop is worth vectorizing only if no scalar "
10333                       << "iteration overheads are incurred.");
10334     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10335       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10336     else {
10337       LLVM_DEBUG(dbgs() << "\n");
10338       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10339     }
10340   }
10341 
10342   // Check the function attributes to see if implicit floats are allowed.
10343   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10344   // an integer loop and the vector instructions selected are purely integer
10345   // vector instructions?
10346   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10347     reportVectorizationFailure(
10348         "Can't vectorize when the NoImplicitFloat attribute is used",
10349         "loop not vectorized due to NoImplicitFloat attribute",
10350         "NoImplicitFloat", ORE, L);
10351     Hints.emitRemarkWithHints();
10352     return false;
10353   }
10354 
10355   // Check if the target supports potentially unsafe FP vectorization.
10356   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10357   // for the target we're vectorizing for, to make sure none of the
10358   // additional fp-math flags can help.
10359   if (Hints.isPotentiallyUnsafe() &&
10360       TTI->isFPVectorizationPotentiallyUnsafe()) {
10361     reportVectorizationFailure(
10362         "Potentially unsafe FP op prevents vectorization",
10363         "loop not vectorized due to unsafe FP support.",
10364         "UnsafeFP", ORE, L);
10365     Hints.emitRemarkWithHints();
10366     return false;
10367   }
10368 
10369   bool AllowOrderedReductions;
10370   // If the flag is set, use that instead and override the TTI behaviour.
10371   if (ForceOrderedReductions.getNumOccurrences() > 0)
10372     AllowOrderedReductions = ForceOrderedReductions;
10373   else
10374     AllowOrderedReductions = TTI->enableOrderedReductions();
10375   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10376     ORE->emit([&]() {
10377       auto *ExactFPMathInst = Requirements.getExactFPInst();
10378       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10379                                                  ExactFPMathInst->getDebugLoc(),
10380                                                  ExactFPMathInst->getParent())
10381              << "loop not vectorized: cannot prove it is safe to reorder "
10382                 "floating-point operations";
10383     });
10384     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10385                          "reorder floating-point operations\n");
10386     Hints.emitRemarkWithHints();
10387     return false;
10388   }
10389 
10390   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10391   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10392 
10393   // If an override option has been passed in for interleaved accesses, use it.
10394   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10395     UseInterleaved = EnableInterleavedMemAccesses;
10396 
10397   // Analyze interleaved memory accesses.
10398   if (UseInterleaved) {
10399     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10400   }
10401 
10402   // Use the cost model.
10403   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10404                                 F, &Hints, IAI);
10405   CM.collectValuesToIgnore();
10406   CM.collectElementTypesForWidening();
10407 
10408   // Use the planner for vectorization.
10409   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10410                                Requirements, ORE);
10411 
10412   // Get user vectorization factor and interleave count.
10413   ElementCount UserVF = Hints.getWidth();
10414   unsigned UserIC = Hints.getInterleave();
10415 
10416   // Plan how to best vectorize, return the best VF and its cost.
10417   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10418 
10419   VectorizationFactor VF = VectorizationFactor::Disabled();
10420   unsigned IC = 1;
10421 
10422   GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10423                            F->getParent()->getDataLayout());
10424   if (MaybeVF) {
10425     if (LVP.requiresTooManyRuntimeChecks()) {
10426       ORE->emit([&]() {
10427         return OptimizationRemarkAnalysisAliasing(
10428                    DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10429                    L->getHeader())
10430                << "loop not vectorized: cannot prove it is safe to reorder "
10431                   "memory operations";
10432       });
10433       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10434       Hints.emitRemarkWithHints();
10435       return false;
10436     }
10437     VF = *MaybeVF;
10438     // Select the interleave count.
10439     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10440 
10441     unsigned SelectedIC = std::max(IC, UserIC);
10442     //  Optimistically generate runtime checks if they are needed. Drop them if
10443     //  they turn out to not be profitable.
10444     if (VF.Width.isVector() || SelectedIC > 1)
10445       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
10446   }
10447 
10448   // Identify the diagnostic messages that should be produced.
10449   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10450   bool VectorizeLoop = true, InterleaveLoop = true;
10451   if (VF.Width.isScalar()) {
10452     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10453     VecDiagMsg = std::make_pair(
10454         "VectorizationNotBeneficial",
10455         "the cost-model indicates that vectorization is not beneficial");
10456     VectorizeLoop = false;
10457   }
10458 
10459   if (!MaybeVF && UserIC > 1) {
10460     // Tell the user interleaving was avoided up-front, despite being explicitly
10461     // requested.
10462     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10463                          "interleaving should be avoided up front\n");
10464     IntDiagMsg = std::make_pair(
10465         "InterleavingAvoided",
10466         "Ignoring UserIC, because interleaving was avoided up front");
10467     InterleaveLoop = false;
10468   } else if (IC == 1 && UserIC <= 1) {
10469     // Tell the user interleaving is not beneficial.
10470     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10471     IntDiagMsg = std::make_pair(
10472         "InterleavingNotBeneficial",
10473         "the cost-model indicates that interleaving is not beneficial");
10474     InterleaveLoop = false;
10475     if (UserIC == 1) {
10476       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10477       IntDiagMsg.second +=
10478           " and is explicitly disabled or interleave count is set to 1";
10479     }
10480   } else if (IC > 1 && UserIC == 1) {
10481     // Tell the user interleaving is beneficial, but it explicitly disabled.
10482     LLVM_DEBUG(
10483         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10484     IntDiagMsg = std::make_pair(
10485         "InterleavingBeneficialButDisabled",
10486         "the cost-model indicates that interleaving is beneficial "
10487         "but is explicitly disabled or interleave count is set to 1");
10488     InterleaveLoop = false;
10489   }
10490 
10491   // Override IC if user provided an interleave count.
10492   IC = UserIC > 0 ? UserIC : IC;
10493 
10494   // Emit diagnostic messages, if any.
10495   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10496   if (!VectorizeLoop && !InterleaveLoop) {
10497     // Do not vectorize or interleaving the loop.
10498     ORE->emit([&]() {
10499       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10500                                       L->getStartLoc(), L->getHeader())
10501              << VecDiagMsg.second;
10502     });
10503     ORE->emit([&]() {
10504       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10505                                       L->getStartLoc(), L->getHeader())
10506              << IntDiagMsg.second;
10507     });
10508     return false;
10509   } else if (!VectorizeLoop && InterleaveLoop) {
10510     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10511     ORE->emit([&]() {
10512       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10513                                         L->getStartLoc(), L->getHeader())
10514              << VecDiagMsg.second;
10515     });
10516   } else if (VectorizeLoop && !InterleaveLoop) {
10517     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10518                       << ") in " << DebugLocStr << '\n');
10519     ORE->emit([&]() {
10520       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10521                                         L->getStartLoc(), L->getHeader())
10522              << IntDiagMsg.second;
10523     });
10524   } else if (VectorizeLoop && InterleaveLoop) {
10525     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10526                       << ") in " << DebugLocStr << '\n');
10527     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10528   }
10529 
10530   bool DisableRuntimeUnroll = false;
10531   MDNode *OrigLoopID = L->getLoopID();
10532   {
10533     using namespace ore;
10534     if (!VectorizeLoop) {
10535       assert(IC > 1 && "interleave count should not be 1 or 0");
10536       // If we decided that it is not legal to vectorize the loop, then
10537       // interleave it.
10538       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10539                                  &CM, BFI, PSI, Checks);
10540 
10541       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10542       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10543 
10544       ORE->emit([&]() {
10545         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10546                                   L->getHeader())
10547                << "interleaved loop (interleaved count: "
10548                << NV("InterleaveCount", IC) << ")";
10549       });
10550     } else {
10551       // If we decided that it is *legal* to vectorize the loop, then do it.
10552 
10553       // Consider vectorizing the epilogue too if it's profitable.
10554       VectorizationFactor EpilogueVF =
10555           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10556       if (EpilogueVF.Width.isVector()) {
10557 
10558         // The first pass vectorizes the main loop and creates a scalar epilogue
10559         // to be vectorized by executing the plan (potentially with a different
10560         // factor) again shortly afterwards.
10561         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10562         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10563                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10564 
10565         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10566         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10567                         DT);
10568         ++LoopsVectorized;
10569 
10570         // Second pass vectorizes the epilogue and adjusts the control flow
10571         // edges from the first pass.
10572         EPI.MainLoopVF = EPI.EpilogueVF;
10573         EPI.MainLoopUF = EPI.EpilogueUF;
10574         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10575                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10576                                                  Checks);
10577 
10578         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10579         VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
10580         VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
10581         Header->setName("vec.epilog.vector.body");
10582 
10583         // Ensure that the start values for any VPReductionPHIRecipes are
10584         // updated before vectorising the epilogue loop.
10585         for (VPRecipeBase &R : Header->phis()) {
10586           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10587             if (auto *Resume = MainILV.getReductionResumeValue(
10588                     ReductionPhi->getRecurrenceDescriptor())) {
10589               VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume);
10590               ReductionPhi->setOperand(0, StartVal);
10591             }
10592           }
10593         }
10594 
10595         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10596                         DT);
10597         ++LoopsEpilogueVectorized;
10598 
10599         if (!MainILV.areSafetyChecksAdded())
10600           DisableRuntimeUnroll = true;
10601       } else {
10602         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10603                                &LVL, &CM, BFI, PSI, Checks);
10604 
10605         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10606         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10607         ++LoopsVectorized;
10608 
10609         // Add metadata to disable runtime unrolling a scalar loop when there
10610         // are no runtime checks about strides and memory. A scalar loop that is
10611         // rarely used is not worth unrolling.
10612         if (!LB.areSafetyChecksAdded())
10613           DisableRuntimeUnroll = true;
10614       }
10615       // Report the vectorization decision.
10616       ORE->emit([&]() {
10617         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10618                                   L->getHeader())
10619                << "vectorized loop (vectorization width: "
10620                << NV("VectorizationFactor", VF.Width)
10621                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10622       });
10623     }
10624 
10625     if (ORE->allowExtraAnalysis(LV_NAME))
10626       checkMixedPrecision(L, ORE);
10627   }
10628 
10629   Optional<MDNode *> RemainderLoopID =
10630       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10631                                       LLVMLoopVectorizeFollowupEpilogue});
10632   if (RemainderLoopID) {
10633     L->setLoopID(RemainderLoopID.getValue());
10634   } else {
10635     if (DisableRuntimeUnroll)
10636       AddRuntimeUnrollDisableMetaData(L);
10637 
10638     // Mark the loop as already vectorized to avoid vectorizing again.
10639     Hints.setAlreadyVectorized();
10640   }
10641 
10642   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10643   return true;
10644 }
10645 
10646 LoopVectorizeResult LoopVectorizePass::runImpl(
10647     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10648     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10649     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10650     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10651     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10652   SE = &SE_;
10653   LI = &LI_;
10654   TTI = &TTI_;
10655   DT = &DT_;
10656   BFI = &BFI_;
10657   TLI = TLI_;
10658   AA = &AA_;
10659   AC = &AC_;
10660   GetLAA = &GetLAA_;
10661   DB = &DB_;
10662   ORE = &ORE_;
10663   PSI = PSI_;
10664 
10665   // Don't attempt if
10666   // 1. the target claims to have no vector registers, and
10667   // 2. interleaving won't help ILP.
10668   //
10669   // The second condition is necessary because, even if the target has no
10670   // vector registers, loop vectorization may still enable scalar
10671   // interleaving.
10672   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10673       TTI->getMaxInterleaveFactor(1) < 2)
10674     return LoopVectorizeResult(false, false);
10675 
10676   bool Changed = false, CFGChanged = false;
10677 
10678   // The vectorizer requires loops to be in simplified form.
10679   // Since simplification may add new inner loops, it has to run before the
10680   // legality and profitability checks. This means running the loop vectorizer
10681   // will simplify all loops, regardless of whether anything end up being
10682   // vectorized.
10683   for (auto &L : *LI)
10684     Changed |= CFGChanged |=
10685         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10686 
10687   // Build up a worklist of inner-loops to vectorize. This is necessary as
10688   // the act of vectorizing or partially unrolling a loop creates new loops
10689   // and can invalidate iterators across the loops.
10690   SmallVector<Loop *, 8> Worklist;
10691 
10692   for (Loop *L : *LI)
10693     collectSupportedLoops(*L, LI, ORE, Worklist);
10694 
10695   LoopsAnalyzed += Worklist.size();
10696 
10697   // Now walk the identified inner loops.
10698   while (!Worklist.empty()) {
10699     Loop *L = Worklist.pop_back_val();
10700 
10701     // For the inner loops we actually process, form LCSSA to simplify the
10702     // transform.
10703     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10704 
10705     Changed |= CFGChanged |= processLoop(L);
10706   }
10707 
10708   // Process each loop nest in the function.
10709   return LoopVectorizeResult(Changed, CFGChanged);
10710 }
10711 
10712 PreservedAnalyses LoopVectorizePass::run(Function &F,
10713                                          FunctionAnalysisManager &AM) {
10714     auto &LI = AM.getResult<LoopAnalysis>(F);
10715     // There are no loops in the function. Return before computing other expensive
10716     // analyses.
10717     if (LI.empty())
10718       return PreservedAnalyses::all();
10719     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10720     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10721     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10722     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10723     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10724     auto &AA = AM.getResult<AAManager>(F);
10725     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10726     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10727     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10728 
10729     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10730     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10731         [&](Loop &L) -> const LoopAccessInfo & {
10732       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10733                                         TLI, TTI, nullptr, nullptr, nullptr};
10734       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10735     };
10736     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10737     ProfileSummaryInfo *PSI =
10738         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10739     LoopVectorizeResult Result =
10740         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10741     if (!Result.MadeAnyChange)
10742       return PreservedAnalyses::all();
10743     PreservedAnalyses PA;
10744 
10745     // We currently do not preserve loopinfo/dominator analyses with outer loop
10746     // vectorization. Until this is addressed, mark these analyses as preserved
10747     // only for non-VPlan-native path.
10748     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10749     if (!EnableVPlanNativePath) {
10750       PA.preserve<LoopAnalysis>();
10751       PA.preserve<DominatorTreeAnalysis>();
10752     }
10753 
10754     if (Result.MadeCFGChange) {
10755       // Making CFG changes likely means a loop got vectorized. Indicate that
10756       // extra simplification passes should be run.
10757       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10758       // be run if runtime checks have been added.
10759       AM.getResult<ShouldRunExtraVectorPasses>(F);
10760       PA.preserve<ShouldRunExtraVectorPasses>();
10761     } else {
10762       PA.preserveSet<CFGAnalyses>();
10763     }
10764     return PA;
10765 }
10766 
10767 void LoopVectorizePass::printPipeline(
10768     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10769   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10770       OS, MapClassName2PassName);
10771 
10772   OS << "<";
10773   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10774   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10775   OS << ">";
10776 }
10777